Unfolding schematic formal systems

Thomas Strahm (joint work with S. Feferman)

Institut für Informatik und angewandte Mathematik, Universität Bern

Bern, January 24, 2007
(1) Introduction
(2) Defining unfolding
(3) Unfolding non-finitist arithmetic
(4) Interlude: Ramified analysis and the ordinal Γ_{0}
(5) Unfolding finitist arithmetic
(6) Future work

Unfolding schematic formal systems (Feferman '96)

Given a schematic formal system S, which operations and predicates, and which principles concerning them, ought to be accepted if one has accepted S ?

Unfolding schematic formal systems (Feferman '96)

Given a schematic formal system S, which operations and predicates, and which principles concerning them, ought to be accepted if one has accepted S ?

Example (Non-finitist arithmetic NFA)

Logical operations: \neg, \wedge, \forall.
(1) $x^{\prime} \neq 0$
(2) $\operatorname{Pd}\left(x^{\prime}\right)=x$
(3) $P(0) \wedge(\forall x)\left(P(x) \rightarrow P\left(x^{\prime}\right)\right) \rightarrow(\forall x) P(x)$.

Schematic formal systems

- The informal philosophy behind the use of schemata is their open-endedness
- Implicit in the acceptance of a schemata is the acceptance of any meaningful substitution instance
- Schematas are applicable to any language which one comes to recognize as embodying meaningful notions

Background and previous approaches

General background: Implicitness program (Kreisel '70)
Various means of extending a formal system by principles which are implicit in its axioms.

- Reflection principles, transfinite recursive progressions (Turing '39, Feferman '62)
- Autonomous progressions and predicativity (Feferman, Schütte '64)
- Reflective closure based on self-applicative truth (Feferman '91)

(1) Introduction

(2) Defining unfolding

(3) Unfolding non-finitist arithmetic

(4) Interlude: Ramified analysis and the ordinal Γ_{0}
(5) Unfolding finitist arithmetic
(6) Future work

How is the unfolding of a schematic system S defined ?

- We have a general notion of (partial) operation and predicate

How is the unfolding of a schematic system S defined ?

- We have a general notion of (partial) operation and predicate
- Predicates are just special kind of operations, equipped with an \in relation

How is the unfolding of a schematic system S defined ?

- We have a general notion of (partial) operation and predicate
- Predicates are just special kind of operations, equipped with an \in relation
- Underlying partial combinatory algebra with pairing and definition by cases:

How is the unfolding of a schematic system S defined ?

- We have a general notion of (partial) operation and predicate
- Predicates are just special kind of operations, equipped with an \in relation
- Underlying partial combinatory algebra with pairing and definition by cases:
(1) $k a b=a$,

How is the unfolding of a schematic system S defined ?

- We have a general notion of (partial) operation and predicate
- Predicates are just special kind of operations, equipped with an \in relation
- Underlying partial combinatory algebra with pairing and definition by cases:
(1) $k a b=a$,
(2) $s a b \downarrow \wedge s a b c \simeq a c(b c)$,
- We have a general notion of (partial) operation and predicate
- Predicates are just special kind of operations, equipped with an \in relation
- Underlying partial combinatory algebra with pairing and definition by cases:
(1) $k a b=a$,
(2) $s a b \downarrow \wedge s a b c \simeq a c(b c)$,
(3) $\mathrm{p}_{0}(a, b)=a \wedge \mathrm{p}_{1}(a, b)=b$,
- We have a general notion of (partial) operation and predicate
- Predicates are just special kind of operations, equipped with an \in relation
- Underlying partial combinatory algebra with pairing and definition by cases:
(1) $k a b=a$,
(2) $s a b \downarrow \wedge$ sabc $\simeq a c(b c)$,
(3) $\mathrm{p}_{0}(a, b)=a \wedge \mathrm{p}_{1}(a, b)=b$,
(4) $\mathrm{d} a b \mathrm{t}=a \wedge \mathrm{~d} a b f=b$.
- We have a general notion of (partial) operation and predicate
- Predicates are just special kind of operations, equipped with an \in relation
- Underlying partial combinatory algebra with pairing and definition by cases:
(1) $k a b=a$,
(2) $s a b \downarrow \wedge s a b c \simeq a c(b c)$,
(3) $\mathrm{p}_{0}(a, b)=a \wedge \mathrm{p}_{1}(a, b)=b$,
(4) dabt $=a \wedge$ dabf $=b$.
- Operations are not bound to any specific mathematical domain

The full unfolding $\mathcal{U}(\mathrm{S})$

- The universe of S has associated with it an additional unary relation symbol, U_{S}, and the axioms of S are to be relativized to U_{S}.

The full unfolding $\mathcal{U}(\mathrm{S})$

- The universe of S has associated with it an additional unary relation symbol, U_{S}, and the axioms of S are to be relativized to U_{S}.
- Each function symbol f of S determines an element f^{\star} of our partial combinatory algebra.

The full unfolding $\mathcal{U}(\mathrm{S})$

- The universe of S has associated with it an additional unary relation symbol, U_{S}, and the axioms of S are to be relativized to U_{S}.
- Each function symbol f of S determines an element f^{\star} of our partial combinatory algebra.
- Each relation symbol R of S together with U_{S} determines a predicate R^{\star} of our partial combinatory algebra with $R\left(x_{1}, \ldots, x_{n}\right)$ if and only if $\left(x_{1}, \ldots, x_{n}\right) \in R^{\star}$.

The full unfolding $\mathcal{U}(\mathrm{S})$

- The universe of S has associated with it an additional unary relation symbol, U_{S}, and the axioms of S are to be relativized to U_{S}.
- Each function symbol f of S determines an element f^{\star} of our partial combinatory algebra.
- Each relation symbol R of S together with U_{S} determines a predicate R^{\star} of our partial combinatory algebra with $R\left(x_{1}, \ldots, x_{n}\right)$ if and only if $\left(x_{1}, \ldots, x_{n}\right) \in R^{\star}$.
- Operations on predicates, such as e.g. conjunction, are just special kinds of operations. Each logical operation / of S determines a corresponding operation l^{\star} on predicates.

The full unfolding $\mathcal{U}(\mathrm{S})$

- The universe of S has associated with it an additional unary relation symbol, U_{S}, and the axioms of S are to be relativized to U_{S}.
- Each function symbol f of S determines an element f^{\star} of our partial combinatory algebra.
- Each relation symbol R of S together with U_{S} determines a predicate R^{\star} of our partial combinatory algebra with $R\left(x_{1}, \ldots, x_{n}\right)$ if and only if $\left(x_{1}, \ldots, x_{n}\right) \in R^{\star}$.
- Operations on predicates, such as e.g. conjunction, are just special kinds of operations. Each logical operation / of S determines a corresponding operation l^{\star} on predicates.
- Families or sequences of predicates given by an operation f form a new predicate $\operatorname{Join}(f)$, the disjoint union of the predicates from f.

The substitution rule

Substitution rule (Subst)

$$
\frac{A[\bar{P}]}{A[\bar{B} / \bar{P}]}
$$

$\bar{P}=P_{1}, \ldots, P_{m}:$ sequence of free predicate symbols
$\bar{B}=B_{1}, \ldots, B_{m}$: sequence of formulas
$A[\bar{B} / \bar{P}]$ denotes the formula $A[\bar{P}]$ with P_{i} replace by $B_{i}(1 \leq i \leq n)$

The three unfolding systems

Definition $\left(\mathcal{U}(\mathrm{S}), \mathcal{U}_{0}(\mathrm{~S}), \mathcal{U}_{1}(\mathrm{~S})\right)$

- $\mathcal{U}(\mathrm{S})$: full (predicate) unfolding of S
- $\mathcal{U}_{0}(\mathrm{~S})$: operational unfolding of S (no predicates)
- $\mathcal{U}_{1}(\mathrm{~S}): \mathcal{U}(\mathrm{S})$ without (Join)

The three unfolding systems

Definition $\left(\mathcal{U}(\mathrm{S}), \mathcal{U}_{0}(\mathrm{~S}), \mathcal{U}_{1}(\mathrm{~S})\right)$

- $\mathcal{U}(\mathrm{S})$: full (predicate) unfolding of S
- $\mathcal{U}_{0}(\mathrm{~S})$: operational unfolding of S (no predicates)
- $\mathcal{U}_{1}(\mathrm{~S}): \mathcal{U}(\mathrm{S})$ without (Join)

Remark: The original formulation of unfolding made use of a background theory of typed operations with general Least Fixed Point operator. The present formulation is a simplification of this approach.

(1) Introduction

(2) Defining unfolding
(3) Unfolding non-finitist arithmetic
(4) Interlude: Ramified analysis and the ordinal Γ_{0}
(5) Unfolding finitist arithmetic

6 Future work

The proof theory of the three unfolding systems for NFA

Theorem (Feferman, Strahm)
We have the following proof-theoretic characterizations.
(1) $\mathcal{U}_{0}($ NFA) is proof-theoretically equivalent to PA.
(2) $\mathcal{U}_{1}($ NFA $)$ is proof-theoretically equivalent to $\mathrm{RA}_{<\omega}$.
(3) \mathcal{U} (NFA) is proof-theoretically equivalent to $\mathrm{RA}_{<\Gamma_{0}}$.

In each case we have conservation with respect to arithmetic statements of the system on the left over the system on the right.

(1) Introduction

(2) Defining unfolding

(3) Unfolding non-finitist arithmetic

(4) Interlude: Ramified analysis and the ordinal Γ_{0}
(5) Unfolding finitist arithmetic
(6) Future work

Ramified analysis

\mathcal{L}_{2} : Language of second-order arithmetic.
Given a collection \mathcal{M} of sets of natural numbers, define \mathcal{M}^{\star} to consist of all sets $S \subseteq \mathbb{N}$ such that for some condition $A(x) \in \mathcal{L}_{2}$ we have

$$
\forall x\left(x \in S \leftrightarrow A^{\mathcal{M}}(x)\right)
$$

Ramified analysis

\mathcal{L}_{2} : Language of second-order arithmetic.
Given a collection \mathcal{M} of sets of natural numbers, define \mathcal{M}^{\star} to consist of all sets $S \subseteq \mathbb{N}$ such that for some condition $A(x) \in \mathcal{L}_{2}$ we have

$$
\forall x\left(x \in S \leftrightarrow A^{\mathcal{M}}(x)\right)
$$

Definition (Ramified analytic hierarchy)

$$
\begin{aligned}
\mathcal{M}_{0} & :=\text { arithmetically definable sets } \\
\mathcal{M}_{\alpha+1} & :=\mathcal{M}_{\alpha}^{\star} \\
\mathcal{M}_{\lambda} & :=\bigcup_{\beta<\lambda} \mathcal{M}_{\beta}
\end{aligned}
$$

The systems RA_{α}

We let RA_{α} denote a (semi) formal system for \mathcal{M}_{α}.

Problem

How do we justify the ordinals α in the generation of \mathcal{M}_{α} respectively RA_{α} ?

The systems RA_{α}

We let RA_{α} denote a (semi) formal system for \mathcal{M}_{α}.

Problem

How do we justify the ordinals α in the generation of \mathcal{M}_{α} respectively RA_{α} ?

Autonomity condition

RA_{α} is only justified if α is a recursive ordinal so that $\mathrm{RA}_{<\alpha}$ proves the wellfoundedness of α.

The ordinal Γ_{0}

Question

Where does this procedure stop, i.e. which ordinals can be reached by such an autonomous process?

The ordinal Γ_{0}

Question

Where does this procedure stop, i.e. which ordinals can be reached by such an autonomous process?

Definition (The ordinal Γ_{0})

$$
\begin{aligned}
\varphi_{0}(\beta) & :=\omega^{\beta} \\
\varphi_{\alpha}(\beta) & :=\beta \text { th common fixed point of }\left(\varphi_{\xi}\right)_{\xi<\alpha} \\
\Gamma_{0} & :=\text { least ordinal }>0 \text { that is closed under } \varphi
\end{aligned}
$$

The ordinal Γ_{0}

Question

Where does this procedure stop, i.e. which ordinals can be reached by such an autonomous process?

Definition (The ordinal Γ_{0})

$$
\begin{aligned}
\varphi_{0}(\beta) & :=\omega^{\beta} \\
\varphi_{\alpha}(\beta) & :=\beta \text { th common fixed point of }\left(\varphi_{\xi}\right)_{\xi<\alpha} \\
\Gamma_{0} & :=\text { least ordinal }>0 \text { that is closed under } \varphi
\end{aligned}
$$

Theorem (Feferman, Schütte)

$$
\operatorname{Aut}(R A)=\Gamma_{0}
$$

(1) Introduction

(2) Defining unfolding

(3) Unfolding non-finitist arithmetic

(4) Interlude: Ramified analysis and the ordinal Γ_{0}
(5) Unfolding finitist arithmetic
(6) Future work

Finitist arithmetic

Question: What principles are implicit in the actual finitist conception of the set of natural numbers ?

Finitist arithmetic

Question: What principles are implicit in the actual finitist conception of the set of natural numbers ?

Example (Finitist arithmetic FA)

Logical operations: \wedge, \vee, \exists.
(1) $u^{\prime}=0 \rightarrow Q$,
(2) $\operatorname{Pd}\left(u^{\prime}\right)=u$,
(3) $\frac{Q \rightarrow P(0) \quad Q \rightarrow\left(P(u) \rightarrow P\left(u^{\prime}\right)\right)}{Q \rightarrow P(v)} \quad(u$ fresh $)$.

Implications at the top-level are used to form relative assertions.

Primary and secondary formulas

- Primary formulas (A, B, C, \ldots) are built from the atomic formulas by means of \wedge, \vee and \exists
- Secondary formulas (F, G, H, \ldots) are of the form

$$
A_{1} \rightarrow\left(A_{2} \rightarrow \cdots \rightarrow\left(A_{n} \rightarrow B\right) \ldots\right)
$$

where $n \geq 0$ and $A_{1}, A_{2}, \ldots, A_{n}, B$ are primary formulas.

Primary and secondary formulas

- Primary formulas (A, B, C, \ldots) are built from the atomic formulas by means of \wedge, \vee and \exists
- Secondary formulas (F, G, H, \ldots) are of the form

$$
A_{1} \rightarrow\left(A_{2} \rightarrow \cdots \rightarrow\left(A_{n} \rightarrow B\right) \ldots\right)
$$

where $n \geq 0$ and $A_{1}, A_{2}, \ldots, A_{n}, B$ are primary formulas.

Remark: The original formulation of unfolding finitist arithmetic made use of sequent-style formalization of logic. The present formulation is a simplification of this approach and uses a Hilbert-style system.

Generalization of the substitution rule (Subst)

We have to generalize the substitution rule (Subst) to rules of inference:

Substitution rule (Subst')

Given that the rule of inference

$$
\frac{F_{1}, F_{2}, \ldots, F_{n}}{F}
$$

is derivable, we can adjoin each of its substitution instances

$$
\frac{F_{1}[\bar{B} / \bar{P}], F_{2}[\bar{B} / \bar{P}], \ldots, F_{n}[\bar{B} / \bar{P}]}{F[\bar{B} / \bar{P}]}
$$

as a new rule of inference.

The proof theory of the three unfolding systems for FA

The full unfolding of FA includes the basic logical operations as operations on predicates as well as Join.

Theorem (Feferman, Strahm)

All three unfolding systems for finitist arithmetic, $\mathcal{U}_{0}(\mathrm{FA}), \mathcal{U}_{1}(\mathrm{FA})$ and \mathcal{U} (FA) are proof-theoretically equivalent to Skolem's Primitive Recursive Arithmetic PRA.

Support of Tait's informal analysis of finitism (Tait '81).

(1) Introduction

(2) Defining unfolding
(3) Unfolding non-finitist arithmetic
(4) Interlude: Ramified analysis and the ordinal Γ_{0}
(5) Unfolding finitist arithmetic
(6) Future work

Future work

Unfolding of

- Finitist arithmetic with ordinals
- Feasible arithmetic
- Arithmetic with choice functionals
- Second order arithmetic
- Set-theoretical systems

