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Introduction

Kripke Platek set theories in proof theory

the theory of admissibles sets, i.e. Kripke Platek set theory, is one of
the most familiar subsystems of Zermelo Fraenkel set theory

great significane for definability theory and generalized recursion
theory

theories for (iterated) admissibles have long been central for a
unifying approach to proof theory

D. Probst and T. Strahm (IAM, Uni Bern) Kripke Platek set theory over PTCA Swansea, April 13, 2007 3 / 25



Introduction

The theory of urelements

especially in the context of weak set theories it is natural to consider
Kripke Platek set theory with urelements

usually, the theory of urelements is taken to be Peano arithmetic

in this talk we consider considerably weaker theories of urelements
from bounded arithmetic
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Introduction

In this talk

we will consider weak admissible closures of systems of bounded
arithmetic, namely Ferreira’s system PTCA of polynomial time
computable arithmetic

we will define two natural closures A0(T) and A1(T) for T a theory in
the language of PTCA

the main result will be that

I A0(PTCA) is conservative over polynomial time computable arithmetic
I A1(PTCA) is conservative over full bounded arithmetic

I will present the systems and main results; Dieter Probst will show
you some details of the (quite involved) proofs
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The case of KPur

The theory KPur

The theory KPur is an extension of Peano arithmetic PA by

the usual axioms of Kripke Platek set theory, namely pairing, union,
∆0 separation and ∆0 collection

foundation in the form of the regularity axiom and induction along
the natural numbers N for sets

an axiom claiming that N forms a set

Theorem (Jäger)

KPur is a conservative extension of Peano arithmetic PA.
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The case of KPur

Related systems

the subsystem of second order arithmetic Σ1
1-AC�

the system of explicit mathematics EM0� + J

Jäger’s fixed point theory with ordinals PAr
Ω

similar subsystems of CZF and Martin-Löf type theory
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Polynomial time computable arithmetic and extensions

The language L

L is a first order language including

variables a, b, c , x , y , z , . . . (ranging over binary words)

constants ε, 0, 1 (empty word, zero, one)

the binary function symbols ∗ and × (word concatenation and
multiplication)

the binary relation symbol v (initial subword relation)

Defining the relations v∗ and ≤

s v∗ t := (∃x)(x v t ∧ xs v t) (s is a subword of t)

s ≤ t := 1× s v 1× t (the length of s is lte the length of t)
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Polynomial time computable arithmetic and extensions

The language Lp

Lp is a first order language extending L

by adding a function symbol for each description of a polynomial time
computable function

the terms of L act as bounding terms, similar to Cobham’s
characterization of the polynomial time computable functions

i.e. the polytime functions are generated inductively with the
schemata of composition and bounded iteration from a set of initial
functions
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Polynomial time computable arithmetic and extensions

Some formula classes

Definition (∆b
0, Σb

1, Σb
∞ formulas)

1 the class of ∆b
0 formulas of Lp is generated from literals by means of

conjunction, disjunction and sharply bounded (i.e. subword)
quantification.

2 an Lp formula is called Σb
1 if it is of the form (∃x ≤ t)A(x) with A

∆b
0.

3 a formula is called bounded or Σb
∞ if all its quantifiers are bounded in

the sense of ≤.
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Polynomial time computable arithmetic and extensions

The theories PTCA, PTCA+ and PHCA

Ferreira’s system PTCA of polynomial time computable arithmetic is
based on classical logic and comprises defining axioms for the function
and relation symbols of the language Lp. PTCA includes the schema
of notation induction on binary words for quantifier free formulas, i.e.

A(ε) ∧ (∀x)(A(x) → A(x0) ∧ A(x1)) → (∀x)A(x)

for each quantifier-free formula A(x) of Lp.

PTCA+ extends PTCA by the schema of notation induction for Σb
1

formulas of Lp

Σb
∞-NIA is the extension of PTCA+ where notation induction is

permitted for all bounded or Σb
∞ formulas of Lp. We will use the

name PHCA (polynomial hierarchy computable arithmetic) instead of
Σb
∞-NIA.
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Polynomial time computable arithmetic and extensions

Reflection and collection principles

(Σ-sRef) and (Σ-bColl)

Sharp Σ reflection [A(x , y) is a ∆b
0 formula of Lp]

(∀x v∗ b)(∃y)A(x , y) → (∃z)(∀x v∗ b)(∃y v∗ z)A(x , y) (Σ-sRef)

Bounded collection [A(x , y) is a Σb
∞ formula of Lp]

(∀x ≤ b)(∃y)A(x , y) → (∃z)(∀x ≤ b)(∃y ≤ z)A(x , y) (Σ-bColl)
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Polynomial time computable arithmetic and extensions

Conservation results

Theorem (Cantini)

We have that PTCA + (Σ-sRef) is a conservative extenions of PTCA for
∀∃Σb

1 statements of Lp.

Theorem (Buss, Ferreira)

We have that PHCA + (Σ-bColl) is a conservative extenions of PHCA for
∀∃Σb

∞ statements of Lp.
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Two admissible closures of PTCA

A0(PTCA) and A1(PTCA) informally

A0(PTCA) and A1(PTCA) are admissible closures of PTCA, i.e. the
urelements are the binary words W = {0, 1}∗. However, we do not claim
that W forms a set; it is merely a class in our setting. We have two basic
set existence principles for collections of words, namely

Two basic set existence principles
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Two admissible closures of PTCA

Defining A0(T) and A1(T)

We fix any theory T in the language Lp of binary strings. Our aim is
to define two admissible closures A0(T) and A1(T) of T.

A0(T) and A1(T) are formulated in the extension L∗p = Lp(∈,W,S)
of Lp by the membership relation symbol ∈ and the unary relation
symbols W and S for the class of binary words and sets, respectively.

Formulas, ∆0 formulas and Σ formulas of L∗p are defined as usual.
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Two admissible closures of PTCA

Defining A0(T) and A1(T) (ctd.)

The logical axioms of A0(T) comprise the usual axioms of classical first
order logic with equality. The non-logical include:

I. Ontological axioms, part A. We have for all function symbols h and
relation symbols R of the language Lp:

W(a) ↔ ¬S(a), W(~b) → W(h(~b)),

R(~b) → W(~b), a ∈ b → S(b).

II. Ontological axioms, part B.

(W.0) W(a) → ∃x(S(x) ∧ x = {y : W(y) ∧ y v∗ a})
III. Axioms about T. We have for all axioms A(~x) of T whose free
variables belong to the list ~x :

(T axioms) W(~a) → AW(~a).
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Two admissible closures of PTCA

Defining A0(T) and A1(T) (ctd.)

IV. Kripke Platek axioms. We have for all ∆0 formulas A(x) and B(x , y)
of the language L∗p:

(Pair) ∃x(a ∈ x ∧ b ∈ x).

(Union) ∃x(∀y ∈ a)(∀z ∈ y)(z ∈ x).

(∆0-Sep) ∃x(S(x) ∧ x = {y ∈ a : A(y)}).
(∆0-Coll) (∀x ∈ a)∃yB(x , y) → ∃z(∀x ∈ a)(∃y ∈ z)B(x , y).

V. Foundation. Here we include the usual regularity axiom:

(Fund) S(a) ∧ a 6= ∅ → (∃x ∈ a)(∀y ∈ x)(y /∈ a).

VI. Set induction on W

(Set-IW) W(b) ∧ ε ∈ a ∧ (∀x @ b)
∧

i=0,1
[x ∈ a ∧ xi v b → xi ∈ a]

→ b ∈ a.

D. Probst and T. Strahm (IAM, Uni Bern) Kripke Platek set theory over PTCA Swansea, April 13, 2007 20 / 25



Two admissible closures of PTCA

Defining A0(T) and A1(T) (ctd.)

IV. Kripke Platek axioms. We have for all ∆0 formulas A(x) and B(x , y)
of the language L∗p:

(Pair) ∃x(a ∈ x ∧ b ∈ x).

(Union) ∃x(∀y ∈ a)(∀z ∈ y)(z ∈ x).

(∆0-Sep) ∃x(S(x) ∧ x = {y ∈ a : A(y)}).
(∆0-Coll) (∀x ∈ a)∃yB(x , y) → ∃z(∀x ∈ a)(∃y ∈ z)B(x , y).

V. Foundation. Here we include the usual regularity axiom:

(Fund) S(a) ∧ a 6= ∅ → (∃x ∈ a)(∀y ∈ x)(y /∈ a).

VI. Set induction on W

(Set-IW) W(b) ∧ ε ∈ a ∧ (∀x @ b)
∧

i=0,1
[x ∈ a ∧ xi v b → xi ∈ a]

→ b ∈ a.

D. Probst and T. Strahm (IAM, Uni Bern) Kripke Platek set theory over PTCA Swansea, April 13, 2007 20 / 25



Two admissible closures of PTCA

Defining A0(T) and A1(T) (ctd.)

IV. Kripke Platek axioms. We have for all ∆0 formulas A(x) and B(x , y)
of the language L∗p:

(Pair) ∃x(a ∈ x ∧ b ∈ x).

(Union) ∃x(∀y ∈ a)(∀z ∈ y)(z ∈ x).

(∆0-Sep) ∃x(S(x) ∧ x = {y ∈ a : A(y)}).
(∆0-Coll) (∀x ∈ a)∃yB(x , y) → ∃z(∀x ∈ a)(∃y ∈ z)B(x , y).

V. Foundation. Here we include the usual regularity axiom:

(Fund) S(a) ∧ a 6= ∅ → (∃x ∈ a)(∀y ∈ x)(y /∈ a).

VI. Set induction on W

(Set-IW) W(b) ∧ ε ∈ a ∧ (∀x @ b)
∧

i=0,1
[x ∈ a ∧ xi v b → xi ∈ a]

→ b ∈ a.

D. Probst and T. Strahm (IAM, Uni Bern) Kripke Platek set theory over PTCA Swansea, April 13, 2007 20 / 25



Two admissible closures of PTCA

Defining A0(T) and A1(T) (ctd.)

In the stronger closure A1(T) it is claimed that for each word a we have
the set of all words b whose length is less than or equal to the length of a.

More precisely, A1(T) is obtained from A0(T) by replacing (W.0) by the
stronger axiom (W.1):

(W.1) W(a) → ∃x(S(x) ∧ x = {y : W(y) ∧ y ≤ a}).

Clearly, A1(PTCA) proves the weaker axiom (W.0).
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Two admissible closures of PTCA

Lower bounds
It is immediately seen that PTCA and PHCA are contained in A0(PTCA)
and A1(PTCA), respectively:

quantifier notation induction in PTCA translates into set induction on
W in A0(PTCA), using ∆0 separation, (W.0) and the fact that
quantifier free formulas of Lp are ∆0 formulas of L∗p;
in order to treat induction for Σb

∞ formulas in the case of PHCA,
observe that

I each term s of Lp is majorized by a monotone term t of L and thus
I each Σb

∞ formula A[~x ] can be written in the form

(Q1y1 ≤ t1[~x ])(Q2y2 ≤ t2[~x ]) . . . (Qnyn ≤ tn[~x ])B[~x , y1, y2, . . . , yn]

where Qi ∈ {∃,∀} and B quantifier-free. Hence, we can define A by a
∆0 formula in L∗p by using (W.1) in order to define the sets

ai := {z ∈ W : z ≤ ti [~x ]} (1 ≤ i ≤ n)
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Main results

The strength of A0(PTCA)

Theorem (Strength of A0(PTCA))

A0(PTCA) is a conservative extension of PTCA for ∀∃Σb
1 sentences of Lp.

Corollary

The Σb
1 definable functions of A0(PTCA) are exactly the polytime

functions.
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Main results

The strength of A1(PTCA)

Theorem (Strength of A1(PTCA))

A1(PTCA) is a conservative extension of PHCA for ∀∃Σb
∞ sentences of Lp.

Corollary

The Σb
∞ definable functions of A1(PTCA) are exactly the functions in the

polynomial time hierarchy.
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