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Introduction

Unfolding schematic formal systems (Feferman ’96)

Given a schematic formal system S, which operations and predicates, and
which principles concerning them, ought to be accepted if one has
accepted S ?

Example (Non-finitist arithmetic NFA)

Logical operations: ¬, ∧, ∀.

(1) x ′ 6= 0

(2) Pd(x ′) = x

(3) P(0) ∧ (∀x)(P(x)→ P(x ′)) → (∀x)P(x).
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Introduction

Schematic formal systems

The informal philosophy behind the use of schemata is their
open-endedness

Implicit in the acceptance of a schemata is the acceptance of any
meaningful substitution instance

Schematas are applicable to any language which one comes to
recognize as embodying meaningful notions
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Introduction

Background and previous approaches

General background: Implicitness program (Kreisel ’70)

Various means of extending a formal system by principles which are
implicit in its axioms.

Reflection principles, transfinite recursive progressions (Turing ’39,
Feferman ’62)

Autonomous progressions and predicativity (Feferman, Schütte ’64)

Reflective closure based on self-applicative truth (Feferman ’91)
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Defining unfolding

How is the unfolding of a schematic system S defined ?

We have a general notion of (partial) operation and predicate

Predicates are just special kinds of operations, equipped with an ∈
relation

Underlying partial combinatory algebra with pairing and definition by
cases:

(1) kab = a,
(2) sab↓ ∧ sabc ' ac(bc),
(3) p0(a, b) = a ∧ p1(a, b) = b,
(4) dabtt = a ∧ dabff = b.

Operations are not bound to any specific mathematical domain
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Defining unfolding

The full unfolding U(S)

The universe of S has associated with it an additional unary relation
symbol, US, and the axioms of S are to be relativized to US.

Each function symbol f of S determines an element f ? of our partial
combinatory algebra.

Each relation symbol R of S together with US determines a predicate
R? of our partial combinatory algebra with R(x1, . . . , xn) if and only if
(x1, . . . , xn) ∈ R?.

Operations on predicates, such as e.g. conjunction, are just special
kinds of operations. Each logical operation l of S determines a
corresponding operation l? on predicates.

Families or sequences of predicates given by an operation f form a
new predicate Join(f ), the disjoint union of the predicates from f .
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Defining unfolding

The substitution rule

Substitution rule (Subst)

A[P̄]

A[B̄/P̄]
(Subst)

P̄ = P1, . . . ,Pm: sequence of free predicate symbols

B̄ = B1, . . . ,Bm: sequence of formulas

A[B̄/P̄] denotes the formula A[P̄] with Pi replace by Bi (1 ≤ i ≤ n)
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Defining unfolding

The three unfolding systems

Definition (U(S), U0(S), U1(S))

U(S): full (predicate) unfolding of S

U0(S): operational unfolding of S (no predicates)

U1(S): U(S) without (Join)

Remark: The original formulation of unfolding made use of a background
theory of typed operations with general Least Fixed Point operator. The
present formulation is a simplification of this approach.
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Unfolding non-finitist arithmetic

The proof theory of the three unfolding systems for NFA

Theorem (Feferman, Str.)

We have the following proof-theoretic characterizations.

1 U0(NFA) is proof-theoretically equivalent to PA.

2 U1(NFA) is proof-theoretically equivalent to RA<ω.

3 U(NFA) is proof-theoretically equivalent to RA<Γ0 .

In each case we have conservation with respect to arithmetic statements of
the system on the left over the system on the right.
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Unfolding finitist arithmetic

Finitist arithmetic

Question: What principles are implicit in the actual finitist conception of
the set of natural numbers ?

Example (Finitist arithmetic FA)

Logical operations: ∧, ∨, ∃.

(1) x ′ = 0→ ⊥
(2) Pd(x ′) = x

(3)
Γ→ P(0) Γ, P(x)→ P(x ′)

Γ→ P(x)
.

Note that the statements proved are sequents Σ of the form Γ→ A, where
Γ is a finite sequence (possibly empty) of formulas. The logic is formulated
in Gentzen-style.
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Unfolding finitist arithmetic

Generalization of the substitution rule (Subst)

We have to generalize the substitution rule (Subst) to rules of inference:

Substitution rule (Subst’)

Given that the rule of inference

Σ1,Σ2, . . . ,Σn

Σ

is derivable, we can adjoin each of its substitution instances

Σ1[B̄/P̄], Σ2[B̄/P̄], . . . ,Σn[B̄/P̄]

Σ[B̄/P̄]

as a new rule of inference.
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Unfolding finitist arithmetic

The proof theory of the three unfolding systems for FA

The full unfolding of FA includes the basic logical operations as operations
on predicates as well as Join.

Theorem (Feferman, Str.)

All three unfolding systems for finitist arithmetic, U0(FA), U1(FA) and
U(FA) are proof-theoretically equivalent to Skolem’s Primitive Recursive
Arithmetic PRA.

Support of Tait’s informal analysis of finitism.
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Unfolding finitist arithmetic with bar rule
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Unfolding finitist arithmetic with bar rule

Extended finitism and the bar rule

In the following

We will study a natural bar rule BR leading to extensions
U0(FA + BR), U1(FA + BR) and U(FA + BR) of our unfolding systems
for finitism

The so-obtained extensions will all have the strength of Peano
arithmetic PA

This shows one way how Kreisel’s analysis of extended finitism fits in
our framework
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Unfolding finitist arithmetic with bar rule

Extended finitism and the bar rule

In the following

We will study a natural bar rule BR leading to extensions
U0(FA + BR), U1(FA + BR) and U(FA + BR) of our unfolding systems
for finitism

The so-obtained extensions will all have the strength of Peano
arithmetic PA

This shows one way how Kreisel’s analysis of extended finitism fits in
our framework

T. Strahm (IAM, Univ. Bern) Unfolding schematic systems LC 12, Manchester, July 2012 18 / 32



Unfolding finitist arithmetic with bar rule

Extended finitism and the bar rule

In the following

We will study a natural bar rule BR leading to extensions
U0(FA + BR), U1(FA + BR) and U(FA + BR) of our unfolding systems
for finitism

The so-obtained extensions will all have the strength of Peano
arithmetic PA

This shows one way how Kreisel’s analysis of extended finitism fits in
our framework

T. Strahm (IAM, Univ. Bern) Unfolding schematic systems LC 12, Manchester, July 2012 18 / 32



Unfolding finitist arithmetic with bar rule

Defining U0(FA + BR): Formulating the bar rule

The rule NDS(f,≺) says that for each possibly infinite descending
chain f w.r.t. ≺ there is an x such that fx = 0, where f denotes a
new constant of our applicative language.

In general, the bar rule BR says that we may infer the principle of
transfinite induction TI(≺,P) from NDS(≺) for each predicate P.

We must modify TI(≺,P), since its standard formulation for a unary
predicate P is of the form:

(∀x)[(∀u ≺ x)P(u)→ P(x)]→ (∀x)P(x).

The idea is to treat this as a rule of the form:

from (∀u)[u ≺ x → P(u)]→ P(x) infer P(x).

But we still need an additional step to reformulate the hypothesis of
this rule in the language of FA, the basic idea being to use a
skolemized form of the universal quantifier.
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Unfolding finitist arithmetic with bar rule

The key observation

Theorem

Assume that NDS(f,≺) is derivable in U0(FA + BR). Then U0(FA + BR)
justifies nested recursion along ≺.
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Unfolding finitist arithmetic with bar rule

Tait’s seminal 1961 paper

William Tait: Nested recursion, Mathematische Annalen, 143 (1961).

For each ordinal α < ε0 let ≺α be a primitive recursive standard
wellordering ≺α of ordertype α

Let us write NDS(f, α) instead of NDS(f,≺α)

Aim at showing that U0(FA + BR) derives NDS(f, α) for each α < ε0

Use one direction of Tait’s famous result, i.e. that nested recursion on
ωα entails ordinary recursion on ωα or, more useful in our setting,
nested recursion on ωα entails NDS(f, ωα)

Tait’s argument can be directly formalized in U0(FA + BR)
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Unfolding finitist arithmetic with bar rule

The proof theory of the three unfolding systems for FA
with bar rule

Theorem (Feferman, Str.)

All three unfolding systems for finitist arithmetic with bar rule,
U0(FA + BR), U1(FA + BR) and U(FA + BR) are proof-theoretically
equivalent to Peano arithmetic PA.

Support of Kreisel’s analysis of extended finitism.
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Unfolding feasible arithmetic

The language of feasible arithmetic

The basic schematic system FEA of feasible arithmetic is based on a
language for binary words generated from the empty word by the two
binary successors S0 and S1; in addition, it includes some natural
basic operations on the binary words like, for example, word
concatenation and multiplication

The logical operations of FEA are conjunction (∧), disjunction (∨),
and the bounded existential quantifier (∃≤)

FEA is formulated as a system of sequents in this language: apart
from the defining axioms for basic operations on words, its heart is a
schematically formulated, i.e. open-ended induction rule along the
binary words, using a free predicate letter P.
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Unfolding feasible arithmetic

The basic schematic system FEA

Example (Feasible arithmetic FEA)

Logical operations: ∧, ∨, ∃≤.

(1) defining equations for the function symbols of the language of FEA

(2)
Γ→ P(ε) Γ,P(α)→ P(Si (α)) (i = 0, 1)

Γ→ P(α)
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Unfolding feasible arithmetic

The strength of the unfoldings of FEA

Theorem (Eberhard, Str.)

The provably total functions of U0(FEA) and U(FEA) are exactly the
polynomial time computable functions.
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Unfolding feasible arithmetic

Remarks on the upper bound computation

A suitable upper bound for U(FEA) is obtained via the weak truth
theory TPT introduced by Eberhard and Strahm

The involved proof-theoretic analysis of TPT using a novel realizability
interpretation is due to Eberhard

To be precise, we consider a slight (conservative) extension of TPT

which facilitates the treatment of the generalized substitution rule
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Unfolding feasible arithmetic

Formulating the full unfolding with a truth predicate

The axioms of UT(FEA) extend those of U0(FEA) by the following axioms
about the truth predicate T:

Truth unfolding

T(x =̇ y) ↔ x = y

T(x ∧̇ y) ↔ T(x) ∧ T(y)

T(x ∨̇ y) ↔ T(x) ∨ T(y)

T(∃̇αx) ↔ (∃β ≤ α)T(xβ)

T(πi (x̄)) ↔ Pi (x̄)
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Unfolding feasible arithmetic

The strength of the truth unfolding of FEA

Theorem (Eberhard, Str.)

The provably total functions of UT(FEA) are exactly the polynomial time
computable functions.
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Unfolding feasible arithmetic

The end

Thank you very much for your attention.
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