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A classical result by Parsons, Mints and Takeuti

Let PA; denote Peano arithmetic with induction restricted to ¥9
properties.

Theorem (Parsons, Mints, Takeuti)

Assume that for some ¥9 formula P,
PA; F Vx 3y P(x,y).
Then for some primitive recursive function f,
PAl - Vx P(x, f(x)).

f is called a selection function, realizing function or Skolem function.
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Aim of this work

@ We want to generalize the Parson-Mints-Takeuti result to
many-sorted abstract algebras, as part of an ongoing project of
J. Zucker and J. Tucker on computation on abstract algebras.
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Aim of this work

@ We want to generalize the Parson-Mints-Takeuti result to
many-sorted abstract algebras, as part of an ongoing project of
J. Zucker and J. Tucker on computation on abstract algebras.

@ Main difficulty encountered in carrying out this generalization:
equality over these algebras may not be computable.

@ Solution: develop an appropriate concept of realizability of existential
assertions over such algebras, generalized to realizability of sequents
of existential assertions.

@ In this way, the results can be seen to hold for classical proof systems.
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@ Introduction

© Many-sorted signatures and algebras

e The axiomatic framework

o Selection theorem with computable equality

e Selection theorem w/o computable equality: intuitionistic case

e Selection theorem w/o computable equality: classical case
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Many-sorted abstract algebras

Given a signature Y/ with finitely many sorts s, ... and function symbols
Fisi X - Xsy—s,

a Y-algebra A consists of a carrier Ag for each X-sort s, and a total
function

FA: Ay X - X A, — As

for each X-function symbol F.

Zucker/Strahm (JLAP) Primitive recursive selection functions WPT, Miinster, July, 2008 5 /30



N-standard signatures and algebras

The signatures Y’ and X-algebras A are said to be N-standard if they
contain
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N-standard signatures and algebras

The signatures Y’ and X-algebras A are said to be N-standard if they
contain

(a) the sort bool of booleans and the corresponding carrier
Abool = B = {t, [}, together with the standard boolean and
boolean-valued operations, including the conditional at all sorts, and
equality at certain sorts (“equality sorts”);
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N-standard signatures and algebras

The signatures X' and X-algebras A are said to be N-standard if they
contain

(a) the sort bool of booleans and the corresponding carrier
Abool = B = {t, [}, together with the standard boolean and
boolean-valued operations, including the conditional at all sorts, and
equality at certain sorts (“equality sorts”);

(b) the sort nat of natural numbers and the corresponding carrier
Anat = N, together with the standard arithmetical operations of zero,
successor, equality and order on N.
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Array signatures and algebras

Array signatures X* and array algebras A*, are formed from N-standard
signatures X and algebras A by adding, for each sort s, an array sort s*,
with corresponding carrier A consisting of all arrays or finite sequences
over As, with certain standard array operations.

Reason: Lack of effective coding in arbitrary data types.
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PR(X) and PR*(X) computation schemes
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PR(X) and PR*(X) computation schemes

(/) Primitive X-functions:

f(x) = F(x)

Zucker/Strahm (JLAP) Primitive recursive selection functions



PR(X) and PR*(X) computation schemes
(/) Primitive X-functions:
f(x) = F(x)

(i) Projection:
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PR(X) and PR*(X) computation schemes
(1) Primitive XY-functions:
f(x) = F(x)

(i) Projection:

(iiif) Composition:
f(x) = h(gi(x);- - 8m(x))
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PR(X) and PR*(X) computation schemes

(1) Primitive XY-functions:
(i) Projection:
(iiif) Composition:

f(x) = h(g(x), -, 8m(x))
(iv) Definition by cases:

) — {gl(x) i () =t
g(x) if h(x) =1
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Many-sorted signatures and algebras

PR(X) and PR*(X) computation schemes

(1) Primitive XY-functions:

(i) Projection:

(iiif) Composition:

f(x) = h(gi(x), . gm(x))

(iv) Definition by cases:

) — {gl(x) i () =t
ga(x) if h(x) =

(v) Simultaneous primitive recursion on N: For i=1,... m,

fi(0,x) = gi(x)

f

filz+1,x) = hi(z,x,fi(z,%),...,fm(z,x))
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PR computation schemes over

Add to the PR schemes the scheme:
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Many-sorted signatures and algebras

PR computation schemes over X

Add to the PR schemes the scheme:
(vi) Least number or p operator:
f(x) ~ nzlg(x,z) =t

The interpretation of this is that fA(x) | z if, and only if,
g’(x,y) | F for each y < z and g#(x,z) | L.

Generalization of Kleene partial recursive functions.
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The axiomatic framework

e The axiomatic framework

/Strahm (JLAP) imiti cursive selection fu



The language Lang*(X)= Lang(X")
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The language Lang*(X)= Lang(X")

@ Atomic formulas are equations between terms of the same sort, for all
X)-sorts, not just equality sorts!
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The language Lang*(Y)= Lang(X™*)

@ Atomic formulas are equations between terms of the same sort, for all
X)-sorts, not just equality sorts!

e A BU (bounded universal) quantifier is a quantifier of the form
‘Vk < t', where k : nat and t: nat.
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The language Lang*(X)= Lang(X")

@ Atomic formulas are equations between terms of the same sort, for all
X)-sorts, not just equality sorts!

e A BU (bounded universal) quantifier is a quantifier of the form
‘Vk < t', where k : nat and t: nat.

@ A BU equation is an equation prefixed by BU quantifiers.

@ Elementary formulas are formed from equations by applying
conjunctions, disjunctions, and BU quantifiers.
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The language Lang*(X)= Lang(X™*)

@ Atomic formulas are equations between terms of the same sort, for all
X)-sorts, not just equality sorts!

e A BU (bounded universal) quantifier is a quantifier of the form
‘Vk < t', where k : nat and t: nat.

@ A BU equation is an equation prefixed by BU quantifiers.

@ Elementary formulas are formed from equations by applying
conjunctions, disjunctions, and BU quantifiers.

e X formulas are formed from equations by applying conjunctions,
disjunctions, BU quantification and also (unbounded) existential
quantification over any sort.
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Defining the proof system X1Ind(X, T)

In the following we will define a proof system Xi-Ind(X, T) for an abstract
algebra A, where T is a suitable axiomatization of A.
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Defining the proof system X1Ind(X, T)

In the following we will define a proof system Xi-Ind(X, T) for an abstract

algebra A, where T is a suitable axiomatization of A.

Assumption
The axioms of T are conditional BU equations, i.e., formulas of the form

QA ANQp — P

where Q; and P are BU equations.

Correspondingly, a BU equantional sequent is a sequent of the form
Ql) ey Qn — P

where the Q; and P are BU equations. R

Zucker/Strahm (JLAP) Primitive recursive selection functions WPT, Miinster, July, 2008 12 / 30



Defining the proof system X1 Ind(X, T) (ctd.)

In the system XJ-Ind(X, T) we derive classical sequents [ —— A, where
[ and A are finite sequences of formulas of Lang*(Y).
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The axiomatic framework

Defining the proof system X1 Ind(X, T) (ctd.)

In the system XJ-Ind(X, T) we derive classical sequents [ —— A, where
[ and A are finite sequences of formulas of Lang*(Y).

The system X3-Ind(X, T) includes:

o Classical predicate calculus with equality (for signature X)
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The axiomatic framework

Defining the proof system X1 Ind(X, T) (ctd.)

In the system XJ-Ind(X, T) we derive classical sequents [ —— A, where
[ and A are finite sequences of formulas of Lang*(Y).
The system X3-Ind(X, T) includes:

o Classical predicate calculus with equality (for signature X)
@ axioms for boolean operations and arrays
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Defining the proof system X1 Ind(X, T) (ctd.)

In the system XJ-Ind(X, T) we derive classical sequents [ —— A, where
[ and A are finite sequences of formulas of Lang*(Y).

The system X3-Ind(X, T) includes:
o Classical predicate calculus with equality (for signature X)
@ axioms for boolean operations and arrays
@ Peano axioms for natural numbers

e X7 induction rule

r, P(a) — P(Sa), A
— P(t), A
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Defining the proof system X1 Ind(X, T) (ctd.)
In the system X3-Ind(X, T) we derive classical sequents I — A, where
I and A are finite sequences of formulas of Lang*(X).

The system X3-Ind(X, T) includes:

Classical predicate calculus with equality (for signature X)

@ axioms for boolean operations and arrays
@ Peano axioms for natural numbers
°

1 induction rule

r,P(a) — P(Sa), A
r, P(0) — P(t), A

axioms of T as initial sequents
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Selection theorem with computable equality

o Selection theorem with computable equality
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Selection theorem with computable equality

Selection theorem

Theorem (Selection theorem)

If £3-Ind(X, T) proves the sequent
— JyP(x,y)

where P(x,y) is an elementary formula, then there is a PR* function f
such that

— P(x,f(x))

is provable in a suitable extension of Xi-Ind(X, T') (by defining equations
for the function f).
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Selection theorem with computable equality

Main Lemma

Main Lemma (Tucker, Zucker, Leeds Proof Theory 1990)
Suppose that the XJ sequent

E|le1(Xa Zl), ey E]ZQO(X,Zm) — 3Y1P1(X7Y1)7 T, ElynPn(Xayn)

is provable in X3-Ind(X, T). Then we can construct PR* functions
fi,...,f, such that

Qi(x,21), oy Qm(x,zm) — Pi(x,f1(x,2)), -+, Pa(x,fn(x,2))

is provable.
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Selection theorem with computable equality

Proof of Main Lemma

The proof proceeds by induction on the length of quasi-cutfree derivations

(only X7 cuts). As expected, X7 induction uses PR* functions for its
interpretation.
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Selection theorem with computable equality

Proof of Main Lemma
The proof proceeds by induction on the length of quasi-cutfree derivations

(only X7 cuts). As expected, X7 induction uses PR* functions for its
interpretation.

Consider the case of contraction on the right hand side, Contr:R.

..., 3zjQi(x,z)), ... —— 3TyP(x,y), IyPx,y), ...
., 3zQi(x,2)), ... — JyP(x,y),...
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Selection theorem with computable equality

Proof of Main Lemma

The proof proceeds by induction on the length of quasi-cutfree derivations

(only X7 cuts). As expected, X7 induction uses PR* functions for its
interpretation.

Consider the case of contraction on the right hand side, Contr:R.
ooy 32iQi(%,2), ... — FyP(x,y), IyPx,y), ...
., 3zQi(x,2)), ... — JyP(x,y),...

By induction hypothesis there are PR* functions f1,f, such that

o Qi(x,2)), ... — P(x,fi(x,2)), P(x,fa(x,2)), ...
is provable.
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Selection theorem with computable equality

Proof of Main Lemma

The proof proceeds by induction on the length of quasi-cutfree derivations

(only X7 cuts). As expected, X7 induction uses PR* functions for its
interpretation.

Consider the case of contraction on the right hand side, Contr:R.
ooy 32iQi(%,2), ... — FyP(x,y), IyPx,y), ...
ooy 32;Qi(x,25), ... — JyP(xy),...

By induction hypothesis there are PR* functions f1,f, such that

o Qi(x,2)), ... — P(x,fi(x,2)), P(x,fa(x,2)), ...
is provable. So define the PR function

(r.2) {fl(x,z) if P(x,fi(x,z))

fa(x,2z) otherwise

. . . . . - - b
using definition by cases. Then f is a selection function for dyP in U
the conclusion.
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PR decidability of equality

PR decidability of equality

The above case distincition uses primitive recursive decidability of
elementary formulas!

A similar situation arises with the rules AR and VL.

This assumption was needed in the Selection Theorem in [Tucker, Zucker:
Proof Theory, Leeds, 1990].

However, many important algebras do not have decidable equality.

Zucker/Strahm (JLAP) Primitive recursive selection functions WPT, Miinster, July, 2008 18 / 30



Selection theorem w/o computable equality: intuitionistic case

e Selection theorem w/o computable equality: intuitionistic case
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Selection theorem w/o computable equality: intuitionistic case

Attempted solution

Use intuitionistic instead of classical sequent calculus.

Reformulate selection theorem
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Use intuitionistic instead of classical sequent calculus.

Reformulate selection theorem

@ without assuming decidability of equality
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Selection theorem w/o computable equality: intuitionistic case

Attempted solution

Use intuitionistic instead of classical sequent calculus.

Reformulate selection theorem

@ without assuming decidability of equality

@ using intuitionistic version of Xi-Ind(X, T)

Zucker/Strahm (JLAP) Primitive recursive selection functions WPT, Miinster, July, 2008 20 / 30



Selection theorem w/o computable equality: intuitionistic case

Attempted solution

Use intuitionistic instead of classical sequent calculus.

Reformulate selection theorem

@ without assuming decidability of equality

@ using intuitionistic version of Xi-Ind(X, T)

Zucker/Strahm (JLAP) Primitive recursive selection functions WPT, Miinster, July, 2008 20 / 30



Selection theorem w/o computable equality: intuitionistic case

Attempted solution

Use intuitionistic instead of classical sequent calculus.

Reformulate selection theorem
@ without assuming decidability of equality
@ using intuitionistic version of Xi-Ind(X, T)

The problem persists with the rule VL!

A way out is to use realizability and PR realizers instead of PR selectors
(but still in an intuitionistic setting).
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Selection theorem w/o computable equality: intuitionistic case

Realizability

Definition (Realizability of X7 formulas)

Let ¢t be a X*-term tuple, and P a XJ formula. We define the expression
‘t > P' ("t realizes P") by structural induction on P:

(Nt (i=h) = b=t
(ii) <t1, t2> > (Pl A P2) = (tl > Pl) AN (tz > P2)
(iii) {(to,t1,t2) > (P1VP) = (to=true A t; > Py)

V (tg = false A t > Pp)
(iv) t*> (Vz< tpP) = Vz < tp(t*[z] > P)
(v) (to,t) > (3yP) = t> P(y/t).
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Selection theorem w/o computable equality: intuitionistic case

Selection theorem: intuitionistic case

Main Lemma (Zucker, CiE 2006)

Suppose the X sequent

Qla"‘;Qm — P

is provable in intuitionistic X1-Indi(X, T). Then for some tuple of PR
functions f,

z1>Q1, ..y Zm > Qm — f(x,21,...,2m)> P

is provable.

The VL rule is no longer a problem in the setting!
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Selection theorem: intuitionistic case

Main Lemma (Zucker, CiE 2006)

Suppose the X sequent

Qla"‘;Qm [— P

is provable in intuitionistic X1-Indi(X, T). Then for some tuple of PR
functions f,

z1>Q1, ..y Zm > Qm — f(x,21,...,2m)> P

is provable.

The VL rule is no longer a problem in the setting!

Hence, we have a selection theorem
@ w/o assuming decidable equality b
@ but with intuitionistic logic B
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Selection theorem w/o computable equality: classical case

e Selection theorem w/o computable equality: classical case
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The classical case

Is the Selection Theorem w/o the computable equality assumption but
with classical logic true ?
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The classical case

Is the Selection Theorem w/o the computable equality assumption but
with classical logic true ?

Here is a proposed counterexample. Consider the algebra R of reals and
the quantifier-free formula

P(xy) =or (xAO0Ay=0)V (x=0Ay=1)

where x,y :real. Then
Vx 3dy P(x,y)

is classically true and easily provable classically. But the (unique) selection
function for this is not continuous on R, and hence not PR* computable
on R.
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The classical case

Is the Selection Theorem w/o the computable equality assumption but
with classical logic true ?

Here is a proposed counterexample. Consider the algebra R of reals and
the quantifier-free formula

P(xy) =or (xAO0Ay=0)V (x=0Ay=1)

where x,y :real. Then
Vx 3dy P(x,y)

is classically true and easily provable classically. But the (unique) selection
function for this is not continuous on R, and hence not PR* computable
on R.

Note, however, that P has a negated equality, and is therefore not
elementary, according to our definition, or even X!
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Selection theorem w/o computable equality: classical case

Realizability extended

Solution: Extend the concept of realizability to realizability of sequents.
Given a sequent

A= Py,... P,
of product type u = u; X -+ X up, and a X*-term tuple

F o= (ro,ry...,rn)

of "matching” type nat X u; X --- X up, we define

roo> A (“7 realizes A7)

to mean
(rozl/\rlel) \Y (r0:2/\r2>P2) V ...V (rozn/\r,,DP,,)
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Selection theorem: classical case

Main Lemma (Zucker, Strahm (JLAP, to appear))
Suppose the X sequent

Qla"-7Qm — Pla"'7Pn

is provable in X3-Ind(X, T). Then for some tuple of PR* functions f,
21> Q1, ooy Zm > Qn — f(x,21,...,2m) B> (P1,...,Pn)

is provable.

The VL, Contr:R, and AR rules are no longer a problem in this setting!
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Selection theorem: classical case

Main Lemma (Zucker, Strahm (JLAP, to appear))
Suppose the X sequent

Ql)"'7Qm [ — P17"'7Pn
is provable in X3-Ind(X, T). Then for some tuple of PR* functions f,

21> Q1, ooy Zm > Qn — f(x,21,...,2m) B> (P1,...,Pn)

is provable.

The VL, Contr:R, and AR rules are no longer a problem in this setting!

Hence, we have a selection theorem
@ w/o assuming decidable equality

@ with classical logic
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Selection theorem w/o computable equality: classical case

Contraction

The case of contraction on the right hand side, Contr:R:
r — P,PA
r— P, A
By induction hypothesis, there is a PR* scheme tuple f such that

z> I — f(x,z) o> P,PA

is provable. Put f(x,z) = (ro, ri, r2, 7); ro:nat, n:v, m:vand7:w
represent PR* functions applied to x,z. Construct a PR* tuple g with

/ !/ =
g(x,z) = (g, n, 7)
where
/o= 1 if n=1Vvr=2
0 n—1 if g >2
and
r if n = 1
I’{ = ) if n = 2 uw
arbitrary if rp > 2. T
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Selection theorem w/o computable equality: classical case
Induction

The case of XJinduction:

r, P(a) — P(Sa), A
r, P(0) — P(t), A

By induction hypothesis there is a PR scheme f such that
z>T, zg> Pla) — f(x,a,2,20) >> P(Sa), A.

Put
f(X, a,z,zo) = <r0(a,20), r1(a, Zo), rg(a,zo), >,

Now we construct a scheme g such that

g(x,2z,2z0) = (ry(t,z0), ri(t,z0), ra(t,zo), ---)

. D . . L
where the realizers ry, r1,rp,... are defined by simultaneous primitive ;;»
recursion: —
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Induction (ctd.)

Base case:

r'(0,z9) = ri(0,zo) for i #1

r1(0,2z0) = zo.

Recursion step: For all i =0,1,2,...:

I’,-,(Il—i—].,ZO) =

rl(n, zg) if rj(n,zo) >1

ri(n, ri(n,2zo)) if rj(n,zo) =1

As soon as the index points to a realizer in A, i.e., r(’)(n, zg) > 1,
everything remains constant; otherwise we carry on inductively as

expected.
Then g realizes the conclusion of the induction rule:

zp> [, zo > P(O) L g(X7Z,Zo) B> P(t)vA

is provable by induction on (the value of) t.
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Future work

@ In this talk we have only considered total algebras.
@ But partial functions occur naturally in some algebras.

@ Hence, it would be of interest to extend the present work to a partial
setting.
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