
AN AGENT-BASED CONTENT-CENTRIC
NETWORKING APPLICATION FOR DATA

RETRIEVAL

Master Thesis

presented by

Wafaa El Maudni El Alami
University of Neuchatel

2013

Supervisor:
Professor Dr. Torsten Braun

Faculty of Science
University of Bern

Contents

Contents i

List of Figures v

List of Tables vii

1 Introduction 1
1.1 Motivation . 1
1.2 Task Formulation . 1
1.3 Contributions . 2
1.4 Outline . 2

2 Related Work 3
2.1 Content Centric Networking . 3

2.1.1 Interest and Data . 3
2.1.2 CCN Forwarding Model . 4
2.1.3 Data Storage . 4
2.1.4 Synchronization . 5

2.2 CCN in Opportunistic and Mobile Networks 5

3 Agent-Based Content Retrieval 9
3.1 Problem Description . 9
3.2 Agent-Based Content Retrieval . 10

3.2.1 Roles . 10
3.2.2 Overview . 10
3.2.3 Phase 1: Agent Delegation . 12
3.2.4 Phase 2: Content Retrieval . 13
3.2.5 Phase 3: Notification . 13
3.2.6 Synchronization with Agent Proxy . 15

4 Implementation 19
4.1 Delegation Procedure on CCNRequester . 19

4.1.1 Processing of Incoming Agent Responses 19
4.1.2 Receiving a Notification . 21

i

4.1.3 Retrieving the Content from the Agent 21
4.1.4 Data Structure . 21

4.2 Content Retrieval on CCNAgent . 23
4.2.1 Processing of Incoming Interests . 23
4.2.2 Repository Interest Structure . 24

4.3 Notification . 25
4.3.1 Notification Structure . 25
4.3.2 Verification Mechanism of Content Retrieval at Agent Node 25

4.4 Resuming Disrupted Transfers . 27
4.5 Synchronization with the Home Repository 29
4.6 Graphical User Interface . 30

4.6.1 CCNRequester application GUI . 30
4.6.2 CCNAgent application GUI . 31

4.7 Deployment on Smart Phone: Ad-hoc Networking Support for Android 33

5 Evaluation 35
5.1 Preliminary Results . 35
5.2 Topology . 36
5.3 CCNx configuration and Network Setup . 37
5.4 Evaluation Results . 39

5.4.1 Scenario 1: Content Retrieval via an Agent 39
5.4.2 Scenario 2: Synchronization between Mobile and Home Repository . . 49
5.4.3 Scenario 3: Influence of Agent Interval 51

5.5 Summary . 58

6 Conclusion 61
6.1 Conclusions . 61
6.2 Future Work . 62

6.2.1 Reliability . 62
6.2.2 Interval Values . 62
6.2.3 Synchronization . 62
6.2.4 Resume Operations from the Repository 63
6.2.5 Android Sleeping Screen . 63

7 Appendix 65
7.1 Ad-hoc Networking Support for Android . 65

7.1.1 Using the iwconfig program . 65
7.1.2 Configure wpa supplicant manually 65
7.1.3 Edit wpa supplicant.conf . 66
7.1.4 Edit Android Open Source . 66
7.1.5 Superuser Access . 67

7.2 Code Source . 67
7.2.1 Source Code of the CCNRequester application 68
7.2.2 Source Code of the CCNAgent application 68

ii

Bibliography 69

iii

List of Figures

2.1 CCN packets types . 3

3.1 Requester and content source in disjoint transmission ranges 9
3.2 Agent-Based Content Retrieval phases . 11

(a) Phase 1: Agent Delegation . 11
(b) Phase 2: Content Retrieval . 11
(c) Phase 3: Notification . 11

3.3 Agent Delegation . 12
3.4 Content Retrieval . 14
3.5 Notification phase . 15
3.6 Flowchart of permanent synchronization . 17
3.7 Temporary synchronization . 17

4.1 Flow chart of the delegation process in the requester node 20
4.2 Flow chart of the last part of the content retrieval process at the Requester node 22
4.3 Flow chart of CCNAgent application tasks . 24
4.4 Flow chart of the notification process . 26
4.5 Flow chart of the verification mechanism in the agent node 27
4.6 CCNRequester application GUI . 32
4.7 CCNAgent and CCNSynchronization applications GUI 33

5.1 Number of received duplicate content objects for a file size of 4MB. 36
5.2 Testing architectures . 37

(a) Scenario 1 . 37
(b) Scenario 2 . 37
(c) Scenario 3 . 37

5.3 Content retrieval using ccngetfile application over one-two hops and through an
agent . 39
(a) Normal content retrieval using ccngetfile application over one hop . . . 39
(b) Normal content retrieval using ccngetfile application over two hops . . . 39
(c) Agent Retrieval . 39

5.4 Throughput of the implemented mechanism tested with unicast and multicast
communication between the agent and the content source. 41

5.5 Topology used to evaluate ccngetfile application over two hops. 42

v

5.6 Throughput of the implemented mechanism compared with ccngetfile content
downloads. The communication is performed via unicast and multicast accord-
ing to the test setups. 43

5.7 Topology used to evaluate ccngetfile application over two hops unicast commu-
nication. 44

5.8 Throughput of the implemented mechanism compared with ccngetfile content
downloads. The communication is performed via unicast according to the test
setups. 45

5.9 Message exchanged at the agent node tested using different file sizes. 46
5.10 Relation between Probe Interval, Agent Interval and transfer time. 48
5.11 Number of notification requests using different probe intervals with different file

sizes. 49
5.12 Transfer time using different probe intervals with different file sizes. 50
5.13 Throughput of the synchronization mechanism between the home and mobile

repositories with different file sizes. 50
5.14 Message exchanged during scenario 3: interruption at the first agent. 51
5.15 Number of notifications requests using different probe intervals with different

agent intervals. 53
5.16 Transfer time using different probe intervals with different agent intervals. . . 53
5.17 Message exchanged during scenario 3: parallel content retrievals, probe interval

is smaller than agent interval. 55
5.18 FIB configuration of scenario 3. 55
5.19 Transfer time using different probe intervals with different agent intervals. . . 56
5.20 Messages exchanged during scenario 3: probe interval is higher than the agent

interval . 58

vi

List of Tables

3.1 Interest1 Components . 13

4.1 Summary of the variables . 23
4.2 Summary of the variables . 28

5.1 Evaluation settings of scenario 1 . 40
5.2 Medium values of the throughput in kbps. 40
5.3 Medium values of the throughput in kbps. 43
5.4 Medium values of the throughput in kbps. 45
5.5 Medium values of exchanged messages in scenario 1. 47
5.6 Medium values of the number of notification requests 48
5.7 Medium values of transfer time in seconds. 49
5.8 Evaluation settings of scenario 3 . 52
5.9 Median values of the number of notification requests 52
5.10 Median values of transfer time in seconds. 53
5.11 Medium values of transfer time in seconds. 56

vii

Acknowledgment

First of all I thanks my advisor Carlos Anastasiades for sacrifice his valuable time, for his guid-
ance, his detailed and patient explanations and for their comments that helped me to improve
this thesis. Prof. Dr. Torsten Braun for giving me the opportunity to realize this thesis in his
Computer Networks and Distributed Systems group at the University of Bern and for his helpful
comments.

Then, my biggest thanks go to my family for supporting me in many different ways. Finally,
I would like to thank all my friends that did not stop to encourage me.

ix

Abstract

Content-Centric Networks (CCN) is a new networking paradigm, where messages are routed
based on names instead of host identifiers. Therefore, CCN is advantageous in mobile networks
because communication can be performed independently of changing communication partners.
However, in opportunistic networks, content retrieval is challenging because contacts between
users and their mobile devices are intermittent and not predictable. If the requester is not con-
nected to the content source, the requester cannot retrieve the content.

In this thesis an application for agent-based content centric data retrieval was implemented.
This approach gives to the requester the opportunity to delegate the content retrieval to other
nodes, i.e., agents. Mobile agents store the retrieved content locally in their mobile reposi-
tory, which is synchronized with their home repository (continuously connected to the Internet).
Agents that retrieved the content can notify the original requesters. Then, the requester can
retrieve the content via unicast communication from the mobile repository or from the home
repository, if it has no direct connection to the agent. This approach helps also to increase the
content density because the mobile agents replicate the content source by storing the retrieved
content in their local repository.

The implemented mechanism is evaluated on Android smartphones. The evaluations showed
that for large files the agent-based content retrieval is more efficient than the regular retrieval
by forwarding the Interests over two hops (first hop in unicast communication and multicast
communication in the second hop). We evaluated the probe interval, i.e. the time the requester
waits before asking for a notification, in different scenarios with one and two agents. Evaluation
results show that the number of notification requests with a probe interval of 30 seconds is around
80% smaller than with probe interval of 1 second. Evaluations with multiple agents showed that
multiple agents would probably decrease the content retrieval time. The more agents are looking
for the content independently, the higher is the probability of finding the content. However, if
the agents are looking for the content simultaneously, then the content retrieval takes more time
because they need to share the bandwidth of the content source.

xi

Chapter 1

Introduction

Nowadays, as the Internet has become a cloud for services, knowing the location of the source
is irrelevant: the user is more interested in the content than in the source. In addition, prolifer-
ation of mobile devices is increasing. As a result, the host-to-host communication model is not
convenient. Thus, the need of another flexible and suitable architecture arises. For this reason, a
new approach, Content Centric Networking (CCN), has been developed.

Content Centric Networking is an alternative approach to host based communication as in
traditional computer networks. The main principle of CCN is that the user may look for the
data by content names rather than by host identifiers, and any node that has the corresponding
data replies. This reduces the traffic, improves network performance and increases network
reliability.

1.1 Motivation

In Content Centric Networking, a simple scenario is where the content source is in transmission
range of the requester. Then CCN works in a best way: the request of the needed content is for-
warded to the content source, which replies by transmitting the content. However, in delay toler-
ant networks, where connections between nodes are intermittent, or in small-world topologies,
where not every node sees the content source, it makes sense to delegate the content retrieval
to agent nodes, which may meet the content source. The more agents look for the content, the
higher is the probability that the content can be found or retrieved assuming it is available.

1.2 Task Formulation

In order to increase the probability of finding the content, the requester can delegate the content
retrieval to other nodes, i.e. agents, and receives a notification from an agent as soon as the
content has been found. Such delegation requires an agreement between the requester and agent
about the way of the delegation and notification.

The goal of this master thesis is to develop an Android Agent-Based Content-Centric Net-
working Application for Content Retrieval. The detailed tasks are as follows:

1

* Implement a handshake mechanism between requester and agent to delegate content re-
trieval to agents, based on CCNx code running on Android smart phones.

* Implement/configure a home repository (connected to the Internet), which synchronizes
with mobile agent’s repository on the smart phone based on the CCNx synchronization
mechanism for repositories.

* Implement a notification mechanism to notify the requester as soon as the content is found

* Evaluate the whole mechanism on Android smart phones in different scenarios.

1.3 Contributions

An overview of the contributions of this thesis is provided in the following:

* We implemented an approach of delegating the content retrieval to others nodes, to en-
able the requester to receive content from content sources that are never directly met. In
addition, we implemented the handler of a synchronization mechanism between the agent
node and the agent proxy, which facilitates the retrieval by the requester if the agent is not
directly reachable anymore by the requester.

* Our experiments showed that the implemented approach has higher throughput to retrieve
large files than the retrieval using the standard ccngetfile application of CCNx over two
hops of communication. Moreover, the implemented mechanism was evaluated with mul-
tiple agents. The results proved that an appropriate value of the agent Interval, i.e. time to
delegate the content retrieval to a new agent, depends on the file size and on the intercon-
tact time between the agents and the content source.

1.4 Outline

The thesis is structured as follows. In Chapter 2, the concepts of content-centric networking
that are related to this work are presented. The architecture of Agent-Based Content Retrieval
is described in Chapter 3. It explains in detail how the mechanism works at different sides:
requester and agent. In addition, Chapter 4 presents the implementation of the entire mechanism.
Then, in Chapter 5 the results of the evaluation in different scenarios are presented. Finally,
Chapter 6 discusses the presented mechanism and concludes the thesis; it presents also possible
future work.

2

Chapter 2

Related Work

2.1 Content Centric Networking

Content-Centric Networking was introduced by Van Jacobson[1]. The CCNx [2] project pro-
vides an open source implementation of the content-centric networking approach, developed at
the Palo Alto Research Center (PARC).

2.1.1 Interest and Data

CCN communication is based on two message types: Interest and Data. Figure 2.1 shows the
Interest packet and the Data packet. An Interest packet is used to request data. It contains a

Figure 2.1: CCN packets types

prefix of a content name and some additional fields to limit the number of responders. The most
important fields used in this thesis, which will be expained later in this section, are: AnswerO-
riginKind, Scope, Exclude and Interest lifetime.

3

A Data packet contains a ContentObject and is transmitted in response to the Interest mes-
sage. It contains the ContentName, the Signature and the data. Every Interest can only retrieve
or consume at most one Data packet.
A CCN node requests a content based on the longest-prefix match and the additional limiting
Interest fields and forwards the Interest to an available face. A face is a generalization of the
concept of interface. It may be a connection to a network or directly to an application party. The
forwarding and the processing of CCN messages are performed by the CCN daemon (CCND).

2.1.2 CCN Forwarding Model

The forwarding model is based on three elements in CCN node: the content store (CS) as a
cache, Forwarding Information Base (FIB), which contains a table of the outbound faces for
specific Interest prefixes, and the PIT, which is a table of sources of unsatisfied Interests. When
an Interest arrives, the lookup is performed on CS first, if a matching ContentObject satisfies all
the specifications in the Interest, it will be transmitted as response to the requester. Otherwise, if
there is match in the PIT, the arrival face will be added to the list of unsatisfied Interest and the
Interest will be discarded. Otherwise, the FIB provides the face where to forward the Interest. If
no prefix is found in the FIB, the Interest will be discarded. InterestLifetime indicates the time
remaining before the Interest times out [4], the default value is 4 seconds. The Interest can be
removed also from the PIT if the InterestLifetime is over.
The propagation of an Interest can be limited by the Interest field called Scope, e.g. scope
0 limits the propagation to the local ccnd, scope 1 to the application on the local host. The
accepted response to a given Interest can be specified by two fields: AnswerOriginKind, e.g
value 0 rejects any responses from the content store, value 1 uses responses from the cache. The
field Exclude is an element that embodies a description of name components that should not
appear as a continuation of the Name prefix in the response to the Interest [4].

2.1.3 Data Storage

There are two ways of storing data: in Content Store and in Repository:

* Content Store : is used for temporarily caching arrived Data packets. The Content Object
field freshnessSecond is used to define the lifetime of the ContentObject in the Content
store relative to the reception time.

* Repository: is used for persistent storage of CCN Content Objects. There are different
ways to write data into the repository:

1. Using a standard CCNx application ccnputfile, this is used to store local files into
the repository.

2. A specially formed start-write Interest that triggers the repository to retrieve and
store the Content, using special command marker [5].

4

2.1.4 Synchronization

Synchronization is a CCNx facility that allows defining Collections of data in Repositories that
are to be automatically kept in synchronization with identically defined Collections in neighbor-
ing repositories [6]. It is based on the following elements:

* Collection: is a set of contents under the same prefix. The definition of prefix is known as
a slice

* Sync Agent: is responsible for keeping information about local Collections up to date as
content is added to the Repository, and detecting new Content Objects of the Collection
in the remote repository that are not in the local repository. It is also responsible to reply
to any requests from the remote repository for information about the local Collection. A
Sync tree is the representation of all the content in the Collection and is built and used by
the Sync Agent. As the files are added to the local repository, the Sync tree is updated.

* A Root Advise Interest: is an Interest used by the Sync Agent to determine if there are
any names in a remote Collection that are not in the local Collection.

2.2 CCN in Opportunistic and Mobile Networks

Previous works in [7] proposed two content discovery algorithms for opportunistic content-
centric networks, Enumeration Request Discovery based on name enumeration requests and the
Regular Interest Discovery based on regular Interests. Content discovery is important in mobile
CCN to have information about the available content. The authors conclude that content-centric
networking is advantageous in opportunistic one-hop communication because of multicast dis-
covery, which enables quick discovery in dynamic environments.

In [8], an extension of CCN file transfers is implemented that enables mobile devices to
download complete data files even if a transfer is intermittent. In case of disrupted file transfers,
the proposed mechanism persistently stores already received content objects locally and resumes
file transfers when the connectivity is regained. The approach proposed in this thesis to resume
file transfers is different from this approach as explained in Section 4.4 . The approach proposed
in [8] stores already received segments locally without need to provide it to the others and then
the CCN header and the signature are not stored. However, in our approach a possibly untrusted
agent that retrieves content for a requester needs to ensure the authenticity and integrity of the
retrieval content. Therefore, signatures and CCN header information are required to be stored
with the content.

In [9], an approach based on overhearing multicast traffic is proposed to configure the
forwarding table (FIB) of the CCNx framework. The proposed approach enables mobile
devices, where connectivity patterns may change often, to dynamically configure the FIB with
temporary entries to forward Interests towards a potential content source. In this work, the FIB
is updated also dynamically whenever a new delegation is accepted (content retrieval in phase
II) and whenever a notification is received in phase III.

5

Moreover, in [9] the multicast and unicast transfers are compared in terms of throughput and
transmitted messages. The authors observed that unicast communication results in much higher
throughput because of MAC-acknowledgment and faster retransmission. In unicast communica-
tion, the retransmission of packets, in case of collisions, is done on the MAC-layer and the higher
layered CCNx does not recognize the packets lost. In multicast communication, a requester re-
expresses an Interest after an Interest timeout. Thus, the retransmission is done by CCNx on
the application layer which takes more time compared to the MAC layer retransmission. In this
thesis, we therefore use unicast communication as often as possible. As soon as a notification is
received, the requester can address the agent to retrieve the content directly via unicast. The IP
address is not available at the CCN application level. Therefore, the agent includes its own IP
address in the payload field of the Data packet transmitted in phase III (notification message).
Upon the reception of a notification message, the requester can temporarily add a new unicast
face and address the agent directly via unicast to retrieve the content.
The idea of the agent-based approach is to support content-centric opportunistic communication
in mobile networks. Existing work in mobile CCN communication targets mainly architectures
with a static core network to which mobile nodes, i.e. content sources or consumers, connect.
There are basically two approaches to handle content source mobility: First, to use a locator-
name split. Second, to use redirection points in the network. When using a locator-name split,
e.g., [10],[11],[12], location dependent identifiers, i.e., locators, are prepended to the content
name depending on their point-of-attachment. These locators are then used for routing and
forwarding only. To avoid resigning all content objects when moving, the locator needs to be
excluded from the signature and cache comparisons need to be performed on the content name
only. When using redirection points or rendezvous points, e.g.,[12], [13],[14],[15],[16],[17],
mobile devices can register their position to these nodes similar to mobile communication ar-
chitectures such as cellular networks or mobile IP. A requester would then first contact the ren-
dezvous point to get the current location of the mobile content source. Requests can then be
sent directly to the new location or are redirected via the rendezvous point. In case of mobile
consumer, e.g. [14], the mobile requester sends the content query packet to its rendezvous point.
The rendezvous point tries to discover the content itself. After that, it delivers the content Data
packets to the mobile requester. When detecting the imminent of the handover event, the ren-
dezvous point stops delivering content Data packets and only stores the content data in its local
repository. When the mobile requester acquires a new IP address, it notifies its rendezvous point.
Then, the rendezvous point transmits the stored content data packets toward the new location of
mobile requester node. In this approach, a small communication delay is introduced because the
communication needs to be redirected via the rendezvous point independent of the position of
the mobile device.

Other works have investigated the routing of Interests in mobile ad-hoc networks, e.g., [18],
[19], [20], [21] based on different criterias and algorithms such as e.g., the distances between the
nodes or structured routing based on DHTs. However, these approaches do not consider delays
and connectivity dynamics that can be introduced in mobile networks.

In the Haggle project [22] an opportunistic and delay-tolerant communication system was
developed. Nodes request and exchange content upon their encounters by supporting the separa-
tion of application logic from transport bindings. This is currently not possible in CCN because

6

Interests have a lifetime and are re-expressed if it expires. The agent-based approach developed
within the scope of this thesis targets a similar approach as in Haggle but uses content-centric
primitives. Nodes do not need to exchange connectivity information and users can explore their
vicinity quicker by transmitting multicast requests instead of connecting to each neighbor node
subsequently.

The home repository used in this thesis is optional and can assist nodes to notify requesters or
retrieve content from mobile agents. The concept is similar to custodian-based information shar-
ing [23] but users do not only synchronize their own personal content but also content retrieved
for others. This supports communication in disruptive and delay-tolerant networks where agents
can synchronize content with their home repository if connected to the Internet. Requesters can
then obtain the content from home repositories if they have no direct connection to the agent
even if they are not connected to the Internet at the same time as the agent.

In [24], another Content-Centric Opportunistic architecture inspired by CCN is developed.
It proposes a new multiplatform information-centric framework that can be used in a dynamic
environment to assure seamless operation.

7

Chapter 3

Agent-Based Content Retrieval

3.1 Problem Description

In Content Centric Networking, nodes within transmission range can exchange data through ad-
hoc communication without being connected to the Internet or knowing the identifiers of any
nodes. A node can receive what it needs by broadcasting an Interest to the network asking for
the desired content. Then, any node in its vicinity that has the corresponding data can reply. In
such a situation, CCN communication works well as the needed content is available at least in
one node within the transmission range of the requester.

Figure 3.1: Requester and content source in disjoint transmission ranges

Figure 3.1 shows a network with requester and content source, the ellipses show the trans-
mission and reception range of the requester and content source, e.g. node A can reach node B
and C, but can not reach node E and D which are far away. In such situation, since the trans-
mission ranges are disjoint, traditional CCN communication does not work: if node A needs the
content that is not contained in any nodes within its transmission range, but it resides only in
node E, node A will never receive the content, until it meets node E.

9

3.2 Agent-Based Content Retrieval

To be able to reach content not available in any neighbour nodes, the requester can delegate the
content retrieval to other nodes called agents (subsection 3.2.3). These agents are mobile and
can move closer to a content source than the original requester and get the desired content. Such
delegation should be performed in a controlled way based on agreements between requester
and agent to avoid denial-of-service attacks. The agent will then retrieve the content for the
requesters (more details in subsection 3.2.4) and notify the original requester that the content
has been found and where it can be retrieved so that the original requester can abort the search
(subsection 3.2.5). We give a more detailed overview in subsection 3.2.2.

3.2.1 Roles

During the delegation process, we can distinguish between three roles: requester node, agent
node and agent proxy.

- Requester node: starts the process of delegation; it is responsible to select the agent and
to delegate the content retrieval to him or her.

- Agent node: is responsible to reply to delegation requests, to look for desired content and
to notify the requester node if the content is found.

- Agent proxy: is the agent’s home repository which is permanently connected through the
Internet.

3.2.2 Overview

Delegation process is divided into three main phases as described in Figure 3.2:

* Phase I, Agent Delegation: Fig 3.2 a) shows a network with a requester node (node A), an
agent node (node C) and a content source (node E) which is far away, not in the transmis-
sion range of the requester node. If requester A tries to find the content in its immediate
neighborhoods but does not receive any response, it will start the agent delegation and
transmit a multicast request looking for available agents. Then, it selects one of them and
delegates the task of finding the content to the selected agent (e.g. node C). More details
are given in Subsection 3.2.3.

* Phase II, Content Retrieval: at this phase, the selected agent node (node C) starts the
process of searching the desired data. Thus, as shown in (Fig 3.2 b): when agent node C
goes to the area where it can reach node E that has the content, agent node C can ask for
this content and stores it in the repository of its mobile device. More details are given in
subsection 3.2.4.

* Phase III, Notification: Later as shown in Fig 3.2 c), when agent node C can reach again
requester node A, it will send a notification to the requester to inform it that the content
has been found. We give more details about this phase in subsection 3.2.5.

10

(a) Phase 1: Agent Delegation

(b) Phase 2: Content Retrieval

(c) Phase 3: Notification

Figure 3.2: Agent-Based Content Retrieval phases

11

3.2.3 Phase 1: Agent Delegation

This section describes the first phase of the handshake mechanism. Below, we demonstrate a
sample scenario where the requester node tries to find a suitable agent from the neighbours to
delegate the content retrieval to it.

Figure 3.3: Agent Delegation

Figure 3.3 illustrates a scenario of agent delegation. It contains the requester node, com-
posed of the requester application and the cache, and an agent node. When the user starts the
delegation process [A], the requester node sends a multicast request looking for potential avail-
able agents. The request is an Interest comprising of the prefix /ferrying, the content name and
the parameters as listed in Table 3.1. It has the following structure:
/ferrying/%C1.<namespace>∼ <parameters>

At the agent node [B]: when the neighbour agent receives the Interest, which matches the
prefix /ferrying, it replies with a Data message containing its node identity. The Data has the
following name structure: /ferrying/%C1.<namespace>∼ <parameters>/nodeID

All the responses from available agents are stored in the cache of the requester node. As

12

/ferrying Prefix of delegation
namespace Name of the content needed
parameters Optional parameters, e.g., GPS coordinates of a search area.

Table 3.1: Interest1 Components

a normal process in CCN, every Interest can only retrieve at most one Data packet (1 Interest
<->1 Content), so only the first response is sent to the requester application. In order to receive
other responses, the requester needs to ask the cache for other responses as illustrated in step
[C]. The requester sends the same Interest excluding the nodeID of already received responses,
so that the cache will send only the new ones. The requester may ask the cache until no new
answer is received within a defined time (timeout) or the number of received responses reaches
a given maximum number specified by the user.

After receiving multiple answers from available agents [D], the requester generates an agent
list and selects one of them. The requester uses the nodeID of the selected agent to delegate
content retrieval to it [E]. The delegation is performed again with an Interest as we will see later
in subsection 4.1.4.1. This Interest must include a /groupID, which is a random number and
must be transmitted to the agent, because the requester will use it for the Notification in phase
three, as explained later in Section 3.2.5).

3.2.4 Phase 2: Content Retrieval

During this phase, the selected agent triggers the process of searching the content desired by the
requester. If the agent would first request the content, store it locally and then include a copy
in the repository, the content would be resigned by the agent and therefore not trustworthy for
the original requester. To avoid that, we can ask the repository to get the content. Therefore, the
agent’s repository will store the entire content including the signature.

Figure 3.4 illustrates a simple scenario of the Content Retrieval phase: First, the agent ex-
tracts the name of the desired content from delegation Interest received at the end of Phase I.
Then, [A] it periodically sends a multicast Interest to all current neighbor nodes asking for the
content, until receiving a response. Second, [B] if the agent receives a response from a content
source including the full name of the content, it asks the repository to retrieve all content objects
including all signatures [C]. Finally, the agent needs to check that the repository has completely
received the content before notifying the requester. More details on this can be found in subsec-
tion 4.3.2.

3.2.5 Phase 3: Notification

This phase is started by the agent once it has verified that the content is successfully retrieved
by the local repository.

In CCN, if the Interest lifetime is over, the Interest is deleted from the PIT in the CCN
deamon running on the nodes, i.e., in agent and requester nodes. There are two possibilities to
send notifications to the requester as shown in Figure 3.5, in step [A]. First, if the content is

13

Figure 3.4: Content Retrieval

received within the Interest lifetime of the delegation Interest, the agent may send a notification
as reply to the delegation Interest. Second, if the Interest lifetime is over [B], it needs to receive
a notification Interest from the requester in order to send the notification. This Interest is
composed of the prefix /groupID. With this prefix, the requester can address all agents to which
he has delegated the content retrieval at the same time without addressing them individually.
Therefore, if the requester node does not receive any immediate notifications, it can check if
any other agent has already retrieved the content with the prefix /groupID. If no existing agent
has retrieved the content, it may delegate the retrieval to another agent repeating the agent
selection phase in subsection 3.2.3. The requester should transmit the same groupID that has
been transmitted to the previous agents.

Notification message
The main aim of the notification message is to inform the requester that the requested content
has been found and has been successfully stored in the agent’s mobile and home repositories.
However, the requester needs the identity of the agent to ask it directly. Therefore, the agent
includes its current IP address as well as the IP address of the agent proxy, i.e., home repository,
in the notification message.

Getting the content
After receiving the notification, the requester tries to retrieve the content from the agent. It has
two possibilities of getting the content, depending on whether the agent is still in transmission

14

range of the requester or not. As shown in Figure 3.5, first in step [C] an entry associated to IP
address of the mobile agent must be added temporarily to the FIB of the requester. The requester
can try to ask directly the agent node for the content. Second, if it does not receive any reply
when directly asking the mobile agent, it can add the agent’s home repository IP address to the
FIB [D] and request the content from there.

Figure 3.5: Notification phase

3.2.6 Synchronization with Agent Proxy

The agent proxy is the home repository of the agent node and is permanently connected to
the Internet. Therefore, every content object in the local repository, i.e., the mobile repository,

15

should be stored in the home repository as well. The aim of the agent proxy is that the requester
can retrieve the content even if the mobile repository is out of transmission range.

Permanent Synchronization
The local repository should keep the files needed by the requesters synchronized with the home
repository. For this reason, synchronization on a specific collection, i.e., set of content objects
whose names share a common prefix, must be established between the two repositories. The
collection should cover all the content files that the agent has stored in the local repository to
serve all requests from the requester nodes.

Figure 3.6 shows the flow chart of the synchronization mechanism. Synchronization is
maintained by periodically exchanging Root Advise Interests [A], i.e. an Interest that is used to
detect if there are any names in a remote collection that are not in the local collection. When they
find that they have not the same collection, they try to compare and update the content to obtain
identical collections[B]. After that, they start to send periodically the Root Advice Interest [C],
until the collection is updated at one of the repositories.
However, in case of mobile clients that are regularly disconnected from the home repository,
the agent does not need to permanently check if the collection is updated and transmitting Root
Advice Interest would not result in any response. Therefore, the agent needs to synchronize the
mobile repository with the home repository only when it is connected to the Internet.

Temporary Synchronization
To resolve the lack of permanent synchronization, the agent needs to handle synchronization
with the agent proxy: it needs to control the beginning and the end of the synchronization
mechanism. As a result, the synchronization will be established temporarily when the agent is
connected to the Internet. Figure 3.7 illustrates a simple scenario of temporary synchronization:
when the user starts synchronization manually, mobile and home repositories define a collection
and start to exchange Root Advise Interests. When they detect that there is new content in the
mobile agent’s repository, the home repository will ask for it.

16

start

define col-
lection to be
synchronized

send Root
Advise Interest

reply
received?

compare
and update

A

B

C

yes

no

Figure 3.6: Flowchart of permanent synchronization

Figure 3.7: Temporary synchronization

17

Chapter 4

Implementation

In this chapter, the implementation is described step-by-step and is explained by works flows.
Three applications have been developed to implement the Agent-Based Content Retrieval mech-
anism:

* CCNRequester application: is provided to the requester node and it performs the delegat-
ing procedure.

* CCNAgent application: is provided to the agent node and it performs the content retrieval
and notification procedures.

* CCNSynchronization application: is provided to the agent node and it handles the syn-
chronization process.

4.1 Delegation Procedure on CCNRequester

Figure 4.1 illustrates a flow chart of the CCNRequester application, which is provided to the
requester node. First, an Interest (initialInterest), composed of the prefix /ferrying and content
name will be sent to any nodes in range as a multicast request [A]. To send agent requests to
neighbours, a multicast face needs to be configured, because the neighbors are not known. The
/ferrying prefix needs then to be registered to this multicast face. By that, initialInterest will be
transmitted to all neighbour nodes. The rest of the functionalities illustrated in flow chart 4.1
will be explained in subsection 4.1.1 and 4.1.2.

4.1.1 Processing of Incoming Agent Responses

Agent responses are processed within the handleAgentResponses function. This function checks
if a reply has been received and triggers the delegation process. It consists of the following
functionalities:

1. Extraction of the identity of the responders from the agent’s Data message.

2. Looking for other responses by calling getResponsesFromCache function. This function
transmits similar Interests as initialInterest but with two limitations: First, it should get

19

call handleAgentResponses

Send initialInterest

start

has received
a reply?

call getResponsesFromCache

Automatic
selection?

Ask user to
select agent
from a list

select one agent randomly

Send delegationInterest
Has

received a
notification?

agentInterval
is over?

Send Interest(/groupID)

call getContent

wait for sometime

Requester node

stop

A

B

D

C

yes

no

no

yes

no

yes

no

yes

Figure 4.1: Flow chart of the delegation process in the requester node

only the new responses. Then, the identity of the previous responders needs to be included
in the exclude list of initialInterest. Second, the Interest must be forwarded only to the
cache and not to neighbour nodes. Therefore, Interest scope is set to value ”0”.

The getResponsesFromCache function transmits the modified initialInterest and adds the reply
to the agent list which is provided to the CCNRequester application. This will be repeated pe-
riodically until the number of received responses reaches maxNumberAgents, which is specified
by the user, or the configurable parameter TIMEOUT CACHE is reached.

After receiving the list of available agents, only one agent should be selected at a time. The
selection is performed manually by the user or randomly if automatic selection is enabled [B].
After the agent is selected, the delegationInterest, i.e., an Interest containing the agent identity, is

20

sent to the corresponding agent. The structure of this Interest is provided in subsection 4.1.4.1.

4.1.2 Receiving a Notification

After sending the delegationInterest, as shown in Figure 4.1 step [C], the requester checks first
if it has already received any notifications that the content has been completely received by the
agent so that the requester can start the retrieval. Otherwise, the prefix groupID needs to be
registered to the multicast face. The requester waits for some time, i.e. probeInterval, and then
sends an Interest including the groupID asking all existing agents for a notification.
The requester transmits the notification request in groupID periodically at every probeInterval
until receiving a notification or until the agentInterval has passed. The agentInterval is the time
that the requester waits until asking a new agent [D]. After every agentInterval, the requester
goes back to step [A] and repeats the whole process, excluding the previously selected agents
from the next list of responders. This process will be repeated at each agentInterval until the
requester receives a notification or the timeoutRequest has been reached.

To avoid that Interests from previous agent requests are retrieved, the initialInterest has the
field AnswerOriginKind set to 0 to avoid any responses from the cache. This means that Inter-
ests are not answered from the content store. Also, to avoid the retrieval of previous answers
from the cache when creating the agent list, all the responses to agent delegations have a Fresh-
nessSeconds value much lower than the agentInterval. This means that if a new list is requested,
the previous answers are already stale. In our implementation, we set the FreshnessSeconds to
3 seconds and set the AnswerOriginKind field to 0, i.e. meaning no stale answer from content
store or application.

4.1.3 Retrieving the Content from the Agent

After receiving a notification, the requester can request the content as shown in Figure 4.2. The
CCNRequester retrieves the IP addresses of mobile and home repositories from the payload of
the received notification. Before asking for the content, a unicast face with the IP address of the
mobile repository needs to be created and the prefix /namespace has to be registered to this Face
[A]. If the agent node is still in the transmission range of the requester node, the content will
be successfully retrieved via the unicast face. Otherwise, if an error has been raised during the
content retrieval [B], another unicast face with the IP address of the agent’s home repository will
be created [C]. Whenever connected to the Internet, the requester can request the content from
there. Afterwards, when the retrieving process has been completed, a notification is sent to the
user to inform him or her that the requested content has been successfully received.

4.1.4 Data Structure

4.1.4.1 Delegation Interest Structure

The Delegation Interest is used to trigger the content retrieval at the agent node. It should
contain two components: ”remainingTime” and ”groupID”, which will be used by the selected

21

Notification has been received

Retrieves the
IP addresses

Create unicast face
with IP address of
mobile repository

Retrieve the content

Error during
the retrieval?

Send a notification to the user

Create unicast face
with IP address of
home repository

Retrieve the content

A

B

C

no

yes

Figure 4.2: Flow chart of the last part of the content retrieval process at the Requester node

agent.
The delegationInterest has the following structure:

/ferrying/nodeID/%C1.<namespace>˜<parameters>/remainingTime/groupID

* nodeID: is a short string representation of publisher public key digest, which identifies the
identity of the agent’s CCND.

* remainingTime: It specifies the remaining time the requester is looking for the content.
When this time is over the requester stops the delegation process. This time is transmitted
to the agent so that the agent does not need to look for the content anymore if this time is
over.

* groupID: is a hash of random number and is used to identify all agents that are used to
find a given content.

It is required to put the remainingTime as component and not as parameter, because the
agent needs to know where it can find the remainingTime from the received Interest. The

22

remainingTime is a mandatory component and should exist in every delegation Interest. The
<parameters>component is for optional information that can be related to the desired content
such as e.g., coordinates where the content can be found.

There are two possible delegationInterest structures:

1- /nodeID/ferrying/%C1.<namespace>˜<parameters>/remainingTime/groupID
2- /ferrying/nodeID/%C1.<namespace>˜<parameters>/remainingTime/groupID

In the first possibility, the requests would have been directed directly to /nodeID. However,
all requesters would need to register /nodeID within their FIB for a short time at each delegation
to forward these Interests to the wireless medium. In the second possibility, there is no need to
register any additional prefix within the FIB besides the /ferrying prefix. However in the second
option, all the neighbour agents will receive delegationInterest, but only the one, which has the
same identity (nodeID) responds.

4.1.4.2 Summary of the variables

Table 4.1 gives an overview of the variables mentioned in this section and their meanings.

probeInterval is the time the requester waits before asking for a
notification

agentInterval is the time the requester waits to delegate the content
retrieval to a new agent

timeoutRequest is the lifetime of the current request
maxNumberAgents is the maximum number of agents that the requester

can delegate the content retrieval to.
TIMEOUT CACHE is the time after which the CCNRequester applica-

tion stops to send the initialInterest to the cache ask-
ing for another response.

Table 4.1: Summary of the variables

4.2 Content Retrieval on CCNAgent

4.2.1 Processing of Incoming Interests

Figure 4.3 shows the tasks performed by the CCNAgent application. After starting the appli-
cation, an Interest filter with prefix /ferrying needs to be registered, so that any Interests whose
prefix matches /ferrying will be delivered to the handler of CCNAgent application. In addition,
a multicast face needs to be created and the prefix /ferrying has to be registered to it [A].

23

start

wait for request

has received
an Interest?

Is a Delega-
tion Interest

?

call replyToInitial-
Interest function

prepare a re-
ply (adding

the ID node)

send response

retrieve the
name of the

content needed

create
HelperThread

send an Interest
(/namespace)

to all neighbors

has received
a reply?

prepare the
repoInterest

and send it to
local repository

wait for some-
time(i.e

probeInterval)

Agent node

A

B

C

D

E

yes

no

yes

no

no

yes

Figure 4.3: Flow chart of CCNAgent application tasks

When the agent receives an Interest, a verification must be performed to detect if the received
Interest is an initialInterest or a delegationInterest [B]. First, if the current Interest matches only
the prefix /ferrying, the application calls the function replyToInitialInterest, which prepares a
reply message by appending /nodeID, and sends it to the requester [C]. Second, if the agent
receives the delegationInterest that matches the prefix /ferrying/nodeID, the application retrieves
the requested content name and creates another thread, i.e. the HelperThread, [D] that will take
charge of searching and getting the desired content. First, the prefix /<namespace > needs to
be registered to the multicast face so that the agent node can ask neighbor nodes for the content.
Then, the HelperThread will transmit an Interest in /<namespace > asking for the full name of
the content. Second, after receiving a reply from a content source [E], the HelperThread sends
an Interest (i.e. repoInterest) to the local repository asking it to get the content.

4.2.2 Repository Interest Structure

The repoInterest has the following structure:

24

ccnx:/<fullname>/%C1.R.sw/<NONCE>

First, the Interest should instruct the local repository to retrieve and store the corresponding
content. This is indicated by the start write command marker %C1.R.sw. Second, the repoInt-
erest should not be forwarded to any neighbour node and should be transmitted only to the
local repository. Therefore, the scope of repoInterest needs to be set to the value ”1”, i.e., only
targeting applications on the originating host.

The<NONCE>component is used for marking random nonce values designed to make re-
poInterest names unique. It is used to assume that the start write Interest, e.g. repoInterest, will
be received by the repository and might not be answered only from the cache.

4.3 Notification

Figure 4.4 shows the flow chart of the notification process: First, before the end of delegation-
Interest lifetime, the CCNAgent application checks if the content has been completely retrieved
by the repository. So, it reads a Boolean variable. This variable can be set to true only by the
HelperThread when it has completely retrieved the desired content. If the Boolean variable is
true, the notification is included in a delegationInterest Data packet. Otherwise, it waits until
the HelperThread reports that the content has been successfully written to the local repository
[C], as explained later in subsection 4.3.2, and then it will start listening to any Interest whose
prefix matches /groupID. Therefore, it needs to register a filter with prefix /groupID so that any
Interest, whose prefix matches /groupID, will be delivered to the CCNAgent application.

When the agent receives the Interest /groupID, it replies with the notification as a Data
message and unregisters the filter associated to prefix /groupID.

4.3.1 Notification Structure

The CCNAgent includes the current IP address of the agent node, which is automatically re-
trieved from the system, and the IP address of the home repository, which is configured by the
user at startup, in the payload of the notification Data packet.

The payload Data is structured as follows:

/IPM/<IP Address of Mobile Repo>/IPH/<IP Address of Home Repo>

IPM indicates that the following IP address is the IP address of the agent’s mobile repository.
IPH means that the following IP address is the IP address of the home repository.

4.3.2 Verification Mechanism of Content Retrieval at Agent Node

Since the repository does not give any notifications when a content retrieval is finished, a ver-
ification process must be performed to ensure that the content is completely retrieved. Only if
the content retrieval is complete, the notification message can be transmitted. There were three
proposals to achieve that:

25

start the notification process

Content has
been

written?

wait for the
content to
be stored

wait for request
about /groupID

has received
an Inter-

est(/groupID)?

prepare the
notification

message

reply by the
notification

message

Agent node

A

B

C

No

yes

Yes

no

Figure 4.4: Flow chart of the notification process

* Trying to get the last segment. However, there’s no guarantee that the blocks are written
in order and all blocks prior to the last segment have been received.

* Using the ”checked write” command. However, checked write only guarantees that the
requested block has been written and it used with the first block to get a general idea that
the repository has begun writing the file.

* Trying to read the file: is the approach applied in this work, and explained below.

Figure 4.5 illustrates the flow chart of the verification process. The verification process
starts by reading the content as normal sequential reading in CCN [A]. The reading must be
performed from the local repository and not from the neighbors. To achieve this, the scope of
every Interest during the reading procedure must be set to value ”1”.
If the reading process has successfully passed, the HelperThread can report to the CCNAgent
application that the content has been written [B]. Otherwise, if the reading procedure raised any
errors when getting a given segment, the HelperThread remembers the number of the failed
segment and waits for a short readInterval until trying to read the failed segment again [A]. In
case of large files, the file transfer may not be finished yet and the read process may have reached
the last received segment. If this is the case, then a second read attempt after the readInterval may
be successful. If the reading fails twice at the same segment [C], it will wait for writeInterval,

26

start to write the content

send repoInterest
to the local
repository

wait for
short time

(readInterval)

try to read
the content

A

has failed to
read a

segment?

is the
previous

failed
segment?

wait for
probeInterval

Notification

B

C

D

yes

yes

No

no

Figure 4.5: Flow chart of the verification mechanism in the agent node

and then it will send once again the repoInterest (see subsection 4.2.2 for its structure) to the
local repository [D] trying to let it retrieve the complete file. At this time, the HelperThread tries
to read the file from the previously failed segment. The HelperThread repeats this process until
the reading is completed successfully or the remainingTime is over.

Table 4.2 gives an overview of the variables mentioned in this subsection and their mean-
ings.

4.4 Resuming Disrupted Transfers

If the content source gets disconnected and the repository cannot retrieve a specific segment
during the content retrieval, the repository will abort the content retrieval after some time. At
this point, the reading process will obviously fail to check if a file transfer is complete. As

27

writeInterval is the time the agent waits before asking the repos-
itory again to get the content, if the repository has
failed to retrieve the content at the first time

readInterval is the time the agent waits to check if the missed
segment has been stored in the repository

Table 4.2: Summary of the variables

explained in the previous subsection, the agent will wait for writeInterval before asking the
repository to retrieve the content again. Even if the previously failed segments are already stored
in the repository, the repository does not remember already received segments and requests these
segments again. The Interests are forwarded to the CCND and since the CCND receives these
Interests from the repository’s internal face, it cannot forward it back on the same face. As
a result, the CCND will forward these Interests via the multicast face to the neighbors if the
content is not available in the cache anymore. To avoid new requests in already received content
objects, the already stored segments need to be loaded in the content store so that the repository
can get the previously stored segments from the content store and does not need to forward
Interests to its neighbors. Loading segments from the repository to the content store needs to be
done in parallel a little bit before the repository asks for the content so that all requests can be
satisfied just from the cache and do not need to be forwarded to neighbors.
If the repository asks for a segment that is not yet loaded in the content store, the CCND will
forward the Interest to the neighbors and a duplicate content object will be received, because
until the segment is received from the neighbors it is also loaded from the repository.
There are two approaches to avoid the forwarding of such Interests resulting in duplicates:

1 - Forcing the CCND to not forward any Interest from the repository when loading the
already received segments. Then, the repository will get the previously stored segment only
from the content store. This can be enforced by unregistering the prefix /namespace from the
multicast face and register it again after the loading process finishes. After registering the prefix
again, the remaining segments can be forwarded to neighbors. However, the main drawback is
that the Interests are still created by the repository but are just dropped at the ccnd. Also, no
concurrent file transfer under the prefix /namespace is possible.

2 - Starting the loading process a bit before than the repository’s retrieval process. Thus,
the repository’s retrieval will be started with a delay. Then, after this delay, the content may
already be in the content store and the Interest may not be forwarded. However, it is difficult
to define the sufficient delay. It should not be too short so that there is enough time to load
all segments from the repository and no Interests need to be forwarded, which may generate
received duplicate ContentObject. In addition, it should not too long so that the first few content
segments are not already replaced by higher segment numbers due to the limited cache size. We
tested delays starting from 200 ms to 2 seconds, but in all cases at some point of the repository’s
retrieval process, some Interests are still forwarded to the neighbors.
We evaluated both solutions as shown later in Section 5.1. The evaluations show that approach
2 results in 41% more received duplicate content objects than approach 1. For this reason, we
integrated the approach 1 to the CCNAgent application.

28

Another solution to resume file transfers is proposed in [8]. It uses the meta information, which
contains the name and the version of the content object, the next segment to receive and the
position of the partial data file. When the transfer starts, partial data is stored to the file system.
If an Interest timeout, the meta information will be also stored to the file system. When the
connectivity is regained and the transfer is restarted, the stored meta information is used to
provide information about the next needed segment. Then, the retrieval process starts to load
the file only from the previous failed segment. However, this mechanism allows storing already
received segments only locally without providing it to others. This means signatures and CCN
header information are not stored. However, in the agent-based content retrieval as explained
in 3.2.4, the agent needs to retrieve the content with the original signature so that it will be
trustworthy for the original requester.

4.5 Synchronization with the Home Repository

The synchronization between mobile and home repository can be performed whenever the mo-
bile repository is connected to the Internet. For simplicity, in this work, the synchronization
is started and stopped manually by the user on demand. The CCNSynchronization application
needs some information to establish the synchronization between the mobile and home reposi-
tories:

* IP Address of the home repository: Before starting the synchronization, the agent node
needs to establish a connection with the home repository so that the Root Advise Interests
can be forwarded from the agent node to the home repository. Therefore, the CCNSyn-
chronization application should first create a unicast face with the IP address of the home
repository.

* Collection prefix: Collection names need to be defined in the mobile repository to be
automatically synchronized with identical collections in the home repository. In this work,
the collection prefix must be provided by the user when starting the CCNSynchronization
application.

As a result, the agent node can synchronize all content under the specified collection prefix
with the home repository. There are two possibilities to define collections and keep all data
in the mobile repository synchronized with the home repository:

1. Mobile and home repositories need to define a special meta collection that will con-
tain only the list of names and file versions that need to be stored in the home repos-
itory. The home repository will retrieve new files and versions from this collection
and later ask the mobile repository for the content. As a result, all the data in the
mobile repository will be synchronized with the home repository.

2. The agent has to send to the home repository the prefix of the new content, so that
the home repository can define a collection with the received prefix and establishes
synchronization with the new collection prefix.

29

In the agent proxy, i.e. home repository, the synchronization is started manually by the user:
the FIB entry and the definition of the collection are configured manually.

The CCNSynchronization application is based on the CCNx synchronization library, First,
CCNSynchronization registers a unicast face in the FIB with the static IP address of the home
repository and defines a collection using the prefix name provided by the user. Then, the syn-
chronization will be started. Second, the application needs to know when the repositories are
completely synchronized. To achieve that, Root Advise Interest will be transmitted periodically
to check if the repositories have the same hash of the sync tree for the collection. The Root
Advise Interest contains the combined hash of the sync tree for the collection. When the home
repository receives the Root Advise Interest, it will compare the root hash in the received Inter-
est with its own root hash. If they do not match, it will respond with its own root hash and the
root node of its collection and then the CCNSynchronization application will report to the user
that the repositories need to be synchronized. If the root hashes are the same, no response will
be sent and then CCNSynchronization application reports to the user that the repositories are
synchronized. When the user manually stops the synchronization, the previously created slice
will be deleted together with the created unicast face.

Since the IP address of the mobile repository may change depending on the network it is
attached to, the home repository needs to receive the current IP address from the agent. To
achieve this, the mobile repository needs to connect to the home repository to inform it about its
current IP address. The home repository needs to listen to such information messages from the
mobile repository and configure the FIB with the current IP address of the agent.

4.6 Graphical User Interface

4.6.1 CCNRequester application GUI

Fig 4.6 a) shows the screen shot of the graphical user interface (GUI) of the CCNRequester
application. The user needs to enter the following parameters:

• Namespace: is the name of the desired Content

• Parameters: other parameters that may be used in order to find the content such as e.g.,
coordinates where the content can be found.

• Lifetime: corresponds to timeoutRequest as described in Section 4.1.2. It is the lifetime
of the request.

• Filename: the name of local file where the data save, i.e., how locally stored files are
named.

• Agent interval: corresponds to the agentInterval variable as described in Section 4.1.2.
This is the time the requester waits before looking for a new agent.

• Number of agents: is the maximum number of agents that the requester can delegate the
content retrieval to. It corresponds to the variable maxNumberAgents in Section 4.1.1

30

• Probe interval: corresponds to the probeInterval variable as described in Section 4.1.2. It
is the time the requester waits before asking for a notification.

• Selection of agent: the user needs to select the agent from the agent list either manually
or let it be selected automatically, as explained in Section 4.1.1.

Afterwards the user can start the application.
If the user selects manual agent selection, the application receives a list of available agents

and a pop-up window opens with the list of all available agentId as shown in Figure 4.6 b).
Then, the user can select one agent to delegate the content retrieval to. Additionally, another
pop-up window will open at the end of the content retrieval to inform the user that the data has
been successfully stored (as shown in Figure 4.6 c)).

4.6.2 CCNAgent application GUI

CCNAgent and CCNSynchronization applications are handled in the same GUI, shown in Fig
4.7. The user needs to enter the IP address of the home repository as well as the collection prefix
for the synchronization. Also, he or she needs to enter the Write Interval and Read Interval
before starting the agent retrieval process. These values correspond to the writeInterval, i.e. the
time the agent waits before asking the repository to retrieve the content, and the readInterval, i.e.
the time the agent waits before it checks if the missed segment is already stored in the repository.
More details on these intervals can be found in Section 4.3.2.

31

a) b)

c) d)

Figure 4.6: CCNRequester application GUI

32

Figure 4.7: CCNAgent and CCNSynchronization applications GUI

4.7 Deployment on Smart Phone: Ad-hoc Networking Support
for Android

Unfortunately, Android does not support ad-hoc networking. With Android devices as delivered
in smart phones, is neither possible to connect to an ad-hoc network nor create a new one. It was
therefore required to manually root Google Nexus 4 devices, which are the devices used during
this thesis, to get root access on the underlying Linux system and try to bypass that restriction.

With Android’s Linux tools, it is possible to overcome the lack of support for ad-hoc net-
working by manually configuring the network.
To create a new ad hoc network, the iwconfig program from the Wireless Tools for Linux pack-
age was therefore added to the phone. Afterwards, the interface can be put into ad-hoc mode
by configuring the ad-hoc mode using the appropriate sequences of iwconfig commands as de-
scribed in Appendix 7.1.1). By that, it is possible to create an ad hoc network and connect to
this network from any laptop or non-Android device. However, the Google Nexus 4 devices
cannot connect to an existing ad-hoc network. The following techniques were tried as suggested
online but without any success. These techniques require a rooted devices and su (super-user)
priviledges which need to be added to the device as explained in 7.1.5.

33

* Manually configure the wpa supplicant to connect to an ad hoc network
This method uses the wpa supplication settings file to force the driver to go to ad-hoc
mode. So wpa cli utility is used for interacting with wpa supplicant and needs to be
added to the phone. In Appendix 7.1.2, description of how to apply this method is given.
We applied this method in the Google Nexus 4 devices: the wpa supplicant attempts to
connect to the network but never succeeds.

* Apply ”Enable Wifi Ad Hoc mode” application
It enables WiFi Ad Hoc mode on supported Android devices. This application replaces
wpa supplicant with another one, which supports ad hoc network. However, the current
application is not compatible with the Google Nexus 4 device. So the wifi cannot be
enabled with the new wpa supplicant.

* Edit the wpa supplicant.conf
This method modifies directly the configuration file for the wpa supplicant as described in
Appendix 7.1.3, the result of applying this method in Google Nexus 4 devices is the same
result found in the first method: the wpa supplicant tries to connect but it never succeeds
to establish the connection.

* Modify the android source code to enable ad hoc wifi
Edit the source code of the wpa supplicant as well as the wireless settings. Afterwards,
the new code source can be built and the new image system can be flashed to the phone,
see Appendix 7.1.4 for more details. After flashing the new image system to the Google
Nexus 4, it was able to see the ad hoc network in the Wi-Fi settings, but could not connect
to it.

All these methods were applied in Google Nexus 4 devices, but none of them fixes the issue of
not being able to join existing ad hoc networks. According to the posts in forums [26] and [27],
Nexus 4 uses a different Wi-Fi chipset, and this could be the reason why these methods do not
work. The forums [26], [27] and [28] have already started to discuss about the problem of ad hoc
network in Google Nexus 4 devices, but it has not been solved yet. We have also introduced our
issue of not being able to join existing ad hoc networks with Google Nexus 4 devices in forums
Android Enthusiasts [29] and Android Central [30], but unfortunately the proposed methods
from the members of these forums did not fix it. So, this question is still open.

34

Chapter 5

Evaluation

In this chapter we measure the performance of the developed CCNAgent, CCNRequester and
CCNSynchronization applications. In addition, we investigate:

* The throughput difference between a normal content retrieval, e.g. using the ccngetfile
application, and the content retrieval through an agent.

* The influence of the parameters: Probe Interval, Agent Interval.

5.1 Preliminary Results

In this Section, we present the evaluation results of the two approaches to resume disrupted
transfers. As explained in Section 4.4, there were two possibilities to avoid or reduce the
received duplicates when reading content from the repository for a resume operation:

• Approach 1: Forcing the CCND to not forward any Interest from the repository when
loading the already received segments.

• Approach 2: Starting the loading process a bit before than the repository’s retrieval pro-
cess.

We evaluated both approaches with a file size of 4MB, and a variable delay, which equals the
number of already stored segments multiplied by 10ms. The results are shown in Figure 5.1.
The y-axis shows the number of received duplicate content objects.

Figure 5.1 shows that approach 2 results in 41% more received duplicate content objects
than approach 1. Therefore, in the following evaluations we use approach 1. As we can see in
Figure 5.1, even with approach 1, when the prefix is unregistered from the multicast face and no
Interests can be forwarded to neighbors during the loading process, still some duplicate content
objects are received. In approach 1, the duplicate content objects are not generated during the
loading process but received during the regular retrieval of segments from the content source.
If content objects get slightly delayed until they are returned to the repository of the agent, the
Interest timeout may be reached and Interests are reexpressed resulting in content duplicates.

35

 10

 20

 30

 40

 50

 60

 70

#
 D

u
p

lic
a

te
 C

o
n

te
n

tO
b

je
c
t

re
c
e

iv
e

d

Approach 1
Approach 2

Figure 5.1: Number of received duplicate content objects for a file size of 4MB.

5.2 Topology

The evaluation is performed on Android smart phones, i.e. Google Nexus 4 devices, and a
laptop, i.e. an Apple MacBook Pro. The smart phones were running Android 4.2.2. Three Nexus
4 devices were used, two of them as agent nodes and the third one as requester. Since the Nexus
4 devices do not yet support ad hoc networking, the evaluation is performed in infrastructure
mode. The evaluations are performed in three scenarios:

1. Scenario 1: Figure 5.2 a), illustrates the topology of the scenario. Furthermore, it shows
the assigned frequencies and the used IP address configuration. It shows a network with
three CCN nodes: two smart phones and a laptop.

* Laptop (CCN node 1) acts as a content source

* Smart phone 1 (CCN node 2) acts as requester node

* Smart phone 2 (CCN node 3) acts as agent node

2. Scenario 2: Figure 5.2 b), illustrates the topology of the scenario. It shows a network
with two CCN nodes: a smart phone and a laptop.

* Laptop (CCN node 1) acts as agent proxy, i.e. home repository.

* Smart phone (CCN node 2) acts as agent node
In this scenario, we evaluate the synchronization between the agent proxy and the
home repository.

3. Scenario 3: Figure 5.2 c), illustrates the topology of the scenario. It shows a network with
three CCN nodes: two smart phones and a laptop:

* Laptop (CCN node 1) acts as a content source

* One smart phone (CCN node 2) acts as requester node

* Two smart phones (CCN node 3 and 4) act as agent nodes

36

(a) Scenario 1 (b) Scenario 2

(c) Scenario 3

Figure 5.2: Testing architectures

5.3 CCNx configuration and Network Setup

The CCNx-Android-Services application, a wrapper for the ccnd daemon and the repository, is
installed on every Android device. CCNx-0.7.1 is installed on the laptop and the smart phones.
The configuration of CCNx, such as the definition of forwarding entries, is automatically per-
formed by the CCNAgent, CCNRequester and CCNSynchronization applications on the An-
droid devices. At start up of CCNAgent application, a multicast face is created with port 59695
and the prefix /ferrying is registered to it. At each delegation, the CCNAgent application regis-
ters the content name prefix to the multicast face and unregisters it after sending a notification or
when the request lifetime has passed. More details can be found in Section 4.1. At start up of

37

CCNRequester application, the multicast face is also created with the same port and the prefix
/ferrying is registered to it as well as the prefix /groupID. After receiving a notification con-
taining the IP address of the agent’s mobile repository, the CCNRequester application creates a
unicast face and registers the content name prefix to this face. More details are given in Section
4.2. The FIB on the laptop needs to be configured manually. The following configurations are
used:

* In scenario 1 and 3, when the laptop acts as content source, we have to manually configure
the FIB to support multicast overhearing. Thus, a multicast face needs to be configured in
the laptop with the following command:

ccndc add / udp 224.0.23.170 59695

The prefix ”/” matches all possible prefixes and means that everything is forwarded to the
multicast face.

* In scenario 2: when the laptop acts as agent proxy, at start up it is required to manually
define the collection that needs to be synchronized using the following command:

ccnsyncslice -v create ccnx:/topo ccnx:/data

The prefix /topo is the topological prefix used by Sync Agents to exchange information
about the collection such as Root Advise Interests.

The prefix /data is the collection prefix, i.e. the common prefix for all names in the
collection to be synchronized with the agent’s mobile repository. All content objects inside
the collection are synchronized between home and mobile repository.

Therefore, the same /data prefix needs to be used by the agent node at start up of the syn-
chronization to define the collection to be synchronized with the home repository. Addi-
tionally, because synchronization may only be performed when connected to the Internet,
the agent proxy needs to add a unicast face on the FIB with the IP address of the agent
node using the following command:

ccndc add ccnx:/ udp 10.0.2.2

The IP address 10.0.2.2 belongs to the mobile agent node.

In the evaluation of scenario 1 and 3, a simple modification in the CCNRequester applica-
tion is required: at content retrieval phase, when the agent retrieves the content from the
content source over the multicast face, the requester will also receive the content because
it is in the same infrastructure network (cf. fig. 5.2 a) and 5.2 c)). Therefore, the requester
may hold the content in its cache already prior to receiving the notification. To avoid re-
trieving the content from the cache, emulating the situation where the content source and
the requester are not in the same network, the Interest messages set the AnswerOriginKind
field to 0 indicating that no answer from the content store is accepted. This modification
is required only in the evaluation setup of this thesis because all the nodes are in the same
network and the transmission is performed over multicast.

38

5.4 Evaluation Results

5.4.1 Scenario 1: Content Retrieval via an Agent

In scenario 1, we evaluated the complete agent-based content retrieval. Figure 5.3 c) shows the
message sequence between all nodes used in this scenario. The evaluated mechanism includes
agent delegation (step 1), content retrieval (step 2) and notification (step 3) until the requester
receives the entire content (step 4). The used segment size is 4096 Bytes.

Requester Content Source

Interest: segment 0

Data: segment 0

Interest: segment 1

Data: segment 1

Interest: segment 2

Data: segment 2

Interest: last segment

Data: last segment

(a) Normal content retrieval using cc-
ngetfile application over one hop

Requester Node x Content Source

Interest: segment 0

Interest: segment 0

Data: segment 0

Data: segment 0

Interest: segment 1

Interest: segment 1

Data: segment 1

Data: segment 1

Interest: segment 2

Interest: segment 2

Data: segment 2

Data: segment 2

Interest: last segment

Interest: last segment

Data: last segment

Data: last segment

(b) Normal content retrieval using ccngetfile application
over two hops

Requester Agent Content Source

Step 1

Step 2

Step 3

Step 4

-
-

-
-

-
-
-

Initial Interest

Data
Delegation Interest

Notification request

Notification request

Notification request

Interest: segment 0

Data: segment 0

Interest: segment 1

Data: segment 1

Interest: last segment

Data: last segment

Notification

Interest: segment 0

Data: segment 0

Interest: segment 1

Data: segment 1

Interest: last segment

Data: last segment

(c) Agent Retrieval

Figure 5.3: Content retrieval using ccngetfile application over one-two hops and through an agent

39

Parameters of CCNRequester application
Probe Interval 5s
Agent Interval 2min
Number of agents 2
Parameters of CCNAgent application
Reading Interval 1s
Writing Interval 30s

Table 5.1: Evaluation settings of scenario 1

5.4.1.1 Unicast vs Multicast Communication

In the default configuration of the implemented mechanism, the transmission of messages, be-
tween requester and agent in step 1 and between agent and content source in step 2, is performed
using multicast communication. However, between requester and agent in step 4, the message
transmission is performed using unicast communication, because the agent selects a single agent
and uses the IP address received in the notification Data. In this evaluation, we intend to evaluate
the throughput difference of the implemented mechanism using the following communication
modes between the agent and the content source:

1. First, we used the default configuration of the implemented mechanism, where the trans-
mission between the agent and the content source, the transmission of Initial and Delega-
tion Interests at step 1 and the transmission of notification requests at step 3, are performed
via multicast communication. The content retrieval by the requester in step 3 is performed
using unicast communication.

2. Second, we kept the same configuration as in the previous test except the transmission
between the content source and the agent at step 2, it is performed via unicast commu-
nication for this test. Therefore, a unicast FIB entry with the IP address of the content
source is registered manually on the agent’s FIB.

We measured the throughput for file sizes of 200KB, 1MB, 4MB, 10MB, and 20MB. For
each file size 50 test runs were performed. The evaluation parameters are shown in Table 5.1.
A short description of the parameter meanings can be found in Tables 4.1 and 4.2.

File size
200KB 1MB 4MB 10MB 20MB

Multicast 66 137 175 197 195
Unicast 84 301 719 931 1020

Table 5.2: Medium values of the throughput in kbps.

Figure 5.4 shows the throughput when transferring files of different sizes until the requester
retrieves the content. The y-axis shows the throughput in kilobits per second (kbps). The x-
axis displays the transferred file sizes. Table 5.2 shows the median values of the throughput.

40

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

th
ro

u
g
h
p
u
t
[k

b
p
s
]

file size [MB]

0.2 1 4 10 20

Multicast
Unicast

Figure 5.4: Throughput of the implemented mechanism tested with unicast and multicast communication
between the agent and the content source.

As one can see, the throughput of the implemented mechanism in multicast communication is at
around of 200 kbps for files larger than 1MB. However, depending on the file size the throughput
in unicast communication is between 0.5 and 5 times higher for file sizes of 1MB and 20MB.
The throughput is higher in unicast communication because of a faster transfer rate due to rate
adaption and faster retransmission in case of collisions. For small file sizes of 200KB, there
is no difference between unicast and multicast communication. This is because, the message
overhead during step 1 and step 4, which is performed in multicast for the both tests, is larger
compared to the data transmission during step 2.

5.4.1.2 Agent Retrieval vs Regular Retrieval over two hops

We compare the content retrieval through an agent with a regular content retrieval, e.g. using the
ccngetfile application. In the first test, we performed the forwarding of Interests via unicast on
the first hop and multicast in the second hop. In the second test, we performed the forwarding
of Interest using unicast communication in both hops.

5.4.1.2.1 Multicast and Unicast communication

In order to compare the agent-based content retrieval with Interest forwarding using ccngetfile,
we performed the following three tests:

1. We measured the throughput of the content retrieval using the ccngetfile application over
one hop between the requester and a content source via multicast. The requester gets the
content directly from the content source as shown in Figure 5.3 a). This measurement is
only performed as reference.

2. We measured the throughput of the content retrieval using the ccngetfile application over
two hops communication as shown in Figure 5.3 b). The requester asks node x for the

41

content and node x forwards the Interests to the content source. Figure 5.5 illustrates the
topology used for this test: First, the requester has a unicast entry in the FIB with the
IP address of node x. Then, the requester sends Interests out over the unicast face, i.e.
face2. Interests received by unicast will cause node x to automatically create a unicast
face with the IP address of the sender and the replies are automatically transmitted via
this face. Second, a multicast face, i.e. face1, is configured at node x to forward Interests
via multicast to a (unknown) content source. We used unicast communication in the first
hop between the requester and node x and multicast communication in the second hop
between node x and the content source. The scenario is configured like that to generate
a scenario similar to the agent-based content retrieval where content retrieval between
agent and content source (step 2 in Figure 5.3 c)) is performed via multicast and between
requester and agent (step 4 in Figure 5.3 c)) via unicast (see also subsection 5.4.1.1 for
more information).

3. We measured the throughput of content retrieval via agent as configured in Figure 5.2 a)
transmitting all messages via multicast, including step 1, 2 and 3 in Figure 5.3 c). Step 4
is performed in unicast communication.

Figure 5.5: Topology used to evaluate ccngetfile application over two hops.

Figure 5.8 shows the throughputs of ccngetfile via one or two hops as described above
and the implemented agent-based content retrieval. Table 5.3 shows the median values of the
throughput. Obviously, the throughput of ccngetfile over two hops is approximately halved
compared to the direct transmission via one hop because every Interest and Data message is
transmitted twice due to intermediate forwarding. However in ccngetfile via one hop, Interests
from the requester are received directly by the content source and then Data messages are trans-
mitted directly from the content source to the requester. When comparing the content retrieval

42

 0

 100

 200

 300

 400

 500

th
ro

u
g
h
p
u
t
[k

b
p
s
]

file size [MB]

0.2 1 4 10 20

Agent retrieval
ccngetfile application: two hops
ccngetfile application: one hop

Figure 5.6: Throughput of the implemented mechanism compared with ccngetfile content downloads.
The communication is performed via unicast and multicast according to the test setups.

File size
200KB 1MB 4MB 10MB 20MB

Agent retrieval 66 137 175 197 195
ccngetfile : two hops 124 157 152 157 165
ccngetfile : one hops 247 350 376 399 379

Table 5.3: Medium values of the throughput in kbps.

via an agent and the normal retrieval over two hops, as we can see in Figure 5.8, with ccngetfile
over two hops, the agent-based retrieval results in approximately 20% higher throughput for files
larger than 4MB. However, for file sizes smaller than 1MB, ccngetfile results in higher through-
puts than the agent-based content retrieval. This behavior can be explained with the help of the
message sequence of ccngetfile in Figure 5.3 b) and the agent-based retrieval shown in Figure
5.3 c). In the agent-based content retrieval, the two hops file transfer is performed subsequently.
First, the agent retrieves the content from the content source via the multicast communication
(step 2) and after the file is finished and the requester has received the notification, it can retrieve
the content from the agent via unicast (step 4). Therefore, the transfer rate on each hop can reach
the maximum capacity. With ccngetfile over two hops in Figure 5.3 b), the file transfer via node
x is performed in parallel and not subsequently as with the agent retrieval. Node x receives an
Interest from the requester via the unicast face and forwards it to the content source via the mul-
ticast face. Then, the transmission is limited by the ”weakest link” (the smallest transfer rate,
which is the multicast transfer rate between agent and content source). For large files this behav-
ior is problematic because unicast requests are only satisfied if the forwarded multicast requests
are satisfied as well. Therefore, complete file transfer is limited by the multicast transfer speed
and unicast Interests may timeout and need to be reexpressed decreasing the throughput. For
smaller file transmissions below 1MB, the relative overhead for agent delegation in step 1 and

43

notification in step 3 is higher and therefore the agent-based retrieval results in a lower through-
put than with ccngetfile where no delegation and notification is performed. The throughput has
been decreased for file size 1 MB by 20% and for 200 KB by 80%.

5.4.1.2.2 Unicast Communication in two hops

In this part, we compare the agent-based content retrieval with the regular retrieval using the
ccngetfile application if all data communication on both hops (except agent delegation and noti-
fications in the agent-based approach) is performed via unicast. We performed the two following
tests:

* First, we measured the throughput of the content retrieval using the ccngetfile application
over two hops communication as shown in Figure 5.3 b). However in this test, the
transmission between requester and node x and between node x and the content source is
performed using unicast communication. Figure 5.7 illustrates the topology used for this
test. It shows also the FIB configuration of each node: The requester has a unicast entry
in the FIB with the IP address of node x. Then, the requester sends Interests out over
the unicast face, i.e. face2. At node x a unicast face to the content source, i.e., face 1 is
configured.

* We measured the throughput of the agent-based content retrieval as configured in Figure
5.2 a). The FIB is automatically configured by the applications. The agent delegation
and content notification are performed via multicast. After receiving a notification, the
requester performs the content retrieval via unicast. The content retrieval between agent
and content source (step 2 in Figure 5.3 c) is also performed via unicast. This test was
only performed to compare agent-based content retrieval with ccngetfile. In practice, an
agent would not be able to forward requests to a content source via unicast because the IP
addresses of available content sources are not known.

Figure 5.7: Topology used to evaluate ccngetfile application over two hops unicast communication.

Figure 5.8 shows the throughputs of ccngetfile via two hops as described above and the
agent-based content retrieval. Table 5.4 shows the median values of the throughput. When using
unicast communication over both hops, the throughput of ccngetfile is by a factor of 2.5-3 higher

44

 0

 1000

 2000

 3000

 4000

 5000

th
ro

u
g
h
p
u
t
[k

b
p
s
]

file size [MB]

0.2 1 4 10 20

Unicast: ccngetfile
Unicast: Agent retrieval

Figure 5.8: Throughput of the implemented mechanism compared with ccngetfile content downloads.
The communication is performed via unicast according to the test setups.

File size
200KB 1MB 4MB 10MB 20MB

Agent retrieval 84 301 719 931 1020
ccngetfile : two hops 208 828 1742 2707 3171

Table 5.4: Medium values of the throughput in kbps.

than the agent-based content retrieval. This is because in the agent based content retrieval, the
agent’s repository needs to store each received segments, which is on secondary storage, while
everything can be forwarded via the cache with ccngetfile. Storing files in a repository is an extra
effort, which is performed in addition to the cache. If file transfers are performed subsequently as
with the agent-based approach, some segments may not be in the cache of the agent anymore due
to cache replacements and need to be retrieved from the repository, particularly, if transmitting
large files. Because repository storage is slower than the content store, the overall throughput is
slower. When using the ccngetfile application, node x can forward content directly via the cache.
For small files of size 200KB or 1MB, the agent may also forward content to the requester via
its cache. However, for small files, the overhead of agent delegation and notification is larger
compared to the effectively transmitted data. Therefore, ccngetfile is also more efficient for
small files. However, in dense networks where many data objects are requested from many
content sources, cache replacements would be performed even faster. If the content is stored
additionally on secondary storage as in the agent-based approach, similar requests from other
requesters do not need to be forwarded to the original content source and can be directly satisfied
by the agent’s repository. This would result in a higher throughput compared to ccngetfile.

45

5.4.1.3 Message Exchange

In scenario 1 as configured in Figure 5.2 a), we measure also the transmitted Interests and
received ContentObjects at the agent node. Figure 5.9 illustrates the transmitted and received
messages at the agent. It comprises the Interests sent from the agent to the content source, the
received Interests from the requester, the received ContentObject from the content source, the
ContentObject sent to the requester and the number of received duplicate ContentObjects at the
agent. We performed 50 test runs to transfer a 200KB, 1MB, 4MB, 10MB and 20MB file. The
values for the probe interval, agent interval, reading interval and writing interval are the same as
in Table 5.1. The y-axis shows the number of messages. The x-axis shows the transferred file
sizes. Table 5.5 shows the medium values of the exchanged messages.

 0

 1000

 2000

 3000

 4000

 5000

 6000

#
 m

e
s
s
a
g
e
s

file size [MB]

0.2 1 4 10 20

Interest received
Interest sent
Content received
Content sent
Duplicate

Figure 5.9: Message exchanged at the agent node tested using different file sizes.

The number of received Interests at the agent is slightly higher. The agent transmits an
Interest for every content segment in the content retrieval phase (step 2 in Figure 5.3 c)) and
receives an Interest from the requester for every content segment after the notification (step 4 in
Figure 5.3 c)). Additionally, the agent receives at least two Interests during the Agent delegation
phase (step 1 in Figure 5.3 c)), i.e. the initialInterest and delegationInterest. Depending on the
transmission time of the content, the agent can even receive more Interests, namely, one Interest
after every agent interval, i.e., in this evaluation set to 2min, with which the requester asks for a
new agent, and one Interest every probe interval, i.e., in this evaluation set to 5s, with which the
requester asks for a notification from existing agents (step 3 in Figure 5.3 c)).

Therefore, the number of received Interests increases for increasing file sizes because of
longer transmission times. As shown in Table 5.5, the number of received Interests is higher
at the agent by around 2.4-7% for all transferred file sizes, expect the file size of 1MB. Since
the communication between the agent and content source is performed via multicast, it is more
susceptible to collisions than with unicast where retransmission is performed automatically by
the MAC layer. Therefore, the agent may send more than one Interest for each segment and then
the number of transmitted Interests may be larger than the number of received Interests. Thus,

46

the difference between received and transmitted Interests may be less than three (initialInterest,
delegationInterest, notification request). In this evaluation, the agent interval was set to 2min. If
file transmission takes longer than two minutes, the agent will receive an additional initialInterest
but will not answer it because it already replied to the agent delegation.

The numbers of received and transmitted content objects are approximately the same. There
are two more content object transmissions than receptions. The agent will receive and send a
Data message for every received segment. Every selected agent transmits an additional Data
message during the agent retrieval (step 1) and one Data message as notification reply after the
file is completely retrieved (step 3).

file size Interests sent Interests received
ContentObjects received
without duplicate

ContentObjects sent
without duplicate

200KB 57 61 51 53
1MB 271 272 257 259
4MB 1063 1095 1025 1027
10MB 2648 2729 2561 2563
20MB 5299 5429 5121 5123

Table 5.5: Medium values of exchanged messages in scenario 1.

5.4.1.4 Influence of Probe Interval

In this section, we evaluate the influence of the probe interval on the transfer time and on the
number of the notification requests sent by the requester in scenario 1 shown in Figure 5.2 a).
Figure 5.10 shows the relation between the probe interval and the transfer time. It illustrates
also the steps performed during the agent-based content retrieval process in this scenario. The
requester starts by transmitting Initial Interest, i.e. Int1. At this point the transfer time is started.
After receiving a reply from agent 1, i.e. Data1, it transmits Delegation Interest to it. When
the agent receives this Interest, it can start requesting the content and therefore, the content
retrieval time on the content source starts. After the requester has delegated the content, it probes
every probe interval the environment to see whether one of the delegated agents has received the
corresponding content and can reply with a notification. After an agent interval of not receiving
a notification, the requester can delegate the content retrieval to a new agent. This procedure is
repeated until a notification is received or the request lifetime is over.
The transfer time can be expressed by the formula:

tt = trc + tdc + tra + tdr (5.1)

where
tt : total transfer time
trc: effective transfer time between agent and content source
tdc: disconnection time between agent and content source
tra: time until requester retrieves the complete file from agent.
tdr: time until requester detects that agent has received the complete content.

47

Thus, transfer time depends on 1) time until the agent sees the content source and 2) time
until the requester gets the notification from the agent. Depending on the mobility of the nodes,
the probe interval may result in a quicker detection of the agent (tdr). With increasing probe
interval, also the detection granularity increases and, therefore, possibly also tdr. As the probe
interval increases so that tdr does. However, with decreasing probe interval, the number of trans-
mitted notification requests increases. Every notification request will only trigger a response if
an agent has retrieved the file completely.

Agent

Requester

Content
Source

Int1 = Initial Interest
Int2 = Delegation Interest
Int3 = Notification request
Data2 = Notification

- - - - -

- - - - -

- - - - -

Int1 Int2 Int3 Int3 Int1 Int3

s 0 s n

s 0 s n

Data1 Data2

Data:s 0 Data:s n

Data:s 0 Data:s n

Probe Interval Probe Interval Probe Interval

Agent Interval Agent Interval

Request lifetime

Transfer time

trc=Agent’s content retrieval time tdr

tra= Requester’s content retrieval time

Figure 5.10: Relation between Probe Interval, Agent Interval and transfer time.

We tested the transfer time and the number of transmitted notification Interests using probe
intervals of 1s, 5s, 30s, 60s and 120s and file sizes of 1MB, 4MB and 10MB. Figure 5.11 shows
the number of transmitted notification requests and Figure 5.12 shows the transfer time until
the requester receives a notification and retrieves the complete content. The x-axis shows the
selected file sizes. Table 5.6 and 5.7 show the median values of the number of transmitted
notification requests and the transfer times respectively.

Probe interval
File size 1s 5s 30s 60s 120s

1MB 5 6 1 2 1
4MB 23 20 4 3 2

10MB 64 41 10 6 3

Table 5.6: Medium values of the number of notification requests

As Figure 5.11 shows, the shorter the probe interval, the more notification requests need
to be transmitted. For a file of size of 10MB, 56% more notification requests are transmitted
when using a probe interval of 1s compared to a probe interval of 5s. And for a file size of 4MB
still 15% more notification requests are transmitted. As the figure shows, a probe interval of 30s

48

 0

 20

 40

 60

 80

 100

 120

#
 N

o
ti
fi
c
a
ti
o
n
 r

e
q
u
e
s
ts

file size[MB]

1.0 4.0 10.0

1s
5s
30s
60s
120s

Figure 5.11: Number of notification requests using different probe intervals with different file sizes.

can result in much fewer transmitted notification requests than with 1s. For a file size of 10MB,
there are 84.4% fewer notification requests. The number of notification requests when using a
probe interval of 1s is around 5-6 times higher than with probe interval of 30s.
Of course, the probe interval also influences the transfer time until the requester can retrieve
the complete file as figure 5.12 shows. Large probe intervals may result in large transfer times
because the time until the requester detects the availability of an agent that holds the desired
content may be larger, i.e. tdr in Figure 5.10 may be larger. As figure 5.12 shows, a probe
interval of 60s results in 84% longer transfer time than 1s for 1MB and 32% longer times for
4MB. For file transmissions of 10MB or larger, the median transfer time is approximately the
same for all probe intervals because the overall transfer time is much larger compared than the
differences in probe intervals. A good probe interval value seems to be 30s, because compared
to a probe interval of 1s, the notification requests decrease by 80-84% for file sizes between
1MB and 10MB. At the same time, the transfer time only increases by 8% for a file size of 4MB
and only 5% for a file size of 10MB.

Probe interval
File size 1s 5s 30s 60s 120s

1MB 45 59 57 83 143
4MB 179 187 194 237 299
10MB 435 430 458 466 480

Table 5.7: Medium values of transfer time in seconds.

5.4.2 Scenario 2: Synchronization between Mobile and Home Repository

In scenario 2 as configured in Figure 5.2 b). The topology comprises two nodes, which
communicate wirelessly via a unicast face. The agent is running on an Android smartphone and

49

 0

 200

 400

 600

 800

 1000
T

ra
n
s
fe

r
ti
m

e
 [
s
]

file size [MB]
1.0 4.0 10.0

1s
5s
30s
60s
120s

Figure 5.12: Transfer time using different probe intervals with different file sizes.

the home repository on the laptop. The throughput during the synchronization between agent
and agent proxy, i.e. home repository, is measured. The intent of this test is to evaluate the
synchronization between the agent proxy and the agent node when the CCNsynchronization
application is used. We tested the throughput for file sizes of 1MB, 4MB, 10MB, and 20MB.
For each file size, 50 test runs were performed.

 0

 1

 2

 3

 4

 5

 6

 7

T
h
ro

u
g
h
p
u
t[
M

b
p
s
]

files size [MB]

1 4 10 20

Synchronization

Figure 5.13: Throughput of the synchronization mechanism between the home and mobile repositories
with different file sizes.

Figure 5.13 shows the throughput in Mbps during the synchronization of a file of varying
size. Synchronization is performed in unicast between the agent and the home repository since
the address of the home repository is always fixed. As explained in section 4.5, the agent, i.e. its

50

mobile repository, would need to contact the home repository prior to synchronization to inform
it about its current IP address. This step is omitted here and we assume that the home repository
already knows and has configured a face to the agent.

The results are shown in Figure 5.13. As we can see, the throughput from the implemented
synchronization mechanism is around of 5 Mbps during the transfer of 10MB and 6 Mbps dur-
ing 20MB file transfers. The throughput when synchronizing collections increases for larger file
sizes because Root Advise Interests are transmitted depending on the number of unsynchronized
content objects and not dependent on the content size. Therefore, in our scenario of synchro-
nizing one file, no more Root Advise Interests need to be transmitted but only more Interests to
retrieve the content.

5.4.3 Scenario 3: Influence of Agent Interval

In scenario 3 as configured in Figure 5.2 c), we investigate the influence of the agent interval.
This interval is used by the requester to decide when to contact the next agent if no notification
is received. We evaluate this in two cases. In Subsection 5.4.3.1, the first agent would never
meet the content source emulated by an interrupt. Then, it cannot retrieve the content at all. In
Subsection 5.4.3.2 both agents can retrieve the content.

5.4.3.1 Two Agents - Interruption at the first Agent

Figure 5.14 shows the message exchanged during scenario 3. The communication is performed
in four steps:

Agent 1

Requester

Agent 2

Content
Source

Int1 = Initial Interest
Int2 = Delegation Interest
Int3 = Notification request
Data2 = Notification

B

- - - - - - - -

- - - - - - - -

DA C

Int1 Int2 Int3 Int3

Int1 Int3 Int3 Int3

s ns 0

s 0 s nInt2

Data1

Data1 Data1 Data2

Data:s nData:s 0

Data:s 0 Data:s n

Probe Interval Probe Interval Probe Interval Probe Interval

Agent Interval Agent Interval

Int1

Probe Interval

Agent Interval

Request lifetime

tt=Transfer time

trc=Agent’s content retrieval time trd

tra= Requester’s content retrieval time

Figure 5.14: Message exchanged during scenario 3: interruption at the first agent.

51

1. In the initial setup there is one requester, two agents and a content source.

2. The requester transmits multicast request, i.e. Initial Interest (Int1), looking for the avail-
able agents. Then, both agents, i.e. agent 1 and agent 2, answer to the multicast request.
The requester selects the agent 1 and delegates the content retrieval to it. This is done in
step A in Figure 5.14.

3. Agent 1 receives the delegation Interest (Int2) but is not in range of a corresponding con-
tent source and can therefore not retrieve the desired content. This is done in step B of
Figure 5.14.

4. Since the requester cannot retrieve the notification from an existing agent, i.e., agent 1,
it will delegate the content retrieval to a second agent after the agent interval has passed.
This is performed in step C of Figure 5.14.

5. Agent 2 will ask and retrieve the content. The requester will receive the notification after
some probe intervals. After that, it can retrieve the content from the agent, which is
performed in step D of Figure 5.14.

File size 4MB
Number of agents 2
Reading Interval 1s
Writing Interval 30s

Table 5.8: Evaluation settings of scenario 3

To evaluate this mechanism, agent 1 is slightly modified so that no content retrieval is per-
formed, which is equivalent for the agent to being out of range from the content source.

The evaluation was performed for agent intervals of 1 minute, 5 minutes and 10 minutes and
probe intervals of 5s, 30s and 60s. The values of the remaining parameters are shown in Table
5.8. The evaluation results are shown in the Figure 5.15 and 5.16. The x-axis shows the used
agent intervals.

Figure 5.15 shows the number of transmitted notifications requests and figure 5.16 the
transfer time to retrieve the content from the agent. Table 5.9 and 5.10 show the corresponding
median values.

Probe interval
Agent interval 5s 30s 60s

1min 26 8 5
5min 53 14 9
10min 81 22 15

Table 5.9: Median values of the number of notification requests

The agent interval determines when the requester delegates the retrieval to a new agent.
If the agent interval is shorter than the time a node requires to retrieve the content, too many

52

 0

 20

 40

 60

 80

 100

 120

#
 n

o
ti
fi
c
a
ti
o
n
s
 r

e
q
u
e
s
ts

Agent Interval [min]

1 5 10

5s
30s
60s

Figure 5.15: Number of notifications requests using different probe intervals with different agent inter-
vals.

 0

 200

 400

 600

 800

 1000

 1200

 1400

T
ra

n
s
fe

r
ti
m

e
 [
s
]

Agent Interval [min]

1 5 10

60s
30s
5s

Figure 5.16: Transfer time using different probe intervals with different agent intervals.

Probe interval
Agent interval 5s 30s 60s

1min 268 307 312
5min 533 546 555

10min 780 815 886

Table 5.10: Median values of transfer time in seconds.

unnecessary agent delegations may be performed because also the existing agents may have
retrieved the content successfully. However, if agent 1 cannot retrieve the content as in this

53

scenario, a shorter agent interval obviously results in a faster transfer time because agent 2 is
selected quicker. In this scenario, the time required to retrieve the content by the requester can
be defined by the following formula:

tt = tai + trc + tdc + tdr + tra (5.2)

where
tt: total transfer time
tai: agent interval
trc: effective transfer time between agent and content source.
tdc: time until agent meets the content source, in this example equals 0.
tdr: time until requester detects that agent has received the complete content.
tra: time until requester retrieves the complete file from agent.

Figure 5.15 shows the number of transmitted notification for different probe and agent in-
tervals. Obviously, the number of notification requests increases with increasing agent interval
because more time is required until the content is delegated to a new agent. In the meantime,
more probing requests are transmitted. According to Table 5.9, with an agent interval of 1min,
the number of transmitted request messages decreases by 70% when increasing the probe inter-
val from 5s to 30s. For an agent interval of 10min it decreases by even 73%.

In this scenario, transfer time depends on 1) time until the agent sees the content source, 2)
time until the requester gets the notification from the agent and 3) agent interval (tai). As the
probe interval increases so that tdr does, which results in increasing of transfer time. Therefore,
as Figure 5.16, the transfer time increases for an agent interval of 1min by 14.5% from a probe
interval of 5s to 30s. For an agent interval of 5min, it increases by 2.4% and for 10min, it
increases by 4.5%.

According to the Formula 5.2, as the agent interval (tai) increases so that transfer time (tt)
does . Therefore, as shown in Figure 5.16, for a probe interval of 30s, the transfer time increases
with increasing agent interval by 78% from 1min to 5min and by 165% from 1min to 10min.
Because agent 1 is not retrieving the content, a short agent interval is favorable in this evaluation
test.

5.4.3.2 Two Agents - Parallel Content Retrievals

In the previous subsection, we found that a short agent interval is favorable if agent 1 is not
working and in this subsection, we evaluate the same scenario but this time agent 1 can retrieve
the file. Figure 5.17 shows exchanged messages and the relations between the different time
intervals. As shown the Figure, in step A the requester starts by transmitting multicast requests
to the available agents. In step B, the requester delegates the content retrieval to agent 1. At that
time, agent1 starts retrieving the content from the content source. After an agent interval, the
requester can delegate the retrieval to another agent. It waits until the next probe interval is due
and then performs a new agent delegation immediately after the probe interval (if no notification
is received). The requester delegates the content retrieval to agent 2 (step C) before agent 1

54

Agent 1

Requester

Agent 2

Content
Source

Int1 = Initial Interest
Int2 = Delegation Interest
Int3 = Notification request
Data2 = Notification

- - - - - - - -

- - - - - - - -

- - - - - - - -

A

B

C

D

E

F

Int1 Int2 Int3 Int3 Int1 Int3 Int3

s ns 0

s 0 s n

s 0 s n

Int2

Data1

Data1 Data1

Data2

Data:s nData:s 0

Data:s 0 Data:s n

Data:s 0 Data:s n

Probe Interval Probe Interval Probe Interval Probe Interval

Agent Interval Agent Interval

Request lifetime

Content retrieval time at agent 1

Content retrieval time at agent 2

Time of parallel retrievalTime of indivifual retrieval

tra= Requester’s content retrieval time

tdr

tt=Transfer time

Figure 5.17: Message exchanged during scenario 3: parallel content retrievals, probe interval is smaller
than agent interval.

Figure 5.18: FIB configuration of scenario 3.

has received all segments. In step D, agent 2 starts also to retrieve the content from the content
source. At this point, the content source transfers the content to the both agents. Therefore,
resources on the medium are wasted. In step E, the agent will be finished to retrieve the content
and then a notification can be sent to the requester which starts to retrieve the content from the

55

agent 1 (step F).

To evaluate parallel content retrieval from the same content source, in our setup we need to
guarantee that the second delegated agent does not receive the content already requested from
the first agent. For this reason, we configure two different multicast faces in each agent as shown
in Figure 5.18. The first one, with the port number of 59695, is for listening to the requests by
the requesters. The second one is for forwarding Interests to the content source and is different
for both agents so that they cannot receive traffic from each other. For example, in Figure 5.18
agent 2, which listens to port 20000, can not hear the content requested from agent 1, which
transmits on port 30000. The content source needs to create two multicast faces, i.e. face 2 and
face 3 in Figure 5.18, with the corresponding multicast ports used by the two agents. This FIB
configuration was only required for this tests so that both agents forward Interests to the content
source. In a real scenario, both agents may use the same multicast port 59695.

The evaluation was performed for agent intervals of 0.5 minute, 1 minute, 2 minutes and
5 minutes, probe intervals of 5s, 30s, 60s and 120s and file size of 4MB. The values of the
remaining parameters are the same as in Table 5.8. The transfer time is shown in Figure 5.19.
The x-axis shows the selected agents intervals.

 0

 100

 200

 300

 400

 500

T
ra

n
s
fe

r
ti
m

e
 [
s
]

Agent Interval [min]

0.5 1 2 5

5s
30s
60s
120s

Figure 5.19: Transfer time using different probe intervals with different agent intervals.

Probe interval
Agent Interval 5s 30s 60s 120s

0.5min 200 253 271 231
1min 209 240 264 235
2min 172 197 214 239
5min 160 192 218 216

Table 5.11: Medium values of transfer time in seconds.

The medium values of the transfer times are also listed in Table 5.11. As we can see, for

56

a probe interval of 30s, the transfer time of an agent interval of 0.5 min compared to 1min is
longer by 4.9% and decreases even by 24.1% for an agent interval of 5min. This is because the
agent interval of 0.5 min or 1min is shorter than the time a node requires to retrieve the content.
Then, a new delegation is performed to a new agent, which will trigger the content retrieval
from the same content source reducing the throughput for an individual agent. Therefore, the
second retrieval slows down the first retrieval by the first agent because the content source needs
to reply to the both agents in parallel. As shown in Figure 5.17, the time required to agent 1 to
retrieve the content from the content source can be defined by:

tt = ti + tp (5.3)

where
ti: time the first agent can retrieve the content alone
tp: time of parallel retrieval, where both agents retrieve the content in parallel and need to share
the bandwith.
The shorter the agent interval, the longer is the time of parallel content retrieval (tp), which
increases the total transfer time because the bandwidth is shared between both agents for a
longer time.

For agent intervals larger than 2 min, the time transfer becomes approximately constant
because in most cases 2 min is enough for the agent to request the content. Therefore, in this
case, the notification is replied before the content retrieval is delegated to agent 2 and tp equals
zero.

The value of the agent interval after which the transfer time is approximately constant de-
pends on the file size to be transmitted, i.e. the transfer time. Therefore, it may be favorable for
efficient agent-based file transfers to know the file sizes in advance.

When using a probe interval of 120s, the transfer time does not increase significantly. Since
before every new agent delegation, also a notification request needs to be transmitted. After
probe interval of 120s, the agent has most certainly already retrieved the complete 4MB file and
then it will transmit a notification. This is because in the implementation of the mechanism,
there is only one thread that checks the probe and the agent intervals. When the probe interval
is over, a notification request is sent and then the same thread checks if the agent interval has
passed to send a new delegation. Therefore, if the agent Interval is over, it is only detected
after a probe interval. Thus, the agent interval depends to the probe interval. Alternatively,
when using two threads, agent and probe interval could be checked independently of each other.
However, this may result in the transmission of more notification requests because before every
agent delegation a separate notification request needs to be transmitted to check whether an
agent has already retrieved the content or agent delegation is necessary. Figure 5.20 illustrates
the agent retrieval mechanism where the agent interval is shorter than the probe interval. Before
performing a new agent delegation, the requester always checks if there is an existing agent that
has already received the desired content by transmitting a notification request. Therefore, the
next notification request is always transmitted prior to a new delegation. If the probe interval
is 2 min but the agent interval is 0.5min, the requester does not send a new delegation but only
after that it sends a notification request to agent 1. Then only after 2 min a new delegation can
be performed. However, after the probe interval of 120s, agent 1 has most certainly already

57

Agent 1

Requester

Agent 2

Int1 = Initial Interest
Int2 = Delegation Interest
Int3 = Notification request
Data2 = Notification

Int1 Int2 Int3

Data1

Data1 Data2

Probe Interval

Agent Interval

Request lifetime

Content retrieval time of agent 1

Time of individual retrieval

tdr

Figure 5.20: Messages exchanged during scenario 3: probe interval is higher than the agent interval

received the file of size 4MB. Therefore, the time of parallel retrieval (tp) equals zero. The value
of the probe interval when the transfer time is approximately constant depends on the file size to
be transmitted. This probe interval value should not be larger than the agent’s content retrieval
time from the content source, so that the tdr in Figure 5.20 will not be large. A large tdr would
increase the total transfer time.

5.5 Summary

We can summarize the results of the evaluation in the following points:

* For large files, the throughput of the complete agent-based content retrieval via unicast
communication is faster by a factor of 5 compared to multicast communication.

* Comparing the agent-based content retrieval with the standard ccngetfile content retrieval
application over two hops, i.e. unicast on the first hop and multicast on the second hop,
showed a throughput gain of 20% compared to ccngetfile downloads because the trans-
missions over both hops are performed subsequently and not in parallel. Therefore, the
maximum transfer capacity of each link can be used.

* The unicast throughput over two hops of the standard ccngetfile content retrieval compared
to the agent-based content retrieval is higher by a factor of 3. This is because during
ccngetfile transmissions the content is forwarded to the requester only from the cache.
However, in the agent-based retrieval, the content needs to be additionally stored in the
agent’s mobile repository and retrieved later when the requester asks for it. However,

58

the repository can result in higher throughput in dense environments with many content
transmissions and many cache replacements. Instead of forwarding requests from other
requesters to the content source, it can be answered by the repository of an agent.

* A good probe interval value is 30s since the number of notification requests decreases by
around 80% compared to a probe interval of 1s and transfer times when using the same
probe intervals only increases by 5%.

* The agent interval has an influence on the transfer time: if the first delegated agent may
not reach the content source, then a shorter agent interval may result in a faster transfer
time. Otherwise, the agent interval should be large enough so that the first agent has
enough time to retrieve the content. If the agent interval would be too short, multiple
agents would retrieve the content at the same time decreasing the individual throughput
on a shared medium.

59

Chapter 6

Conclusion

6.1 Conclusions

When the requester and a content source never meet, they cannot communicate directly and
the requester will never receive the content needed. A possible solution is to delegate the
content retrieval to mobile nodes, i.e. agents, that may move closer to a content source and get
the requested content. In this Master thesis, we implemented the mechanism of agent-based
content retrieval for CCN. With this implementation, mobile devices may receive requested
content from agents even if they cannot reach the content source directly. This approach is also
useful in case of unpopular content that needs to be found in a confined geographical area be-
cause agents replicate the content source for a specific file and therefore increase content density.

During the evaluation, we measured parameters at the requester in order to minimize the
content retrieval time as well as the number of transmitted messages. The influence of the probe
interval, the time to ask for a notification from an agent, and the agent interval, which determines
when the requester delegates the retrieval to a new agent, have been examined. A probe interval
of 30s is better than a smaller probe interval because it decreases the number of notification
requests by around 80% compared to a probe interval of 1s and increases the transfer time by
5% only. An appropriate agent interval depends on the file size and the intercontact time between
an agent and the content source.

The agent delegation results in a handshake mechanism at the beginning and a later notifica-
tion to check whether the content is available at an agent. The additional overhead is therefore at
least three Interests (initial interest, delegation interest and notification requests) and two content
objects (delegation data and notification). For large files, the throughput of agent-based content
retrieval is higher by around 20% than the regular content retrieval over two hops (first hop in
unicast communication and multicast communication in the second hop). Thus, the agent dele-
gation is better than forwarding Interests over two hops for large files, because content retrieval is
performed subsequently and not in parallel. Therefore, the number of transmitted messages can
be set individually. A slow link, e.g., during multicast communication on the second hop does
not slow down unicast communication on the first hop. Also, there are fewer unicast retrans-
missions because the transmitted unicast Interests have timed out and need to be reexpressed.
For small files the overhead of agent delegation is higher and forwarding in the regular retrieval

61

is more efficient. However, in case of intermittent and opportunistic connectivity, file transfers
with ccngetfile are not feasible because neighbor nodes are not known and, therefore, it is not
clear where to forward Interests. Additionally, long forwarding paths decrease the throughput
and are more susceptible to node mobility because the content needs to travel on the reverse
path. The agent-based approach exploits the mobility of each agent for content-retrieval.
The forwarding Interests using unicast communication in both hops achieves a three times higher
throughput than the agent-based retrieval. This is because in the regular retrieval, the forwarding
of the content is performed only from the cache and then the transfer is faster. In agent-based
content retrieval, the agent’s repository additionally stores every segment requiring more time.
Then, later when the requester asks for the content, the agent needs to retrieves the content from
the repository and then it can be transmitted to the requester. However, secondary storage is also
advantageous in networks with many concurrent file transmissions. Because cache replacements
may be performed quite quickly, secondary storage may prevent Interests to travel all the way
back to the original content source.

6.2 Future Work

6.2.1 Reliability

To avoid denial of service attacks, the agent delegation between requester and agent needs to be
restricted. Since an agent delegation is inexpensive compared to content retrieval, the relation-
ship between requester and agents should be trusted and only a limited number of agents should
be allowed.

6.2.2 Interval Values

The values for the agent interval and probe interval depend on the file size and the mobility of
the nodes, i.e., the intercontact time between agent, requester and content source. Evaluations
with mobile nodes are required to investigate appropriate values for them. The knowledge or
estimation of file size may help to set appropriate probe and agent intervals.

In this work, the notification is requested by the requester. Investigations on appropriate con-
tent notification may enable agents to quickly inform the original requester that the content has
been found and no further delegation is needed. However, this may result in content notifications
even if no requester is in the vicinity.

6.2.3 Synchronization

As explained in section 4.5 , the agent may change its IP address if attached to a new network.
Then, it is required that the mobile agent sends its new IP address to the home repository prior
to the synchronization. Additionally, an application is required in the home repository to receive
the new agent’s IP address and create a unicast FIB entry.
Furthermore, the actual synchronization mechanism between the mobile and the home repository
enables only the synchronization of collections under a predefined prefix. However, the agent
needs to synchronize all the data that it needs to retrieve based on the delegated content prefix.

62

This requires exchanging information about the collection prefix between the mobile and home
repository prior to synchronization.

6.2.4 Resume Operations from the Repository

The repository does currently not have a memory and does not remember already received con-
tent segments. Therefore, if a content transfer is aborted and requested at a later time, all seg-
ments are requested again from the neighbors if they are not in the cache anymore although
stored persistently in the repository. The storage of meta information to perform a resume oper-
ation needs to be implemented. This would avoid the loading of segments from the repository
prior to a disrupted file transfer as implemented within this thesis.

6.2.5 Android Sleeping Screen

The Android devices do not receive any Data packets transmitted via multicast if the screen is in
sleep mode. Only unicast communication is received with sleep screen. Therefore, it is required
that the screen is alive if applications depend on multicast communication.

63

Chapter 7

Appendix

7.1 Ad-hoc Networking Support for Android

7.1.1 Using the iwconfig program

iwconfig is used to display and change the parameters of the network interface which are specific
to the wireless operation (e.g. interface name, frequency, SSID) .
The Linux wireless tools are not installed on Android devices by default . Therefore, it is
required to compile wireless tool using NDK. Afterwards, iwconfig program can be added to
android devices. The following instructions are used in order to create an ad hoc network in
Google Nexus 4 device:

ifconfig wlan0 down
iwconfig wlan0 mode ad-hoc
iwconfig wlan0 channel 11
iwconfig wlan0 essid <network name>
iwconfig wlan0 up
ifconfig wlan0 <Ip address>

After that, the created network will be visible to all non-android devices and it is possible to
connect to it. The same instructions are applied on second Google Nexus 4 device with the same
network name and channel but with different IP address.

7.1.2 Configure wpa supplicant manually

wpa supplicant is a WPA Supplicant for Linux and it is designed to be a ”deamon” program that
runs in the background and acts as the backend component controlling the wireless connection
[31].
wpa cli tool is a command line client to control wpa supplicant. It allows to manage events from
wpa supplicant.
This method uses wpa cli tool to force the driver to go to ad-hoc mode. The following instruc-
tions are used in Google Nexus 4 device in order to join existing ad hoc network:

add_network ---> it will return a number ,which represents network id .

65

set_network <network id> mode 1
set_network <network id> ssid "<network name>"
set_network <network id> bssid <bssid>
set_network <network id> frequency <frequency>
set_network <network id> key_mgmt NONE
enable_network <network id>
ap_scan 2
select_network <network id>

To obtain the network information, such as bssid, frequency and network name of desired ad hoc
network, scan results command can be used .

7.1.3 Edit wpa supplicant.conf

wpa supplicant.conf is the configuration file for wpa supplicant that lists all accepted networks
and security policies, including pre-shared keys.
This method forces wpa supplicant to accept an ad-hoc network by editing directly the config-
uration file and adding the ad-hoc network information. The following information should be
added to wpa supplicant.conf :

network={
ssid="<network name>"
scan_ssid=1
key_mgmt=NONE
mode=1
priority=1
}

Afterwards, the modified wpa supplicant.conf should be pushed on /data/misc/wifi, Finally,
it is required to chown ownership back to system.wifi by running the following command:

chown system.wifi /data/misc/wifi/wpa_supplicant.conf

7.1.4 Edit Android Open Source

This method modifies the android source code by making the following change in order to enable
ad-hoc wifi connection:

In WifiSettings.java file the code that does not allow to display IBSS type of stations needs
to be commented as follows:

// Ignore hidden and ad-hoc networks.

66

if (result.SSID == null || result.SSID.length() == 0) { // ||
//result.capabilities.contains("[IBSS]")) {
continue;
}

Location of that file is packages/apps/Settings/src/com/android/settings/wifi

In wpa supplicant 8, the wpa supplicant/events.c file should be edited as below in order
to allow IBSS connection :

static struct wpa_ssid * wpa_scan_res_match(struct wpa_supplicant *wpa_s,
int i, struct wpa_scan_res *bss,
struct wpa_ssid *group) {

. . .

if (bss->caps & IEEE80211_CAP_IBSS) {
wpa_dbg(wpa_s, MSG_DEBUG, " skip - IBSS (adhoc) "
"network");
//continue; //Allow IBSS connection.
}

. . .

}

7.1.5 Superuser Access

The process of rooting varies widely by device: to root Google Nexus 4 devices [25] , su binary
should be copied to a location in the current process’s PATH (e.g. /system/xbin/su) and granting
it executable permissions. To limit the access to su binary file, SuperSU application is used.
SuperSU is an application whose purpose is to protect access to su binary file. When an appli-
cation tries to access the root device functionality, SuperSU triggers and asks the user if it is
desired to or not grant root priviledges to the application.

7.2 Code Source

The implemetation of this thesis is based on CCNx Java Library.

67

7.2.1 Source Code of the CCNRequester application

7.2.1.1 Newly Created Classes

/src/ccnx/android/apps/requester/CCNRequester.java

/src/ccnx/android/apps/requester/CCNxRequesterMain.java

/src/ccnx/android/apps/requester/CCNHandleResponse.java

7.2.1.2 Edited Classes from CCNx Java Library

/src/ccnx/android/apps/requester/SimpleFaceControl.java
It was not possible to pass specific prefix and specific port as parameters to the available
method that creates multicast or the unicast face. The available method in this class creates
a face with prefix ”ccnx:/”. In our implementation, it was required to register specific
prefix on the multicast face. Therefore, openMulicastInterface and connectTcp methods
have been modified in this class in order to satisfy our needs.

7.2.2 Source Code of the CCNAgent application

7.2.2.1 Newly Created Classes

/src/ccnx/android/apps/agent/CCNAgent.java

/src/ccnx/android/apps/agent/HelperThread.java

/src/ccnx/android/apps/agent/CCNSynchronization.java

/src/ccnx/android/apps/agent/HanlderRootAdvice.java

7.2.2.2 Edited Classes from CCNx Java Library

/src/ccnx/android/apps/agent/io/CCNAbstractInputStream.java
As explained in section 4.3.2, the reading process must be performed from the repository
and should not be from the neighbors. Our implementation uses the reading mechanism
provided by the CCNx Java Library. However, the available mechanism may send Inter-
ests to neighbors. Therefore, it was required to set the scope of every Interest to value 1
within this class.

/src/ccnx/android/apps/agent/SimpleFaceControl.java

The modification performed in SimpleFaceControl.java class in requester package has
been done also in this class. In addition, to unregister a given prefix from the multicast
face, there was no method in this class that performs the unregistering of a given prefix.
The available method can only delete the face. So, it was required to add the method that
unregisters a prefix from the multicast face without deleting the face.

68

Bibliography

[1] Jacobson, V., Smetters, D. K., Thornton, J. D., Plass, M. F., Briggs, N. H., & Braynard, R.
L. (2009, December). Networking named content. In Proceedings of the 5th international
conference on Emerging networking experiments and technologies (pp. 1-12). ACM.

[2] ”Project CCNx,”https://ccnx.org, 2013.

[3] http://www.ccnx.org/releases/latest/doc/manpages/ccngetfile.
1.html

[4] http://www.ccnx.org/releases/latest/doc/technical/
InterestMessage.html

[5] http://www.ccnx.org/releases/latest/doc/technical/
RepoProtocol.html

[6] http://www.ccnx.org/releases/latest/doc/technical/
SynchronizationProtocol.html

[7] Anastasiades, C., Uruqi, A. & Braun, T. (2012). Content discovery in opportunistic content-
centric networks. LCN Workshops (p./pp. 1044-1052), : IEEE. ISBN: 978-1-4673-2130-3

[8] Schmid, T. (2013, March). Data Exchange In Intermittently Connected Content-Centric Net-
works. Bachelor-Thesis, University of Bern.

[9] Weber, J. (2013, March). Automatic Detection Of Forwarding Opportunities In Intermit-
tently Connected Content-Centric Networks. Bachelor-Thesis, University of Bern.

[10] Hermans, F., Ngai, E., & Gunningberg, P. (2012, June). Global source mobility in the
content-centric networking architecture. In Proceedings of the 1st ACM workshop on
Emerging Name-Oriented Mobile Networking Design-Architecture, Algorithms, and Ap-
plications (pp. 13-18). ACM.

[11] Han, D., Lee, M., Cho, K. , Kwon, Ted ”T.” & Choi, Y. (2012, August). PMC: Publisher
Mobility Support for Mobile Broadcasting in Content Centric Networks. In AsiaFI 2012
summer school, Kyoto, Japan.

[12] Ravindran, R., Lo, S., Zhang, X., & Wang, G. (2012, June). Supporting seamless mobility
in named data networking. In Communications (ICC), 2012 IEEE International Conference
on (pp. 5854-5869). IEEE.

69

 https://ccnx.org
http://www.ccnx.org/releases/latest/doc/manpages/ccngetfile.1.html
http://www.ccnx.org/releases/latest/doc/manpages/ccngetfile.1.html
http://www.ccnx.org/releases/latest/doc/technical/InterestMessage.html
http://www.ccnx.org/releases/latest/doc/technical/InterestMessage.html
http://www.ccnx.org/releases/latest/doc/technical/RepoProtocol.html
http://www.ccnx.org/releases/latest/doc/technical/RepoProtocol.html
http://www.ccnx.org/releases/latest/doc/technical/SynchronizationProtocol.html
http://www.ccnx.org/releases/latest/doc/technical/SynchronizationProtocol.html

[13] Hermans, F., Ngai, E., & Gunningberg, P. (2011, June). Mobile sources in an information-
centric network with hierarchical names: An indirection approach. In Proc. of the 7th
Swedish National Computer Networking Workshop.

[14] Lee, J., Kim, D., Jang, M. W., & Lee, B. J. (2011, January). Proxy-based mobility man-
agement scheme in mobile content centric networking (CCN) environments. In Consumer
Electronics (ICCE), 2011 IEEE International Conference on (pp. 595-596). IEEE.

[15] Lee, J., & Kim, D. (2011). Proxy-assisted content sharing using content centric networking
(CCN) for resource-limited mobile consumer devices. Consumer Electronics, IEEE Trans-
actions on, 57(2), 477-483.

[16] Kim, D. H., Kim, J. H., Kim, Y. S., Yoon, H. S., & Yeom, I. (2012, August). Mobility sup-
port in content centric networks. In Proceedings of the second edition of the ICN workshop
on Information-centric networking (pp. 13-18). ACM.

[17] Lee, J., Cho, S., & Kim, D. (2012). Device mobility management in content-centric net-
working. Communications Magazine, IEEE, 50(12), 28-34.

[18] Oh, S. Y., Lau, D., & Gerla, M. (2010, October). Content centric networking in tactical and
emergency manets. In Wireless Days (WD), 2010 IFIP (pp. 1-5). IEEE.

[19] Meisel, M., Pappas, V., & Zhang, L. (2010, September). Listen first, broadcast later:
Topology-agnostic forwarding under high dynamics. In Annual Conference of International
Technology Alliance in Network and Information Science (p. 8).

[20] Varvello, M., Rimac, I., Lee, U., Greenwald, L., & Hilt, V. (2011, January). On the de-
sign of content-centric MANETs. In Wireless On-Demand Network Systems and Services
(WONS), 2011 Eighth International Conference on (pp. 1-8). IEEE.

[21] Wang, L., Waltari, O., & Kangasharju, J. (2013). MobiCCN: Mobility Support with Greedy
Routing in Content-Centric Networks. In: IEEE Global Communications Conference 2013:
NGN - Next Generation Network

[22] Su, J., Scott, J., Hui, P., Crowcroft, J., De Lara, E., Diot, C., ... & Upton, E. (2007). Haggle:
Seamless networking for mobile applications. In UbiComp 2007: Ubiquitous Computing
(pp. 391-408). Springer Berlin Heidelberg.

[23] Jacobson, V., Braynard, R. L., Diebert, T., Mahadevan, P., Mosko, M., Briggs, N. H., ... &
Thornton, J. D. (2012). Custodian-based information sharing. Communications Magazine,
IEEE, 50(7), 38-43.

[24] Batista, B., & Mendes, P. (2013, April). ICON-An Information Centric Architecture
for Opportunistic Networks. The 2nd IEEE International Workshop on Emerging Design
Choices in Name-Oriented Networking (NOMEN 2013)/Infocom 2013.

[25] http://nexus4root.com/nexus-4-root/how-to-root-nexus-4-windowsmac-osxlinuxubuntu/

70

http://nexus4root.com/nexus-4-root/how-to-root-nexus-4-windowsmac-osxlinuxubuntu/

[26] https://groups.google.com/forum/#!topic/spandev/eVUTW4gK6sY

[27] http://forum.cyanogenmod.com/topic/72659-nexus-4-is-able-to-see-but-cannot-connect-to-ad-hoc-networks/

[28] http://forum.xda-developers.com/showthread.php?t=2114572

[29] http://android.stackexchange.com/questions/47877/
ad-hoc-network-in-android

[30] http://forums.androidcentral.com/google-nexus-4/
288653-adhoc-network-problem.html

[31] http://linux.die.net/man/8/wpa_supplicant

71

https://groups.google.com/forum/#!topic/spandev/eVUTW4gK6sY
http://forum.cyanogenmod.com/topic/72659-nexus-4-is-able-to-see-but-cannot-connect-to-ad-hoc-networks/
http://forum.xda-developers.com/showthread.php?t=2114572
http://android.stackexchange.com/questions/47877/ad-hoc-network-in-android
http://android.stackexchange.com/questions/47877/ad-hoc-network-in-android
http://forums.androidcentral.com/google-nexus-4/288653-adhoc-network-problem.html
http://forums.androidcentral.com/google-nexus-4/288653-adhoc-network-problem.html
http://linux.die.net/man/8/wpa_supplicant

	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Task Formulation
	Contributions
	Outline

	Related Work
	Content Centric Networking
	Interest and Data
	CCN Forwarding Model
	Data Storage
	Synchronization

	 CCN in Opportunistic and Mobile Networks

	Agent-Based Content Retrieval
	Problem Description
	Agent-Based Content Retrieval
	Roles
	Overview
	Phase 1: Agent Delegation
	Phase 2: Content Retrieval
	Phase 3: Notification
	Synchronization with Agent Proxy

	Implementation
	Delegation Procedure on CCNRequester
	 Processing of Incoming Agent Responses
	 Receiving a Notification
	 Retrieving the Content from the Agent
	Data Structure

	Content Retrieval on CCNAgent
	 Processing of Incoming Interests
	 Repository Interest Structure

	Notification
	Notification Structure
	Verification Mechanism of Content Retrieval at Agent Node

	Resuming Disrupted Transfers
	Synchronization with the Home Repository
	Graphical User Interface
	 CCNRequester application GUI
	 CCNAgent application GUI

	Deployment on Smart Phone: Ad-hoc Networking Support for Android

	Evaluation
	Preliminary Results
	Topology
	CCNx configuration and Network Setup
	Evaluation Results
	Scenario 1: Content Retrieval via an Agent
	Scenario 2: Synchronization between Mobile and Home Repository
	Scenario 3: Influence of Agent Interval

	Summary

	Conclusion
	Conclusions
	Future Work
	Reliability
	Interval Values
	Synchronization
	Resume Operations from the Repository
	Android Sleeping Screen

	Appendix
	Ad-hoc Networking Support for Android
	Using the iwconfig program
	Configure wpa_supplicant manually
	Edit wpa_supplicant.conf
	Edit Android Open Source
	Superuser Access

	Code Source
	Source Code of the CCNRequester application
	Source Code of the CCNAgent application

	Bibliography

