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Introduction

The theory ID1

The classical theory ID1 is formulated in an extension of the language of
Peano arithmetic by predicate symbols PA for each positive arithmetical
operator form A(X , x). Its characteristic axioms are:

∀x(A(PA, x)↔ PA(x)) (Fixed Point)

∀x(A(B, x)→ B(x))→ ∀x(PA(x)→ B(x)) (Fixed Point Induction)

Here B is any formula in the language of ID1.
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Introduction

Two well-known subsystems of ID1

In ÎD1, fixed point induction is dropped completely.

In ID∗1, fixed point induction is restricted to formulas B which are positive
in the fixed point constants.

It is well-known that |ID∗1| = |ÎD1| = ϕε0(0).
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Introduction

Stratifying fixed point induction

The general idea is to consider a sequence of approximations

PA
1 ,P

A
2 , . . . ,P

A
n ,

where each PA
i with i ≤ n is a fixed point of A, and fixed point induction

on PA
i is only allowed for formulas B containing fixed point constants PA

j
with j < i .

Thus
PA

1 ⊇ PA
2 ⊇ · · · ⊇ PA

n .

The resulting theory is called SIDn and we let SID<ω be the union of the
systems SIDn for n < ω.

Theorem
|SID<ω| = ϕε0(0).
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Introduction

Relation to Leivant’s work

The definition of SID<ω bears some similarities with D. Leivant’s ramified
theories for finitary inductive definitions. In particular, Leivant uses a family
of predicates N0,N1, . . . satisfying the usual closure conditions for the
natural numbers and the schema of complete induction in the form

A(0) ∧ ∀x(A(x)→ A(x ′))→ (∀x ∈ Ni )A(x)

where A only refers to predicates Nj with j < i .
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The theory SID<ω

The language Ln of SIDn

Definition (Ln)

For each positive operator A and 1 ≤ n < ω let PA
n denote a new and

distinguished unary relation symbol. Furthermore, define for each n < ω:

L0 := LPA Ln+1 := Ln ∪ {PA
n+1 : A positive operator form }

Further, let L<ω :=
⋃

n<ω Ln.
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The theory SID<ω

The theories SIDn

The theory SIDn with language Ln consists of the following axioms.

1 Number-theoretic and logical axioms:
The axioms of PA with the scheme of complete induction for all Ln
formulas.

2 Stratified induction axioms for 1 ≤ m ≤ n and B(z) ∈ Lm−1:

∀x(A(B, x)→ B(x))→ ∀x(x ∈ PA
m → B(x))

3 Fixed-point axioms for 1 ≤ m ≤ n:

∀x(A(PA
m, x)↔ x ∈ PA

m)

The theory SID<ω with language L<ω is the collection
⋃

n<ω SIDn.

T. Strahm (IAM, Univ. Bern) Finitely stratified inductive definitions Stanford, Oct ’13 9 / 25



The theory SID<ω

The theories SIDn

The theory SIDn with language Ln consists of the following axioms.

1 Number-theoretic and logical axioms:
The axioms of PA with the scheme of complete induction for all Ln
formulas.

2 Stratified induction axioms for 1 ≤ m ≤ n and B(z) ∈ Lm−1:

∀x(A(B, x)→ B(x))→ ∀x(x ∈ PA
m → B(x))

3 Fixed-point axioms for 1 ≤ m ≤ n:

∀x(A(PA
m, x)↔ x ∈ PA

m)

The theory SID<ω with language L<ω is the collection
⋃

n<ω SIDn.

T. Strahm (IAM, Univ. Bern) Finitely stratified inductive definitions Stanford, Oct ’13 9 / 25



The theory SID<ω

The theories SIDn

The theory SIDn with language Ln consists of the following axioms.

1 Number-theoretic and logical axioms:
The axioms of PA with the scheme of complete induction for all Ln
formulas.

2 Stratified induction axioms for 1 ≤ m ≤ n and B(z) ∈ Lm−1:

∀x(A(B, x)→ B(x))→ ∀x(x ∈ PA
m → B(x))

3 Fixed-point axioms for 1 ≤ m ≤ n:

∀x(A(PA
m, x)↔ x ∈ PA

m)

The theory SID<ω with language L<ω is the collection
⋃

n<ω SIDn.

T. Strahm (IAM, Univ. Bern) Finitely stratified inductive definitions Stanford, Oct ’13 9 / 25



The theory SID<ω

The theories SIDn

The theory SIDn with language Ln consists of the following axioms.

1 Number-theoretic and logical axioms:
The axioms of PA with the scheme of complete induction for all Ln
formulas.

2 Stratified induction axioms for 1 ≤ m ≤ n and B(z) ∈ Lm−1:

∀x(A(B, x)→ B(x))→ ∀x(x ∈ PA
m → B(x))

3 Fixed-point axioms for 1 ≤ m ≤ n:

∀x(A(PA
m, x)↔ x ∈ PA

m)

The theory SID<ω with language L<ω is the collection
⋃

n<ω SIDn.

T. Strahm (IAM, Univ. Bern) Finitely stratified inductive definitions Stanford, Oct ’13 9 / 25



The theory SID<ω

The theories SIDn

The theory SIDn with language Ln consists of the following axioms.

1 Number-theoretic and logical axioms:
The axioms of PA with the scheme of complete induction for all Ln
formulas.

2 Stratified induction axioms for 1 ≤ m ≤ n and B(z) ∈ Lm−1:

∀x(A(B, x)→ B(x))→ ∀x(x ∈ PA
m → B(x))

3 Fixed-point axioms for 1 ≤ m ≤ n:

∀x(A(PA
m, x)↔ x ∈ PA

m)

The theory SID<ω with language L<ω is the collection
⋃

n<ω SIDn.

T. Strahm (IAM, Univ. Bern) Finitely stratified inductive definitions Stanford, Oct ’13 9 / 25



The theory SID<ω

The theories SIDn

The theory SIDn with language Ln consists of the following axioms.

1 Number-theoretic and logical axioms:
The axioms of PA with the scheme of complete induction for all Ln
formulas.

2 Stratified induction axioms for 1 ≤ m ≤ n and B(z) ∈ Lm−1:

∀x(A(B, x)→ B(x))→ ∀x(x ∈ PA
m → B(x))

3 Fixed-point axioms for 1 ≤ m ≤ n:

∀x(A(PA
m, x)↔ x ∈ PA

m)

The theory SID<ω with language L<ω is the collection
⋃

n<ω SIDn.

T. Strahm (IAM, Univ. Bern) Finitely stratified inductive definitions Stanford, Oct ’13 9 / 25



Strategy for upper bound

1 Introduction

2 The theory SID<ω

3 Strategy for upper bound

4 The infinitary systems SID∞n

5 Asymmetric interpretation

6 Final remarks

T. Strahm (IAM, Univ. Bern) Finitely stratified inductive definitions Stanford, Oct ’13 10 / 25



Strategy for upper bound

Strategy for upper bound

Unary relation symbols Q<ξ
A for each A and ξ are added to the

language.
For each n < ω, set up an infinitary proof-system SID∞n . For n > 0,
we obtain a useful result on partial cut elimination (p.c.e.), while for
the case n = 0, we can even achieve full predicative cut-elimination
(f.c.e.).
Asymmetric interpretation (a.i.) is used to establish the connection
between the systems SID∞n+1 and SID∞n for any n < ω, given that we
deal with derivations where we partially removed cuts first. In
particular, the symbols PA

n+1 are interpreted by Q<ξ
A for suitable ξ.
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Strategy for upper bound

Strategy for upper bound (ctd.)

The theme is to start with a formal derivation in SIDn+1 of an
arithmetical formula A, embed it into SID∞n+1 such that the proof
complexity stays below ε0, combine a p.c.e. followed by an a.i.
iteratively, and end up with a derivation in SID∞0 with proof
complexity still below ε0. Then f.c.e. yields the desired sharp bound
ϕε0(0) for |SID<ω| via a standard boundedness argument:

SIDn+1
embed
 SID∞n+1

p.c.e.
 SID∞n+1

a.i.
 SID∞n  · · · SID∞0

f.c.e.
 SID∞0

In the following we also assume that ` ∈ ω is a (global) bound to the
length of cut formulas occurring in a given formal derivation in SIDn+1.
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The infinitary systems SID∞
n

The language L∞n of SID∞n

Definition (L∞n )

Let Q<ξ
A be a fresh unary relation symbol for each A and ξ. For each

n < ω, let

L∞n := Ln ∪ {Q<ξ
A : ξ < Γ0 & A is a positive operator form }
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The infinitary systems SID∞
n

The infinitary system SID∞n

Number-theoretic and logical axioms:

Γ,A if A is a true LPA literal without set-parameters

Γ,A(s),¬A(t) if sN = tN and A(z) ∈ Ln is atomic

Stratified induction axioms for each 1 ≤ m ≤ n and B(z) ∈ Lm−1:

Γ,∃x(A(B, x) ∧ ¬B(x)), t 6∈ PA
m,B(t)

Fixed-point rules for 1 ≤ m ≤ n:

Γ,A(PA
m, t)

Γ, t ∈ PA
m

Γ,¬A(PA
m, t)

Γ, t 6∈ PA
m
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The infinitary systems SID∞
n

The infinitary system SID∞n (ctd.)
Predicative rules:

Γ,A
Γ,A ∨ B

Γ,B
Γ,A ∨ B

Γ,A Γ,B
Γ,A ∧ B

Γ,Ax(s)

Γ, ∃xA
. . . Γ,Ax(t) . . . (t closed term)

Γ,∀xA

Γ,A(Q<ξ
A , t)

Γ, t ∈ Q<τ
A

for ξ < τ
. . . Γ,¬A(Q<ξ

A , t) . . . (ξ < τ)

Γ, t 6∈ Q<τ
A

Cut rule:

Γ,C Γ,¬C
Γ
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The infinitary systems SID∞
n

The n-rank of an L∞n formula

Definition (rkn)
Let rk0(A) := 0 for each A ∈ L∞0 . For 1 ≤ n < ω, we say that A ∈ L∞n is
n-atomic if A ∈ L∞n−1 or if it is a literal of the form t ∈ PA

n or t 6∈ PA
n .

The n-rank rkn(A) < ω is defined for 1 ≤ n < ω and formulas A ∈ L∞n by

rkn(A) :=


0 if A is n-atomic, or otherwise
max(rkn(B), rkn(C )) + 1 if A = B ∧ C or A = B ∨ C
rkn(B) + 1 if A = ∀xB or A = ∃xB
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The infinitary systems SID∞
n

The ordinal rank of an L∞n formula

Definition (rk)
The ordinal-rank rk(A) < Γ0 is defined for formulas A ∈ L∞<ω by

rk(A) :=


0 if A is a literal and A ∈ L<ω
ω · ξ if A = t ∈ Q<ξ

A or A = t 6∈ Q<ξ
A

max(rk(B), rk(C )) + 1 if A = B ∧ C or A = B ∨ C
rk(B) + 1 if A = ∀xB or A = ∃xB
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The infinitary systems SID∞
n

SID∞n `αρ,r Γ

The derivability notion SID∞n `αρ,r Γ for n, r < ω is defined inductively on α
to mean that there is a SID∞n proof of Γ of depth less than or equal to α so
that all its cut formulas have ordinal rank less than ρ and n rank less than r .

T. Strahm (IAM, Univ. Bern) Finitely stratified inductive definitions Stanford, Oct ’13 19 / 25



The infinitary systems SID∞
n

Cut-elimination

Theorem (Cut-elimination)

1 Partial cut-elimination: SID∞n `αρ,1+r Γ implies SID∞n `
ωr (α)
ρ,1 Γ for each

1 ≤ n < ω, where ω0(α) := α and ωk+1(α) := ωk(ωα).

2 Full predicative cut-elimination: SID∞0 `αγ+ωδ,1 Γ implies

SID∞0 `
ϕδ(α)
γ,1 Γ.
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Asymmetric interpretation

Asymmetric interpretation

Definition
For L∞n+1 formulas A, L∞n+1 sequents Γ, and ordinals ξ we write

Aξ
for the L∞n formula that is obtained from A
by substituting any PA

n+1 that occurs in A
with the corresponding symbol Q<ξ

A

[Γ]ξ
for the L∞n sequent obtained from Γ by sub-
stituting every occurring formula A with Aξ
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Asymmetric interpretation

Asymmetric interpretation theorem

For A ∈ L∞n+1, we write A ∈ Posn+1 to denote that PA
n+1 occurs at most

positively in A for every A, and we write A ∈ Negn+1 to denote
¬A ∈ Posn+1.

Theorem (Asymmetric interpretation)

Assume that we have

SID∞n+1 `αρ,1 ∆−,∆+

for some ∆− ⊆ Negn+1 and ∆+ ⊆ Posn+1. Let ν and π be given such
that π = ν + 2α and ρ ≤ ω · π hold, then we have

SID∞n `ω·π+αω·π,` [∆−]ν , [∆+]π
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Final remarks
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Final remarks

Summary and outlook to G. Jäger’s talk

ordinal stratification iteration

ϕε0(0) SID<ω ÎD1

ϕεε0 (0) SID<ω+ω —

ϕϕω(0)(0) SID<ωω —

ϕϕε0 (0)(0) SID<ε0 ÎD2

T. Strahm (IAM, Univ. Bern) Finitely stratified inductive definitions Stanford, Oct ’13 25 / 25


	Introduction
	The theory SID<
	Strategy for upper bound
	The infinitary systems SIDn
	Asymmetric interpretation
	Final remarks

