On the proof theory of type 2 functionals

Thomas Strahm

Institut für Informatik und angewandte Mathematik Universität Bern

Oberwolfach, March 2005

1 The formal framework of applicative theories

- 2 The non-constructive μ -operator and the E₁ functional
- 3 Applicative theories based on primitive recursive operations
- Bounded applicative theories and higher type feasibility

Applicative theories

• Operational core of Feferman's systems of explicit mathematics (Feferman '75)

Applicative theories

- Operational core of Feferman's systems of explicit mathematics (Feferman '75)
- Untyped universe of operations or rules, which can freely be applied to each other: self-application is meaningful, though not necessarily total

Applicative theories

- Operational core of Feferman's systems of explicit mathematics (Feferman '75)
- Untyped universe of operations or rules, which can freely be applied to each other: self-application is meaningful, though not necessarily total
- Natural setting for studying notions of abstract computability, especially from a proof-theoretic perspective

Aim of this talk

• Discussing various aspects relating to the proof theory of type 2 functionals in Feferman-style applicative theories

Aim of this talk

- Discussing various aspects relating to the proof theory of type 2 functionals in Feferman-style applicative theories
- Functionals from generalized recursion theory (E₀ and E₁)

Aim of this talk

- Discussing various aspects relating to the proof theory of type 2 functionals in Feferman-style applicative theories
- Functionals from generalized recursion theory (E_0 and E_1)
- Addressing the proof theory of these functionals also on the basis of Schlüter's partial enumerative algebra

Aim of this talk

- Discussing various aspects relating to the proof theory of type 2 functionals in Feferman-style applicative theories
- Functionals from generalized recursion theory (E_0 and E_1)
- Addressing the proof theory of these functionals also on the basis of Schlüter's partial enumerative algebra
- Provability ot type 2 functionals in weak applicative frameworks, thus discussing questions about type two feasibility

1 The formal framework of applicative theories

- 2 The non-constructive μ -operator and the E₁ functional
- 3 Applicative theories based on primitive recursive operations
- Bounded applicative theories and higher type feasibility

The basic language of applicative theories

 ${\rm L}$ is a first order language for the logic of partial terms:

- ${\rm L}$ is a first order language for the logic of partial terms:
 - constants k, s, p, p_0 , p_1 , 0, s_N , p_N , r_N , ...

- ${\rm L}$ is a first order language for the logic of partial terms:
 - constants k, s, p, p_0 , p_1 , 0, s_N , p_N , r_N , ...
 - relation symbols =, \downarrow , N

- ${\rm L}$ is a first order language for the logic of partial terms:
 - constants k, s, p, p_0 , p_1 , 0, s_N , p_N , r_N , ...
 - relation symbols =, \downarrow , N
 - \bullet arbitrary term application \circ

- ${\rm L}$ is a first order language for the logic of partial terms:
 - constants k, s, p, p_0 , p_1 , 0, s_N , p_N , r_N , ...
 - relation symbols =, \downarrow , N
 - arbitrary term application \circ

The basic language of applicative theories

 ${\rm L}$ is a first order language for the logic of partial terms:

- constants k, s, p, p_0 , p_1 , 0, s_N , p_N , r_N , ...
- relation symbols =, \downarrow , N
- arbitrary term application \circ

Notation

The basic language of applicative theories

 ${\rm L}$ is a first order language for the logic of partial terms:

- constants k, s, p, p_0 , p_1 , 0, s_N , p_N , r_N , ...
- relation symbols =, \downarrow , N
- arbitrary term application \circ

Notation

• $t_1 t_2 \ldots t_n := (\ldots (t_1 \circ t_2) \circ \cdots \circ t_n)$

The basic language of applicative theories

L is a first order language for the logic of partial terms:

- constants k, s, p, p_0 , p_1 , 0, s_N , p_N , r_N , ...
- relation symbols =, \downarrow , N
- arbitrary term application \circ

Notation

- $t_1 t_2 \ldots t_n := (\ldots (t_1 \circ t_2) \circ \cdots \circ t_n)$
- $t_1 \simeq t_2 := t_1 \downarrow \lor t_2 \downarrow \to t_1 = t_2$

 $u^{\scriptscriptstyle b}$

The basic language of applicative theories

 ${\rm L}$ is a first order language for the logic of partial terms:

- constants k, s, p, p_0 , p_1 , 0, s_N , p_N , r_N , ...
- relation symbols =, \downarrow , N
- arbitrary term application \circ

Notation

- $t_1 t_2 \dots t_n := (\dots (t_1 \circ t_2) \circ \dots \circ t_n)$
- $t_1 \simeq t_2 := t_1 \downarrow \lor t_2 \downarrow \to t_1 = t_2$

• $t \in \mathsf{N}$:= $\mathsf{N}(t)$

 $u^{\scriptscriptstyle b}$

The basic language of applicative theories

 ${\rm L}$ is a first order language for the logic of partial terms:

- constants k, s, p, p_0 , p_1 , 0, s_N , p_N , r_N , ...
- relation symbols =, \downarrow , N
- arbitrary term application \circ

Notation

- $t_1 t_2 \ldots t_n := (\ldots (t_1 \circ t_2) \circ \cdots \circ t_n)$
- $t_1 \simeq t_2 := t_1 \downarrow \lor t_2 \downarrow \to t_1 = t_2$
- $t \in \mathsf{N} := \mathsf{N}(t)$
- $t \in \mathbb{N}^k \to \mathbb{N} := (\forall x_1 \dots x_k \in \mathbb{N}) t x_1 \dots x_k \in \mathbb{N}$

 u^{\flat}

The basic language of applicative theories

 ${\rm L}$ is a first order language for the logic of partial terms:

- constants k, s, p, p_0 , p_1 , 0, s_N , p_N , r_N , ...
- relation symbols =, \downarrow , N
- arbitrary term application \circ

Notation

- $t_1t_2\ldots t_n := (\ldots (t_1 \circ t_2) \circ \cdots \circ t_n)$
- $t_1 \simeq t_2 := t_1 \downarrow \lor t_2 \downarrow \to t_1 = t_2$
- $t \in \mathsf{N}$:= $\mathsf{N}(t)$
- $t \in \mathbb{N}^k \to \mathbb{N} := (\forall x_1 \dots x_k \in \mathbb{N}) t x_1 \dots x_k \in \mathbb{N}$
- $\bullet \ t \in \mathsf{N}^\mathsf{N} \times \mathsf{N} \to \mathsf{N} \ := \ (\forall f \in \mathsf{N} \to \mathsf{N}) (\forall x \in \mathsf{N}) t f x \in \mathsf{N}$

 $\overset{\boldsymbol{u}^{\scriptscriptstyle{\mathfrak{b}}}}{=}$

The basic theory of operations and numbers BON

The logic of BON is the logic of partial terms (Beeson/Feferman).

The basic theory of operations and numbers BON

The logic of BON is the logic of partial terms (Beeson/Feferman). The non-logical axioms of BON include:

The basic theory of operations and numbers BON

The logic of BON is the logic of partial terms (Beeson/Feferman). The non-logical axioms of BON include:

• partial combinatory algebra:

 $\mathsf{k} xy = x, \qquad \mathsf{s} xy {\downarrow} \wedge \mathsf{s} xyz \simeq xz(yz)$

The basic theory of operations and numbers BON

The logic of BON is the logic of partial terms (Beeson/Feferman). The non-logical axioms of BON include:

• partial combinatory algebra:

$$\mathsf{k} xy = x, \qquad \mathsf{s} xy \downarrow \wedge \mathsf{s} xyz \simeq xz(yz)$$

 \bullet pairing p with projections p_0 and p_1

The basic theory of operations and numbers BON

The logic of BON is the logic of partial terms (Beeson/Feferman). The non-logical axioms of BON include:

• partial combinatory algebra:

$$\mathsf{k} xy = x, \qquad \mathsf{s} xy \downarrow \wedge \mathsf{s} xyz \simeq xz(yz)$$

- pairing p with projections p_0 and p_1
- defining axioms for the natural numbers N with 0, s_N (successor) and p_N (predecessor)

u^b

The basic theory of operations and numbers BON

The logic of BON is the logic of partial terms (Beeson/Feferman). The non-logical axioms of BON include:

• partial combinatory algebra:

$$\mathsf{k} xy = x, \qquad \mathsf{s} xy \downarrow \wedge \mathsf{s} xyz \simeq xz(yz)$$

- pairing p with projections p_0 and p_1
- defining axioms for the natural numbers N with 0, s_N (successor) and p_N (predecessor)
- \bullet definition by numerical cases d_N on N

 u^{\flat}

The basic theory of operations and numbers BON

The logic of BON is the logic of partial terms (Beeson/Feferman). The non-logical axioms of BON include:

• partial combinatory algebra:

$$\mathsf{k} xy = x, \qquad \mathsf{s} xy \downarrow \wedge \mathsf{s} xyz \simeq xz(yz)$$

- pairing p with projections p_0 and p_1
- defining axioms for the natural numbers N with 0, s_N (successor) and p_N (predecessor)
- \bullet definition by numerical cases d_N on N
- primitive recursion r_N on N (optional)

 $u^{\scriptscriptstyle b}$

Additional axioms and sets of natural numbers

Additional axioms and sets of natural numbers

 ${\sf Totality}\ ({\sf Tot})$

 $(\forall x, y)xy \downarrow$

$\mathsf{Extensionality}\ (\mathsf{Ext})$

$$(\forall x)(fx\simeq gx)\,\rightarrow\,f=g$$

Additional axioms and sets of natural numbers

 ${\sf Totality}\ ({\sf Tot})$

 $(\forall x, y)xy \downarrow$

$\mathsf{Extensionality}\ (\mathsf{Ext})$

$$(\forall x)(fx \simeq gx) \rightarrow f = g$$

Sets of natural numbers

u^b

Additional axioms and sets of natural numbers

${\sf Totality}\ ({\sf Tot})$

 $(\forall x, y)xy \downarrow$

Extensionality (Ext)

$$(\forall x)(fx \simeq gx) \rightarrow f = g$$

Sets of natural numbers

are represented via their total characteristic functions:

$$f \in \mathcal{P}(\mathsf{N}) \iff (\forall x \in \mathsf{N})(fx = 0 \lor fx = 1)$$

 u^{\flat}

Consequences of the partial combinatory algebra axioms

Consequences of the partial combinatory algebra axioms

As usual in untyped applicative settings we have:

Consequences of the partial combinatory algebra axioms

As usual in untyped applicative settings we have:

• explicit definitions (λ -abstraction)

Consequences of the partial combinatory algebra axioms

As usual in untyped applicative settings we have:

- explicit definitions (λ-abstraction)
- recursion theorem

 $\mathsf{fix} f \!\!\downarrow \, \wedge \, (\forall x) (\mathsf{fix} f x \simeq f(\mathsf{fix} f) x)$

Induction principles on N

Induction principles on N

Set induction on N $(S\text{-}I_N)$

$$\begin{aligned} f \in \mathcal{P}(\mathsf{N}) \wedge f0 &= 0 \wedge (\forall x \in \mathsf{N})(fx = 0 \to f(x') = 0) \\ &\to (\forall x \in \mathsf{N})(fx = 0) \end{aligned}$$

Induction principles on N

Set induction on N $(S\text{-}I_N)$

$$\begin{split} f \in \mathcal{P}(\mathsf{N}) \wedge f 0 &= 0 \wedge (\forall x \in \mathsf{N}) (fx = 0 \to f(x') = 0) \\ &\to (\forall x \in \mathsf{N}) (fx = 0) \end{split}$$

N induction on N $(N-I_N)$

Induction principles on N

Set induction on N $(S\text{-}I_N)$

$$\begin{split} f \in \mathcal{P}(\mathsf{N}) \wedge f 0 &= 0 \wedge (\forall x \in \mathsf{N}) (fx = 0 \to f(x') = 0) \\ &\to (\forall x \in \mathsf{N}) (fx = 0) \end{split}$$

N induction on N $(N-I_N)$

 $f0 \in \mathsf{N} \land (\forall x \in \mathsf{N}) (fx \in \mathsf{N} \to f(x') \in \mathsf{N}) \to (\forall x \in \mathsf{N}) (fx \in \mathsf{N})$

Induction principles on N

Set induction on N $(S-I_N)$

$$\begin{split} f \in \mathcal{P}(\mathsf{N}) \wedge f 0 &= 0 \wedge (\forall x \in \mathsf{N}) (fx = 0 \to f(x') = 0) \\ &\to (\forall x \in \mathsf{N}) (fx = 0) \end{split}$$

N induction on N $(N\text{-}I_N)$

 $f0 \in \mathsf{N} \land (\forall x \in \mathsf{N}) (fx \in \mathsf{N} \to f(x') \in \mathsf{N}) \to (\forall x \in \mathsf{N}) (fx \in \mathsf{N})$

Formula induction on N $(L-I_N)$

 $u^{\scriptscriptstyle b}$

Induction principles on N

Set induction on N $(S-I_N)$

$$\begin{split} f \in \mathcal{P}(\mathsf{N}) \wedge f 0 &= 0 \wedge (\forall x \in \mathsf{N}) (fx = 0 \to f(x') = 0) \\ &\to (\forall x \in \mathsf{N}) (fx = 0) \end{split}$$

N induction on N $(N\text{-}I_N)$

 $f0 \in \mathsf{N} \land (\forall x \in \mathsf{N}) (fx \in \mathsf{N} \to f(x') \in \mathsf{N}) \to (\forall x \in \mathsf{N}) (fx \in \mathsf{N})$

Formula induction on N $(L-I_N)$

The full induction schema.

 u^{\flat}

A folklore theorem

Theorem

- **1** BON + (S-I_N) \equiv BON + (N-I_N) \equiv PRA.
- **2** $BON + (L-I_N) \equiv PA.$

The formal framework of applicative theories

2 The non-constructive μ -operator and the E₁ functional

3 Applicative theories based on primitive recursive operations

4 Bounded applicative theories and higher type feasibility

The type two functionals E_0 and E_1

The type two functionals E_0 and E_1

 $\alpha, \beta, \gamma, \cdots : \mathbb{N} \to \mathbb{N}.$

The type two functionals E_0 and E_1

- $\alpha, \beta, \gamma, \cdots : \mathbb{N} \to \mathbb{N}.$
 - The E₀ functional:

$$\mathsf{E}_0(\alpha) = \begin{cases} 0 & \exists n\alpha(n) = 0, \\ 1 & \mathsf{else} \end{cases}$$

The type two functionals E_0 and E_1

- $\alpha, \beta, \gamma, \cdots : \mathbb{N} \to \mathbb{N}.$
 - The E₀ functional:

$$\mathsf{E}_0(\alpha) = \begin{cases} 0 & \exists n\alpha(n) = 0, \\ 1 & \mathsf{else} \end{cases}$$

• The E₁ functional:

$$\mathsf{E}_1(\alpha) = \begin{cases} 0 & \exists \beta \forall n \alpha (\langle \beta(n+1), \beta(n) \rangle) = 0, \\ 1 & \mathsf{else} \end{cases}$$

u^b

Some facts from recursion theory

$I \qquad \omega_1[I]$ recursive in I r.e. in I

Some facts from recursion theory

Ι	$\omega_1[I]$	recursive in I	r.e. in I
E_0	ω_1	$L_{\omega_1} \cap \mathcal{P}(\mathbb{N})$	Σ_1 on L_{ω_1}

u^b

Some facts from recursion theory

Ι	$\omega_1[I]$	recursive in I	r.e. in I
E_0	ω_1	$L_{\omega_1} \cap \mathcal{P}(\mathbb{N})$	Σ_1 on L_{ω_1}
E_1	i_0	$L_{i_0} \cap \mathcal{P}(\mathbb{N})$	Σ_1 on L_{i_0}

Formalizing the functionals in the applicative setting

Formalizing the functionals in the applicative setting

The μ functional

 $\bullet \ (\mu.1) \quad f \in (\mathsf{N} \to \mathsf{N}) \ \leftrightarrow \ \mu f \in \mathsf{N},$

Formalizing the functionals in the applicative setting

The μ functional

- $(\mu.1)$ $f \in (\mathbb{N} \to \mathbb{N}) \leftrightarrow \mu f \in \mathbb{N}$,
- $\bullet \ (\mu.2) \quad f \in (\mathsf{N} \to \mathsf{N}) \land (\exists x \in \mathsf{N}) (fx = 0) \ \to \ f(\mu f) = 0.$

Formalizing the functionals in the applicative setting

The μ functional

- $(\mu.1)$ $f \in (\mathbb{N} \to \mathbb{N}) \leftrightarrow \mu f \in \mathbb{N}$,
- $(\mu.2)$ $f \in (\mathbb{N} \to \mathbb{N}) \land (\exists x \in \mathbb{N})(fx = 0) \to f(\mu f) = 0.$

 u^{\flat} UNIVERSITA

Formalizing the functionals in the applicative setting

The μ functional

- $(\mu.1)$ $f \in (\mathbb{N} \to \mathbb{N}) \leftrightarrow \mu f \in \mathbb{N}$,
- $\bullet \ (\mu.2) \quad f \in (\mathsf{N} \to \mathsf{N}) \land (\exists x \in \mathsf{N}) (fx = 0) \ \to \ f(\mu f) = 0.$

The E₁ functional

• $(\mathsf{E}_1.1)$ $f \in (\mathsf{N}^2 \to \mathsf{N}) \leftrightarrow \mathsf{E}_1 f \in \mathsf{N}$,

Formalizing the functionals in the applicative setting

The μ functional

- $(\mu.1)$ $f \in (\mathbb{N} \to \mathbb{N}) \leftrightarrow \mu f \in \mathbb{N}$,
- $(\mu.2)$ $f \in (\mathbb{N} \to \mathbb{N}) \land (\exists x \in \mathbb{N})(fx = 0) \to f(\mu f) = 0.$

The E_1 functional

- $\bullet \ (\mathsf{E}_1.1) \quad f \in (\mathsf{N}^2 \to \mathsf{N}) \ \leftrightarrow \ \mathsf{E}_1 f \in \mathsf{N},$
- $(\mathsf{E}_1.2)$ $f \in (\mathsf{N}^2 \to \mathsf{N}) \to$

 $[(\exists g \in \mathsf{N} \to \mathsf{N})(\forall x \in \mathsf{N})(f(gx')(gx) = 0) \, \leftrightarrow \, \mathsf{E}_1 f = 0].$

u^b

Proof theory of μ (or E₀)

Theorem (Feferman, Jäger, S.)

• BON $(\mu) + (S-I_N) \equiv PA$,

2
$$BON(\mu) + (N-I_N) \equiv (\Delta_1^1 - CR),$$

3 BON
$$(\mu)$$
 + (L-I_N) $\equiv (\Delta_1^1$ -CA).

Furthermore, all these equivalences also hold in the presence of (Tot) and (Ext).

Proof theory of E_1

Theorem (Jäger, S.)

- **3** BON $(\mu, \mathsf{E}_1) + (\mathrm{L}\mathsf{-}\mathsf{I}_{\mathsf{N}}) \equiv (\Delta_2^1 \mathsf{-} \mathsf{C} \mathsf{A}).$

Furthermore, all these equivalences also hold in the presence of (Tot) and (Ext).

The formal framework of applicative theories

2 The non-constructive μ -operator and the E₁ functional

3 Applicative theories based on primitive recursive operations

4 Bounded applicative theories and higher type feasibility

Schlüter's partial enumerative algebra

• Define a weakening of a partial combinatory algebra for enumerated classes of functions

Schlüter's partial enumerative algebra

- Define a weakening of a partial combinatory algebra for enumerated classes of functions
- It is not necessarily assumed that the enumerating function itself belongs to that class of functions

Schlüter's partial enumerative algebra

- Define a weakening of a partial combinatory algebra for enumerated classes of functions
- It is not necessarily assumed that the enumerating function itself belongs to that class of functions
- Standard interpretation in the primitive recursive indices possible

Schlüter's partial enumerative algebra

- Define a weakening of a partial combinatory algebra for enumerated classes of functions
- It is not necessarily assumed that the enumerating function itself belongs to that class of functions
- Standard interpretation in the primitive recursive indices possible
- \bullet Aim: study the proof theory of this new algebra augmented with the type two functionals μ and ${\rm E}_1$

The theory PRON

The theory PRON

PRON is obtained from BON by replacing the axioms for a partial combinatory algebra by the following three axioms, using two new combinators a, b and i:

•
$$kxy = x$$
 $ix = x$

 $u^{\scriptscriptstyle b}$

The theory PRON

PRON is obtained from BON by replacing the axioms for a partial combinatory algebra by the following three axioms, using two new combinators a, b and i:

•
$$kxy = x$$
 $ix = x$

•
$$\mathbf{p}_0\langle x, y \rangle = x \land \mathbf{p}_1\langle x, y \rangle = y$$

The theory PRON

PRON is obtained from BON by replacing the axioms for a partial combinatory algebra by the following three axioms, using two new combinators a, b and i:

•
$$kxy = x$$
 $ix = x$

•
$$p_0\langle x, y \rangle = x \land p_1\langle x, y \rangle = y$$

 $\bullet \ \mathsf{a}\langle x,y\rangle {\downarrow} \ \land \ \mathsf{a}\langle x,y\rangle z\simeq \langle xz,yz\rangle$

 $u^{\scriptscriptstyle b}$

The theory PRON

PRON is obtained from BON by replacing the axioms for a partial combinatory algebra by the following three axioms, using two new combinators a, b and i:

•
$$kxy = x$$
 $ix = x$

•
$$p_0\langle x, y \rangle = x \land p_1\langle x, y \rangle = y$$

• a
$$\langle x,y
angle \downarrow$$
 \wedge a $\langle x,y
angle z\simeq \langle xz,yz
angle$

• $\mathbf{b}\langle x,y\rangle \downarrow \wedge \mathbf{b}\langle x,y\rangle z \simeq x(yz)$

 $u^{\scriptscriptstyle b}$

Explicit definitions in PRON

T. Strahm On the proof theory of type 2 functionals

Explicit definitions in PRON

Define a variable x to be in argument position in a term t, if x or something computed out of it is not applied to anything else. In this case we get λ -abstraction as usual:

Explicit definitions in PRON

Define a variable x to be in argument position in a term t, if x or something computed out of it is not applied to anything else. In this case we get λ -abstraction as usual:

$$(\lambda x.t) \downarrow \land (\lambda x.t) x \simeq t$$

 $u^{\scriptscriptstyle b}$

Explicit definitions in PRON

Define a variable x to be in argument position in a term t, if x or something computed out of it is not applied to anything else. In this case we get λ -abstraction as usual:

$$(\lambda x.t) \downarrow \land (\lambda x.t) x \simeq t$$

• Not allowed: $\lambda z.xz(yz), \ \lambda x.(x)_0(x)_1$

 $u^{\scriptscriptstyle b}$

Explicit definitions in PRON

Define a variable x to be in argument position in a term t, if x or something computed out of it is not applied to anything else. In this case we get λ -abstraction as usual:

$$(\lambda x.t) \downarrow \land (\lambda x.t) x \simeq t$$

- Not allowed: $\lambda z.xz(yz), \ \lambda x.(x)_0(x)_1$
- Allowed: $\lambda z. \langle xz, yz \rangle$

u[•]

Proof theory of μ (or E₀) on the basis of PRON

Theorem (Steiner, S.)

• PRON
$$(\mu) + (S-I_N) \equiv PA$$
,

2
$$\mathsf{PRON}(\mu) + (L-I_N) \equiv (\Pi_1^0 - \mathsf{CA}).$$

Proof theory of E_1 on the basis of PRON

Theorem (Steiner, S.)

- PRON $(\mu, \mathsf{E}_1) + (\mathsf{S-I}_\mathsf{N}) \equiv (\Pi^1_1 \mathsf{CA})$
- **2** $\mathsf{PRON}(\mu, \mathsf{E}_1) + (L-\mathsf{I}_N) \equiv (\Pi_1^1-\mathsf{CA}).$

1 The formal framework of applicative theories

- 2 The non-constructive μ -operator and the E₁ functional
- 3 Applicative theories based on primitive recursive operations
- Bounded applicative theories and higher type feasibility

Bounded applicative theories and higher type functionals

General program

• Set up and study of bounded Feferman-style applicative theories capturing various complexity classes in a uniform way

Bounded applicative theories and higher type functionals

General program

- Set up and study of bounded Feferman-style applicative theories capturing various complexity classes in a uniform way
- Exhibit relationship to systems of bounded arithmetic, higher type functionals

Bounded applicative theories and higher type functionals

General program

- Set up and study of bounded Feferman-style applicative theories capturing various complexity classes in a uniform way
- Exhibit relationship to systems of bounded arithmetic, higher type functionals
- Higher types arise naturally in an untyped applicative setting!

Bounded applicative theories and higher type functionals

General program

- Set up and study of bounded Feferman-style applicative theories capturing various complexity classes in a uniform way
- Exhibit relationship to systems of bounded arithmetic, higher type functionals
- Higher types arise naturally in an untyped applicative setting!

Bounded applicative theories and higher type functionals

General program

- Set up and study of bounded Feferman-style applicative theories capturing various complexity classes in a uniform way
- Exhibit relationship to systems of bounded arithmetic, higher type functionals
- Higher types arise naturally in an untyped applicative setting!

In the sequel: Presentation of an applicative theory PT which characterizes the type 2 basic feasible functionals

The language of PT

 L_{W} is a first order language for the logic of partial terms:

The language of PT

 L_{W} is a first order language for the logic of partial terms:

 \bullet constants k, s, p, p_0, p_1, d_W, $\epsilon,$ s_0, s_1, p_W, *, \times

The language of PT

 L_{W} is a first order language for the logic of partial terms:

- \bullet constants k, s, p, p_0, p_1, d_W, $\epsilon,$ s_0, s_1, p_W, *, \times
- relation symbols =, \downarrow , W

The language of PT

 L_{W} is a first order language for the logic of partial terms:

- \bullet constants k, s, p, p_0, p_1, d_W, $\epsilon,$ s_0, s_1, p_W, *, \times
- relation symbols =, \downarrow , W
- \bullet arbitrary term application \circ

Basic axioms of PT

Basic axioms of PT

PT is based on the classical logic of partial terms. Its non-logical axioms include:

• partial combinatory algebra

Basic axioms of PT

PT is based on the classical logic of partial terms. Its non-logical axioms include:

- partial combinatory algebra
- pairing and projections

Basic axioms of PT

PT is based on the classical logic of partial terms. Its non-logical axioms include:

- partial combinatory algebra
- pairing and projections
- defining axioms for the binary words W with ϵ and the binary successors s_0 and s_1 , predecessor d_W and definition by cases d_W on W

Basic axioms of PT

PT is based on the classical logic of partial terms. Its non-logical axioms include:

- partial combinatory algebra
- pairing and projections
- defining axioms for the binary words W with ϵ and the binary successors s_0 and s_1 , predecessor d_W and definition by cases d_W on W
- \bullet word concatenation * and word multiplication \times

A natural induction principle for PT

A natural induction principle for PT

 $\Sigma^b_{\rm W}\text{-}{\rm formulas}$

T. Strahm On the proof theory of type 2 functionals

A natural induction principle for PT

 Σ^b_{W} -formulas

Formulas A(x) of the form

 $(\exists y \in \mathsf{W})(y \leq fx \land B(f, x, y))$

for B positive and W-free

A natural induction principle for PT

 $\Sigma^b_{\mathsf{W}}\text{-}\mathsf{formulas}$

Formulas A(x) of the form

 $(\exists y \in \mathsf{W})(y \le fx \land B(f, x, y))$

for B positive and W-free

 Σ^b_W -induction on W

A natural induction principle for PT

 $\Sigma^b_{\mathsf{W}}\text{-}\mathsf{formulas}$

Formulas A(x) of the form

 $(\exists y \in \mathsf{W})(y \leq fx \land B(f, x, y))$

for $B\ {\rm positive}$ and W-free

 Σ^b_W -induction on W

$$\begin{split} f: \mathsf{W} &\to \mathsf{W} \land A(\epsilon) \land (\forall x \in \mathsf{W})(A(x) \to A(\mathsf{s}_0 x) \land A(\mathsf{s}_1 x)) \\ &\to (\forall x \in \mathsf{W})A(x) \end{split}$$

 $u^{\scriptscriptstyle b}$

PT characterizes the type 2 basic feasible functionals

Theorem (S)

The provably total type two functionals of PT coincide with BFF_2 , the basic feasible functionals of type two.

Final remark and an open problem

Final remark and an open problem

$\mathsf{PT} \text{ and } \mathsf{PV}^\omega$

Final remark and an open problem

$\mathsf{PT} \text{ and } \mathsf{PV}^\omega$

Indeed, the basic feasible functionals in all finite types are provably total in PT.

Final remark and an open problem

$\mathsf{PT} \text{ and } \mathsf{PV}^\omega$

Indeed, the basic feasible functionals in all finite types are provably total in PT.

Question

Is every provably total functional of type ≥ 3 of PT basic feasible?

Final remark and an open problem

$\mathsf{PT} \text{ and } \mathsf{PV}^\omega$

Indeed, the basic feasible functionals in all finite types are provably total in PT.

Question

Is every provably total functional of type ≥ 3 of PT basic feasible? Conjecture: Yes

