# Unfolding schematic formal systems: from non-finitist to feasible arithmetic

Thomas Strahm

Institut für Informatik und angewandte Mathematik, Universität Bern

LC 12, Manchester, July 2012

#### Introduction

- 2 Defining unfolding
- Onfolding non-finitist arithmetic
- Unfolding finitist arithmetic
- Unfolding finitist arithmetic with bar rule
- 6 Unfolding feasible arithmetic

# Unfolding schematic formal systems (Feferman '96)

Given a schematic formal system S, which operations and predicates, and which principles concerning them, ought to be accepted if one has accepted S ?

# Unfolding schematic formal systems (Feferman '96)

Given a schematic formal system S, which operations and predicates, and which principles concerning them, ought to be accepted if one has accepted S ?

Example (Non-finitist arithmetic NFA) Logical operations:  $\neg$ ,  $\land$ ,  $\forall$ . (1)  $x' \neq 0$ (2) Pd(x') = x(3)  $P(0) \land (\forall x)(P(x) \rightarrow P(x')) \rightarrow (\forall x)P(x)$ .

#### Schematic formal systems

- The informal philosophy behind the use of schemata is their open-endedness
- Implicit in the acceptance of a schemata is the acceptance of any meaningful substitution instance
- Schematas are applicable to any language which one comes to recognize as embodying meaningful notions

#### Background and previous approaches

General background: Implicitness program (Kreisel '70)

Various means of extending a formal system by principles which are implicit in its axioms.

- Reflection principles, transfinite recursive progressions (Turing '39, Feferman '62)
- Autonomous progressions and predicativity (Feferman, Schütte '64)
- Reflective closure based on self-applicative truth (Feferman '91)

#### Introduction

- 2 Defining unfolding
- 3 Unfolding non-finitist arithmetic
- 4 Unfolding finitist arithmetic
- 5 Unfolding finitist arithmetic with bar rule
- 6 Unfolding feasible arithmetic

• We have a general notion of (partial) operation and predicate

- We have a general notion of (partial) operation and predicate
- $\bullet$  Predicates are just special kinds of operations, equipped with an  $\in$  relation

- We have a general notion of (partial) operation and predicate
- $\bullet$  Predicates are just special kinds of operations, equipped with an  $\in$  relation
- Underlying partial combinatory algebra with pairing and definition by cases:

 $u^{\scriptscriptstyle b}$ UNIVERSITAT

- We have a general notion of (partial) operation and predicate
- $\bullet$  Predicates are just special kinds of operations, equipped with an  $\in$  relation
- Underlying partial combinatory algebra with pairing and definition by cases:

(1) kab = a,

- We have a general notion of (partial) operation and predicate
- $\bullet$  Predicates are just special kinds of operations, equipped with an  $\in$  relation
- Underlying partial combinatory algebra with pairing and definition by cases:

(1) kab = a, (2)  $sab\downarrow \land sabc \simeq ac(bc)$ ,

- We have a general notion of (partial) operation and predicate
- $\bullet$  Predicates are just special kinds of operations, equipped with an  $\in$  relation
- Underlying partial combinatory algebra with pairing and definition by cases:

(1) 
$$kab = a$$
,  
(2)  $sab\downarrow \land sabc \simeq ac(bc)$ ,  
(3)  $p_0(a,b) = a \land p_1(a,b) = b$ 

- We have a general notion of (partial) operation and predicate
- $\bullet$  Predicates are just special kinds of operations, equipped with an  $\in$  relation
- Underlying partial combinatory algebra with pairing and definition by cases:

(1) 
$$kab = a$$
,  
(2)  $sab\downarrow \land sabc \simeq ac(bc)$ ,  
(3)  $p_0(a, b) = a \land p_1(a, b) = b$ ,  
(4)  $dabtt = a \land dabff = b$ .

- We have a general notion of (partial) operation and predicate
- $\bullet$  Predicates are just special kinds of operations, equipped with an  $\in$  relation
- Underlying partial combinatory algebra with pairing and definition by cases:

(1) 
$$kab = a$$
,  
(2)  $sab\downarrow \land sabc \simeq ac(bc)$ ,  
(3)  $p_0(a,b) = a \land p_1(a,b) = b$ ,  
(4)  $dabtt = a \land dabff = b$ .

• Operations are not bound to any specific mathematical domain

• The universe of S has associated with it an additional unary relation symbol,  $U_S$ , and the axioms of S are to be relativized to  $U_S$ .

- The universe of S has associated with it an additional unary relation symbol, U<sub>S</sub>, and the axioms of S are to be relativized to U<sub>S</sub>.
- Each function symbol *f* of S determines an element *f*<sup>\*</sup> of our partial combinatory algebra.

- The universe of S has associated with it an additional unary relation symbol, U<sub>S</sub>, and the axioms of S are to be relativized to U<sub>S</sub>.
- Each function symbol *f* of S determines an element *f*<sup>\*</sup> of our partial combinatory algebra.
- Each relation symbol R of S together with U<sub>S</sub> determines a predicate  $R^*$  of our partial combinatory algebra with  $R(x_1, \ldots, x_n)$  if and only if  $(x_1, \ldots, x_n) \in R^*$ .

- The universe of S has associated with it an additional unary relation symbol, U<sub>S</sub>, and the axioms of S are to be relativized to U<sub>S</sub>.
- Each function symbol *f* of S determines an element *f*<sup>\*</sup> of our partial combinatory algebra.
- Each relation symbol R of S together with U<sub>S</sub> determines a predicate  $R^*$  of our partial combinatory algebra with  $R(x_1, \ldots, x_n)$  if and only if  $(x_1, \ldots, x_n) \in R^*$ .
- Operations on predicates, such as e.g. conjunction, are just special kinds of operations. Each logical operation / of S determines a corresponding operation /\* on predicates.

- The universe of S has associated with it an additional unary relation symbol, U<sub>S</sub>, and the axioms of S are to be relativized to U<sub>S</sub>.
- Each function symbol *f* of S determines an element *f*<sup>\*</sup> of our partial combinatory algebra.
- Each relation symbol R of S together with U<sub>S</sub> determines a predicate  $R^*$  of our partial combinatory algebra with  $R(x_1, \ldots, x_n)$  if and only if  $(x_1, \ldots, x_n) \in R^*$ .
- Operations on predicates, such as e.g. conjunction, are just special kinds of operations. Each logical operation / of S determines a corresponding operation /\* on predicates.
- Families or sequences of predicates given by an operation f form a new predicate Join(f), the disjoint union of the predicates from f.

#### The substitution rule

#### Substitution rule (Subst)

$$rac{A[ar{P}]}{A[ar{B}/ar{P}]}$$

 $\bar{P} = P_1, \ldots, P_m$ : sequence of free predicate symbols

 $\bar{B} = B_1, \ldots, B_m$ : sequence of formulas

 $A[\bar{B}/\bar{P}]$  denotes the formula  $A[\bar{P}]$  with  $P_i$  replace by  $B_i$   $(1 \le i \le n)$ 

*u*<sup>b</sup>

9 / 32

(Subst)

# The three unfolding systems

#### Definition ( $\mathcal{U}(S)$ , $\mathcal{U}_0(S)$ , $\mathcal{U}_1(S)$ )

- $\bullet~\mathcal{U}(\mathsf{S})\text{: full (predicate) unfolding of }\mathsf{S}$
- $\mathcal{U}_0(S)$ : operational unfolding of S (no predicates)
- $\mathcal{U}_1(S)$ :  $\mathcal{U}(S)$  without (*Join*)

 $u^{\scriptscriptstyle b}$ UNIVERSITA

# The three unfolding systems

#### Definition ( $\mathcal{U}(S)$ , $\mathcal{U}_0(S)$ , $\mathcal{U}_1(S)$ )

- $\bullet~\mathcal{U}(\mathsf{S})\text{: full (predicate) unfolding of }\mathsf{S}$
- $\mathcal{U}_0(S)$ : operational unfolding of S (no predicates)
- $\mathcal{U}_1(S)$ :  $\mathcal{U}(S)$  without (*Join*)

Remark: The original formulation of unfolding made use of a background theory of typed operations with general Least Fixed Point operator. The present formulation is a simplification of this approach.

#### Introduction

- 2 Defining unfolding
- Onfolding non-finitist arithmetic
  - 4 Unfolding finitist arithmetic
- 5 Unfolding finitist arithmetic with bar rule
- 6 Unfolding feasible arithmetic

# The proof theory of the three unfolding systems for NFA

#### Theorem (Feferman, Str.)

We have the following proof-theoretic characterizations.

- $\mathcal{U}_0(NFA)$  is proof-theoretically equivalent to PA.
- **2**  $U_1(NFA)$  is proof-theoretically equivalent to  $RA_{<\omega}$ .
- **③**  $\mathcal{U}(NFA)$  is proof-theoretically equivalent to  $RA_{<\Gamma_0}$ .

In each case we have conservation with respect to arithmetic statements of the system on the left over the system on the right.

#### Introduction

- 2 Defining unfolding
- 3 Unfolding non-finitist arithmetic

#### Unfolding finitist arithmetic

- 5 Unfolding finitist arithmetic with bar rule
- Onfolding feasible arithmetic

#### Finitist arithmetic

Question: What principles are implicit in the actual finitist conception of the set of natural numbers ?

#### Finitist arithmetic

Question: What principles are implicit in the actual finitist conception of the set of natural numbers ?



Note that the statements proved are sequents  $\Sigma$  of the form  $\Gamma \to A$ , where  $\Gamma$  is a finite sequence (possibly empty) of formulas. The logic is formulated in Gentzen-style.  $u^{\flat}$ 

u°

# Generalization of the substitution rule (Subst)

We have to generalize the substitution rule (Subst) to rules of inference:

Substitution rule (Subst')

Given that the rule of inference

$$\frac{\Sigma_1, \Sigma_2, \ldots, \Sigma_n}{\Sigma}$$

is derivable, we can adjoin each of its substitution instances

$$\frac{\Sigma_1[\bar{B}/\bar{P}], \, \Sigma_2[\bar{B}/\bar{P}], \dots, \Sigma_n[\bar{B}/\bar{P}]}{\Sigma[\bar{B}/\bar{P}]}$$

as a new rule of inference.

#### The proof theory of the three unfolding systems for FA

The full unfolding of FA includes the basic logical operations as operations on predicates as well as *Join*.

#### Theorem (Feferman, Str.)

All three unfolding systems for finitist arithmetic,  $U_0(FA)$ ,  $U_1(FA)$  and U(FA) are proof-theoretically equivalent to Skolem's Primitive Recursive Arithmetic PRA.

Support of Tait's informal analysis of finitism.

#### Introduction

- 2 Defining unfolding
- 3 Unfolding non-finitist arithmetic
- Unfolding finitist arithmetic
- Unfolding finitist arithmetic with bar rule

#### Onfolding feasible arithmetic

#### Extended finitism and the bar rule

In the following

• We will study a natural bar rule BR leading to extensions  $U_0(FA + BR)$ ,  $U_1(FA + BR)$  and U(FA + BR) of our unfolding systems for finitism

 $u^{\scriptscriptstyle b}$ UNIVERSITAT

#### Extended finitism and the bar rule

In the following

- We will study a natural bar rule BR leading to extensions  $U_0(FA + BR)$ ,  $U_1(FA + BR)$  and U(FA + BR) of our unfolding systems for finitism
- The so-obtained extensions will all have the strength of Peano arithmetic PA

### Extended finitism and the bar rule

In the following

- We will study a natural bar rule BR leading to extensions  $U_0(FA + BR)$ ,  $U_1(FA + BR)$  and U(FA + BR) of our unfolding systems for finitism
- The so-obtained extensions will all have the strength of Peano arithmetic PA
- This shows one way how Kreisel's analysis of extended finitism fits in our framework

The rule NDS(f, ≺) says that for each possibly infinite descending chain f w.r.t. ≺ there is an x such that fx = 0, where f denotes a new constant of our applicative language.

- The rule NDS(f, ≺) says that for each possibly infinite descending chain f w.r.t. ≺ there is an x such that fx = 0, where f denotes a new constant of our applicative language.
- In general, the bar rule BR says that we may infer the principle of transfinite induction TI(≺, P) from NDS(≺) for each predicate P.

- The rule NDS(f, ≺) says that for each possibly infinite descending chain f w.r.t. ≺ there is an x such that fx = 0, where f denotes a new constant of our applicative language.
- In general, the bar rule BR says that we may infer the principle of transfinite induction TI(≺, P) from NDS(≺) for each predicate P.
- We must modify TI(≺, P), since its standard formulation for a unary predicate P is of the form:

$$(\forall x)[(\forall u \prec x)P(u) \rightarrow P(x)] \rightarrow (\forall x)P(x).$$

The idea is to treat this as a rule of the form:

from 
$$(\forall u)[u \prec x \rightarrow P(u)] \rightarrow P(x)$$
 infer  $P(x)$ .

- The rule NDS(f, ≺) says that for each possibly infinite descending chain f w.r.t. ≺ there is an x such that fx = 0, where f denotes a new constant of our applicative language.
- In general, the bar rule BR says that we may infer the principle of transfinite induction TI(≺, P) from NDS(≺) for each predicate P.
- We must modify TI(≺, P), since its standard formulation for a unary predicate P is of the form:

$$(\forall x)[(\forall u \prec x)P(u) \rightarrow P(x)] \rightarrow (\forall x)P(x).$$

The idea is to treat this as a rule of the form:

from 
$$(\forall u)[u \prec x \rightarrow P(u)] \rightarrow P(x)$$
 infer  $P(x)$ .

 But we still need an additional step to reformulate the hypothesis of this rule in the language of FA, the basic idea being to use a skolemized form of the universal quantifier.

T. Strahm (IAM, Univ. Bern)

#### The key observation

#### Theorem

Assume that NDS(f,  $\prec$ ) is derivable in  $U_0(FA + BR)$ . Then  $U_0(FA + BR)$  justifies nested recursion along  $\prec$ .

 $u^{\scriptscriptstyle b}$ UNIVERSITA

William Tait: Nested recursion, Mathematische Annalen, 143 (1961).

William Tait: Nested recursion, Mathematische Annalen, 143 (1961).

 For each ordinal α < ε<sub>0</sub> let ≺<sub>α</sub> be a primitive recursive standard wellordering ≺<sub>α</sub> of ordertype α

William Tait: Nested recursion, Mathematische Annalen, 143 (1961).

- For each ordinal α < ε<sub>0</sub> let ≺<sub>α</sub> be a primitive recursive standard wellordering ≺<sub>α</sub> of ordertype α
- Let us write  $NDS(f, \alpha)$  instead of  $NDS(f, \prec_{\alpha})$

 $u^{\scriptscriptstyle b}$ UNIVERSITA

William Tait: Nested recursion, Mathematische Annalen, 143 (1961).

- For each ordinal α < ε<sub>0</sub> let ≺<sub>α</sub> be a primitive recursive standard wellordering ≺<sub>α</sub> of ordertype α
- Let us write  $NDS(f, \alpha)$  instead of  $NDS(f, \prec_{\alpha})$
- Aim at showing that  $\mathcal{U}_0(FA + BR)$  derives NDS(f,  $\alpha$ ) for each  $\alpha < \varepsilon_0$

 $u^{\scriptscriptstyle b}$ UNIVERSITA

William Tait: Nested recursion, Mathematische Annalen, 143 (1961).

- For each ordinal α < ε<sub>0</sub> let ≺<sub>α</sub> be a primitive recursive standard wellordering ≺<sub>α</sub> of ordertype α
- Let us write  $NDS(f, \alpha)$  instead of  $NDS(f, \prec_{\alpha})$
- Aim at showing that  $\mathcal{U}_0(FA + BR)$  derives NDS(f,  $\alpha$ ) for each  $\alpha < \varepsilon_0$
- Use one direction of Tait's famous result, i.e. that nested recursion on  $\omega \alpha$  entails ordinary recursion on  $\omega^{\alpha}$  or, more useful in our setting, nested recursion on  $\omega \alpha$  entails NDS(f,  $\omega^{\alpha}$ )

William Tait: Nested recursion, Mathematische Annalen, 143 (1961).

- For each ordinal α < ε<sub>0</sub> let ≺<sub>α</sub> be a primitive recursive standard wellordering ≺<sub>α</sub> of ordertype α
- Let us write  $NDS(f, \alpha)$  instead of  $NDS(f, \prec_{\alpha})$
- Aim at showing that  $\mathcal{U}_0(FA + BR)$  derives NDS(f,  $\alpha$ ) for each  $\alpha < \varepsilon_0$
- Use one direction of Tait's famous result, i.e. that nested recursion on  $\omega \alpha$  entails ordinary recursion on  $\omega^{\alpha}$  or, more useful in our setting, nested recursion on  $\omega \alpha$  entails NDS(f,  $\omega^{\alpha}$ )
- Tait's argument can be directly formalized in  $\mathcal{U}_0(FA + BR)$

The proof theory of the three unfolding systems for FA with bar rule

#### Theorem (Feferman, Str.)

All three unfolding systems for finitist arithmetic with bar rule,  $U_0(FA + BR)$ ,  $U_1(FA + BR)$  and U(FA + BR) are proof-theoretically equivalent to Peano arithmetic PA.

Support of Kreisel's analysis of extended finitism.

#### Introduction

- 2 Defining unfolding
- 3 Unfolding non-finitist arithmetic
- 4 Unfolding finitist arithmetic
- 5 Unfolding finitist arithmetic with bar rule
- 6 Unfolding feasible arithmetic

#### The language of feasible arithmetic

• The basic schematic system FEA of feasible arithmetic is based on a language for binary words generated from the empty word by the two binary successors  $S_0$  and  $S_1$ ; in addition, it includes some natural basic operations on the binary words like, for example, word concatenation and multiplication

#### The language of feasible arithmetic

- The basic schematic system FEA of feasible arithmetic is based on a language for binary words generated from the empty word by the two binary successors  $S_0$  and  $S_1$ ; in addition, it includes some natural basic operations on the binary words like, for example, word concatenation and multiplication
- The logical operations of FEA are conjunction (∧), disjunction (∨), and the bounded existential quantifier (∃<sup>≤</sup>)

#### The language of feasible arithmetic

- The basic schematic system FEA of feasible arithmetic is based on a language for binary words generated from the empty word by the two binary successors  $S_0$  and  $S_1$ ; in addition, it includes some natural basic operations on the binary words like, for example, word concatenation and multiplication
- The logical operations of FEA are conjunction (∧), disjunction (∨), and the bounded existential quantifier (∃<sup>≤</sup>)
- FEA is formulated as a system of sequents in this language: apart from the defining axioms for basic operations on words, its heart is a schematically formulated, i.e. open-ended induction rule along the binary words, using a free predicate letter *P*.

#### The basic schematic system FEA

# Example (Feasible arithmetic FEA) Logical operations: $\land$ , $\lor$ , $\exists^{\leq}$ . (1) defining equations for the function symbols of the language of FEA (2) $\frac{\Gamma \rightarrow P(\epsilon) \qquad \Gamma, P(\alpha) \rightarrow P(S_i(\alpha)) \quad (i = 0, 1)}{\Gamma \rightarrow P(\alpha)}$

## The strength of the unfoldings of FEA

#### Theorem (Eberhard, Str.)

# The provably total functions of $U_0(FEA)$ and U(FEA) are exactly the polynomial time computable functions.

#### Remarks on the upper bound computation

- A suitable upper bound for  $\mathcal{U}(FEA)$  is obtained via the weak truth theory  $T_{PT}$  introduced by Eberhard and Strahm
- The involved proof-theoretic analysis of T<sub>PT</sub> using a novel realizability interpretation is due to Eberhard
- To be precise, we consider a slight (conservative) extension of T<sub>PT</sub> which facilitates the treatment of the generalized substitution rule

# Formulating the full unfolding with a truth predicate

The axioms of  $U_T(FEA)$  extend those of  $U_0(FEA)$  by the following axioms about the truth predicate T:

Truth unfolding

# The strength of the truth unfolding of FEA

#### Theorem (Eberhard, Str.)

The provably total functions of  $U_T(FEA)$  are exactly the polynomial time computable functions.

 $u^{\scriptscriptstyle b}$ UNIVERSITA

#### The end

# Thank you very much for your attention.

#### Some references

EBERHARD, S., AND STRAHM, T. Unfolding feasible arithmetic and weak truth.

Submitted for publication.



#### Feferman, S.

Gödel's program for new axioms: Why, where, how and what? In *Gödel '96*, P. Hájek, Ed., vol. 6 of *Lecture Notes in Logic*. Springer, Berlin, 1996, pp. 3–22.



The unfolding of non-finitist arithmetic.

Annals of Pure and Applied Logic 104 (2000), 75–96.



#### FEFERMAN, S., AND STRAHM, T.

Unfolding finitist arithmetic.

Review of Symbolic Logic 3(4), 2010, 665-689.



#### Some references ff.

#### KREISEL, G.

#### Mathematical logic.

In Lectures on modern mathematics, T. Saaty, Ed., Wiley, 1965, pp. 95–195.

#### TAIT, W.

Nested recursion.

Mathematische Annalen 143 (1961), 236–250.



TAIT, W.

Finitism.

Journal of Philosophy 78 (1981), 524-546.