Weak theories of operations and types

Thomas Strahm

Institut für Informatik und angewandte Mathematik, Universität Bern

Logic Colloquium 2008

General aims of this talk

In this talk we will discuss

- weak systems of operations and types in the spirit of Feferman's explicit mathematics
- uniform proof-theoretic characterizations of various classes of computational complexity in this setting
- relationship to traditional bounded arithmetic
- issues of feasibility in higher types
- some aspects of self-referential truth

Explicit mathematics

Systems of explicit mathematics have been introduced by Feferman in 1975. They have been employed in foundational works in various ways:

- foundations of constructive mathematics
- proof theory of subsystems of second order arithmetic and set theory; foundational reductions
- logical foundations of functional programming languages
- universes and higher reflection principles
- formal proof-theoretic framework for abstract computations from ordinary and generalized recursion theory

- 2 The axiomatic framework
- Obaracterising complexity classes
- 4 Higher type issues
- 5 Adding types and names
- 6 Partial truth

• Untyped universe of operations or rules, which can be freely applied to eachother.

- Untyped universe of operations or rules, which can be freely applied to eachother.
- Self-application is meaningful, though not necessarily total.

 $u^{\scriptscriptstyle b}$ UNIVERSITAT

- Untyped universe of operations or rules, which can be freely applied to eachother.
- Self-application is meaningful, though not necessarily total.
- The computational engine of these rules is given by a partial combinatory algebra, featuring partial versions of Curry's combinators k and s.

- Untyped universe of operations or rules, which can be freely applied to eachother.
- Self-application is meaningful, though not necessarily total.
- The computational engine of these rules is given by a partial combinatory algebra, featuring partial versions of Curry's combinators k and s.
- In addition, there is a ground "urelement" structure of the binary words or strings with certain natural operations on them.

Let \mathbb{W} denote the set of (finite) binary words. We will consider the following operations:

Let $\mathbb W$ denote the set of (finite) binary words. We will consider the following operations:

• s_0 and s_1 : binary successors on \mathbb{W} with predecessor p_W

 $u^{\scriptscriptstyle b}$ UNIVERSITA

Let $\mathbb W$ denote the set of (finite) binary words. We will consider the following operations:

- \bullet s_0 and s_1: binary successors on $\mathbb W$ with predecessor p_W
- \bullet s_{\ell}: (unary) lexicographic successor on $\mathbb W$ with predecessor p_ℓ

 $u^{\scriptscriptstyle b}$ UNIVERSITA

Let $\mathbb W$ denote the set of (finite) binary words. We will consider the following operations:

- \bullet s_0 and s_1: binary successors on $\mathbb W$ with predecessor p_W
- s_ℓ : (unary) lexicographic successor on $\mathbb W$ with predecessor p_ℓ
- *: word concatenation

Let $\mathbb W$ denote the set of (finite) binary words. We will consider the following operations:

- \bullet s_0 and s_1: binary successors on $\mathbb W$ with predecessor p_W
- $s_\ell :$ (unary) lexicographic successor on $\mathbb W$ with predecessor p_ℓ
- *: word concatenation
- \bullet \times : word multiplication

The logic of partial terms (LPT) due to Beeson/Feferman is a modification of first-order predicate logic taking into account partial functions.

The logic of partial terms (LPT) due to Beeson/Feferman is a modification of first-order predicate logic taking into account partial functions.

• Variables range over defined objects only

The logic of partial terms (LPT) due to Beeson/Feferman is a modification of first-order predicate logic taking into account partial functions.

- Variables range over defined objects only
- (Composed) terms do not necessarily denote and t↓ signifies that t has a value

 $u^{\scriptscriptstyle b}$ UNIVERSITA

The logic of partial terms (LPT) due to Beeson/Feferman is a modification of first-order predicate logic taking into account partial functions.

- Variables range over defined objects only
- (Composed) terms do not necessarily denote and $t \downarrow$ signifies that t has a value
- The usual quantifier axioms of predicate logic are modified, e.g. we have

 $A(t) \wedge t \downarrow \rightarrow (\exists x) A(x)$

 $u^{\scriptscriptstyle b}$ UNIVERSITA

The logic of partial terms (LPT) due to Beeson/Feferman is a modification of first-order predicate logic taking into account partial functions.

- Variables range over defined objects only
- (Composed) terms do not necessarily denote and t↓ signifies that t has a value
- The usual quantifier axioms of predicate logic are modified, e.g. we have

$$A(t) \wedge t \downarrow \rightarrow (\exists x) A(x)$$

• Strictness axioms claim that terms occurring in positive atoms are defined

 $\ensuremath{\mathcal{L}}$ is a first order language for the logic of partial terms:

- constants k, s, p, p₀, p₁, d_W, ϵ , s₀, s₁, p_W, s_{ℓ}, p_{ℓ}, c_{\subseteq}, l_W ...
- relation symbols =, \downarrow , W
- arbitrary term application •

 $\ensuremath{\mathcal{L}}$ is a first order language for the logic of partial terms:

- constants k, s, p, p_0, p_1, d_W, $\epsilon,$ s_0, s_1, p_W, s_\ell, p_\ell, c_{\subseteq}, l_W . . .
- relation symbols =, \downarrow , W
- arbitrary term application •

Notation

•
$$t_1 t_2 \ldots t_n := (\ldots (t_1 \circ t_2) \circ \cdots \circ t_n)$$

 $\ensuremath{\mathcal{L}}$ is a first order language for the logic of partial terms:

- constants k, s, p, p₀, p₁, d_W, ϵ , s₀, s₁, p_W, s_{ℓ}, p_{ℓ}, c_{\subseteq}, l_W ...
- relation symbols =, \downarrow , W
- arbitrary term application •

Notation

- $t_1 t_2 \ldots t_n := (\ldots (t_1 \circ t_2) \circ \cdots \circ t_n)$
- $t_1 \simeq t_2 := t_1 \downarrow \lor t_2 \downarrow \to t_1 = t_2$

 $\ensuremath{\mathcal{L}}$ is a first order language for the logic of partial terms:

- constants k, s, p, p₀, p₁, d_W, ϵ , s₀, s₁, p_W, s_{ℓ}, p_{ℓ}, c_{\subseteq}, l_W ...
- relation symbols =, \downarrow , W
- arbitrary term application •

Notation

- $t_1 t_2 \ldots t_n := (\ldots (t_1 \circ t_2) \circ \cdots \circ t_n)$
- $t_1 \simeq t_2 := t_1 \downarrow \lor t_2 \downarrow \to t_1 = t_2$

• $t \in W := W(t)$

 $\ensuremath{\mathcal{L}}$ is a first order language for the logic of partial terms:

- constants k, s, p, p₀, p₁, d_W, ϵ , s₀, s₁, p_W, s_{ℓ}, p_{ℓ}, c_{\subseteq}, l_W ...
- relation symbols =, \downarrow , W
- arbitrary term application •

Notation

- $t_1 t_2 \ldots t_n := (\ldots (t_1 \circ t_2) \circ \cdots \circ t_n)$
- $t_1 \simeq t_2 := t_1 \downarrow \lor t_2 \downarrow \to t_1 = t_2$
- $t \in W := W(t)$
- $t: W^k \to W := (\forall x_1 \dots x_k \in W) t x_1 \dots x_k \in W$

 $\ensuremath{\mathcal{L}}$ is a first order language for the logic of partial terms:

- constants k, s, p, p₀, p₁, d_W, ϵ , s₀, s₁, p_W, s_{ℓ}, p_{ℓ}, c_{\subseteq}, l_W ...
- relation symbols =, \downarrow , W
- arbitrary term application •

Notation

- $t_1 t_2 \ldots t_n := (\ldots (t_1 \circ t_2) \circ \cdots \circ t_n)$
- $t_1 \simeq t_2 := t_1 \downarrow \lor t_2 \downarrow \to t_1 = t_2$
- $t \in W := W(t)$
- $t: W^k \to W := (\forall x_1 \dots x_k \in W) t x_1 \dots x_k \in W$
- $t: W^{W} \times W \to W := (\forall f \in W \to W)(\forall x \in W)tfx \in W$

The basic theory of operations and words B

The logic of B is the logic of partial terms. The non-logical axioms of B include:

• partial combinatory algebra:

kxy = x, $sxy \downarrow \land sxyz \simeq xz(yz)$

- \bullet pairing p with projections p_0 and p_1
- defining axioms for the binary words W with ϵ , the successors $s_0,~s_1,~s_\ell$ an the predecessor p_W and and p_ℓ
- \bullet definition by cases d_W on W
- initial subword relation c_{\subseteq} , length of words I_W

Consequences of the partial combinatory algebra axioms

As usual in untyped applicative settings we have:

Lemma (Explicit definitions and fixed points)

1 For each \mathcal{L} term t there exists an \mathcal{L} term ($\lambda x.t$) so that

 $\mathsf{B} \vdash (\lambda x.t) \downarrow \land (\lambda x.t) x \simeq t$

There is a closed L term fix so that

 $\mathsf{B} \vdash \mathsf{fix}g \downarrow \land \mathsf{fix}gx \simeq g(\mathsf{fix}g)x$

Standard models

Example (Recursion-theoretic model PRO)

Take the universe of binary words and interpret application \circ as partial recursive function application in the sense of o.r.t.

u^b

11 / 45

Standard models

Example (Recursion-theoretic model PRO)

Take the universe of binary words and interpret application \circ as partial recursive function application in the sense of o.r.t.

Example (The open term model $\mathcal{M}(\lambda\eta)$)

- Take the universe of open terms
- \bullet Consider the usual reduction of the extensional untyped lambda calculus $\lambda\eta$
- Application is juxtaposition
- Two terms are equal if they have a common reduct
- \bullet W denotes those terms that reduce to a "standard" word \overline{w}

 Σ_{W}^{b} -formulas

Formulas A(x) of the form

 $(\exists y \in \mathsf{W})(y \leq f_X \land B(f, x, y))$

for *B* positive and W-free

 Σ_{W}^{b} -formulas Formulas A(x) of the form

 $(\exists y \in \mathsf{W})(y \leq f_X \land B(f, x, y))$

for *B* positive and W-free

 Σ^b_{W} notation induction on W, $~~(\Sigma^b_{\mathsf{W}} {}^-\mathsf{I}_{\mathsf{W}})$

 $f: \mathsf{W} \to \mathsf{W} \land A(\epsilon) \land (\forall x \in \mathsf{W})(A(x) \to A(\mathsf{s}_0 x) \land A(\mathsf{s}_1 x)) \to (\forall x \in \mathsf{W})A(x)$

 Σ_{W}^{b} -formulas Formulas A(x) of the form

 $(\exists y \in \mathsf{W})(y \leq f_X \land B(f, x, y))$

for *B* positive and W-free

 Σ^b_{W} notation induction on W, $~~(\Sigma^b_{\mathsf{W}} {}^-\mathsf{I}_{\mathsf{W}})$

 $f: \mathsf{W} \to \mathsf{W} \land A(\epsilon) \land (\forall x \in \mathsf{W})(A(x) \to A(\mathsf{s}_{\mathsf{0}}x) \land A(\mathsf{s}_{\mathsf{1}}x)) \to (\forall x \in \mathsf{W})A(x)$

 Σ^b_W lexicographic induction on W, $~~(\Sigma^b_W \mbox{-} I_\ell)$

 $f: \mathsf{W} \to \mathsf{W} \land A(\epsilon) \land (\forall x \in \mathsf{W})(A(x) \to A(\mathsf{s}_{\ell} x)) \to (\forall x \in \mathsf{W})A(x)$

Deriving bounded recursions

Using the fixed point theorem one proves the following lemma:

Bounded recursion on notation

There exists a closed \mathcal{L} term r_W so that $B + (\Sigma_W^b - I_W)$ proves

Here $t \mid s$ is t if $t \leq s$ and s otherwise.

Similarly, bounded unary recursion is derivable in $B + (\Sigma_W^b - I_\ell)$.

u^b

f

Introduction

- The axiomatic framework
- Obaracterising complexity classes
 - 4 Higher type issues
 - 5 Adding types and names
 - 6 Partial truth
 - 7 Conclusions

Provably total functions

Definition

A function $F : \mathbb{W}^n \to \mathbb{W}$ is called *provably total in an* \mathcal{L} *theory* T, if there exists a closed \mathcal{L} term t_F such that

(i)
$$T \vdash t_F : W^n \to W$$
 and, in addition,
(ii) $T \vdash t_F \overline{w}_1 \cdots \overline{w}_n = \overline{F(w_1, \dots, w_n)}$ for all w_1, \dots, w_n in \mathbb{W}

Let $\tau(T) = \{F : F \text{ provably total in } T\}.$

Four natural applicative systems

The four systems PT, PTLS, PS, LS

$$\mathsf{PT} := \mathsf{B}(*, \times) + (\Sigma^{\mathsf{b}}_{\mathsf{W}} \text{-} \mathsf{I}_{\mathsf{W}})$$

$$\mathsf{PS} := \mathsf{B}(*, \times) + (\Sigma^{\mathsf{b}}_{\mathsf{W}} - \mathsf{I}_{\ell})$$

PTLS := $B(*) + (\Sigma_W^b - I_W)$ $\mathsf{LS} := \mathsf{B}(*) + (\Sigma^{\mathsf{b}}_{\mathsf{W}} - \mathsf{I}_{\ell})$

> $u^{\scriptscriptstyle b}$ UNIVERSITAT

Four natural applicative systems

The four systems PT, PTLS, PS, LS

$$PT := B(*, \times) + (\Sigma_{W}^{b} - I_{W})$$
$$PS := B(*, \times) + (\Sigma_{W}^{b} - I_{\ell})$$

Theorem (S '03)

We have the following lower bounds:

- FPTIME is contained in au(PT),
- **2** FPTIMELINSPACE is contained in τ (PTLS),
- **③** FPSPACE is contained in τ (PS),
- FLINSPACE is contained in $\tau(LS)$.

u^b

 $PTLS := B(*) + (\Sigma_W^b - I_W)$ $LS := B(*) + (\Sigma_W^b - I_\ell)$

Classical systems of bounded arithmetic and PT

- Ferreira's system PTCA⁺ is directly contained in PT
- $PTCA^+$ corresponds to Buss' S_2^1
- The Melhorn-Cook-Urquhart basic feasible functionals resp. the system PV^{ω} are directly contained in PT (see later)

• In order to extract computational information from proofs, we need a sequent-style reformulation of our systems and a preparatory partial cut-elimination result

- In order to extract computational information from proofs, we need a sequent-style reformulation of our systems and a preparatory partial cut-elimination result
- $\bullet\,$ In the following we let $\Gamma\,\Rightarrow\,\Delta$ range over sequents of formulas

 $u^{\scriptscriptstyle b}$ UNIVERSITA

- In order to extract computational information from proofs, we need a sequent-style reformulation of our systems and a preparatory partial cut-elimination result
- $\bullet\,$ In the following we let $\Gamma\,\Rightarrow\,\Delta$ range over sequents of formulas

- In order to extract computational information from proofs, we need a sequent-style reformulation of our systems and a preparatory partial cut-elimination result
- $\bullet\,$ In the following we let $\Gamma\,\Rightarrow\,\Delta$ range over sequents of formulas
- We establish upper bounds directly for an extension of our systems by the axioms of *totality of application* and *extensionality of operations*.

Upper bounds: realizability

Definition (Realizability for positive formulas) Let A be a positive formula and $\rho \in \mathbb{W}$.

if $\mathcal{M}(\lambda \eta) \models t = \overline{\rho},$ ρ r W(t) if $\rho = \epsilon$ and $\mathcal{M}(\lambda \eta) \models t_1 = t_2$, ρ **r** ($t_1 = t_2$) ρ r ($A \wedge B$) if $\rho = \langle \rho_0, \rho_1 \rangle$ and $\rho_0 \mathbf{r} A$ and $\rho_1 \mathbf{r} B$, ρ r ($A \lor B$) if $\rho = \langle i, \rho_0 \rangle$ and either i = 0 and ρ_0 **r** A or i = 1 and $\rho_0 \mathbf{r} B$, ρ r $(\forall x)A(x)$ if ρ **r** A(u) for a fresh variable u, if $\rho \mathbf{r} A(t)$ for some term t. ρ r $(\exists x)A(x)$

If Δ denotes a sequence A_1, \ldots, A_n , then $\rho \mathbf{r} \Delta$ iff $\rho = \langle i, \rho_0 \rangle$ for some $1 \leq i \leq n$ and $\rho_0 \mathbf{r} A_i$.

.....

Upper bounds: Main Lemma

Lemma (Realizability for PT)

Let $\Gamma \Rightarrow \Delta$ be a sequent of positive formulas with $\Gamma = A_1, \ldots, A_n$ and assume that $PT^+ \models_{\pi} \Gamma[\vec{u}] \Rightarrow \Delta[\vec{u}]$. Then there exists a function $F : \mathbb{W}^n \to \mathbb{W}$ in FPTIME so that we have for all terms \vec{s} and all $\rho_1, \ldots, \rho_n \in \mathbb{W}$:

For all
$$1 \le i \le n$$
: $\rho_i \mathbf{r} A_i[\vec{s}] \implies F(\rho_1, \dots, \rho_n) \mathbf{r} \Delta[\vec{s}].$

Similar realizability theorems hold for the systems PTLS, PS, and LS.

The main theorem (concluded)

Theorem (S '03)

We have the following characterizations:

- $\tau(\mathsf{PT})$ equals FPTIME,
- **2** τ (PTLS) *equals* FPTIMELINSPACE,
- $\bigcirc \tau(\mathsf{PS})$ equals FPSPACE,
- $\tau(LS)$ equals FLINSPACE.

Introduction

- 2) The axiomatic framework
- 3 Characterising complexity classes
- 4 Higher type issues
 - 5 Adding types and names
- 6 Partial truth
- 7 Conclusions

Basic feasible functionals (Melhorn-Cook-Urquhart)

General area of higher type complexity theory.

In particular: feasible functionals of higher type.

Most robust class: basic feasible functionals BFF.

Various kinds of interesting characterizations:

- function algebra, typed lambda calculus (Melhorn, Cook-Urquhart)
- programming languages (Cook-Kapron, Irwin-Kapron-Royer)
- oracle Turing machines (Cook-Kapron, Seth)
- bounded arithmetic (Seth, Ignjatovic)

 PV^{ω} is a typed formal system whose terms denote exactly the basic feasible functionals. Originally used by Cook and Urquhart for functional and realizability interpretations of intuitionistic systems of bounded arithmetic.

u^b

24 / 45

 PV^{ω} is a typed formal system whose terms denote exactly the basic feasible functionals. Originally used by Cook and Urquhart for functional and realizability interpretations of intuitionistic systems of bounded arithmetic.

 PV^{ω} includes:

 PV^{ω} is a typed formal system whose terms denote exactly the basic feasible functionals. Originally used by Cook and Urquhart for functional and realizability interpretations of intuitionistic systems of bounded arithmetic.

 PV^{ω} includes:

• typed lambda calculus over the base type of binary words (or natural numbers)

 \mathbf{n}^{b} UNIVERSITA

 PV^{ω} is a typed formal system whose terms denote exactly the basic feasible functionals. Originally used by Cook and Urquhart for functional and realizability interpretations of intuitionistic systems of bounded arithmetic.

 PV^{ω} includes:

- typed lambda calculus over the base type of binary words (or natural numbers)
- basic operations on words

 PV^{ω} is a typed formal system whose terms denote exactly the basic feasible functionals. Originally used by Cook and Urquhart for functional and realizability interpretations of intuitionistic systems of bounded arithmetic.

 PV^{ω} includes:

- typed lambda calculus over the base type of binary words (or natural numbers)
- basic operations on words
- a type two functional for bounded recursion on notation

 PV^{ω} is a typed formal system whose terms denote exactly the basic feasible functionals. Originally used by Cook and Urquhart for functional and realizability interpretations of intuitionistic systems of bounded arithmetic.

 PV^{ω} includes:

- typed lambda calculus over the base type of binary words (or natural numbers)
- basic operations on words
- a type two functional for bounded recursion on notation
- extensionality (optional)

 PV^{ω} is a typed formal system whose terms denote exactly the basic feasible functionals. Originally used by Cook and Urquhart for functional and realizability interpretations of intuitionistic systems of bounded arithmetic.

 PV^{ω} includes:

- typed lambda calculus over the base type of binary words (or natural numbers)
- basic operations on words
- a type two functional for bounded recursion on notation
- extensionality (optional)
- NP induction

 PV^{ω} is a typed formal system whose terms denote exactly the basic feasible functionals. Originally used by Cook and Urquhart for functional and realizability interpretations of intuitionistic systems of bounded arithmetic.

 PV^{ω} includes:

- typed lambda calculus over the base type of binary words (or natural numbers)
- basic operations on words
- a type two functional for bounded recursion on notation
- extensionality (optional)
- NP induction

 PV^{ω} is a typed formal system whose terms denote exactly the basic feasible functionals. Originally used by Cook and Urquhart for functional and realizability interpretations of intuitionistic systems of bounded arithmetic.

 PV^{ω} includes:

- typed lambda calculus over the base type of binary words (or natural numbers)
- basic operations on words
- a type two functional for bounded recursion on notation
- extensionality (optional)
- NP induction

The 1-section of PV^{ω} coincides with the polytime functions.

Results

Theorem (S '04)

- The system PV^ω is contained in PT; i.e., the basic feasible functionals in all finite types are provably total in PT
- The provably total type 2 functionals of PT coincide exactly with the basic feasible functionals of type 2

 $u^{\scriptscriptstyle b}$ UNIVERSITA

Results

Theorem (S '04)

- The system PV^ω is contained in PT; i.e., the basic feasible functionals in all finite types are provably total in PT
- The provably total type 2 functionals of PT coincide exactly with the basic feasible functionals of type 2

Conjecture

PT characterizes the BFF's in all finite types.

The conjecture holds for the intuitionistic version of PT as follows from work by Cantini.

Introduction

- 2) The axiomatic framework
- 3 Characterising complexity classes
- 4 Higher type issues
- 5 Adding types and names
 - 6 Partial truth

Conclusions

• Types are collections of individuals and can have quite complicated defining properties

- Types are collections of individuals and can have quite complicated defining properties
- Types are represented by operations or names

 $u^{\scriptscriptstyle b}$ UNIVERSITA

- Types are collections of individuals and can have quite complicated defining properties
- Types are represented by operations or names
- Each type may have several different names or representations

 $u^{\scriptscriptstyle b}$ UNIVERSITA

- Types are collections of individuals and can have quite complicated defining properties
- Types are represented by operations or names
- Each type may have several different names or representations
- The interplay of names and types on the level of operations witnesses the explicit character of explicit mathematics

- Types are collections of individuals and can have quite complicated defining properties
- Types are represented by operations or names
- Each type may have several different names or representations
- The interplay of names and types on the level of operations witnesses the explicit character of explicit mathematics
- In the follwing we use a formalization of the types-and-names-paradigm due to Jäger

The language of types and names

The language \mathcal{L}_{T} is a two-sorted language extending $\mathcal L$ by

The language of types and names

The language \mathcal{L}_{T} is a two-sorted language extending $\mathcal L$ by

- type variables U, V, W, X, Y, Z, \ldots
- binary relation symbols \Re (naming) and \in (elementhood)
- new (individual) constants w (initial segment of W), id (identity), dom (domain), un (union), int (intersection), and inv (inverse image)

28 / 45

The language of types and names

The language \mathcal{L}_{T} is a two-sorted language extending $\mathcal L$ by

- type variables U, V, W, X, Y, Z, \ldots
- binary relation symbols \Re (naming) and \in (elementhood)
- new (individual) constants w (initial segment of W), id (identity), dom (domain), un (union), int (intersection), and inv (inverse image)

The formulas A, B, C, \ldots of \mathcal{L}_T are built from the atomic formulas of \mathcal{L} as well as formulas of the form

$$(s \in X), \quad \Re(s, X), \quad (X = Y)$$

by closing under the boolean connectives and quantification in both sorts.

Ontological axioms

We use the following abbreviations:

$$\begin{array}{rcl} \Re(s) &:= & \exists X \Re(s, X), \\ s \stackrel{\cdot}{\in} t &:= & \exists X (\Re(t, X) \land s \in X). \end{array}$$

u^b

29 / 45

Ontological axioms

We use the following abbreviations:

$$\begin{array}{rcl} \Re(s) & := & \exists X \Re(s, X), \\ s \in t & := & \exists X (\Re(t, X) \land s \in X). \end{array}$$

Ontological axioms (explicit representation and extensionality)

(O1) $\exists x \Re(x, X)$

$$(O2) \qquad \qquad \Re(a,X) \wedge \Re(a,Y) \to X = Y$$

$$\forall z(z \in X \leftrightarrow z \in Y) \rightarrow X = Y$$

The system PET

Define
$$W_a(x) := W(x) \land x \leq a$$
.

Type existence axioms

$$(\mathbf{w}_a) \quad a \in \mathbb{W} \to \Re(\mathbf{w}(a)) \land \forall x (x \in \mathbf{w}(a) \leftrightarrow \mathbb{W}_a(x))$$

(id)
$$\Re(\mathrm{id}) \land \forall x (x \in \mathrm{id} \leftrightarrow \exists y (x = (y, y)))$$

$$(\mathsf{inv}) \quad \Re(a) \to \Re(\mathsf{inv}(f,a)) \land \forall x (x \in \mathsf{inv}(f,a) \leftrightarrow fx \in a)$$

 $(\mathbf{un}) \quad \Re(a) \land \Re(b) \to \Re(\mathbf{un}(a,b)) \land \forall x (x \in \mathbf{un}(a,b) \leftrightarrow (x \in a \lor x \in b))$

 $(\mathsf{int}) \quad \Re(a) \land \Re(b) \to \Re(\mathsf{int}(a,b)) \land \forall x (x \in \mathsf{int}(a,b) \leftrightarrow (x \in a \land x \in b))$

 $(\mathsf{dm}) \ \Re(a) \to \Re(\mathsf{dom}(a)) \land \forall x (x \in \mathsf{dom}(a) \leftrightarrow \exists y ((x, y) \in a))$

The system PET (continued)

Type induction on W

$$\epsilon \in X \land (\forall x \in \mathsf{W})(x \in X \to \mathsf{s}_0 x \in X \land \mathsf{s}_1 x \in X) \to (\forall x \in \mathsf{W})(x \in X)$$

Definition (The theory PET)

PET is the extension of the first-order applicative theory $B(*, \times)$ by

- the ontological axioms
- the above type existence axioms
- type induction on W

Proof-theoretic strength of PET

Let PT^- be PT without universal quantifiers in induction formulas.

```
Theorem (Spescha, S. '08)
PET is a conservative extension of PT<sup>-</sup>.
τ(PT<sup>-</sup>) = FPTIME.
```

The lower bounds use an involved embedding of PT⁻ into PET.

The upper bounds proceed via a model-theoretic argument.

Additional principles I

Totality, extensionality, choice Totality of application:

(Tot) $\forall x \forall y (xy \downarrow)$

Extensionality of operations:

 $(\mathsf{Ext}) \qquad \forall f \forall g (\forall x (fx \simeq gx) \rightarrow f = g)$

Axiom of choice:

 $(\mathsf{AC}) \qquad (\forall x \in \mathsf{W})(\exists y \in \mathsf{W})A[x, y] \to (\exists f : \mathsf{W} \to \mathsf{W})(\forall x \in \mathsf{W})A[x, fx]$

where A[x,y] is a positive elementary formula.

u

Additional principles II

Uniformity, universal quantification

Uniformity principle (Cantini)

 $(\mathsf{UP}) \qquad \forall x (\exists y \in \mathsf{W}) A[x, y] \to (\exists y \in \mathsf{W}) (\forall x) A[x, y]$

where A[x, y] is positive elementary.

Universal quantification:

(all) $\Re(a) \to \Re(\operatorname{all}(a)) \land \forall x (x \in \operatorname{all}(a) \leftrightarrow \forall y ((x, y) \in a))$

Results

Theorem

The provably total functions of PET augmented by any combination of the principles (all), (UP), (AC), (Tot), and (Ext) coincide with the polynomial time computable functions.

 $u^{\scriptscriptstyle b}$ UNIVERSITA

The Join axiom

The Join axioms are given by the following assertions (J.1) and (J.2):

$$(\mathbf{J.1}) \qquad \Re(a) \land (\forall x \in a) \Re(fx) \to \Re(\mathbf{j}(a, f))$$

$$(\mathbf{J.2}) \qquad \Re(\mathbf{a}) \land (\forall x \in \mathbf{a}) \Re(fx) \to \forall x (x \in \mathbf{j}(\mathbf{a}, f) \leftrightarrow \Sigma[f, \mathbf{a}, x])$$

where $\Sigma[f, a, x]$ is the formula

$$\exists y \exists z (x = (y, z) \land y \in a \land z \in fy)$$

Conjecture

Join does not increase the proof-theoretic strength of PET.

Introduction

- 2) The axiomatic framework
- 3 Characterising complexity classes
- 4 Higher type issues
- 5 Adding types and names
- 6 Partial truth
 - 7 Conclusions

Extensions of PT by a partial truth predicate

Andrea Cantini has studied various extensions of PT by

- a (form of) self-referential truth (à la Aczel, Feferman, Kripke, etc.), providing a fixed point theorem for predicates
- an axiom of choice for operations and a uniformity principle, restricted to positive conditions

These extensions do not alter the proof-theoretic strength of PT.

Truth axioms

New (atomic) formula: T(t) $x \in a := T(ax)$ $\{x : A\} := \lambda x.[A]$ ([A] term with the same free variables as A)

Truth axioms

$$\begin{array}{rcl} \mathsf{T}[A] &\leftrightarrow & A & (A \equiv (x = y), x \in \mathsf{W}) \\ \mathsf{T}(x \dot{\wedge} y) &\leftrightarrow & \mathsf{T}(x) \wedge \mathsf{T}(y) \\ \mathsf{T}(x \dot{\vee} y) &\leftrightarrow & \mathsf{T}(x) \vee \mathsf{T}(y) \\ \mathsf{T}(\dot{\forall} f) &\leftrightarrow & \forall x \mathsf{T}(fx) \\ \mathsf{T}(\dot{\exists} f) &\leftrightarrow & \exists x \mathsf{T}(fx) \end{array}$$

Choice and uniformity

Positive choice and uniformity in the truth theoretic setting:

$$(\mathsf{AC}) \quad (\forall x \in \mathsf{W})(\exists y \in \mathsf{W})\mathsf{T}(axy) \to (\exists f : \mathsf{W} \to \mathsf{W})(\forall x \in \mathsf{W})\mathsf{T}(ax(fx))$$

$$(\mathsf{UP}) \quad \forall x (\exists y \in \mathsf{W}) \mathsf{T}(axy) \to (\exists y \in \mathsf{W}) (\forall x) \mathsf{T}(axy)$$

Theorem (Cantini)

$au(\mathsf{PT} + \mathsf{truth} \; \mathsf{axioms} + \mathsf{AC} + \mathsf{UP}) = \mathrm{FPTIME}$

Proof methods used by Cantini: internal forcing semantics, non-standard variants of realizability, cut elimination.

Introduction

- 2) The axiomatic framework
- 3 Characterising complexity classes
- 4 Higher type issues
- 5 Adding types and names
- 6 Partial truth

Addendum: Positive induction

Let $(Pos-I_W)$ denote the schema of induction on W for positive formulas.

Theorem (Cantini)

 $au(B + (Pos-I_W))$ coincides with the primitive recursive functions.

Cantini's original proof uses a formalized asymmetric interpretation in $I\Sigma_1$. Alternatively, one can use the realizability techniques outlined in this talk.

Addendum: Positive safe induction

Andrea Cantini has also devised natural applicative systems for FPTIME that are inspired by the work of Leivant and Cook-Bellantoni in implicit computational complexity.

According to this approach, one uses two tiers (or sorts) W_0 and W_1 of binary words and allows induction over W_1 with respect to formulas which are positive and do only mention W_0 .

In this way, applicative theories based on combinatory logic provide a natural basis also in the context of implicit computational complexity.

Future work

Future topics for research include:

- clarify the role of further type-theoretic principles such as join
- \bullet study theories of types and names for complexity classes other than $\rm FP_{TIME}$
- weak universes and reflection principles
- etc.

Selected References

- S. Feferman, A language and axioms for explicit mathematics, Algebra and Logic, LNM 450, 1975
- G. Jäger, Induction in the elementary theory of types and names, Computer Science Logic '87, LNCS 329, 1988
- A. Cantini, Choice and uniformity in weak applicative theories, Logic Colloquium '01, LNL 20, ASL, 2005
- A. Cantini, Polytime, combinatory logic and positive safe induction, Archive for Mathematical Logic 41, 2002
- T. Strahm, Theories with self-application and computational complexity, Information and Computation 185, 2003
- T. Strahm, A proof-theoretic characterization of the basic feasible functionals, Theoretical Computer Science 329, 2004
- D. Spescha, T. Strahm, Elementary explicit types and polynomial time operations, Mathematical Logic Quarterly (to appear)