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Abstract

Communication over multiple hops, such as in hybrid
wireless networks, can only work if the individual hops co-
operate by forwarding packets from other hops. We present
the Linux implementation of our previously proposed co-
operation and accounting strategy for hybrid wireless net-
works called CASHnet. We describe our implementation
as well as our testbed, where we performed different eval-
uations regarding introduced delay and packet processing
time. We identify the limitations of our scheme in a real-life
scenario and discuss possible improvements.

1. Introduction

Hybrid wireless networks are also called multihop cellu-
lar networks and were first proposed in [13]. Hybrid wire-
less networks consist of base stations and mobile stations.
Multi-hop communication is used to extend the coverage of
the base stations. Hybrid wireless networks combine the
flexibility of mobile ad hoc networks and the reliability of
infrastructure-based wireless networks. They are a promis-
ing concept for wireless Internet service providers, because
they allow to dynamically extend the network coverage of
hotspots, without deploying additional base stations. The
hybrid wireless network architecture forms also part of the
mesh network conept. However, numerous issues known
from mobile ad hoc networks need to be addressed, such as
security and cooperation.

Cooperation in hybrid wireless networks has received
considerable attention over the past years. Numerous
concepts were proposed, in order to ensure that network
participants do not only transmit self-generated packets,
but also forward packets from other nodes. We distin-
guish between cooperation enforcement and encourage-
ment schemes. With cooperation enforcement nodes are
threatened with (partial) exclusion from the network in case

of uncooperative behavior [2, 6, 9, 14–16, 18, 25]. Usu-
ally, enforcement schemes rely on neighborhood monitor-
ing and reputation systems. Their challenges include the
correct detection of (un)cooperative behavior and the assur-
ance of the efficiency of the (threat of) punishment. In co-
operation encouragement schemes nodes are rewarded with
virtual money in case of cooperativeness, as for example
in [4,5,7,10,11,26]. They typically rely on tamper resistant
hardware in order to protect charging and rewarding mecha-
nisms and some central security/accounting instance. Their
challenges are to find the balance between security and ef-
ficiency of the charging and rewarding mechanisms as well
as to ensure the control over the virtual cash flow.

CASHnet [23], our cooperation and accounting strategy
in hybrid wireless networks, is an encouragement scheme
with a hybrid (partly centralized and decentralized) ac-
counting architecture. Compared to fully decentralized ac-
counting schemes, CASHnet ensures a constant cash flow
and keeps the provider in control of it as we showed in [24].
Unlike completely centralized accounting schemes, CASH-
net does not put additional signaling load on the links to-
ward the base stations. In order to analyze the process-
ing overhead under real conditions with real computers and
networks, we implemented a prototype of our cooperation
scheme under Linux. In Section 2 we describe the oper-
ation of CASHnet. Section 3 presents the implementation
architecture, the operation as well as the challenges we en-
countered. Our testbed setup is explained in Section 4. The
results from our evaluations follow in Section 5. Finally, we
summarize our work.

2. CASHnet

CASHnet introduces charges and rewards to the packet
transmission process. Packet originators as well as final re-
cipients located in different multihop cellular networks get
charged on the node for the transmission and the recep-
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Figure 1: CASHnet example scenario.

tion of each packet respectively. The cost can be dynamic,
i.e., related to the hop count to the base station or can be
a globally fixed. Intermediate nodes forwarding packets
are rewarded by their next hop on the route towards the
packet’s final destination. The frequency of the transmis-
sion of rewards can be adjusted, e.g., only every 10th for-
warded packet gets acknowledged by the next hop. Due to
the rewarding among nodes, source routing is not required.
CASHnet does not account for ad hoc only traffic, i.e., pack-
ets with the final destination located in the same multihop
cellular network as the originator get neither charged nor
rewarded.

CASHnet is - to the best of our knowledge - the first co-
operation encouragement scheme with a hybrid accounting
architecture. It retains the flexibility of the multihop com-
munication paradigm and ensures the network provider’s
complete control over the cash flow. CASHnet uses two
virtual currencies, one for charging (traffic credits, TC) and
one for rewarding (helper credits, HC). The purchase and
exchange of virtual currencies can only be performed with
the network provider or its representative. The decentral-
ized accounting component consists of charging on each
node and rewarding among nodes. The centralized account-
ing component is represented by the supervised refill of the
virtual currency account at so called service stations oper-
ated by a network provider. A service station is similar to
a low-cost terminal for loading prepaid cards and has a se-
cure, low-bandwidth connection to the network provider for
authentication and payment operations.

A node’s role (packet originator, forwarder or final re-
cipient) in the packet transceiving process is protected by a
digital signature. Certificates with short lifetime issued by
the network provider ensure the regular visit of nodes at the
service stations, where possible misbehavior can be disci-
plined. All credentials and the virtual currency accounts are
stored on a smart card issued by the network provider.

Fig. 1 depicts an example scenario for CASHnet. It
shows a multihop cellular network with several mobile
nodes equipped with smart cards, two interconnected ser-
vice stations and two interconnected base stations also
called gateways. The service stations and the base stations
are connected to their respective backbone network.

A typical sequence of actions for a customer, who wants
to participate in a CASHnet-enabled multihop cellular net-
work, consists of 5 steps: preparation, authentication, trans-
mission/reception & charging, forwarding & rewarding as
well as refill. The first and the last step are performed at the
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Figure 2: CASHnet operation with both originator and
recipient in a MCN.

service station, where the customer inserts her smart card.
Fig. 2 illustrates step 2-4 in a message sequence chart in
our example scenario. The numbered gray markers refer to
example positions of the actions from the following list.

1. Preparation: The customer obtains the smart card
from the network provider and loads the traffic cred-
its accounts at the service station.

2. Authentication: Prior to the normal communication
with a recipient, originator O sends a certificate ad-
vertisement CADVO to recipient R. All intermediate
nodes (A, B and C) and the recipient will obtain the
authentication information of the originator. The re-
cipient in turn replies with a certificate reply CREPR

addressed to O. All intermediate nodes will obtain
the authentication information of the recipient.

3. Transmission / Reception & Charging: Prior to the
transmission of a self-generated packet, the origina-
tor’s traffic credit account is charged and the packet
is digitally signed. Upon arrival of a packet at its des-
tination, the recipient’s traffic credits account is also
charged.

4. Forwarding & Rewarding: At the reception of a
packet, the node rewards the previous forwarding
node in case it was not the originator or a gateway by
sending a digitally signed acknowledgment ACK im-
mediately or after receiving several forwarded pack-
ets. Receiving an ACK increases the node’s helper
credits account. The node also removes the digi-
tal signature of the previous node and adds its own
before forwarding the packet. In addition, the node
keeps the digital signature of each forwarded packet
in order to validate the ACKs sent by the next for-
warding node.

5. Refill: After some time, the customer goes to a ser-
vice station in order to refill his traffic credit account
by exchanging available helper credits and/or buying
traffic credits for real money.

For an in-depth description on the CASHnet operation
and security mechanisms, we refer to [22].



3. Implementation

CASHnet affects the handling of each received, for-
warded or generated packet. It provides a network layer
service, i.e., it encourages forwarding of packets, by charg-
ing traffic generators and rewarding the forwarders. Thus,
we require access to each packet after it enters and before
it leaves a node. In addition, CASHnet requires cross-layer
knowledge (i.e., security and accounting information). We
decided to use Linux as development environment, because
it provides great flexibility in accessing packets on the net-
work stack.

3.1. Architecture

We implemented CASHnet as a user space daemon in-
stead of a kernel module and accept a speed penalty caused
by the additional communication between kernel and user
space. However, we avoid the complexity and the rigidity
of the monolithic Linux kernel. As a user space daemon,
we have no permission to directly access the packets on the
network stack. Therefore, we require the help of a program
which establishes a bridge between kernel and user space.
We use the netfilter/iptables [20] package to perform this
task.

Netfilter and iptables are building blocks of a packet pro-
cessing framework for the Linux kernel versions 2.4 and
2.6. Netfilter/iptables is widely used as firewall and for net-
work address translation (NAT). Netfilter provides a set of
hooks inside the network stack of the Linux kernel, allowing
a kernel module to register callback functions. Fig. 3 shows
the different netfilter hooks and their location in the Linux
kernel network stack as well as three example packet flows.
A registered function is called every time a packet traverses
the respective hook in the network stack. Also, each hook
allows modifying packets. Iptables provides a generic table
structure for the definition of rule sets. A rule within ipt-
ables consists of a number of classifiers and an associated
action, which is executed when a packet matches the classi-
fiers. Thus, iptables allows controlling the packet flow and
netfilter provides the required access to the network stack
of the Linux kernel. Table 1 lists the tables, their chains and
the hooks respectively.

NF_IP_PRE_ROUTING NF_IP_POST_ROUTINGNF_IP_FORWARD

NF_IP_LOCAL_OUT

Routing

NF_IP_LOCAL_IN

Routing

Local Process

Incoming 
packets

Outgoing
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Local Delivery Local GenerationForwarding Netfilter hook

Figure 3: Netfilter hooks.

Table Chain Netfilter Hook

filter INPUT NF IP LOCAL IN
FORWARD NF IP FORWARD
OUTPUT NF IP LOCAL OUT

nat PREROUTING NF IP PRE ROUTING
OUTPUT NF IP LOCAL OUT
POSTROUTING NF IP POST ROUTING

mangle PREROUTING NF IP PRE ROUTING
OUTPUT NF IP LOCAL OUT

Table 1: Tables, chains and hooks in iptables/netfilter.

We developed CASHnet in C++ under Linux using the
GNU Compiler Collection, GCC as well as the libipq li-
brary from netfilter/iptables. Initially, we used smart cards
from Axalto [3] called Cryptoflex 32K with an e-gate USB
interface. OpenSC [1] provides the API for our program.
However, due to the high delays introduced by the smart
cards, we decided to use the RSA reference implementa-
tion called RSAREF [19] for the cryptographic functional-
ity such as the creation and verification of digital signatures.
As netfilter operates on the network layer, we deal with IP
packets. In particular, we add, remove and verify digital sig-
natures in the IP packet payload. For the test environment
we require a mobile ad hoc routing protocol with gateway
functionality. We chose AODV-UU [17], which implements
the routing logic in a user space daemon and uses netfil-
ter/iptables to access the packets.

Fig. 4 shows the interaction of CASHnet and netfil-
ter/iptables in the context of the Linux system. CASH-
net runs in user space and has no direct access to the net-
work stack of the Linux kernel. In order to access all lo-
cally received, forwarded and generated packets, we use the
respective chains of the filter table from iptables (INPUT,
FORWARD and OUTPUT), which in turn use the respec-
tive netfilter hooks. All packets traversing these hooks are
sent to the QUEUE target, a buffer in user space. The li-
bipq library allows us to initialize this queue, to manipulate
each packet as well as to decide about accepting or drop-
ping. In addition, we use an UDP socket for the generation
of the CASHnet control messages, i.e., the certificate ad-
vertisement CADV and reply CREP as well as the acknowl-
edgment ACK. We receive these control messages by in-
tercepting them via the INPUT chain, because netfilter had
difficulties in delivering them to the UDP socket.

3.2. Operation

In the following, we describe the main procedures ac-
cording to the different packet types handled by CASHnet.
We distinguish between AODV, CASHnet control (CADV ,
CREP and ACK) as well as data packets. Although, the
packets are passed to the same QUEUE, libipq allows us to
find out via which iptables chain they entered. AODV pack-
ets are immediately accepted and not further processed.

When we receive CASHnet control messages three pos-
sibilities exist. For an acknowledgment ACK destined for
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Figure 4: CASHnet and netfilter/iptables interaction in
the Linux system.

the current node we reward the node, otherwise the message
is forwarded. When a certificate advertisement CADV is in-
tercepted, we add the certificate to the list of authenticated
nodes. If the current node is the destination, we generate a
certificate reply CREP. In case a CREP is filtered, we add
the certificate to the list of authenticated nodes. If the cur-
rent node is not the destination, we forward the certificate
reply.

In case we intercept a data packet, also three possibil-
ities exist. When the current node generated this packet,
we charge the node’s account as well as sign and transmit
the packet. If the current node is the destination, we also
charge the node as well as remove all additional data and
deliver the payload to the local process. In case neither is
true, the current node is forwarding the packet. Thus, we re-
move the signature from the previous hop and add one from
the current node.

3.3. Challenges

CASHnet operates on the network layer and adds addi-
tional information (e.g. signature, nonce) to each IP packet.
This information is part of the IP payload and would be de-
stroyed by fragmentation. For TCP, netfilter provides the
possibility to set the MTU accordingly by adjusting the
maximum segment size parameter. In contrast, UDP appli-
cations must be aware of this parameter and generate pack-
ets with smaller payload.

When a node communicates with a correspondent out-
side its current multihop cellular network, AODV-UU es-
tablishes a tunnel between that node and the selected gate-
way for the duration of the communication. According to
the authors this is more robust than relying on the default
route in case of topology changes. In order to tunnel a
packet AODV-UU intercepts it via netfilter. It does so after
CASHnet has digitally signed the packet, making it impos-

Figure 5: Testbed.

sible for us to verify the signature correctly at intermediate
nodes. In order to avoid tunneling of AODV-UU, we had to
restrict the test range from laptop A to the laptop operating
as gateway. Fortunately, this does not affect our evalua-
tions, as the gateway performs the verification and removal
of the signature as if a backbone host would be the recip-
ient. The only difference is that instead of forwarding the
packet, it is delivered to the local process. For further de-
tails on the CASHnet implementation process under Linux,
we refer to [12].

4. Testbed Implementation

The CASHnet framework consists of different compo-
nents and functionalities. A CASHnet node runs a dae-
mon, which is responsible for charging the generated traffic
and rewarding the forwarded traffic. The daemon also ex-
changes certificates for the authentication and is responsible
for the creation and verification of digital signatures.

In order to evaluate our CASHnet implementation we set
up a small testbed shown in Fig. 5. In this testbed four lap-
tops (A, B, C and Gateway) are interconnected in a chain
topology. Node A and C have an Intel Celeron processor
2.40 GHz with 128 KB cache, node B has an Intel Pen-
tium M processor 1.86 GHz with 2 MB cache and the gate-
way has an Intel Pentium M processor 1.4 GHz with 1 MB
cache. The laptops all have an internal wireless network
interface card compliant to IEEE 802.11g, which allows a
maximum gross data rate of 54 Mbit/s. The gateway has an
Ethernet link with 100 Mbit/s (IEEE 802.3u) to the back-
bone. All laptops run Slackware Linux 10.1 [21] with the
Linux Kernel 2.6.8, netfilter/iptables 1.2.11, NdisWrapper
1.2 [8] for the driver of the wireless cards and AODV-UU
0.9 [17].

To emulate a chain topology in our laboratory room, we
set up a MAC address filter such that each node only re-
ceives packets from its direct one-hop neighbor(s). On the
gateway laptop we enable the gateway mode of AODV-UU
and specify a locality netmask prefix to let AODV-UU dis-
tinguish the mobile ad hoc network from the normal net-
work. For simplicity we use private addresses. On each
laptop, we generate a public-/private-key pair as well as the
corresponding digital certificate using RSA and MD5 for
the hash generation. We use a key length of 1024 bits. We



Scenario
1 2 3 4 5

Parameter Plain Pass Partial Full PCAT

Source A, B, C A
Destination Gateway
Data signed - no yes yes yes
ACK signed - no no yes yes
PCAT - 1 1 1 1,5,10,15,20

Table 2: Parameter settings for the testbed scenarios.

regard this as a reasonable trade-off between security and
performance considering the short certificate lifetime on a
node, which we set to 5 minutes in the test scenario.

We identified four variable key parameters for the evalu-
ation of our CASHnet Linux implementation. These param-
eters have a strong influence on the CASHnet implementa-
tion and provide us with high flexibility when conducting
performance measurements. The following list explains the
parameters in detail.

• Source: We vary the source of our delay measure-
ments between the four laptops. The distance between
source and destination expressed in the number of
intermediate hops strongly influences the end-to-end
delay measurements, because each intermediate node
processes the packet, i.e., it verifies and creates digital
signatures. We vary the source of our measurements
between laptop A, B and C.

• Data/acknowledgments signed: As mentioned before,
we distinguish between different packet types. In
order to measure the impact of the cryptographic
functions, we allow specifying whether data packets
and/or acknowledgments are digitally signed in the
respective test scenario. This directly affects the pro-
cessing time on the node, and thus the end-to-end de-
lay between source and destination.

• Packet counter ACK threshold: The packet counter
ACK threshold defines how many forwarding packets
a node has to receive from a single forwarder before it
rewards this forwarding node and sends an acknowl-
edgment message. A node rewards a forwarding node
after receiving 1, 5, 10, 15, or 20 packets.

From the variation of these parameters we created five
test scenarios listed in Table 2. In the first scenario (plain)
no CASHnet functionality is activated. Here, we obtain an
indicator for the optimal performance of our testbed. In the
second scenario (pass), we activate CASHnet, but do not
use the security functionality. This scenario gives us infor-
mation about the delay caused by processing the packet in
user space. The third scenario (partial) allows us to measure
the delay caused by digitally signing data packets. With
the fourth scenario (full) we study the delay caused by the
complete security operations of CASHnet, i.e., data and ac-
knowledgments are digitally signed. In these four scenarios,
we let each node ping the gateway consecutively, resulting
in three sub scenarios for each main scenario. In the fifth

scenario, we analyze the delay caused by different packet
counter ACK thresholds (PCAT).

5. Evaluation

With the Linux implementation of CASHnet, we eval-
uate the end-to-end delay and jitter as well as the packet
processing time on each node. For simplicity, we deactivate
the accounting functionality of CASHnet. In our tests, we
use ping to transmit 2000 packets at a rate of 1 packet per
second.

We note that in a real test environment the number of
possible impacts is huge and phenomena are difficult to
isolate. During our measurements we found that simple
channel scanning on the wireless medium by other com-
puters greatly affected the performance. Also, we measured
sporadic outliers independent of the scenario, which we at-
tribute to retransmission on the MAC layer or possible vari-
ations in the processing time of intermediate nodes. The
first is typically caused by transmission errors on the wire-
less medium, the latter by the packet processing applica-
tions, e.g., CASHnet and AODV-UU. Nevertheless, the re-
sults give some indication how CASHnet performs in a real
environment and show possible improvements.

5.1. Round-Trip Time

The round-trip time is an indicator for the end-to-end
delay and jitter between two communication partners. We
measure it by analyzing the output from the ping program in
each testbed scenario. Fig. 6 presents the mean round-trip
time as well as the standard deviation. The expected behav-
ior would be a round-trip time decrease when approaching
the gateway in the sub scenarios and an increase for main
scenarios, when including more and more security function-
ality. As expected first Plain scenario shows the best perfor-
mance with average round-trip times below 2 ms, for both
node A and B, and 1 ms for node C pinging the gateway.
In the Pass scenario, all packets from the respective chains
are processed by CASHnet in user space with security func-
tionality disabled. Therefore, the average round-trip times
slightly increase by approx. 1-2 ms compared to the Plain
scenario. When we start to apply a part of the security oper-
ations in the Partial scenario, i.e., digitally sign data packets,
the round-trip times increase considerably. The round-trip
times further increase when we sign data and acknowledg-
ment packets in the Full scenario.

The delay on node C does not increase between the Par-
tial and Full scenario, because in CASHnet the packet orig-
inator does not receive a reward. Since there is no inter-
mediate forwarding hop between node C and the gateway
(C is the originator of the echo requests and the gateway
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Figure 6: Mean round-trip times and standard deviation for all testbed scenarios.

is the originator of the echo responses) no packets get ac-
knowledged. When node B pings the gateway in the Full
scenario, the gateway and node B send an acknowledgment
to node C for every echo request and echo response respec-
tively. The insertion of 1 intermediate hop and the resulting
acknowledgments increase the delay by 41 ms compared to
the Partial scenario. In case node A pings the gateway in
the Full scenario, node C and the gateway acknowledge ev-
ery echo request to node B and C respectively. In addition,
node A and B acknowledge every echo response to node
B and C respectively. Again, 2 intermediate hops and ac-
knowledgments increase the delay by 119 ms compared to
the Partial scenario. The results of the PCAT scenario show
a significant decrease in delay by 98 ms when we acknowl-
edge every fifth instead of every single forwarded packet.
The continuous increase of the packet counter ACK thresh-
old decreases the delay in small steps, because another im-
portant cause for the delays remains unchanged: the number
of intermediate hops, which have to digitally sign and ver-
ify each packet. In fact, the delay approaches the 239 ms
measured in the Partial scenario, where we did not digitally
sign any acknowledgment.

5.2. Packet Processing Time

The packet processing time describes the amount of time
a packet spends inside the CASHnet implementation. We
measure it by logging each packet with a timestamp, when
it enters and exits the CASHnet implementation. Because
CASHnet uses public key cryptography the processing can
take quite long time. We do not measure the additional
overhead resulting from the communication between user
and kernel space. We distinguish data packets according
to the chain via which we intercepted them, i.e., incom-
ing, forwarded or outgoing data. In addition, we gather
the processing time for acknowledgments received. More-
over, we monitor the processing time of certificate adver-
tisements CADV , certificate replies CREP and AODV pack-
ets. Fig. 7 shows the average packet processing time for all

nodes in the PCAT scenario, where node A pings the gate-
way under different packet counter ACK thresholds (PCAT
= 1, 5, 10, 15, or 20). In this scenario node A generates
the echo requests and the gateway generates the echo re-
sponses. Both nodes do not receive any acknowledgments
because they are the endpoints of the bidirectional commu-
nication. Nodes B and C are intermediate forwarding nodes
and therefore receive acknowledgments. Fig. 7(a) shows the
processing time for all packets on the respective nodes in the
case, where we acknowledge each packet (PCAT = 1). For
other PCAT, only some packet types showed considerable
changes as values presented in Fig. 7(b). Changes occur
for the processing of the incoming but not for the outgoing
data on node A and the gateway. We also measure changes
for the forwarding data at intermediate nodes. In these mea-
surements, the processing time for data packets includes the
time to generate and transmit an acknowledgment.

From Fig. 7(a) we see the time it takes to process the dif-
ferent packet types on each node, when we acknowledge ev-
ery packet in the PCAT scenario. On all nodes, we measure
very low average processing times for AODV and certificate
advertisement packets. Both vary between 50 and 200 µs.
We can explain the variation with the impact of the operat-
ing system scheduler. As described in Section 3.2, AODV
packets are immediately accepted, i.e., handed back to the
network stack upon interception. Certificate advertisements
are also immediately accepted unless the current node is the
destination. In this case, the node creates a certificate reply.

In the PCAT scenario, node A is the originator of the
echo requests. CASHnet requires 36 ms in average to dig-
itally sign these packets on node A (outgoing data). Pro-
cessing of this echo request at the gateway requires 54 ms
(incoming data), which includes the time to generate an ac-
knowledgment for the last forwarding node C. The gateway
sends back an echo response and CASHnet takes 50 ms in
average to digitally sign it (outgoing data). Node A requires
40 ms to process this response (incoming data). Again, this
duration includes the generation of an acknowledgment for
the last forwarding node B. We note that processing of both
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(b) Data packet processing at node A, B, C and the gateway for different
PCAT.

Figure 7: Mean packet processing times and standard deviation of all nodes for the PCAT (packet counter ACK
threshold) scenario.

incoming and outgoing data takes 14 ms more at the gate-
way than at node A. We explain this difference with differ-
ent processor speeds on node A (2.4 GHz) and the gateway
(1.4 GHz). The intermediate nodes B and C only forward
data. Thus, they receive acknowledgments from their re-
spective next hops. CASHnet on node B requires 52 ms
to verify and digitally sign the data (echo requests and re-
sponses) as well as to acknowledge the echo responses for-
warded by node C. The same processes take 57 ms on node
C. Again, we attribute the difference to the distinct pro-
cessors of node B and C. The first is a Pentium M with 2
MB cache, the latter a Celeron with 128 KB cache. The
total processing delay for data packets in CASHnet on all
nodes sums up to 289 ms. From the round-trip time mea-
surements we obtained a delay of 358 ms. We explain the
missing 69 ms with influences from outside CASHnet in the
operating system or from the possible interaction of AODV
and CASHnet while using netfilter. The verification of re-
ceived acknowledgments (incoming ACK) lasts 2 ms on
both nodes.

In addition, the time to process a certificate reply
changes between the different nodes. Every 5 minutes or
300 pings, the certificates must be refreshed. Thus, the
nodes send a certificate advertisement and answer with a
certificate reply. The reception of a certificate reply causes
processing (digital signature) of eventually queued packets.
Depending on the number of packets in the queue this can
cause a significant delay, which is included in the process-
ing time of the certificate reply. From Fig. 7(a) we observe
that the average processing delay at the sender and receiver
nodes is lower than at the intermediate nodes. In contrast
to node A and the gateway, intermediate nodes B and C
receive acknowledgments for their forwarding and have to
process them. Thus, in case a certificate becomes invalid
more packets wait in the queue and must be processed when
the certificate reply arrives, which in turn results in higher
delays. As for the forwarding data, we attribute the differ-
ence between node B and C to the more powerful processor
in node C.

Fig. 7(b) shows the average data packet processing time
at all nodes in the PCAT scenario. Node A and the gate-
way generate and receive data. However, only incoming
data shows a change in the processing time for different
packet counter ACK thresholds. We see that an increase in
the packet counter ACK threshold reduces processing time
for the incoming data, e.g., from 40 to 10 ms at node A and
from 54 to 13 ms at the gateway, when we acknowledge
every fifth instead of every single packet. When CASHnet
receives a packet destined to the current node, it rewards
the forwarding node before it passes the packet to the local
process. Thus, the reduced number of acknowledgments,
which need to be transmitted for the same amount of data
received, reduces the processing time for the incoming data
packets. As in the previous round-trip time measurements
we noticed a slow-down in the decrease for higher packet
counter ACK thresholds (10, 15, 20), because the number
of generated acknowledgments decreases slowly.

Because nodes B and C are intermediate nodes, they re-
ceive data packets to be forwarded. The processing time for
forwarded data packets decreases from 51 to 38 ms at node
B and from 57 to 42 ms at node C, when we increase the
packet counter ACK threshold from 1 to 5. Compared to
node A and the gateway the reduction is not so high, be-
cause the intermediate nodes still have to verify and dig-
itally sign data packets in both directions. Node A and
the gateway have no packets to forward and thus only need
to digitally sign outgoing packets. In addition, the inter-
mediate nodes have to process incoming acknowledgments
from their one-hop neighbors, while node A and the gate-
way never receive acknowledgments.

The decentralized per-hop rewarding mechanism in
CASHnet puts a higher work load on the intermediate nodes
compared to the originator and recipient of a communica-
tion. For each data packet, an intermediate node must ver-
ify 2 digital signatures (originator and previous node) and
compute a new one, while an originator only has to verify
and compute 1 digital signature and a recipient only needs
to verify 1 digital signature. Any node acknowledges a



data packet, if the previous node was not the packet orig-
inator. An acknowledgment can proof the forwarding of
more than one packet (PCAT > 1) and reduce the gener-
ated overhead. However, the expensive digital signatures
for each data packet remain. While the digital signature of
the packet originator is mandatory to ensure only authorized
transmissions, the granularity of the digital signatures of the
intermediate nodes could be increased. This would require
the coordinated storage of many packet hashes at all nodes.
Here, we see a trade-off between storage and computational
power.

6. Summary

We implemented CASHnet under Linux and conducted
several evaluations in a small testbed using laptops with
wireless network interfaces in order to measure the end-to-
end delay imposed by CASHnet. To support the identifica-
tion of the cause for the delay, we analyzed the processing
time for each packet type distinguished by the CASHnet
implementation. We found the average round-trip time for
a communication over 3 hops to be 358 ms. We could re-
duce this delay to 246 ms by acknowledging only every 20th
packet. However, with a one-way transmission time of 123
ms over 3 hops, we are above desired delays. The round-trip
time can be certainly improved by adjusting the security pa-
rameters, such as the algorithm and the key length.

The implementation helped us to adapt our CASHnet al-
gorithm to a real environment and showed us possible limi-
tations. The processing power of the nodes is a limiting fac-
tor, as the security functionality is computationally expen-
sive. Also, a high variation in the processing power of the
nodes causes certain nodes to take longer to process pack-
ets from queues, which in turn increases the jitter. We also
found our test environment and in particular the process-
ing power of the laptops as well as the interferences on the
wireless medium to influence the results.
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