
Weak theories of operations and types

Thomas Strahm

Institut für Informatik und angewandte Mathematik, Universität Bern

Logic Colloquium 2008

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 1 / 45



Introduction

General aims of this talk

In this talk we will discuss

weak systems of operations and types in the spirit of Feferman’s
explicit mathematics

uniform proof-theoretic characterizations of various classes of
computational complexity in this setting

relationship to traditional bounded arithmetic

issues of feasibility in higher types

some aspects of self-referential truth

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 2 / 45



Introduction

Explicit mathematics

Systems of explicit mathematics have been introduced by Feferman in
1975. They have been employed in foundational works in various ways:

foundations of constructive mathematics

proof theory of subsystems of second order arithmetic and set theory;
foundational reductions

logical foundations of functional programming languages

universes and higher reflection principles

formal proof-theoretic framework for abstract computations from
ordinary and generalized recursion theory

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 3 / 45



Outline

1 Introduction

2 The axiomatic framework

3 Characterising complexity classes

4 Higher type issues

5 Adding types and names

6 Partial truth

7 Conclusions

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 4 / 45



The axiomatic framework

Informal applicative setting

Untyped universe of operations or rules, which can be freely applied
to eachother.

Self-application is meaningful, though not necessarily total.

The computational engine of these rules is given by a partial
combinatory algebra, featuring partial versions of Curry’s combinators
k and s.

In addition, there is a ground “urelement” structure of the binary
words or strings with certain natural operations on them.

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 5 / 45



The axiomatic framework

Informal applicative setting

Untyped universe of operations or rules, which can be freely applied
to eachother.

Self-application is meaningful, though not necessarily total.

The computational engine of these rules is given by a partial
combinatory algebra, featuring partial versions of Curry’s combinators
k and s.

In addition, there is a ground “urelement” structure of the binary
words or strings with certain natural operations on them.

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 5 / 45



The axiomatic framework

Informal applicative setting

Untyped universe of operations or rules, which can be freely applied
to eachother.

Self-application is meaningful, though not necessarily total.

The computational engine of these rules is given by a partial
combinatory algebra, featuring partial versions of Curry’s combinators
k and s.

In addition, there is a ground “urelement” structure of the binary
words or strings with certain natural operations on them.

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 5 / 45



The axiomatic framework

Informal applicative setting

Untyped universe of operations or rules, which can be freely applied
to eachother.

Self-application is meaningful, though not necessarily total.

The computational engine of these rules is given by a partial
combinatory algebra, featuring partial versions of Curry’s combinators
k and s.

In addition, there is a ground “urelement” structure of the binary
words or strings with certain natural operations on them.

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 5 / 45



The axiomatic framework

Informal applicative setting

Untyped universe of operations or rules, which can be freely applied
to eachother.

Self-application is meaningful, though not necessarily total.

The computational engine of these rules is given by a partial
combinatory algebra, featuring partial versions of Curry’s combinators
k and s.

In addition, there is a ground “urelement” structure of the binary
words or strings with certain natural operations on them.

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 5 / 45



The axiomatic framework

Informal applicative setting (ctd.)

Let W denote the set of (finite) binary words. We will consider the
following operations:

s0 and s1: binary successors on W with predecessor pW

s`: (unary) lexicographic successor on W with predecessor p`

∗: word concatenation

×: word multiplication

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 6 / 45



The axiomatic framework

Informal applicative setting (ctd.)

Let W denote the set of (finite) binary words. We will consider the
following operations:

s0 and s1: binary successors on W with predecessor pW

s`: (unary) lexicographic successor on W with predecessor p`

∗: word concatenation

×: word multiplication

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 6 / 45



The axiomatic framework

Informal applicative setting (ctd.)

Let W denote the set of (finite) binary words. We will consider the
following operations:

s0 and s1: binary successors on W with predecessor pW

s`: (unary) lexicographic successor on W with predecessor p`

∗: word concatenation

×: word multiplication

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 6 / 45



The axiomatic framework

Informal applicative setting (ctd.)

Let W denote the set of (finite) binary words. We will consider the
following operations:

s0 and s1: binary successors on W with predecessor pW

s`: (unary) lexicographic successor on W with predecessor p`

∗: word concatenation

×: word multiplication

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 6 / 45



The axiomatic framework

Informal applicative setting (ctd.)

Let W denote the set of (finite) binary words. We will consider the
following operations:

s0 and s1: binary successors on W with predecessor pW

s`: (unary) lexicographic successor on W with predecessor p`

∗: word concatenation

×: word multiplication

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 6 / 45



The axiomatic framework

The logic of partial terms

The logic of partial terms (LPT) due to Beeson/Feferman is a modification
of first-order predicate logic taking into account partial functions.

Variables range over defined objects only

(Composed) terms do not necessarily denote and t↓ signifies that t
has a value

The usual quantifier axioms of predicate logic are modified, e.g. we
have

A(t) ∧ t↓ → (∃x)A(x)

Strictness axioms claim that terms occurring in positive atoms are
defined

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 7 / 45



The axiomatic framework

The logic of partial terms

The logic of partial terms (LPT) due to Beeson/Feferman is a modification
of first-order predicate logic taking into account partial functions.

Variables range over defined objects only

(Composed) terms do not necessarily denote and t↓ signifies that t
has a value

The usual quantifier axioms of predicate logic are modified, e.g. we
have

A(t) ∧ t↓ → (∃x)A(x)

Strictness axioms claim that terms occurring in positive atoms are
defined

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 7 / 45



The axiomatic framework

The logic of partial terms

The logic of partial terms (LPT) due to Beeson/Feferman is a modification
of first-order predicate logic taking into account partial functions.

Variables range over defined objects only

(Composed) terms do not necessarily denote and t↓ signifies that t
has a value

The usual quantifier axioms of predicate logic are modified, e.g. we
have

A(t) ∧ t↓ → (∃x)A(x)

Strictness axioms claim that terms occurring in positive atoms are
defined

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 7 / 45



The axiomatic framework

The logic of partial terms

The logic of partial terms (LPT) due to Beeson/Feferman is a modification
of first-order predicate logic taking into account partial functions.

Variables range over defined objects only

(Composed) terms do not necessarily denote and t↓ signifies that t
has a value

The usual quantifier axioms of predicate logic are modified, e.g. we
have

A(t) ∧ t↓ → (∃x)A(x)

Strictness axioms claim that terms occurring in positive atoms are
defined

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 7 / 45



The axiomatic framework

The logic of partial terms

The logic of partial terms (LPT) due to Beeson/Feferman is a modification
of first-order predicate logic taking into account partial functions.

Variables range over defined objects only

(Composed) terms do not necessarily denote and t↓ signifies that t
has a value

The usual quantifier axioms of predicate logic are modified, e.g. we
have

A(t) ∧ t↓ → (∃x)A(x)

Strictness axioms claim that terms occurring in positive atoms are
defined

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 7 / 45



The axiomatic framework

The basic applicative language L

L is a first order language for the logic of partial terms:

constants k, s, p, p0, p1, dW, ε, s0, s1, pW, s`, p`, c⊆, lW . . .

relation symbols =, ↓, W

arbitrary term application ◦

Notation

t1t2 . . . tn := (. . . (t1 ◦ t2) ◦ · · · ◦ tn)

t1 ' t2 := t1↓ ∨ t2↓ → t1 = t2

t ∈ W := W(t)

t : Wk → W := (∀x1 . . . xk ∈ W)tx1 . . . xk ∈ W

t : WW ×W → W := (∀f ∈ W → W)(∀x ∈ W)tfx ∈ W

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 8 / 45



The axiomatic framework

The basic applicative language L

L is a first order language for the logic of partial terms:

constants k, s, p, p0, p1, dW, ε, s0, s1, pW, s`, p`, c⊆, lW . . .

relation symbols =, ↓, W

arbitrary term application ◦
Notation

t1t2 . . . tn := (. . . (t1 ◦ t2) ◦ · · · ◦ tn)

t1 ' t2 := t1↓ ∨ t2↓ → t1 = t2

t ∈ W := W(t)

t : Wk → W := (∀x1 . . . xk ∈ W)tx1 . . . xk ∈ W

t : WW ×W → W := (∀f ∈ W → W)(∀x ∈ W)tfx ∈ W

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 8 / 45



The axiomatic framework

The basic applicative language L

L is a first order language for the logic of partial terms:

constants k, s, p, p0, p1, dW, ε, s0, s1, pW, s`, p`, c⊆, lW . . .

relation symbols =, ↓, W

arbitrary term application ◦
Notation

t1t2 . . . tn := (. . . (t1 ◦ t2) ◦ · · · ◦ tn)

t1 ' t2 := t1↓ ∨ t2↓ → t1 = t2

t ∈ W := W(t)

t : Wk → W := (∀x1 . . . xk ∈ W)tx1 . . . xk ∈ W

t : WW ×W → W := (∀f ∈ W → W)(∀x ∈ W)tfx ∈ W

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 8 / 45



The axiomatic framework

The basic applicative language L

L is a first order language for the logic of partial terms:

constants k, s, p, p0, p1, dW, ε, s0, s1, pW, s`, p`, c⊆, lW . . .

relation symbols =, ↓, W

arbitrary term application ◦
Notation

t1t2 . . . tn := (. . . (t1 ◦ t2) ◦ · · · ◦ tn)

t1 ' t2 := t1↓ ∨ t2↓ → t1 = t2

t ∈ W := W(t)

t : Wk → W := (∀x1 . . . xk ∈ W)tx1 . . . xk ∈ W

t : WW ×W → W := (∀f ∈ W → W)(∀x ∈ W)tfx ∈ W

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 8 / 45



The axiomatic framework

The basic applicative language L

L is a first order language for the logic of partial terms:

constants k, s, p, p0, p1, dW, ε, s0, s1, pW, s`, p`, c⊆, lW . . .

relation symbols =, ↓, W

arbitrary term application ◦
Notation

t1t2 . . . tn := (. . . (t1 ◦ t2) ◦ · · · ◦ tn)

t1 ' t2 := t1↓ ∨ t2↓ → t1 = t2

t ∈ W := W(t)

t : Wk → W := (∀x1 . . . xk ∈ W)tx1 . . . xk ∈ W

t : WW ×W → W := (∀f ∈ W → W)(∀x ∈ W)tfx ∈ W

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 8 / 45



The axiomatic framework

The basic applicative language L

L is a first order language for the logic of partial terms:

constants k, s, p, p0, p1, dW, ε, s0, s1, pW, s`, p`, c⊆, lW . . .

relation symbols =, ↓, W

arbitrary term application ◦
Notation

t1t2 . . . tn := (. . . (t1 ◦ t2) ◦ · · · ◦ tn)

t1 ' t2 := t1↓ ∨ t2↓ → t1 = t2

t ∈ W := W(t)

t : Wk → W := (∀x1 . . . xk ∈ W)tx1 . . . xk ∈ W

t : WW ×W → W := (∀f ∈ W → W)(∀x ∈ W)tfx ∈ W

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 8 / 45



The axiomatic framework

The basic theory of operations and words B

The logic of B is the logic of partial terms. The non-logical axioms of B
include:

partial combinatory algebra:

kxy = x , sxy↓ ∧ sxyz ' xz(yz)

pairing p with projections p0 and p1

defining axioms for the binary words W with ε, the successors s0, s1,
s` an the predecessor pW and and p`

definition by cases dW on W

initial subword relation c⊆, length of words lW

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 9 / 45



The axiomatic framework

Consequences of the partial combinatory algebra axioms

As usual in untyped applicative settings we have:

Lemma (Explicit definitions and fixed points)

1 For each L term t there exists an L term (λx .t) so that

B (λx .t)↓ ∧ (λx .t)x ' t

2 There is a closed L term fix so that

B fixg↓ ∧ fixgx ' g(fixg)x

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 10 / 45



The axiomatic framework

Standard models

Example (Recursion-theoretic model PRO)

Take the universe of binary words and interpret application ◦ as partial
recursive function application in the sense of o.r.t.

Example (The open term model M(λη))

Take the universe of open terms

Consider the usual reduction of the extensional untyped lambda
calculus λη

Application is juxtaposition

Two terms are equal if they have a common reduct

W denotes those terms that reduce to a “standard” word w

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 11 / 45



The axiomatic framework

Standard models

Example (Recursion-theoretic model PRO)

Take the universe of binary words and interpret application ◦ as partial
recursive function application in the sense of o.r.t.

Example (The open term model M(λη))

Take the universe of open terms

Consider the usual reduction of the extensional untyped lambda
calculus λη

Application is juxtaposition

Two terms are equal if they have a common reduct

W denotes those terms that reduce to a “standard” word w

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 11 / 45



The axiomatic framework

Natural induction principles

Σb
W-formulas

Formulas A(x) of the form

(∃y ∈ W)(y ≤ fx ∧ B(f , x , y))

for B positive and W-free

Σb
W notation induction on W, (Σb

W-IW)

f : W → W ∧ A(ε)∧(∀x ∈ W)(A(x) → A(s0x)∧A(s1x)) → (∀x ∈ W)A(x)

Σb
W lexicographic induction on W, (Σb

W-I`)

f : W → W ∧ A(ε) ∧ (∀x ∈ W)(A(x) → A(s`x)) → (∀x ∈ W)A(x)

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 12 / 45



The axiomatic framework

Natural induction principles

Σb
W-formulas

Formulas A(x) of the form

(∃y ∈ W)(y ≤ fx ∧ B(f , x , y))

for B positive and W-free

Σb
W notation induction on W, (Σb

W-IW)

f : W → W ∧ A(ε)∧(∀x ∈ W)(A(x) → A(s0x)∧A(s1x)) → (∀x ∈ W)A(x)

Σb
W lexicographic induction on W, (Σb

W-I`)

f : W → W ∧ A(ε) ∧ (∀x ∈ W)(A(x) → A(s`x)) → (∀x ∈ W)A(x)

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 12 / 45



The axiomatic framework

Natural induction principles

Σb
W-formulas

Formulas A(x) of the form

(∃y ∈ W)(y ≤ fx ∧ B(f , x , y))

for B positive and W-free

Σb
W notation induction on W, (Σb

W-IW)

f : W → W ∧ A(ε)∧(∀x ∈ W)(A(x) → A(s0x)∧A(s1x)) → (∀x ∈ W)A(x)

Σb
W lexicographic induction on W, (Σb

W-I`)

f : W → W ∧ A(ε) ∧ (∀x ∈ W)(A(x) → A(s`x)) → (∀x ∈ W)A(x)

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 12 / 45



The axiomatic framework

Natural induction principles

Σb
W-formulas

Formulas A(x) of the form

(∃y ∈ W)(y ≤ fx ∧ B(f , x , y))

for B positive and W-free

Σb
W notation induction on W, (Σb

W-IW)

f : W → W ∧ A(ε)∧(∀x ∈ W)(A(x) → A(s0x)∧A(s1x)) → (∀x ∈ W)A(x)

Σb
W lexicographic induction on W, (Σb

W-I`)

f : W → W ∧ A(ε) ∧ (∀x ∈ W)(A(x) → A(s`x)) → (∀x ∈ W)A(x)

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 12 / 45



The axiomatic framework

Deriving bounded recursions

Using the fixed point theorem one proves the following lemma:

Bounded recursion on notation

There exists a closed L term rW so that B + (Σb
W-IW) proves

f : W → W ∧ g : W3 → W ∧ b : W2 → W →
rWfgb : W2 → W ∧
x ∈ W ∧ y ∈ W ∧ y 6= ε ∧ h = rWfgb →

hxε = fx ∧ hxy = gxy(hx(pWy)) | bxy

Here t | s is t if t ≤ s and s otherwise.

Similarly, bounded unary recursion is derivable in B + (Σb
W-I`).

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 13 / 45



Characterising complexity classes

1 Introduction

2 The axiomatic framework

3 Characterising complexity classes

4 Higher type issues

5 Adding types and names

6 Partial truth

7 Conclusions

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 14 / 45



Characterising complexity classes

Provably total functions

Definition

A function F : Wn → W is called provably total in an L theory T, if there
exists a closed L term tF such that

(i) T tF : Wn → W and, in addition,

(ii) T tFw1 · · ·wn = F (w1, . . . ,wn) for all w1, . . . ,wn in W.

Let τ (T) = {F : F provably total in T}.

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 15 / 45



Characterising complexity classes

Four natural applicative systems

The four systems PT, PTLS, PS, LS

PT := B(∗,×) + (Σb
W-IW) PTLS := B(∗) + (Σb

W-IW)

PS := B(∗,×) + (Σb
W-I`) LS := B(∗) + (Σb

W-I`)

Theorem (S ’03)

We have the following lower bounds:

1 FPtime is contained in τ (PT),

2 FPtimeLinspace is contained in τ (PTLS),

3 FPspace is contained in τ (PS),

4 FLinspace is contained in τ (LS).

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 16 / 45



Characterising complexity classes

Four natural applicative systems

The four systems PT, PTLS, PS, LS

PT := B(∗,×) + (Σb
W-IW) PTLS := B(∗) + (Σb

W-IW)

PS := B(∗,×) + (Σb
W-I`) LS := B(∗) + (Σb

W-I`)

Theorem (S ’03)

We have the following lower bounds:

1 FPtime is contained in τ (PT),

2 FPtimeLinspace is contained in τ (PTLS),

3 FPspace is contained in τ (PS),

4 FLinspace is contained in τ (LS).

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 16 / 45



Characterising complexity classes

Classical systems of bounded arithmetic and PT

Ferreira’s system PTCA+ is directly contained in PT

PTCA+ corresponds to Buss’ S1
2

The Melhorn-Cook-Urquhart basic feasible functionals resp. the
system PVω are directly contained in PT (see later)

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 17 / 45



Characterising complexity classes

Upper bounds: partial cut elimination

In order to extract computational information from proofs, we need a
sequent-style reformulation of our systems and a preparatory partial
cut-elimination result

In the following we let Γ ⇒ ∆ range over sequents of formulas

Since the main formulas in the non-logical axioms and rules are
positive, we can reduce all non-positive cuts; ? denotes provability
restricted to positive cuts.

We establish upper bounds directly for an extension of our systems by
the axioms of totality of application and extensionality of operations.

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 18 / 45



Characterising complexity classes

Upper bounds: partial cut elimination

In order to extract computational information from proofs, we need a
sequent-style reformulation of our systems and a preparatory partial
cut-elimination result

In the following we let Γ ⇒ ∆ range over sequents of formulas

Since the main formulas in the non-logical axioms and rules are
positive, we can reduce all non-positive cuts; ? denotes provability
restricted to positive cuts.

We establish upper bounds directly for an extension of our systems by
the axioms of totality of application and extensionality of operations.

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 18 / 45



Characterising complexity classes

Upper bounds: partial cut elimination

In order to extract computational information from proofs, we need a
sequent-style reformulation of our systems and a preparatory partial
cut-elimination result

In the following we let Γ ⇒ ∆ range over sequents of formulas

Since the main formulas in the non-logical axioms and rules are
positive, we can reduce all non-positive cuts; ? denotes provability
restricted to positive cuts.

We establish upper bounds directly for an extension of our systems by
the axioms of totality of application and extensionality of operations.

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 18 / 45



Characterising complexity classes

Upper bounds: partial cut elimination

In order to extract computational information from proofs, we need a
sequent-style reformulation of our systems and a preparatory partial
cut-elimination result

In the following we let Γ ⇒ ∆ range over sequents of formulas

Since the main formulas in the non-logical axioms and rules are
positive, we can reduce all non-positive cuts; ? denotes provability
restricted to positive cuts.

We establish upper bounds directly for an extension of our systems by
the axioms of totality of application and extensionality of operations.

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 18 / 45



Characterising complexity classes

Upper bounds: partial cut elimination

In order to extract computational information from proofs, we need a
sequent-style reformulation of our systems and a preparatory partial
cut-elimination result

In the following we let Γ ⇒ ∆ range over sequents of formulas

Since the main formulas in the non-logical axioms and rules are
positive, we can reduce all non-positive cuts; ? denotes provability
restricted to positive cuts.

We establish upper bounds directly for an extension of our systems by
the axioms of totality of application and extensionality of operations.

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 18 / 45



Characterising complexity classes

Upper bounds: realizability

Definition (Realizability for positive formulas)

Let A be a positive formula and ρ ∈ W.

ρ r W(t) if M(λη) |= t = ρ,

ρ r (t1 = t2) if ρ = ε and M(λη) |= t1 = t2,

ρ r (A ∧ B) if ρ = 〈ρ0, ρ1〉 and ρ0 r A and ρ1 r B,

ρ r (A ∨ B) if ρ = 〈i , ρ0〉 and either i = 0 and ρ0 r A or

i = 1 and ρ0 r B,
ρ r (∀x)A(x) if ρ r A(u) for a fresh variable u,

ρ r (∃x)A(x) if ρ r A(t) for some term t.

If ∆ denotes a sequence A1, . . . ,An, then ρ r ∆ iff ρ = 〈i , ρ0〉 for some
1 ≤ i ≤ n and ρ0 r Ai .

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 19 / 45



Characterising complexity classes

Upper bounds: Main Lemma

Lemma (Realizability for PT)

Let Γ ⇒ ∆ be a sequent of positive formulas with Γ = A1, . . . ,An and
assume that PT+

? Γ[~u] ⇒ ∆[~u]. Then there exists a function
F : Wn → W in FPtime so that we have for all terms ~s and all
ρ1, . . . , ρn ∈ W:

For all 1 ≤ i ≤ n : ρi r Ai [~s] =⇒ F (ρ1, . . . , ρn) r ∆[~s].

Similar realizability theorems hold for the systems PTLS, PS, and LS.

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 20 / 45



Characterising complexity classes

The main theorem (concluded)

Theorem (S ’03)

We have the following characterizations:

1 τ (PT) equals FPtime,

2 τ (PTLS) equals FPtimeLinspace,

3 τ (PS) equals FPspace,

4 τ (LS) equals FLinspace.

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 21 / 45



Higher type issues

1 Introduction

2 The axiomatic framework

3 Characterising complexity classes

4 Higher type issues

5 Adding types and names

6 Partial truth

7 Conclusions

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 22 / 45



Higher type issues

Basic feasible functionals (Melhorn-Cook-Urquhart)

General area of higher type complexity theory.

In particular: feasible functionals of higher type.

Most robust class: basic feasible functionals BFF.

Various kinds of interesting characterizations:

function algebra, typed lambda calculus (Melhorn, Cook-Urquhart)

programming languages (Cook-Kapron, Irwin-Kapron-Royer)

oracle Turing machines (Cook-Kapron, Seth)

bounded arithmetic (Seth, Ignjatovic)

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 23 / 45



Higher type issues

The system PVω

PVω is a typed formal system whose terms denote exactly the basic feasible
functionals. Originally used by Cook and Urquhart for functional and
realizability interpretations of intuitionistic systems of bounded arithmetic.

PVω includes:

typed lambda calculus over the base type of binary words (or natural
numbers)

basic operations on words

a type two functional for bounded recursion on notation

extensionality (optional)

NP induction

The 1-section of PVω coincides with the polytime functions.

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 24 / 45



Higher type issues

The system PVω

PVω is a typed formal system whose terms denote exactly the basic feasible
functionals. Originally used by Cook and Urquhart for functional and
realizability interpretations of intuitionistic systems of bounded arithmetic.

PVω includes:

typed lambda calculus over the base type of binary words (or natural
numbers)

basic operations on words

a type two functional for bounded recursion on notation

extensionality (optional)

NP induction

The 1-section of PVω coincides with the polytime functions.

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 24 / 45



Higher type issues

The system PVω

PVω is a typed formal system whose terms denote exactly the basic feasible
functionals. Originally used by Cook and Urquhart for functional and
realizability interpretations of intuitionistic systems of bounded arithmetic.

PVω includes:

typed lambda calculus over the base type of binary words (or natural
numbers)

basic operations on words

a type two functional for bounded recursion on notation

extensionality (optional)

NP induction

The 1-section of PVω coincides with the polytime functions.

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 24 / 45



Higher type issues

The system PVω

PVω is a typed formal system whose terms denote exactly the basic feasible
functionals. Originally used by Cook and Urquhart for functional and
realizability interpretations of intuitionistic systems of bounded arithmetic.

PVω includes:

typed lambda calculus over the base type of binary words (or natural
numbers)

basic operations on words

a type two functional for bounded recursion on notation

extensionality (optional)

NP induction

The 1-section of PVω coincides with the polytime functions.

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 24 / 45



Higher type issues

The system PVω

PVω is a typed formal system whose terms denote exactly the basic feasible
functionals. Originally used by Cook and Urquhart for functional and
realizability interpretations of intuitionistic systems of bounded arithmetic.

PVω includes:

typed lambda calculus over the base type of binary words (or natural
numbers)

basic operations on words

a type two functional for bounded recursion on notation

extensionality (optional)

NP induction

The 1-section of PVω coincides with the polytime functions.

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 24 / 45



Higher type issues

The system PVω

PVω is a typed formal system whose terms denote exactly the basic feasible
functionals. Originally used by Cook and Urquhart for functional and
realizability interpretations of intuitionistic systems of bounded arithmetic.

PVω includes:

typed lambda calculus over the base type of binary words (or natural
numbers)

basic operations on words

a type two functional for bounded recursion on notation

extensionality (optional)

NP induction

The 1-section of PVω coincides with the polytime functions.

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 24 / 45



Higher type issues

The system PVω

PVω is a typed formal system whose terms denote exactly the basic feasible
functionals. Originally used by Cook and Urquhart for functional and
realizability interpretations of intuitionistic systems of bounded arithmetic.

PVω includes:

typed lambda calculus over the base type of binary words (or natural
numbers)

basic operations on words

a type two functional for bounded recursion on notation

extensionality (optional)

NP induction

The 1-section of PVω coincides with the polytime functions.

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 24 / 45



Higher type issues

The system PVω

PVω is a typed formal system whose terms denote exactly the basic feasible
functionals. Originally used by Cook and Urquhart for functional and
realizability interpretations of intuitionistic systems of bounded arithmetic.

PVω includes:

typed lambda calculus over the base type of binary words (or natural
numbers)

basic operations on words

a type two functional for bounded recursion on notation

extensionality (optional)

NP induction

The 1-section of PVω coincides with the polytime functions.

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 24 / 45



Higher type issues

The system PVω

PVω is a typed formal system whose terms denote exactly the basic feasible
functionals. Originally used by Cook and Urquhart for functional and
realizability interpretations of intuitionistic systems of bounded arithmetic.

PVω includes:

typed lambda calculus over the base type of binary words (or natural
numbers)

basic operations on words

a type two functional for bounded recursion on notation

extensionality (optional)

NP induction

The 1-section of PVω coincides with the polytime functions.

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 24 / 45



Higher type issues

Results

Theorem (S ’04)

1 The system PVω is contained in PT; i.e., the basic feasible
functionals in all finite types are provably total in PT

2 The provably total type 2 functionals of PT coincide exactly with the
basic feasible functionals of type 2

Conjecture

PT characterizes the BFF’s in all finite types.

The conjecture holds for the intuitionistic version of PT as follows from
work by Cantini.

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 25 / 45



Higher type issues

Results

Theorem (S ’04)

1 The system PVω is contained in PT; i.e., the basic feasible
functionals in all finite types are provably total in PT

2 The provably total type 2 functionals of PT coincide exactly with the
basic feasible functionals of type 2

Conjecture

PT characterizes the BFF’s in all finite types.

The conjecture holds for the intuitionistic version of PT as follows from
work by Cantini.

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 25 / 45



Adding types and names

1 Introduction

2 The axiomatic framework

3 Characterising complexity classes

4 Higher type issues

5 Adding types and names

6 Partial truth

7 Conclusions

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 26 / 45



Adding types and names

Types and names in explicit mathematics

Types are collections of individuals and can have quite complicated
defining properties

Types are represented by operations or names

Each type may have several different names or representations

The interplay of names and types on the level of operations witnesses
the explicit character of explicit mathematics

In the follwing we use a formalization of the
types-and-names-paradigm due to Jäger

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 27 / 45



Adding types and names

Types and names in explicit mathematics

Types are collections of individuals and can have quite complicated
defining properties

Types are represented by operations or names

Each type may have several different names or representations

The interplay of names and types on the level of operations witnesses
the explicit character of explicit mathematics

In the follwing we use a formalization of the
types-and-names-paradigm due to Jäger

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 27 / 45



Adding types and names

Types and names in explicit mathematics

Types are collections of individuals and can have quite complicated
defining properties

Types are represented by operations or names

Each type may have several different names or representations

The interplay of names and types on the level of operations witnesses
the explicit character of explicit mathematics

In the follwing we use a formalization of the
types-and-names-paradigm due to Jäger

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 27 / 45



Adding types and names

Types and names in explicit mathematics

Types are collections of individuals and can have quite complicated
defining properties

Types are represented by operations or names

Each type may have several different names or representations

The interplay of names and types on the level of operations witnesses
the explicit character of explicit mathematics

In the follwing we use a formalization of the
types-and-names-paradigm due to Jäger

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 27 / 45



Adding types and names

Types and names in explicit mathematics

Types are collections of individuals and can have quite complicated
defining properties

Types are represented by operations or names

Each type may have several different names or representations

The interplay of names and types on the level of operations witnesses
the explicit character of explicit mathematics

In the follwing we use a formalization of the
types-and-names-paradigm due to Jäger

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 27 / 45



Adding types and names

Types and names in explicit mathematics

Types are collections of individuals and can have quite complicated
defining properties

Types are represented by operations or names

Each type may have several different names or representations

The interplay of names and types on the level of operations witnesses
the explicit character of explicit mathematics

In the follwing we use a formalization of the
types-and-names-paradigm due to Jäger

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 27 / 45



Adding types and names

The language of types and names

The language LT is a two-sorted language extending L by

type variables U,V ,W ,X ,Y ,Z , . . .

binary relation symbols < (naming) and ∈ (elementhood)

new (individual) constants w (initial segment of W), id (identity),
dom (domain), un (union), int (intersection), and inv (inverse image)

The formulas A,B,C , . . . of LT are built from the atomic formulas of L as
well as formulas of the form

(s ∈ X ), <(s,X ), (X = Y )

by closing under the boolean connectives and quantification in both sorts.

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 28 / 45



Adding types and names

The language of types and names

The language LT is a two-sorted language extending L by

type variables U,V ,W ,X ,Y ,Z , . . .

binary relation symbols < (naming) and ∈ (elementhood)

new (individual) constants w (initial segment of W), id (identity),
dom (domain), un (union), int (intersection), and inv (inverse image)

The formulas A,B,C , . . . of LT are built from the atomic formulas of L as
well as formulas of the form

(s ∈ X ), <(s,X ), (X = Y )

by closing under the boolean connectives and quantification in both sorts.

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 28 / 45



Adding types and names

The language of types and names

The language LT is a two-sorted language extending L by

type variables U,V ,W ,X ,Y ,Z , . . .

binary relation symbols < (naming) and ∈ (elementhood)

new (individual) constants w (initial segment of W), id (identity),
dom (domain), un (union), int (intersection), and inv (inverse image)

The formulas A,B,C , . . . of LT are built from the atomic formulas of L as
well as formulas of the form

(s ∈ X ), <(s,X ), (X = Y )

by closing under the boolean connectives and quantification in both sorts.

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 28 / 45



Adding types and names

Ontological axioms

We use the following abbreviations:

<(s) := ∃X<(s,X ),

s ∈̇ t := ∃X (<(t,X ) ∧ s ∈ X ).

Ontological axioms (explicit representation and extensionality)

∃x<(x ,X )(O1)

<(a,X ) ∧ <(a,Y ) → X = Y(O2)

∀z(z ∈ X ↔ z ∈ Y ) → X = Y(O3)

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 29 / 45



Adding types and names

Ontological axioms

We use the following abbreviations:

<(s) := ∃X<(s,X ),

s ∈̇ t := ∃X (<(t,X ) ∧ s ∈ X ).

Ontological axioms (explicit representation and extensionality)

∃x<(x ,X )(O1)

<(a,X ) ∧ <(a,Y ) → X = Y(O2)

∀z(z ∈ X ↔ z ∈ Y ) → X = Y(O3)

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 29 / 45



Adding types and names

The system PET

Define Wa(x) := W(x) ∧ x ≤ a.

Type existence axioms

a ∈ W → <(w(a)) ∧ ∀x(x ∈̇ w(a) ↔ Wa(x))(wa)

<(id) ∧ ∀x(x ∈̇ id ↔ ∃y(x = (y , y)))(id)

<(a) → <(inv(f , a)) ∧ ∀x(x ∈̇ inv(f , a) ↔ fx ∈̇ a)(inv)

<(a) ∧ <(b) → <(un(a, b)) ∧ ∀x(x ∈̇ un(a, b) ↔ (x ∈̇ a ∨ x ∈̇ b))(un)

<(a) ∧ <(b) → <(int(a, b)) ∧ ∀x(x ∈̇ int(a, b) ↔ (x ∈̇ a ∧ x ∈̇ b))(int)

<(a) → <(dom(a)) ∧ ∀x(x ∈̇ dom(a) ↔ ∃y((x , y) ∈̇ a))(dm)

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 30 / 45



Adding types and names

The system PET (continued)

Type induction on W

ε ∈ X ∧ (∀x ∈ W)(x ∈ X → s0x ∈ X ∧ s1x ∈ X ) → (∀x ∈ W)(x ∈ X )

Definition (The theory PET)

PET is the extension of the first-order applicative theory B(∗,×) by

the ontological axioms

the above type existence axioms

type induction on W

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 31 / 45



Adding types and names

Proof-theoretic strength of PET

Let PT− be PT without universal quantifiers in induction formulas.

Theorem (Spescha, S. ’08)

1 PET is a conservative extension of PT−.

2 τ (PT−) = FPtime.

The lower bounds use an involved embedding of PT− into PET.

The upper bounds proceed via a model-theoretic argument.

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 32 / 45



Adding types and names

Additional principles I

Totality, extensionality, choice

Totality of application:

(Tot) ∀x∀y(xy↓)

Extensionality of operations:

(Ext) ∀f ∀g(∀x(fx ' gx) → f = g)

Axiom of choice:

(AC) (∀x ∈ W)(∃y ∈ W)A[x , y ] → (∃f : W → W)(∀x ∈ W)A[x , fx ]

where A[x,y] is a positive elementary formula.

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 33 / 45



Adding types and names

Additional principles II

Uniformity, universal quantification

Uniformity principle (Cantini)

(UP) ∀x(∃y ∈ W)A[x , y ] → (∃y ∈ W)(∀x)A[x , y ]

where A[x , y ] is positive elementary.

Universal quantification:

(all) <(a) → <(all(a)) ∧ ∀x(x ∈̇ all(a) ↔ ∀y((x , y) ∈̇ a))

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 34 / 45



Adding types and names

Results

Theorem

The provably total functions of PET augmented by any combination of the
principles (all), (UP), (AC), (Tot), and (Ext) coincide with the
polynomial time computable functions.

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 35 / 45



Adding types and names

The Join axiom

The Join axioms are given by the following assertions (J.1) and (J.2):

<(a) ∧ (∀x ∈̇ a)<(fx) → <(j(a, f ))(J.1)

<(a) ∧ (∀x ∈̇ a)<(fx) → ∀x(x ∈̇ j(a, f ) ↔ Σ[f , a, x ])(J.2)

where Σ[f , a, x ] is the formula

∃y∃z(x = (y , z) ∧ y ∈̇ a ∧ z ∈̇ fy)

Conjecture

Join does not increase the proof-theoretic strength of PET.

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 36 / 45



Partial truth

1 Introduction

2 The axiomatic framework

3 Characterising complexity classes

4 Higher type issues

5 Adding types and names

6 Partial truth

7 Conclusions

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 37 / 45



Partial truth

Extensions of PT by a partial truth predicate

Andrea Cantini has studied various extensions of PT by

a (form of) self-referential truth (à la Aczel, Feferman, Kripke, etc.),
providing a fixed point theorem for predicates

an axiom of choice for operations and a uniformity principle,
restricted to positive conditions

These extensions do not alter the proof-theoretic strength of PT.

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 38 / 45



Partial truth

Truth axioms

New (atomic) formula: T(t)

x ∈ a := T(ax)

{x : A} := λx .[A] ([A] term with the same free variables as A)

Truth axioms

T[A] ↔ A (A ≡ (x = y), x ∈ W)

T(x∧̇y) ↔ T(x) ∧ T(y)

T(x∨̇y) ↔ T(x) ∨ T(y)

T(∀̇f ) ↔ ∀xT(fx)

T(∃̇f ) ↔ ∃xT(fx)

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 39 / 45



Partial truth

Choice and uniformity

Positive choice and uniformity in the truth theoretic setting:

(∀x ∈ W)(∃y ∈ W)T(axy) → (∃f : W → W)(∀x ∈ W)T(ax(fx))(AC)

∀x(∃y ∈ W)T(axy) → (∃y ∈ W)(∀x)T(axy)(UP)

Theorem (Cantini)

τ (PT + truth axioms + AC + UP) = FPtime

Proof methods used by Cantini: internal forcing semantics, non-standard
variants of realizability, cut elimination.

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 40 / 45



Conclusions

1 Introduction

2 The axiomatic framework

3 Characterising complexity classes

4 Higher type issues

5 Adding types and names

6 Partial truth

7 Conclusions

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 41 / 45



Conclusions

Addendum: Positive induction

Let (Pos-IW) denote the schema of induction on W for positive formulas.

Theorem (Cantini)

τ (B + (Pos-IW)) coincides with the primitive recursive functions.

Cantini’s original proof uses a formalized asymmetric interpretation in IΣ1.

Alternatively, one can use the realizability techniques outlined in this talk.

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 42 / 45



Conclusions

Addendum: Positive safe induction

Andrea Cantini has also devised natural applicative systems for FPtime
that are inspired by the work of Leivant and Cook-Bellantoni in implicit
computational complexity.

According to this approach, one uses two tiers (or sorts) W0 and W1 of
binary words and allows induction over W1 with respect to formulas which
are positive and do only mention W0.

In this way, applicative theories based on combinatory logic provide a
natural basis also in the context of implicit computational complexity.

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 43 / 45



Conclusions

Future work

Future topics for research include:

clarify the role of further type-theoretic principles such as join

study theories of types and names for complexity classes other than
FPtime

weak universes and reflection principles

etc.

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 44 / 45



Conclusions

Selected References

1 S. Feferman, A language and axioms for explicit mathematics,
Algebra and Logic, LNM 450, 1975

2 G. Jäger, Induction in the elementary theory of types and names,
Computer Science Logic ’87, LNCS 329, 1988

3 A. Cantini, Choice and uniformity in weak applicative theories, Logic
Colloquium ’01, LNL 20, ASL, 2005

4 A. Cantini, Polytime, combinatory logic and positive safe induction,
Archive for Mathematical Logic 41, 2002

5 T. Strahm, Theories with self-application and computational
complexity, Information and Computation 185, 2003

6 T. Strahm, A proof-theoretic characterization of the basic feasible
functionals, Theoretical Computer Science 329, 2004

7 D. Spescha, T. Strahm, Elementary explicit types and polynomial
time operations, Mathematical Logic Quarterly (to appear)

T. Strahm (IAM, Univ. Bern) Weak theories of operations and types Logic Colloquium 2008 45 / 45


	Introduction
	Outline
	The axiomatic framework
	Characterising complexity classes
	Higher type issues
	Adding types and names
	Partial truth
	Conclusions

