Finitely stratified inductive definitions

Thomas Strahm (jww Florian Ranzi)

Institut für Informatik und angewandte Mathematik, Universität Bern

Stanford, Oct '13

Introduction

- 2 The theory $SID_{<\omega}$
- Strategy for upper bound
- 4 The infinitary systems SID_n^{∞}
- 5 Asymmetric interpretation
 - 6 Final remarks

The theory ID_1

The classical theory ID_1 is formulated in an extension of the language of Peano arithmetic by predicate symbols $P^{\mathfrak{A}}$ for each positive arithmetical operator form $\mathcal{A}(X, x)$. Its characteristic axioms are:

$$\forall x (\mathfrak{A}(P^{\mathfrak{A}}, x) \leftrightarrow P^{\mathfrak{A}}(x))$$
 (Fixed Point)
$$\forall x (\mathfrak{A}(B, x) \rightarrow B(x)) \rightarrow \forall x (P^{\mathfrak{A}}(x) \rightarrow B(x))$$
 (Fixed Point Induction)

Here B is any formula in the language of ID₁.

Two well-known subsystems of ID_1

In \widehat{ID}_1 , fixed point induction is dropped completely.

Two well-known subsystems of ID_1

In \widehat{ID}_1 , fixed point induction is dropped completely.

In ID_1^* , fixed point induction is restricted to formulas *B* which are positive in the fixed point constants.

Two well-known subsystems of ID_1

In \widehat{ID}_1 , fixed point induction is dropped completely.

In ID_1^* , fixed point induction is restricted to formulas *B* which are positive in the fixed point constants.

It is well-known that $|ID_1^*| = |\widehat{ID}_1| = \varphi_{\varepsilon_0}(0)$.

Stratifying fixed point induction

The general idea is to consider a sequence of approximations

$$P_1^{\mathfrak{A}}, P_2^{\mathfrak{A}}, \ldots, P_n^{\mathfrak{A}},$$

where each $P_i^{\mathfrak{A}}$ with $i \leq n$ is a fixed point of \mathfrak{A} , and fixed point induction on $P_i^{\mathfrak{A}}$ is only allowed for formulas *B* containing fixed point constants $P_j^{\mathfrak{A}}$ with j < i.

Stratifying fixed point induction

The general idea is to consider a sequence of approximations

$$P_1^{\mathfrak{A}}, P_2^{\mathfrak{A}}, \ldots, P_n^{\mathfrak{A}},$$

where each $P_i^{\mathfrak{A}}$ with $i \leq n$ is a fixed point of \mathfrak{A} , and fixed point induction on $P_i^{\mathfrak{A}}$ is only allowed for formulas *B* containing fixed point constants $P_j^{\mathfrak{A}}$ with j < i. Thus

$$P_1^{\mathfrak{A}} \supseteq P_2^{\mathfrak{A}} \supseteq \cdots \supseteq P_n^{\mathfrak{A}}.$$

Stratifying fixed point induction

The general idea is to consider a sequence of approximations

$$P_1^{\mathfrak{A}}, P_2^{\mathfrak{A}}, \ldots, P_n^{\mathfrak{A}},$$

where each $P_i^{\mathfrak{A}}$ with $i \leq n$ is a fixed point of \mathfrak{A} , and fixed point induction on $P_i^{\mathfrak{A}}$ is only allowed for formulas *B* containing fixed point constants $P_j^{\mathfrak{A}}$ with j < i. Thus

$$P_1^{\mathfrak{A}} \supseteq P_2^{\mathfrak{A}} \supseteq \cdots \supseteq P_n^{\mathfrak{A}}.$$

The resulting theory is called SID_n and we let $SID_{<\omega}$ be the union of the systems SID_n for $n < \omega$.

Theorem

$$|\mathsf{SID}_{<\omega}| = \varphi_{\varepsilon_0}(0).$$

Relation to Leivant's work

The definition of $SID_{<\omega}$ bears some similarities with D. Leivant's ramified theories for finitary inductive definitions. In particular, Leivant uses a family of predicates N_0, N_1, \ldots satisfying the usual closure conditions for the natural numbers and the schema of complete induction in the form

$$A(0) \land \forall x(A(x) \to A(x')) \to (\forall x \in N_i)A(x)$$

where A only refers to predicates N_j with j < i.

Introduction

- 2 The theory $SID_{<\omega}$
- 3 Strategy for upper bound
- ${}^{4\!\!}$ The infinitary systems ${\sf SID}^\infty_n$
- Asymmetric interpretation
- 6 Final remarks

The language \mathcal{L}_n of SID_n

Definition (\mathcal{L}_n)

For each positive operator \mathfrak{A} and $1 \leq n < \omega$ let $P_n^{\mathfrak{A}}$ denote a new and distinguished unary relation symbol. Furthermore, define for each $n < \omega$:

$$\mathcal{L}_0 := \mathcal{L}_{\mathsf{PA}}$$
 $\mathcal{L}_{n+1} := \mathcal{L}_n \cup \{ P_{n+1}^{\mathfrak{A}} : \mathfrak{A} \text{ positive operator form } \}$

Further, let $\mathcal{L}_{<\omega} := \bigcup_{n < \omega} \mathcal{L}_n$.

The theory SID_n with language \mathcal{L}_n consists of the following axioms.

The theory SID_n with language \mathcal{L}_n consists of the following axioms.

 Number-theoretic and logical axioms: The axioms of PA with the scheme of complete induction for all L_n formulas.

The theory SID_n with language \mathcal{L}_n consists of the following axioms.

 Number-theoretic and logical axioms: The axioms of PA with the scheme of complete induction for all L_n formulas.

2 Stratified induction axioms for $1 \le m \le n$ and $B(z) \in \mathcal{L}_{m-1}$:

$$\forall x(\mathfrak{A}(B,x) \to B(x)) \to \forall x(x \in P_m^{\mathfrak{A}} \to B(x))$$

The theory SID_n with language \mathcal{L}_n consists of the following axioms.

- Number-theoretic and logical axioms: The axioms of PA with the scheme of complete induction for all L_n formulas.
- **2** Stratified induction axioms for $1 \le m \le n$ and $B(z) \in \mathcal{L}_{m-1}$:

$$\forall x(\mathfrak{A}(B,x) \to B(x)) \to \forall x(x \in P_m^{\mathfrak{A}} \to B(x))$$

Solution Fixed-point axioms for $1 \le m \le n$:

$$orall x(\mathfrak{A}(P^{\mathfrak{A}}_m,x)\leftrightarrow x\in P^{\mathfrak{A}}_m)$$

The theory SID_n with language \mathcal{L}_n consists of the following axioms.

- Number-theoretic and logical axioms: The axioms of PA with the scheme of complete induction for all L_n formulas.
- **2** Stratified induction axioms for $1 \le m \le n$ and $B(z) \in \mathcal{L}_{m-1}$:

$$\forall x(\mathfrak{A}(B,x) \to B(x)) \to \forall x(x \in P_m^{\mathfrak{A}} \to B(x))$$

Solution Fixed-point axioms for $1 \le m \le n$:

$$orall x(\mathfrak{A}(P^{\mathfrak{A}}_m,x)\leftrightarrow x\in P^{\mathfrak{A}}_m)$$

The theory SID_n with language \mathcal{L}_n consists of the following axioms.

- Number-theoretic and logical axioms: The axioms of PA with the scheme of complete induction for all L_n formulas.
- **2** Stratified induction axioms for $1 \le m \le n$ and $B(z) \in \mathcal{L}_{m-1}$:

$$\forall x(\mathfrak{A}(B,x) \to B(x)) \to \forall x(x \in P_m^{\mathfrak{A}} \to B(x))$$

Sixed-point axioms for $1 \le m \le n$:

$$\forall x(\mathfrak{A}(P^{\mathfrak{A}}_m,x)\leftrightarrow x\in P^{\mathfrak{A}}_m)$$

The theory $SID_{<\omega}$ with language $\mathcal{L}_{<\omega}$ is the collection $\bigcup_{n<\omega} SID_n$.

Introduction

- 2 The theory $SID_{<\omega}$
- Strategy for upper bound
- ${\color{black} \Phi}$ The infinitary systems ${\sf SID}_n^\infty$
- 5 Asymmetric interpretation
- 5 Final remarks

• Unary relation symbols $Q_{\mathfrak{A}}^{<\xi}$ for each \mathfrak{A} and ξ are added to the language.

- Unary relation symbols $Q_{\mathfrak{A}}^{<\xi}$ for each \mathfrak{A} and ξ are added to the language.
- For each n < ω, set up an infinitary proof-system SID[∞]_n. For n > 0, we obtain a useful result on partial cut elimination (p.c.e.), while for the case n = 0, we can even achieve full predicative cut-elimination (f.c.e.).

- Unary relation symbols $Q_{\mathfrak{A}}^{<\xi}$ for each \mathfrak{A} and ξ are added to the language.
- For each n < ω, set up an infinitary proof-system SID[∞]_n. For n > 0, we obtain a useful result on *partial cut elimination (p.c.e.)*, while for the case n = 0, we can even achieve *full predicative cut-elimination (f.c.e.)*.
- Asymmetric interpretation (a.i.) is used to establish the connection between the systems SID_{n+1}^{∞} and SID_n^{∞} for any $n < \omega$, given that we deal with derivations where we partially removed cuts first. In particular, the symbols $P_{n+1}^{\mathfrak{A}}$ are interpreted by $Q_{\mathfrak{A}}^{<\xi}$ for suitable ξ .

Strategy for upper bound (ctd.)

The theme is to start with a formal derivation in SID_{n+1} of an arithmetical formula A, embed it into SID_{n+1}[∞] such that the proof complexity stays below ε₀, combine a p.c.e. followed by an a.i. iteratively, and end up with a derivation in SID₀[∞] with proof complexity still below ε₀. Then f.c.e. yields the desired sharp bound φ_{ε0}(0) for |SID_{<ω}| via a standard boundedness argument:

 $\mathsf{SID}_{n+1} \overset{\mathsf{embed}}{\leadsto} \mathsf{SID}_{n+1}^{\infty} \overset{\mathsf{p.c.e.}}{\leadsto} \mathsf{SID}_{n+1}^{\infty} \overset{\mathsf{a.i.}}{\leadsto} \mathsf{SID}_{n}^{\infty} \rightsquigarrow \cdots \rightsquigarrow \mathsf{SID}_{0}^{\infty} \overset{\mathsf{f.c.e.}}{\leadsto} \mathsf{SID}_{0}^{\infty}$

Strategy for upper bound (ctd.)

The theme is to start with a formal derivation in SID_{n+1} of an arithmetical formula A, embed it into SID_{n+1}[∞] such that the proof complexity stays below ε₀, combine a p.c.e. followed by an a.i. iteratively, and end up with a derivation in SID₀[∞] with proof complexity still below ε₀. Then f.c.e. yields the desired sharp bound φ_{ε0}(0) for |SID_{<ω}| via a standard boundedness argument:

$\mathsf{SID}_{n+1} \overset{\mathsf{embed}}{\leadsto} \mathsf{SID}_{n+1}^{\infty} \overset{\mathsf{p.c.e.}}{\leadsto} \mathsf{SID}_{n+1}^{\infty} \overset{\mathsf{a.i.}}{\leadsto} \mathsf{SID}_{n}^{\infty} \rightsquigarrow \cdots \rightsquigarrow \mathsf{SID}_{0}^{\infty} \overset{\mathsf{f.c.e.}}{\leadsto} \mathsf{SID}_{0}^{\infty}$

 In the following we also assume that ℓ ∈ ω is a (global) bound to the length of cut formulas occurring in a given formal derivation in SID_{n+1}.

 u^{\flat}

Introduction

- 2 The theory $\mathsf{SID}_{<\omega}$
- 3 Strategy for upper bound
- 4 The infinitary systems SID_n^{∞}
 - Asymmetric interpretation
 - 6 Final remarks

u^b

The language \mathcal{L}_n^∞ of SID_n^∞

Definition (\mathcal{L}_n^{∞})

Let $Q_{\mathfrak{A}}^{<\xi}$ be a fresh unary relation symbol for each \mathfrak{A} and ξ . For each $n < \omega$, let

 $\mathcal{L}_n^{\infty} := \mathcal{L}_n \cup \{ \ Q_{\mathfrak{A}}^{<\xi} \colon \xi < \mathsf{\Gamma}_0 \ \& \ \mathfrak{A} \text{ is a positive operator form } \}$

• Number-theoretic and logical axioms:

 $\begin{array}{ll} \Gamma, A & \mbox{if } A \mbox{ is a true } \mathcal{L}_{\mathsf{PA}} \mbox{ literal without set-parameters} \\ \Gamma, A(s), \neg A(t) & \mbox{if } s^{\mathbb{N}} = t^{\mathbb{N}} \mbox{ and } A(z) \in \mathcal{L}_n \mbox{ is atomic} \end{array}$

• Number-theoretic and logical axioms:

 $\begin{array}{ll} \Gamma, A & \mbox{if A is a true $\mathcal{L}_{\mathsf{PA}}$ literal without set-parameters} \\ \Gamma, A(s), \neg A(t) & \mbox{if $s^{\mathbb{N}} = t^{\mathbb{N}}$ and $A(z) \in \mathcal{L}_n$ is atomic} \end{array}$

• Stratified induction axioms for each $1 \le m \le n$ and $B(z) \in \mathcal{L}_{m-1}$:

$$\Gamma, \exists x(\mathfrak{A}(B,x) \land \neg B(x)), t \notin P^{\mathfrak{A}}_m, B(t)$$

• Number-theoretic and logical axioms:

 $\begin{array}{ll} \Gamma, A & \mbox{if A is a true $\mathcal{L}_{\mathsf{PA}}$ literal without set-parameters} \\ \Gamma, A(s), \neg A(t) & \mbox{if $s^{\mathbb{N}} = t^{\mathbb{N}}$ and $A(z) \in \mathcal{L}_n$ is atomic} \end{array}$

• Stratified induction axioms for each $1 \le m \le n$ and $B(z) \in \mathcal{L}_{m-1}$:

$$\Gamma, \exists x(\mathfrak{A}(B, x) \land \neg B(x)), t \notin P^{\mathfrak{A}}_m, B(t)$$

• Fixed-point rules for $1 \le m \le n$:

$$\frac{\Gamma, \mathfrak{A}(P_m^{\mathfrak{A}}, t)}{\Gamma, t \in P_m^{\mathfrak{A}}} \qquad \frac{\Gamma, \neg \mathfrak{A}(P_m^{\mathfrak{A}}, t)}{\Gamma, t \notin P_m^{\mathfrak{A}}}$$

T. Strahm (IAM, Univ. Bern) Finitely stratified inductive definitions Sta

• Predicative rules:

_

$$\frac{\Gamma, A}{\Gamma, A \lor B} \qquad \frac{\Gamma, B}{\Gamma, A \lor B} \qquad \frac{\Gamma, A \qquad \Gamma, B}{\Gamma, A \land B}$$
$$\frac{\Gamma, A_{\times}(s)}{\Gamma, \exists xA} \qquad \frac{\dots \ \Gamma, A_{\times}(t) \ \dots \ (t \text{ closed term})}{\Gamma, \forall xA}$$
$$\frac{\Gamma, \mathfrak{A}(Q_{\mathfrak{A}}^{\leq \xi}, t)}{\Gamma, t \in Q_{\mathfrak{A}}^{\leq \tau}} \text{ for } \xi < \tau \qquad \frac{\dots \ \Gamma, \neg \mathfrak{A}(Q_{\mathfrak{A}}^{\leq \xi}, t) \ \dots \ (\xi < \tau)}{\Gamma, t \notin Q_{\mathfrak{A}}^{\leq \tau}}$$

• Predicative rules:

$$\frac{\Gamma, A}{\Gamma, A \lor B} \qquad \frac{\Gamma, B}{\Gamma, A \lor B} \qquad \frac{\Gamma, A \qquad \Gamma, B}{\Gamma, A \land B}$$
$$\frac{\Gamma, A_x(s)}{\Gamma, \exists xA} \qquad \frac{\dots \ \Gamma, A_x(t) \ \dots \ (t \text{ closed term})}{\Gamma, \forall xA}$$
$$\frac{\Gamma, \mathfrak{A}(Q_{\mathfrak{A}}^{<\xi}, t)}{\Gamma, t \in Q_{\mathfrak{A}}^{<\tau}} \text{ for } \xi < \tau \qquad \frac{\dots \ \Gamma, \neg \mathfrak{A}(Q_{\mathfrak{A}}^{<\xi}, t) \ \dots \ (\xi < \tau)}{\Gamma, t \notin Q_{\mathfrak{A}}^{<\tau}}$$

• Cut rule:

$$\frac{\Gamma, C}{\Gamma}$$

u^b

The *n*-rank of an \mathcal{L}_n^∞ formula

Definition (rk_n)

Let $\operatorname{rk}_0(A) := 0$ for each $A \in \mathcal{L}_0^{\infty}$. For $1 \le n < \omega$, we say that $A \in \mathcal{L}_n^{\infty}$ is *n*-atomic if $A \in \mathcal{L}_{n-1}^{\infty}$ or if it is a literal of the form $t \in P_n^{\mathfrak{A}}$ or $t \notin P_n^{\mathfrak{A}}$. The *n*-rank $\operatorname{rk}_n(A) < \omega$ is defined for $1 \le n < \omega$ and formulas $A \in \mathcal{L}_n^{\infty}$ by

$$\operatorname{rk}_{n}(A) := \begin{cases} 0 & \text{if } A \text{ is } n\text{-atomic, or otherwise} \\ \max(\operatorname{rk}_{n}(B), \operatorname{rk}_{n}(C)) + 1 & \text{if } A = B \land C \text{ or } A = B \lor C \\ \operatorname{rk}_{n}(B) + 1 & \text{if } A = \forall xB \text{ or } A = \exists xB \end{cases}$$

The ordinal rank of an \mathcal{L}^{∞}_n formula

Definition (rk)

The ordinal-rank $\operatorname{rk}(A) < \Gamma_0$ is defined for formulas $A \in \mathcal{L}_{<\omega}^{\infty}$ by

$$\mathbf{rk}(A) := \begin{cases} 0 & \text{if } A \text{ is a literal and } A \in \mathcal{L}_{<\omega} \\ \omega \cdot \xi & \text{if } A = t \in Q_{\mathfrak{A}}^{<\xi} \text{ or } A = t \notin Q_{\mathfrak{A}}^{<\xi} \\ \max(\mathbf{rk}(B), \mathbf{rk}(C)) + 1 & \text{if } A = B \land C \text{ or } A = B \lor C \\ \mathbf{rk}(B) + 1 & \text{if } A = \forall xB \text{ or } A = \exists xB \end{cases}$$

 $\mathsf{SID}_n^\infty \vdash_{\rho,r}^\alpha \Gamma$

The derivability notion $\text{SID}_n^{\infty} \vdash_{\rho,r}^{\alpha} \Gamma$ for $n, r < \omega$ is defined inductively on α to mean that there is a SID_n^{∞} proof of Γ of depth less than or equal to α so that all its cut formulas have ordinal rank less than ρ and n rank less than r.

Cut-elimination

Theorem (Cut-elimination)

• Partial cut-elimination: $SID_n^{\infty} \vdash_{\rho,1+r}^{\alpha} \Gamma$ implies $SID_n^{\infty} \vdash_{\rho,1}^{\omega_r(\alpha)} \Gamma$ for each $1 \le n < \omega$, where $\omega_0(\alpha) := \alpha$ and $\omega_{k+1}(\alpha) := \omega_k(\omega^{\alpha})$.

3 Full predicative cut-elimination: $SID_0^{\infty} \vdash_{\gamma+\omega^{\delta},1}^{\alpha} \Gamma$ implies $SID_0^{\infty} \vdash_{\gamma,1}^{\varphi_{\delta}(\alpha)} \Gamma$.

u^b

Introduction

- 2 The theory SID $_{<\,\omega}$
- 3 Strategy for upper bound
- 4 The infinitary systems ${\sf SID}^\infty_n$
- 5 Asymmetric interpretation
 - 5 Final remarks

Asymmetric interpretation

Definition

For $\mathcal{L}_{n+1}^{\infty}$ formulas A, $\mathcal{L}_{n+1}^{\infty}$ sequents Γ , and ordinals ξ we write

- $\begin{array}{l} {\cal A}^{\xi} \qquad \qquad \mbox{for the ${\cal L}_n^{\infty}$ formula that is obtained from ${\cal A}$} \\ \mbox{by substituting any ${\cal P}_{n+1}^{\mathfrak{A}}$ that occurs in ${\cal A}$} \\ \mbox{with the corresponding symbol ${\cal Q}_{\mathfrak{A}}^{<\xi}$} \end{array}$
- $[\Gamma]^{\xi} \qquad \qquad \text{for the } \mathcal{L}_n^{\infty} \text{ sequent obtained from } \Gamma \text{ by substituting every occurring formula } A \text{ with } A^{\xi}$

Asymmetric interpretation theorem

Asymmetric interpretation theorem

For $A \in \mathcal{L}_{n+1}^{\infty}$, we write $A \in \operatorname{Pos}_{n+1}$ to denote that $P_{n+1}^{\mathfrak{A}}$ occurs at most positively in A for every \mathfrak{A} , and we write $A \in \operatorname{Neg}_{n+1}$ to denote $\neg A \in \operatorname{Pos}_{n+1}$.

Asymmetric interpretation theorem

For $A \in \mathcal{L}_{n+1}^{\infty}$, we write $A \in \operatorname{Pos}_{n+1}$ to denote that $P_{n+1}^{\mathfrak{A}}$ occurs at most positively in A for every \mathfrak{A} , and we write $A \in \operatorname{Neg}_{n+1}$ to denote $\neg A \in \operatorname{Pos}_{n+1}$.

Theorem (Asymmetric interpretation)

Assume that we have

 $\mathsf{SID}_{n+1}^{\infty} \vdash_{\rho,1}^{\alpha} \Delta^{-}, \Delta^{+}$

for some $\Delta^- \subseteq \operatorname{Neg}_{n+1}$ and $\Delta^+ \subseteq \operatorname{Pos}_{n+1}$. Let ν and π be given such that $\pi = \nu + 2^{\alpha}$ and $\rho \leq \omega \cdot \pi$ hold, then we have

$$\mathsf{SID}_n^{\infty} \vdash_{\omega \cdot \pi, \ell}^{\omega \cdot \pi + \alpha} [\Delta^-]^{\nu}, [\Delta^+]^{\pi}$$

T. Strahm (IAM, Univ. Bern) Finitely stratified inductive definitions

U

Introduction

- 2 The theory $SID_{<\omega}$
- 3 Strategy for upper bound
- 4 The infinitary systems ${\sf SID}_n^\infty$
- Asymmetric interpretation

Summary and outlook to G. Jäger's talk

ordinal	stratification	iteration
$\varphi_{arepsilon_0}(0)$	$SID_{<\omega}$	\widehat{ID}_1
$\varphi_{\varepsilon_{\varepsilon_0}}(0)$	$SID_{<\omega+\omega}$	
$\varphi_{\varphi_{\omega}(0)}(0)$	$SID_{<\omega^{\omega}}$	—
$\varphi_{\varphi_{\varepsilon_0}(0)}(0)$	$SID_{<\varepsilon_0}$	\widehat{ID}_2

u^b