
Intensity-based Event Localization in
Wireless Sensor Networks1

Markus Waelchli, Matthias Scheidegger and Torsten Braun
Institute of Computer Science and Applied Mathematics

University of Bern
{waelchli, mscheid, braun}@iam.unibe.ch

Abstract— Event detection and event localization are inherent
tasks of many wireless sensor network applications. The inac-
curacy of sensor measurements on the one hand and resource
limitations on the other make efficient event localization a
challenging problem. In this paper we propose a fully dis-
tributed localization scheme that consists of two algorithms.
The distributed election-winner notification algorithm (DENA)
performs the determination of the closest sensor node to an event
and notifies all other nodes about that winner. The intensity-
based localization algorithm (ILA) provides a signal independent
position estimation of the event and is calculated at the winner
node. The novelty of the ILA algorithm is its independence from
the kind of signal emitted by an event. In contrast, it solely
requires knowledge about the intensity of an event. The location
of an event can thus be estimated without pre-knowledge about
the nature of the event and with fewer constraints on the sensor
hardware. These properties constitute the practicability of the
algorithm in generic applications.

I. INTRODUCTION

In sensor network applications event detection and local-
ization are common features which imply two main chal-
lenges, namely how to observe a possible event location in
a distributed manner and how to compute the location of an
event efficiently and accurately. Due to battery and resource
constraints on the sensor nodes some present approaches shift
the computational burden of estimating the location of a node
away from the sensor nodes to a sink node with more com-
putational power and more memory. The main disadvantage
of these approaches is the increased data traffic to provide the
sink node with the necessary information to localize the event.
The observation of an event on the other hand is commonly
done by building clusters around predefined locations. Build-
ing up these clusters involves always communication overhead.
This overhead is increased in wireless sensor networks, where
battery constraint devices may follow sleep cycles to save
battery power. Consequently, exchanging information may be
expensive due to frequent topology changes or synchronization
overhead. For these reasons, we intend to provide a fully dis-
tributed event detection framework that avoids the drawbacks
of increased data traffic between the sensed area and the base
station and does not need any cluster formation.
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In our approach, the detection of an event (e.g fire burst)
is observed as a set of derived values simultaneously sensed
by a node (e.g. increased temperature, significant shockwave,
etc.). Furthermore, the significance of the event can be deter-
mined by the sensor nodes, i.e. an event can be distinguished
from background noise. This can be achieved by the use of
fuzzy logics or probability theory. The task of filtering this
background noise is not subject of this paper and will be
considered in future work. Furthermore, the event is decreas-
ingly observable the farther away a node is. We propose that
considering these requirements all nodes in the relevant region
can derive the intensity with which they sensed a certain event.
Moreover, this intensity can be inferred as the barycenter of
the set of deviated values sensed by the node. Thereby, each
sensed value satisfies a certain membership function, e.g. 80◦

Celsius could have a membership degree of 0.8 in relation
to the predicate ’hot’. A key idea of our approach is to use
fuzzy logic mechanisms to classify the deviated values on the
one hand and to infer the intensity of the event from these
values on the other. The intensity of an event is consequently
represented as a value in the interval [0, 1].

Using these derived values we propose to use a distributed
election algorithm that determines the relevant subset of sen-
sors, which are responsible for handling the event further,
e.g. sending their information to a base station, or aggregate
the information among each other. The determination of the
relevant sensor nodes is performed fully distributed with a
minimal overhead of information exchange.

II. RELATED WORK

Event detection and localization are intrinsic features of
wireless sensor networks. Much work in this context has al-
ready been done. The proposed schemes differ in the way they
get range estimations and how they perform event observa-
tions. Some localization approaches ([1], [2]) depend on either
a central instance such as a sink node or a cluster head, where
the measurements from the sensors in the field are collected
and the event location is computed. In [1] The distance of
a sensor node to an event is approximated using the time of
arrival (TOA) of the signal emitted by the event. The TOA
values are routed together with the sensor node positions to a
sink node, where the location of the event is computed as the
maximum of a four-dimensional consistency function. [2] uses
a cluster head approach to track the location of an event. Thus,



the overhead of sensor node to sink communication is avoided
but additional communication to maintain the cluster structure
is necessary. Another approach is Sextant proposed by [3].
Sextant uses Bézier regions to represent the locations of nodes
as well as of events and does therefore without knowledge
of the node positions. Additionally, Sextant is independent
of a central instance. However, network properties which are
needed by Sextant have to be disseminated in a restricted
area, whenever one of them changes. Other approaches ([4],
[5]) are mainly concerned in enabling and establishing group
communication and data aggregation in a predefined area
which has to be observed. Both algorithms require cluster
formation what leads to extra communication overhead. A
distributed algorithm for object tracking has been proposed
by [6]. This approach supports event detection and tracking,
but no event localization. A moving object is thereby tracked
by a changeable cluster of nodes.

A common approach to estimate node locations is triangu-
lation against known positions derived from reference points.
APS [7] and GPS-Free [8] use angle of arrival (AOA) and
time of arrival (TOA) respectively to calculate the position of
a node. Both schemes are not practical for event localization
as they depend on specific hardware. In contrast, we will
propose a multilateration scheme that does only depend on
the feasibility to sense an event on a sensor node.

III. DISTRIBUTED ELECTION-WINNER NOTIFICATION

A key problem of event detection is the difficulty to identify
and organize the sensor nodes, which are relevant for the event
in a distributed manner with as little communication overhead
as possible. To fulfill this task we propose the fully distributed
election-winner notification algorithm (DENA). The DENA
algorithm basically consists of two parts. In a first step the
node closest to the event determines itself as winner node. In
a second step the winner node notifies all other nodes about its
election. The principle of the algorithm is depicted in Fig. 1.

winner

Fig. 1: Notification of election losers by winner node

The winner node broadcasts a notification message to
inform all other nodes about its election. The notification
message is thereby only retransmitted by sensor nodes that
have overheard the event, i.e. the nodes bordered by the dotted
line in Fig. 1. All other nodes having received the notification
message (canceled in Fig. 1) simply ignore it. Additionally
to its basic functionality of electing the winner node and
distributing the notification message, the DENA algorithm
offers functionality to provide the localization algorithm (see

Section IV) with the information it needs. The DENA algo-
rithm operates as follows:

1) Initially, each sensor node overhearing an event immedi-
ately calculates the intensity of the event as described
in Section I. Furthermore, it schedules a notification
message to inform all its neighbors about its election.
The release time of the message is delayed according to
the value of the derived intensity of the event, i.e. the
higher the intensity the shorter the delay. We use the
dynamic forwarding delay (DFD) mechanism proposed
in [9]. A detailed description of the DFD concept we use
is given below.

2) The sensor node closest to the event calculates the
shortest delay. Consequently, it broadcasts the notifi-
cation/IREQ message first. As it starts the notification
message distribution it is implicitly signalized as election
winner.

3) To gather the necessary information to perform the
location estimation on the winner node, the notification
message is combined with an information request mes-
sage (IREQ) that has to be distributed within the two-hop
neighborhood of the winner node. The reason for query-
ing the two-hop neighborhood is given in Section V-B.

4) Each sensor node receiving the notification/IREQ mes-
sage knows the existence of the winner node and imme-
diately cancels its own election.

5) Each node that has received the notification message
rebroadcasts it. Additionally, all nodes within two-hop
neighborhood of the event generate an information re-
spond message (IREP) to provide the winner with the
position information it needs to calculate the event lo-
cation. The IREP message may be piggy-backed on the
notification messages of each two-hop neighbor to avoid
additional transmissions.

6) The algorithm terminates when all election-losers have
rebroadcast the notification message. All one-hop neigh-
bor nodes of the winner perform their own location
estimation as soon as they have overheard the piggy-
backed IREP messages of their neighbors. Thereafter,
they forward their results to the winner node which is
responsible to calculate the final position estimation.

The intensity ω derived at each node in the reception
area decreases with the distance d to the event. The general
equation for this relation is d ∼ α

√

1

ωmin
, where α is larger than

one and ωmin is the minimum intensity necessary to identify
an event (see Section IV). The release time of the winner
strongly depends on the amplitude of the event. Consequently,
the weaker an event is, the slower it is detected by the DENA
algorithm. Furthermore, it is crucial that each election-loser
has to be notified before it determines itself as winner. This
has to be taken into account for the design of the DFD
function. The protocol proposed so far does not consider the
case of collisions between transmissions. For this case we
propose the usage of a backoff mechanism with an expo-
nential time window after which the notification message is



rebroadcast if no notification message from another node was
overheard in the meantime. We argue that collisions will not
occur frequently, as the DFD is designed to avoid them. The
simultaneous election of multiple winners is possible albeit
not very probable. In this case, each winner node calculates
its own position estimation and handles the result further,
e.g. sends it to the base station. The algorithm does not yet
consider any object tracking or the occurrence of simultaneous
events. These are difficult topics and will be investigated in
future work. Finally, an efficient broadcast protocol is used to
minimize the number of retransmitting nodes. This protocol
is again based on the DFD mechanism. The algorithm is
discussed in the next section.

It must be mentioned that in our framework each sensor
node knows its own location. This can be achieved by GPS,
or by other location algorithms ([10], [11], [12]).

Dynamic Forwarding Delay

We use the dynamic forwarding delay (DFD) concept in
two respects: Once to determine the release time of the
notification/IREQ message, and once to perform an efficient
broadcast in the reception area of an event. The DFD basically
depends on the node position x and looks as follows:

DFD = MAX Delay · f(x), f(x) ∈ [0, 1]

The function f calculates a delay in dependence of the
position of the message receiver. By the concept of the DFD,
the decision to forward a packet is shifted from the sender
to the receiver avoiding communication overhead to supply
the sender with the information about its vicinity. This is
in particular important in sensor networks, where battery
constraint devices may follow sleep cycles to save battery
power. In these networks gathering information about the
neighborhood is expensive according to frequent topology
changes or synchronization overhead. For this reason we
think that a receiver based retransmission scheme is more
appropriate. A key feature of the DFD mechanism used for the
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Fig. 2: DFD Functions

release time determination is the support of significant release
time differences for nearby nodes. This is in particular true
for the nodes close to the event. Thus, simultaneous winner
election as well as collision probability are decreased. We
propose an exponential DFD function as depicted in Fig. 2. For
nodes with a higher significance, i.e. nodes that have derived

a higher event intensity, the DFD timers are distributed over a
larger interval. Thus, the probabilities of simultaneous winner
election among these nodes as well as of collision occurrences
are decreased. The exact specification of the DFD function
for the notification/IREQ release has not yet been done. Its
existence is however warranted and needs just the effort
to find an adequate function and the according parameters.
Thereby, the trade-off between efficiency and overhead caused
by additional transmissions has to be minimized.

1) Dynamic Delayed Broadcast Protocol (DDB): Apart of
using the DFD for the winner election, we use the DFD
concept to perform an efficient broadcast. The algorithm
operates in principle as follows: the DFD determines the time
a node is delaying a broadcast message before rebroadcast
it. While the expiration of this time, the node overhears the
transmissions of other messages and cancels its rebroadcast if
the retransmit threshold RT is under run, e.g. the distance to a
sensor node that has already released the message falls below
RT . The retransmission threshold RT may also be zero.

In [13] we have investigated different metrics for the re-
broadcast decision. Thereby, the most efficient metric for the
calculation of the DFD as well as for the decision whether to
rebroadcast depends on the additional area a node may cover
with its rebroadcast. Thereby, each sensor node calculates
the additional area it covers as well as the DFD, whenever
it overhears the transmission of the broadcast message. The
node with the shortest DFD releases the packet first. The DDB
protocol has been evaluated extensively and compared to well-
known protocols. It was shown that the DDB protocol per-
forms even better than a neighbor-based protocol in terms of
energy consumption in most simulations. This is in particular
true under frequent topology changes, what makes it useful
for sensor networks where nodes often follow sleep cycles
and the topology consequently changes frequently. Detailed
information can be found in [13]. The main drawback of
the DDB approach is however its computational complexity.
To minimize this complexity, but nevertheless benefit from
its advantages we redesigned the DFD metric. In the rest of
this section we first shortly introduce the DDB concept with
additional area coverage and then introduce our new metric
which approximates the additional area approach, but uses
much fewer energy.

Fig. 3: Broadcasting with additional coverage

The basic functionality of broadcasting with additional area
coverage is depicted in Fig. 3. The source node S starts



the communication by broadcasting its message. All three
receivers calculate their DFD according to the additional
area they cover with their retransmission. Node 1 is farthest
away from S and accordingly calculates the largest additional
area it would cover with its rebroadcast what leads to the
shortest DFD. Nodes 2 and 3 overhear that retransmission
and recalculate the additional area they newly cover and
the respective DFD. Node 2 calculates the shorter DFD and
rebroadcasts its message next. Node 3 overhears this message
again and cancels its broadcast as it is totally covered by the
transmissions of the other nodes. The DFD of the additional
area coverage approach is calculated as follows:

DFD = MAX Delay ·

√

√

√

√

(

e − e
AC

ACMAX

e − 1

)

The additional area is denoted by AC and is always between
zero and the maximal additional area ACMAX a retransmitting
node may cover. ACMAX is achieved when a node is exactly
placed on the border of the previous sender. In this case it
covers an additional area of ∼ 61%. As mentioned above,
the main drawbacks of this approach are its computational
complexity and its memory demand. To reduce this overhead
we redesigned the DDB by using a new metric. In Fig. 4 an
approximation of calculating the additional area by the usage
of the triangle connecting any three neighbor nodes is depicted.

Fig. 4: Broadcasting with the triangle metric

Assuming that nodes A and B have already released their
message, any node C that has overheard both transmissions
lies in the intersection area of both transmissions. Moreover,
the additional area a node covers is larger the farther away
C from the connecting line AB is, largest at the position of
node C in Fig. 4, i.e. the area AMAX in this case is

√
3

4
· r2.

Consequently, we use the area of the triangle built by A, B
and any node C in the intersection area as an indicator for the
additional area a node C covers. Thereby, all nodes C with the
same distance h to AB calculate the same triangular area, i.e.
all nodes on the parallel line to AB with distance h. This adds
a certain error, as the additional area a node covers depends
on its location on the parallel line. The error is maximized at
the center of line AB. The area of the according triangle is

zero, whereas the additional area a node covers is:

4

[

∫ r
4

0

√

(r2 − x2)dx −

∫ − r
4

− r
2

√

(r2 − x2)dx

]

∼ 0.021r2π

We argue that a maximal deviation of about 2% is tolerable
and should not affect the algorithm in a destructive way.

Once determined, the area ATriangle of the triangle is used
to calculate the DFD:

DFD = MAX Delay ·

√

√

√

√

√





e − e
ATriangle

AMAX

e − 1





The reason to use an exponential function is to favor nodes
with a bigger triangle and to minimize the probability of
collisions among these nodes. Obviously, the node with the
shortest DFD broadcasts first. With this broadcast a triangle
as mentioned above is virtually created. All nodes located
within this triangle cancel their retransmission of the message
(a similar approach to cancel the retransmission was used
by [14]). This test is very simple and can be easily calculated
by the use of barycentric coordinates. It adds however some
errors. The problem is depicted in Fig. 5:

Fig. 5: The maximal loss of additional coverage

If the node overhearing two sending nodes is positioned
exactly on the border of each node it must lie on the center of
the connecting line between both nodes. In this case it cancels
its retransmission, as it is within the triangle with height h = 0.
The additional area it could cover is however ∼ 22%:

4

[

∫ r
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√
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∫ r

r
2

√

(r2 − x2)dx

]

∼ 0.22r2π

The determination of the DFD as explained in this section
is only applied if a node has already overheard at least two
messages. In the case of the broadcast initiator the instant
release of the message is obvious. If a node has overheard
exactly one retransmission it calculates its DFD according
to the mathematically exact additional area it covers. In this
special case (intersection of two circles) the computation is
simple.

IV. INTENSITY-BASED LOCALIZATION ALGORITHM

Existing localization algorithms ([1], [8]) depend on the
possibility to distinguish two kinds of signals transmitted by
an event. Thereby, the distance of the event is derived from
the time difference of arrival (TDOA) of two different signals.
For example, [1] uses the time difference of arrival between
the shock wave and the muzzle blast generated by a gun.



From the time difference of arrival of these two signals the
distance between the sniper and the measuring sensor node
is calculated. In many cases the dependence on two different
kinds of signals is restrictive and not easy to fulfill. In contrast
to these algorithms, the algorithm discussed in the next section
depends only on the intensity derived by a sensor node. This
algorithm is generically computable and does not depend on
predefined hardware what supplies a good degree of freedom.

A condition to determine the position (ex, ey) of an event
E is that on any sensor node in the significance area the
intensity determining the amplitude of the occurred event can
be derived. We assume that the intensity ωX derived at a sensor
node X is related to the distance dX the sensor node is away
from an event, e.g the farther away a sensor node is, the lower
its derived intensity is. This relationship is formalized in the
following relation:

ωX ∼
1

dα
X

, α > 1 (1)

The exponent α in (1) affects the degree of attenuation of the
measured intensity in dependence of the distance to the source
of the event. (1) is a generalized formula of the acoustic, radio,
etc. path loss models. The attenuation of an acoustic signal is
for example similar to 1

d2 .
It is crucial that the intensity cannot be used as a direct

substitute of the distance in order to estimate the position of an
event, but the square root of the ratio of the intensities of two
sensor nodes is equal to the ratio of the distances of the two
sensor nodes to an event. This will be shown in this section.
Furthermore, we will show that if a sensor node A knows its
own intensity ωA and position (ax, ay) as well as the positions
and intensities of at least three not collinear neighbor nodes
B, C, D it can calculate the position of the event. The distance
dA of a sensor node A from the location of an event e can be
calculated with the theorem of Pythagoras:

d2

A = (ax − ex)2 + (ay − ey)2 (2)

From (2) and (1) we can derive the general equation to get
the ratio of the intensities of two sensor nodes A and B:

(ax − ex)2 + (ay − ey)
2

(bx − ex)2 + (by − ey)2
=

(

ωB

ωA

)
2

α

(3)

(3) means that the ratio of the distances from two sensor
nodes A and B to the event location is equal to the ratio
of the intensities derived on both nodes. It forms a circle,
unless the ratio is 1. This case will be discussed later. As the
position of the event E is contained on all three circles and the
intersection point of the three circles is uniquely determined,
the location of the event E is equivalent to the intersection
point. This is true at least as long as the intensities derived
at the sensor nodes are correct (an example generated with
Maple is depicted in Fig. 6).

In order to prove the applicability of (3), we have to show
that the denominator cannot be zero. This is however trivial
as from (3) we can conclude that the denominator can only
become zero if bx = ex and by = ey. This means the
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Fig. 6: Location of an event by intersection of three circles.

denominator can only be zero if the position of event E is
exactly at the position of sensor node B. This case can be
excluded, as the calculation of the position of an event is
trivial if it occurs exactly at the location of a sensor node.
Consequently, the position of an event is only calculated if it
occurred not exactly at the location of one of the participating
sensor nodes. In all these cases, the denominator cannot be
zero.

Next, we calculate the intersection points of the circles that
are derived from the ratios of the intensities of n non-collinear
sensor nodes S1, .., Sn, with n > 1. In order to facilitate the
calculation, we set the point of origin of the coordinate system
at the position of S1 and the position of S2 on the x-axis. This
can be done without loss of generality. We will show that the
calculation of the intersection point of the circles is equal to
multilateration ([10], [12]). For better readability we replace
ω2

X with φX . Using the ratios, we get the following equations:

e2

x + e2

y

(s2x
− ex)2 + e2

y

=
φS2

φS1

e2

x + e2

y

(s3x
− ex)2 + (s3y

− ey)2
=

φS3

φS1

...
e2

x + e2
y

(snx
− ex)2 + (sny

− ey)2
=

φSn

φS1

If we dissolve the equations to zero and leave out the denom-
inator from which we know that it cannot be zero , we get the
following equations:

φS1
(e2

x + e2

y) − φS2
((S2x − ex)2 + e2

y) = 0

φS1
(e2

x + e2

y) − φS3
((S3x − ex)2 + (S3y − ey)2) = 0

...

φS1
(e2

x + e2

y) − φSn
((Snx − ex)2 + (Sny − ey)2) = 0



The equations can be transformed to the following equations:

(φS1
− φS2

)e2

x + (φS1
− φS2

)e2

y + 2φS2
S2xex − φS2

S2
2

x = 0

(φS1
− φS3

)e2

x + (φS1
− φS3

)e2

y+

2φS3
(S3xex + S3yey) − φS3

(S3
2

x + S3
2

y) = 0

...

(φS1
− φSn

)e2

x + (φS1
− φSn

)e2

y+

2φSn
(Snxex + Snyey) − φSn

(Sn
2

x + Sn
2

y) = 0

The system can be linearized by subtracting the first equation
from the last n−1 equations. Therefore, the first equation has
individually to be multiplied with φS1

−φS3

φS1
−φS2

,..., φS1
−φSn

φS1
−φS2

. The
resulting equations are subtracted from equations 2, ..., n. In
all n− 1 resulting equations the unknown variables ex, ey are
on the left side of the equations:

2φS3
(S3xex + S3yey) −

2φS2
S2xex(φS1

− φS3
)

φS1
− φS2

= φS3
(S3

2

x + S3
2

y) −
φS2

S2
2

x(φS1
− φS3

)

φA − φS2

...

2φSn
(Snxex + Snyey) −

2φS2
S2xex(φS1

− φSn
)

φS1
− φS2

= φSn
(Sn

2

x + Sn
2

y) −
φS2

S2
2

x(φS1
− φSn

)

φS1
− φS2

The equations above indicate that φS1
6= φS2

. The case of
equality of φS1

and φS2
is discussed in the next paragraph.

For now, we assume that φS1
6= φS2

and therefore neglect the
denominator as soon as all terms are of the same denominator.
If all terms are reordered, we get a system of linear equations
of the form Ax = b, where

A =







2(φS3
S3xΓ + φS2

S2x(φS3
− φS1

)) 2φS3
S3yΓ

...
2(φSn

SnxΓ + φS2
S2x(φSn

− φS1
)) 2φSn

SnyΓ







b =







φS3
(S3

2

x + S3
2

y)Γ − φS2
S2

2

x(φS1
− φS3

)
...

φS3
(S3

2

x + S3
2

y)Γ − φS2
S2

2

x(φS1
− φS3

)







For better readability we substituted (φS1
−φS2

) with Γ in
A, b respectively. This system can be solved using a standard
least-square approach: E = (AT A)−1AT B, where E is the
location estimation of the event. When the inverse matrix
cannot be calculated, the location cannot be computed and
the multilateration fails. This can happen if φS1

= φS2
. This

is however no restriction, as in the case of φS1
= φS2

the
ratio of the intensities is 1 and the position of E lies on the
vertical line through the middle of S1, S2. The intersection of
this vertical line with any of the participating circles results in
the possible locations of event E. Consequently, in the case
of φS1

= φS2
the matrix is not calculated and the location is

estimated using the intersection of the vertical line with any
two independent circles derived from the intensities.

V. SIMULATIONS

In this section we present first simulation results of the
broadcast as well as of the localization algorithm. To evaluate
the two algorithms we implemented both in Matlab. All
simulations were run over 20 seeds with a 95% confidence
interval. The simulations described in this section share a
common scenario. This standard scenario consists of 300
sensor nodes randomly distributed in a square area with sides
of 100 meters. The radio range R of each sensor node is
ten meters, which results in an average connectivity of nine
neighbor nodes.

A. Evaluation of the DDB protocol

To evaluate the DDB broadcast protocol, we implemented
the triangle metric along with the additional area metric and
a simple flooding algorithm in Matlab. A detailed comparison
of the DDB protocol to other broadcast protocols can be
found in [13]. In this paper we will only investigate the
performance of our new metric compared to the additional area
coverage metric and a simple flooding protocol. It is to remark
that the results we gained match well the results presented
in [13] simulated with the Qualnet network simulator [15].
The thresholds for the protocols were chosen as follows: The
additional area coverage (DDBAC) metric uses a retransmis-
sion threshold RT of 22% of ACMAX . This means a node
using the DDBAC metric cancels its retransmission when the
additional area it covers with a rebroadcast is below 22% of
ACMAX . A value of 22% is chosen as the maximal loss of
the DDB triangle (DDBTriangle) approach is intrinsic 22%.
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To evaluate the performance of the different broadcast
metrics, the network density is varied. The number of nodes
in the network are altered from 300 up to 1100 in steps of
200 nodes resulting in an average number of neighbors from
9 to 33. The broadcast was always initiated by sensor node
one. To have a benchmark for our algorithms we additionally
implemented a minimum connected dominating set (MCDS)
algorithm which computes the minimal set of nodes that is



necessary to reach all nodes within the network. The MCDS
algorithm calculates the optimal solution for the broadcast
problem, but is only computable with the knowledge about the
whole network topology. The results of the DDB simulations
are depicted in Fig. 7. The results of the delivery ratios of the
different protocols are not depicted, as the delivery ratios are
100% in all simulations over all seeds. The DDBAC as well as
the DDBTriangle protocol decreased the number of retrans-
mitting nodes in the network considerably, especially when
the network density is high. Surprisingly DDBAC needed
almost 20% less retransmitting nodes than DDBTriangle over
all node densities, resulting in less than 25% of retransmitting
nodes as soon as the number of neighbors approximates 15
neighbors. The performance of the MCDS algorithm is by far
the best. The difference can be explained by the retransmitting
overhead of DDB for nodes close to the network area border.
As the DDB algorithm is receiver based it has no knowledge
about a possible area border and all nodes close to the border
retransmit their message even as there are no additional nodes
reachable.

We conclude that the DDBAC protocol is the most suited
protocol as long as the resource constraints on the nodes are
not too restrictive. In other cases the DDBTriangle approach
seems to be a reasonable alternative. A main advantage of the
DDB protocol architecture is the absence of any states. The
rebroadcast decision solely depends on the position of a node
and of a function to assess that position. The results gained in
these initial simulations encourage us to use the DDB protocol
for the notification message distribution.

B. Evaluation of the ILA algorithm

In order to simulate noisy measurements on the sensor
boards we implemented the inverse square law with a signal
attenuation of 1

d2 , where d is the distance, as error model.
This model is for example appropriate for sound propagation.
Intensity errors that are caused by noisy sensor readings are
modeled according to the following formula:

err(ω) = 1 ± λN(0, 1) · ω (4)

The error err depends on the derived intensity ω as well as the
square distance d2 between the event source and the measuring
sensor node. Its amplitude is adjusted via the parameter λ.
N(0, 1) is a normal distribution with mean zero and standard
deviation one. According to (4) errors are normally distributed
around the intensity whereas the amplitude of the deviation
depends on the square distance a sensor node is away from
an event and λ.

The simulations in this section share the common scenario
parameters proposed above. Furthermore, a number of param-
eters are varied: number of sensor nodes, standard deviation
of the measurement error, and reception radius. The event is
always localized at position (50, 50). The reception radius D

determines the distance until which the event is observable.
In our simulations the reception radius varies from 10 m to
40 m. The amplitude of the standard deviation is adjusted
over λ and its value varies from 0 to 25%. All simulations

have in common that location estimations that are farther away
from the calculating sensor node than the reception radius are
discharged. This restriction is reasonable, as the event could
not have been sensed by a sensor board if it is farther away
than the reception radius. Very erroneous location estimations
are seldom, but possible as a normal distribution is used in
the error model, which permits very high deviations.

1) Influence of the distance on the accuracy: In these
initial simulations we investigate the influence of the reception
radius D. The location estimation is thereby performed on any
sensor board in the reception area bounded by the reception
radius and the location estimation error is averaged over all
computations. We varied the reception radius accordingly to
the values defined in the last section. In Fig. 8 the results of
these simulations are depicted. The location estimation error
is in all subsequent figures denoted in percentage of the radio
range R.
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Fig. 8: Location error with variable reception radius D

The gained results indicate that the position estimation error
is acceptable as long as the distance to the event is not too
far and the sensor readings are not too noisy, i.e. λ is not
too high. This result is not surprising and enforces our choice
to elect the closest sensor node as winner and perform the
location estimation on it. In the next simulation section we
will explore the ILA performance if only the winner node
performs the position estimation.

2) Position estimation at winner node: In this simulations
we vary the number of nodes in the network to investigate
the influence of the network density on the location estimation
accuracy. 300, 500, and 1000 sensor nodes are simulated what
results in an average connectivity of 9, 15, and 31 sensor
nodes. We expect a better performance in denser networks, as
the average distance between winner node and event source
becomes smaller.

The results of the simulations are depicted in Fig. 9. The
location estimation error is in all simulations between one
meter and five meters. Thereby, the majority of the calculations
supply location estimations less than two meters away from
the exact event position. The large confidence intervals in these
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Fig. 9: Location estimation of winner

simulations indicate that the calculation limitation on only one
sensor node is quite error-prone. This is substantiated by the
sensibility of the ILA algorithm. The location estimation works
well as long as there are no outliers among the measurements.
On the other hand, if some measurements are very noisy an
accurate event location estimation with only one sensor node
fails, as the least square method used cannot handle very
noisy sensor readings. We therefore will take the position
estimations of the one-hop neighbor nodes of the winner also
into consideration. The according refinements and simulations
are discussed in the next subsection. Another possibility was to
investigate other, less error-prone approaches to compute the
location estimation. This remains to be done in future work.

3) Position estimation enhanced with information from win-
ner vicinity: The results gained in the last section have shown
that the location estimation on only one sensor board is in
general not accurate enough. Consequently, we enhance the
computation on the winner node with the position estimations
calculated in its immediate vicinity. The necessary information
is provided by the DEA algorithm proposed in Section III.
The computation instruction is as follows: The winner node
calculates the mean value and the standard deviation of its own
position estimation as well as of the estimations of all of its
neighbor nodes. It disregards then all estimations that are more
than standard deviation away from the mean and computes
the location with the remaining estimations. Furthermore, the
location estimation fails if the standard deviation is more
than half the mean value. This could happen in a noisy
environment where a reliable location estimation is no longer
given. Enhanced algorithms to operate in such scenarios will
be investigated in future work.

The simulation results (see Fig. 10) show that the mean error
as well as the standard deviation are considerably diminished
with the algorithm proposed in this section. The node density
influences the location estimation positively, but even with a
rather low node connectivity of in average 9 neighbor nodes,
we get feasible results. We conclude our evaluation with these
first results, which indicate that a intensity-based localization
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Fig. 10: Location estimation of winner including its vicinity

on the winner node is possible. It moreover performed well
in the simulations done so far. The results encourage us to
continue our work and finally provide an efficient, distributed
and accurate event detection and localization mechanism.

VI. CONCLUSIONS

We introduced two algorithms in this paper, namely the
distributed election-winner notification algorithm (DENA) and
the intensity-based localization algorithm (ILA). The combi-
nation of both algorithms builds a framework to efficiently
and accurately detect and localize events. The dependence
of the ILA algorithm on merely the derived intensity of an
event on a sensor node constitutes its generic applicability as
well as its weak binding on sensor hardware. In this paper
we have shown that the performance of the ILA algorithm
verified our expectations. It was shown that the location of an
event can be computed in a distributed manner without need
to gather any information on a sink node and that the accuracy
of the event location improves the closer to the event the
ILA algorithm is performed. Concerning the DENA algorithm,
we have shown that the notification message is distributed
efficiently by the dynamic broadcast protocol (DDB). The
number of retransmitting nodes is decreased considerably with
both DDB metrics tested so far. It remains to mention that
both, the ILA and the DENA algorithm work close together
in our approach. This is reasonable, it does however not restrict
the applicability of the key functionality of both algorithms on
their own.

VII. FUTURE WORK

In future work we will further evaluate both algorithms.
Special interest will be focused on the additional delay the
DENA causes and on its ability to minimize the number of
retransmitting nodes. At time, the DENA algorithm causes
every node in the two-hop neighborhood of the winner node
to respond. The possibility to query only a subset of these
nodes will be considered. Furthermore, an implementation of
the framework using the OMNeT++ [16] network simulator
has been started. We will compare our framework to other



event detection and localization schemes. Thereby, we will
focus on energy and bandwidth consumption. At time, the ILA
algorithm needs the information of all neighboring nodes. In
future work we will investigate if a subset of these neighbor
nodes results in sufficiently accurate results. In that context,
we will also investigate appropriate techniques to filter outliers.
To deal with erroneous sensor measurements we currently use
a linear mean-square approach. We will consider the usage
of more sophisticated non-linear least square methods [17].
Finally, we will perform extensive sensor measurements on
real hardware to obtain sophisticated error models and we will
check if the algorithm is also feasible when applied on moving
events and with multiple event sources.
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