Kripke Platek set theory over polynomial time computable arithmetic I

Dieter Probst and Thomas Strahm

Institut für Informatik und angewandte Mathematik, Universität Bern
Swansea, April 13, 2007
(1) Introduction
(2) The case of KPu^{r}
(3) Polynomial time computable arithmetic and extensions
(4) Two admissible closures of PTCA
(5) Main results

Kripke Platek set theories in proof theory

- the theory of admissibles sets, i.e. Kripke Platek set theory, is one of the most familiar subsystems of Zermelo Fraenkel set theory
- great significane for definability theory and generalized recursion theory
- theories for (iterated) admissibles have long been central for a unifying approach to proof theory

The theory of urelements

- especially in the context of weak set theories it is natural to consider Kripke Platek set theory with urelements
- usually, the theory of urelements is taken to be Peano arithmetic
- in this talk we consider considerably weaker theories of urelements from bounded arithmetic

In this talk

- we will consider weak admissible closures of systems of bounded arithmetic, namely Ferreira's system PTCA of polynomial time computable arithmetic

In this talk

- we will consider weak admissible closures of systems of bounded arithmetic, namely Ferreira's system PTCA of polynomial time computable arithmetic
- we will define two natural closures $\mathbb{A}_{0}(T)$ and $\mathbb{A}_{1}(T)$ for T a theory in the language of PTCA

In this talk

- we will consider weak admissible closures of systems of bounded arithmetic, namely Ferreira's system PTCA of polynomial time computable arithmetic
- we will define two natural closures $\mathbb{A}_{0}(T)$ and $\mathbb{A}_{1}(T)$ for T a theory in the language of PTCA
- the main result will be that

In this talk

- we will consider weak admissible closures of systems of bounded arithmetic, namely Ferreira's system PTCA of polynomial time computable arithmetic
- we will define two natural closures $\mathbb{A}_{0}(T)$ and $\mathbb{A}_{1}(T)$ for T a theory in the language of PTCA
- the main result will be that
- $\mathbb{A}_{0}($ PTCA $)$ is conservative over polynomial time computable arithmetic

In this talk

- we will consider weak admissible closures of systems of bounded arithmetic, namely Ferreira's system PTCA of polynomial time computable arithmetic
- we will define two natural closures $\mathbb{A}_{0}(T)$ and $\mathbb{A}_{1}(T)$ for T a theory in the language of PTCA
- the main result will be that
- $\mathbb{A}_{0}($ PTCA $)$ is conservative over polynomial time computable arithmetic
- \mathbb{A}_{1} (PTCA) is conservative over full bounded arithmetic

In this talk

- we will consider weak admissible closures of systems of bounded arithmetic, namely Ferreira's system PTCA of polynomial time computable arithmetic
- we will define two natural closures $\mathbb{A}_{0}(T)$ and $\mathbb{A}_{1}(T)$ for T a theory in the language of PTCA
- the main result will be that
- $\mathbb{A}_{0}($ PTCA $)$ is conservative over polynomial time computable arithmetic
- \mathbb{A}_{1} (PTCA) is conservative over full bounded arithmetic
- I will present the systems and main results; Dieter Probst will show you some details of the (quite involved) proofs

(1) Introduction

(2) The case of KPu^{r}

(3) Polynomial time computable arithmetic and extensions

(4) Two admissible closures of PTCA
(5) Main results

The theory KPur

The theory KPu^{r} is an extension of Peano arithmetic PA by

- the usual axioms of Kripke Platek set theory, namely pairing, union, Δ_{0} separation and Δ_{0} collection

The theory KPur

The theory KPu^{r} is an extension of Peano arithmetic PA by

- the usual axioms of Kripke Platek set theory, namely pairing, union, Δ_{0} separation and Δ_{0} collection
- foundation in the form of the regularity axiom and induction along the natural numbers N for sets

The theory KPur

The theory KPu^{r} is an extension of Peano arithmetic PA by

- the usual axioms of Kripke Platek set theory, namely pairing, union, Δ_{0} separation and Δ_{0} collection
- foundation in the form of the regularity axiom and induction along the natural numbers N for sets
- an axiom claiming that N forms a set

The theory KPur

The theory KPu^{r} is an extension of Peano arithmetic PA by

- the usual axioms of Kripke Platek set theory, namely pairing, union, Δ_{0} separation and Δ_{0} collection
- foundation in the form of the regularity axiom and induction along the natural numbers N for sets
- an axiom claiming that N forms a set

The theory KPur

The theory KPu^{r} is an extension of Peano arithmetic PA by

- the usual axioms of Kripke Platek set theory, namely pairing, union, Δ_{0} separation and Δ_{0} collection
- foundation in the form of the regularity axiom and induction along the natural numbers N for sets
- an axiom claiming that N forms a set

Theorem (Jäger)

KPu^{r} is a conservative extension of Peano arithmetic PA.

Related systems

- the subsystem of second order arithmetic $\Sigma_{1}^{1}-\mathrm{AC} \mid$
- the system of explicit mathematics $\mathrm{EM}_{0} \upharpoonright+\mathrm{J}$
- Jäger's fixed point theory with ordinals PA_{Ω}^{r}
- similar subsystems of CZF and Martin-Löf type theory

(1) Introduction

(2) The case of KPu^{r}
(3) Polynomial time computable arithmetic and extensions

(5) Main results

The language \mathcal{L}

\mathcal{L} is a first order language including

The language \mathcal{L}

\mathcal{L} is a first order language including

- variables a, b, c, x, y, z, \ldots (ranging over binary words)

The language \mathcal{L}

\mathcal{L} is a first order language including

- variables a, b, c, x, y, z, \ldots (ranging over binary words)
- constants $\varepsilon, 0,1$ (empty word, zero, one)

The language \mathcal{L}

\mathcal{L} is a first order language including

- variables a, b, c, x, y, z, \ldots (ranging over binary words)
- constants $\varepsilon, 0,1$ (empty word, zero, one)
- the binary function symbols $*$ and \times (word concatenation and multiplication)

The language \mathcal{L}

\mathcal{L} is a first order language including

- variables a, b, c, x, y, z, \ldots (ranging over binary words)
- constants $\varepsilon, 0,1$ (empty word, zero, one)
- the binary function symbols $*$ and \times (word concatenation and multiplication)
- the binary relation symbol \sqsubseteq (initial subword relation)

The language \mathcal{L}

\mathcal{L} is a first order language including

- variables a, b, c, x, y, z, \ldots (ranging over binary words)
- constants $\varepsilon, 0,1$ (empty word, zero, one)
- the binary function symbols $*$ and \times (word concatenation and multiplication)
- the binary relation symbol \sqsubseteq (initial subword relation)

The language \mathcal{L}

\mathcal{L} is a first order language including

- variables a, b, c, x, y, z, \ldots (ranging over binary words)
- constants $\varepsilon, 0,1$ (empty word, zero, one)
- the binary function symbols $*$ and \times (word concatenation and multiplication)
- the binary relation symbol \sqsubseteq (initial subword relation)

Defining the relations \sqsubseteq^{*} and \leq

$$
\begin{aligned}
s \sqsubseteq^{*} t & :=(\exists x)(x \sqsubseteq t \wedge x s \sqsubseteq t) \quad(s \text { is a subword of } t) \\
s \leq t & :=1 \times s \sqsubseteq 1 \times t \quad \text { (the length of } s \text { is Ite the length of } t)
\end{aligned}
$$

The language \mathcal{L}_{p}

\mathcal{L}_{p} is a first order language extending \mathcal{L}

The language \mathcal{L}_{p}

\mathcal{L}_{p} is a first order language extending \mathcal{L}

- by adding a function symbol for each description of a polynomial time computable function

The language \mathcal{L}_{p}

\mathcal{L}_{p} is a first order language extending \mathcal{L}

- by adding a function symbol for each description of a polynomial time computable function
- the terms of \mathcal{L} act as bounding terms, similar to Cobham's characterization of the polynomial time computable functions

The language \mathcal{L}_{p}

\mathcal{L}_{p} is a first order language extending \mathcal{L}

- by adding a function symbol for each description of a polynomial time computable function
- the terms of \mathcal{L} act as bounding terms, similar to Cobham's characterization of the polynomial time computable functions
- i.e. the polytime functions are generated inductively with the schemata of composition and bounded iteration from a set of initial functions

Some formula classes

Some formula classes

Definition $\left(\Delta_{0}^{b}, \Sigma_{1}^{b}, \Sigma_{\infty}^{b}\right.$ formulas)

Some formula classes

Definition ($\Delta_{0}^{b}, \Sigma_{1}^{b}, \Sigma_{\infty}^{b}$ formulas)

(1) the class of Δ_{0}^{b} formulas of \mathcal{L}_{p} is generated from literals by means of conjunction, disjunction and sharply bounded (i.e. subword) quantification.

Some formula classes

Definition ($\Delta_{0}^{b}, \Sigma_{1}^{b}, \Sigma_{\infty}^{b}$ formulas)

(1) the class of Δ_{0}^{b} formulas of \mathcal{L}_{p} is generated from literals by means of conjunction, disjunction and sharply bounded (i.e. subword) quantification.
(2) an \mathcal{L}_{p} formula is called Σ_{1}^{b} if it is of the form $(\exists x \leq t) A(x)$ with A Δ_{0}^{b}.

Some formula classes

Definition ($\Delta_{0}^{b}, \Sigma_{1}^{b}, \Sigma_{\infty}^{b}$ formulas)

(1) the class of Δ_{0}^{b} formulas of \mathcal{L}_{p} is generated from literals by means of conjunction, disjunction and sharply bounded (i.e. subword) quantification.
(2) an \mathcal{L}_{p} formula is called Σ_{1}^{b} if it is of the form $(\exists x \leq t) A(x)$ with A Δ_{0}^{b}.
(3) a formula is called bounded or \sum_{∞}^{b} if all its quantifiers are bounded in the sense of \leq.

The theories PTCA, PTCA ${ }^{+}$and PHCA

The theories PTCA, PTCA ${ }^{+}$and PHCA

- Ferreira's system PTCA of polynomial time computable arithmetic is based on classical logic and comprises defining axioms for the function and relation symbols of the language \mathcal{L}_{p}. PTCA includes the schema of notation induction on binary words for quantifier free formulas, i.e.

$$
A(\varepsilon) \wedge(\forall x)(A(x) \rightarrow A(x 0) \wedge A(x 1)) \rightarrow(\forall x) A(x)
$$

for each quantifier-free formula $A(x)$ of \mathcal{L}_{p}.

The theories PTCA, PTCA ${ }^{+}$and PHCA

- Ferreira's system PTCA of polynomial time computable arithmetic is based on classical logic and comprises defining axioms for the function and relation symbols of the language \mathcal{L}_{p}. PTCA includes the schema of notation induction on binary words for quantifier free formulas, i.e.

$$
A(\varepsilon) \wedge(\forall x)(A(x) \rightarrow A(x 0) \wedge A(x 1)) \rightarrow(\forall x) A(x)
$$

for each quantifier-free formula $A(x)$ of \mathcal{L}_{p}.

- PTCA $^{+}$extends PTCA by the schema of notation induction for Σ_{1}^{b} formulas of \mathcal{L}_{p}

The theories PTCA, PTCA ${ }^{+}$and PHCA

- Ferreira's system PTCA of polynomial time computable arithmetic is based on classical logic and comprises defining axioms for the function and relation symbols of the language \mathcal{L}_{p}. PTCA includes the schema of notation induction on binary words for quantifier free formulas, i.e.

$$
A(\varepsilon) \wedge(\forall x)(A(x) \rightarrow A(x 0) \wedge A(x 1)) \rightarrow(\forall x) A(x)
$$

for each quantifier-free formula $A(x)$ of \mathcal{L}_{p}.

- PTCA $^{+}$extends PTCA by the schema of notation induction for Σ_{1}^{b} formulas of \mathcal{L}_{p}
- Σ_{∞}^{b}-NIA is the extension of PTCA $^{+}$where notation induction is permitted for all bounded or \sum_{∞}^{b} formulas of \mathcal{L}_{p}. We will use the name PHCA (polynomial hierarchy computable arithmetic) instead of Σ_{∞}^{b}-NIA.

Reflection and collection principles

Reflection and collection principles

(Σ-sRef) and (Σ-bColl)

Reflection and collection principles

(Σ-sRef) and (Σ-bColl)

- Sharp Σ reflection $\left[A(x, y)\right.$ is a Δ_{0}^{b} formula of $\left.\mathcal{L}_{p}\right]$

$$
\left(\forall x \sqsubseteq^{*} b\right)(\exists y) A(x, y) \rightarrow(\exists z)\left(\forall x \sqsubseteq^{*} b\right)\left(\exists y \sqsubseteq^{*} z\right) A(x, y)(\Sigma \text {-sRef) }
$$

Reflection and collection principles

(Σ-sRef) and (Σ-bColl)

- Sharp Σ reflection $\left[A(x, y)\right.$ is a Δ_{0}^{b} formula of $\left.\mathcal{L}_{p}\right]$

$$
\left(\forall x \sqsubseteq^{*} b\right)(\exists y) A(x, y) \rightarrow(\exists z)\left(\forall x \sqsubseteq^{*} b\right)\left(\exists y \sqsubseteq^{*} z\right) A(x, y) \quad(\Sigma \text {-sRef) }
$$

- Bounded collection $\left[A(x, y)\right.$ is a \sum_{∞}^{b} formula of $\left.\mathcal{L}_{p}\right]$

$$
(\forall x \leq b)(\exists y) A(x, y) \rightarrow(\exists z)(\forall x \leq b)(\exists y \leq z) A(x, y) \quad\left(\sum \text {-bColl }\right)
$$

Conservation results

Conservation results

Theorem (Cantini)
We have that PTCA $+(\Sigma$-sRef $)$ is a conservative extenions of PTCA for $\forall \exists \Sigma_{1}^{b}$ statements of \mathcal{L}_{p}.

Conservation results

Theorem (Cantini)
We have that PTCA $+(\Sigma$-sRef $)$ is a conservative extenions of PTCA for $\forall \exists \Sigma_{1}^{b}$ statements of \mathcal{L}_{p}.

Theorem (Buss, Ferreira)
We have that PHCA + (Σ-bColl) is a conservative extenions of PHCA for $\forall \exists \Sigma_{\infty}^{b}$ statements of \mathcal{L}_{p}.

(1) Introduction

(2) The case of KPu^{r}
(3) Polynomial time computable arithmetic and extensions
(4) Two admissible closures of PTCA
(5) Main results

$\mathbb{A}_{0}($ PTCA $)$ and $\mathbb{A}_{1}($ PTCA $)$ informally

$\mathbb{A}_{0}($ PTCA $)$ and $\mathbb{A}_{1}($ PTCA $)$ informally

$\mathbb{A}_{0}($ PTCA $)$ and \mathbb{A}_{1} (PTCA) are admissible closures of PTCA, i.e. the urelements are the binary words $\mathbb{W}=\{0,1\}^{*}$. However, we do not claim that \mathbb{W} forms a set; it is merely a class in our setting. We have two basic set existence principles for collections of words, namely

$\mathbb{A}_{0}($ PTCA $)$ and $\mathbb{A}_{1}($ PTCA $)$ informally

$\mathbb{A}_{0}($ PTCA $)$ and \mathbb{A}_{1} (PTCA) are admissible closures of PTCA, i.e. the urelements are the binary words $\mathbb{W}=\{0,1\}^{*}$. However, we do not claim that \mathbb{W} forms a set; it is merely a class in our setting. We have two basic set existence principles for collections of words, namely

Two basic set existence principles

$\mathbb{A}_{0}($ PTCA $)$ and $\mathbb{A}_{1}($ PTCA $)$ informally

$\mathbb{A}_{0}($ PTCA $)$ and \mathbb{A}_{1} (PTCA) are admissible closures of PTCA, i.e. the urelements are the binary words $\mathbb{W}=\{0,1\}^{*}$. However, we do not claim that \mathbb{W} forms a set; it is merely a class in our setting. We have two basic set existence principles for collections of words, namely

Two basic set existence principles
(W.0) The collection of all subwords of a given binary word forms a set;

$\mathbb{A}_{0}($ PTCA $)$ and $\mathbb{A}_{1}($ PTCA $)$ informally

\mathbb{A}_{0} (PTCA) and \mathbb{A}_{1} (PTCA) are admissible closures of PTCA, i.e. the urelements are the binary words $\mathbb{W}=\{0,1\}^{*}$. However, we do not claim that \mathbb{W} forms a set; it is merely a class in our setting. We have two basic set existence principles for collections of words, namely

Two basic set existence principles
(W.0) The collection of all subwords of a given binary word forms a set; (W.1) The collection of all words whose length is less than or equal to length of a given binary word forms a set.

Defining $\mathbb{A}_{0}(T)$ and $\mathbb{A}_{1}(T)$

- We fix any theory T in the language \mathcal{L}_{p} of binary strings. Our aim is to define two admissible closures $\mathbb{A}_{0}(T)$ and $\mathbb{A}_{1}(T)$ of T.

Defining $\mathbb{A}_{0}(T)$ and $\mathbb{A}_{1}(T)$

- We fix any theory T in the language \mathcal{L}_{p} of binary strings. Our aim is to define two admissible closures $\mathbb{A}_{0}(T)$ and $\mathbb{A}_{1}(T)$ of T.
- $\mathbb{A}_{0}(T)$ and $\mathbb{A}_{1}(T)$ are formulated in the extension $\mathcal{L}_{p}^{*}=\mathcal{L}_{p}(\in, W, S)$ of \mathcal{L}_{p} by the membership relation symbol \in and the unary relation symbols W and S for the class of binary words and sets, respectively.

Defining $\mathbb{A}_{0}(T)$ and $\mathbb{A}_{1}(T)$

- We fix any theory T in the language \mathcal{L}_{p} of binary strings. Our aim is to define two admissible closures $\mathbb{A}_{0}(T)$ and $\mathbb{A}_{1}(T)$ of T.
- $\mathbb{A}_{0}(T)$ and $\mathbb{A}_{1}(T)$ are formulated in the extension $\mathcal{L}_{p}^{*}=\mathcal{L}_{p}(\in, W, S)$ of \mathcal{L}_{p} by the membership relation symbol \in and the unary relation symbols W and S for the class of binary words and sets, respectively.
- Formulas, Δ_{0} formulas and Σ formulas of \mathcal{L}_{p}^{*} are defined as usual.

Defining $\mathbb{A}_{0}(T)$ and $\mathbb{A}_{1}(T)$ (ctd.)

The logical axioms of $\mathbb{A}_{0}(T)$ comprise the usual axioms of classical first order logic with equality. The non-logical include:

Defining $\mathbb{A}_{0}(T)$ and $\mathbb{A}_{1}(T)$ (ctd.)

The logical axioms of $\mathbb{A}_{0}(T)$ comprise the usual axioms of classical first order logic with equality. The non-logical include:
I. Ontological axioms, part A. We have for all function symbols h and relation symbols R of the language \mathcal{L}_{p} :

$$
\begin{aligned}
& \mathrm{W}(a) \leftrightarrow \neg \mathrm{S}(a), \quad \mathrm{W}(\vec{b}) \rightarrow \mathrm{W}(h(\vec{b})), \\
& R(\vec{b}) \rightarrow \mathrm{W}(\vec{b}), \quad a \in b \rightarrow \mathrm{~S}(b)
\end{aligned}
$$

Defining $\mathbb{A}_{0}(T)$ and $\mathbb{A}_{1}(T)$ (ctd.)

The logical axioms of $\mathbb{A}_{0}(T)$ comprise the usual axioms of classical first order logic with equality. The non-logical include:
I. Ontological axioms, part A. We have for all function symbols h and relation symbols R of the language \mathcal{L}_{p} :

$$
\begin{aligned}
& \mathrm{W}(a) \leftrightarrow \neg \mathrm{S}(a), \quad \mathrm{W}(\vec{b}) \rightarrow \mathrm{W}(h(\vec{b})) \\
& R(\vec{b}) \rightarrow \mathrm{W}(\vec{b}), \quad a \in b \rightarrow \mathrm{~S}(b)
\end{aligned}
$$

II. Ontological axioms, part B.

$$
\text { (W.0) } \mathrm{W}(a) \rightarrow \exists x\left(\mathrm{~S}(x) \wedge x=\left\{y: \mathrm{W}(y) \wedge y \sqsubseteq^{*} a\right\}\right)
$$

Defining $\mathbb{A}_{0}(T)$ and $\mathbb{A}_{1}(T)$ (ctd.)

The logical axioms of $\mathbb{A}_{0}(T)$ comprise the usual axioms of classical first order logic with equality. The non-logical include:
I. Ontological axioms, part A. We have for all function symbols h and relation symbols R of the language \mathcal{L}_{p} :

$$
\begin{aligned}
& \mathrm{W}(a) \leftrightarrow \neg \mathrm{S}(a), \quad \mathrm{W}(\vec{b}) \rightarrow \mathrm{W}(h(\vec{b})) \\
& R(\vec{b}) \rightarrow \mathrm{W}(\vec{b}), \quad a \in b \rightarrow \mathrm{~S}(b)
\end{aligned}
$$

II. Ontological axioms, part B.

$$
\text { (W.0) } \mathrm{W}(a) \rightarrow \exists x\left(\mathrm{~S}(x) \wedge x=\left\{y: \mathrm{W}(y) \wedge y \sqsubseteq^{*} a\right\}\right)
$$

III. Axioms about T. We have for all axioms $A(\vec{x})$ of T whose free variables belong to the list \vec{x} :
(T axioms) $\mathrm{W}(\vec{a}) \rightarrow A^{\mathrm{W}}(\vec{a})$.

Defining $\mathbb{A}_{0}(T)$ and $\mathbb{A}_{1}(T)$ (ctd.)

IV. Kripke Platek axioms. We have for all Δ_{0} formulas $A(x)$ and $B(x, y)$ of the language \mathcal{L}_{p}^{*} :

```
            (Pair) \(\exists x(a \in x \wedge b \in x)\).
    (Union) \(\exists x(\forall y \in a)(\forall z \in y)(z \in x)\).
\(\left(\Delta_{0}-\operatorname{Sep}\right) \exists x(\mathrm{~S}(x) \wedge x=\{y \in a: A(y)\})\).
\(\left(\Delta_{0}\right.\)-Coll) \((\forall x \in a) \exists y B(x, y) \rightarrow \exists z(\forall x \in a)(\exists y \in z) B(x, y)\).
```


Defining $\mathbb{A}_{0}(T)$ and $\mathbb{A}_{1}(T)$ (ctd.)

IV. Kripke Platek axioms. We have for all Δ_{0} formulas $A(x)$ and $B(x, y)$ of the language \mathcal{L}_{p}^{*} :

$$
\begin{aligned}
\text { (Pair) } & \exists x(a \in x \wedge b \in x) . \\
\text { (Union) } & \exists x(\forall y \in a)(\forall z \in y)(z \in x) . \\
\left(\Delta_{0}\right. \text {-Sep) } & \exists x(S(x) \wedge x=\{y \in a: A(y)\}) . \\
\left(\Delta_{0}\right. \text {-Coll) } & (\forall x \in a) \exists y B(x, y) \rightarrow \exists z(\forall x \in a)(\exists y \in z) B(x, y) .
\end{aligned}
$$

V. Foundation. Here we include the usual regularity axiom:

$$
\text { (Fund) } \mathrm{S}(a) \wedge a \neq \emptyset \rightarrow(\exists x \in a)(\forall y \in x)(y \notin a) .
$$

Defining $\mathbb{A}_{0}(T)$ and $\mathbb{A}_{1}(T)$ (ctd.)

IV. Kripke Platek axioms. We have for all Δ_{0} formulas $A(x)$ and $B(x, y)$ of the language \mathcal{L}_{p}^{*} :

$$
\begin{aligned}
\text { (Pair) } & \exists x(a \in x \wedge b \in x) . \\
\text { (Union) } & \exists x(\forall y \in a)(\forall z \in y)(z \in x) . \\
\left(\Delta_{0}\right. \text {-Sep) } & \exists x(S(x) \wedge x=\{y \in a: A(y)\}) . \\
\left(\Delta_{0}\right. \text {-Coll) } & (\forall x \in a) \exists y B(x, y) \rightarrow \exists z(\forall x \in a)(\exists y \in z) B(x, y) .
\end{aligned}
$$

V. Foundation. Here we include the usual regularity axiom:

$$
\text { (Fund) } S(a) \wedge a \neq \emptyset \rightarrow(\exists x \in a)(\forall y \in x)(y \notin a) .
$$

VI. Set induction on W
$\left(\right.$ Set- $\left.I_{W}\right) W(b) \wedge \varepsilon \in a \wedge(\forall x \sqsubset b) \bigwedge_{i=0,1}[x \in a \wedge x i \sqsubseteq b \rightarrow x i \in a]$ $\rightarrow b \in a$.

Defining $\mathbb{A}_{0}(T)$ and $\mathbb{A}_{1}(T)$ (ctd.)

In the stronger closure $\mathbb{A}_{1}(\mathrm{~T})$ it is claimed that for each word a we have the set of all words b whose length is less than or equal to the length of a.

Defining $\mathbb{A}_{0}(T)$ and $\mathbb{A}_{1}(T)$ (ctd.)

In the stronger closure $\mathbb{A}_{1}(\mathrm{~T})$ it is claimed that for each word a we have the set of all words b whose length is less than or equal to the length of a. More precisely, $\mathbb{A}_{1}(T)$ is obtained from $\mathbb{A}_{0}(T)$ by replacing (W.0) by the stronger axiom (W.1):

$$
\text { (W.1) } \mathrm{W}(a) \rightarrow \exists x(\mathrm{~S}(x) \wedge x=\{y: \mathrm{W}(y) \wedge y \leq a\})
$$

Clearly, \mathbb{A}_{1} (PTCA) proves the weaker axiom (W.0).

Lower bounds

It is immediately seen that PTCA and PHCA are contained in \mathbb{A}_{0} (PTCA) and $\mathbb{A}_{1}(\mathrm{PTCA})$, respectively:

Lower bounds

It is immediately seen that PTCA and PHCA are contained in \mathbb{A}_{0} (PTCA) and \mathbb{A}_{1} (PTCA), respectively:

- quantifier notation induction in PTCA translates into set induction on W in $\mathbb{A}_{0}(\mathrm{PTCA})$, using Δ_{0} separation, (W.0) and the fact that quantifier free formulas of \mathcal{L}_{p} are Δ_{0} formulas of \mathcal{L}_{p}^{*};

Lower bounds

It is immediately seen that PTCA and PHCA are contained in \mathbb{A}_{0} (PTCA) and \mathbb{A}_{1} (PTCA), respectively:

- quantifier notation induction in PTCA translates into set induction on W in $\mathbb{A}_{0}(\mathrm{PTCA})$, using Δ_{0} separation, (W.0) and the fact that quantifier free formulas of \mathcal{L}_{p} are Δ_{0} formulas of \mathcal{L}_{p}^{*};
- in order to treat induction for Σ_{∞}^{b} formulas in the case of PHCA, observe that

Lower bounds

It is immediately seen that PTCA and PHCA are contained in \mathbb{A}_{0} (PTCA) and \mathbb{A}_{1} (PTCA), respectively:

- quantifier notation induction in PTCA translates into set induction on W in $\mathbb{A}_{0}(\mathrm{PTCA})$, using Δ_{0} separation, (W.0) and the fact that quantifier free formulas of \mathcal{L}_{p} are Δ_{0} formulas of \mathcal{L}_{p}^{*};
- in order to treat induction for \sum_{∞}^{b} formulas in the case of PHCA, observe that
- each term s of \mathcal{L}_{p} is majorized by a monotone term t of \mathcal{L} and thus

Lower bounds

It is immediately seen that PTCA and PHCA are contained in \mathbb{A}_{0} (PTCA) and \mathbb{A}_{1} (PTCA), respectively:

- quantifier notation induction in PTCA translates into set induction on W in $\mathbb{A}_{0}(\mathrm{PTCA})$, using Δ_{0} separation, (W.0) and the fact that quantifier free formulas of \mathcal{L}_{p} are Δ_{0} formulas of \mathcal{L}_{p}^{*};
- in order to treat induction for Σ_{∞}^{b} formulas in the case of PHCA, observe that
- each term s of \mathcal{L}_{p} is majorized by a monotone term t of \mathcal{L} and thus
- each \sum_{∞}^{b} formula $A[\vec{x}]$ can be written in the form

$$
\left(\mathcal{Q}_{1} y_{1} \leq t_{1}[\vec{x}]\right)\left(\mathcal{Q}_{2} y_{2} \leq t_{2}[\vec{x}]\right) \ldots\left(\mathcal{Q}_{n} y_{n} \leq t_{n}[\vec{x}]\right) B\left[\vec{x}, y_{1}, y_{2}, \ldots, y_{n}\right]
$$

where $\mathcal{Q}_{i} \in\{\exists, \forall\}$ and B quantifier-free. Hence, we can define A by a Δ_{0} formula in \mathcal{L}_{p}^{*} by using (W.1) in order to define the sets

$$
a_{i}:=\left\{z \in \mathrm{~W}: z \leq t_{i}[\vec{x}]\right\} \quad(1 \leq i \leq n)
$$

(1) Introduction

(2) The case of KPu^{r}
(3) Polynomial time computable arithmetic and extensions

4 Two admissible closures of PTCA

(5) Main results

The strength of $\mathbb{A}_{0}($ PTCA $)$

Theorem (Strength of $\mathbb{A}_{0}(P T C A)$)
$\mathbb{A}_{0}($ PTCA $)$ is a conservative extension of PTCA for $\forall \exists \Sigma_{1}^{b}$ sentences of \mathcal{L}_{p}.

The strength of $\mathbb{A}_{0}(\mathrm{PTCA})$

Theorem (Strength of $\mathbb{A}_{0}(P T C A)$)
$\mathbb{A}_{0}($ PTCA $)$ is a conservative extension of PTCA for $\forall \exists \Sigma_{1}^{b}$ sentences of \mathcal{L}_{p}.

Corollary

The \sum_{1}^{b} definable functions of $\mathbb{A}_{0}(P T C A)$ are exactly the polytime functions.

The strength of $\mathbb{A}_{1}($ PTCA $)$

Theorem (Strength of $\mathbb{A}_{1}(P T C A)$) $\mathbb{A}_{1}($ PTCA $)$ is a conservative extension of PHCA for $\forall \exists \sum_{\infty}^{b}$ sentences of \mathcal{L}_{p}.

The strength of $\mathbb{A}_{1}($ PTCA $)$

Theorem (Strength of $\mathbb{A}_{1}(P T C A)$)
$\mathbb{A}_{1}($ PTCA $)$ is a conservative extension of PHCA for $\forall \exists \sum_{\infty}^{b}$ sentences of \mathcal{L}_{p}.
Corollary
The \sum_{∞}^{b} definable functions of $\mathbb{A}_{1}($ PTCA $)$ are exactly the functions in the polynomial time hierarchy.

