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Abstract

In the past few years sensor networks came increasingly into scop¢éecésn One of the
main fields of research of these kinds of networks is to save energy winifeng to extend
the lifetime of the battery-operated sensors. Several approachesdasadhe lifetime of the
batteries of each maobile host (also called node) have been proposedva@rto save energy
is to turn off the radio periodically. This can be done on lhedium Access Control (MAC)
layer. Currently well known MAC protocols such HsEE 802.11, GMS, UMTSare not energy-
efficient but optimised to achieve maximum throughput. That means that theeedsfor new
energy-optimised protocols in the MAC- and network layer. In this masteisttves versions of
a SYNC-message-based backbone construction mechanism for ¢ffilédéhare presented for
static networks. Both approaches establish a virtual backbone tree Gattimacted Dominating
St (CDS). This CDS is realised without any additional packet exchange. It orig adme
information to existing packets of a well-known sensor network protodig@d¢a-MAC. Besides
that, a new approach of a global synchronisation of all nodes of theornletw described and
evaluated. The focus is on static networks.
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Chapter 1

Introduction

A sensor network is a special kind of a wireless network. Sensor riag@ement a radio,
several sensors and a small processing unit. The entire node is battzatenl. A high error-
rate and malfunctions of some nodes are expected. Therefore, a sehsork requires high
redundancy. To achieve high redundancy a high density of the net&odquired. Another
effect of a large number of deployed nodes is the need for dynamic gpotmtrol and routing.
At the moment a node is deployed it should start sensing and try to estahltigrtables at
each node. Otherwise, it could take too much time until a node is able to routdet fize first

time. The lifetime of a network is limited by the battery lifetime of its nodes. Thereérergy-

saving approaches such as the ones proposed in this thesis aredegheenain application of
such networks is environmental monitoring of a specific area.

1.1 Problem Statement

One of the main energy consumers of a sensor node is its radio. At the mthraeatlio is off,
the total energy usage of the node is decreasing by a factor of ar@d{d]1 This factor varies
depending on the type of hardware of the node. The challenge is to firay dontemporally
turn off the radio of some nodes while keeping the entire network runningodsl technique
will keep the maximum bandwidth high and the latency low as long as there are dasay
packets waiting for transmission. At the moment there are only a few datatsaskiting for
transmission, the maximum bandwidth can be lowered. All these improvememtstias done
at the MAC and network layers of the communication protocol stack.

In this thesis the focus is on flat, unstructured and unsupervised natvildrkre are several
challenges for a new communication protocol for such a wireless seasoonk:

e The hardware of the node has to be cheap. Thus, the hardware iobftaver quality
and the accuracy of the clock is accordingly less exact, which leads todookedrifts.
To detect that a sender node and its particular receiver node are avtle same time,
they need bo be synchronized.

e Like in any other wireless network, the well-known hidden node problesnitsampact
on the protocol [2].



e The entire network needs to organise the routing and an optional time syidition
itself. There is no master node (apart from the base station) and therehisnaochy
except of a possible MAC address for each node. Setting up static raables for all
nodes is not feasible because of the large number of deployed nodeioAally, the
deployment of the nodes might be unsupervised.

e Like for other wireless protocols there are some variable backgrousdsion the radio.
There is no guarantee that a packet arrives at the destination evereifgtm® concurrent
communication.

1.2 Contributions

The main contributions of our work are:

e Medium access has been optimized by exploiting the information distributedgtirou
SYNC messages. The information has been used to achieve local syizeticn and
to implement routing on the MAC layer.

e A simple synchronization method for SYNC-based MAC protocols has beeslaped.
The method prevents the existence of multiple schedules without introduciiigpad
control traffic.

e The common schedule is realized by a gravitation-like principle, where temygmesent
clusters attract each other until they fuse. Due to the usage of SYNC gess#ae fusion
process is very robust. No temporary storage of multiple schedules issagge

e Virtual routing backbones have been established on the MAC layer. Thisles the

routing over this virtual backbone without additional routing control tcadind memory
allocation.

e The backbones support routing and allow the temporary shut-down oédies of non-
backbone nodes to preserve additional energy.

1.3 Thesis Outline

This thesis is organized as follows: Chapter 2 describes existing profocalsreless sensor
networks. After that Chapter 3 explains the idea @amnecting Dominating Set (CDS), which

is an approach to setup a virtual backbone of a network. A virtual lmaekis helpful to optimise
routing and to save energy. Chapter 4 introduces existing techniquesdoreyize the clocks

of sensor nodes. The simulations of the presented protocols and aeneggurotocol use the
simulation environment called OMNeT++ [3]. A brief overview of this tool igam in Chapter

5. Based on the ideas of two existing MAC protocols and the theory of COSpéw versions

of a SYNC-based MAC protocol are described in Chapter 6. For sgnctation purpose,
both protocols apply a new synchronisation concept callml Adaptive Clock Assimilation
Scheme (LACAS) which is presented in Chapter 7. The functionality, implementation details
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and the results of the simulations in comparison to an existing MAC protocolesarided in
Chapter 8. Finally, Chapter 9 contains the conclusions and Chapter tdirea list of possible
future work.






Chapter 2

Medium Access Control Protocols (MAC)
for Wireless Sensor Networks

Transmitting information over a network of any kind is a challenging task. &fbeg, there is
a de facto standard to handle this task with several layers. Each layspansgble for specific
operations. The lowest layer is called the physical layer. It is resplertsiltranslate the stream
of bits, which has to be transmitted, into a sequence of signals which arenttetsover the
physical connection to the destined destination. At the destination the eecefvanslates the
sequence of signals back into a stream of bits and finally sends it to thelappecalled MAC
layer.

The MAC layer coordinates the access to the communication medium. The mainfgoal
classic MAC layer protocols is to maximise the data throughput and minimise theyatenc
addition, the MAC layer of a wireless sensor network needs to minimise thgyeasage of all
nodes. As mentioned in the introduction, one of the most efficient ways ¢oesgargy is to turn
off the radio periodically. On the other hand, if the radio of a specific neddf, there is no
way to communicate with this node. Therefore, it has to be ensured tharsemdireceiver are
awake at the same time, i.e., they need to be synchronized.

There are five major sources of energy waste in wireless sensor ketiprThese are idle
listening, overhearing, control packet overhead, collisions anceavieting.

o Idle listening
Idle listening is the situation when a node is listening to the radio but there is no commu
nication running. Typical nodes such as the Berkeley motes [5] or the(EBBedded
Sensor Board) from Scatterweb [1] use in idle mode 50 - 100% of the anobenergy
that is used in the receiving mode. All idle listening is huge waste of energy.

e Overhearing
A node is listening to the communication on the channel but the node is not idvinlve
this communication. There is no need to listen to this communication.

e Control packet overhead
Each transmission of data consumes energy. On the other hand, all M@z qls need
control packets. Usually, an energy and maximum-bandwidth optimised MAtqul
tries to reduce the number of control packets as much as possible.
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e Packet collisions
Packet collisions are waste of energy because the senders of tletgpae&d to be able to
detect them and have to resend the packets again.

e Overemitting
Overemitting occurs if a node sends data to another node and the recedetis not
ready to listen. The sender has to resend the data again.

In wireless networks all nodes share the medium. Therefore, the MAC thageto control
the medium access. In general, there are two different categories 6f pidtocols to control
the medium access and also to reduce the according sources of eastgy w

e Contention-based approaches
In contention-based protocols, each node can send its data at arbitraryf more than
one node wants to send data, they have to compete for the medium. Each ittode w
data must wait a random time (according to the contention window) until it stagts th
transmission. The winner of this contention sends its data and all otherddaast.
During this competition there is high risk of packet collisions because ewdwyis trying
to obtain the channel. As soon as the contention is over, the risk of a gatlkson is low
because all listening nodes have overheard the winning node and deilaydhsmission
therefore. The most widespread protocol for a wireless network oftypis is |EEE
802.11 [6]. Beside IEEE 802.11 there are numerous MAC protocols which beltigs
category. In this thesis we focused 8fMAC [7] and T-MAC [8]. Both protocols are
described in the next two sections.

e Scheduled approaches
A slot-based approach divides the time into frames. Each frame has addafimaint
of time and a common general structure. The common general structuresdefiich
slots of the frame are signalling or data slots. Fhe Division Medium Access protocols
(TDMA) try to minimise packet collision by splitting up the frame into different slots. Each
node gets then a slot assigned for communication. Obviously, this is a wastxwhum
throughput, but most sensor network applications do not need to transongeaamount
of data. Moreover, it is possible to assign multiple slots to a node to guaragtizénc
throughput requirements. A challenging task for TDMA protocols is thensiotagement.
TDMA requires an assignment of slots to each node. Therefore, ébfiernodes can
send data in their slot, they have to compete for such a slot, or a cluster hsad h
assign the slots to the nodes in its cluster. A cluster in a network is a grougle$ntn
general, all nodes in such a group have a direct connection to the diesir The already
mentioned clock drift has a higher impact on slot-based approaches rih@mtention-
based protocols, because the size of a slot is much smaller that the commopdisbeh
in contention-based protocols. Examples for this type of protocolsT&®aMA [9] and
LMAC [10].

The upper layer of the MAC layer is the routing layer. If the source of asams and
its destination do not have a direct link, the routing layer provides the furaltig to route
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messages over intermediate nodes. The routing layer also takes care thi#@Ghayer knows
to which node it has to send a message.

2.1 S-MAC

2.1.1 Overview

SMAC [7] splits an entire frame into two periods. One is the working slot (listen pevibere

the radio is on. In the other period the node goes to sleep. From time to time aemdms
awake for an entire frame (see also Figure 2.1). This occurs periodicalgynchronization
reasons. Each node tries to broadcast a synchronisation (SYNK®t@ddhe beginning of its
listen period. TheSYNC packet contains a relative timestamp, indicating the senders next listen
period. These SYNC messages are used to adjust the listen periods ofldse n

Listen Sleep Listen Sleep Listen entire period Listen | Sleep

fe— - frame ——we——— frame — sle—— frame — »le——— frame —»l

time

|SYNC | RTSICTS |

Figure2.1: Sleep and listen periods of S-MAC: The node periodicallgyytistens the entire frame. A
listen to sleep ratio of 0.1 is normal.

Some ideas of S-MAC have been taken from IEEE 802.11. Like IEEE 803-MAC is
working with RTS/CTS (Request To Send/Confirm To Send) signallinggtackecause IEEE
802.11 does a good job on collision avoidance with such RTS/CTS packath facket in
S-MAC has a duration field. So all overhearing nodes know how long hiagg to be silent
until they can try to send their own packet. According to this rule, theoretjGaltpde can use
the channel all the time. Therefore, the system is intrinsically unfair. In gesss, this is not
an issue because all nodes in a wireless sensor network work forrtieesggplication and the
application itself takes care that all nodes can send their data.

If the listen period is chosen longer, the power usage increases burteviolth becomes
higher too. To increase throughput while keeping communication costs {MAG introduces
a new technique called adaptive listening (see Section 2.1.4).

2.1.2 Synchronization and Virtual Clustering

As already mentioned synchronisation is a big issue. S-MAC uses a simplebuvorking
algorithm. A new node listens to the channel if there is another node whiclaltesdy a
schedule. In other words, a new node is listening for a SYNC packetselpackets contain
the ID of the sender and the remaining time until it starts sending its next SYkepdaefore
sending its packet each node introduces a random delay according ¢artkat contention
window to prevent collisions. If a SYNC packet is received within a giere period, the node
adapts this schedule. Otherwise, it defines its own schedule and aesahig schedule by
broadcasting a SYNC packet.



All nodes sharing the same schedule build a virtual cluster. All nodesarbgstay awake
for an entire frame. Thus they have the possibility to detect other virtuaiecuslf there are
two or more schedules from two or more nodes, the overhearing nogésabschedules, but
sends its SYNC packet only in one listen period. It still belongs to its origintalai cluster but
it awakes also in the other listen periods. This means that the node has aaighjithigher
power usage. Otherwise it would not be possible to send data from doalwituster to an
other.

The clock drift of each node does not affect S-MAC much, becawsédten period is sig-
nificantly longer than the clock drift rates. Moreover, each SYNC paggdates and adjusts
the schedules of all receivers. Therefore, nodes overhear thEC$¥ackets from their neigh-
bourhood nodes. No SYNC packet are received in case of paalkistan, if background noises
are too high, or if a node sends its SYNC packet outside the listen perioa loigh clock drift
caused by a high packet loss rate.

2.1.3 Overhearing Avoidance

In general, overhearing is a waste of energy. A node does not nésttitoto the communication
between two nodes if it does not take part in the communication of them. Aogbrdat the
moment a node is overhearing a RTS or CTS packet, which is not destintet fioode, it goes
to sleep. All packets have ldetwork Allocation Vector (NAV) field. This fields contains the
duration of the entire transmission and hence all nodes know how long émeum off their
radio (see also Figure 2.2).

A RTS CTS Data ACK >
B ‘ >
C 1 sleep >

Figure2.2: Overhearing Avoidance: Node B sends a packet to node A. Nanle@ears the RTS packet
and goes to sleep thereafter. Because of the NAV field, nodeoW& the duration of the transmission
and therefore wakes up just at the end of the transmission.

2.1.4 Adaptive Listening

In a later publication [7] S-MAC was enhanced with adaptive listening and agessassing.
The basic idea of adaptive listening is to let any node x which overheaensntission of a
neighbour node y wake up for a short period of time at the end of themiias®n. Thus,
neighbour node y is able to immediately pass the data to node x. Otherwise ¢ mawe to



wait for the next scheduled listen time. If node x does not receive amythiming adaptive
listening, it goes back to sleep until its next scheduled listen time.

2.1.5 Message Passing

The transmission of a long message in a single packet needs less enerdy thaide the
message into several packets. The amount of payload remains the saheertwrhber of control
packets is reduced and there are fewer headers needed. Hatlvewigk that the receiver does
not receive a message correctly is increased with the length of the pddieapproach of S-
MAC is to fragment long messages into multiple small fragments and transmit thenunsta b
(see Figure 2.3). The receiver confirms each data packet with an ACkep The RTS/CTS
procedure is only required to setup the connection. For the subsesjodiange of fragments it
is not needed.

RTS CTS Data ACK Data ACK Data ACK

AVAVAVEAY™

C :; sleep <

-
-

l4- -
A~

A\ 4

Figure 2.3: Message Passing: Node A sends 3 packets to node B. Node Gcaxethe RTS and goes
to sleep according to the NAV value in the RTS message. Nodarmisend 3 packets after only one
RTS/CTS. Message passing saves the transmission of 2 RTS@N8 packet in this example.

Every packet (even the ACK packet) has a duration flag. If anothde,nahich is not
involved in the communication, wakes up during a transmission, it will immediately gleép
again as soon as it overhears the NAV value in a packet. It does not mwatdher this node
overhears the sender or the receiver.

2.1.6 Discussion

The advantage of S-MAC compared to IEEE 802.11 is obvious. If theretisnoch traffic,
the energy consumption is much lower than in IEEE 802.11. The delay can bevisipby
implementing adaptive listening. S-MAC is not designed for applications with tigh rate
requirements or very tight transmission delay requirements. A system wiftial&stening
has a significantly higher data throughput than a system without this feature

2.2 T-MAC

T-MAC (Timeout-MAC) [8] is an adaptive energy-efficient MAC protocol for wireless senso
networks. It reduces the idle listening. T-MAC is an improvement of S-Md@der homoge-
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neous load both protocols achieve similar results. In a scenario with vahliguaesuch as an
event detection application, T-MAC outperforms S-MAC, according to thibas, by a factor
of up to 5. T-MAC uses the same clustering and synchronization algoritrsaNA&C (virtual
clustering) [7][8]. The main difference between T-MAC and S-MAC is ithea of a variable
length of the listen period. If there is no data to be sent, the listen period cahrotened. Each
node can switch to sleep mode at the moment it determines that there is curcetrtiyfia for
it. On the other hand, a node in T-MAC never goes to sleep as long as amyugcation is
overheard. It always remains awake until the end of the transmissi@ne Thconsequently no
overhearing avoidance like in S-MAC.

A contention RTS CTS Data ACK

AT

A} A

A J

\}

M i T Y

A 4

RTS

Figure 2.4: T-MAC with contention window.

In contrast to S-MAC, nodes in T-MAC turn off their radio after a shatigd if there is no
communication of data pending. Before going to sleep, any T-MAC nod&hagke sure that
no data is scheduled for it. This means it has to check that no communicatiomdimgeén its
neighbourhood. Therefore, T-MAC introduces a new parameter céiddime Amount). TA
defines the minimum awake time of a node after sending its SYNC packet. Astadladove,
this timeout is needed to determine pending data transmissions in the neighdmbublsoording
to Figure 2.4 Node C has to listen to the radio for at least the time of the followir@nac The
maximum possible length of the contention window, the transmission of a RTStpau#te
short amount of time so it could overhear the start of a CTS packet. Beddade C overhears
the communication between A and B it remains awake in this example. After the derdpta
transmission between A and B, it is possible that B routes the data furtheffte@fore, Node
C has to wait for the end of the entire transmission. Experiments in [8] havensimultiplying
the TA with a value of 1.5 yields better results while increasing the power usdgédittle.

TA determines the minimal amount of idle listening per frame. The buffer capdetr-
mines an upper bound on the maximum frame time, because all messages Hetwésten
periods must be buffered. In a real-world implementation the maximum frame timeb@us
chosen even shorter because there is no guarantee (for exampa¢ galtikions) that all nodes
can send all the packets in their buffers in the next listen period.

T-MAC follows the principle that it is better to maximise the throughput for a tsmount
of time than to save energy by avoiding overhearing. Avoiding overhgias also a bad side
effect. The collision overhead increases with the overhearing avadaing-MAC, because a
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node which is not involved in a communication could disturb some communicatioerizyrg)
a RTS packet after awaking. This cannot be prevented becauseaditimaunication model of
S-MAC.

2.2.1 Early Sleeping Problem

A node can go to sleep at the moment there are no more packets to be transnititiddueever,

it is difficult for a node to determine whether there is a transmission waiting éomiot. A node
does not always know if another node wants to send data to it and theeiefioight turn off its
radio too early. This early sleeping problem forces T-MAC to have areiffiedata exchange
mechanism than S-MAC. The problem is discussed in the following.

A contention RTS CTS Data ACK

VAV

A A
A \

c—contention h | « >

D TA

sleep RTS

S 4

Figure 2.5: Early sleeping problem of T-MAC: A sends a packet to B; C wdilkd to send a packet to
D. However, D goes to sleep after the expiration of its TA.

The problem is shown in Figure 2.5. Node A wants to send a packet to noNedz C
has a message for D at the same time. A has the shorter delay and it startd BoRES to
B. B receives this packet and it replies with a CTS afterwards. C hasmbw quiet until the
communication between A and B is finished. In the meantime D goes to sleep bdcaus
outside of communication range and C cannot inform D that another comntionigawaiting.

T-MAC introduces a simple solution to fix this. It introduces a "Future regteesend”
packet (FRTS) and Data Send packet (DS). Consider the situation ireRAdgu This time, node
A sends a dummy data packet with the same size of a FRTS packet aftetingdbe CTS
from B. This gives C the possibility to send its FRTS packet to D meanwhiles Tibde C is
able to inform D about its pending data for D. Node D will receive a RT&eiaafter another
running communication. C knows the duration of the transmission becaus®lisars the CTS
packet with the NAV of Node B. FRTS increases the throughput whilesdesong the latency. To
prevent that a different node can take the channel while C is sendingTiS,fhode A broadcasts
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A contention RTS CTS DS Data ACK

VAR VA

\ ’ ' '
\ \
I !
\ '
\ 7
! [}

¢ —contention < | >

D FRTS RTS

Figure 2.6: Solution to the early sleeping problem: Same Situation dgare 2.5. Node C can send
a FRTS packet to node D before node A sends its data to B. Qamtlyr node A sends a DS Packet to
keep the channel occupied.

a DS packet at the same time. The content of this packet is regardleggh thitsuonly purpose
is to keep the channel occupied.

2.2.2 Taking Priority on Full Buffers

A sensor network differs from an IEEE 802.11 network in some ways.pHtket buffer at each
sensor node is much smaller and allows the buffering of only few messtigexefore, the risk
of loosing packets by a buffer overflow is much higher. On the other hagtevork fairness is
not so important because, in general, all nodes work for the same ajplic@herefore, the
application itself takes care of network fairness. These two facts makestippe that a node
can refuse accepting any packets if its buffer is (almost) full. If anotbderwants to transfer
data and sends a RTS, it will not reply and send its own RTS.

2.2.3 Discussion

The authors of [8] compared T-MAC with S-MAC and CSMA. They havevsh that CSMA

without sleeping periods is very inappropriate for a sensor netwolMAS-and T-MAC achieve
energy consumption of up to 98% compared to CSMA without sleeping. Tdrerbig differ-

ences in the results depending on the communication pattern. S-MAC andCT-ddhieve
almost the same results if the payload is homogeneous, which is typical forgpatiplications
such as glacier monitoring. In a sample scenario with variable load, e.g.katyapplication,

T-MAC outperforms S-MAC by a factor of 5 in terms of energy consumptidhe designers
of T-MAC took the ideas of S-MAC and improved them to gain better resulteyent-based
applications in wireless sensor networks.
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Chapter 3

Connected Dominating Sets (CDS)

3.1 Introduction

There are already some papers and works about establishing amigrar@onnected Dominat-
ing Set (CDS), but only few of them focus on wireless sensor netwjddds Moreover, most
of the published papers use the CDS for routing purpose [11],[12],£23y few introduce the
CDS to save energy. One could say that a CDS is a kind of a virtual baekiboa wireless
network. A CDS is defined as follows (taken from [12]): "In generadlaminating set (DS) of
a graph G = (V,E) is a subset " V such that each node in V - V' is adjacent to some node in
V', and a connected dominating set (CDS) is a dominating set which alsoeadguconnected
subgraph of G. A (connected) dominating set of a wireless ad hoc rfeisva(connected) dom-
inating set of the corresponding unit-disk graph. To simplify the conngctivanagement, it is
desirable to find a minimum connected dominating set (MCDS) of a given seidefs.”

Finding a MCDS is NP-complete, though. Therefore, heuristics are usegpimximate
a MCDS. In this chapter three relevant approaches are introducedov@uapproach is then
presented in Chapter 6.

Figure3.1: CDS and MCDS

Figure 3.1 shows examples of a CDS and a MCDS. Nodes in the respeatiipating set
are coloured black. Every white node has a direct link to a black nodbotimexamples the
black nodes build a connected network. The minimum number of nodes toaf@BDSS in this
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example is two. Therefore, the CDS on the right is a MCDS.

3.2 CDS with Pruning Rules

One of the first approaches for building a CDS for mobile ad-hoc nesvads published in
[11]. In addition to the usual packets for data transmission such as RTGES, the authors of
[11] introduce an additional control message packet. Within this packbtreade broadcasts its
1-hop neighbourhood information. This allows all receivers to know &yiop neighbourhood.
If two neighbours of a node do not have a direct link between each, otisgrare "unconnected
neighbours”. Based on its 2-hop neighbourhood knowledge eaghasddetermine whether it
has unconnected 1-hop neighbours or not. Each node marks itself  itrftmnnected neigh-
bours in its 1-hop neighbourhood. These nodes form the basic CD&rding to this rule,
some nodes are marked in Figure 3.2. Node 3 has for example nodes 4aanchdéonnected
neighbours and therefore joins the backbone. On the other handghaaeived the control
messages from nodes 2 and 3, Node 1 "knows” that there is a link be2vaad 3. Hence,
Node 1 does not have any two unconnected neighbours, which meahotieal does not have
to join the backbone.

2 6

Figure 3.2: Nodes 1, 2 and 9 are border nodes. For example Node 3 is a maokledbecause neigh-
bouring nodes 4 and 1 are not connected.

Onthe initial CDS two pruning rules are applied to reduce the size of the Cx@rtigizing
the number of marked nodes. The first rule means: If the 1-hop neighdodiof a marked node
(v) is also covered by another marked node (u) of the 1-hop neighbodrof node v, and if the
ID of v is smaller than the one of u, then v can leave the CDS.

Figure 3.3: Result after the first pruning rule. Nodes 3, 4 and 7 are noketbanymore. The neighbours
of Node 3 are for example covered by Node 6. The same appliesdes 4 and 7.

An example is depicted in Figure 3.3. Node 3 leaves the CDS because Naders§ all
neighbours of Node 3 and its ID is smaller. Therefore, Node 6 is able @idnafi routing tasks
of Node 3. The second pruning rule is similar: If all nodes in the 1-hophteigrhood of a node
v are covered by two or more marked and connected nodes of the lelgigourhood of node
v and v has the smallest ID, then v can leave the CDS.
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2 6

Figure 3.4: Result after the second pruning rule. Node 5 is not markedhany. Nodes 6 and 8 cover
the neighbours of Node 5.

In Figure 3.4 Node 5 leaves the CDS. Nodes 6 and 8 cover together diboeig of Node
5. Additionally, Node 5 has a lower ID than nodes 6 or 8. Thereforees@dand 8 are able to
handle all routing tasks of Node 5.

Discussion of CDS with Pruning Rules

This CDS is primarily developed for routing purpose. The design goal is to mieithenumber
of nodes in the backbone, which means to search the minimum number ofwloidbss needed
to guarantee network connectivity. Most nodes in the centre of the rievera part of the
CDS because they have at least two unconnected nodes and many afithalso endure the

subsequent pruning. A backbone makes routing simpler, but not adisnodhe centre of the
network have additional benefits such as saving energy or increaskimuoma throughput. An

unmodified implementation of such a protocol would not make much sense inlassisznsor
network, because many CDS nodes (mainly in the centre of the networkd wouout of energy

soon. Moreover, the complete 2-hop neighbourhood knowledge igreelgurhe collection of

this two-hop neighbourhood information might be too expensive in termsoframication and

storage for wireless sensor networks, though.

3.3 Maximal Independent Set (MIS) CDS

[12] introduced an approach in which the algorithm needs first a ledeletian algorithm and
afterwards a level calculation phase. [12] did not invent a new algoffithrihe leader election
and the level calculation, instead they overtook ideas from [14]. In thed t&alculation phase
each node "learns” along with its own rank also the rank of all 1-hop heigfs. The rank
is a combination of the number of hops to the leader and its ID. This pre-waggisred to
build up a maximal independent set (MIS). This is a dominating set in whiclpainyof nodes
are non-adjacent. That means that there are no nodes in the dominativiycdehave a direct
link to each other. The two black nodes in Figure 3.5 build a MIS. Excepghfoteader of the
network all nodes are coloured white in the beginning. The leader is mblekl It broadcasts
a BLACK message afterwards (see also Figure 3.5). Like the later usetY Gfessage this is a
simple packet with a packet type flag and the ID of the sender. All whitéverseof a BLACK
packet mark themselves grey. All these grey nodes broadcast a GR&¥Ageeafterwards. All
receivers of the GREY messages check whether there is no other whéewitt a lower rank
in their 1-hop neighbourhood. If this is the case, this specific node becarBe ACK node as
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Figure 3.5: a) Node 0 broadcasts a BLACK message and all receivers mamsttlves grey. b) Node 1,
2 and 3 broadcast a GREY message. Node 4 marks itself blaskiged has the lowest rank.

well, and broadcasts a BLACK message. The others remains coloungdFgnally, all black
nodes form the MIS.

Figure 3.6: In this example Node 2 is elected to connect the MIS estadddigi the previous step.

In order to generate a CDS from the MIS, the nodes in the MIS need to freected.
Therefore, in a second step a smart algorithm selecting promising corqeciies has been
proposed (see Figure 3.6).

Discussion of MIS-based CDS

The entire development process takes some time. Besides, it produces &rddfic. Before
the MIS selection algorithm is able to be started, another algorithm has to tlediheader of
the network if there is no base station. After that, each node has to knowkisigaposition
based on the number of hops to the leader in a virtual tree and its ID. Eaehmuost only
store the information of its 1-hop neighbourhood. In comparison to the GibSwuning rules
[11], the MIS-based CDS achieves a better CDS and it builds up the rietagier. There are
some drawbacks of using MIS-based CDS in a wireless sensor nefilwekVIS-based CDS is
not flexible in terms of local updates. If a node has a malfunction, it is plessibt the entire

16



process needs to be restarted. Last but not least, the algorithm withétedifalgorithmic steps
might be too time consuming to be implemented on a wireless sensor node.

3.4 Timer-based CDS

The MAC-Layer Timer-based Connected Dominating Set Construction &g TCDS) has
been introduced in [15]. This protocol aims at saving energy and egafairting in general.
The protocol is divided into two parts. The first one is called the initiator electiburing
this phase, it defines the initiating node or initiator of the second phase. déa $tation is
the initiator, this phase can be skipped. MTCDS uses the node ID and degsrthin node
with the smallest ID as initiator. In the second phase, the initiator starts to cornsteuCDS.
For this, the initiator becomes a member of the CDS (inDS) and announces thésbedhon
frame extension of a normal IEEE 802.11 beacon message. A nodeipalfipbdroadcasts these
beacons, which are similar to the SYNC packets in S-MAC or T-MAC. Thedmeaontains the
ID of the sender. From beacon messages, each node is able to leanopsgighbourhood. Its
extension has a size of 58 bits. This is only about 10% of the default bexaaixet size of IEEE
802.11, which is about 550 bits. The beacon extension contains the stéteshde, which is
either uncovered, covered or in DS. The initial state is uncovered. édiivers of the beacon
sent by the initiator become covered nodes, which means that they halweacbnnection to
the CDS. All receivers start a timer immediately. The value of this timer is deforeallfnodes
with one or more uncovered neighbours by the following function:

1

AT = Tiaz - -
“C " (number of uncovered neighbours)®

(3.1)

When the timer expires, the node becomes a member of the CDS and annibisaethe
next beacon frame extension. If the number of uncovered neighiQrghe specific node is
not part of the CDS.

The process is also illustrated in Figure 3.7. Node O is the initiator and becomesber
of the CDS. It announces its status by its next beacon message. Naglesnd 3 receive this
message and start a timer (Figure 3.7 (a)). The timers of Node 2 and 3 fivgtibecause Node
1 has only one uncovered neighbour. Therefore, nodes 2 and 3 @i@s (Figure 3.7 (b)).
Node 2 and 3 announce their status in their next beacon messages andnda@nd 6 start their
timer at the moment they receive the messages (Figure 3.7 (c)). Node 4Hagthst number
of uncovered neighbours and therefore it joins the CDS (Figure 3)7 Tthe process goes on
until all nodes are either in the CDS or they are completely covered andnigedominated.

Discussion of Timer-based CDS

[15] introduced a solution for building up a CDS without any additional p&£KThe additional
traffic is low as well. This approach could be useful for a wireless semstwork if Equation
3.1 was extended with the battery level. If not, a well placed node alwaymhenter the CDS.
For a wireless sensor network with battery operated nodes, this is regitabte. Even if the
battery level would be low, the specific node would still be in the CDS and séilhusre energy
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Figure 3.7: CDS building process of MTCDS.

than others. A wireless sensor network should to distribute the energymmmtion over all
nodes. Finally, the approximation factor of the MCDS by MTCDS could be ingato In our

own approach we incoporate a timer-baded approach such as MTCDS8agibtion and 2-hop
meighbourhood information.
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Chapter 4

Clock Synchronization

4.1 Introduction

Each node has an internal clock. The nodes use this clock mainly for ahiglerts but the
application itself could need the clock as well. For example, an application ¢tettd sensor
events and sends them to the base station needs a clock. Otherwise,ettstalias will not
know how old this information is. On the other hand, nodes for wirelesos@&atworks have
to be cheap. Cheap devices are normally not as exact as expensszeGonsequently, due to
fabrication reasons each node has an individual clock drift whichtimegligible. For many
MAC protocols there is the requirement that nodes are synchronizezhsatwith the nodes in
their neighbourhood. In other words, many MAC protocols need a soltdisgnchronize the
nodes. In this chapter an overview over relevant related work is g@enown solution is then
proposed in Chapter 7.

4.2 Network Time Protocol NTP

NTP [16] is a well-known protocol used mainly in the Internet. The firstrdiégdn was made
in 1992. NTP works with reference clocks. These are atomic (caesitmdjum) clocks, GPS
clocks or other radio clocks. These reference clocks are the roatsigfarchical system of
"clock strata”. All reference clocks have, therefore, the stratum [&vAll hosts which are able
to get the time from a stratum n device will become stratum n + 1. Accordinglyest of a
NTP server acts as a server to down-link devices.

If a NTP client wants to update its clock, it sends a request packet to askiMer. This
packet contains the timestamp of the client. The server adds its own timestamgrandnait
timestamp to this packet before it sends the packet back. The second timéstiasithe client
to determine the travelling time of the packet. Thus, the client can estimate the taoteiaif
the server. It is only an approximation because there are severatdé&lagre are some variable
processing times at the client and at the server and there is a variablaissios delay over the
network. The shorter and more symmetric the round-trip time is, the more éethesestimate
of the server time will be. This procedure is performed several timesd#foasses some sanity
checks.
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Discussion of NTP and Wireless Sensor Networks

NTP works well but it is not optimised for energy and does not exploitcadicast medium.
Additionally, there is a lot of preconfiguration required until it works in avhendependent
network.

4.3 Time Synchronisation with GPS

GPS (Global Positioning System)[17] computes the position of a GPS devimecalihe world.
Exact clock synchronization with the GPS satellites is required to achievecanade position
estimate. More than 24 satellites are currently placed in the orbit. Each of thewskts exact
position and the current time. Each satellite has more than one atomic clockrh boa

The basic principle of GPS is simple. All satellites periodically broadcast thusitipn
and the time of sending this information. With the time difference between sendingata
and receiving it at a receiver it is possible to estimate the distance beteméarsaand receiver.
Moreover, because the propagation speed of the signal approximdtesdeed, the clocks at
the receiver are adjusted very exact. In general there are 3 unkveriables. This are x and
y for the position and t for time. At the moment there are at least four sateligddey it is
possible to solve the according system of equations. With five visible satellisggassible to
determine also the altitude.

Discussion of Time Synchronisation with GPS

GPS is an exact approach to compute the current time. There are sksadsantages for using
it in a wireless sensor network, though. First, the GPS module takes a loeajye Modern
GPS receiver chips like the SIRF Star Il [18] still need about 50 mW. @&8ce needs line
of sight to contact the satellites. Without a relay GPS is not available indéoilast but not
least, a GPS chip still costs several dollars.

4.4 |EEE 802.11 Synchronization

IEEE 802.11 defines a Timing Synchronization Function (TSF) for thecad¥tode in the MAC
layer of a wireless network. Basically it uses a similar concept as S-MACTaMAC, i.e., a
synchronization packet is periodically broadcast by each node. BEREL1 defines a frame-
length. The length of this frame depends on the various IEEE 802.11 stisnalad bit-rates.
At the beginning of each frame there is a beacon generation window. ritalchdefines at the
beginning of the first window a random number which is uniformly distributetsvben 0 and w
where w is 15 or 31. This value represents the delay until it tries to sendaiit®@beEach beacon
contains a timestamp among other parameters. At the moment a node overbeacs@from
another node it will cancel its own pending beacon transmission and #djogtn clock to the
timestamp of the received beacon. TSF will never adjust a clock backwdirdhe received
timestamp is older than the current of the receiving node, it is discardecs, TISF adjusts the
clocks to the fastest one in the entire network.
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Discussion of IEEE 802.11 Synchronization

TSF is easy to implement. It never achieves such good accuracy as NFPSrOn the other
hand, there is no additional hardware required and the additional fsaffie. If the nodes are
listening to the radio only during the beacon generation window, it is possialethode gets
disconnected from the network. Huang and Lai [19] show that this appém if the number of

nodes is large.

4.5 Reference Broadcast Synchronization (RBS)

Reference Broadcast Synchronization (RBS) [20] is a simple but fholelution for wireless
networks. Similar to T-MAC and S-MAC each node sends periodically atspmization packet.
RBS calls this packetference packet. In opposite to T-MAC and S-MAC, nodes running with
RBS will never adjust their clocks. Every node only adjusts the clock skiBS tries to

eliminate the fix drift between two or more nodes.

Reference packet Observation packets
A 4 >
! time
B ' >
C >

Figure4.1: Reference Broadcast Synchronization.

At the moment two receivers (B and C) get the reference packet @)hey will broadcast
their observations. This is illustrated in Figure 4.1. Both receivers beshdit the observation
packets the local time of the moment they have received the referencetpatkhe moment
a receiver (B or C) has received both the reference packet anobervation packet, it can
determine the time difference between the clock from the sender of thevabearpacket and

its own clock.

Discussion of RBS

RBS eliminates several sources of errors. In particular, the impact girttoessing time at the
sender of the reference packet and the delay in the network intedadexe avoided. The rea-
sons for synchronization inaccuracy are the different propagapieads and the fluctuations in
packet processing time at the receiver. RBS has been implemented in agvgefesor network.
The reference packet could be a SYNC packet with a special flagoli$ervation packet would

be an additional packet.
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4.6 Timing-sync Protocol for Sensor Networks (TPSN)

The Timing-sync Protocol for Sensor Networks (TPSN) [21] was desidor wireless sensor
networks. TPSN has two phases: The first is the level discovery @rakéhe second is the
synchronization phase. The algorithm defines a root node beforedtyeifase starts. A possible
election algorithm is [22]. This root node is the top of a hierarchical stracind therefore gets
level 0 assigned. It broadcasts a ledédcovery packet. The leveliscovery packet contains the
identity and the level of the sender, i.e., O if the sender is the root nodeeddivers of these
packets become level i+1 and rebroadcast their ldissdovery packet. If there are no packets
lost due to collision, all nodes get a level assigned. The second phasmiguite similar to
NTP. The root node is stratum 0 and all nodes with level 1 synchronizectbek with the root
node. In general all nodes from level i synchronize their clock witbd@erfrom level i-1.

In a wireless sensor network there might be many nodes in the 1-hop peigjaod.
Thus collisions might occur quite often. It is possible that a node will negeeive a
leveldiscovery packet. Therefore, TPSN introduces a local level disggelease with an
additional levelrequest packet. All receivers have to answer this request by agtast-
ing their leveldiscovery packet. The requesting node collects all level information fham
leveldiscovery packets and chooses the smallest level. Finally, it assigns itselfaachical
level of this value plus one.

The lifetime of a sensor node is limited. Hence, a node will stop working at the mtome
it runs out of energy. TPSN does not need to care about that if thiselmapduring the level
discovery phase, and before the node got a level assigned. Howsyeirtual tree could be
broken if this happens after that time. The disconnected nodes in the Aelgighourhood still
try to get synchronized, but their requests will never be answeredréd th@o other node in the
vicinity with the same level as the dead one. In this case all disconnected sedé again a
level request packet following the procedure of the local level discovieage. After some time
the virtual tree will be repaired.

Discussion of TPSN

Simulation results show that TPSN achieves two times better results than RBSot#erea
5-hop distance the average error is only about 22.66 microsecontlsimg@lements the RBS
protocol and TPSN in an IEEE 802.11 network. The hierarchical strectiuiTPSN can also be
used for routing purpose if there is only node-to-sink communication redjgind the sink is
the top of the tree. A drawback of TPSN is that it requires a lot of contokets and that it
takes a rather long time until the nodes are synchronized.
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Chapter 5

Simulation Environment

All protocols have been implemented in Omnet++ 3.1 [3]. The simulation model callbilityo
framework version 1.0a5 has been used. All tests were executedions/&Cs with Windows
XP or Windows 2003.

5.1 OMNeT++ 3.1 Overview

OMNeT++ is an open-source, component-based, modular and ogleiteature simulation en-
vironment. The short description of OMNeT++, according to the develdpg]: "Its primary
application area is the simulation of communication networks and because ohésg@and
flexible architecture, it has been successfully used in other areas lilsintiidation of IT sys-
tems, queuing networks, hardware architectures and businessggeeeswell. OMNeT++ is
rapidly becoming a popular simulation platform in the scientific community as well iaslirs-
trial settings. Several open source simulation models have been pubiistieslfield of internet
simulations (IP, IPv6, MPLS, etc), mobility and ad-hoc simulations and otlearsdrThere is
also a commercial version of OMNeT++. It is called Omnest [23].

OMNeT++ is a discrete event simulator written in C++. An event can be thiag; It can
be the start of a packet transmission, the detection of a movement of & selire@out and so on.
All events are stored in a global event scheduler in strict time order. ilthdation terminates as
soon as there are no more events scheduled or the simulation reaches thefingd time limit.
The component-based character of OMNeT++ provides the user witbugafieatures. Each
layer of the network stack is a component. Therefore, it is simple to exehadiyidual layers
to alter scenarios. In this work only the MAC layer was altered in the difteegperiments.
Because it is an open-source application, it is possible to change thef¢besapplication, too.
By changing a single value in the makefile, OMNeT++ creates, instead gifdication with a
graphical user interface (GUI), a simple program without any GUI.

Figure 5.1 shows the main GUI of OMNeT++. The main space in the window sti@veg
of the executed events. Additionally, the user can view the current stasechfmodule and the
scheduled events on the left side of the GUI. The top of the GUI providesus functions to
interact with the simulation such as to define the speed of the simulation. Alse,istear item
in the menu to open a new window to view the network topology (Figure 5.2). Wihigow is,
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Figure5.1: OMNeT++ main window.

together with the event log of the main window, very helpful to find bugs. Udes has also the
possibility to check the state of each module and its submodules. This allowsetht® werify
if the network setup was properly configured.

5.2 Configuration Files

In this section the configuration files of the OMNeT++ simulator are introdu€kd individual
components of the OMNeT++ simulator are configured in specific ned-GHkedbal parameters
are set in an omnet.ini file.

5.2.1 Ned-files

OMNeT++ is a component-based simulation environment. Each componerdgsanterfaces
to connect other components. These are called gates. Each compambatve some parameters
such as the number of nodes of the network, battery size and many moree OiMhhtroduces
a configuration file type called ned-files and a simple language to define thmgrs and
gates. Each module has its own file. In the following an example of such &leésigiven:

simple TestMacLayer
parameters:

debug: bool, // debug switch
headerLength: numeric const, // length of the MAC packet header (in bits)
gueuelength: numeric const,
seed: numeric const,
bitrate: numeric const,
maxVariableDrift: numeric const,
maxFixDrift: numeric const,
listenEntireFramelengthPeriod: numeric const,
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Figure 5.2: OMNeT++ network topology view.

numHosts: numeric const,
batterySize: numeric const;
gates:

in: uppergateln;

out: uppergateOut;

in: lowergateln;

out: lowergateOut;
endsimple

The ned-file contains several sections. The first section describpartimeters of the mod-
ule. In the example the simple module called "TestMacLayer” has sever@ngders such as
debug, headerLength, queueLength. Each parameter needs a tjgratiten such as bool or
numeric const. The values for these parameters are defined in the omndtfgwhich is
presented in the next subsection. The second section contains theHgrshe possible con-
nections to others modules are listed. The example provides four gates. Aencadialso have
some submodules. This helps to split up the code into multiple files. OMNeT++efantre
supports the exchange of submodules to achieve different scenditi@ssubmodules would
also be defined in the ned-file. OMNeT++ translates the ned-files into Cde-loefore it starts
compiling the entire project. The syntax of the ned-files is much simpler than titexsyf the
translated C++ code.
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5.2.2 Omnetpp.ini

Instead of setting the parameters directly in the source code, OMNeT+eis star parameters
to configure the simulation in a file called omnetpp.ini. This file stores all paranvetéch are
valid for all modules. In the following a part of an example of such a file isvsho

(.)

sim.host[*].nic.mac.debug = 1

sim.host[*].nic.mac.queueLength=25
sim.host[*].nic.mac.headerLength=16

sim.host[*].nic.mac.seed=-1
sim.host[*].nic.mac.batterySize = 40

sim.host[*].nic.mac.maxFixDrift= 0.001
sim.host[*].nic.mac.maxVariableDrift= 0.001

sim.host[*].nic.mac.listenEntireFramelengthPeriod= 35
sim.host[*].nic.mac.bitrate=115.2E+3; in bits/second

sim.host[9].mobility.x = 100
sim.host[9].mobility.y = 100
sim.host[*].mobility.x=-1
sim.host[*].mobility.y=-1
sim-time-limit = 100h

** numHosts = 50
sim.playgroundSizeX = 1000
sim.playgroundSizeY = 700

(.)

The first parameter called "debug” indicates whether debug statemerggeangted in the
MAC layer or not. Debug information is provided if the value is 1. The debaigumeter is
defined in the according ned-file (see Section 5.2.1). Another interesting is ‘sim-time-
limit'. It defines the maximum duration of the simulation. The last three lines defaéotal
number of nodes and the dimension of the network. As there can be moreribdrost it is
possible to define different parameters for each host. In this example stf®Jomobility.x and
sim.host[9].mobility.y have different values than for all other hosts. This sigaat host 9 is set
on position (100/100) in the simulation area, but all other nodes will be sdbraly (indicated
by -1). All parameters defined in the ned-file must be set in omnet.ini. Otrestivéssimulator
asks the user to provide these values during simulations start via a GUI.
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5.3 Mobility Framework Overview

A cable connection between two devices is a one-to-one connectiore iElaways exactly one
sender and one receiver of messages. OMNeT++ provides onlyosigcto-one interfaces. A
gate of a module can connect to only one gate of another module. Therevisatess network
connection type with one sender and many receivers. This is howeyared in a wireless
medium. Accordingly, such broadcast communications need to be deveMfitdthe mobil-
ity framework each host establishes connections to every other node itsiddio coverage.
Moreover, the mobility framework provides functionality to model mutual interfees. This
is required as in a shared wireless medium transmissions can disturb eachktially, the
connections are not fix. At the moment the nodes move around conneciiange accordingly.
This is again handled by the mobility framework. The radio coverage of tHesis modelled
by two path-loss models called Free Space [24] and Two Ray [25]. Isiourlations we use
the Two Ray model. The calculation of the interference distdncand the maximum receiving
distanceDp of the Two Ray model is based on the transmission pd#erthe signal attenua-
tion threshold~, the minimal receiving powePr to decode data and the antenna heighfThe
formulas for the interference and the maximum receiving distance looKlaw$o

1
o _ ([ Pr 14\%
D; _(10% ht) (5.1)
1
4
Dr = < o -hj}) (5.2)
1010

An important parameter in both equitations is the antenna height. A long antemeasas
the interference distance and the receiving distance because of tee qfotv

5.4 Collecting Simulation Results in OMNeT++

OMNeT++ collects two kinds of simulation results. These are the ‘vectots¢hwcontain all
values of a specific parameter measured over time, and the ‘scalar’ valhieh are single
global values without a specific simulation time. A typical example of a ‘vectdhégransport
delay of packets over time. An example of a ‘scalar* is the average trerdplay of all data
packets. Both results are stored in according files called omnet.sca antwaomespectively.
Both are simple text files and contain the value descriptions and the valuesadioof these
files there is an analysis tool provided by OMNeT++.

Figure 5.3 shows the GUI of the vector analysis tool. All stored vectors the simulation
are listed in the left side of the GUI. The user can select a subset of theémave them to the
right side. By pushing the button called plove it plots graphs such as ind-fgdr OMNeT++
provides some setting options to configure these graphs and to save tladigndgps-files.
The scalar analysis tool 5.5 is simpler than the vector analysis tool. It listslditee entire
collected scalar values from the file. Afterwards the user has the possibifityer them and
to plot them as a simple bar chart. Figure 5.6 shows, for example, the anfoemergy used
per node after 100 hours of a specific simulation. Finally, it is also possilsi@lect simulation
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Figure5.3: OMNeT++ analysis tools: The desired vectors are chose €inigint) and can then be plotted.

results without these functions because the entire application is written in & -trerefore,
everybody can make their own log files.

28



R x

- Battery Level in sitn host0].nic mac [nl.vec
-.- Battery Lewel in sitn host{1]hic mac (runl vec
@~ Battery Level in sim host[2].nic mac [un1.vec

Battery Lewel in sitn host{3]1nic mac frnl vec

—+ Battery Lewel in sim hos{3].nic mac [nl.vec
Battery Lewel in sim hos{&] nic mac [run1 vec;
—dh Battery Lewel in sitn host7].ic mac [run.vec

1
]
1
1
Battery Lewel in sim hosi{4].nic. mac (rn1.vec)
]
]
]
]

Battery Lewel in sitn hosi{8] hic.mac [unl vec)

T T T T T T T T
L} 100000 200000 300000

Figure 5.4: OMNeT++ analysis tools: Plot of a set of selected vectoraldeis. The graph shows the
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Chapter 6

Synchronization-based CDS for Wireless
Sensor Networks

T-MAC and S-MAC allow communication between all nodes. Each node eaateiand send
packets to all other nodes. Many possible applications for wirelessrseetserks do not need
to transmit data between sensor nodes, but rather have to report ttzeio dabase station. In
other words: Many applications need only node-to-sink communicationtelfighe sink is
the base station. In this work this property is used to extend the ideas of T-&ml S-MAC
to achieve better results for such kind of applications. In detail an algotihtestablishes a
routing tree by using the SYNC messages of these contention-basedofsasqarovided.

6.1 Introduction

In T-MAC and S-MAC all nodes wake up periodically even if they have imgtto be sent. There
are two reasons for that: First, they have to synchronise and secegdate to check whether
there is another node waiting to send data to them. Under the assumption thas thmainly
node-to-sink communication required, there is no need that all nodes wpageriodically as
long as routing is guaranteed. In this work we guarantee routing by estalglia connected
dominated set (CDS) which operates as backbone of the network. Tihe teaiffic runs over
this backbone. A node outside the backbone sends its data directly to laobackode. For
such non-backbone nodes there is no need to remain awake as longeas tieedata from its
sensors to be sent to the base station. Accordingly, these nodes caa kmtg sleep period.
Concerning the CDS setup, the following issues are considered:

o The base station is the sink of the CDS. The destination of all data is the btige.sta

e The number of nodes in the CDS should be as small as possible. Each nsideanaithe
possibility to periodically disconnect from the backbone, as long as theithigois able
to maintain the connectivity of all nodes.

Packets are routed over the backbone.

The number of control traffic should be as small as possible.
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Figure6.1: On the left: The backbone node sends data in the first franteelsecond there is no sensing
at all. In the third frame it receives a data packet and serndiseictly to a next hop node. On the right:
Node is in sleep state. It wakes up at the next frame and &sirsg something. After receiving a SYNC
packet it sends its data.

All nodes in the backbone (= backbone nodes) are running the samewiy T-MAC
or S-MAC. They wake up periodically and sometimes stay awake for an draime. These
backbone nodes do not waste more energy than T-MAC or S-MAC nodlksy have little
more traffic to handle, but they overhear fewer packets becauseriedes have to send SYNC
packets. The routing load of a backbone node is a little higher becausesis idisributed than
in T-MAC.

All non-backbone nodes save a lot of energy as long as there is no auoation required
due to events or sensor polling, because they remain disconnectedeeplfaslonger periods.
This long sleep period has a duration of multiples of the frame length. If th@seaoka node
detect something, the node has to transmit this information to the base statiomodéeakes
up at the next listen period and starts listening for a SYNC packet. Thigguoe is illustrated
in Figure 6.1. The backbone node on the left side runs similar to T-MAGek to send a SYNC
packet at the beginning of each frame and sends and receives deqaiied. In the example
above it sends its sensor readings in the first listen period. In the third beréod it routes a
packet for another node. The non-backbone node (in the right)dtegake up at the beginning
of each frame. After observing an event (activated sensors), iksvag at the beginning of its
next frame and starts to listen for a SYNC packet. At the moment, the nodeeseeSYNC
packet, it sends its data after a short random delay. After sending itstidataode changes to
sleep state again.

6.2 Synchronization of Non-backbone Nodes

Because of its clock drift a node can just estimate the next listen periodir Exiample the
sensor on a node detects an event five seconds after the start ofttekedgsperiod, it will
predict the listen period quite exactly. The node can wake up close to the®XaIC time. If
the last sleep period was entered 30 minutes back, the clock drift might bagedo predict the
synchronisation period correctly. Therefore, the node wakes up imtebdand starts listening
for a SYNC packet. In other words: The longer the sleep period, tHiereén relation to the
next synchronisation time) it will wake up in order to listen for a SYNC packet.
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If a non-backbone node, with some data pending for transmission, ttaand its data,
because another node is sending its data, the node has to wait until thisitigios is finished.
Like in S-MAC and T-MAC the node tries to send its data with RTS/CTS after @marbackoff.

It is also possible that the first packet a hode overhears is not a SYAskep In this case the
node treats the overheard data message as a SYNC packet. The $¢hidaetaia packet might
also be a non-backbone node. Therefore, itis possible that a mébdrze node accepts requests
from another non-backbone node. This might occur if a non-baekhode looses connection to
the backbone, e.g, because the according backbone node fails oNG ga€ket was disturbed
by another packet. In this scenario the non-backbone node remaike awd scans for other
nodes. If a non-backbone node appears, it connects to that nodeyds its data to it and goes
to sleep again. The neighbourhood node must have a connection to #imbacotherwise it
would never send any packets. The benefit of this behaviour of thesriadsuch a situation is
obvious. Only one node needs to remain awake instead of both nodesarsktbf lost packets
are minimised. This behaviour produces more traffic but the sender oathecdn go to sleep
earlier and therefore it will save energy regarding both nodes.

6.3 Periodic Backbone Reconstruction

It would be possible, in a static network, to maintain a CDS unaltered once lid&as built.
However, this would eliminate all the advantages over a system without C&& e a backbone
node needs more energy than a non-backbone node. As soon dslanieackbone nodes would
run out of energy, the entire branch of this network would be discdadetthere was no other
backbone node which could overtake the work of the dead node. Afthe network would not
be able to send their data to the base station anymore. Moreover, therehgautdadvantage
of putting the non-backbone nodes into long sleep state if the CDS wouldctevege, because
this would not extend the lifetime of the entire network. Therefore, a solutianftlses the
concepts of CDS and T-MAC for wireless sensor networks needs tildghe CDS from time
to time. Furthermore, the solution should consider the current battery legakh node while
establishing a new CDS to prevent that specific nodes are always dalgctéhe backbone.

We propose two possible solutions to define a CDS in the next two sectionls.dBaot
require additional packets. All data for building a CDS are attached to tinelagth SYNC
packets. Both solutions focus on static networks. There are additionhlamisms required to
handle mobility.

In contrast to pure T-MAC, it is important that all backbone nodes ake tabsend their
SYNC packets periodically. Otherwise, if there was no other traffic @andy a non-backbone
node might have to wait too long until it detects a SYNC packet which enabiesdnnect to
the backbone.

6.4 Negotiation-based CDS (N-CDS)

In pure T-MAC and also in pure S-MAC all nodes are able to learn thewd #eighbourhood
from the SYNC packets. Every SYNC packet contains the ID of the sesuu, therefore,
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each node learns the IDs of its neighbourhood over time. This collectiond# Ds and the
timestamp of the last receiving packet of specific node is the base infornmatjaired by the
CDS building process of N-CDS. Adding this timestamp has the additional bémetfia node
is able to detect nodes which are unavailable for a longer period (fon@raby running out of
energy). If a node does not receive a SYNC packet from anottade for a certain amount of
time, it assumes that the respective node is no longer available. A nodeVersanguarantee
that another node is no longer available because the SYNC packetoadedst packets and
the transmission can always be disturbed, thus.

The base station is the root of a tree. The nodes of the tree are the bacidmtes. The base
station initialises the building of the tree. The establishment of the backbomnesateglike
away from the base station. Therefore, each node in the backbows Ksgarent node and all
packets for the base station are passed to these parent nodes.

6.4.1 CDS Building Process

In general the process consists of 4 steps. Each step is discussedbifothimg:

1. The CDS nodes broadcast a packet called CDSSYNC containing itoneigitod infor-
mation.

2. Each receiver becomes dominated and calculates its priority.
3. The dominated nodes locally exchange their calculated priorities.

4. The node with the highest priority is elected into the backbone.

Step 1

The CDSSYNC packet is an extension of a normal SYNC packet. In addditime normal
parameters for synchronization, it also contains the ID of each ndkbbae node in the 1-hop
neighbourhood of the sender.

Step 2

All receivers are called dominated if their ID is listed in the CDSSYNC packetiofinated
node is a node that has a 1-hop connection to a backbone node andhahkiaheady received
a CDSSYNC packet. The task of each dominated node is to figure out witle¢ne is need to
become a backbone node as well. There is only need if a node has mot/getd nodes in its
neighbourhood. All receivers of a CDSSYNC packet will send all thebsequent data packets
to the sender of the first CDSSYNC they have received in the curre® Rilding process,
i.e., of the first dominator they have learned. Each receiver marks itshrighthat are also
listed in the CDSSYNC packet as dominated. Each dominated node calculatesty pfter
the reception of a CDSSYNC. This priority is the product of its own batteml lerd the number
of remaining nodes in its neighbourhood list that are not already baekhaes or dominated.
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Figure 6.2: N-CDS: Alternative Path timer. If node 2 has the highestnisicof the dominated nodes
1, 2 and 3, Node 3 has to start the alternative path timer tarertbat node 6 has a connection to the
backbone.

Step 3

The dominated nodes exchange their calculated priority with a CDSDOMIIDSNNC
packet. This packet contains the usual SYNC packet information anditivéypof the node.
The priorities are exchanged among neighbouring dominated nodes tmetehe node with
highest priority. All receivers of a CDSDOMINATEDSYNC packet @pe their neighbourhood
list by marking the sender as dominated. If the calculated priority of a nodétis @ode knows
that there is no need for routing traffic over it and it goes to sleep afténdpannounced its state
(like all other dominated nodes) with a CDSDOMINATEDSYNC packet. Nogigls a priority
of 0 need to announce their state, otherwise their neighbourhood nadéd mot know about
their state and they would wait for the expiration of a timer (see next subsgctio

Step 4

Atthe moment a dominated node knows the priority of all dominated nodes in itsb@ighood,
it checks if it has the highest priority. If this is the case, it becomes a loaekhode and starts
sending its own CDSSYNC packet. If a node has not the highest priority ittrsiifjibe needed
in the backbone. Therefore, it starts the alternative path timer and remaimgsated. The
alternative path timer ensures that all nodes will have a connection to thiedree A situation
where the alternative path timer is needed is illustrated in Figure 6.2.

Node O is a backbone node. Nodes 1, 2 and 3 are dominated. Node 2 égitst priority
and therefore becomes a backbone node. Node 3 has to ensuredb# nas a connection to
the backbone. Node 3 does not know if there is a connection betwees Aathd 6 or between
nodes 6 and 7. Therefore, node 3 sets the alternative path timer. While thisgimening the
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Node Battery Number of Priority
ID Level Neighbours
1 10.9 2 21.8
2 10.8 2 21.6
3 11.0 1 11.0
Node Battery Number of Priority
ID Level Neighbours
2 10.8 1
3 11.0 1 11.0
5 1.2 1 11.2
7 111 1 111
Node Battery Number of Priority
ID Level Neighbours
2 10.8 0 0
4 1.4 0 0
6 1.4 0 0
7 1.1 0 0

Figure 6.3: CDS building process over the entire network.

node updates its neighbourhood list. There are two possible final statcto node:

1. All nodes in the neighbourhood of a node become dominated or bagkimates. In this
case the node can go to sleep.

2. There are still some nodes in the neighbourhood list of the node thaioamreovered
by the CDS building process when the timer expires. It seems that the nodeaslih
connection to these nodes. Therefore, it becomes a backbone ndide itse

An Example CDS Construction

Figure 6.3 shows an example of a CDS building process. In this exampleck#tsaarrive be-
fore a timer expires. Figure 6.3 (A) shows the situation just after nodearig 3 have received
the CDSSYNC packet from the base station S. At the moment node 1 re@iB®SDOMI-
NATEDSYNC packet from node 2 it becomes a backbone node bedasuseority is higher
than the priority of Node 2. Figure 6.3 (B) shows the situation just after &€&, 5 and 7
have received the CDSSYNC packet from Node 1. Nodes 7 and 2taecome backbone
nodes because Node 3 has a higher priority than Node 2 and the prioitgdef 5 is higher
than the one from Node 7. Figure 6.3 (C) shows the final situation. Afdes @, 3 and 5 have
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Figure 6.4: CDS building process for each node (except the base station)

become backbone nodes the priority of all other nodes drops to 0. dingty, they become
non-backbone nodes for the current long sleep period.

Figure 6.4 shows a flowchart of a single node. At the end of this praeedoode knows if it
has to join the CDS or not. Except for the base station the algorithm waitsdfiratGDSSYNC
packet. After receiving such a packet it starts sending its priority withiruitsequent SYNC
packets (Figure 6.4; Box 2). The meaning and the reason for startingh#tlerege timer is
explained in the next subsection. After receiving the CDSDOMINATEDIEYpackets from
all dominated nodes in the 1-hop neighbourhood the node checks if it @dsghest priority
(Figure 6.4; Box 5). If this is the case, it joins the CDS (Figure 6.4; Box ®jherwise it
remains awake for a fixed amount of time to make sure that all 1-hop neididmmlinodes has
a connection to a backbone. If all 1-hop neighbourhood nodes areected after the alternative
path timer has expired the node decides whether it has to join the CDS origuatg(B.4; Box
8).

Periodic CDS Reestablishment

The base station is initialising the establishment of a new CDS periodically torpréhet a

node remains a backbone node all the time. All nodes in the long-sleep statohaturn to a
default T-MAC state several minutes before the base station initialise a raddaze building

process. Thus, all nodes have enough time to exchange their SYNEtpaahkearn their 1-hop
neighbourhood again. The routing path remains active as long as theD8w@lding process
does not overwrite the old tree.
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6.4.2 Packet Loss Problem

Broadcast packets can get lost. Therefore, each node has tesmitrgackets which are in-
volved in the CDS building process to guarantee a proper CDS setup. drfixmber of re-
transmissions is not a good approach. In a network with low node densigyighén general, no
need to retransmit the packets as often as in a network with high density.r@ugirfiulations
have shown that the sum of a small fixed value and the size of the neididwablist provides
better results. If the number of retransmissions is too low, the CDS buildirgpgsanight be
broken. In such a case the CDSSYNC packets never arrive at tigmdesd receivers. Of course
this is not a disaster, if there was a complete CDS built once before. Hawfevaode has never
been affected by the building process, it will not know to which node ittbagnd its packets.
All downlink nodes of this node which are not connectable over altemditiks will remain
in the default sleep and listen states of T-MAC which is a waste of energhe lhumber of
retransmissions is too high, the time for establishing the tree becomes too long.

Another possible approach is to confirm a CDSSYNC packet with an A@Kgiabut this
would increase the amount of control messages. Each receiver o658 URNC would have to
reply the packet with an ACK packet. This would require in average at 1€a8CK packets to
confirm the CDSSYNC of a specific node in a network with an average nemfstg of 15.

Figure 6.5: Network with a dead node (2). Node S has received a SYNC pécketl and 2 just before
Node 2 runs out of energy. Therefore a challenge timer isdhiced. Node 1 joins the backbone when
the challenge timer expires.

A specific node might run out of energy during the CDS building procésgrevent that
another node is waiting for an answer of that dead node, N-CDS neadsea timer. It is
called the challenge timer. The reason to do so is shown in Figure 6.5. Asthamse station
(S) in Figure 6.5 has already collected the IDs of the nodes in its 1-hoplbaighood. After
that, Node 2 runs out of energy. The base station starts the CDS buildinggsrthereafter. It
broadcasts a CDSSYNC packet with the IDs of hodes 1 and 2. Node leisoalroadcast its
priority and waits for the priority of Node 2. To prevent that Node 1 waitsitdly, Node 1
starts the challenge timer (Figure 6.4; Box 2). At the moment that this timer explogie 1
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deletes all dominated nodes from its neighbourhood from which it did meiwe any priority
information (Figure 6.4; Box 4). In this example Node 1 becomes a backhade when the
timer expires (Figure 6.4; Box 6).

6.4.3 Discussion of N-CDS

The setup of the CDS is rather slow. Especially, if the network density is tighe are many
nodes that are concurrently involved in the process. This causdsem®because all nodes need
the priority of all nodes in their neighbourhood. The delay is affecteddpysing the number
of retransmissions of the CDSSYNC packets and by changing the duratiomtomers. The N-
CDS concept is a heuristic approach for establishing a CDS and, thergfarely establishes
a MCDS. However, the simulations have shown that N-CDS establish anadeQDS which
is quite close to the MCDS.

6.5 Multi-Point Relay based CDS (MPR-based CDS)

A backbone node in N-CDS knows only its 1-hop neighbourhood. Onttier thand, the more
information a backbone node has about its neighbourhood, the moratageacan be taken
from the local connectivity. Accordingly, better results might be achigifeaibackbone node
knows its 2-hop neighbourhood. Learning the 2-hop neighbourhatidadl its connections
implies more costs than learning only the 1-hop neighbourhood, though.eCnthir hand, the
CDS building process becomes simpler in particular the timer handling is noticaatgker.

6.5.1 Distribute Neighbourhood Information

At the moment a node becomes a backbone node, it should know its entigerieighbourhood
or at lest a good approximation of it. Additionally, the node should know thietyalevel of
all 1-hop neighbourhood nodes to avoid that a node would be selectetldsone node all the
time. The simplest way to capture this information is to extend the SYNC packet vatfietids.
One contains the battery level of the sender and the other stores the 1® sdritder of the last
SYNC packet. This implies, that each node must receive from each heigpbour at least as
many packets as there are nodes in the 1-hop neighbourhood of thea#ighhus, each node
learns the 2-hop neighbourhood over time. As the focus of our work &atit networks, the
learning over time is acceptable.

6.5.2 CDS Building Process

In difference to N-CDS, the backbone node in the MPR-based algoridfimed the next nodes
which join the backbone. That means that any backbone node definesinteanal routine
the further backbone nodes, at the beginning of its CDS building prodesimplement the
decision process on a single node, rather than distribute it over neighd¢paodes as in N-
CDS, is the reason why the building process of MPR-based CDS becamgsrs The main
task of a dominator is to elect a subset of neighbour nodes as down-linidtors, so that the
connectivity to all 2-hop neighbours of the dominator is guaranteed. efdrerthe backbone
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node has first to figure out which non-backbone nodes in its 2-hopin@ighood have the
minimum possible connections. Afterwards the backbone node determmtee$e nodes the
connecting node in the 1-hop neighbourhood. The nodes with highedugirof battery level
and the number of 1-hop neighbours, i.e., 2-hop neighbours in respibet backbone node, are
elected. The individual steps of the algorithm are as follows:

1. Setup a list with all known nodes. Add two columns to this list. The first costhia bat-
tery level and the second contains the number of non backbone neighdfdgbe specific
node.

2. Mark all nodes that are within 1-hop range.

3. Mark all 2-hop nodes which have a connection to a backbone nddé.nmeans, they are
a backbone node or there is a backbone node in their 1-hop neiglooolirh

4. If all 2-hop nodes are marked, there is no need for an additionalkbboae node and the
algorithm terminates.

5. Else, count the number of possible 2-hop connections for all unchadees.
6. Select the node as a new backbone node with the lowest value of step 5.

7. Restart the algorithm at step 1.

Figures 6.6 and 6.7 shows an example of this algorithm run on Node S. Steihd a@l-
gorithm creates the first three column of the list. Step 2 marks all nodes ¢hatithin 1-hop
range. Therefore nodes 1, 2, 5 and 7 are coloured grey in 6.6.dr8steFigure 6.6 no 2-hop
nodes are marked, because there are no backbone nodes in thedidgtdmurhood of Node S
yet. Node 3, 4 and 6 are still unmarked and therefore the algorithm deodsrnonate at step
4. Step 5 adds the last column to Figure 6.6. Node 4 is selected in step 6dédsausnber of
possible 2-hop connections is only 1. Step 7 restarts the algorithm. THesrefthe first two
steps in the second iteration are the same as in the first iteration. At Step83add 4 are
marked in Figure 6.7 because they have a connection over Node 2. Ndglldunmarked and
therefore the algorithm does still not terminate at step 4. Node 6 has twibledssing nodes
(5 and 7). Node 5 is chosen at step 6 due to its higher product of battetyaled number of
1-hop neighbours. Finally, the algorithm terminates in the third iteration at sbezduse all
nodes have been marked in step 3.

The backbone node broadcasts a CDSSYNC until all new backboes statt broadcasting
their own CDSSYNC (passive acknowledgement). If the backbone doég not overhear the
CDSSYNC from all new backbone nodes, it stops broadcasting CDES¥fter a predefined
timeout. The CDSSYNC packet contains the usual synchronization informatituding bat-
tery level, last sender ID and the ID of all new backbone nodes. Adlivecs update their state
as follows:

e Sender of the CDSSYNC is a backbone node.

e Receivers destined as backbone nodes in the CDSSYNC become bacidutes too.
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Node Battery Number of Number of possible

ID level non- 2-hop connections
backbone (gateway nodes)
neighbours

1 2 -

2 10.8 4 :

3 3 2(1:3)

4 2 1(2)

5 11.2 2 -

6 2 2 (5,7)

7 8.9 3 -

Figure 6.6: Decision table for the first iteration of the CDS building@lighm of Node S: Select Node 2
as first successor because it is the only node with a link teeNod

Node Battery Number of Number of possible

ID level non- 2-hop connections
backbone (gateway nodes)
neighbours

1 10.9 1 -

2 10.8 4 -

3 3 Z1T.3]

3 Z 4 2/

5 11.2 2 -

6 2 2(5,7)

7 8.9 2 -

Figure 6.7: Decision table for the second iteration of the CDS builditgpathm of Node S. Node 6
is the last node which must be connected. Node 5 has a higttenbkevel than 7. Therefore, Node S
selects Node 5 as backbone node.

o Nodes with a direct connection to the sender become non-backbong node

All non-backbone nodes can go to sleep after a certain delay. Theidelagessary, because
it might be possible that a non-backbone node receives another QDS Shhere it is elected
as backbone node. This situation can appear if a backbone nodeatde®w its entire 2-hop
neighbourhood because of, for example, a too high packet loss imeroblem is depicted in
Figure 6.8.

Node S sends a CDSSYNC and nodes 1 and 2 are elected as backloese mNpde 2
does not know (because of high packet loss rate) that there is a linked&etmodes S and 3.
Furthermore, it does not know that there is a link between nodes 1 andetefore, it selects
among other nodes, also Node 3 as a backbone node to cover Noder4. aré two possible
consequences:

1. Node 3 overhears a CDSSYNC from Node 2 before it goes to sleethisl case Node
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Figure 6.8: Node 2 does not know the link between nodes S and 3 due to plasiset Node 3 either
enters the backbone or not, depending on a timeout.

3 becomes a backbone node as well. This is a waste of energy, but elsewds an
algorithm required which would allow a node to decline from becoming a lmakhode.
This would raise further complexity, though.

2. Node 3 does not overhear a CDSSYNC from Node 2 and enters @@ stlate. In this
case Node 2 continues to send CDSSYNC packets instead of switchingdbslclrter
SYNC packets. This is some waste of energy at the backbone nodethuritical.

The duration of the long sleep period is the same as for N-CDS. Like in N;@29VIPR-
based CDS has a period to learn the neighbourhood.

The MPR-based CDS has again been designed for static wireless sehsorks. There-
fore, deleting the entire neighbourhood nodes list after a long sleepddsréowaste of infor-
mation. It also takes some time to recollect the entire 2-hop neighbourhoodhatfon with
the SYNC packets. The MPR-based CDS mainly needs up-to-date infornahian the 1-hop
neighbourhood. Therefore, MPR-based CDS deletes only the informatiall 1-hop nodes
and all 2-hop nodes where the last notification is older than a given tideskhe best choice of
this threshold depends on the network structure. Even if the 2-hop reeigidod is no longer
correct because of mobility or of the dead of one or more nodes, thethtgastill works well.
The algorithm makes sure that all 2-hop neighbourhood nodes haveca Ik to a backbone
node. If such a 2-hop neighbourhood node is no longer active thatalgastill works properly.
If a 1-hop neighbourhood node x is no longer available, the CDS setopithly could raise
problems. It would be possible that a backbone node selects exactlyatiendde x as a new
backbone node to cover some 2-hop neighbourhood nodes.
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6.5.3 Consequences of Packet Loss

As with N-CDS there are some packet loss impacts to be handled. A backbdadroadcasts
its CDSSYNC message without an automatic acknowledgement of the rexcéilerefore, the
sender has to retransmit its CDSSYNC until it overhears a passive waddgement from its
subsequent backbone nodes. There are two ways to confirm thentsaim. The first one is by
overhearing a CDSSYNC from a successor backbone node. If thd dotainator overhears
such a packet, it is ensured that this successor has received thé/GiGSfacket. The other way
is to confirm the CDSSYNC packet by a CDSACKSYNC packet. If the kezadoes not need
to send a CDSSYNC packet, because all its 2-hop neighbourhood amlakeady covered, it
confirms the CDSSYNC with a CDSACKSYNC. This is a common SYNC packet wsfteaial
packet type ID that signalises that this is a CDSACKSYNC packet.

At the moment a CDSSYNC sender overhears a reply from a new bagekinuate it will
mark it in its neighbourhood node list. It removes this node from its subs¢tpaekbone node
list as well. Because the CDSSYNC packets contain the IDs of the remainimg-stoeam
backbone nodes, the next CDSSYNC packets become shorter.

6.5.4 Advantage and Disadvantage of MPR-based CDS

The MPR-based CDS needs some memory on each node. The average ntitgmsA in the
2-hop neighbourhood list is related to the average number of 1-hopbwmigiood nodes d. To
calculate these values following parameters must be given.

e n: Total number of sensor nodes in the entire network.

e r: Transmission range of the nodes.

e s: The side length of the network area.

The average node density d and the neighbour table/siaee computed as follows:
2

n-r--m

d= 2

S
A=d+d

Each node has to store the link informations about all 1-hop neighbourmbes (d) and
the information about all 1-hop neighbourhood nodes of the 1-hop beighood nodes (d).
The equitation for d is taken from [26].

The memory allocation without hashing the data is 96 bits per item if the size of ttee no
IDs is 32 bits. An item contains the ID of the node, the ID of the gateway nodeadimestamp
of 32 bits in each case. So in totabe bits are required for the neighbour table without hashing.
There is another table required for the CDS building process. This daabte is quite small.

It contains the ID and the CDS building status (backbone, non-backdnmh@ot affected) of
a node. By hashing the data the size of each item becomes smaller. A hasbfci@l bits
is sufficient for most applications. 10 bits allow up to 1024 nodes in the 2akahbourhood.
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This provides enough IDs for a network with maximum network density ofia®® neighbours,
which is a high density.

A real-world implementation should take care of the variable signal qualityb#dckbone
node has to select a new backbone node, it normally prefers the osestdo the border of
its maximum transmission range. Such nodes have normally a higher numbecafeved
neighbour nodes during the CDS building process. On the other harsg, tbanections have
often poor link quality. Therefore, a real-world implementation should stardink-quality of
each 1-hop node. During the CDS building process the backbone hodi$randle all 1-hop
nodes with a poor link-quality as 2-hop nodes if there is a connection on¢her 1-hop node
to these nodes.

MPR-based CDS is assumed to achieve better results than N-CDS bedslide-laased
CDS should create a smaller CDS, due to having more information. Therefae nmodes
could go to sleep for a long period.
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Chapter 7

Global Clock Synchronisation Gravitation

7.1 Problem of Virtual Clustering

T-MAC and S-MAC do not provide global time synchronisation. Only nodsgde the same
virtual cluster have their listen periods synchronised. All nodes rdguitay awake for an
entire frame. Thus they have the possibility to detect other virtual clustetisere are two or
more schedules from two or more nodes, the overhearing node adagutisedules, but sends its
SYNC packet only in one listen period. With this mechanism the disjoint virtuateta can be
interconnected. However, this means that the interconnecting nodes Bayficantly higher
power usage. With our proposed algorithm we try to avoid interconnectidgswith higher
power usage by maintaining a global schedule among all nodes.

O One slot
@ Two slots
® Three slots

Figure 7.1: Problem of Clustering.

Figure 7.1 shows an example of a network. In this simple case the node in thke inédd
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to take part in three virtual clusters and, accordingly, has to wake up 3 timeframe. The

power usage for synchronization of this node will increase by a faét®8mathout data traffic.

The authors of [27] have shown that even in a network with consisting lgfadhnodes, some
nodes have to wake-up up to 4 times in a frame. If a node with more than oedusehuns out
of energy, there might be no other node which can take over its job. Ifaddeswith two or

three slots in Figure 7.1 run out of energy, the network is divided into multgitspTherefore,
it is desirable to avoid multiple schedules.

7.2 Local Adaptive Clock Assimilation Scheme (LACAS)

We try to achieve global synchronisation without a master node and witkddittanal network
traffic. The proposed solution is called Local Adaptive Clock Assimilationegue (LACAS).
LACAS avoids the drawback of virtual clusters. It is simple and it perforrel in all simulated
scenarios. The basic principle bears resemblance to the physical goavitbmaterial. A huge
bulk of material attracts a smaller one more than vice versa. Consequentlipuiicgtof material
fuse after some time. In LACAS the cluster nodes represent the materiti@ndmber of sent
SYNC messages the gravitation force. Huge virtual clusters, which ¢arigisore nodes, in
average send SYNC packets more frequently and thus pull the small omeshao vice versa.
Finally, both virtual clusters fuse to one.

f1 f2 fa A Cc
A t \O/O_: -
B - ~ ¢
_—"=send Sync = = |isten period
= = listen entire frame
C == t

Figure 7.2: Virtual Clustering in T-MAC: Node A belongs to an differeriuster than nodes B and C.
Node B, periodically stays awake for an entire frameiftfdetects a SYNC packet from Node A, during
this time. Afterwards, Node B wakes up two times per frame.

After deploying all nodes, each node runs initially a standard T-MAC pritcccordingly,
a node starts to listen for already running nodes. If it hears another, itadlapts the schedule
from the other node. Otherwise, it defines its own schedule and stadmgets SYNC packet
at the beginning of its listen period. This implies the creation of a new virtuatesluSooner
or later a node of a specific virtual cluster overhears a SYNC paaket & node of a different
virtual cluster if the node shares the space of both clusters. Normally, ¢bigoduring the
period when a node is awake for an entire frame. T-MAC and LACASt iaacdifferent way at
the moment a node detects a SYNC packet from a different cluster. Thissisalied in Figure
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7.2. In T-MAC, Node B listens to both schedules until death by awaking twieadam frame as
soon a s both schedules are known, i.e., after frameFigure 7.2.

A node with LACAS never has two schedules. It shifts its own scheduleiteea gravitation
adaptation percentage(e.g.a = 5%) towards the schedule of the node it has received a SYNC
message from. Additionally, it extends its listen period over both scheduteslefgth of this
listen period is the time span over the own schedule and the schedule leametié overheard
SYNC from the other virtual cluster. Having spanned both clusters, t@a@ing node starts to
contract its schedule again. Due to the schedule expansion, the pavsemuation temporarily
goes up, but this effort is insignificant compared to the fact that the ctusam be eliminated in
this way.

A C

i2-- _—"=send Sync = = ]isten period

e = listen entire frame

f1 f2 f fa ‘ fs fo fn
b . L

%\&f

Figure 7.3: Operation of LACAS: Node B stays awake for an entire frameinDuring this time it
detects a SYNC packet from Node A. It adapts this schedule. Byhe next awake period of Node B is
extended such that it spans the schedule of nodes A and C.

Figure 7.3 is an example of such a cluster fuse. Node A belongs to a difidtster than
nodes B and C inif In f, Node B stays awake for an entire frame and detects a SYNC packet
from Node A. Therefore it extends its regular listen period over botkeduales inf;. Addition-
ally, its own schedule shifta towards Node A. Node A stays awake for an entire frame in the
second half of f and for the first half of § and detects the SYNC packet from Node B. Like
Node B, Node A extends its listen period over both schedules and shifthisde towards
Node B in §. This means, that this small network is connected from now. Betwigamd f,,
both clusters mutually exchange SYNC packets and thus attract each Atlditionally the
nodes contract their schedule again. The fusion process finishfgs liecause all three nodes
have the same schedule. Simulations have shown that in general it takésale8sminutes to
achieve a common schedule in a network consisting of 200 nodes. On thmédnattte a sensor
network is in general designed for a long network lifetime, e.g., to work fgea or more.
Moreover, the physical deployment of the nodes takes some time. Treréfes acceptable
that it takes some minutes until the clocks are synchronized.
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L = = |isten period
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D t _—" =send Sync

Figure 7.4: Operation of LACAS: The value far is in this example too high and therefore the networks
breaks in two parts.

The value fora has a huge influence considering performancey i too low it will take
a long period until the schedules fuse to one global schedule. On thehathdr if « is too
high, the connection between the nodes might be broken all the time. Thismprahillustrated
in Figure 7.4. In this example the value faris too high. All nodes reach their neighbours
with a SYNC packet in{f. Therefore, the network is connected. Afterwards there are too many
background noises between nodes B and C and the SYNC packetstamgJosiowever nodes
A and D are able to send their SYNC packets and therefore nodes B aniitl @&way from each
other. This drift is too high and the SYNC packet of node B misses the listéodpaf the node
Cin f3 and vice versa.

This disconnection is not a basic problem. The clusters will be reconnagsid when they
listen for an entire frame. However, the disconnection increases thalperii the schedules
fuse. At the moment there is only one global schedule a high better than a small one.
LACAS has only to compensate the clock drift of each node at this point of, thimet has
already eliminated the virtual clusters. Therefore, the valuexfewitches in our simulations
to 50% at the moment the CDS building process is finished. At this time all nodedshe
synchronized. Furthermore, all backbone nodes at the leaves oflCiBea@apt the schedule
learned from the SYNC packet to 100%. Such nodes need to be syim#aiconly with one
node because all other nodes neighbours are sleeping. Thetbise,neighbours will never
send a SYNC packet. This feature of LACAS applies only if the networkiges a CDS as
backbone.

7.3 Discussion of LACAS

LACAS prevents the virtual clustering and saves a lot of energy. Theanks of T-MAC and
S-MAC are broken at latest at the moment when all nodes at the boridins wirtual clusters
die. In general, they die earlier than the other nodes because they Haterido more than
only one schedule. LACAS eliminates virtual clusters. It eliminates also thdeb®between
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the clusters. This increases the lifetime of a wireless sensor network.
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Chapter 8

Implementation and Evaluation

To evaluate our approach we implemented the algorithms in the Omnet++ netwoiktsimu
with the Mobility Framework version 1.0a5 (see Chapter 5).

8.1 Simulation Setup and Parameters

We implemented three different MAC protocols.
e T-MAC according to its authors [8]
o N-CDS with LACAS
e MPR-based CDS with LACAS

Nodes in sensor networks are unsynchronised in the beginning. hreymize the nodes, N-
CDS and MPR-based CDS implement LACAS. In all simulations LACAS addesigroficant
overhead to the CDS-based protocols. Therefore, we decided to momtmgaprotocols to the
original T-MAC implementation, which provided fully synchronised nodesiraulation start. If
T-MAC would be run with LACAS too, it might slightly loose performance, thbubis would
hardly be measurable.

The payload generator and the network structure is the same for all ttoeeqs. The
payload generator creates approximately 1 packet per node per mitnge i$ no data traffic
during the first 400 seconds. LACAS and the CDS-based approachetesigned for static
networks. Therefore, there is no mobility in the network. The networkistnsf 50, 100
or 200 nodes. The average number of 1-hop neighbourhood nedemge ,i.e., the network
density, is 10 or 15. The network structure is random. We have chose&adh network size
and network density 10 random networks, in which all nodes have aection (some over
several hops) to the base station. Totally, 60 different networks ardaggdifor the 3 different
MAC protocols. Each simulation stops after 100 simulated hours. So, in td@0@A8&ours are
simulated. Each node has an individual clock drift. The maximum clock dsiiveen any 2
nodes is 2us per second. This is still more than the maximum clock drift of the ESB sensor
platform from [1]. The total drift is a sum of two parameters. One is thedfokéft of the node.
Each node defines its fixed drift at the beginning of each simulation. Tlad fixift simulates
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the incorrectness of each oscillator compared to the correct time. Thevatheris the variable
drift that changes all the time. This is the jittering of the oscillator.

There is no check on the network layer, whether a specific packetreasiabeen sent to
the next node or not. This means the generation of duplicates is not prdvedfor example,
assume node A sends a packet to node B. B receives the data andestdirtg $ts ACK packet.
This ACK packet does not arrive at node A because of too much ribliees, A has to resend the
packet. However B already received the packet and sends the ragésghg next node. After
the retransmission of this packet from A to B, B does not realise that itlleesdy received this
data packet. Therefore it will send it twice. This happens rarely. M@ea@ll three protocols
have the same network layer and are therefore faced with the same problem.

The specification of the simulated hardware is according to experienkexsfeom the ESB
sensor platform developed at FU Berlin [1]. All important parameterdigtesl in Table 8.1.

| SPECIFICATION \ VALUE \
Frame length 610 ms
Power consumption in sleep mode 0.005 mA
Power consumption in idle mode 4.7 mA
Power consumption in send mode 5.2 mA
Power consumption in receive mode 4.7 mA
Buffer size 25 packets
Battery level at start 45 mAh
Path loss model TwoRay
Antenna height 0.17m
Bit rate 115.2E+3 bits/secon
SNR threshold 5dB
Transmitter power 0.75 mW
Carrier frequency 8.68E+8 Hz
Thermal noise -98 dB
Sensitivity -95 dB
Listen entire frame length all 21.35 seconds
Maximum contention window 2.56ms
TA 6.444ms

Table 8.1: Sensor platform dependent parameters.

The radio consumes most power on a wireless sensor node. A nodegrs&e (the radio
is off), only uses SuA. A node in idle state (the radio is on) consumes 940 times more power
(4.7 mA) than in the sleep state. The transmitter power is 0.75 mW. The two-ray imotdesen
as path-loss model in our simulations.

With an antenna height of 17cm and a carrier frequency of 8.68E+8 ihtla has an ex-
pected transmission range of about 37m. The interference range is5#mwuThe ESB of [1]
use, per default, a bitrate of 19200 kbits per second, but the hardsvaaady for higher band-
widths of up to 115200 bits. The bandwidth in our simulations is, accordingtytos115200
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bits per second. The base station is placed always in the centre of thequiagig

8.1.1 Packet Definitions

The following tables define the specific packets for all 3 MAC protocols.

| NAME | LENGTH INBIT |
Preamble 16
Packet Type 8
Source ID 32
Timestamp 32
CRC 16

Table 8.2: SYNC packet for T-MAC and N-CDS.

Table 8.2 describes the structure of a SYNC packet used in T-MAC a@G®dS- Like all
other packets it contains a preamble, a packet type and a CRC part. 8dmlpe makes sure
that the receiver interprets the start of the data of this packet corrddily.CRC part checks
whether the data of this packet has been transmitted correctly. The pgpkeinforms the
receiver that this packet is a SYNC packet. The source ID is the systdenunique ID of the
sender node. The timestamp contains the relative time to send the next SYKEE. pits is a
float value between 0 and the maximum length of the frame.

| NAME | LENGTH INBIT |
Preamble 16
Packet Type 8
Source ID 32
Timestamp 32
Last Node ID 32
Battery Level 32
CRC 16

Table 8.3: SYNC packet for MPR based CDS.

To setup the MPR-based CDS two additional values are required to lea2ahibje neigh-
bourhood as well as the battery level of all 1-hop neighbourhoodsiotige according SYNC
message to setup the MPR-based CDS is shown in Table 8.3. The two additiwaadeters
are the ID of the last node and the battery level. The ID of the last noddikeathe ID of the
source, a size of 32 bits. The battery level is a float value and desthibdésttery level of the
sender. This could alternatively be an integer value if the hardware afdties provides the
battery level as an integer value.

The RTS packet (Table 8.4) has the same structure for all three MACcpistoRTS is
a broadcast packet similar to a SYNC packet. Additionally, it has a field ®irlEhof the
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] NAME \ LENGTH INBIT

Preamble 16
Packet Type 8
SourcelD 32
DestinationID 32
NAV 8
CRC 16

Table 8.4: RTS and CTS packets.

destination of the packet, though. It furthermore provides the networkaditm vector (NAV)
to define the length of the subsequent data packet. This value is useéll floe other nodes
which overhear the transmission. Using the NAV each receiver canlatddww long the entire
transmission of the data packet will take. They have to be quiet during this éixaet for the
FRTS just after the CTS packet). A CTS packet has exactly the same strastthe RTS and
is again the same for all three protocols.

| NAME | LENGTH INBIT |
Preamble 16
Packet Type 8
SourcelD 32
DestinationID 32
CRC 16

Table 8.5: DS, FRTS and ACK packets.

All DS, FRTS and ACK packets (Table 8.5) have a similar structure as a Rtkep The
difference between these packet types and a RTS packet is only thengmigd/. There is no
need for this field for this packet type and, therefore, it is not used.

| NAME | LENGTH INBIT |
Preamble 16
Packet Type 8
SourcelD 32
DestinationID 32
Length of payload 8
Payload variable
CRC 16

Table 8.6: Data packets.
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Each data packet (Table 8.6) has a payload of variable length. Eachvitblé variable
length needs another field, in which the length of the variable field is indic&tkedrefore, a
data packet has also a field (length of the payload) in which the size of yteaplas defined. In
the simulations all data packets have a fixed payload of 164 bits.

| NAME | LENGTH INBIT |
Preamble 16
Packet Type 8
SourcelD 32
Timestamp 32
Priority 32
CRC 16

Table 8.7 DOMINATEDCDSSYNC packet of N-CDS.

Only N-CDS needs a packet called DOMINATEDCDSSYNC (Table 8.7is #imilar to a
default SYNC packet with an extended field called "Priority”. It is an integdue as long as
the battery level of a node is stored as an integer value. Otherwise, it neighapped to a float
value. The priority of a node is the product of the number of free nodéseimeighbourhood
and the battery level of the node. It is used for the dominator election. Blaisepis sent by
dominated nodes to exchange their priorities.

| NAME | LENGTH INBIT |
Preamble 16
Packet Type 8
SourcelD 32
Timestamp 32
length/number of dominated nodes 8
Destination IDs n-32
CRC 16

Table8.8: CDSSYNC packet for N-CDS.

The CDSSYNC packet for N-CDS (Table 8.8) is also used in the dominattiaigrocess.
A backbone node sends a CDSSYNC packet to announce its state arfithéotide node which
will be marked as dominated. The packet has a variable length due to thiegragmber of
destination IDs (n).

The two remaining packet types are the CDSSYNC packet and the CDSARE Packet
for the MPR-based CDS. The CDSSYNC packet contains the lists of aksulent backbone
nodes. CDSACKSYNC is the confirmation packet of a CDSSYNC packetiver which has
no further backbone nodes. It has exactly the same structure as thét &¥NC packet of
the MPR-based CDS. The CDSSYNC packet for the MPR-based CD®vmsh Table 8.9.
It has the following characteristics: All fields except the two added fieleddength/number
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NAME LENGTH IN BIT

Preamble 16
Packet Type 8
SourcelD 32
Timestamp 32
LastNodelD 32
BatteryLevel 32
length/number of dominated nodes 8
Destination IDs n-32
CRC 16

Table 8.9: CDSSYNC packet for MPR based CDS.

of dominated nodes' and ‘Destination IDs‘ have the same structure as tRE PHcket of the
MPR-based CDS (see Table 8.3). These two new fields have the santerstas the added
fields from the SYNC packet to the CDSSYNC in N-CDS (see Table 8.8).

8.1.2 Simulation Details for T-MAC

A real-world T-MAC implementation would have to include virtual clustering. tEaotual
cluster decreases the lifetime of the entire network. But, we want to compapeaiocols with
the standard T-MAC protocol as implemented in the original work, so thataneely on those
results. Due to deployment and radio transmission impacts, virtual clusteriifdslt to be
simulated. Therefore, virtual clustering would have to be evaluated invadd implementa-
tions. In our simulations we do not consider virtual clustering. In the etialuaf LACAS the
impact of virtual clustering is considered, though. The T-MAC implementati@s eshot provide
routing support. Therefore, at the beginning of each simulation the rotatiolgs for each node
are precalculated. To achieve this, each node figures out which natenieighbourhood is
one hop closer to the base station than itself and defines this node as thermokde, where
all packets are routed to. This eliminates all routing issues and additiortadlga@ommunica-
tion on the routing layer. This simple shortest-path algorithm is the same appsacsed in
the original paper of T-MAC [8]. Any implementation of a routing algorithm \ebimply im-
pacts that would be difficult to be assessed. Accordingly, our appisammpared to a optimal
T-MAC implementation with optimal routing support.

Finally, all nodes in the original paper are arranged in a fixed grid. &eno routing
over links with poor link-quality. Because in our simulation all nodes are plaaedomly, our
shortest-path algorithm only considers links with good link quality to achieumites situation
as in the original paper. Therefore, all nodes that are farther aveay35% of the maximum
transmission range are not considered. If we would consider all pedsiks in the shortest
path algorithm, the benchmark of the T-MAC simulations would be less meaningfaluse the
influence of the poor links is difficult to sort out. As a consequence wepewe our protocol
to a T-MAC implementation with artificial and optimal solutions for the problems of &irtu
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clustering and routing.

8.1.3 Simulation Details for N-CDS and the MPR-based CDS

] SPECIFICATION \ VALUE \

Rebuild dominator set each hour
Long sleep duration per hour 50 minutes
SYNC schedule adaptation| 5% in starting period
SYNC schedule adaptation| 50% if CDS exists
Neighbourhood table size unlimited

Table 8.10: Technical specifications for N-CDS and MPR-based CDS.

Table 8.10 shows some configurable settings which are valid for the N-@DSoa the
MPR-based CDS. For both protocols all nodes have 10 minutes for ugdhgir neighbour-
hood tables. We assume that the memory of each node is large enough tbetemére neigh-
bourhood table. All nodes have a random initial wake up time between Oohdeand 30.1
seconds after the start of the simulation. This means that a node startsgworthim this time.

Specific Details for N-CDS

In N-CDS the challenge timer is set to 30 seconds. After a node becomesalonitrsends
its relevant information 12 times plus once more for each node in the 1-hopbweighood.
This is a rather high value, but the additional cost is low and it reducesskef breaking
the CDS setup process. Before a node, which does not become abacidide, goes to sleep
it sends a CDSDOMINATEDSYNC packet only 5 times plus once more foh eacle in the
1-hop neighbourhood. The simulations wait 200 to 230 seconds until ti&eh0iding process
is started for the first time. N-CDS needs this time to let the nodes synchramdde &arn the
1-hop neighbourhood.

Specific Details for MPR-based CDS

In the MPR-based CDS the simulations wait 300 to 330 seconds until the GRIHgyprocess
is started for the first time. MPR-based CDS needs this time to let the noddweyise and to
learn their 2-hop neighbourhood.

8.2 Simulation Results

The most important evaluation parameter we investigate is the power usagenufdés. This
value is analysed concerning two different aspects. First, there is ¢halldvattery usage which
describes how much power the entire network requires to fulfil all regdesperations. The
second value is the battery usage of each node.
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8.2.1 Convergence of SYNC Period with LACAS

Before showing the results of the coordinated sleeping, we show thesealyL ACAS. Figure
8.1 shows the average duration of the listen period, i.e., of the schedutb.|dings is the time
difference between the earliest detected schedule and the last sghledwda additional backoff
of 7ms. This backoff ensures that the nodes are able to detect the SA@k€tp even after some
shifts of the schedules. Three different network sizes, consisting,df@ and 200 nodes, have
been evaluated. We calculate the error bars each 5 second excép Bmulation with 200
nodes. For readability reasons not all standard deviations are shdviguire 8.1 (c).

50 Nodes | 100 Nodes |
300 - g 300 -
@ z
E E
£ s
2 200 2 200
(] (]
) -
o U o
3 I 3
° o
] 3]
5 100 5 100 |
[ [}
o L] L1 . o L]
10 100 1000 10 100 1000
Time [s] Time [s]
(a) Network, consisting of 50 nodes. (b) Network, consisting of 100 nodes.
200 Nodes
300 -
@
E
<
2 200
(]
)
o
3
o
3]
5 100
[
(=t
10 100 1000
Time [s]

(c) Network, consisting of 200 nodes.
Figure 8.1: Length of the SYNC packet exchange period in a MPR-based GID&onk.

The graphs rise first to the maxima schedule lengths which are between aRdrb89ms.
The nodes wake up for the first time between 0 and 30s. Afterwards tiwyse their own
schedule or adapt an already existing one. Accordingly, initially they balyeone schedule.
Therefore, the values are quite low in the beginning. Quickly the nodestdstesr schedules
and listen to all of them. At this point the graphs begin to raise to the maxima valfieswvards
the different schedules fuse to one and the graphs drop down agam.CDS establishing
process starts at 320s. This decreases the number of SYNC pacttetesefore the graphs
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rise to a local maximum. Without optimization, the gravitation adaptation percentagmild
remain 5% (see Chapter 7) and the graphs would converge to 13ms. Ded€dD$algorithm it
is possible to change the factor to 50%, though. Thus, LACAS finally agegeo 10 ms. The
duration of the SYNC packet exchange period in T-MAC is 7ms. Accortbntpe real world
implementation of S-MAC with 50 nodes done in [27] some nodes have to wakgyuo 4
times in a frame. In a rather poorly performing network the authors hawerstitat 66% of all
nodes follow 2 schedules and 34% follow even 3 schedules. We assurtieettmschedules are
disjoint. T-MAC und S-MAC do not differ concerning virtual clusteringd dive an idea of the
power savings that could be achieved with LACAS, we estimate the perfoeudmdPR-based
CDS enhanced with LACAS and T-MAC with virtual clustering for the givatwork. T-MAC
with virtual clustering requires a power supply of 3.85 mAs per frame oVeretwork nodes
and without data traffic. The equitation to calculate the average scheditke/can T-MAC
looks as follows:

A =50-4.7mA - ((2-0.007s - 0.66) + (3 0.007s - 0.34)) = 3.85mAs

The entire network consisting of 50 nodes needs 235mA in idle mode. This nalst be
multiplied with the mean schedule length (listen period length) in a frame. ThedeHedgth
of T-MAC consists of the time spent to follow all known schedules. On therdtaed, MPR-
based CDS with LACAS only requires 2.35 mAs (235mA0Oms) in a frame if all nodes are
awake. With LACAS the schedule length is fixed to 10ms for every netwodie nim 100 hours
or more this would make a difference. However, also compared to the otheriments done
in [27], LACAS would perform similar or better than an implementation with virtdastering.
In the next section the results concerning the CDS evaluations are shown.

8.2.2 Power Savings of N-CDS and MPR-based CDS

A good protocol tries to reduce the power consumption of some centrasn@dose nodes
with high power consumption), because the lifetime of a wireless sensor tkeisMomited by
the lifetime of such nodes. A network protocol with a low total power usage the entire
network, but containing some nodes which high battery usage could #iisit$uask, if there
is a possibility to exchange the nodes which are almost out of battery pdweuch a case
the network connectivity could still be guaranteed. However, if this is ossible, it is very
important that the load is uniformly balanced over all network nodes to aveith#t depletion
of specific nodes. The MPR-based CDS and N-CDS try to achieve thiskyiding the CDS
once per hour.

Figures 8.2, 8.3 and 8.4 show the average battery usage per MAC gratacoetwork size.
The nodes in the simulations with 100 nodes have maore power in their battendhéhaodes in
the simulation with 50 nodes. The capacity is extended from 40 mAh up to 55 mikker@ise
there would be nodes running out of power before 100 simulation hawes finished. Hence,
nodes in simulations with 200 nodes need even more power, so that thégémaeach node
is extended to 75 mAh. These parameters ensure that no node runspmwerf The values
for the power usage of each node are identical with the power usageswaiithe ESB sensor
platform from Scatterweb [1].
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The gradients of the graphs of N-CDS and MPR-based CDS are quite siaitlawugh
MPR-based is a little bit more efficient. T-MAC does not achieve these vallibe figures
above show that T-MAC uses more power than the two other protocolshiher the number
of nodes, the more similar are the results for MPR-based CDS and N-Cib&@lanation for
this observation is presented in the Subsection 8.2.5, later in this work.

8.2.3 Distribution of Power Savings of N-CDS and MPR-based CDS

The battery usage per node gives an answer to two questions. Firsticateglthe level of
balance of the routing. Second, it shows that LACAS adds no drawdmaxderning the question
of additional power usage. Figure 8.5 displays the power usage peravad all experiments
with 200 nodes. We round the power usage of each node to an integeavalcount the number
of nodes with equal values. The figure shows that N-CDS and MR&dl@p$S outperform T-
MAC. T-MAC does not support long-sleep periods. Accordingly, ¢hare no nodes with low
power footprint, which can be well observed in Figure 8.5. Moreover,nlaximum number
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of nodes (about 30) have a power consumption of approximately 25 matalhmemaining
nodes have even higher power consumptions. On the other hand, inNa@® MPR-based
CDS networks, many nodes have low power consumption footprints. Mergbe CDS-based
approaches also have fewer nodes with high power consumption. @pbgyfor the network
with 100 or 50 look similar to Figure 8.5. Hence, there is no significant diflezebetween
networks with higher and lower density.

Nodes with high power usage have a high routing traffic. For these nodeé<CDS and
MPR-based CDS no alternative path was available. Hence, these ramdeswer sleep for a
long period. However these nodes are rare.
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based CDS.

Figure 8.5: Number of nodes with a specific power consumption in a networisisting of 200 nodes.

The high number of nodes with low power usage in N-CDS and MPR-baB&i shows
that there are many nodes of N-CDS and MPR-based CDS in long sleepSitatenodes need
less than 15 mAh during a period of 100 hours. If the radio of a node wished on for the
whole 100 hours, it would consume 470 mAh even without any traffic.

It remains to be highlighted that T-MAC would have a higher power consumttiere
was more than one virtual cluster, because the nodes at the edgesrbetweardusters would
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use at least as twice as much power than the other nodes.

8.2.4 Impact of Network Structure for N-CDS and MPR-based CDS
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=)

0 100000 200000 300000 0 100000 200000 300000
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Figure 8.6: Inpact of a good network topology orFigure 8.7: Inpact of a bad network topology on
N-CDS (50 nodes). N-CDS (50 nodes).

Figures 8.6 and 8.7 show specific simulation runs of N-CDS. One figurecisiomulation.
It shows the battery level of each node over 100 hours. The compasfdwoth figures shows
that the benchmarks are related to the network structure. The simulatoresafitarbattery
level of each node exactly once an hour. Therefore, it looks a liateer. If the simulator
would grab the results, for example, secondly, the graph for a ndtbbae node would look
like an oblique staircase due to the higher power usage of the node dueir@8 building
process. The difference in the power usage per node is higher indbedségure than in the
first figure. This depends on the structure of the network. The threéeset the bottom in Figure
8.7, have to remain almost all the time in the backbone and therefore they wilhidje &he
first network (Figure 8.6) does always have alternative routing patbsgare that each node
is able to leave the backbone sometimes. Accordingly, all nodes are abladamreutside the
backbone sometimes and no nodes are heavily charged.

Figures 8.8 and 8.9 show that MPR-based CDS faces the same probléghlgfuarying
power consumptions over the nodes. On the other hand, simulation runs-M#CT{Figures
8.10 and 8.11) do not show this behaviour. This means that T-MAC dogsiéggsend on the
network structure. This explains also why the confidence intervals oATG M Figures 8.2 to
8.4 is smaller than for the other two protocols. The optimal routing of the T-MAGempn-
tation reduces the statistical spread of T-MAC also. The higher powegeusfaspecific nodes
in N-CDS and MPR-based CDS is mainly related to the implementation of LACAS B@de
has to remain awake for some few milliseconds more than a node in T-MAC witA@LAS.

To conclude this subsection, it has to be kept in mind that the average ponsumption
of T-MAC is higher that for the two CDS-based algorithms. Moreover, tinalmer of poorly
performing nodes in the CDS-based approaches is much smaller thaViaCT-
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Figure 8.14: Average backbone size in network of 200 nodes.

8.2.5 Size of the CDS

The backbone size has been captured over 10 hours intervals. &opkxthe value at time
point 30 hours is the mean value of all values from hour 21 up to hour 86oming to Figures
8.12t0 8.14, N-CDS outperforms MPR-based CDS in the size of the baekBoa first glance,
this is surprising. However, the N-CDS algorithm is not always able tordbeentire network
with the backbone. In this case non-dominator nodes have to become activieke over
the functionality from the missing backbone nodes. Considering the reslPR-based CDS
outperforms N-CDS in the simulations with 50 and 100 nodes if all active nedesonsidered.

MPR-based CDS has a large CDS in the simulations with 200 nodes. The fEEkeate
in the simulation with 200 nodes is higher, because of higher amount of dzkatpand SYNC
packets. Therefore, it seems that even over such a long periodll notas are able to com-
pletely learn their 2-hop neighbourhood. This fact results in an incrgasimber of new back-
bone nodes which are selected by the backbone nodes.

There are two possibilities to avoid the situation that the CDS building processs rou
run through the entire network, but both of them have some disadvantadbedirst possible
solution is to extend the number of CDSSYNC packet retransmissions. Tdwvdigage of this
solution is that the time required for the re-establishment of the CDS increfasether solution
would be to confirm the CDSSYNC packet with a CDSSYNC-ACK packet.isfpacket would
be sent as an additional packet in the data period, it would increasefftee a the other hand,
if the packet would be sent as SYNC packet, it would once again inctbasamount of time
necessary to re-establish the CDS. Additionally, the sender of the CDE&$dbket would have
to re-send the packet several times. The packet would be longer tledawdt & YNC packet and
would need more power and hence would block the medium for a longer time.

The average size of the backbone is increasing slowly in all simulation® $ftem would
not calculate the priority with the battery level, this value would remain stable. eMemvthe
nodes in the CDS would be static and thus charged much more. At the begiathimgdes have
the same power level. Therefore, the system defines nodes as backimes which have the
best location or, in other words, the most connections to other nodes. &thile, the CDS
building process tries to avoid these nodes to become backbone nodesddaeir priority is
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decreased due to their low battery level.

8.2.6 Number of Lost Packets with N-CDS and MPR-based CDS
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Figure 8.15: Average percentage of packet loss for all simulations.

T-MAC should have the best performance with this simulation setup becaM#CTuses
shortest path routing, which only considers connections with good linktgu&onsequently,
there is no routing traffic at all because the simulation itself defines the globtihg table.
The higher percentage of packet loss in MPR-based CDS (Figure i8.18lated to the fact
that MPR-based CDS prioritises comparatively many far away nodesaadorainators. Such
connections have poor link quality and it takes many attempts to pass mesgaggesgah links.
A possible solution is presented in the future work chapter. N-CDS is nstrasgly affected
as MPR-based CDS. All nodes in MPR-based CDS can learn their 1digpbbourhood within
10 minutes. N-CDS has less than 30 seconds to exchange the priority.ttdtéime, a timer
expires and it defines a new backbone node without considering tioalelsave not been up-
dated. There is also a much higher possibility that no packets arrive oeetlipks. For this
reason, the possibility that a node with bad link connection becomes a beckbde is lower
than for MPR-based CDS. The average percentage of lost packetsmédation is below 6%
for all simulations which is an acceptable value for most applications.
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The packet generation is equal for all simulations. Each node cres@@spé@ket over 100
hours in average (around 1 packet per minute). The average daighipud of the networks with
T-MAC and 200 nodes is around 203.3 packets per minute. The base sthtfmsimulation
of N-CDS receives 198.1 packets per minute. Finally, MPR-based CB& Hata throughput
of 193.9 packets per minute. These values are more ore less the mirrtres oBFigure 8.15.
All simulations generate in average 0.8 duplicate packets (see Section Biimee. The
maximum throughput depends on the configuration (for example on théatucd TA).

8.2.7 Transport Delay in a Network with N-CDS or MPR-based CDS

The simulator measures the average transport delay between the Sahecdata and the base
station for all packets. Except for the processing time, the simulator coasiti®ether possible
delay sources.
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Figure 8.16: Average network delay.

Figure 8.16 shows that MPR-based CDS has a similar average transtayttd T-MAC.
The high delay in N-CDS is related to the fact that the average number sftbhapeceive the
base station is higher than in T-MAC and MPR-based CDS. The numbeckbbiae nodes is
lower in N-CDS than in MPR-based CDS, but N-CDS has also some nddbbae nodes which
do not sleep for a long period. Over these nodes runs some trafficllasTiverefore, it takes
more time for each packet to reach the base station.
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Chapter 9

Conclusions

In this master thesis a clock synchronization protocol (LACAS) has beavrided. LACAS
eliminates the drawback of virtual clustering for T-MAC. Another advaatafjLACAS is the
fact that it is a flat system. There is neither a leader node nor a base gtattowill lead
the synchronization process. The simulations show that the nodes géteyized within 200
seconds. This is a short time in comparison to the entire lifetime of a wirelessrgegta/ork.
It will be interesting to verify the functionality of LACAS in a real world implementatiahe
simulator creates a clock drift which is higher than clock drifts on realamsdes such as the
ESB sensor boards from Scatterweb [1]. Therefore, LACAS cotéd be better in a real world
implementation.

This master thesis provides two solutions on the MAC layer which increase e¢tienkf of
a wireless sensor network. A perfect solution would eliminate all idle perwdasach node
without decreasing the maximum bandwidth and transportation delay. N-GD&BR-based
CDS approximate this. The simulations show that the additional energy cotisanop the
extended SYNC packets for establishing a CDS is lower than the energyede can save by
sleeping for a long period. Nodes running N-CDS or MPR-based CsSnaed about 60% of
the energy required by nodes running an optimal T-MAC.

The MPR-based CDS achieves good power consumption results conipdde@DS and
T-MAC. But each node has to store the entire 2-hop neighbourhoo@DS-achieves similar
results as MPR-based CDS without allocating much memory. Finally, T-MAG enbanced
with LACAS would not achieve the performance of N-CDS or MPR-basB& (But, T-MAC
is still a good option if there is more than node-to-sink communication requiredef@lly, the
MAC protocol should be chosen according to the application requirem€uotssidering static
networks, with some redundancy and node-to-sink communication, N-CIdSVi®R-based
CDS are promising approaches.

N-CDS, MPR-based CDS and T-MAC achieve similar results for the wasé-scenario for
N-CDS and MPR-based CDS. This is the case if some nodes never entey sldep period,
because thus, the network would split up in two or more parts. In this casalthigonal traf-
fic to establish the backbone for N-CDS and MPR-based CDS does v®hiare advantage
than finding a route to the base station. In normal topologies, i.e., topologiesuiftbient
redundancy to alter routes from time to time, N-CDS and MPR-based CDSfuutpel-MAC.
In those scenarios, redundant nodes will take over the task for trangi@ita from active
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nodes and vice versa. Generally, N-CDS and MPR-based CDS will boitpeT-MAC as soon
as there are many possible routing paths available, and all nodes havestikiljty to sleep
sometimes for a long sleep period.

The performance of N-CDS and MPR-Based CDS in questions of ensage of each node
is highly related to the structure of the network. It is important that all noeles the possibility
to sleep for a long period. This means that there must exist an alternatieg path replacing
specific nodes. A simple solution for this problem is to deploy more nodes @drthenbase
station. This increases the redundancy and ensures that nodes wihroigting traffic are able
to sleep from time to time.

One of the biggest drawbacks of MPR-based CDS is the fact that thethigmften selects
nodes with poor link quality into the backbone. This means a real implementatiois @i tto-
col would contain also a list with the link quality to each 1-hop neighbour niidiee quality is
below a limit the algorithm ignores the according node in the backbone selgctoess.
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Chapter 10

Future Work

This master thesis has been introducing new concepts in energy-effi@einim access control
and routing support. During the work a number of questions and additiesuas appeared.
They are listed below and could be investigated in more detail in the future.

e There might be better results if the MAC protocol would not use RTS and [@zicgets.
In this case the nodes would directly send their data packet and waits f0KgpAckets
afterwards. In sensor networks the size of a RTS or CTS packet ismdtemuch smaller
than a default data packet.

e The simulations results of N-CDS and MPR-based CDS are promising duivoela
implementation needs to be provided to verify the simulation results. Such an imple-
mentation is a must before both concepts could be used in a commercial wiehsss
network.

e It seems possible to extend the MPR-based CDS for wireless sensorrketlitio static
and mobile sensors. In this case only the fix sensors would be able to bbeckiwne
nodes. This ensures that the backbone would not be broken.

e Parameters such as size of the contention windows, framelength, durbtienTA and
drift correction might be optimized both, in general and for specific toposoddg tailor-
ing the parameters to specific networks setups, performance wouldsecrea

e Only links with satisfactory signal strength at the receiver should beideres! in the
CDS building process. In MPR-based CDS the receiver of a SYNCeapackild check
the signal strength before it adds the sender of the SYNC to the 1-hopbaeidood
list. That means, if the signal strength is below a threshold, the receiaketpeould be
handled as a default SYNC packet from T-MAC. This would eliminate bac&lronnec-
tions with poor link quality. This would need some modifications in the building p®ce
algorithm itself.

e When all nodes are synchronized, it could be possible to adjust the skaek with the
synchronization differences. This could increase the results of LAGA® again. The
approach could be similar to RBS.
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