Unfolding schematic systems – with an emphasis on inductive definitions

Thomas Strahm

Institut für Informatik und angewandte Mathematik, Universität Bern

WPT, Utrecht, April '15

- Introduction
 - Defining unfolding
- Onfolding non-finitist arithmetic
- Unfolding finitist arithmetic
- 5 Unfolding finitist arithmetic with bar rule
- 6 Unfolding feasible arithmetic
 - Unfolding ID₁
- (8) Systems related to the unfolding of ID₁

Unfolding schematic formal systems (Feferman '96)

Given a schematic formal system S, which operations and predicates, and which principles concerning them, ought to be accepted if one has accepted S ?

Unfolding schematic formal systems (Feferman '96)

Given a schematic formal system S, which operations and predicates, and which principles concerning them, ought to be accepted if one has accepted S ?

Example (Non-finitist arithmetic NFA) Logical operations: \neg , \land , \forall . (1) $x' \neq 0$ (2) Pd(x') = x(3) $P(0) \land \forall x (P(x) \rightarrow P(x')) \rightarrow \forall x P(x)$.

Schematic formal systems

- The informal philosophy behind the use of schemata is their open-endedness
- Implicit in the acceptance of a schema is the acceptance of any meaningful substitution instance
- Schematas are applicable to any language which one comes to recognize as embodying meaningful notions

Background and previous approaches

General background: Implicitness program (Kreisel '70)

Various means of extending a formal system by principles which are implicit in its axioms.

- Reflection principles, transfinite recursive progressions (Turing '39, Feferman '62)
- Autonomous progressions and predicativity (Feferman, Schütte '64)
- Reflective closure based on self-applicative truth (Feferman '91)

Introduction

2 Defining unfolding

- 3 Unfolding non-finitist arithmetic
- Unfolding finitist arithmetic
- 5 Unfolding finitist arithmetic with bar rule
- 6 Unfolding feasible arithmetic
- 7 Unfolding ID_1
- $^{\circ}$ Systems related to the unfolding of ID $_1$

• We have a general notion of (partial) operation and predicate

- We have a general notion of (partial) operation and predicate
- \bullet Predicates are just special kinds of operations, equipped with an \in relation

- We have a general notion of (partial) operation and predicate
- \bullet Predicates are just special kinds of operations, equipped with an \in relation
- Underlying partial combinatory algebra with pairing and definition by cases:

 $u^{\scriptscriptstyle b}$ UNIVERSITA

- We have a general notion of (partial) operation and predicate
- \bullet Predicates are just special kinds of operations, equipped with an \in relation
- Underlying partial combinatory algebra with pairing and definition by cases:

(1) kab = a,

- We have a general notion of (partial) operation and predicate
- \bullet Predicates are just special kinds of operations, equipped with an \in relation
- Underlying partial combinatory algebra with pairing and definition by cases:

(1)
$$kab = a$$
,
(2) $sab\downarrow \land sabc \simeq ac(bc)$,

- We have a general notion of (partial) operation and predicate
- \bullet Predicates are just special kinds of operations, equipped with an \in relation
- Underlying partial combinatory algebra with pairing and definition by cases:

(1)
$$kab = a$$
,
(2) $sab\downarrow \land sabc \simeq ac(bc)$,
(3) $p_0(a,b) = a \land p_1(a,b) = b$

- We have a general notion of (partial) operation and predicate
- \bullet Predicates are just special kinds of operations, equipped with an \in relation
- Underlying partial combinatory algebra with pairing and definition by cases:

(1)
$$kab = a$$
,
(2) $sab\downarrow \land sabc \simeq ac(bc)$,
(3) $p_0(a,b) = a \land p_1(a,b) = b$,
(4) $dabtt = a \land dabff = b$.

- We have a general notion of (partial) operation and predicate
- \bullet Predicates are just special kinds of operations, equipped with an \in relation
- Underlying partial combinatory algebra with pairing and definition by cases:

(1)
$$kab = a$$
,
(2) $sab\downarrow \land sabc \simeq ac(bc)$,
(3) $p_0(a,b) = a \land p_1(a,b) = b$,
(4) $dabtt = a \land dabtf = b$.

• Operations are not bound to any specific mathematical domain

• The universe of S has associated with it an additional unary relation symbol, U_S , and the axioms of S are to be relativized to U_S .

- The universe of S has associated with it an additional unary relation symbol, U_S, and the axioms of S are to be relativized to U_S.
- Each function symbol *f* of S determines an element *f*^{*} of our partial combinatory algebra.

- The universe of S has associated with it an additional unary relation symbol, U_S , and the axioms of S are to be relativized to U_S .
- Each function symbol *f* of S determines an element *f*^{*} of our partial combinatory algebra.
- Each relation symbol R of S together with U_S determines a predicate R^* of our partial combinatory algebra with $R(x_1, \ldots, x_n)$ if and only if $(x_1, \ldots, x_n) \in R^*$.

- The universe of S has associated with it an additional unary relation symbol, U_S , and the axioms of S are to be relativized to U_S .
- Each function symbol *f* of S determines an element *f*^{*} of our partial combinatory algebra.
- Each relation symbol R of S together with U_S determines a predicate R^* of our partial combinatory algebra with $R(x_1, \ldots, x_n)$ if and only if $(x_1, \ldots, x_n) \in R^*$.
- Operations on predicates, such as e.g. conjunction, are just special kinds of operations. Each logical operation / of S determines a corresponding operation /* on predicates.

- The universe of S has associated with it an additional unary relation symbol, U_S , and the axioms of S are to be relativized to U_S .
- Each function symbol *f* of S determines an element *f*^{*} of our partial combinatory algebra.
- Each relation symbol R of S together with U_S determines a predicate R^* of our partial combinatory algebra with $R(x_1, \ldots, x_n)$ if and only if $(x_1, \ldots, x_n) \in R^*$.
- Operations on predicates, such as e.g. conjunction, are just special kinds of operations. Each logical operation / of S determines a corresponding operation /* on predicates.
- Families or sequences of predicates given by an operation f form a new predicate Join(f), the disjoint union of the predicates from f.

The substitution rule

Substitution rule (Subst)

$$rac{A[ar{P}]}{A[ar{B}/ar{P}]}$$

 $\bar{P} = P_1, \dots, P_m$: sequence of free predicate symbols

 $\bar{B} = B_1, \ldots, B_m$: sequence of formulas

 $A[ar{B}/ar{P}]$ denotes the formula $A[ar{P}]$ with P_i replace by B_i $(1 \le i \le n)$

u^b

(Subst)

The three unfolding systems

Definition ($\mathcal{U}(S)$, $\mathcal{U}_0(S)$, $\mathcal{U}_1(S)$)

- $\bullet~\mathcal{U}(\mathsf{S}){:}$ full (predicate) unfolding of S
- $\mathcal{U}_0(S)$: operational unfolding of S (no predicates)
- $\mathcal{U}_1(S)$: $\mathcal{U}(S)$ without (*Join*)

 $u^{\scriptscriptstyle b}$ UNIVERSITA

The three unfolding systems

Definition ($\mathcal{U}(S)$, $\mathcal{U}_0(S)$, $\mathcal{U}_1(S)$)

- $\bullet~\mathcal{U}(\mathsf{S}){:}$ full (predicate) unfolding of S
- $\mathcal{U}_0(S)$: operational unfolding of S (no predicates)
- $\mathcal{U}_1(S)$: $\mathcal{U}(S)$ without (*Join*)

Remark: The original formulation of unfolding made use of a background theory of typed operations with general Least Fixed Point operator. The present formulation is a simplification of this approach.

Introduction

Defining unfolding

- Onfolding non-finitist arithmetic
 - 4 Unfolding finitist arithmetic
- 5 Unfolding finitist arithmetic with bar rule
- 6 Unfolding feasible arithmetic
- Unfolding ID₁
- [3] Systems related to the unfolding of ID₁

T. Strahm (IAM, Univ. Bern)

The proof theory of the three unfolding systems for NFA

Theorem (Feferman, Str.)

We have the following proof-theoretic characterizations.

- **1** $\mathcal{U}_0(\mathsf{NFA})$ is proof-theoretically equivalent to PA.
- **2** $\mathcal{U}_1(NFA)$ is proof-theoretically equivalent to $RA_{<\omega}$.
- **③** $\mathcal{U}(NFA)$ is proof-theoretically equivalent to $RA_{<\Gamma_0}$.

In each case we have conservation with respect to arithmetic statements of the system on the left over the system on the right.

Introduction

- 2 Defining unfolding
- Onfolding non-finitist arithmetic
- Unfolding finitist arithmetic
- 5 Unfolding finitist arithmetic with bar rule
- 6 Unfolding feasible arithmetic
- Unfolding ID₁
- $^{\circ}$ Systems related to the unfolding of ID $_1$

Finitist arithmetic

Question: What principles are implicit in the actual finitist conception of the set of natural numbers ?

Finitist arithmetic

Question: What principles are implicit in the actual finitist conception of the set of natural numbers ?

Example (Finitist arithmetic FA) Logical operations: \land , \lor , \exists . (1) $x' = 0 \rightarrow \bot$ (2) Pd(x') = x(3) $\frac{\Gamma \rightarrow P(0) \quad \Gamma, P(x) \rightarrow P(x')}{\Gamma \rightarrow P(x)}$.

Note that the statements proved are sequents Σ of the form $\Gamma \to A$, where Γ is a finite sequence (possibly empty) of formulas. The logic is formulated in Gentzen-style. u^{\flat}

UNIVERSITÄT

Generalization of the substitution rule (Subst)

We have to generalize the substitution rule (Subst) to rules of inference:

Substitution rule (Subst')

Given that the rule of inference

$$\frac{\Sigma_1, \Sigma_2, \ldots, \Sigma_n}{\Sigma}$$

is derivable, we can adjoin each of its substitution instances

$$\frac{\Sigma_1[\bar{B}/\bar{P}], \, \Sigma_2[\bar{B}/\bar{P}], \dots, \Sigma_n[\bar{B}/\bar{P}]}{\Sigma[\bar{B}/\bar{P}]}$$

as a new rule of inference.

T. Strahm (IAM, Univ. Bern)

The proof theory of the three unfolding systems for FA

The full unfolding of FA includes the basic logical operations as operations on predicates as well as *Join*.

Theorem (Feferman, Str.)

All three unfolding systems for finitist arithmetic, $U_0(FA)$, $U_1(FA)$ and U(FA) are proof-theoretically equivalent to Skolem's Primitive Recursive Arithmetic PRA.

Support of Tait's informal analysis of finitism.

Introduction

- 2 Defining unfolding
- 3 Unfolding non-finitist arithmetic
- 4 Unfolding finitist arithmetic
- 5 Unfolding finitist arithmetic with bar rule
- 6 Unfolding feasible arithmetic
- Unfolding ID₁
- $egin{array}{c} egin{array}{c} egin{array}$

T. Strahm (IAM, Univ. Bern)

Extended finitism and the bar rule

In the following

• We will study a natural bar rule BR leading to extensions $U_0(FA + BR)$, $U_1(FA + BR)$ and U(FA + BR) of our unfolding systems for finitism

 $u^{\scriptscriptstyle b}$ UNIVERSITA

Extended finitism and the bar rule

In the following

- We will study a natural bar rule BR leading to extensions $U_0(FA + BR)$, $U_1(FA + BR)$ and U(FA + BR) of our unfolding systems for finitism
- The so-obtained extensions will all have the strength of Peano arithmetic PA

 $u^{\scriptscriptstyle b}$ UNIVERSITA

Extended finitism and the bar rule

In the following

- We will study a natural bar rule BR leading to extensions $U_0(FA + BR)$, $U_1(FA + BR)$ and U(FA + BR) of our unfolding systems for finitism
- The so-obtained extensions will all have the strength of Peano arithmetic PA
- This shows one way how Kreisel's analysis of extended finitism fits in our framework

Defining $U_0(FA + BR)$: Formulating the bar rule

The rule NDS[f, ≺] says that for each possibly infinite descending chain f w.r.t. ≺ there is an x such that fx = 0, where f denotes a new constant of our applicative language.

Defining $U_0(FA + BR)$: Formulating the bar rule

- The rule NDS[f, ≺] says that for each possibly infinite descending chain f w.r.t. ≺ there is an x such that fx = 0, where f denotes a new constant of our applicative language.
- In general, the bar rule BR says that we may infer the principle of transfinite induction TI[≺, P] from NDS[f, ≺] for each predicate P.
Defining $U_0(FA + BR)$: Formulating the bar rule

- The rule NDS[f, ≺] says that for each possibly infinite descending chain f w.r.t. ≺ there is an x such that fx = 0, where f denotes a new constant of our applicative language.
- In general, the bar rule BR says that we may infer the principle of transfinite induction TI[≺, P] from NDS[f, ≺] for each predicate P.
- We must modify TI[≺, P], since its standard formulation for a unary predicate P is of the form:

$$\forall x [(\forall u \prec x) P(u) \rightarrow P(x)] \rightarrow \forall x P(x).$$

The idea is to treat this as a rule of the form:

from
$$\forall u[u \prec x \rightarrow P(u)] \rightarrow P(x)$$
 infer $P(x)$.

Defining $U_0(FA + BR)$: Formulating the bar rule

- The rule NDS[f, ≺] says that for each possibly infinite descending chain f w.r.t. ≺ there is an x such that fx = 0, where f denotes a new constant of our applicative language.
- In general, the bar rule BR says that we may infer the principle of transfinite induction TI[≺, P] from NDS[f, ≺] for each predicate P.
- We must modify TI[≺, P], since its standard formulation for a unary predicate P is of the form:

$$\forall x[(\forall u \prec x)P(u) \rightarrow P(x)] \rightarrow \forall xP(x).$$

The idea is to treat this as a rule of the form:

from
$$\forall u[u \prec x \rightarrow P(u)] \rightarrow P(x)$$
 infer $P(x)$.

 But we still need an additional step to reformulate the hypothesis of this rule in the language of FA, the basic idea being to use a skolemized form of the universal quantifier.

T. Strahm (IAM, Univ. Bern)

The key observation

Theorem

Assume that NDS[f, \prec] is derivable in $U_0(FA + BR)$. Then $U_0(FA + BR)$ justifies nested recursion along \prec .

William Tait: Nested recursion, Mathematische Annalen, 143 (1961).

William Tait: Nested recursion, Mathematische Annalen, 143 (1961).

 For each ordinal α < ε₀ let ≺_α be a primitive recursive standard wellordering ≺_α of ordertype α

 u^{\flat} UNIVERSITAT

William Tait: Nested recursion, Mathematische Annalen, 143 (1961).

- For each ordinal α < ε₀ let ≺_α be a primitive recursive standard wellordering ≺_α of ordertype α
- Let us write NDS[f, α] instead of NDS[f, \prec_{α}]

 u^{\flat} UNIVERSITA

William Tait: Nested recursion, Mathematische Annalen, 143 (1961).

- For each ordinal α < ε₀ let ≺_α be a primitive recursive standard wellordering ≺_α of ordertype α
- Let us write $NDS[f, \alpha]$ instead of $NDS[f, \prec_{\alpha}]$
- Aim at showing that $\mathcal{U}_0(FA + BR)$ derives NDS[f, α] for each $\alpha < \varepsilon_0$

 u^{\flat} UNIVERSITA

William Tait: Nested recursion, Mathematische Annalen, 143 (1961).

- For each ordinal α < ε₀ let ≺_α be a primitive recursive standard wellordering ≺_α of ordertype α
- Let us write $NDS[f, \alpha]$ instead of $NDS[f, \prec_{\alpha}]$
- Aim at showing that $\mathcal{U}_0(FA + BR)$ derives NDS[f, α] for each $\alpha < \varepsilon_0$
- Use one direction of Tait's famous result, i.e. that nested recursion on $\omega \alpha$ entails ordinary recursion on ω^{α} or, more useful in our setting, nested recursion on $\omega \alpha$ entails NDS[f, ω^{α}]

William Tait: Nested recursion, Mathematische Annalen, 143 (1961).

- For each ordinal α < ε₀ let ≺_α be a primitive recursive standard wellordering ≺_α of ordertype α
- Let us write $NDS[f, \alpha]$ instead of $NDS[f, \prec_{\alpha}]$
- Aim at showing that $\mathcal{U}_0(FA + BR)$ derives NDS[f, α] for each $\alpha < \varepsilon_0$
- Use one direction of Tait's famous result, i.e. that nested recursion on $\omega \alpha$ entails ordinary recursion on ω^{α} or, more useful in our setting, nested recursion on $\omega \alpha$ entails NDS[f, ω^{α}]
- Tait's argument can be directly formalized in $U_0(FA + BR)$

The proof theory of the three unfolding systems for FA with bar rule

Theorem (Feferman, Str.)

All three unfolding systems for finitist arithmetic with bar rule, $U_0(FA + BR)$, $U_1(FA + BR)$ and U(FA + BR) are proof-theoretically equivalent to Peano arithmetic PA.

Support of Kreisel's analysis of extended finitism.

Introduction

- 2 Defining unfolding
- 3 Unfolding non-finitist arithmetic
- 4 Unfolding finitist arithmetic
- 5 Unfolding finitist arithmetic with bar rule
- 6 Unfolding feasible arithmetic
- Unfolding ID₁
- $[\mathbb{B}]$ Systems related to the unfolding of ID $_1$

The language of feasible arithmetic

• The basic schematic system FEA of feasible arithmetic is based on a language for binary words generated from the empty word by the two binary successors S_0 and S_1 ; in addition, it includes some natural basic operations on the binary words like, for example, word concatenation and multiplication

The language of feasible arithmetic

- The basic schematic system FEA of feasible arithmetic is based on a language for binary words generated from the empty word by the two binary successors S_0 and S_1 ; in addition, it includes some natural basic operations on the binary words like, for example, word concatenation and multiplication
- The logical operations of FEA are conjunction (∧), disjunction (∨), and the bounded existential quantifier (∃[≤])

The language of feasible arithmetic

- The basic schematic system FEA of feasible arithmetic is based on a language for binary words generated from the empty word by the two binary successors S_0 and S_1 ; in addition, it includes some natural basic operations on the binary words like, for example, word concatenation and multiplication
- The logical operations of FEA are conjunction (∧), disjunction (∨), and the bounded existential quantifier (∃[≤])
- FEA is formulated as a system of sequents in this language: apart from the defining axioms for basic operations on words, its heart is a schematically formulated, i.e. open-ended induction rule along the binary words, using a free predicate letter *P*.

24 / 37

The basic schematic system FEA

Example (Feasible arithmetic FEA) Logical operations: $\land, \lor, \exists \leq$. (1) defining equations for the function symbols of the language of FEA (2) $\frac{\Gamma \rightarrow P(\epsilon) \qquad \Gamma, P(\alpha) \rightarrow P(S_i(\alpha)) \quad (i = 0, 1)}{\Gamma \rightarrow P(\alpha)}$

The strength of the unfoldings of FEA

Theorem (Eberhard, Str.)

The provably total functions of $U_0(FEA)$ and U(FEA) are exactly the polynomial time computable functions.

 u^{\flat} UNIVERSITA

Introduction

- 2 Defining unfolding
- 3 Unfolding non-finitist arithmetic
- ④ Unfolding finitist arithmetic
- 5 Unfolding finitist arithmetic with bar rule
- 6 Unfolding feasible arithmetic
- 7 Unfolding ID_1
- $fieldsymbol{3}$ Systems related to the unfolding of ID $_1$

T. Strahm (IAM, Univ. Bern)

Schematic formal system for ID₁

Example (Schematic ID₁)

For each positive arithmetical operator form A we have a new relation symbol I_A and the following axioms:

(1)
$$\forall x (\mathcal{A}[I_{\mathcal{A}}, x] \rightarrow I_{\mathcal{A}}(x))$$

(2) $\forall x (\mathcal{A}[P,x] \to P(x)) \to \forall x (I_{\mathcal{A}}(x) \to P(x))$

The strength of the full unfolding of ID_1

Theorem (U. Buchholtz)

 $|\mathcal{U}(\mathsf{ID}_1)| = \Psi(\Gamma_{\Omega+1})$

Introduction

- 2 Defining unfolding
- 3 Unfolding non-finitist arithmetic
- Unfolding finitist arithmetic
- Unfolding finitist arithmetic with bar rule
- 6 Unfolding feasible arithmetic
- 7 Unfolding ID_1

T. Strahm (IAM, Univ. Bern)

We look at an extension of the language of second sorder arithmetic which includes inductive definitions:

• Let L_1 and L_2 be the usual languages of first- and second order arithmetic, respectively.

 u^{\flat} UNIVERSITA

We look at an extension of the language of second sorder arithmetic which includes inductive definitions:

- Let L_1 and L_2 be the usual languages of first- and second order arithmetic, respectively.
- Let $\mathcal{A}[P, x]$ range over (positive) inductive operator forms of $L_1(P)$.

 u^{\flat} UNIVERSITA

We look at an extension of the language of second sorder arithmetic which includes inductive definitions:

- Let L_1 and L_2 be the usual languages of first- and second order arithmetic, respectively.
- Let $\mathcal{A}[P, x]$ range over (positive) inductive operator forms of $L_1(P)$.
- Extend L_2 to L_2^{\bullet} by adding a fresh (unary) relation symbol I_A for each inductive operator form A.

We look at an extension of the language of second sorder arithmetic which includes inductive definitions:

- Let L_1 and L_2 be the usual languages of first- and second order arithmetic, respectively.
- Let $\mathcal{A}[P, x]$ range over (positive) inductive operator forms of $L_1(P)$.
- Extend L_2 to L_2^{\bullet} by adding a fresh (unary) relation symbol I_A for each inductive operator form A.
- An L_2^{\bullet} formula is called elementary, if it does not contain bound set variables.

Let ACA₀ be the usual system based on arithmetic comprehension and set induction. To it we can add the following well-known principles (assume A, B, C, D arithmetic):

Let ACA₀ be the usual system based on arithmetic comprehension and set induction. To it we can add the following well-known principles (assume A, B, C, D arithmetic):

$$\forall a(\exists XA[X,a] \leftrightarrow \forall XB[X,a]) \rightarrow \exists Y \forall a(a \in Y \leftrightarrow \exists XA[X,a]) \quad (\Delta_1^1 \text{-} \text{CA})$$

Let ACA₀ be the usual system based on arithmetic comprehension and set induction. To it we can add the following well-known principles (assume A, B, C, D arithmetic):

$$\forall a(\exists XA[X,a] \leftrightarrow \forall XB[X,a]) \rightarrow \exists Y \forall a(a \in Y \leftrightarrow \exists XA[X,a]) \quad (\Delta_1^1 \text{-} \text{CA})$$

$$\forall a \exists XC[a, X] \rightarrow \exists Y \forall aC[a, (Y)_a] \qquad (\Sigma_1^1 \text{-AC})$$

Let ACA₀ be the usual system based on arithmetic comprehension and set induction. To it we can add the following well-known principles (assume A, B, C, D arithmetic):

$$\forall a(\exists XA[X,a] \leftrightarrow \forall XB[X,a]) \rightarrow \exists Y \forall a(a \in Y \leftrightarrow \exists XA[X,a]) \quad (\Delta_1^1 \text{-} \text{CA})$$

$$\forall a \exists XC[a, X] \rightarrow \exists Y \forall aC[a, (Y)_a] \qquad (\Sigma_1^1 \text{-AC})$$

$$\forall a \forall X \exists YD[a, X, Y] \rightarrow \exists Z \forall a D[a, (Z)^{a}, (Z)_{a}]$$
 (Σ_{1}^{1} -DC)

Some well-known theories in L_2 (ctd.)

The substitution rule is the rule of inference

$$\frac{\forall XA[X]}{A[B/X]}$$

for arithmetic
$$A[X]$$
 and arbitrary $B[v]$.

(SUB)

Some well-known theories in L_2 (ctd.)

The substitution rule is the rule of inference

$$\frac{\forall XA[X]}{A[B/X]} \tag{SUB}$$

for arithmetic A[X] and arbitrary B[v].

The principle of arithmetic transfinite recursion is expressed as follows:

$$\forall Z(\mathsf{WO}(Z) \to \forall X \exists Y \mathsf{Hier}_{A}[X, Y, Z])$$
 (ATR)

where $\operatorname{Hier}_{A}[X, Y, Z]$ expresses that "Y is the A jump hierarchy along Z starting with X" for arithmetic A.

The new theories in L_2^{\bullet}

• We extend the above theories to the language L_2^{\bullet} and add the least fixed point axioms

 $\forall a(\mathcal{A}[I_{\mathcal{A}}, a] \rightarrow I_{\mathcal{A}}(a))$ $\forall X(\forall a(\mathcal{A}[X, a] \rightarrow a \in X) \rightarrow \forall a(I_{\mathcal{A}}(a) \rightarrow a \in X))$

The new theories in L_2^{\bullet}

• We extend the above theories to the language L_2^{\bullet} and add the least fixed point axioms

 $orall a(\mathcal{A}[I_{\mathcal{A}}, a] \to I_{\mathcal{A}}(a))$ $orall X(orall a(\mathcal{A}[X, a] \to a \in X) \to orall a(I_{\mathcal{A}}(a) \to a \in X))$

• We also add the elementary comprehension axiom

$$\exists X \forall a (a \in X \leftrightarrow A[a])$$

for elementary formulas A[a]. We thus get the theory ACA[•]₀ which conservatively extends ID₁.

The new theories in L_2^{\bullet}

• We extend the above theories to the language L_2^{\bullet} and add the least fixed point axioms

 $orall a(\mathcal{A}[I_{\mathcal{A}}, a] \to I_{\mathcal{A}}(a))$ $orall X(orall a(\mathcal{A}[X, a] \to a \in X) \to orall a(I_{\mathcal{A}}(a) \to a \in X))$

• We also add the elementary comprehension axiom

$$\exists X \forall a (a \in X \leftrightarrow A[a])$$

for elementary formulas A[a]. We thus get the theory ACA₀[•] which conservatively extends ID₁.

 We get the theories Δ¹₁-CA[•]₀ Σ¹₁-AC[•]₀, Σ¹₁-DC[•]₀, and ATR[•]₀ by adding the corresponding schemata with arithmetic replaced by elementary^b

UNIVERSITAT

The main theorem

Theorem (Buchholtz, Jäger, Str.)

The following theories all have proof-theoretic ordinal $\Psi(\Gamma_{\Omega+1})$:

- Δ_1^1 -CA $_0^{\bullet}$ + SUB $^{\bullet}$,
- Σ_1^1 -AC $_0^{\bullet}$ + SUB $^{\bullet}$,
- Σ_1^1 -DC $_0^{\bullet}$ + SUB $^{\bullet}$,
- ATR[●]₀.

In fact, we have equivalence for elementary Π_1^1 sentences. Thus, all these theories are equivalent to the unfolding of ID₁.

The end

Thank you very much for your attention.

Some references

BUCHHOLTZ, U.

Unfolding of systems of inductive definitions. *PhD Thesis*, Stanford University, 2013.

Buchholtz, U., Jäger, G., Strahm, T.

Theories of proof-theoretic strength $\Psi(\Gamma_{\Omega+1})$. Submitted for publication.

Eberhard, S., and Strahm, T.

Unfolding feasible arithmetic and weak truth. In Unifying the Philosophy of Truth, Springer, to appear.

Feferman, S.

Gödel's program for new axioms: Why, where, how and what? In Gödel '96, P. Hájek, Ed., vol. 6 of Lecture Notes in Logic. Springer, Berlin, 1996, pp. 3-22.

FEFERMAN, S., AND STRAHM, T.

The unfolding of non-finitist arithmetic.

Annals of Pure and Applied Logic 104 (2000), 75-96.

FEFERMAN, S., AND STRAHM, T.

Unfolding finitist arithmetic. Review of Symbolic Logic 3(4), 2010, 665–689.