Unfolding arithmetic – with an emphasis on finitism

Thomas Strahm (joint work with Solomon Feferman, Stanford)

Institut für Informatik und angewandte Mathematik, Universität Bern

Leeds, July 14, 2009

- Introduction
- 2 Defining unfolding
- Unfolding non-finitist arithmetic
- 4 Interlude: Ramified analysis and the ordinal Γ_0
- 5 Unfolding finitist arithmetic
- 6 Unfolding finitist arithmetic with bar rule
- 7 Appendix: Wellfoundedness of exponentiation

Unfolding schematic formal systems (Feferman '96)

Given a schematic formal system S, which operations and predicates, and which principles concerning them, ought to be accepted if one has accepted S?

Unfolding schematic formal systems (Feferman '96)

Given a schematic formal system S, which operations and predicates, and which principles concerning them, ought to be accepted if one has accepted S?

Example (Non-finitist arithmetic NFA)

Logical operations: \neg , \wedge , \forall .

- (1) $x' \neq 0$
- (2) Pd(x') = x
- (3) $P(0) \wedge (\forall x)(P(x) \rightarrow P(x')) \rightarrow (\forall x)P(x)$.

Schematic formal systems

- The informal philosophy behind the use of schemata is their open-endedness
- Implicit in the acceptance of a schemata is the acceptance of any meaningful substitution instance
- Schematas are applicable to any language which one comes to recognize as embodying meaningful notions

Background and previous approaches

General background: Implicitness program (Kreisel '70)

Various means of extending a formal system by principles which are implicit in its axioms.

- Reflection principles, transfinite recursive progressions (Turing '39, Feferman '62)
- Autonomous progressions and predicativity (Feferman, Schütte '64)
- Reflective closure based on self-applicative truth (Feferman '91)

- Introduction
- 2 Defining unfolding
- 3 Unfolding non-finitist arithmetic
- 4 Interlude: Ramified analysis and the ordinal Γ_0
- 5 Unfolding finitist arithmetic
- 6 Unfolding finitist arithmetic with bar rule
- 7 Appendix: Wellfoundedness of exponentiation

• We have a general notion of (partial) operation and predicate

- We have a general notion of (partial) operation and predicate
- Predicates are just special kinds of operations, equipped with an ∈ relation

- We have a general notion of (partial) operation and predicate
- Predicates are just special kinds of operations, equipped with an ∈ relation
- Underlying partial combinatory algebra with pairing and definition by cases:

- We have a general notion of (partial) operation and predicate
- Predicates are just special kinds of operations, equipped with an ∈ relation
- Underlying partial combinatory algebra with pairing and definition by cases:

(1)
$$kab = a$$
,

- We have a general notion of (partial) operation and predicate
- Predicates are just special kinds of operations, equipped with an ∈ relation
- Underlying partial combinatory algebra with pairing and definition by cases:
 - (1) kab = a,
 - (2) $sab \downarrow \land sabc \simeq ac(bc)$,

- We have a general notion of (partial) operation and predicate
- Predicates are just special kinds of operations, equipped with an ∈ relation
- Underlying partial combinatory algebra with pairing and definition by cases:
 - (1) kab = a,
 - (2) $\operatorname{sab}\downarrow\wedge\operatorname{sabc}\simeq\operatorname{ac}(\operatorname{bc}),$
 - (3) $p_0(a, b) = a \wedge p_1(a, b) = b$,

- We have a general notion of (partial) operation and predicate
- Predicates are just special kinds of operations, equipped with an \in relation
- Underlying partial combinatory algebra with pairing and definition by cases:
 - (1) kab = a.
 - (2) $sab \downarrow \land sabc \simeq ac(bc)$,
 - (3) $p_0(a,b) = a \wedge p_1(a,b) = b$,
 - (4) $dab \top = a \wedge dab \bot = b$.

- We have a general notion of (partial) operation and predicate
- Predicates are just special kinds of operations, equipped with an ∈ relation
- Underlying partial combinatory algebra with pairing and definition by cases:
 - (1) kab = a,
 - (2) $\operatorname{sab}\downarrow\wedge\operatorname{sabc}\simeq\operatorname{ac}(\operatorname{bc}),$
 - (3) $p_0(a,b) = a \wedge p_1(a,b) = b$,
 - (4) $dab \top = a \wedge dab \bot = b$.
- Operations are not bound to any specific mathematical domain

• The universe of S has associated with it an additional unary relation symbol, U_S , and the axioms of S are to be relativized to U_S .

- The universe of S has associated with it an additional unary relation symbol, U_S , and the axioms of S are to be relativized to U_S .
- Each function symbol f of S determines an element f^* of our partial combinatory algebra.

- The universe of S has associated with it an additional unary relation symbol, U_S , and the axioms of S are to be relativized to U_S .
- Each function symbol f of S determines an element f^* of our partial combinatory algebra.
- \bullet Each relation symbol R of S together with U_S determines a predicate R^* of our partial combinatory algebra with $R(x_1,\ldots,x_n)$ if and only if $(x_1,\ldots,x_n)\in R^*$.

- The universe of S has associated with it an additional unary relation symbol, U_S , and the axioms of S are to be relativized to U_S .
- Each function symbol f of S determines an element f^* of our partial combinatory algebra.
- Each relation symbol R of S together with U_S determines a predicate R^* of our partial combinatory algebra with $R(x_1, \ldots, x_n)$ if and only if $(x_1,\ldots,x_n)\in R^*$.
- Operations on predicates, such as e.g. conjunction, are just special kinds of operations. Each logical operation I of S determines a corresponding operation /* on predicates.

- The universe of S has associated with it an additional unary relation symbol, U_S , and the axioms of S are to be relativized to U_S .
- Each function symbol f of S determines an element f^* of our partial combinatory algebra.
- Each relation symbol R of S together with U_S determines a predicate R^* of our partial combinatory algebra with $R(x_1,\ldots,x_n)$ if and only if $(x_1,\ldots,x_n)\in R^*$.
- Operations on predicates, such as e.g. conjunction, are just special kinds of operations. Each logical operation I of S determines a corresponding operation /* on predicates.
- Families or sequences of predicates given by an operation f form a new predicate Join(f), the disjoint union of the predicates from f.

The substitution rule

Substitution rule (Subst)

$$\frac{A[\bar{P}]}{A[\bar{B}/\bar{P}]}$$

(Subst)

$$\bar{P} = P_1, \dots, P_m$$
: sequence of free predicate symbols

$$\bar{B} = B_1, \dots, B_m$$
: sequence of formulas

$$A[\bar{B}/\bar{P}]$$
 denotes the formula $A[\bar{P}]$ with P_i replace by B_i $(1 \leq i \leq n)$

The three unfolding systems

Definition ($\mathcal{U}(S)$, $\mathcal{U}_0(S)$, $\mathcal{U}_1(S)$)

- $\mathcal{U}(S)$: full (predicate) unfolding of S
- $\mathcal{U}_0(S)$: operational unfolding of S (no predicates)
- $\mathcal{U}_1(S)$: $\mathcal{U}(S)$ without (*Join*)

The three unfolding systems

Definition ($\mathcal{U}(S)$, $\mathcal{U}_0(S)$, $\mathcal{U}_1(S)$)

- U(S): full (predicate) unfolding of S
- $\mathcal{U}_0(S)$: operational unfolding of S (no predicates)
- $\mathcal{U}_1(S)$: $\mathcal{U}(S)$ without (*Join*)

Remark: The original formulation of unfolding made use of a background theory of typed operations with general Least Fixed Point operator. The present formulation is a simplification of this approach.

- Introduction
- 2 Defining unfolding
- Unfolding non-finitist arithmetic
- 4 Interlude: Ramified analysis and the ordinal Γ_0
- 5 Unfolding finitist arithmetic
- 6 Unfolding finitist arithmetic with bar rule
- 7 Appendix: Wellfoundedness of exponentiation

The proof theory of the three unfolding systems for NFA

Theorem (Feferman, Str.)

We have the following proof-theoretic characterizations.

- **1** $\mathcal{U}_0(NFA)$ is proof-theoretically equivalent to PA.
- 2 $\mathcal{U}_1(NFA)$ is proof-theoretically equivalent to $RA_{<\omega}$.
- **3** $\mathcal{U}(NFA)$ is proof-theoretically equivalent to $RA_{<\Gamma_0}$.

In each case we have conservation with respect to arithmetic statements of the system on the left over the system on the right.

 u^{b}

- Introduction
- 2 Defining unfolding
- Unfolding non-finitist arithmetic
- 4 Interlude: Ramified analysis and the ordinal Γ_0
- Unfolding finitist arithmetic
- 6 Unfolding finitist arithmetic with bar rule
- 7 Appendix: Wellfoundedness of exponentiation

Ramified analysis

 \mathcal{L}_2 : Language of second-order arithmetic.

Given a collection \mathcal{M} of sets of natural numbers, define \mathcal{M}^* to consist of all sets $S \subseteq \mathbb{N}$ such that for some condition $A(x) \in \mathcal{L}_2$ we have

$$\forall x (x \in S \leftrightarrow A^{\mathcal{M}}(x))$$

Ramified analysis

 \mathcal{L}_2 : Language of second-order arithmetic.

Given a collection \mathcal{M} of sets of natural numbers, define \mathcal{M}^* to consist of all sets $S \subseteq \mathbb{N}$ such that for some condition $A(x) \in \mathcal{L}_2$ we have

$$\forall x (x \in S \leftrightarrow A^{\mathcal{M}}(x))$$

Definition (Ramified analytic hierarchy)

$$egin{array}{lll} \mathcal{M}_0 &:= & ext{arithmetically definable sets} \ \mathcal{M}_{lpha+1} &:= & \mathcal{M}^\star_lpha \ \mathcal{M}_\lambda &:= & igcup_{eta<\lambda} \mathcal{M}_eta \end{array}$$

The systems RA_{α}

We let RA_{α} denote a (semi) formal system for \mathcal{M}_{α} .

Problem

How do we justify the ordinals α in the generation of \mathcal{M}_{α} respectively RA $_{\alpha}$?

 $u^{\scriptscriptstyle b}$

UNIVERSITÄT

The systems RA_{α}

We let RA_{α} denote a (semi) formal system for \mathcal{M}_{α} .

Problem

How do we justify the ordinals α in the generation of \mathcal{M}_{α} respectively RA $_{\alpha}$?

Autonomity condition

 RA_{α} is only justified if α is a recursive ordinal so that $RA_{<\alpha}$ proves the wellfoundedness of α .

 $u^{\scriptscriptstyle b}$

IVERSITÄT EN

The ordinal Γ_0

Question

Where does this procedure stop, i.e. which ordinals can be reached by such an autonomous process ?

 $u^{\scriptscriptstyle b}$

UNIVERSITÄT

The ordinal Γ_0

Question

Where does this procedure stop, i.e. which ordinals can be reached by such an autonomous process ?

Definition (The ordinal Γ_0)

$$\varphi_0(\beta) := \omega^{\beta}$$

$$\varphi_{\alpha}(\beta) := \beta$$
th common fixed point of $(\varphi_{\xi})_{\xi < \alpha}$

$$\Gamma_0 := \text{least ordinal} > 0 \text{ that is closed under } \varphi$$

The ordinal Γ_0

Question

Where does this procedure stop, i.e. which ordinals can be reached by such an autonomous process ?

Definition (The ordinal Γ_0)

$$\varphi_0(\beta) := \omega^{\beta}$$

$$\varphi_{\alpha}(\beta) := \beta$$
th common fixed point of $(\varphi_{\xi})_{\xi < \alpha}$

$$\Gamma_0 \ := \ \operatorname{least ordinal} > 0 \ \operatorname{that} \ \operatorname{is closed under} \ arphi$$

Theorem (Feferman, Schütte)

$$Aut(RA) = \Gamma_0$$

- Introduction
- 2 Defining unfolding
- 3 Unfolding non-finitist arithmetic
- 4 Interlude: Ramified analysis and the ordinal Γ_0
- 5 Unfolding finitist arithmetic
- 6 Unfolding finitist arithmetic with bar rule
- Appendix: Wellfoundedness of exponentiation

Finitist arithmetic

Question: What principles are implicit in the actual finitist conception of the set of natural numbers ?

Finitist arithmetic

Question: What principles are implicit in the actual finitist conception of the set of natural numbers ?

Example (Finitist arithmetic FA)

Logical operations: \land , \lor , \exists .

- $(1) \ u'=0 \rightarrow Q,$
- (2) Pd(u') = u,

(3)
$$\frac{Q \to P(0)}{Q \to P(v)} \frac{Q \to (P(u) \to P(u'))}{Q \to P(v)}$$
 (u fresh).

Implications at the top-level are used to form relative assertions.

ub

Primary and secondary formulas

- Primary formulas (A, B, C, ...) are built from the atomic formulas by means of \wedge , \vee and \exists
- Secondary formulas (F, G, H, ...) are of the form

$$A_1 \rightarrow (A_2 \rightarrow \cdots \rightarrow (A_n \rightarrow B) \dots)$$

where $n \geq 0$ and A_1, A_2, \dots, A_n, B are primary formulas.

Primary and secondary formulas

- Primary formulas (A, B, C, ...) are built from the atomic formulas by means of \wedge , \vee and \exists
- Secondary formulas (F, G, H, ...) are of the form

$$A_1 \rightarrow (A_2 \rightarrow \cdots \rightarrow (A_n \rightarrow B) \dots)$$

where $n \geq 0$ and A_1, A_2, \dots, A_n, B are primary formulas.

Remark: The original formulation of unfolding finitist arithmetic made use of sequent-style formalization of logic. The present formulation is a simplification of this approach and uses a Hilbert-style system.

 u^{b}

Generalization of the substitution rule (Subst)

We have to generalize the substitution rule (Subst) to rules of inference:

Substitution rule (Subst')

Given that the rule of inference

$$\frac{F_1, F_2, \dots, F_n}{F}$$

is derivable, we can adjoin each of its substitution instances

$$\frac{F_1[\bar{B}/\bar{P}], F_2[\bar{B}/\bar{P}], \dots, F_n[\bar{B}/\bar{P}]}{F[\bar{B}/\bar{P}]}$$

as a new rule of inference.

 u^{b}

The proof theory of the three unfolding systems for FA

The full unfolding of FA includes the basic logical operations as operations on predicates as well as *Join*.

Theorem (Feferman, Str.)

All three unfolding systems for finitist arithmetic, $U_0(FA)$, $U_1(FA)$ and U(FA) are proof-theoretically equivalent to Skolem's Primitive Recursive Arithmetic PRA.

Support of Tait's informal analysis of finitism.

- Introduction
- 2 Defining unfolding
- 3 Unfolding non-finitist arithmetic
- 4 Interlude: Ramified analysis and the ordinal Γ_0
- 5 Unfolding finitist arithmetic
- 6 Unfolding finitist arithmetic with bar rule
- 7 Appendix: Wellfoundedness of exponentiation

In the following

• We will study a natural bar rule BR leading to extensions $\mathcal{U}_0^+(FA)$, $\mathcal{U}_1^+(FA)$ and $\mathcal{U}^+(FA)$ of our unfolding systems for finitism

In the following

- We will study a natural bar rule BR leading to extensions $\mathcal{U}_0^+(FA)$, $\mathcal{U}_1^+(FA)$ and $\mathcal{U}^+(FA)$ of our unfolding systems for finitism
- The bar rule is formulated using secondary formulas only

In the following

- We will study a natural bar rule BR leading to extensions $\mathcal{U}_0^+(FA)$, $\mathcal{U}_1^+(FA)$ and $\mathcal{U}^+(FA)$ of our unfolding systems for finitism
- The bar rule is formulated using secondary formulas only
- The so-obtained extensions will all have the strength of Peano arithmetic PA

In the following

- We will study a natural bar rule BR leading to extensions $\mathcal{U}_0^+(FA)$, $\mathcal{U}_1^+(FA)$ and $\mathcal{U}^+(FA)$ of our unfolding systems for finitism
- The bar rule is formulated using secondary formulas only
- The so-obtained extensions will all have the strength of Peano arithmetic PA
- This shows one way how Kreisel's analysis of extended finitism fits in our framework

Defining $\mathcal{U}_0^+(FA)$: Preliminaries

 Let

✓ be a binary relation whose characteristic function is given by a closed term t_{\prec} so that $\mathcal{U}_0(FA)$ proves $t_{\prec}: \mathbb{N}^2 \to \{0,1\}$. We write $x \prec y$ instead of $t \prec xy = 0$ and further assume that \prec is a linear ordering with least element 0, provably in $\mathcal{U}_0(FA)$.

Defining $\mathcal{U}_0^+(FA)$: Preliminaries

- Let

 ✓ be a binary relation whose characteristic function is given by a closed term t_{\prec} so that $\mathcal{U}_0(FA)$ proves $t_{\prec}: \mathbb{N}^2 \to \{0,1\}$. We write $x \prec y$ instead of $t \prec xy = 0$ and further assume that \prec is a linear ordering with least element 0, provably in $\mathcal{U}_0(FA)$.
- Let f denote a new constant of our applicative language. There are no non-logical axioms for f; it serves as an anonymous function from N to N, representing a possibly infinite descending sequence along a given ordering.

11.^b

Expressing wellfoundedness

The rule $NDS(f, \prec)$ says that for each possibly infinite descending chain f w.r.t. \prec there is an x such that fx = 0. Formally, it is given as follows:

Expressing wellfoundedness

The rule $NDS(f, \prec)$ says that for each possibly infinite descending chain f w.r.t. \prec there is an x such that fx = 0. Formally, it is given as follows:

The rule $NDS(f, \prec)$

$$u \in \mathbb{N} \to fu \in \mathbb{N},$$

$$u \in \mathbb{N} \land fu \neq 0 \to f(u') \prec fu,$$

$$u \in \mathbb{N} \land fu = 0 \to f(u') = 0$$

$$(\exists x \in \mathbb{N})(fx = 0)$$

Formulating the bar rule

Let $\bar{s}^r = s_1^r, \dots, s_n^r$ and $\bar{s}^p = s_1^p, \dots, s_n^p$ be sequences of terms of length n. Accordingly, let $\bar{t}^r = t_1^r, \dots, t_m^r$ and $\bar{t}^p = t_1^p, \dots, t_m^p$ be sequences of terms of length m. The superscripts 'r' and 'p' stand for recursion and parameter, respectively.

Formulating the bar rule

Let $\bar{s^r} = s_1^r, \ldots, s_n^r$ and $\bar{s^p} = s_1^p, \ldots, s_n^p$ be sequences of terms of length n. Accordingly, let $\bar{t^r} = t_1^r, \ldots, t_m^r$ and $\bar{t^p} = t_1^p, \ldots, t_m^p$ be sequences of terms of length m. The superscripts 'r' and 'p' stand for recursion and parameter, respectively.

The bar rule BR

Whenever we have derived the three premises

- (1) $NDS(f, \prec)$
- (2) $x \in \mathbb{N} \land y \in \mathbb{N} \rightarrow \bar{s^r} \in \mathbb{N} \land \bar{s^p} \in \mathbb{N}$

(3)
$$x \in \mathbb{N} \land y \in \mathbb{N} \land \bigwedge_{i} [s_{i}^{r} \prec x \rightarrow P(s_{i}^{r}, s_{i}^{p})] \rightarrow \begin{cases} \bar{t}^{r} \in \mathbb{N} \land \bar{t}^{p} \in \mathbb{N} \land \\ (\bigwedge_{j} [t_{j}^{r} \prec x \rightarrow P(t_{j}^{r}, t_{j}^{p})] \rightarrow P(x, y)) \end{cases}$$

we can infer $x \in \mathbb{N} \land y \in \mathbb{N} \rightarrow P(x, y)$.

How to use the rule: nested recursion

In $\mathcal{U}_0^+(FA)$, whenever we have derived NDS(f, \prec), then we can use the bar rule BR in order to justify *nested* recursion along \prec .

 $u^{\scriptscriptstyle b}$

How to use the rule: nested recursion

In $U_0^+(FA)$, whenever we have derived NDS(f, \prec), then we can use the bar rule BR in order to justify *nested* recursion along \prec .

Example (Justifying nested recursion using BR)

As usual, $(r)_x$ is r if $r \prec x$ and 0 otherwise. Define F by $(x \neq 0)$

$$F(0, y) \simeq H(y)$$

$$F(x,y) \simeq G(x,y, F(k(x,y,F(l(x,y)_x,y))_x, p(x,y,F(m(x,y)_x,y)))$$

We set n=2 and m=1 and choose the following terms:

$$s_1^r = l(x, y)_x,$$
 $s_1^p = y$
 $s_2^r = m(x, y)_x,$ $s_2^p = y$
 $t_1^r = k(x, y, F(l(x, y)_x, y))_x,$ $t_1^p = p(x, y, F(m(x, y)_x, y))$

Summarizing ...

We summarize our previous findings in the following theorem.

Theorem

Assume that NDS(f, \prec) is derivable in $\mathcal{U}_0^+(FA)$. Then $\mathcal{U}_0^+(FA)$ justifies nested recursion along \prec .

 $u^{\scriptscriptstyle b}$

William Tait: Nested recursion, Mathematische Annalen, 143 (1961).

William Tait: Nested recursion, Mathematische Annalen, 143 (1961).

• For each ordinal $\alpha < \varepsilon_0$ let \prec_{α} be a primitive recursive standard wellordering \prec_{α} of ordertype α

William Tait: Nested recursion, Mathematische Annalen, 143 (1961).

- For each ordinal $\alpha < \varepsilon_0$ let \prec_α be a primitive recursive standard wellordering \prec_α of ordertype α
- Let us write $NDS(f, \alpha)$ instead of $NDS(f, \prec_{\alpha})$

William Tait: Nested recursion, Mathematische Annalen, 143 (1961).

- For each ordinal $\alpha < \varepsilon_0$ let \prec_{α} be a primitive recursive standard wellordering \prec_{α} of ordertype α
- Let us write $NDS(f, \alpha)$ instead of $NDS(f, \prec_{\alpha})$
- Aim at showing that $\mathcal{U}_0^+(FA)$ derives NDS(f, α) for each $\alpha < \varepsilon_0$

William Tait: Nested recursion, Mathematische Annalen, 143 (1961).

- For each ordinal $\alpha < \varepsilon_0$ let \prec_{α} be a primitive recursive standard wellordering \prec_{α} of ordertype α
- Let us write $NDS(f, \alpha)$ instead of $NDS(f, \prec_{\alpha})$
- Aim at showing that $\mathcal{U}_0^+(FA)$ derives NDS(f, α) for each $\alpha < \varepsilon_0$
- Use one direction of Tait's famous result, i.e. that nested recursion on $\omega \alpha$ entails ordinary recursion on ω^{α} or, more useful in our setting, nested recursion on $\omega \alpha$ entails NDS(f, ω^{α})

 u^{b}

William Tait: Nested recursion, Mathematische Annalen, 143 (1961).

- For each ordinal $\alpha < \varepsilon_0$ let \prec_{α} be a primitive recursive standard wellordering \prec_{α} of ordertype α
- Let us write $NDS(f, \alpha)$ instead of $NDS(f, \prec_{\alpha})$
- Aim at showing that $\mathcal{U}_0^+(FA)$ derives NDS(f, α) for each $\alpha < \varepsilon_0$
- Use one direction of Tait's famous result, i.e. that nested recursion on $\omega \alpha$ entails ordinary recursion on ω^{α} or, more useful in our setting, nested recursion on $\omega \alpha$ entails NDS(f, ω^{α})
- Tait's argument can be directly formalized in $\mathcal{U}_0^+(FA)$

William Tait: Nested recursion, Mathematische Annalen, 143 (1961).

- For each ordinal $\alpha < \varepsilon_0$ let \prec_{α} be a primitive recursive standard wellordering \prec_{α} of ordertype α
- Let us write $NDS(f, \alpha)$ instead of $NDS(f, \prec_{\alpha})$
- Aim at showing that $\mathcal{U}_0^+(FA)$ derives NDS(f, α) for each $\alpha < \varepsilon_0$
- Use one direction of Tait's famous result, i.e. that nested recursion on $\omega \alpha$ entails ordinary recursion on ω^{α} or, more useful in our setting, nested recursion on $\omega \alpha$ entails NDS(f, ω^{α})
- Tait's argument can be directly formalized in $\mathcal{U}_0^+(FA)$
- For more details, see the Appendix

$\mathcal{U}_0^+(FA)$: Lower bounds

Theorem

Provably in $\mathcal{U}_0^+(FA)$, nested recursion along $\omega \alpha$ entails NDS(f, ω^{α}).

Corollary

We have for each $\alpha < \varepsilon_0$ that $\mathcal{U}_0^+(\mathsf{FA})$ derives $\mathsf{NDS}(\mathsf{f}, \alpha)$.

Upper bounds

 $\mathcal{U}_{0}^{+}(FA)$ is readily interpretable in the subsystem of second order arithmetic ACAn as follows:

- Fix a function variable f in \mathcal{L}_2 and translate $(a \cdot b)$ as $\{a\}^f(b)$, where $\{n\}^f$ for $n=0,1,2,\ldots$ is a enumeration of the functions that are partial recursive in f
- The constant f is interpreted as a natural number i so that ${i}^f(x) \simeq f(x)$
- The translation of BR is validated by observing that ACA₀ proves $WF(\prec) \rightarrow TI(\prec, A)$ for each arithmetic formula A

On top of this interpretation, one models predicates (including join) to show that even the strength of $\mathcal{U}^+(FA)$ does not go beyond PA.

 u^{b}

The proof theory of the three unfolding systems for FA with bar rule

Theorem (Feferman, Str.)

All three unfolding systems for finitist arithmetic with bar rule, $\mathcal{U}_0^+(FA)$, $\mathcal{U}_1^+(FA)$ and $\mathcal{U}^+(FA)$ are proof-theoretically equivalent to Peano arithmetic PA.

Support of Kreisel's analysis of extended finitism.

- Introduction
- Defining unfolding
- 3 Unfolding non-finitist arithmetic
- 4 Interlude: Ramified analysis and the ordinal Γ_0
- 5 Unfolding finitist arithmetic
- 6 Unfolding finitist arithmetic with bar rule
- 7 Appendix: Wellfoundedness of exponentiation

 $u^{\scriptscriptstyle b}$

Tait's argument in a nutshell

(based on a compact presentation of W. Tait in a personal communication with S. Feferman)

UNIVERSITÄT

Tait's argument in a nutshell

(based on a compact presentation of $W.\ Tait$ in a personal communication with $S.\ Feferman)$

We want to show that nested recursion on $\omega\delta$ entails NDS(f, ω^{δ}).

In the following we will work with (codes of) ordinals below ε_0 and assume that < denotes the corresponding ordering relation on them.

Tait's argument in a nutshell

(based on a compact presentation of W. Tait in a personal communication with S. Feferman)

We want to show that nested recursion on $\omega\delta$ entails NDS(f, ω^{δ}).

In the following we will work with (codes of) ordinals below ε_0 and assume that < denotes the corresponding ordering relation on them.

A possibly infinite descending sequence f in ω^{δ}

Let f be a fixed function from ω to ω^{δ} satisfying for all natural numbers n the condition

$$f(n) > 0 \to f(n+1) < f(n)$$
 and $f(n) = 0 \to f(n+1) = 0$. (*)

 u^{b}

UNIVERSITÄT

Ordinal-theoretic preliminaries

Given an ordinal $\alpha < \omega^{\delta}$ in its normal form

$$\alpha = \omega^{\alpha_1} a_1 + \dots + \omega^{\alpha_n} a_n$$

where $\delta > \alpha_1 > \cdots > \alpha_n$ and $a_i < \omega \ (1 \le i \le n)$, we set

$$\alpha\{i\} = \omega^{\alpha_1}a_1 + \cdots + \omega^{\alpha_n}a_k \quad (k = \min(n, i))$$

$$\alpha[i] = \begin{cases} \omega \alpha_i + a_i & \text{if } 0 < i \le n \\ 0 & \text{if } n < i \end{cases}$$

Clearly, $\alpha[i] < \omega \delta$ and $0\{i\} = 0[i] = 0$. Further, we have the following important property.

 $u^{\scriptscriptstyle b}$

HIVERSITÄT IEN

Ordinal-theoretic preliminaries (ctd.)

Lemma

We have that $\alpha\{i+1\} < \beta\{i+1\}$ if and only if

$$\alpha\{i\} < \beta\{i\} \ \lor \ (\alpha\{i\} = \beta\{i\} \land \alpha[i+1] < \beta[i+1]).$$

The crucial property

The crucial step in Tait's argument is to define a function $\mu: \omega^2 \to \omega$ such that (writing $\mu_i(j)$ for $\mu(i,j)$)

The property
$$(\star\star)$$

$$f(j + \mu_i(j)) = 0 \lor f(j + \mu_i(j))\{i\} < f(j)\{i\}$$
 (**)

It will then suffice to choose $\mu_0(0)$ as a root of f, since according to $(\star\star)$, $f(\mu_0(0)) = 0$.

 $u^{\scriptscriptstyle b}$

IVERSITÄT IN

Defining $\mu_i(j)$

The definition of $\mu_i(j)$ will be by nested recursion on $f(j)[i+1] < \omega \delta$.

Defining $\mu_i(i)$

The definition of $\mu_i(j)$ will be by nested recursion on $f(j)[i+1] < \omega \delta$.

- Let n be the number of summands in the normal form of f(i). If $i \geq n$, we may simply set $\mu_i(j) = 1$; then $(\star\star)$ holds due to property (\star) of our given function f.
- So assume $0 \le i < n$. Because f(j)[i+2] < f(j)[i+1], we can use $\mu_{i+1}(j) = \bar{\mu}$ in the definition of $\mu_i(j)$. Hence, according to $(\star\star)$ we have for $\bar{\mu}$ that either (1) or (2) holds:

$$f(j+\bar{\mu})=0\tag{1}$$

$$f(j+\bar{\mu})\{i+1\} < f(j)\{i+1\} \tag{2}$$

If (1) holds, we set $\mu_i(i) = \bar{\mu}$.

 u^{b}

Defining $\mu_i(j)$ (ctd.)

• In case of (2), we use the lemma above to obtain one of the following properties (3) or (4):

$$f(j+\bar{\mu})\{i\} < f(j)\{i\}$$
 (3)

$$f(j+\bar{\mu})\{i\} = f(j)\{i\} \land f(j+\bar{\mu})[i+1] < f(j)[i+1]$$
 (4)

In case of (3), we again set $\mu_i(j) = \bar{\mu}$.

• If (4) holds, then clearly $\mu_i(j+\bar{\mu})=\bar{\bar{\mu}}$ is defined. In this case we set $\mu_i(j)=\bar{\mu}+\bar{\bar{\mu}}$. Then we can verify, using property $(\star\star)$ for $\bar{\bar{\mu}}$, that one of the following conditions (5) or (6) holds:

$$f(j + \mu_i(j)) = f((j + \bar{\mu}) + \bar{\bar{\mu}}) = 0$$
 (5)

$$f(j + \mu_i(j))\{i\} < f(j + \bar{\mu})\{i\} = f(j)\{i\}$$
 (6)

This is as desired and concludes the definition of $\mu_i(j)$.

ub

Summarizing...

Summarizing, $\mu_i(j)$ has been defined to satisfy the following equation:

The recursive definition of $\mu_i(j)$

$$\mu_{i}(j) = \begin{cases} 1 & \text{if } i \geq n \\ \mu_{i+1}(j) & \text{if } f(j + \mu_{i+1}(j)) = 0 \text{ or } \\ \mu_{i+1}(j) + \mu_{i}(j + \mu_{i+1}(j)) & \text{else} \end{cases}$$

It is now easy to explicitly express the definition of $\mu_i(j)$ as a nested recursion on $\omega\delta$.

ub

Thank you for your attention!

