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Abstract

Predicting future locations of mobile users is beneficial for various
applications. For example it can improve the relevance of location based
services or forecast crowds. From a real-life data set, we extract mobile-
phone users’ data and establish categories based on the number of total visits
and differences in their movement pattern. The type of a user’s movement
pattern is either homogeneous (simple,regular) or heterogeneous (complex,
non-regular). A rich selection of hybrid features, extracted from the users’
history movement data, is used to predict users’ future places. To solve the
prediction task, we use various machine learning algorithms, both individual
and ensemble methods. For the users with a low number of total visits and
homogeneous movement pattern an average accuracy of 86.7% is achieved.
For users with a heterogeneous movement pattern and a low number of total
visits, the average accuracy is 65.41%. Regarding users with a medium
number of visits, the highest average prediction accuracy is 85.18% for
users with homogeneous movement patterns and 65.02% for users with
heterogeneous movement patterns. For users with many visits an average
accuracy of 83.98% is achieved for the group with homogeneous movement
patterns and an average accuracy of 67.75% for users with heterogeneous
movement patterns.
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1
Introduction

Mobility is part of human’s daily life. We move from one place to another for different
reasons. For example we go to a certain place to work and to another place to meet people.
Mobility patterns of users have been studied intensively. The ubiquity of mobile phones
with their embedded sensors and available applications opened new possibilities both for
academia and industry to study human mobility patterns. With the collected data, it is
possible to forecast crowds or to improve the relevance of location based services such as
context aware advertising. In this work, we define the future place prediction as a standard
supervised learning task. A place visiting is represented by a set of features observed at
that given location. These features build the input for the prediction task and future places
are the targets. The models used for the prediction task are trained per user with its history
data of visited places and the features corresponding to the visited location. A crucial
subtask to obtain a high prediction accuracy is to define discriminative and informative
features to identify and distinguish between locations a user visits. Furthermore, a proper
set of features is important for machine learning algorithms to detect patterns in a user’s
movement. Given the features, we apply individual as well as ensemble learners to
build predictive models. To evaluate the prediction task, we use WEKA [1], an open
source data mining software with a wide collection of already implemented machine
learning algorithms. We evaluate the performance of the algorithms in terms of accuracy
- the number of correctly predicted instances divided by the total amount of computed
predictions - and the execution time to solve the prediction task. Our models are validated
using data extracted from a real-life data set of mobile users.
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1.1 Related Work
Mobility prediction has been an active research field in the last years. Various approaches
for solving the future place prediction problem exist. Tran et al. [2] use user-specific
decision trees learned from temporal features of the each user’s history. Etter et al.
[3] combine multiple mobility predictors, such as graphical models, artificial neural
networks or decision trees, by a strategy called blending. To adapt to changes in habits
and thus resulting change in movement, they use a technique called aging to give more
weight to recent user-data. However, they only use temporal features for the prediction.
Other works are limited to use of temporal and spatial features such as Gao et al. [4] and
Zhu et al. [5]. For example, Zhu et al. [5] lay a special focus on the acceleration feature.
They use the variation in acceleration and average acceleration observed at a visited
place. With this feature they want to identify locations related to transportation or a
shopping center. Wang et al. [6] compute the visit frequency of places as well as the total
time spent in places. Further, they try to observe regularity in user behavior and perform
periodicity analysis for the top most visited places based on Fourier Transformation and
autocorrelation. For some places, they determine the next place based on the majority
voting whereas for other places they consider temporal information to predict the next
place. In other works, Markov models are used to predict the next place a user visits
[7, 8]. With probabilistic models, [9] and [10] estimate the probability of a user being at
a certain location, given a specific time in the future.

Generally, the previous work is mostly limited to temporal or spatio-temporal features.
Therefore, we try to exploit a rich type of hybrid features to improve the prediction
accuracy of future places. In addition to the features and algorithms used to predict
future places, the movement patterns of the users strongly influence the prediction
accuracy. Tran et al. [2] classified users into several groups based on their movement
patterns. A group of users, who have repeated movement patterns, leading to a prediction
accuracy over 70%, a group of users whose movement patterns are heterogeneous and a
resulting prediction accuracy of nearly 55%, and user groups which members change
their behaviour (e.g. change their home) ending in an accuracy of less than 54%. Apart
from their work, the classification of users’ movement patterns are either limited to
homogeneous (repeated, simple movement) or not performed.
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1.2 Contributions
In this work, we define the prediction of future places of a mobile user as standard
supervised learning task. In a first part, we divide the users based on the number of total
visits during the experiment and categorize their movement pattern into homogeneous
and heterogeneous. Then we extract a rich type of features to identify different places
from a real-life data set of mobile-phone users. We propose to use hybrid features to
build a predictive model for the prediction task. The proposed feature-set is tested using
both single and ensemble predictors.

The main contributions summarized, are:

• Classification of user movement patterns

• A rich selection of Hybrid features to improve prediction accuracy over only
Temporal features

• Improving the prediction accuracy for users with a low number of total visits

1.3 Overview
The remainder of this work is structured as follows. Chapter 2 presents the characteristics
of the data set we use to study the mobility pattern of mobile-phone users. In Chapter 3,
we classify the users’ mobility pattern into two categories, homogeneous and heteroge-
neous, based on the number of visited places, and specify the set of features intended
to use for the prediction task. Given the selected features, we evaluate and discuss the
prediction of future locations using single and ensemble predictors, in Chapter 4. Finally,
Chapter 5 concludes our work.



2
Data set

2.1 Lausanne Data Collection Campaign
In January 2009 Nokia Research Center Lausanne (NRC), Idiap Research Institute, and
École Polytechnic Fédéral de Lausanne (EPFL) started an initiative to create large-scale
mobile data research resources. This initiative included the design and implementation of
Lausanne Data Collection Campaign (LDCC), in which mobile-phone data from about
185 volunteers were collected during the period of October 2009 until March 2011 (18
months) in the Lake Geneva region. The participants were provided with a Nokia N95
phone, which was equipped with an application to log activities 24 hours a day. The
logged data was first stored in the device and later, as soon as a successful WLAN-
connection could be established, transferred to a Simple Context server. The server then
build a database with the received data. This architecture allowed the collection of data
to be invisible to the users. This collection of data lead to the Mobile Data Challenge
(MDC) data set, which provides the data used in this work.

2.2 Data Characteristics
The MDC data set consists of mainly 7 different categories of data, as visible in Figure
2.1. All data stored in this database correspond to a place a user has visited during the
experiment.

4
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Figure 2.1: MDC data set overview of the most important tables

The red box, user forms, contains demographic descriptions about the user and
temporal information about his/her visited places. Concretely, for the places users have
visited, there exist two tables: the table visits 10min with all visits of a duration of at
least 10 minutes and another table, visits 20min, with all the visits of a duration of at
least 20 minutes. With the second table being a subset of the first. Both tables contain
attributes like user id, place id,time start and time end. In our work, we use the table
visits 10min, since in this table contains more records than the table visits 20min.

A further box, system information (yellow), involves information about the system
(=mobile-phone) and its state. The table sys consists of attributes like phone-profile,
battery, charging-status and freeram. The attribute battery displays the percentage of
remaining battery power. Charging-status shows if the phone is charging or not. Freeram
indicates the amount of free RAM available.

Data about social communication are stored in the tables call log and sms. The table
call log includes meta-data about phone calls. Crucial attributes, which build the columns
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of the table, are the time a call started, direction of the call, whether it is incoming or
outgoing, the duration of the call and the number calling or called.

In the royal blue box, data about locations and movement are aggregated. GPS and
acceleration data are included. In the original competition of the MDC, GPS data was
not given to the researchers. The table accel involves data relating the motion of a user
and his/her phone, respectively. An entry in this table consists of a start and end time as
well as the acceleration.

The box in the right corner at the bottom, Networking, the tables gsm, btrelation
and wlanrelation are included. They provide information about network connections
and available devices. In the table gsm the id of the GSM-antenna as well as the signal
strength are stored. Similarly, the table btrelation contains the id and name of the
network for bluethooth data. Data related to WLAN connections are stored in the table
wlanrelation. The most important attributes in this table are the SSID and the security,
whether the network is encrypted or not.

In the pink colored box, Phone usage, the tables mediaplay and application store
data about media usage behavior. The table mediaplay covers attributes like title, artist
and duration of the medium played. More general information is contained in the table
application. Attributes like event and name describe which application has been opened,
closed or is in use.

The last box, user agenda/contacts, aggregate data about the user’s contacts and his
or her personal calendar. In the table calendar, data about the begin, location and type of
the event is stored.

With two thirds of the users between 22 and 33 years old, the data set is biased
towards younger people and with 68% of male versus 32% female participants towards
male users.



3
Approach: User Classification, Features

& Algorithms

3.1 User classification
The quality of the user data greatly varies, which impacts prediction performance. For
example the number of total visits during the experiment ranges from 90 to 1992. The
number of total visits is of interest since users with a high number of total visits have
generally more distinct visited places than users with a small total of visited places,
wherein the prediction task gets harder. Therefore, in this work, the users are first split
into groups based on the number of total visits during the experiment, with a duration
of at least 10 minutes at a certain place. The group few visits is for users with a total
of less than 800 visits, another group, medium, is for users with 800 - 1’500 visits, and
the last group, many visits, involves users with more than 1’500 total visits. Within the
group, the users are further categorized into homogeneous or heterogeneous movement
pattern. A user’s movement pattern is homogeneous if the visits are distributed over a
few places or he/she does not move a lot. If the visits of a user are distributed over a lot
of places or he/she moves a lot, without strong regularities in his/her visting of locations,
the movement pattern is said to be heterogeneous.

7
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This leads to the below listed categorization:

• Few visits (< 800)

– Homogeneous
movement

– Heterogeneous
movement

• Medium number of visits
(800− 1′500)

– Homogeneous
movement

– Heterogeneous
movement

• Many visits (> 1′500)

– Homogeneous
movement

– Heterogeneous
movement

In the following, we explain in more detail, how we categorize the movement pattern
of the users in the different groups.

For the group with few visits the percentage of visits distributed over the top 10 most
visited places is calculated. If the number of visits at the top 10 most visited places
divided by the total visits is more than 90%, the user’s movement pattern is classified
as a homogeneous movement pattern. Otherwise, users with a value less than 70% are
assigned a heterogeneous movement label. The movement pattern of users covering
70%-90% of their visits in the top 10 most visited places is difficult to classify. The
method of the percentage of top 10 visited places is not accurate enough, as there are
users with up to 20% difference in prediction accuracy, despite having about the same
percentage of visits in the top 10 most visited places (±2%). To classify their movement
pattern, more sophisticated techniques, which are beyond of the scope of this work,
would be necessarily.

For the users with more than 800 visits the value of the Cumulative Distribution
Function (CDF) of distinct visited places is calculated to classify the users’ movement
pattern. If the CDF value is low (< 0.5), the user has visited few distinct places and
therefore a high prediction accuracy is expected. In contrast, users with a high CDF
(> 0.5) value have a more complex movement pattern and therefore the prediction
accuracy is expected to be lower. The number of distinct visited places ranges from 104
to 238 as visible in Figure 3.1.
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Figure 3.1: CDF of visited places for users with many visits

For some users, the CDF value is not an accurate metric because they have more
randomness and less repetition in their movement patterns. Hence, if the accuracy of
predicted place-IDs is low, despite a low CDF value (or vice versa, high CDF value and
high accuracy), the radius of gyration is calculated to finer describe the movement pattern
of the user. The radius of gyration [11, 12] describes how widely a user moves. Figure
3.2 graphically displays the radius of gyration. For a user the center of mass point (r cm)
of his/her trajectory is calculated. Then, for every visited location (r i, the turquoise
dots) the distance between the visited place and the center of mass point (r i - r cm) is
computed to describe the displacement of the visited location. The displacement of the
visited locations are averaged and result in the radius of gyration (rg).

Figure 3.2: Radius of gyration
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More generally, the radius of gyration is defined as,

rg =

√√√√ 1

n

n∑
i=1

(~ri − ~rcm)2 (3.1)

for ~ri the {i = 1, 2, ..., n} visited places for a given. ~rcm = 1
n

∑n
i=1 ri the center of

mass point of the user’s trajectory. To calculate the distance between the center of mass
point and a visited place, the haversine [13] formula is used. The distances (ri - rcm)
are summed up and averaged. Finally, the square root of the average distance is taken.
We calculate the radius of gyration per day and build the average over the period of time
the user participated in the experiment.

With the help of this method it can be explained that the prediction accuracy for
the users despite a low CDF value is low because they have a wide radius of gyration.
Contrary for the users with the prediction accuracy expected to be low due to their high
CDF value, but a high actual prediction accuracy, it can be explained with their narrow
radius of gyration.
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3.2 Features for Place Definition
To achieve high prediction accuracy, it is essential to choose discriminative and informa-
tive features. The MDC data set offers a rich type of data. However, some categories
suffer from sparsity. We focus on data which is of good quality and available for most of
the users. Different types of features may provide different information. For example,
features containing information related to the time a user visits a place can indicate
whether a person is likely at a workplace. Yet, temporal information alone do not suffice
to identify and distinguish all places. For example, if a user does not work on a regular
basis, his home and his work place could easily be confused. Contextual data of the
visited place, such as phone-profile or visible bluethooth devices, can provide further
information about the location of a user. Therefore, we intend to use temporal, system,
networking and movement features, which we describe in the following subsections. All
features combined together (temporal + system + networking + movement) are regarded
as hybrid features.

3.2.1 Temporal Features
Temporal features describe characteristics regarding the time of a visit. Users tend to
spend longer durations at home and at their work place, whereas stays at a restaurant or
transportation are of shorter duration. Furthermore, the mobility pattern during the week
is generally different compared to the movement behavior on a weekend. For example,
people usually work from Monday to Friday and spend time in a shopping center on a
weekend.

Duration: How long a user stays at a given place.

Leavingtime: At what time the user leaves a given place

Weekday: At what day of the week, the user visits a place.

Weekend: If the visit is on Saturday or Sunday

3.2.2 System Features
System features include context information describing the state of the mobile-phone’s
system. In this work, we use the following two features:

Profile: The phone-profile the user has selected. With possible values being general,
silent,meeting. The difference between the profile silent and meeting is that the
user can configure the phone to ring if a certain person calls, whereas the the phone
does not produce any sounds if the profile is set to silent.
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Charging: If the user is charging his/her phone at the given place.

People tend to charge their phone at home or in the office, where they stay for a longer
duration. The phone-profile may indicate if the user is not to be interrupted and likely
working.

3.2.3 Networking Features
Networking features include context information relating visible devices and available
connections. In our work, we make use of GSM, Bluethooth and WLAN data. Information
regarding visible bluethooth devices can reveal how crowded a place is. For example
the number of visible bluethooth devices is expected to be high in a shopping center,
restaurant or transportation.

#Visible WLAN-SSIDs: The number of detected WLAN SSIDs at a given place

#Visible GSM-Cells: The number of visible GSM-Antennas from a given place

#Visible Bluethooth Devices: The number of visible bluethooth devices visible from a
given place.

3.2.4 Movement Features
Movement features include information relating the user’s movement, such as accelera-
tion, at a given place.

Acceleration: If the average acceleration at a certain place is higher than a predefined
threshold.

PlaceFeature Leaving Time Duration Weekday #Visible WLAN
SSIDs #GSM cells #Bluethooth

Devices Charging Phone
profile Acceleration

Home 19:00 - 09:00 [480, 2880) MON - SUN [1, 5) [1, 3) [0, 6) True Normal low

Work 09:00 - 12:30 [120, 480) MON - FRI [6, 10) [3, 6) [6.15) True
Silent

Meeting low

Restaurant
12:30 - 14:00
19:00 - 23.00 [40, 120) MON - SAT [6, 15) [3, 6) [6, ) False Normal low

Transportation
07:00 - 08:30
18:00 - 19:00 [10, 40) MON - SUN [18, ) [6, ) [15, ) False Normal high

Outdoor Sports - [40, 120) SAT - SUN - [1, 3) - False Normal high
Indoor Sports 19:00 - 22:00 [40, 120) MON - SUN [1, 5) [1, 3) [0, 6) False Normal high
Shopping Center - [40, 120) FRI - SAT [15, ) [1, 3) [15, ) False Normal low
Friend Home 19:00 - 23:00 [40, 480) MON - FRI [1, 5) [1, 3) [0, 6) False Normal low
Friend Office - [10, 60) MON - FRI [6, 10) [3, 6) [6.15) False Normal low

Table 3.1: Place-Feature correlation
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3.2.5 Feature Selection
Having extracted the features, we want to know if they are useful for the prediction
task or not. Hence, we use the method InfoGainAttributeEval [14] from WEKA [14]
for every feature to calculate its Information Gain. The information gain describes how
much information a feature gives about the class we want to predict. It is a value greater
than or equal to 0 and bounded from above by the class label. A value of 0 indicates that
the feature does not provide any information to classify an instance and is therefore not
useful. The bigger the information gain of a feature is, the more it reduces uncertainty
about the classification. In table 3.2 the features and its corresponding information gain
is ranked in decreasing order. Since all features have an information gain bigger than 0,
we use all of them for the prediction task.

Feature Information Gain

#visible WLAN SSIDs 1.536
#visible GSM-Cells 0.852
duration 0.835
leaving time 0.700
#visible Bluethooth devices 0.611
charging 0.290
weekday 0.212
profile 0.209
acceleration 0.141
weekend 0.042

Table 3.2: Information Gain per feature

3.2.6 Features not Selected
As previously mentioned, not all data is of good quality and therefore not beneficial for
the prediction task. The following describes which data we do not use.

Calendar data involve personal events a user stores in the mobile-phone calendar.
These type of data suffers from sparsity. A lot of users do not have enough or not
even have entries at all, in this table. Consequently, we do not consider to use this
kind of data.

Sms and call log build the social communication data in the MDC data set. Originally,
we thought that communication activities could reveal important information about
the visited places. For example, missed phone calls could indicate that a mobile-
phone user is working, or when sending text messages that the user is traveling by



CHAPTER 3. USER CLASSIFICATION, FEATURES & ALGORITHMS 14

bus or train. Having those data inspected deeper we concluded not to make use of
this data due to its sparsity and because we cold not detect regularities.

Applications used by the user at specific place. These type of data could reveal vital
information about the places. Assuming that the user opens and runs an application
to track his or her sport activities, that would help identifying places where a user
practices sports. Eventually, we decided not to further extract data about the users’
application since we use the feature acceleration to detect places related to sport
activities and also because a lot of user have only standard system-apps running.

3.3 Algorithms
In the following, we shortly describe the different families of classifiers and describe
the specified parameters used in the experiment. Each of the algorithms are trained and
evaluated using 10-fold stratified cross-validation. This means that the constructed data
set for a given user is partitioned into 10 evenly sized parts. One subsample is used for
validation while the remaining 9 subsamples serve for training the classification model.
This process is repeated 10 times, so that every subsample is once used for validation
and serves 9 times as part of the training set.

3.3.1 Decision Trees
Decision trees are a tree like structure composed of a root node, branches and leaf nodes.
With the root node containing all instances and representing the first split-attribute. Other
non-leaf nodes of the tree represent tests based on attributes. For every possible test
outcome, there exists a branch. The leaf nodes describe the class label [15]. From a
given training set and its attributes the decision tree learns rules to split the instances
into as pure as possible leafs. This means, the leaf should preferably only have instances
of one distinct class label to make an accurate prediction. In this work, we have J48
configured to use the class label that occurs most frequently, if a leaf node is impure -
containing instances of more than one class - whereas the Hoeffding Tree is configured
to use an adaptive Naive Bayes approach if the leaf node is impure. To reduce the
models complexity by removing branches of the tree a technique called pruning is used,
which should help prevent overfitting. WEKA uses statistical test for pruning to remove
insignificant branches. The confidence factor is set to 0.25.

• J48, confidence factor = 0.25, min. number of objects = 2, leaf prediction strategy:
majority class

• Hoeffding Tree, leaf prediction strategy: Naive Bayes adaptive, split Confidence
1.0E-7
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• Random Forest, number of iterations = 100

3.3.2 Bayesian Approach
A Bayesian classifier is a probabilistic classifier that uses Bayes’ theorem [16]

P (H|E) = P (E|H) ∗ Prob(H)Prob(E)

with H being a future place and E being the current context (features). Prob(H) is
therefore the a priori probability of H and Prob(E|H) is the a posteriori probability of
H . In this work, the two following algorithms are used:

• Naive Bayes

• Bayes Network

Naive Bayes is called naive since it assumes independence between the features. In
our formulated task, it is not important to calculate exact probabilities but to estimate
the highest probability for a future place correctly [17]. This means that even if under
the assumption of independence between the features the calculated probability is not
the same as the real probability, but we can still obtain a correct prediction as long as
calculated probability is the highest for the future place with real highest probability.

3.3.3 Functions
Multilayer Perceptron is a feedforward artificial neural network (ANN). An artificial
neural network is a model used to solve computations for broad variety of tasks. It
consists of connected units, so called artificial neurons. The neurons are grouped into a
layer. The connections between layers can send signals (numbers) to other layers. In this
context, feedforward means that no circular connections between different layers exist.
Based on the signal strength and a threshold value, the neuron might be activated, process
the signal and send it to other layers. Finally, there is an output function computing the
output from the activation. [18]

• MLP, training time = 500 sec, hidden layers: automatic

3.3.4 Ensemble Methods
Instead of a single learner, ensemble methods use multiple learners to solve the prediction
task [19]. Diverse machine learning algorithms are combined together to build one final
model. The fact that different algorithms may produce different prediction outputs is
exploited to improve prediction accuracy. We briefly explain the three different ensemble
methods boosting, bagging and stacking.
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Boosting is used to reduce bias and variance in a supervised learning task. So-called
weak learners are combined into a strong classifier [20] with methods, such as for example
weighted average or voting.. The version implemented in WEKA is AdaBoostM1, which
stands for Adaptive Boosting [21].

• AdaBoostM1, number of iterations = 10

Bagging stands for Bootstrap Aggregation. It is a method to generate multiple
versions of a predictor and using them to get an aggregated predictor. Multiple versions
of the predictor are obtained by making bootstrap replicates of the training set. These
replicates are the used as new trainings set. In the classification task, the aggregation does
a plurality vote to predict the class. Bagging can improve the accuracy, if the replicated
training sets can cause significant changes in the constructed predictor. [22]

• Bagging, number of iterations = 10

Stacking is an ensemble learning method to combine multiple algorithms. Several
so-called base-learners are trained on a test set. With the obtained prediction results, a
further algorithm, so called meta-learner then chooses for the instance to classify the best
suited base-classifier [23].



4
Evaluation

In this chapter the evaluation of the future place prediction is presented. The metrics
used for evaluating the prediction task are average prediction accuracy, which is defined
as the number of correctly predicted instances divided by total predicted instances, as
well as average prediction execution time. In a first part, the classifiers are evaluated
without an ensemble method. In a second part, we make use of the ensemble learning
methods boosting, bagging and stacking.

4.1 Hardware
For the evaluation of the selected algorithms the following computing resources are used:

• 5 cores Intel Xeon E312xx @ 2GHz

• 16 GB RAM

on Ubuntu 14.04 LTS.

4.2 Software
To evaluate the task of predicting future locations of a mobile user we use WEKA 3.8
[1] in this work. WEKA is an open source data-mining Software written in Java and
provides a rich collection of standard machine learning algorithms. These algorithms

17
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can either be used in WEKA itself or included in a Java program. We included WEKA
in our Java code to evaluate the future place prediction of a user more comfortably.

4.3 Accuracy of Single Predictors

4.3.1 Temporal Features
If we only consider temporal features for the users with few visits and homogeneous
movement, J48 achieves the highest accuracy (66.35%) of all classifiers. For users with a
heterogeneous movement pattern, the Naive Bayes performs best with 42.48% accuracy.
Between the classifiers, there is not much variance in prediction accuracy (±4% for
homogeneous and heterogeneous movement).

Figure 4.1: Average prediction accuracy using temporal features for users with few visits
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Figure 4.2: Average prediction accuracy using temporal features for users with a medium number
of visits

The highest prediction accuracy for users with a medium number of visits is displayed
in Figure 4.2. For users with homogeneous movement patterns the highest average
accuracy is achieved by MLP with almost 66%. Considering heterogeneous movement
patterns, J48 achieves the highest average accuracy with 42%. The average prediction
accuracy is very similar to the group of users with few visits.

Figure 4.3: Average prediction accuracy using temporal features for users with many visits

In Figure 4.3 it is visible that J48 scores the highest average prediction accuracy
for both homogeneous (54.28%) and heterogeneous (40.14%) movement patterns, for
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users with many visits. The average prediction accuracy is roughly 25% higher for users
with homogeneous movement pattern compared to users with heterogeneous movement
pattern. The average prediction accuracy for users with homogeneous movement patterns
and many visits is roughly 10% lower compared to the groups of users with homogeneous
movement and few or a medium number of visits.

4.3.2 Hybrid Features
In this subsection, we consider all hybrid features specified in subsection 3.2 for the
prediction task.

Figure 4.4: Average prediction accuracy using hybrid features for users with few visits

The average prediction accuracy for users with few visits and homogeneous move-
ment gets as high as 86.72% (MLP). This is an improvement of 20% over using just
temporal features. For the heterogeneous users, the highest accuracy is obtained with
Bayes Net, 65.41%. For those users the accuracy improved up to 25% when considering
hybrid features compared to using temporal features for prediction. When we compare
the homogeneous movement pattern versus the heterogeneous movement pattern for
users with few visits, the accuracy in the average 20% higher for the homogeneous users.
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Figure 4.5: Average prediction accuracy using hybrid features for users with a medium number
of visits

In Figure 4.5 the average prediction accuracy for users with a medium number of
visits is visible. For users with homogeneous movement patterns Bayes Net performs best
with an accuracy of nearly 85% closely followed by Naive Bayes and J48. When looking
at users with heterogeneous movement patterns it is also Bayes Net, which performs best.
The variance between the different algorithms is less than 2%.

Figure 4.6: Average prediction accuracy using hybrid features for users with many visits

Regarding the users with many visits, the accuracy is 84% for users with a homo-
geneous movement pattern. For the heterogeneous group, the accuracy is almost 68%.
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Again, the average accuracy for the users with homogeneous movement is almost 20%
higher than the accuracy for users with heterogeneous movement. For the users with
homogeneous movements the accuracy improves by 18% when considering hybrid and
not just temporal features. Even more, i.e. by 28%, the average accuracy improves
for users with heterogeneous movements when considering hybrid features over just
temporal features.

4.4 Accuracy of Ensemble Predictors
In this section we analyze the average prediction accuracy when using hybrid features
and the ensemble learning boosting, bagging and stacking applied to different algorithms.
We do not further consider solely temporal features, since the accuracy is up to 30%
higher when using hybrid features.

4.4.1 Hybrid Features
In Figure 4.7 the average prediction accuracy using boosting and different algorithms for
users with few visits is presented. The highest average prediction accuracy for the group
of users with heterogeneous movement patterns is 64.04% and obtained when boosting is
applied to MLP. With an average of 87.03%, boosting applied to J48 scores the highest
accuracy for users with a homogeneous movement pattern.

Figure 4.7: Average prediction accuracy using hybrid features and boosting for users with few
visits
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For users with a medium number of visits and homogeneous movement patterns, the
ensemble method boosting performs best when applied to J48, with an average accuracy
of 84.6%. Considering users with heterogeneous movement patterns, boosting performs
best, with an average accuracy of 64.3%, when applied to MLP.

Figure 4.8: Average prediction accuracy using hybrid features and boosting for users with a
medium number of visits

Figure 4.9: Average prediction accuracy using hybrid features and boosting for users with many
visits

Regarding users with many visits (Figure 4.9 ), boosting applied to Bayes Net achieves
the highest accuracy (82.3%) for the heterogeneous movement pattern group and 67.57%
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accuracy for the heterogeneous movement group. Between the different algorithms
combined with boosting, there is not a big difference in the average prediction accuracy,
i.e. ±2%.

In Figure 4.10 the average prediction accuracy for users with few visits is presented
when bagging is applied to different algorithms. The highest accuracy is achieved by MLP
with 87.04% for the homogeneous movement pattern and 65.71% for the heterogeneous
movement group. Also when bagging is used, there is no big difference between the
different classifiers.

Figure 4.10: Average prediction accuracy using hybrid features and bagging for users with few
visits
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Figure 4.11: Average prediction accuracy using hybrid features and bagging for users with a
medium number of visits

The ensemble method bagging performs best, for users with a medium number of
visits and homogeneous movement patterns, when combined with Bayes Net with an av-
erage accuracy of more than 85% (see Fig. 4.11). Considering users with heterogeneous
movement patterns, bagging performs best when applied to MLP (65.34% accuracy)
closely followed by Bayes Net (65.02%).

Figure 4.12: Average prediction accuracy using hybrid features and bagging for users with many
visits

In Figure 4.12 the average prediction accuracy of bagging in combination with
different algorithms for users with many visits is presented. For the group of users with
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heterogeneous movement patterns Bayes Net performs best with an average accuracy
of 67.72%, closely followed by J48. Bagging combined with J48 achieves the highest
accuracy, almost 84%, for users with homogeneous movement patterns.

Figure 4.13: Average prediction accuracy using hybrid features and stacking for users with few
visits

The average accuracy for users with few visits and heterogeneous movement is about
62% when using using stacking to combine MLP-J48-BN or MLP-J48, as visible in
Figure 4.13. The average accuracy is 24% higher for the users with a homogeneous
movement pattern. Overall, the average accuracy does neither improve for the heteroge-
neous movement pattern group nor for the homogeneous one, compared to using a single
classifier.

Regarding users with a medium number of visits and the ensemble method stacking,
the average prediction for users with homogeneous movement patterns is almost 2% lower
compared to the users with few visits and homogeneous movement patterns. Conversely,
the average prediction accuracy using stacking for users with heterogeneous movement
patterns is slightly higher compared to the users with few visits and heterogeneous
movement patterns, when MLP, J48 and Bayes Net are stacked.
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Figure 4.14: Average prediction accuracy using hybrid features and stacking for users with a
medium number of visits

Figure 4.15: Average prediction accuracy using hybrid features and stacking for users with many
visits

Regarding users with many visits and heterogeneous movement, the average accuracy
is nearly 65% when using stacking to combine MLP-J48-BN or MLP-J48. For those
users with homogeneous movement, the average accuracy is 82%, as visible in Figure
4.15.
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4.5 Execution Time of Single Predictors
In this subsection we present the execution time when using temporal features and hybrid
features, different algorithms and for the different user groups. The execution time is
composed of the time taken to build the model and the time taken to classify the instances.

4.5.1 Temporal Features
When considering only temporal features, the built model is less complex than the model
for hybrid features. Therefore, lower prediction execution time is expected when just
using temporal features.

Figure 4.16: Average execution time using temporal features for users with few visits

In Figure 4.16 the average execution time when using only temporal features for
users with few visits is presented. We can see that the MLP algorithm takes more than
30x more time than all other algorithms. J48, Hoeffding Tree, Naive Bayes and Bayes
Net all take less than 2 seconds for both the heterogeneous and homogeneous movement
group. With 10 seconds for the user group of heterogeneous movement and 6.5 seconds
for the users with homogeneous movement, random forest takes significantly more time
than the previously mentioned algorithms.
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Figure 4.17: Average execution time using temporal features for users with a medium number of
visits

The execution time to solve the prediction task with temporal features for the group
of users with a medium number of visits is similar compared to the users with few visits:
All algorithms except Random Forest and MLP take less than 1 second. However, the
execution time for Random Forest and MLP increases by a factor of 2 respectively 4, for
users with a medium number of visits (see Fig. 4.16 and 4.17).

Figure 4.18: Average execution time using temporal features for users with many visits

For the users many visits, all classifiers except Random Forest and MLP take on
average less than 1 seconds to predict the future places of all instances, independent of
the movement type, as visible in Figure 4.18. Generally the difference in the execution
time between the users with homogeneous and heterogeneous movement is very small
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(< 4 sec) except for the MLP. The execution time takes significantly more time (+1’000
sec) for the heterogeneous movement group compared to the homogeneous one.

4.5.2 Hybrid Features
In the following Figures 4.19, 4.20, 4.21, the prediction execution time using hybrid
features with different classifiers is presented.

When considering all types of features the execution time for the prediction only
marginally increases compared to when using just temporal features for most of the
algorithms except for MLP.

Figure 4.19: Average execution time using hybrid features for users with few visits

Figure 4.19 shows the average prediction execution time for users with few visits.
The classifiers J48, Hoeffding Tree, Naive Bayes and Bayes net execute this prediction
task on average in less than 4 seconds for both movement types. If the execution time
using hybrid features is compared to execution time using just temporal features (such as
in Fig. 4.16, it increases substantially only for the heterogeneous movement users when
using MLP as predictor by roughly 130 seconds.
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Figure 4.20: Average execution time using hybrid features for users with a medium number of
visits

When using hybrid features for the prediction task, the execution time for users with
a medium number of visits increases by about 200 seconds for the group of users with
homogeneous movement patterns and about 500 seconds for users with heterogeneous
movement patterns. The execution time for the other algorithms remains roughly the
same.

Figure 4.21: Average execution time using hybrid features for users with many visits

As visible in Figure 4.21 the execution time is less than 1 second when using J48,
Naive Bayes or Bayes Net. For Random Forest the execution takes about 15 seconds
for the heterogeneous movement group and on average about 7 seconds for users with
homogeneous movement patterns. By far the highest execution time is perceived when
using MLP, 3’417 vs 2’075 seconds for heterogeneous and homogeneous movement
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type. Compared to when just using temporal features, MLP using hybrid features takes
significantly more time.

4.6 Execution Time of Ensemble Predictors
In this section, we present the time taken to execute the prediction task, when we apply
ensemble methods and consider hybrid features.

4.6.1 Hybrid Features
When considering the ensemble learning method boosting and users with few visits, the
execution time increases by at least a factor of 3. Nevertheless, J48, Hoeffding Tree,
Naive Bayes and Bayes Net take less than 10 seconds to execute.

Figure 4.22: Average execution time using hybrid features and boosting for users with few visits
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Figure 4.23: Average execution time using hybrid features and boosting for users with a medium
number of visits

In Figure 4.23 is the execution time presented for users with a medium number of
visits. J48 and the Bayesian classifiers have an execution time of less than 2 seconds.
For users with heterogeneous movement patterns, Random Forest takes 4x more time
and MLP 3.5x more time to execute the prediction task compared to execution time for
the users with homogeneous movement.

Figure 4.24: Average execution time using hybrid features and boosting for users with many
visits

For the users with many visits the execution time is only for J48 less than 10 seconds,
regardless of the movement type. Hoeffding Tree Naive Bayes and Bayes Net perform the
task in about 15 to 30 seconds, as visible in Figure 4.24. As seen previously, MLP has
the highest execution time with 20’341 seconds for heterogeneous and 7’020 seconds for
homogeneous users.
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Applying the ensemble method bagging to J48, Naive Bayes and Bayes Net does
only marginally affect the execution time (+2 to seconds) as visible in Figures 4.25,4.26
and 4.27. For the MLP the execution time increases by a factor of 10 when boosting is
used with it, compared to using MLP as a single classifier.

Figure 4.25: Average execution time using hybrid features and bagging for users with few visits

Figure 4.26: Average execution time using hybrid features and bagging for users with a medium
number of visits

Figure 4.27: Average execution time using hybrid features and bagging for users with many visits
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The ensemble method of stacking multiple classifiers takes the highest execution
time, compared to all other methods used in this work. This is true for all group of users
independent of the number of visits or the movement patterns. When using stacking
the execution time, considering users with few visits, is about 6’000 seconds for those
with a heterogeneous movement and about 1’000 seconds for users with homogeneous
movements.

Figure 4.28: Average execution time using hybrid features and stacking for users with few visits

Figure 4.29: Average execution time using hybrid features and stacking for users with a medium
number of visits

Regarding users with a medium number of visits, the stacked algorithms in Figure
4.29 require about 5’000 seconds to execute the prediction task for users with homoge-
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neous movement patterns. The execution time of the stacked algorithms is higher than
18’000 seconds for users with heterogeneous movement patterns.

Figure 4.30: Average execution time using hybrid features and stacking for users with many visits

For the users with many visits and heterogeneous movements the average execution
time is at most 38’050 seconds when using stacking. The execution time for users with
homogeneous movements is about 25’000 seconds when using stacking.

4.7 Performance Analysis
As seen before, hybrid features can increase the average accuracy by up to 30%. To
explain the improvement in the higher accuracy when using hybrid features - and not
only temporal features for the prediction task - we present the confusion matrix. The
confusion matrix is a tool to visualize the performance of an algorithm. In Figure 4.31 the
confusion matrix is presented when using temporal features for a user with many visits
and homogeneous movements. On the vertical axis of the confusion matrix are the actual
place-IDs presented. The horizontal axis represents the predicted place-ID. This view
helps understand which places are mistaken for another place. In Figure 4.31 it is visible,
that roughly 6 different places are identified out of a total of 107. For example, 181
instances with an actual place-ID of 1 are correctly predicted as place-ID 1. Yet, there
are a lot of misclassifications: For example, 34 instances with an actual place-ID of 1
were misclassified as placed-ID 2. Temporal features do not provide enough information
to identify or distinguish more places.
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Figure 4.31: Confusion matrix when using temporal features and J48 as classifier

Figure 4.32: Confusion matrix when using temporal features, bluethooth, profile and charging
with J48 as classifier

Figure 4.33: Confusion matrix when using hybrid features and J48 as classifier
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Therefore, we added more features and of other types. In Figure 4.32 the confusion
matrix is displayed when using temporal features + bluethooth + charging and profile
feature. With this feature set, the model no longer mistakes placed-ID 1 with place-ID
2 and vice versa. Place-ID 1 is most probably the user’s home. The phone-profile is
most of the time set on general and the number of visible bluethooth devices is small.
When the user visits the place with ID 2 is phone profile is set to silent or general and
the number of detected bluethooth devices is higher than at place-ID 1. Consequently,
place-ID 2 is most probably the workplace of the user. Figure 4.33 shows the confusion
matrix when using all in section 3.2 defined features. The model is able to properly
discriminate at least 10 different places.

In this work, the ensemble learning method could not significantly improve the
prediction accuracy. In general, ensemble methods are beneficial to the accuracy if there
is significant diversity between the different models [24]. A seen in chapter 4 there is
very little variance in the average prediction accuracy between the different algorithms,
when using hybrid features (±2%). Furthermore, there is low variance in prediction
accuracy when comparing different algorithms user by user. The features selected for
the prediction task are of good quality even for the users with a low number of visits.
Therefore, there was no possibility for ensemble methods to compensate for sparsity of
data. Finally, WLAN, GSM, duration, leavingtime and Bluethooth data turned out to be
good and reliable features to correctly predict future places.
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4.8 Performance Comparison
In this subsection, we compare our results with those of previously conducted experi-
ments.

Work Algorithm Features Movement Pattern Accuracy

Our work J48 Hybrid Homogeneous 83.98%
Bagging-MLP Hybrid Heterogeneous 65.02%

Tran et al. [2] J48 with Home and Temporal Homogeneous 71.85%
Holiday Detection Temporal Heterogeneous 54.27%

Zhao et al. [25] Stacking Hybrid Homogeneous 83.37%

Table 4.1: Accuracy comparison of different works

For users with homogeneous movement patterns, the prediction accuracy could not
be improved and is with almost 84% as good as the work of Zhao et al. [25]. All users
have places in their data set, which they have only visited once. The prediction of such
places is rather difficult. Consequently, the obtained accuracy is quite high and difficult
to improve, as one had to deal with the correct prediction of such places. Regarding
users with heterogeneous movement patterns, our proposed features improved the overall
accuracy by roughly 10% compared to the work of Tran et al. [2]. In their work, Tran
et al. use temporal features such as leaving time, duration and weekday/weekend, and
an algorithm to detect if the user is on holiday. Based on our results, we suggest to
exploit hybrid features for the prediction task to improve the accuracy for both, users
with homogeneous and users with heterogeneous movement patterns.



5
Conclusions

In this work, we model the future place prediction as a standard supervised learning
task. The mobile-phone users are divided into groups based on the number of total
visits and whether their movement pattern is homogeneous or heterogeneous. We
use a rich selection of features to distinguish places of a user. Then, we use various
algorithms to predict future locations of a user. We observe that using hybrid features
increases the accuracy by up to 22% compared to temporal features, for users with
few or a medium number of visits, having heterogeneous or homogeneous movement
patterns. For the users with many visits, using hybrid features can increase the accuracy
about 27%, for users with heterogeneous movement patterns and almost 30% for users
with homogeneous movement patterns compared to using only temporal features. For
users with homogeneous movement patterns, future places can be predicted with a high
accuracy (>83%) and reasonably fast. The correct prediction of future places for users
with heterogeneous movement patterns is still difficult.
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