
UNIVERSITY OF BERN

BACHELOR THESIS

Machine Learning for Indoor Positioning

Author:
Joel NIKLAUS

Supervisors:
Prof. Dr. Torsten BRAUN

Dr. Zhongliang ZHAO
Jose Luis CARRERA

A thesis submitted in fulfillment of the requirements
for the degree of Bachelor of Science

in the

Communication and Distributed Systems Research Group
Institute of Computer Science

November 14, 2017

http://www.unibe.ch
http://www.joelniklaus.ch
http://www.inf.unibe.ch/ueber_uns/personen/prof_dr_braun_torsten/index_ger.html
http://www.inf.unibe.ch/ueber_uns/personen/dr_zhao_zhongliang/index_ger.html
http://www.inf.unibe.ch/ueber_uns/personen/carrera_jos_luis/index_ger.html
http://cds.unibe.ch
http://inf.unibe.ch

iii

Declaration of Authorship
I, Joel NIKLAUS, declare that this thesis titled, “Machine Learning for Indoor Posi-
tioning” and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

v

“In a world that’s changing really quickly, the only strategy that is guaranteed to fail is not
taking risks.”

Mark Zuckerberg

vii

University of Bern

Abstract
Faculty of Science

Institute of Computer Science

Bachelor of Science

Machine Learning for Indoor Positioning

by Joel NIKLAUS

Nowadays, smartphones can collect huge amounts of data in their surrounding en-
vironment with the help of highly accurate sensors. Since the combination of the
Received Signal Strengths of surrounding Access Points and sensor data is assumed
to be unique in every location, it should be possible to use this information to ac-
curately predict a smartphone’s location. As it is very difficult to derive the corre-
lation between these values, we must use machine learning methods. As part of
this project, we have developed an Android application that is able to distinguish
between rooms on a floor and special landmarks within a room. This has been ac-
complished using machine learning methods based on the Java library Weka. Ulti-
mately, we hope to include this application into an indoor tracking system in order
to improve its accuracy.

http://www.unibe.ch
http://philnat.unibe.ch
http://inf.unibe.ch

ix

Acknowledgements
On this page I want to thank every person who helped me in any way in complet-
ing this thesis. In particular I want to give sincere thanks to my supervisors Prof.
Dr. Torsten BRAUN, Dr. Zhongliang ZHAO and Jose Luis CARRERA for their help
and support during my project. Furthermore, I yield Melissa CHANG and Catriona
REID special thanks for proof reading my thesis and helping me greatly with the En-
glish language. In addition I want to thank my flatmates in Exeter and Bern warmly
for their patience while I was disturbing them by conducting my experiments in the
living room. Last but not least many thanks to my parents, siblings and friends for
their emotional support.

xi

Contents

Declaration of Authorship iii

Abstract vii

Acknowledgements ix

1 Introduction to the Thesis Topic 1
1.1 Indoor Localization . 1
1.2 WiFi and Sensor Data . 1
1.3 Machine Learning . 2

2 Background Information and Theory 3
2.1 Motivation for Using Machine Learning to Improve the Indoor Track-

ing System . 3
2.2 Reasons for Using Machine Learning . 4
2.3 Machine Learning Workflow . 4
2.4 Chosen Machine Learning Algorithms 5
2.5 Features . 6

2.5.1 Features used in the experiments 6
RSS . 6
Magnetic Field . 7
Light . 9

2.5.2 Non-useful features . 9
Ambient temperature . 9
Relative Humidity . 10
Pressure . 10
Mean and Variances of RSS . 10
GPS . 10

2.6 Weka . 10
2.6.1 Advantages . 11
2.6.2 Disadvantages . 11

2.7 Android App . 11
2.7.1 Implementation . 11
2.7.2 Reasons for Choosing the Android System 11
2.7.3 Tested Mobile Phones . 11

3 Implementation and Experimentation 13
3.1 General Remarks . 13
3.2 Implementation . 13
3.3 Machine Learning Applications . 14

3.3.1 Room Recognition . 14
3.3.2 Landmark Recognition . 14

3.4 Data Collection Methodology . 15

xii

3.5 Datasets . 17
3.5.1 Bern Dataset . 17
3.5.2 Exeter Dataset . 18

4 Experimental Results 19
4.1 Attribute Selection . 19
4.2 Duplicates Removal . 20
4.3 Attribute Exclusion . 22

4.3.1 Only RSS Values . 22
Accuracy . 22
Testing Time . 24

4.3.2 RSS and Magnetic Field . 25
4.3.3 Additional Features . 26

4.4 Rounding . 29
4.5 Hyper-Parameter Search . 29
4.6 Optimal Prediction With Ensemble Methods 31

5 Conclusions and Future Directions 33
5.1 Conclusion . 33
5.2 Future Directions . 33

5.2.1 Device Independence . 33
5.2.2 Only Predict if Sure . 34
5.2.3 Further Optimization of HyperParameters 34
5.2.4 Longterm Stability . 34
5.2.5 Light . 34
5.2.6 Bluetooth . 34
5.2.7 RSS Values . 34

Bibliography 35

xiii

List of Figures

2.1 Landmarks . 4
2.2 Device . 7
2.3 Earth . 8

3.1 Architecture . 13
3.2 Landmarks . 14
3.3 Grid . 15
3.4 Distance . 16
3.5 Bern . 17
3.6 Exeter . 18

4.1 Duplicates . 21
4.2 RSSAccuracy . 23
4.3 RSS Testing Time . 24
4.4 RSSAndMagnetic . 26
4.5 AdditionalFeatures . 28

xv

List of Tables

4.1 The information gain of each attribute using the InfoGainAttributeE-
val ranking algorithm. 20

4.2 The accuracy change if duplicate data points are removed. 21
4.3 The accuracy with a different number of RSS values. 22
4.4 The testing time with a different number of RSS values measured in

µs per instance. 24
4.5 The accuracy with different ways of storing the magnetic field. 25
4.6 The accuracy with additional features added. 27
4.7 The confusion matrix for the Naive Bayes classifier using the dataset

number 2 (with light). Dataset Bern Rooms (see Section 3.5.1 and on
https://github.com/JoelNiklaus/IndoLoc/tree/master/
app/src/main/assets/thesis/bern/room). 28

4.8 The confusion matrix for the MultilayerPerceptron classifier. Dataset
Bern Rooms (see Section 3.5.1 and on https://github.com/JoelNiklaus/
IndoLoc/tree/master/app/src/main/assets/thesis/bern/
room). 30

4.9 The confusion matrix for the SMO classifier. Dataset Bern Rooms (see
Section 3.5.1 and on https://github.com/JoelNiklaus/IndoLoc/
tree/master/app/src/main/assets/thesis/bern/room). . . 30

4.10 The confusion matrix for the Naive Bayes classifier. Dataset Bern
Rooms (see Section 3.5.1 and on https://github.com/JoelNiklaus/
IndoLoc/tree/master/app/src/main/assets/thesis/bern/
room). 31

4.11 The confusion matrix for the Majority Vote classifier with three Multi-
layerPerceptrons, a ClasssificationViaRegression, a RandomSubspace,
a LogitBoost, a RandomForest, a Logistic Regression, a SMO and a
Naive Bayes classifier. Dataset Bern Rooms (see Section 3.5.1 and on
https://github.com/JoelNiklaus/IndoLoc/tree/master/
app/src/main/assets/thesis/bern/room). 32

https://github.com/JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/bern/room
https://github.com/JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/bern/room
https://github.com/JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/bern/room
https://github.com/JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/bern/room
https://github.com/JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/bern/room
https://github.com/JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/bern/room
https://github.com/JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/bern/room
https://github.com/JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/bern/room
https://github.com/JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/bern/room
https://github.com/JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/bern/room
https://github.com/JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/bern/room
https://github.com/JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/bern/room

xvii

List of Abbreviations

ML Machine Learning
IL Indoor Localization
IP Indoor Positioning
ITS Indoor Tracking System
RSS Received Signal Strength
Indoloc This Indoor Localization System
KNN K Nearest Neighbour

xix

This thesis is dedicated to everyone who helped me on the
project, except for that guy who yelled at me in Migros when I

was seven because he thought I was being "too rowdy".

You’re an asshole, sir.

1

Chapter 1

Introduction to the Thesis Topic

In this chapter we are giving a short introduction to the topic and the motivation.
The goal of this project is to estimate the indoor locations of smart phone users on
the room level accuracy using ML methods.

1.1 Indoor Localization

High localization accuracy within buildings would be very useful - in particular,
large complex buildings like shopping malls, airports and hospitals would be well
served by this feature. It would make orientation within these highly complicated
structures much easier and would diminish the need for big plans scattered all
around these buildings.

However, walls, roofs, windows and doors of the buildings we live in greatly
reduce the GPS signals carried by radio waves because it operates on a relatively
high frequency of 1575.42 MHz (L1 signal) and 1227.6 MHz (L2 signal). This results
in a severe loss of accuracy in GPS data inside buildings. (MiTAC, 2017)

Different solutions already exist for indoor localization of mobile devices such as
Pedestrian Dead Reckoning (PDR) and WiFi fingerprinting based methods. In PDR
at every step/current location of the user his/her direction and therefore future loca-
tion is predicted using inertial sensors. In WiFi fingerprinting, the Received Signal
Strength (hereafter referred to as RSS) values of several access points in range are
collected and stored together with the coordinates of the location. A new set of RSS
values is then compared with the stored fingerprints and the location of the closest
match is returned. (Xiao et al., 2016)

1.2 WiFi and Sensor Data

In contrast to outdoors, building interiors normally have a large number of different
WiFi access points constantly emitting signals. So why do we not use these to pre-
dict the user’s location? By scanning the area around the device, we can measure
the received signal strength of each of the nearby access points. And because there
typically are so many of them, we presume that the list of all these values combined
is unique at every distinct point in the building.

Furthermore, we can strongly assume that these values are also constant over
time as the access points are fixed in place and are constantly emitting signals of
the same strength. Of course, there may be occasional changes, for instance if the
network is remodelled, but we expect these changes to be infrequent.

In addition to the RSS values, we also suggest using the earth’s magnetic and
gravity field and collecting other data using the sensors available in modern smart
phones.

2 Chapter 1. Introduction to the Thesis Topic

1.3 Machine Learning

In this way, we can collect lots of labelled location data of the building. However, be-
cause each data point may contain a very large number of WiFi access point RSS val-
ues and magnetic field values, the data is very complex. Therefore, we propose using
supervised Machine Learning (herafter referred to as ML) methods to make sense of
this large amount of collected data. By training a classifier (supervised learning al-
gorithm such as K-Nearest-Neighbour) on the collected labelled data, rules can be
extracted. Feeding in the actual live data (RSS values, magnetic field values, etc.)
of a moving user, the trained classifier can then predict the user’s location. We pro-
pose using machine learning to solve this task because the data is highly complex,
containing many different features, such as RSS values, magnetic field values and
other sensor data. We expect the supervised learning algorithms to discover pat-
terns in the data which can then be used to differentiate between different rooms for
instance. (Mascharka and Manley, 2015; Mascharka and Manley, 2016)

3

Chapter 2

Background Information and
Theory

This chapter gives necessary background information for the topics covered in this
thesis.

2.1 Motivation for Using Machine Learning to Improve the
Indoor Tracking System

The Indoor Tracking System, hereafter referred to as ITS, (Carrera, Zhao, Braun, Li,
and Neto, 2016; Carrera, Zhao, Braun, and Li, 2016; Li et al., 2016; Shala and Ro-
driguez, 2011) can continuously predict the user’s location based on the location of
the user a short time ago and the orientation and movement of the device. Basically,
it suggests a collection of possible points the user could be at. It can predict the
user’s location with an accuracy of 1.7 meters.

The aim of the indoor localization system presented in this thesis (hereafter re-
ferred to as Indoloc) is to improve the accuracy of the ITS using ML. We hope that
this can be done by excluding all the possible locations of the user of one room if
the Indoloc predicts the other and by using landmarks. A landmark is defined as a
small area within a room. Thus, when a landmark is recognized by Indoloc, the ITS
can then tell with high confidence that it is located in a certain very small area. This
makes the ITS more precise. (Deng et al., 2016; Wang et al., 2016)

Figure 2.1 shows how Indoloc can improve the ITS. The red points symbolize the
collection of possible locations the user could be at, suggested by the ITS. The five
boxes represent the landmarks. These landmarks are small imagined areas inside
a room. Indoloc predicts the landmark "top left" with the green background. As a
consequence, the ITS can exclude the points which are far away, namely the ones
crossed out.

4 Chapter 2. Background Information and Theory

FIGURE 2.1: Five landmarks and the collection of red points predicted
by the ITS.

2.2 Reasons for Using Machine Learning

Machine Learning is very suitable for analyzing big amounts of data. The supervised
learning methods that are used in this work read the given training data and then
build a model of it, which tries to distinguish the given classes. This model can then
be applied to the data points collected by the user during the experiment and, in this
way, it can predict the class (room or landmark respectively) of the user. By using
Machine Learning methods we can take advantage of the modern smart phone’s
ability to collect huge amounts of data about what is happening around it.

2.3 Machine Learning Workflow

In this section we are giving a short introduction about the workflow we used to
achieve the best accuracy possible for the tested datasets. We used an article about a
typical machine learning workflow (Google, 2017) as a guideline for our workflow.

1. Data Preprocessing
First, the data has to be cleaned. Redundant or insensible information has to
be deleted.

2. Attribute Selection
Second, the right attributes have to be selected. Some attributes may not con-
tribute any useful information to the model and can therefore be discarded.
Specifically for this thesis it is discussed in Section 4.1 and 4.3.

3. Feature Engineering
In this part of the workflow, we try to create new features, for instance in Sec-
tion 2.5.2, or modify existing features to improve the accuracy (Section 4.4).

4. Find Base Learners
In this section, we find the best base ML method.

2.4. Chosen Machine Learning Algorithms 5

5. Find Meta Learners
In this step, we improve the performance using meta learners. A meta learner
is defined as a combination of one or several different base learners (conven-
tional ML algorithm). This is described in more detail in Section 4.6.

6. Hyper-Parameter search
Finally, we use methods like autoweka, gridsearch, multisearch or trial-and-
error to tweak the parameters of the chosen ML methods in order to further
improve the accuracy (Section 4.5).

This workflow is an iterative process. In order to achieve the best results it may
have to be repeated several times.

2.4 Chosen Machine Learning Algorithms

As Weka provides a very big amount of efficiently implemented machine learning
algorithms we could test lots of them without spending efforts of implementing
them from scratch. An overview can be found on http://wiki.pentaho.com/
display/DATAMINING/Classifiers. The following list includes the algorithms
that have been implied in this thesis. Detailed information about the algorithms can
be found in the method addClassifiers() in the class https://github.com/
JoelNiklaus/IndoLoc/blob/master/app/src/test/java/ch/joelniklaus/
indoloc/AbstractTest.java.

• Bayes

– NaiveBayes (see John and Langley, 1995)

• Functions

– LibSVM (Library for Support Vector Machines, see Chang and Lin, 2017)

– Logistic (see Cessie and Houwelingen, 1992)

– MultilayerPerceptron (Neural Network)

– SMO (Sequential Minimal Optimisation) (see Platt, 1998; Keerthi et al.,
2001; Trevor Hastie and Robert Tibshirani, 1998)

• Trees

– J48 (see Quinlan, 1993)

– RandomForest (see Breiman, 2001)

• Lazy (Instance Based)

– IBk (Implementation of the K-Nearest-Neighbour Algorithm, see Aha and
Kibler, 1991)

– KStar (see Cleary and Trigg, 1995)

– LWL (Locally Weighted Learning, see Frank, Hall, and Pfahringer, 2003;
Atkeson, Moore, and Schaal, 1996)

• Meta

– AdaBoostM1 (Adaptive Boosting, see Freund and Schapire, 1996)

http://wiki.pentaho.com/display/DATAMINING/Classifiers
http://wiki.pentaho.com/display/DATAMINING/Classifiers
https://github.com/JoelNiklaus/IndoLoc/blob/master/app/src/test/java/ch/joelniklaus/indoloc/AbstractTest.java
https://github.com/JoelNiklaus/IndoLoc/blob/master/app/src/test/java/ch/joelniklaus/indoloc/AbstractTest.java
https://github.com/JoelNiklaus/IndoLoc/blob/master/app/src/test/java/ch/joelniklaus/indoloc/AbstractTest.java

6 Chapter 2. Background Information and Theory

– Bagging (see Breiman, 1996)

– Dagging (see Ting and Witten, 1997)

– Decorate (see Melville and Mooney, 2003; Melville and Mooney, 2004)

– Grading (see Seewald and Fuernkranz, 2001)

– LogitBoost (see Friedman, T. Hastie, and R. Tibshirani, 1998)

– RandomSubSpace (see Ho, 1998)

– Stacking (see Wolpert, 1992)

– Vote (see Kuncheva, 2004; Kittler et al., 1998)

Because an explanation of all the tested algorithms would go beyond the con-
straints of this thesis we are giving the following recommendations for the interested
reader: A good website to get an overview on http://machinelearningmastery.
com/a-tour-of-machine-learning-algorithms/ and a good article for more
details on http://alex.smola.org/drafts/thebook.pdf.

2.5 Features

In a Machine Learning project the attributes of the classes are denoted as features.
Each feature is describing an aspect of the classes. In our case features are our mea-
surements, for instance an RSS value. For the ML project to deliver a good prediction
accuracy it is very important to select the right attributes/features and to also mod-
ify certain features or even create new features out of existing features. This is part
of the ML workflow described in Section 2.3.

In the following sections both the features used in the system and the ones taken
into consideration, but then found to be useless, are introduced. Each feature cor-
responds to one column in the dataset and would be referred to as an attribute in
Weka.

2.5.1 Features used in the experiments

In the following sections, the features which are actually used in the running system
are presented.

RSS

The RSS values provide the core data as they contribute the most to the performance
of the ML methods. The smart phone scans the surrounding access points, obtains
and registers the RSS values of each access point. These values depend on the dis-
tance to the access point as well as on the existence of obstacles, such as walls or
furniture, between the access point and the device. Normally the RSS values in our
datasets were between -20 and -90.

http://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/
http://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/
http://alex.smola.org/drafts/thebook.pdf

2.5. Features 7

Magnetic Field

FIGURE 2.2: The values in the device’s coordinate system.

8 Chapter 2. Background Information and Theory

FIGURE 2.3: The values in the earth’s coordinate system.

The device’s sensors measure the magnetic field in the device’s coordinate system.
As the user walks around, the orientation of the device may change all the time. We
would therefore have to collect all possible values from every orientation in every
point for the training phase. This would result in a huge amount of data and the
training performance would be extremely inaccurate.

In addition to the raw magnetic field values we can also derive data from the
accelerometer measuring gravity in the device’s coordinate system. By using the
Android built in function SensorManager.getRotationMatrix() and provid-
ing the magnetic field and gravity values, we can get the rotation matrix R and the
inclination matrix I. Using these two matrices, we have two methods making use of
the raw data (coded in https://github.com/JoelNiklaus/IndoLoc/blob/
master/app/src/main/java/ch/joelniklaus/indoloc/models/SensorData.
java):

Magnetic Processed With the help of R we then can do a change of the basis from
the device’s to the earth’s coordinate system to get the processed magnetic values
mp. (see 2.1) 0

mp
mp

 = R ∗m (2.1)

Now we have got the magnetic field data at a specific point in the earth’s coor-
dinate system. The x value is in East-West Direction, the y value is in North-South
Direction and the z value is perpendicular to the center of the earth. As the magnetic
field of the earth only goes from one pole to the other the x value is always 0 and is
therefore not used as a feature.

https://github.com/JoelNiklaus/IndoLoc/blob/master/app/src/main/java/ch/joelniklaus/indoloc/models/SensorData.java
https://github.com/JoelNiklaus/IndoLoc/blob/master/app/src/main/java/ch/joelniklaus/indoloc/models/SensorData.java
https://github.com/JoelNiklaus/IndoLoc/blob/master/app/src/main/java/ch/joelniklaus/indoloc/models/SensorData.java

2.5. Features 9

Gravity Magnitude and Geomagnetic Magintude In order to obtain the gravity
magnitude grm (in z direction) we multiply the gravity vector g with R. (see 2.2) 0

0
grm

 = R ∗

g1
g2
g3

 (2.2)

To obtain the geomagnetic magnitude gem (in y direction) we multiply the mag-
netic vector m with I ∗R. (see 2.3) 0

gem
0

 = I ∗R ∗

m1

m2

m3

 (2.3)

Additional information In order to reduce extreme variations which might dis-
turb the ML algorithms, we apply a low-pass-filter to the newly collected data. For
the alpha value we chose 0.75. So the last value has a weight of 0.75 and the newly
collected value a weight of 0.25. The accuracy of the magnetic field sensor in the
devices we tested is 0.15 µT. But still the data the sensor outputs contains many
more decimal places. In order to exclude the noise, we round the values to 1 µT.
The values obtained by measuring the magnetic field provide an improvement to
the overall accuracy.

Light

We also thought about including data collected from the light sensor because, for
instance, a room facing a window will clearly be brighter than one surrounded by
walls only. As can be seen in Section 4.3.3 this does improve the prediction accuracy,
however, these assumptions are not stable over time. In the night, there may be no
difference concerning light at all between the two previously mentioned rooms. Or
if there is a cloudy day the overall light strength would probably be much less as
compared to that on a sunny day. Thus, it might be appropriate to work with light
differences to a representative data point. This data point would have to be chosen
carefully and would have to be recorded first.

We include this suggestion here because it improves the result but it still has to
be tested if it is worth integrating it into a system in a productive environment.

2.5.2 Non-useful features

In the following sections the features which have been taken into account but have
been judged as not helpful are presented. These features are therefore not included
into the running system, as they would only produce additional overhead and slow
down the generation and evaluation of the ML models.

Ambient temperature

At first we thought about including the ambient temperature as another feature
because there may be characteristic small temperature differences between rooms
which could help in making predictions.

However, we estimate this feature to be rather unpredictable. For instance when
someone turned the heating up in one specific room, the temperature would change
drastically. As a consequence, we would suddenly receive incredibly conflicting

10 Chapter 2. Background Information and Theory

values. Or imagine someone opens the window on a very cold day. Even without
any human interference, different seasons or poor isolation of walls or windows
could have an influence on temperatures in the same room. Apart from that, there
are still lots of devices which do not yet have any temperature sensors.

Relative Humidity

Another idea would have been to include relative humidity. In comparing a bath-
room and an office, for instance, it would be a fair assumption that the relative hu-
midity would be higher in the former than the latter. But, as with the ambient tem-
perature, we think that it is too volatile overall. An open window on a rainy day or
even just a hot steaming tea can change the humidity landscape of a room. And here
as well, there are not many devices which already have a relative humidity sensor
built in.

Pressure

Relative pressure differences are utilized in the ITS to distinguish between different
floors of a building. But this work is only part of the ITS and only has to provide
predictions on the same floor. Therefore, it does not make sense to include it in
this system. Furthermore, the Motorola test device was not even equipped with a
pressure sensor.

Mean and Variances of RSS

One idea was to include the mean and the variances of the RSS values. But as ex-
periments have been able to show, this does not improve the overall accuracy. This
is probably the case because it does not add additional information to the ML algo-
rithms but just alters and adds pre-existing ones.

GPS

An idea is to include the latitude and longitude gained from the GPS to help predic-
tion close to the windows. But as our tests in Section 4.3.3 have shown the accuracy
is decreased if it is included.

2.6 Weka

Weka, standing for Waikato Environment for Knowledge Analysis, is an open source
machine learning library programmed in Java developed by the University of Waikato,
New Zealand, and can be found on http://www.cs.waikato.ac.nz/~ml/weka/.

Two reduced versions for Android 1 2 have been considered and the first version
(from the developer with user name rjmarsan) has been chosen. It uses Weka 3.7.3
and mainly does not include the GUI (Graphical User Interface) parts of the system
which are not used in this application.

1rjmarsan: https://github.com/rjmarsan/Weka-for-Android
2Shookit: https://github.com/Shookit/android-ml-weka

http://www.cs.waikato.ac.nz/~ml/weka/
https://github.com/rjmarsan/Weka-for-Android
https://github.com/Shookit/android-ml-weka

2.7. Android App 11

2.6.1 Advantages

The main reason why we chose the library Weka, is the huge amount of efficiently
implemented ML algorithms it provides. It offers a wide range of both supervised
and unsupervised learning algorithms. Furthermore, in addition to the Java inter-
face there is both a command line interface and a graphical user interface available.

2.6.2 Disadvantages

Although the introduction documentation 3 4 provides you with some information
to get started, the Javadoc 5 is not of much use. It only provides one very small
sentence to most of the methods (functions). This sentence mostly does not add any
additional details to the information from the method’s name.

The Javadoc for the classes is slightly better though, providing some explanation
how to use it. The design of the methods is very close to the use of the command line.
So usually a string array of cryptic options has to be provided in order to configure
the classifier. Sometimes it can be done using setter methods, but if so it is poorly
documented what exactly is altered by setting a certain value.

There is a mailing list 6 and a forum on Pentaho 7 where questions concern-
ing Weka can be asked. But unfortunately the active community does not seem to
be very large. For my problems at least, we had great difficulties finding answers
through these two channels.

2.7 Android App

2.7.1 Implementation

If the reader is interested in knowing how to implement an Android app we can rec-
ommend the following web resources: Android Developers on https://developer.
android.com/index.html and Android Studio on https://developer.android.
com/studio/index.html.

2.7.2 Reasons for Choosing the Android System

The most important reason which lead to the choice of Android as a (first) platform
of the app was the ITS which is being implemented in Android. On top of that, Weka
offers a Java interface which makes it very easy to integrate into an Android app.

2.7.3 Tested Mobile Phones

First, we tested the Android app on the Emulator in Android Studio. This was fine
for examining how the user interface behaved but after we added the WiFi, Sensor
and GPS collection, we had to test it on real phones. We used the following two
Android phones: Nexus 4 (LG, Android Version 5.0, API, Level 22, Accurate Spec-
ifications on https://en.wikipedia.org/wiki/Nexus_4) and Moto X Style
(Motorola, Android Version 6.0, API Level 24, Accurate Specifications on https://

3Programmatic Use: https://weka.wikispaces.com/Programmatic+Use
4Weka in Java Code: https://weka.wikispaces.com/Use+WEKA+in+your+Java+code
5Javadoc: http://weka.sourceforge.net/doc.stable/
6Mailing List: https://list.waikato.ac.nz/mailman/listinfo/wekalist
7Pentaho Forum: http://wiki.pentaho.com/display/DATAMINING/Pentaho+Data+

Mining+Community+Documentation

https://developer.android.com/index.html
https://developer.android.com/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://en.wikipedia.org/wiki/Nexus_4
https://www.digitec.ch/en/s1/product/motorola-moto-x-style-570-32gb-21mp-black-mobile-phones-5339851
https://www.digitec.ch/en/s1/product/motorola-moto-x-style-570-32gb-21mp-black-mobile-phones-5339851
https://weka.wikispaces.com/Programmatic+Use
https://www.digitec.ch/en/s1/product/motorola-moto-x-style-570-32gb-21mp-black-mobile-phones-5339851
https://weka.wikispaces.com/Use+WEKA+in+your+Java+code
https://www.digitec.ch/en/s1/product/motorola-moto-x-style-570-32gb-21mp-black-mobile-phones-5339851
http://weka.sourceforge.net/doc.stable/
https://www.digitec.ch/en/s1/product/motorola-moto-x-style-570-32gb-21mp-black-mobile-phones-5339851
https://list.waikato.ac.nz/mailman/listinfo/wekalist
https://www.digitec.ch/en/s1/product/motorola-moto-x-style-570-32gb-21mp-black-mobile-phones-5339851
http://wiki.pentaho.com/display/DATAMINING/Pentaho+Data+Mining+Community+Documentation
https://www.digitec.ch/en/s1/product/motorola-moto-x-style-570-32gb-21mp-black-mobile-phones-5339851
http://wiki.pentaho.com/display/DATAMINING/Pentaho+Data+Mining+Community+Documentation
https://www.digitec.ch/en/s1/product/motorola-moto-x-style-570-32gb-21mp-black-mobile-phones-5339851

12 Chapter 2. Background Information and Theory

www.digitec.ch/en/s1/product/motorola-moto-x-style-570-32gb-21mp-
black-mobile-phones-5339851).

https://www.digitec.ch/en/s1/product/motorola-moto-x-style-570-32gb-21mp-black-mobile-phones-5339851
https://www.digitec.ch/en/s1/product/motorola-moto-x-style-570-32gb-21mp-black-mobile-phones-5339851
https://www.digitec.ch/en/s1/product/motorola-moto-x-style-570-32gb-21mp-black-mobile-phones-5339851

13

Chapter 3

Implementation and
Experimentation

In this chapter, the experiments and their setup are explained. Further, we present
the datasets which are used in the experiments.

3.1 General Remarks

The larger the physical gap between rooms or landmarks respectively, the larger are
the differences in the measured features. As a consequence, the space between the
different classes in the hyperspace is increased, which makes it easier for the ML
algorithm to distinguish between the classes.

3.2 Implementation

This section gives some details about how to use Weka as open source ML library
to make the predictions of rooms or landmarks respectively. Figure 3.1 shows the
dataflow and the different components of the Android app in a visualized way. Sen-
sor and RSS values are measured by the device and received in the Android app.
This data is then passed to a Weka component, which trains the ML algorithms. The
trained algorithms are then evaluated with test data to find the one with the high-
est prediction accuracy. Finally, the best trained ML algorithm is then used for live
testing finally returning the device’s location.

FIGURE 3.1: The architecture of the implemented android app.

14 Chapter 3. Implementation and Experimentation

3.3 Machine Learning Applications

3.3.1 Room Recognition

In the room recognition phase we want the system to distinguish several rooms on
the same floor. As mentioned above, the sensor accuracies are not high enough to
enable the ability to distinguish data points collected at the border of two rooms.
Our best practice was leaving one square metre of space at the doors without any
data points collected.

3.3.2 Landmark Recognition

In the landmark recognition phase we want the system to distinguish several land-
marks inside the room. As explained before, a landmark is defined as a small area
within a room. Typically a landmark was of one square metre size and between each
of the landmarks we left at least 2 metres space. This was our best practice and there
may be better ways to do this. So in a small room (around 3x3 metres) we would
have two landmarks, so one at each end. In a normal office-sized room (around 5x5
metres) we would have four landmarks, one in each corner. In a big room (around
7x7 metres) we would have five landmarks, one in each corner and one in the centre.
In our experimental environment there were no bigger rooms available. (Figure 3.2)

FIGURE 3.2: Five landmarks and the collection of red points predicted
by the ITS.

3.4. Data Collection Methodology 15

3.4 Data Collection Methodology

FIGURE 3.3: The grid pattern used to collect the data points.

The data collection for both the training set and the test set have been done in a grid
pattern, as shown in Figure 3.3. So we started with the phone in one corner of the
room or landmark respectively. Then, we continuously moved the phone back and
forth in parallel vertical lines. Once we covered the entire area in vertical lines, we
turned the device by 90 degrees and did the same in parallel horizontal lines un-
til we arrived at the diagonally opposing corner. The distance between these lines
was typically around 5cm. Using this grid pattern method, a very tightly woven net
could be laid across the area. Therefore, the diversity of the collected data points
could be maximized. Additionally, this way of collection data is very fast. For in-
stance, it takes 20 minutes to finish the entire data collection in the third floor of
institute building in Bern.

The training set and the testing set have been collected in two different gath-
erings within two hours on the same day. Because when they were collected in the
same gathering and split up afterwards, Random Forest normally had over 99% test-
ing set accuracy in offline testing on the computer. But in live testing on the smart
phone this accuracy was nowhere close (< 70%).

16 Chapter 3. Implementation and Experimentation

FIGURE 3.4: Distance between rooms.

In supervised ML projects a class denotes the prediction output of the given ML
algorithm. In our room prediction case the classes would be the different rooms
and in analogy in our landmark prediction case the classes would be the different
landmarks.

Generally, the physically closer together the classes are, the lower is the accuracy
of the algorithms. This is due to small differences in the measured values (as shown
in Figure 3.4).

So on the one hand, when the distance between the classes is large, the mea-
sured values have greater differences between each other. This makes it easier to
distinguish the classes and results in a higher prediction accuracy. However, this
prediction is also less useful because there is a big uncategorized space in between
the classes (as shown in the bottom row in Figure 3.4).

On the other hand, if the distance between the classes is small, the measured
values have smaller differences between each other. This of course exacerbates the
problem of distinguishing the classes as the data points close to the border but in
different classes have very similar values. But this prediction is much more helpful
since more of the space can be categorized into a class (as shown in the top row in
Figure 3.4).

So we have to find an optimal solution in between the two above extremes, which
gives us a good accuracy but also does not come with too much uncategorized space.
Gathering from our experience we need an approximate distance of 1.5 metres be-
tween different classes to achieve an prediction accuracy of 85%.

In the method registerListeners() in the Sensor Helper class (on https:
//github.com/JoelNiklaus/IndoLoc/blob/master/app/src/main/java/
ch/joelniklaus/indoloc/helpers/SensorHelper.java) we set the collec-
tion delay to SENSOR_DELAY_NORMAL. Looking at the Android Documentation (on
https://developer.android.com/guide/topics/sensors/sensors_overview.

https://github.com/JoelNiklaus/IndoLoc/blob/master/app/src/main/java/ch/joelniklaus/indoloc/helpers/SensorHelper.java
https://github.com/JoelNiklaus/IndoLoc/blob/master/app/src/main/java/ch/joelniklaus/indoloc/helpers/SensorHelper.java
https://github.com/JoelNiklaus/IndoLoc/blob/master/app/src/main/java/ch/joelniklaus/indoloc/helpers/SensorHelper.java
https://developer.android.com/guide/topics/sensors/sensors_overview.html
https://developer.android.com/guide/topics/sensors/sensors_overview.html

3.5. Datasets 17

html) we read that this delay is set to 200000 microseconds. Therefore, the sensor
returns at least (!) 5 values per second. So we collected around 5 data points per
second walking at a constant rate.

3.5 Datasets

A dataset consists of two separately collected subsets, the training and the test set.
The training set usually is larger than the test set. Normally we use splits like 70%
training set and 30% test set or 80% and 20%.

3.5.1 Bern Dataset

The dataset considered for room recognition has been recorded on the third floor of
the Computer Science building of the University of Bern at Neubrückstrasse 10, as
shown in Figure 3.5. It can be found on the github repository on https://github.
com/JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/
bern/room.

FIGURE 3.5: The testing environment in Bern.

The training set contains 14569 data points in total. 3061 data points were col-
lected in the biggest room (1) and 514 in the smallest room (4). As mentioned in
Section 3.4 around 5 data points can be collected per second. Therefore, collecting
the whole training set required around 50 minutes.

The test set contains 8624 data points with 2164 in room 1 and 291 in room 4.
Collecting the whole test set required around 30 minutes. In this dataset we collected
all the features described above. So, in this section it is also described which of the
features improve the accuracy and which of them could be left out.

This dataset is used to conduct experiments on room recognition level and on
which features are beneficial for accuracy.

https://developer.android.com/guide/topics/sensors/sensors_overview.html
https://developer.android.com/guide/topics/sensors/sensors_overview.html
https://github.com/JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/bern/room
https://github.com/JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/bern/room
https://github.com/JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/bern/room

18 Chapter 3. Implementation and Experimentation

3.5.2 Exeter Dataset

The dataset considered for landmark recognition has been recorded on the first floor
of the living room in Block C in James Owen Court on Sidwell Street in Exeter, an
apartment complex owned by the University of Exeter, as shown in Figure 3.6. It
can be found on the github repository on https://github.com/JoelNiklaus/
IndoLoc/tree/master/app/src/main/assets/thesis/exeter/landmark.

FIGURE 3.6: The testing environment in Exeter.

The training set contains 2522 data points in total. As each of the landmarks are
of equal size we collected a little over 500 data points in each of them. Collecting the
whole training set required approximately 10 minutes.

The test set consists of 1269 data points with a little over 250 data points in each
landmark. Collecting the whole test set required approximately 5 minutes.

In this dataset we only collected the magnetic field values in the y and z direc-
tions, and the RSS values, because at the time of collection we presumed these to be
important features. There are many different machine learning methods and they
can each be parametrized in a variety of ways. Furthermore, each feature combi-
nation can be tested if it improves the result. So, in the following sections we am
confining ourselves to the most expressive findings.

This dataset is used to conduct experiments on the landmark recognition level
and to check if removing duplicates improves the result (4.2).

In every section there is a link available at the top which leads directly to the Java
class doing the described experiment.

https://github.com/JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/exeter/landmark
https://github.com/JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/exeter/landmark

19

Chapter 4

Experimental Results

This chapter describes the results of the experiments. On the github repository
(https://github.com/JoelNiklaus/IndoLoc/tree/master/app/src/main/
assets/thesis/bern/room) all the datasets we collected for the experiments are
provided for the interested reader.

4.1 Attribute Selection

The information gain denotes the value a certain attribute has for the overall predic-
tion. If an attribute with a high information gain is removed, we can strongly assume
that the prediction accuracy will decrease more than when an attribute with a low
information gain is removed. Finding out the information gain of each attribute lets
us rank the attributes based on their usefulness.

In order to evaluate the information gain (see Frank, Hall, Holmes, et al., 2010)
of each attribute on the dataset Bern Rooms (see Section 3.5.1 and on https://
github.com/JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/
thesis/bern/room), we run the InfoGainAttributeEval (see http://weka.sourceforge.
net/doc.dev/weka/attributeSelection/InfoGainAttributeEval.html)
ranking algorithm in Weka, getting the following result in Table 4.1.

https://github.com/JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/bern/room
https://github.com/JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/bern/room
https://github.com/JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/bern/room
https://github.com/JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/bern/room
https://github.com/JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/bern/room
http://weka.sourceforge.net/doc.dev/weka/attributeSelection/InfoGainAttributeEval.html
http://weka.sourceforge.net/doc.dev/weka/attributeSelection/InfoGainAttributeEval.html

20 Chapter 4. Experimental Results

TABLE 4.1: The information gain of each attribute using the InfoGainAt-
tributeEval ranking algorithm.

Attribute Name Information Gain Attribute Index

light 2.3540 3
latitude 2.3427 16
longitude 2.1380 17
rssValue5 1.9490 23
rssValue4 1.9462 22
rssValue3 1.9288 21
rssValue1 1.8435 19
rssValue2 1.8426 20
rssValue6 1.8079 24
rssValue0 1.5762 18
rssValue8 1.5582 26
rssValue9 1.4883 27
rssValue7 1.2531 25
geomagneticMagnitude 0.6001 13
magneticProcessedZ 0.3557 15
magneticProcessedY 0.3459 14
gravityMagnitude 0.0573 12
pressure 0 4
magneticZ 0 11
magneticY 0 10
relativeHumidity 0 5
gravityX 0 6
gravityY 0 7
gravityZ 0 8
magneticX 0 9
ambientTemperature 0 2

Dataset Bern Rooms (see Section 3.5.1 and on https:
//github.com/JoelNiklaus/IndoLoc/tree/master/
app/src/main/assets/thesis/bern/room).

This ranking provides information about the probable importance of the features.
The top ranked feature contains the greatest information gain and is therefore prob-
ably very important for the predictions made by the classifiers used later on. The 9
features at the bottom of the ranking have an information gain of 0. Therefore, we
already know that these 9 attributes are only cluttering the data and are of no use to
us. So we can already delete these out of the dataset. This results in no difference in
accuracy but in a decrease in both training and testing time as the algorithms have
to consider less data.

4.2 Duplicates Removal

As described in Section 3.4 and depicted in Figure 3.3 there are some intersections
in the path covered by the researcher to collect data. At these intersections or at
locations very close to each other it is possible that every attribute of two rows in the
dataset have the same values. These are denoted as duplicate data points.

https://github.com/JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/bern/room
https://github.com/JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/bern/room
https://github.com/JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/bern/room

4.2. Duplicates Removal 21

The Duplicates Test (on https://github.com/JoelNiklaus/IndoLoc/blob/
master/app/src/test/java/ch/joelniklaus/indoloc/experiments/DuplicatesTest.
java) checks if the accuracy is increased when all the duplicate data points are re-
moved. After removing the duplicate data, it is clear that every data point is unique.
A data point is a duplicate of another data point if all the correspondent feature val-
ues are exactly the same and they belong to the same class - simply put, if both data
points are exactly the same.

TABLE 4.2: The accuracy change if duplicate data points are removed.

Classifier With Duplicates Without Duplicates

train set: 2522, testset: 1269 train set: 1772, testset: 990
MultilayerPerceptron 88.42% 91.41%
Logistic 85.03% 89.29%
SMO 84.87% 89.90%
KStar 80.61% 82.83%
J48 80.54% 75.45%
RandomForest 80.46% 79.49%
NaiveBayes 78.33% 82.12%
IBk 75.10% 79.49%

Dataset Exeter Landmarks (see Section 3.5.2 and on https://github.com/
JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/
exeter/landmark).

FIGURE 4.1: Landmark prediction accuracy with and without du-
plicate data points. Dataset Exeter Landmarks (see Section 3.5.2
and on https://github.com/JoelNiklaus/IndoLoc/tree/
master/app/src/main/assets/thesis/exeter/landmark)

As we can clearly see in Table 4.2 and in a visualized way in Figure 4.1, removing
duplicate values increases the accuracy for most of the algorithms and especially for

https://github.com/JoelNiklaus/IndoLoc/blob/master/app/src/test/java/ch/joelniklaus/indoloc/experiments/DuplicatesTest.java
https://github.com/JoelNiklaus/IndoLoc/blob/master/app/src/test/java/ch/joelniklaus/indoloc/experiments/DuplicatesTest.java
https://github.com/JoelNiklaus/IndoLoc/blob/master/app/src/test/java/ch/joelniklaus/indoloc/experiments/DuplicatesTest.java
https://github.com/JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/exeter/landmark
https://github.com/JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/exeter/landmark
https://github.com/JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/exeter/landmark
https://github.com/JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/exeter/landmark
https://github.com/JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/exeter/landmark

22 Chapter 4. Experimental Results

the ones that perform well. Of course, the computation time is decreased because
the ML methods have less data points to consider. As a consequence, for all the
following experiments duplicate values are removed.

We can see that after removing the duplicates the Multilayer Perceptron reaches
a maximum landmark prediction accuracy of 91.41%.

4.3 Attribute Exclusion

In Section 2.5 we discussed which features seem reasonable to include into the dataset
and which should be omitted because they do not seem helpful. In this section we
test if the chosen features really all contribute to the prediction accuracy. To observe
this, we selectively excluded certain features and studied the influences on the pre-
diction accuracy.

This is done in the Attribute Exclusion Test (on https://github.com/JoelNiklaus/
IndoLoc/blob/master/app/src/test/java/ch/joelniklaus/indoloc/experiments/
AttributeExclusionTest.java).

4.3.1 Only RSS Values

Accuracy

TABLE 4.3: The accuracy with a different number of RSS values.

Classifier 5 RSS 6 RSS 7 RSS 8 RSS 9 RSS 10 RSS

NaiveBayes 82.05% 79.49% 82.05% 80.77% 84.62% 79.49%
IBk 76.92% 76.92% 82.05% 79.49% 82.05% 75.64%
KStar 75.64% 75.64% 83.33% 78.21% 79.49% 74.36%
SMO 74.36% 70.51% 82.05% 79.49% 78.21% 76.92%
Logistic 73.08% 66.67% 73.08% 66.67% 71.79% 69.23%
RandomForest 71.79% 71.79% 79.49% 75.64% 73.08% 75.64%
J48 64.10% 57.69% 64.10% 64.10% 64.10% 64.10%
MultilayerPerceptron 42.31% 42.31% 43.59% 48.72% 46.15% 44.87%

Dataset Bern Rooms (see Section 3.5.1 and on https://github.com/
JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/
bern/room).

https://github.com/JoelNiklaus/IndoLoc/blob/master/app/src/test/java/ch/joelniklaus/indoloc/experiments/AttributeExclusionTest.java
https://github.com/JoelNiklaus/IndoLoc/blob/master/app/src/test/java/ch/joelniklaus/indoloc/experiments/AttributeExclusionTest.java
https://github.com/JoelNiklaus/IndoLoc/blob/master/app/src/test/java/ch/joelniklaus/indoloc/experiments/AttributeExclusionTest.java
https://github.com/JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/bern/room
https://github.com/JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/bern/room
https://github.com/JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/bern/room

4.3. Attribute Exclusion 23

FIGURE 4.2: The accuracy with a different number of RSS
values. Dataset Bern Rooms (see Section 3.5.1 and on
https://github.com/JoelNiklaus/IndoLoc/tree/

master/app/src/main/assets/thesis/bern/room)

Table 4.3 and Figure 4.2 show that there are two peaks, namely when 7 and 9 RSS
values are used. The Naive Bayes classifier reaches a maximum prediction accuracy
of 84.62% with 9 RSS values. The other methods that perform well (KStar, SMO,
Logistic and Randomforest) are considerably better with 7 RSS values. Table 4.4
depicts that there is not a great difference in testing time between 7 and 9 RSS values.
Both would be viable options, but because more methods performed well with 7 RSS
values and because Naive Bayes was never the best classifier on the final set in our
tests, we are working with 7 RSS values in this dataset from now on. We opine that
signal interference may be the reason for worse performance when more than 7 RSS
values are utilized.

https://github.com/JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/bern/room
https://github.com/JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/bern/room

24 Chapter 4. Experimental Results

Testing Time

TABLE 4.4: The testing time with a different number of RSS values measured in µs
per instance.

Classifier 5 RSS 6 RSS 7 RSS 8 RSS 9 RSS 10 RSS

NaiveBayes 108 201 150 106 83 173
IBk 283 231 262 230 294 297
KStar 863 1747 1095 1139 1285 1633
SMO 58 55 63 45 62 63
Logistic 20 24 21 22 23 28
RandomForest 31 39 46 20 38 34
J48 20 25 59 25 22 23
MultilayerPerceptron 9 10 11 10 7 12

Dataset Bern Rooms (see Section 3.5.1 and on https://github.com/
JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/
thesis/bern/room).

FIGURE 4.3: The testing time with a different number of RSS values
measured in µs per instance. Dataset Bern Rooms (see Section 3.5.1
and on https://github.com/JoelNiklaus/IndoLoc/tree/

master/app/src/main/assets/thesis/bern/room).

https://github.com/JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/bern/room
https://github.com/JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/bern/room
https://github.com/JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/bern/room
https://github.com/JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/bern/room
https://github.com/JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/bern/room

4.3. Attribute Exclusion 25

Testing time is defined as the time needed to classify an instance and is measured in
µs per instance. The tests have been conducted on a MacBook Pro, late 2013 edition
with a 2.4 GHz Intel Core i5 CPU running macOS Sierra .

Table 4.4 and Figure 4.3 present that instance based methods like IBk (K-Nearest
Neighbour) and especially KStar need so much more time than the other methods
(IBk between 230 and 297 and KStar between 863 and 1747 microseconds per in-
stance). This is because they have to look at the whole dataset each time an instance
is classified, in contrast to other methods that use functions whose parameters are
tweaked during the training phase. As a consequence, we excluded KStar from these
big datasets (room recognition), because the experiment would take too long, which
is not practical in a real scenario. However, for landmark recognition it makes sense
to include it, because the datasets are normally much smaller. The best testing time
was achieved by the Multilayer Perceptron with predictions made in between 7 and
12 microseconds per instance.

4.3.2 RSS and Magnetic Field

This section describes how the room prediction accuracy changes when we add the
magnetic field (see Section 2.5.1), stored in different ways, to the RSS values.

TABLE 4.5: The accuracy with different ways of storing the magnetic field.

Classifier 1 2 3 4 5

SMO 82.05% 82.05% 87.51% 88.06% 86.98%
IBk 82.05% 82.05% 85.57% 85.21% 83.71%
NaiveBayes 82.05% 82.05% 82.82% 80.94% 79.99%
RandomForest 79.49% 78.21% 78.22% 80.89% 72.25%
Logistic 73.08% 73.08% 78.64% 68.62% 73.21%
J48 64.1% 64.10% 71.27% 71.27% 71.27%
MultilayerPerceptron 43.59% 39.74% 68.30% 68.40% 79.81%

Dataset Bern Rooms (see Section 3.5.1 and on https://github.com/
JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/
thesis/bern/room).
Legend:

1 7 first RSS values
2 RSS and gravityRaw and magneticRaw
3 RSS and magneticProcessed
4 RSS and gravityMagnitude and geomagneticMagnitude
5 RSS and magneticProcessed and gravityMagnitude and geomagneticMag-

nitude

https://github.com/JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/bern/room
https://github.com/JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/bern/room
https://github.com/JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/bern/room

26 Chapter 4. Experimental Results

FIGURE 4.4: The accuracy with different ways of storing
the magnetic field. Dataset Bern Rooms (see Section 3.5.1
and on https://github.com/JoelNiklaus/IndoLoc/tree/

master/app/src/main/assets/thesis/bern/room).

Legend:
1 7 RSS values
2 RSS and gravityRaw and magneticRaw
3 RSS and magneticProcessed
4 RSS and gravityMagnitude and geomagneticMagnitude
5 RSS and magneticProcessed and gravityMagnitude and geomagneticMagnitude

Table 4.5 and Figure 4.4 indicate that adding the raw values of the gravity and
magnetic field (2) does not improve the accuracy . Adding the magneticProcessed
values (3) improves prediction accuracy for most of the algorithms and by 5% for
the best performing method SMO (Sequential Minimal Optimization), for example.
Adding the gravity magnitude and the geomagnetic magnitude instead of magnet-
icProcessed (4), some methods perform better and some worse. SMO for instance
still improves, but Logistic Regression gets worse. Adding both of the last two at
the same time, (5) we could expect that the effect is combined. But interestingly, the
accuracy of the top performing methods decreases again. On the other hand, the
MultilayerPerceptron performs much better. The best room prediction accuracy is
reached by the SMO classifier with 88.06% using RSS values, gravityMagnitude and
geomagneticMagnitude

4.3.3 Additional Features

This section describes how the room prediction accuracy changes, when we add
additional features, namely light and GPS data, to the dataset.

https://github.com/JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/bern/room
https://github.com/JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/bern/room

4.3. Attribute Exclusion 27

TABLE 4.6: The accuracy with additional features added.

Classifier 1 2 3

SMO 86.98% 88.02% 84.16%
IBk 83.71% 84.74% 81.1%
NaiveBayes 79.99% 90.13% 44.12%
MultilayerPerceptron 79.81% 73.16% 44.93%
Logistic 73.21% 71.81% 55.77%
RandomForest 72.25% 82.33% 41.55%
J48 71.27% 76.57% 35.65%

Dataset Bern Rooms (see Section 3.5.1 and on
https://github.com/JoelNiklaus/IndoLoc/
tree/master/app/src/main/assets/thesis/
bern/room).
Legend:

1 RSS and magneticProcessed and gravityMagnitude
and geomagneticMagnitude

2 RSS and magneticProcessed and gravityMagnitude
and geomagneticMagnitude and Light

3 RSS and magneticProcessed and gravityMagnitude
and geomagneticMagnitude and Latitude and Longi-
tude

https://github.com/JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/bern/room
https://github.com/JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/bern/room
https://github.com/JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/bern/room

28 Chapter 4. Experimental Results

FIGURE 4.5: The accuracy with additional features added.
Dataset Bern Rooms (see Section 3.5.1 and on https:
//github.com/JoelNiklaus/IndoLoc/tree/master/app/

src/main/assets/thesis/bern/room).

Legend:
1 RSS and magneticProcessed and gravityMagnitude and geomagneticMagnitude
2 RSS and magneticProcessed and gravityMagnitude and geomagneticMagnitude

and Light
3 RSS and magneticProcessed and gravityMagnitude and geomagneticMagnitude

and Latitude and Longitude

TABLE 4.7: The confusion matrix for the Naive Bayes classifier using
the dataset number 2 (with light). Dataset Bern Rooms (see Section
3.5.1 and on https://github.com/JoelNiklaus/IndoLoc/
tree/master/app/src/main/assets/thesis/bern/room).

1 2 3 4 5 6 7 8 9 <-- classified as
--+
2145 0 0 0 19 0 0 0 0 | 1

0 640 0 0 0 0 0 25 0 | 2
0 104 786 0 0 0 0 0 0 | 3
0 112 0 137 0 0 0 42 0 | 4
77 0 45 0 507 0 0 56 0 | 5
0 0 101 0 0 1217 0 0 0 | 6
0 73 3 0 0 0 984 0 11 | 7
0 3 0 116 0 0 0 528 0 | 8
0 0 0 0 0 0 0 64 829 | 9

Table 4.6 and Figure 4.5 depict that adding Light comes with an improvement for

https://github.com/JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/bern/room
https://github.com/JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/bern/room
https://github.com/JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/bern/room
https://github.com/JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/bern/room
https://github.com/JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/bern/room

4.4. Rounding 29

most tested methods. The Naive Bayes classifier even reaches an accuracy of 90.13%
using RSS values, magneticProcessed, gravitiyMagnitude, geomagneticMagnitude
and Light (for more information concerning data collection see Section 3.4).

A confusion matrix is a table with the classification of the ML algorithm in the
column and the actual class in the row. So if an instance gets classified as class 2
but actually belongs to class 4, the value at the respective coordinates in the table
is incremented by one. This is done for all of the instances in the test set. So on
the main diagonal from the top left corner to the bottom right corner there are all
the correctly classified instances. On all the other places in the table we can see the
incorrectly classified instances. The confusion matrix gives very interesting insights
into the problems of the classifiers. It tells us which classes the classifier mixes up.
We can see how many instances have been assigned a certain class (column head) by
the ML method and what their actual class (row head (to the right)) is. An example
for a confusion matrix is shown in Table 4.7.

In the confusion matrix, shown in Table 4.7, it is clearly visible that the classifier
has problems with class 2 (the corridor), because many values are not situated on
the main diagonal but instead in column and row 2. The classifier often confuses
class 2 with the classes 3, 4 and 7. These are some of the smaller rooms, as can be
seen in Figure 3.5. It also struggles with predicting class 3 and 8 correctly. Room 6,
7 and to some extent 5 and 9 seem to be ’weak’ classes as it (almost) never happens
that the classifier selects one of these classes, when it actually was another class. The
opposite, namely that the classifier selects another class when it actually was one
of these classes, happens sometimes. For the rooms 1 and 2 the opposite applies.
A data point which is in one of these rooms very seldom gets classified as another
class. So these two seem to be ’strong’ classes. The classifier seems to like these
classes.

4.4 Rounding

Some sensors return values with more than 5 decimal places although they are less
accurate than 0.1. Because of this, we considered rounding these values to the re-
spective measuring accuracy of the sensor in order to reduce the size of the dataset.

The Rounding Test (on https://github.com/JoelNiklaus/IndoLoc/blob/
master/app/src/test/java/ch/joelniklaus/indoloc/experiments/RoundingTest.
java) checks if the accuracy is increased, when some features containing decimal
places are rounded. We performed tests on the dataset reduced to 7 RSS values,
magneticProcessed, gravityMagnitude and geomagneticMagnitude. We performed
tests where we rounded with accuracy integer, 0.2 and 0.1. However, prediction
accuracy did not increase for any of the tests.

4.5 Hyper-Parameter Search

The Hyperparameter Search Test (on https://github.com/JoelNiklaus/IndoLoc/
blob/master/app/src/test/java/ch/joelniklaus/indoloc/experiments/
HyperParameterSearchTest.java checks if the accuracy is increased when cer-
tain parameters from the ML methods are changed. Hyper-Parameter search can be
done with algorithms like grid search, multisearch and auto-weka for instance. It
can also be done by trial and error. Using these methods we evaluated several clas-
sifiers on the train_optimal and test_optimal datasets (on https://github.com/
JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/bern/

https://github.com/JoelNiklaus/IndoLoc/blob/master/app/src/test/java/ch/joelniklaus/indoloc/experiments/RoundingTest.java
https://github.com/JoelNiklaus/IndoLoc/blob/master/app/src/test/java/ch/joelniklaus/indoloc/experiments/RoundingTest.java
https://github.com/JoelNiklaus/IndoLoc/blob/master/app/src/test/java/ch/joelniklaus/indoloc/experiments/RoundingTest.java
https://github.com/JoelNiklaus/IndoLoc/blob/master/app/src/test/java/ch/joelniklaus/indoloc/experiments/HyperParameterSearchTest.java
https://github.com/JoelNiklaus/IndoLoc/blob/master/app/src/test/java/ch/joelniklaus/indoloc/experiments/HyperParameterSearchTest.java
https://github.com/JoelNiklaus/IndoLoc/blob/master/app/src/test/java/ch/joelniklaus/indoloc/experiments/HyperParameterSearchTest.java
https://github.com/JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/bern/room/
https://github.com/JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/bern/room/
https://github.com/JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/bern/room/

30 Chapter 4. Experimental Results

room/). Here we used the first 9 RSS values, the magneticProcessed, geomagnetic-
Magnitude, gravityMagnitude and light features. The three best performing algo-
rithms are the Multilayer Perceptron with an accuracy of 92.08 %, shown in Table
4.8, the Sequential Minimal Optimization with an accuracy of 89.24 %, presented
in Table 4.9 and the Naive Bayes classifier with an accuracy of 89.61 %, depicted in
Table 4.10.

TABLE 4.8: The confusion matrix for the MultilayerPercep-
tron classifier. Dataset Bern Rooms (see Section 3.5.1 and
on https://github.com/JoelNiklaus/IndoLoc/tree/

master/app/src/main/assets/thesis/bern/room).

a b c d e f g h i <-- classified as
2164 0 0 0 0 0 0 0 0 | a = 1

0 527 0 0 0 0 0 0 138 | b = 2
0 25 865 0 0 0 0 0 0 | c = 3
0 9 0 154 0 0 0 128 0 | d = 4
0 43 0 0 642 0 0 0 0 | e = 5
0 25 0 0 44 1249 0 0 0 | f = 6
0 6 0 0 0 0 1064 0 1 | g = 7
0 0 0 149 0 0 0 498 0 | h = 8
0 0 0 51 0 0 0 64 778 | i = 9

Accuracy: 92.0802 %
Parameters:
weka.classifiers.functions.MultilayerPerceptron -L 0.2 -M 0.1 -N 40 -V 0 -S 0 -E 20 -H a -batch-size 100

TABLE 4.9: The confusion matrix for the SMO classi-
fier. Dataset Bern Rooms (see Section 3.5.1 and on https:
//github.com/JoelNiklaus/IndoLoc/tree/master/app/

src/main/assets/thesis/bern/room).

a b c d e f g h i <-- classified as
2164 0 0 0 0 0 0 0 0 | a = 1

10 632 0 0 0 0 0 0 23 | b = 2
0 55 799 0 0 36 0 0 0 | c = 3
0 147 0 144 0 0 0 0 0 | d = 4
0 43 0 0 642 0 0 0 0 | e = 5

204 69 32 0 0 1013 0 0 0 | f = 6
0 126 0 0 0 0 945 0 0 | g = 7
0 0 0 119 0 0 0 528 0 | h = 8
0 0 0 57 0 0 0 7 829 | i = 9

Accuracy: 89.2393 %
Parameters:
weka.classifiers.functions.SMO -C 1.0 -L 0.001 -P 1.0E-12 -N 0 -V -1 -W 1 -K

"weka.classifiers.functions.supportVector.PolyKernel -E 1.0 -C 250007" -calibrator
"weka.classifiers.functions.Logistic -R 1.0E-8 -M -1 -num-decimal-places 4"

https://github.com/JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/bern/room/
https://github.com/JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/bern/room/
https://github.com/JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/bern/room
https://github.com/JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/bern/room
https://github.com/JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/bern/room
https://github.com/JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/bern/room
https://github.com/JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/bern/room

4.6. Optimal Prediction With Ensemble Methods 31

TABLE 4.10: The confusion matrix for the Naive Bayes
classifier. Dataset Bern Rooms (see Section 3.5.1 and on
https://github.com/JoelNiklaus/IndoLoc/tree/

master/app/src/main/assets/thesis/bern/room).

a b c d e f g h i <-- classified as
2149 0 0 0 15 0 0 0 0 | a = 1

0 393 9 153 0 0 0 110 0 | b = 2
0 0 876 0 0 14 0 0 0 | c = 3
0 130 0 135 0 0 0 26 0 | d = 4
1 0 44 0 628 0 0 12 0 | e = 5
0 0 101 0 0 1217 0 0 0 | f = 6
0 59 12 0 0 0 973 0 27 | g = 7
0 0 0 119 0 0 0 528 0 | h = 8
0 0 0 0 0 0 0 64 829 | i = 9

Accuracy: 89.6104 %
Parameters:
weka.classifiers.bayes.NaiveBayes

When we analyze the confusion matrices of these three classifers we derive the
following observations: the Multilayer Perceptron is very good in column b as com-
pared to the other two; SMO is very good in the triangle above the diagonal; and
Naive Bayes has its own problems specially distributed but performs well at other
places where the other two are bad (i2 or b5 for instance). This diversity can be used
by meta classifiers (ensemble learning methods) which is described in Section 4.6.

4.6 Optimal Prediction With Ensemble Methods

Ensemble methods combine several base classifiers into one in order to improve the
prediction accuracy.

The Optimal Prediction Test (on https://github.com/JoelNiklaus/IndoLoc/
blob/master/app/src/test/java/ch/joelniklaus/indoloc/experiments/
OptimalPredictionTets.java) edits the dataset in a certain way and config-
ures the ML algorithm with parameters in such a way that the accuracy is optimized.
This is based on the knowledge out of the previous tests or previous experiences.

We tried the following different ensemble methods: Grading, Stacking, Deco-
rate, Boosting, Bagging, Dagging and RandomSubSpace, all using SMO as the base
classifier. However, none of the ensemble learning methods significantly improved
the prediction accuracy. In addition, by combining several different classifiers using
voting we achieved a better prediction accuracy, as shown in Table 4.11. Voting is
an ensemble method which evaluates several different base ML algorithms and then
usually combines the results using majority vote.

https://github.com/JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/bern/room
https://github.com/JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/bern/room
https://github.com/JoelNiklaus/IndoLoc/blob/master/app/src/test/java/ch/joelniklaus/indoloc/experiments/OptimalPredictionTets.java
https://github.com/JoelNiklaus/IndoLoc/blob/master/app/src/test/java/ch/joelniklaus/indoloc/experiments/OptimalPredictionTets.java
https://github.com/JoelNiklaus/IndoLoc/blob/master/app/src/test/java/ch/joelniklaus/indoloc/experiments/OptimalPredictionTets.java

32 Chapter 4. Experimental Results

TABLE 4.11: The confusion matrix for the Majority Vote classifier with
three MultilayerPerceptrons, a ClasssificationViaRegression, a Ran-
domSubspace, a LogitBoost, a RandomForest, a Logistic Regression,
a SMO and a Naive Bayes classifier. Dataset Bern Rooms (see Section
3.5.1 and on https://github.com/JoelNiklaus/IndoLoc/
tree/master/app/src/main/assets/thesis/bern/room).

a b c d e f g h i <-- classified as
2164 0 0 0 0 0 0 0 0 | a = 1

0 663 0 0 0 0 0 0 2 | b = 2
0 25 865 0 0 0 0 0 0 | c = 3
0 32 0 143 0 0 0 116 0 | d = 4
0 43 0 0 642 0 0 0 0 | e = 5
0 69 0 0 0 1249 0 0 0 | f = 6
0 43 0 0 0 0 1027 0 1 | g = 7
0 0 0 119 0 0 0 528 0 | h = 8
0 0 0 0 0 0 0 64 829 | i = 9

Accuracy: 94.0399 %
Parameters:
weka.classifiers.meta.Vote -S 1 -B

"weka.classifiers.functions.MultilayerPerceptron -L 0.4 -M 0.3 -N 100 -V 0 -S 0 -E 20 -H a" -B
"weka.classifiers.functions.MultilayerPerceptron -L 0.3 -M 0.2 -N 100 -V 0 -S 0 -E 20 -H a" -B
"weka.classifiers.functions.MultilayerPerceptron -L 0.2 -M 0.1 -N 40 -V 0 -S 0 -E 20 -H a" -B
"weka.classifiers.functions.MultilayerPerceptron -L 0.2 -M 0.1 -N 40 -V 0 -S 0 -E 20 -H a" -B
"weka.classifiers.meta.RandomSubSpace -P 0.5 -S 1 -num-slots 1 -I 10 -W

weka.classifiers.trees.REPTree -- -M 2 -V 0.001 -N 3 -S 1 -L -1 -I 0.0" -B
"weka.classifiers.meta.LogitBoost -P 100 -L -1.8E308 -H 1.0 -Z 3.0 -O 1 -E 1 -S 1 -I 10 -W

weka.classifiers.trees.DecisionStump" -B
"weka.classifiers.trees.RandomForest -P 100 -I 100 -num-slots 1 -K 0 -M 1.0 -V 0.001 -S 1" -B
"weka.classifiers.functions.Logistic -R 1.0E-8 -M -1 -num-decimal-places 4" -B
"weka.classifiers.functions.SMO -C 1.0 -L 0.001 -P 1.0E-12 -N 0 -V -1 -W 1 -K
"weka.classifiers.functions.supportVector.PolyKernel -E 1.0 -C 250007" -calibrator
"weka.classifiers.functions.Logistic -R 1.0E-8 -M -1 -num-decimal-places 4" -B
"weka.classifiers.bayes.NaiveBayes"
-R MAJ

We can see that the room prediction accuracy could be improved by almost 2% to
94.0399% over the the best base classifier (the Multilayer Perceptron) with 92.0802%.
This is a large improvement on this level.

Looking at the confusion matrices, shown in Tables 4.8, 4.9, 4.10 and 4.11 we can
also see that the voting classifier, depicted in Table 4.11, adopted some behaviour of
some classifiers and other behaviour of others. In general, for instance, it adopted
the good behaviour of the Multilayer Perceptron, depicted in Table 4.8, in column
b. However, it does not make the mistake in i2 (column i, row 2) anymore but it
adopted the good behaviour of the Naive Bayes classifier, shown in Table 4.10. Un-
fortunately, it still has the problems at h4 probably originating from the Multilayer
Perceptron, shown in Table 4.8. If we gave more weight to the SMOs prediction,
shown in Table 4.9, for instance (not having this problem at h4) it would probably
resolve this issue but the prediction accuracy in column b would deteriorate again.
In general, it can be seen that it seems difficult to distinguish the rooms 4 and 8,
which are two small rooms next to each other, as depicted in Figure 3.5.

https://github.com/JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/bern/room
https://github.com/JoelNiklaus/IndoLoc/tree/master/app/src/main/assets/thesis/bern/room

33

Chapter 5

Conclusions and Future Directions

In this chapter we conclude the main contributions and findings of this thesis and
over the entire project and give ideas for future work in this area.

5.1 Conclusion

In this thesis we first developed an Android app, which is able to collect data of the
phone’s surroundings. This data comprises of the RSS values of the nearby WiFi
access points, of information about the earth’s magnetic and gravity field and of
sensor information, namely pressure, ambient temperature, relative humidity and
light. The application is further able to train several ML methods to distinguish
between different rooms and landmarks (specified areas within rooms). Second, we
collected data in order to analyze and then optimize the performance of the chosen
ML algorithms.

For room recognition in the dataset taken in the INF building in Bern (see Section
3.5.1), distinguishing between 9 different rooms we achieved the following results:
A Multilayer Perceptron, the best base classifier, reached an accuracy of 92.08% (see
evaluation 4.8). Combining several base learners using Majority Vote (namely three
MultilayerPerceptrons, a ClasssificationViaRegression, a RandomSubspace, a Logit-
Boost, a RandomForest, a Logistic Regression, a SMO and a Naive Bayes classifier)
we could reach a maximal accuracy of even 94.0399 % (see evaluation 4.11). For
landmark recognition in the dataset taken in student accommodation in Exeter (see
Section 3.5.2) distinguishing between 5 different landmarks we achieved 91.41% ac-
curacy using a Multilayer Perceptron.

Because of these very high accuracies in both room and landmark recognition we
are confident that this approach using machine learning can improve the ITS.

5.2 Future Directions

5.2.1 Device Independence

In the experiments done in the scope of this project, we collected the training and the
testing data sets on the same phone. Different hardware measuring the environment
differently could make the accuracy deteriorate vastly. This could be tested with
various current smart phones.

One solution for this problem could be data normalization. For instance, we
would not store the RSS values directly, but compute the difference to a representa-
tive starting point and normalize the result to a value between 0 and 1.

34 Chapter 5. Conclusions and Future Directions

5.2.2 Only Predict if Sure

An idea to improve the security of a prediction would be to only forward a predic-
tion from Indoloc to the ITS if the Indoloc system is sure (probability greater than
some defined threshold). In this way we could ensure that almost no wrong predic-
tions are made which could confuse the ITS. But of course, it would also come with
less predictions over all. And it still has to be tested if false predictions are (almost)
only made when the Indoloc system is not sure.

5.2.3 Further Optimization of HyperParameters

As already discussed, it is very difficult to find optimal hyperparameters for the ML
methods. Further testing could be done to optimize these.

5.2.4 Longterm Stability

As described in Section 1.2, no test about longterm stability has been done yet. So it
has to be tested if a model trained with data collected at point A is still performing
well enough a month, a year or even more later.

5.2.5 Light

As described in the results of Section 4.3.3, the light feature improves the accuracy
for most algorithms. But in the night, or if it is a cloudy day, or in a different season
or under some other different condition, it probably decreases the accuracy.

A possible solution for this would be the following: we only consider the relative
light difference between the different rooms or landmarks respectively.
But of course if we detect that the proportionalities of the light strengths in the
rooms or landmarks respectively are not similar under some circumstances it does
not make sense to include the light feature at all!

5.2.6 Bluetooth

By using specially installed Bluetooth beacons at the borders of the room (predom-
inantly doors) we hope to further improve the accuracy of the ITS because that is
where Indoloc has the greatest problems identifying the correct room.

5.2.7 RSS Values

As described in Section 2.5.1 we collected the RSS values of all the nearby access
points. A value lower than -80 is very weak and may suggest that the access point
is very far away or there are many or big obstacles between the access point and the
collecting device. This means that the access point is of little or no use to the system.
Therefore, we could remove access points with values smaller than -80 from the list
in a future version.

35

Bibliography

Aha, D. and D. Kibler (1991). “Instance-based learning algorithms”. In: Machine Learn-
ing 6, pp. 37–66.

Atkeson, C., A. Moore, and S. Schaal (1996). “Locally weighted learning”. In: AI
Review.

Breiman, Leo (1996). “Bagging predictors”. In: Machine Learning 24.2, pp. 123–140.
— (2001). “Random Forests”. In: Machine Learning 45.1, pp. 5–32.
Carrera, Jose Luis, Zhongliang Zhao, Torsten Braun, and Zan Li (2016). “A Real-time

Indoor Tracking System by Fusing Inertial Sensor, Radio Signal and Floor Plan”.
In: IEEE.

Carrera, Jose Luis, Zhongliang Zhao, Torsten Braun, Zan Li, and Augusto Neto
(2016). “A Real-time Indoor Tracking System in Smartphones”. In: IEEE.

Cessie, S. le and J.C. van Houwelingen (1992). “Ridge Estimators in Logistic Regres-
sion”. In: Applied Statistics 41.1, pp. 191–201.

Chang, Chih-Chung and Chih-Jen Lin (2017). LibSVM. URL: https://www.csie.
ntu.edu.tw/~cjlin/libsvm/ (visited on 11/02/2017).

Cleary, John G. and Leonard E. Trigg (1995). “K*: An Instance-based Learner Us-
ing an Entropic Distance Measure”. In: 12th International Conference on Machine
Learning, pp. 108–114.

Deng, Zhi-An et al. (2016). “Continuous Indoor Positioning Fusing WiFi, Smart-
phone Sensors and Landmarks”. In: Sensors.

Frank, Eibe, Mark Hall, Geoffrey Holmes, et al. (2010). “Weka-A Machine Learning
Workbench for Data Mining”. In: Data Mining and Knowledge Discovery Handbook.
Ed. by Oded Maimon and Lior Rokach. Boston, MA: Springer US, pp. 1269–1277.
ISBN: 978-0-387-09823-4. DOI: 10.1007/978- 0- 387- 09823- 4_66. URL:
https://doi.org/10.1007/978-0-387-09823-4_66.

Frank, Eibe, Mark Hall, and Bernhard Pfahringer (2003). “Locally Weighted Naive
Bayes”. In: 19th Conference in Uncertainty in Artificial Intelligence. Morgan Kauf-
mann, pp. 249–256.

Freund, Yoav and Robert E. Schapire (1996). “Experiments with a new boosting algo-
rithm”. In: Thirteenth International Conference on Machine Learning. San Francisco:
Morgan Kaufmann, pp. 148–156.

Friedman, J., T. Hastie, and R. Tibshirani (1998). Additive Logistic Regression: a Statis-
tical View of Boosting. Tech. rep. Stanford University.

Google (2017). ML Workflow. URL: https://cloud.google.com/ml-engine/
docs/ml-solutions-overview (visited on 11/02/2017).

Hastie, Trevor and Robert Tibshirani (1998). “Classification by Pairwise Coupling”.
In: Advances in Neural Information Processing Systems. Ed. by Michael I. Jordan,
Michael J. Kearns, and Sara A. Solla. Vol. 10. MIT Press.

Ho, Tin Kam (1998). “The Random Subspace Method for Constructing Decision
Forests”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 20.8,
pp. 832–844. ISSN: 0162-8828. URL: http : / / citeseer . ist . psu . edu /
ho98random.html.

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://doi.org/10.1007/978-0-387-09823-4_66
https://doi.org/10.1007/978-0-387-09823-4_66
https://cloud.google.com/ml-engine/docs/ml-solutions-overview
https://cloud.google.com/ml-engine/docs/ml-solutions-overview
http://citeseer.ist.psu.edu/ho98random.html
http://citeseer.ist.psu.edu/ho98random.html

36 BIBLIOGRAPHY

John, George H. and Pat Langley (1995). “Estimating Continuous Distributions in
Bayesian Classifiers”. In: Eleventh Conference on Uncertainty in Artificial Intelli-
gence. San Mateo: Morgan Kaufmann, pp. 338–345.

Keerthi, S.S. et al. (2001). “Improvements to Platt’s SMO Algorithm for SVM Classi-
fier Design”. In: Neural Computation 13.3, pp. 637–649.

Kittler, J. et al. (1998). “On combining classifiers”. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence 20.3, pp. 226–239.

Kuncheva, Ludmila I. (2004). Combining Pattern Classifiers: Methods and Algorithms.
John Wiley and Sons, Inc.

Li, Zan et al. (2016). “Fine-grained indoor tracking by fusing inertial sensor and
physical layer information in WLANs”. In: IEEE.

Mascharka, David and Eric Manley (2015). “Machine Learning for Indoor Localiza-
tion Using Mobile Phone-Based Sensors”. In: IEEE.

— (2016). “LIPS: Learning Based Indoor Positioning System Using Mobile Phone-
Based Sensors”. In: IEEE.

Melville, P. and R. J. Mooney (2003). “Constructing Diverse Classifier Ensembles
Using Artificial Training Examples”. In: Eighteenth International Joint Conference
on Artificial Intelligence, pp. 505–510.

— (2004). “Creating Diversity in Ensembles Using Artificial Data”. In: Information
Fusion: Special Issue on Diversity in Multiclassifier Systems. submitted.

MiTAC (2017). GPS Signal. URL: http://www.mio.com/technology-gps-
signal.htm (visited on 06/12/2017).

Platt, J. (1998). “Fast Training of Support Vector Machines using Sequential Minimal
Optimization”. In: Advances in Kernel Methods - Support Vector Learning. Ed. by
B. Schoelkopf, C. Burges, and A. Smola. MIT Press. URL: http://research.
microsoft.com/%5C~jplatt/smo.html.

Quinlan, Ross (1993). C4.5: Programs for Machine Learning. San Mateo, CA: Morgan
Kaufmann Publishers.

Seewald, A.K. and J. Fuernkranz (2001). “An Evaluation of Grading Classifiers”. In:
Advances in Intelligent Data Analysis: 4th International Conference. Ed. by F. Hoff-
mann et al. Berlin/Heidelberg/New York/Tokyo: Springer, pp. 115–124.

Shala, Ubejd and Angel Rodriguez (2011). “Indoor Positioning using Sensor-fusion
in Android Devices”. MA thesis. Kristianstad University.

Ting, K. M. and I. H. Witten (1997). “Stacking Bagged and Dagged Models”. In: Four-
teenth international Conference on Machine Learning. Ed. by D. H. Fisher. San Fran-
cisco, CA: Morgan Kaufmann Publishers, pp. 367–375.

Wang, Xi et al. (2016). “An Indoor Positioning Method for Smartphones Using Land-
marks and PDR”. In: Sensors.

Wolpert, David H. (1992). “Stacked generalization”. In: Neural Networks 5, pp. 241–
259.

Xiao, Jiang et al. (2016). “A Survey on Wireless Indoor Localization from the Device
Perspective”. In: ACM Comput. Surv. 49.2, 25:1–25:31. ISSN: 0360-0300. DOI: 10.
1145/2933232. URL: http://doi.acm.org/10.1145/2933232.

http://www.mio.com/technology-gps-signal.htm
http://www.mio.com/technology-gps-signal.htm
http://research.microsoft.com/%5C~jplatt/smo.html
http://research.microsoft.com/%5C~jplatt/smo.html
https://doi.org/10.1145/2933232
https://doi.org/10.1145/2933232
http://doi.acm.org/10.1145/2933232

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction to the Thesis Topic
	Indoor Localization
	WiFi and Sensor Data
	Machine Learning

	Background Information and Theory
	Motivation for Using Machine Learning to Improve the Indoor Tracking System
	Reasons for Using Machine Learning
	Machine Learning Workflow
	Chosen Machine Learning Algorithms
	Features
	Features used in the experiments
	RSS
	Magnetic Field
	Light

	Non-useful features
	Ambient temperature
	Relative Humidity
	Pressure
	Mean and Variances of RSS
	GPS

	Weka
	Advantages
	Disadvantages

	Android App
	Implementation
	Reasons for Choosing the Android System
	Tested Mobile Phones

	Implementation and Experimentation
	General Remarks
	Implementation
	Machine Learning Applications
	Room Recognition
	Landmark Recognition

	Data Collection Methodology
	Datasets
	Bern Dataset
	Exeter Dataset

	Experimental Results
	Attribute Selection
	Duplicates Removal
	Attribute Exclusion
	Only RSS Values
	Accuracy
	Testing Time

	RSS and Magnetic Field
	Additional Features

	Rounding
	Hyper-Parameter Search
	Optimal Prediction With Ensemble Methods

	Conclusions and Future Directions
	Conclusion
	Future Directions
	Device Independence
	Only Predict if Sure
	Further Optimization of HyperParameters
	Longterm Stability
	Light
	Bluetooth
	RSS Values

	Bibliography

