
Hop-to-Hop Reliability in IP-based Wireless
Sensor Networks - a Cross-Layer Approach

Gerald Wagenknecht, Markus Anwander, and Torsten Braun

Institute of Computer Science and Applied Mathematics
University of Bern, Switzerland

Email: {wagen, anwander, braun}@iam.unibe.ch

Abstract. To interconnect a wireless sensor network (WSN) to the In-
ternet, we propose to use TCP/IP as the standard protocol for all net-
work entities. We present a cross layer designed communication archi-
tecture, which contains a MAC protocol, IP, a new protocol called Hop-
to-Hop Reliability (H2HR) protocol, and the TCP Support for Sensor
Nodes (TSS) protocol. The MAC protocol implements the MAC layer of
beacon-less personal area networks (PANs) as defined in IEEE 802.15.4.
H2HR implements hop-to-hop reliability mechanisms. Two acknowledg-
ment mechanisms, explicit and implicit ACK are supported. TSS op-
timizes using TCP in WSNs by implementing local retransmission of
TCP data packets, local TCP ACK regeneration, aggressive TCP ACK
recovery, congestion and flow control algorithms. We show that H2HR in-
creases the performance of UDP, TCP, and RMST in WSNs significantly.
The throughput is increased and the packet loss ratio is decreased. As a
result, WSNs can be operated and managed using TCP/IP.

1 Introduction

Wireless sensor networks (WSN) consist of a large number of sensor nodes.
They are used for various applications, e.g., office buildings, environment control,
wild-life habitat monitoring, forest fire detection, industry automation, military,
security, and health-care. For such applications, a WSN cannot operate in com-
plete isolation. It must be connected to an external network, e.g, the Internet.
Through such a network a WSN can be monitored and controlled. The operation
of a WSN needs a uniform communication protocol.

The TCP/IP protocol is the de facto standard protocol suite for wired com-
munication. Using TCP/IP has a number of advantages and disadvantages.
Thus, it is possible to directly connect a WSN to a wired network infrastructure
without proxies or middle-boxes [1]. While in a TCP/IP supported WSN, UDP
is used to transmit sensor data to a sink, TCP would be used for administrative
tasks such as sensor configuration and code updates. Among the advantages,
there are a couple of difficulties running TCP/IP on sensor nodes. The resource
constraints of sensor nodes and the high packet loss, which leads to a high num-
ber of end-to-end retransmissions, result in a generally bad performance.

A couple of optimizations on different layers reduce the performance problems
when using TCP/IP. Avoiding the need of end-to-end retransmissions is the key
to increase the performance of TCP. This can be achieved by introducing hop-to-
hop reliability mechanisms. UDP in WSNs benefits from hop-to-hop reliability as
well. Furthermore, harmonizations between the protocols across different layers
are an important target for optimizations. Thus, it is possible to achieve similar
performance in terms of data throughput and packet loss rate with TCP/IP as
if using common communication protocols for WSNs.

The following research questions arise. How can we design a protocol, which
supports hop-to-hop reliability between two neighbor nodes? Can a cross-layer
interface harmonize the different protocols on several network layers and in-
crease the performance in terms of a better throughput (equivalent to lower
transmission time) and lower error rate? Can TCP and UDP benefit from this
architecture and run efficiently on sensor nodes?

The remainder of the paper is structured as follows. After the introduction
in Section I, we present related work in the area of reliable transport protocols,
TCP/IP adaptation, and cross-layer design for WSNs in Section II. In Section
III we present the protocol stack and introduce our cross-layer interface. The
Hop-to-Hop Reliability (H2HR) protocol, its cross-layer collaboration with the
TCP Support for Sensor Nodes (TSS) [2] protocol and our beacon-less 802.15.4
MAC protocol [3] are described in Section IV. In the evaluation part in Section
V, the implementation of the protocol using the OMNeT++ simulator is briefly
described and the simulation results are presented. Section VI concludes the
paper and gives an outlook.

2 Related Work

The use of TCP in wireless networks causes some serious performance problems
[4], caused by end-to-end ACKs and retransmissions. A number of papers pro-
pose mechanisms to overcome these problems. In [5] the trade-off between TCP
throughput and the amount of Forward Error Correction (FEC) is analyzed and
simulated. In [6] the TCP performance is improved by establishing the optimal
TCP window size. Caching and local retransmission are promising approaches
to reduce the number of end-to-end retransmissions and make TCP feasible for
WSNs. TCP Snoop [4] introduces first this approach. In [7] Distributed TCP
Caching (DTC) is presented. TCP Support for Sensor Networks (TSS) [2] ex-
tends DTC by a novel congestion control mechanism that is very effective as
well as easy to implement and deploy.

In the following, some common reliable transport protocols for WSNs are
introduced. Directed Diffusion [8] is a popular data dissemination scheme. Re-
liable Multi-Segment Transport (RMST) [9] has been designed as a new trans-
port layer for Directed Diffusion. It uses a NACK-based transport layer running
over a selective-ARQ MAC layer to ensure reliability. It supports two modes:
hop-to-hop and end-to-end mode. In the hop-to-hop mode it provides a caching
mechanism on intermediate nodes. A lost packet is retransmitted from an in-

termediate node. In the end-to-end mode, lost packets are retransmitted from
the source. Pump Slowly Fetch Frequently (PSFQ) [10] is also built on top of
Directed Diffusion. It runs over a non-ARQ MAC layer and ensures reliability
by using sequence numbers and hop-to-hop recovery based on NACKs.

Besides ARQ, reliability ensuring link layer protocols have been developed
for wired networks. Logical Link Control (LLC) is defined in IEEE 802.2. It pro-
vides a connection-oriented mode, which works with sequence numbers, and a
connection-less mode with ACK frames. The LLC header includes a 16 bit con-
trol field and optionally the sequence number. The High-Level Data Link Control
(HDLC) is bit-oriented and allows point-to-point and point-to-multipoint con-
nections. Both protocols increase the complexity and overhead of the link layer
significantly. The use of sequence numbers and additional header information
waste space in the frames. The length of the frames defined in the 802.25.4 stan-
dard is limited to 128 bytes. Our H2HR protocol has no own header and does
not use sequence numbers.

In [11], current activities in the area of cross-layer designs in WSNs are pre-
sented. Different cross-layer approaches are analyzed and a taxonomy to classify
them is defined. Open challenges in the area of cross-layer designs are depicted.

3 Protocol Stack and Cross-Layer Interface

The protocol stack as shown in Fig. 1 includes the standard TCP/IP protocol
suite with IP, TCP and UDP. The MAC protocol implements the beacon-less
mode of the 802.15.4 MAC layer for peer-to-peer topologies. It supports two
kinds of acknowledgment mechanisms, explicit ACK using ACK frames and im-
plicit ACK using overhearing. The Internet Protocol remains unmodified. The
Hop-to-Hop Reliability (H2HR) protocol is located between the Internet layer
and the link layer. It increases the probability of successful delivery of a frame
between two neighbor nodes, but does not guarantee reliability. It collaborates
with the MAC protocol and the TSS protocol using the cross-layer interface. The
UDP protocol is unmodified. Sensor data are transmitted using UDP from the
sensor nodes to the base station. Although UDP is not a reliable transport pro-
tocol, it benefits from hop-to-hop reliability offered by the H2HR protocol. TCP
is a protocol with end-to-end reliability, but it also benefits from H2HR in col-
laboration with TSS, which optimizes using TCP in WSNs. This is achieved by
intermediate caching and local retransmission of TCP data packets, local TCP
ACK regeneration, aggressive TCP ACK recovery, congestion and flow control
algorithms.

The cross-layer interface offers protocol interaction. Every protocol provides
information that other protocols can use to optimize their operation. A cross-
layer message consists of a unique ID and a pointer to the exchanged informa-
tion. Fig. 2(a) shows the cross-layer interface and the interaction between the
protocols.

There are two kinds of information exchange. First, a protocol subscribes to
certain information. It uses the ID to identify the offered information uniquely.

APP

UDP TCP

H2HR

PHY

TSS

MAC

IP

Cr
os

s-
La

ye
r I

nt
er

fa
ce

Routing

Fig. 1. Protocol Stack.

Service Description
(examples)

Cr
os

s-
La

ye
r B

ro
ad

ca
st

 C
ha

nn
el

MAC:ID
17

TCP

TSS

IP

MAC

Radio

APP

receive
ID 17 : pointer

push
ID 17 : pointer

TSS: ID
01

MAC: ID
18

H2HR

H2HR:

H2HR:

ID
11
ID
12

TCP-ACK for TCP-
DATA received

Packet successfully
transmitted
Next hop seems to
be broken

Packet transmission
state
Link quality from
received node

(a) Cross-Layer Interface.

Cr
os

s-
La

ye
r I

nt
er

fa
cerouting

packet
handler1

2

acknowledg.
handler

FIFO
cache

5

6

IP

H2HR

 MAC

in

4

7

TSS packet
handler

3

out

in

out

out

in

out

in

(b) H2HR.

Fig. 2. Protocol Architecture.

When an event has been registered, all subscribers are informed using the cross-
layer broadcast channel. The second possibility for cross-layer information ex-
change is to request information directly from the protocols. The cross-layer
interface gets the unique ID of the requested information and transmits the re-
quest to the according protocol using the cross-layer broadcast channel as well.

4 Hop-to-Hop Reliability Protocol and Cross-Layer
Collaboration

The reliability between two neighbor nodes is ensured by the collaboration of
the H2HR protocol with our beacon-less 802.15.4 MAC protocol and TSS across
the layers. Fig. 2(b) shows the cross-layer collaboration between the protocols.
The MAC protocol [3] supports two kinds of acknowledgment modes: explicit
ACK using ACK frames and implicit ACK using overhearing. Both are 802.15.4
conform. In case of explicit ACK, the MAC protocol initiates the transmission
of an ACK frame immediately after receiving the frame. The number of retrans-
mission attempts is limited to three. In case of overhearing, no ACK frames are
transmitted. Instead, the radio transceiver listens whether the next node for-
wards the frame. If a frame could not be overheard, it is retransmitted once.
The upper layers are informed about the state of acknowledgments using the
cross-layer interface. There are three states for the transmission success of a
frame:

– The frame has been successfully transmitted (confirmed via ACK frame or
overhearing).

– The frame has been transmitted, but there is no confirmation.
– Frame transmission failed.

The H2HR protocol is located between the IP layer and the link layer. Pack-
ets from layers below are delivered to the upper protocols according to the type
of the packet without any processing (1 in Fig. 2(b)). Packets from upper pro-
tocols are processed as follows. H2HR buffers the packets, which are delivered
by IP (2) and delivers just one packet at a time to the underlying layers (MAC)
(3). The other packets are buffered. The MAC layer initiates the transmission to
the neighbor node. The H2HR protocol is informed about the transmission state
by the MAC protocol using the cross-layer interface, either after the transmis-
sion has been successful or after three unsuccessful attempts (4). H2HR decides
according to the state how the packet is handled (5). When the packet has suc-
cessfully been transmitted to the next node, H2HR deletes this packet from the
buffer and delivers the next packet to the underlying layer (3). Informed by the
MAC protocol, H2HR reacts on two different kinds of problems. A packet can be
lost due to interferences or due to congestion. If a packet has been transmitted,
but there are no confirmations (neither ACK frame nor overhearing), the packet
is lost due to interferences by a hidden node. In this case the transmission is re-
tried immediately after 0.7-1.5 * frame length (3). If the transmission has failed
because the channel is busy, congestion is detected. H2HR initiates the retrans-
mission after a random time between 1-2.5 * frame length. The transmission of
a 128 byte 802.15.4 MAC frame takes approximately 4ms with a data rate of
250kbps. After the 6th retransmission attempt initiated by H2HR, it can be ex-
pected that the neighbor node has serious problems or the channel is extremely
busy. Thus, the packet is deleted and the routing protocol and TSS are informed
using the cross-layer interface (6, 7). Then, the routing protocol has to find an
alternative route. The TSS protocol stores the packet and gets the control of the
retransmission. After the route has been repaired or the channel is again free,
retransmission is initiated by TSS.

UDP as an unreliable transport protocol can benefit from hop-to-hop reli-
ability. The number of successfully transmitted packets from the sender to the
receiver increases significantly. Overhearing with UDP is more challenging than
using ACK frames, because UDP packets do not have any sequence numbers.
The forwarded UDP packets can be identified by using a checksum over the UDP
payload. In general, every transport protocol, which does not add sequence num-
bers to its packets, can use overhearing mechanisms at the link layer in this way.

TCP supports end-to-end reliability and lost packets are retransmitted by
the sender. Because of the high packet loss ratio in WSNs, this happens quite
often and pure TCP in WSNs is not feasible [4]. Hop-to-hop reliability supported
by H2HR decreases the number of required end-to-end retransmissions, because
it shifts the reliability assurance to intermediate nodes. Because H2HR can fail
and does not guarantee the successful transmission of a frame to the next node,
TCP end-to-end retransmissions can still occur. Thus, another protocol is re-

quired to support TCP in WSNs. TSS implements intermediate caching and
local retransmission of TCP data packets, local TCP ACK regeneration, aggres-
sive TCP ACK recovery, and congestion and flow control algorithms. If a packet
is dropped by the H2HR protocol after 6 retransmission attempts due to busy
channel, TSS still stores this packet in a buffer. If a TCP-ACK reaches the in-
termediate node and requests the presumably lost TCP data packet, then TSS
transmits the cached packet to the receiver. The request for retransmission does
not need to be transmitted to the sending side of the TCP connection. Finally,
end-to-end retransmissions are only very rarely required and TCP can be used
efficiently in WSNs.

As described above, ensuring reliability happens on different layers in differ-
ent protocols. The MAC protocol reacts immediately on packet loss. If the frame
transmission fails, H2HR intervenes and retransmits the packets depending on
the detected problem (interferences or congestion). If H2HR collapses, the re-
liability mechanisms of the overlaying transport protocols handle the problem.
This results in a hierarchy of reliability mechanisms.

H2HR does not require an own header and does not insert any information
or sequence numbers into the frames. The length of the payload remains as large
as possible. Furthermore, our protocols (802.15.4 MAC, H2HR, TSS) have low
complexity and are easy to implement on sensor nodes, which have constraints
in memory and processing power. Using the cross-layer interface, the protocols
collaborate efficiently. A light-weight H2HR, a light-weight 802.15.4 MAC pro-
tocol and a light-weight TSS together have lower complexity as the combination
of those mechanisms in one single protocol.

5 Evaluation

We implemented the MAC protocol, H2HR and TSS using the OMNeT++ sim-
ulator [12]. To compare a common transport protocol for WSNs with UDP and
TCP, we implemented RMST in both modes. RMST is running over IP and
802.15.4, and not over Directed Diffusion [8] and 802.11 as proposed in [9]. Our
implementation is based on the NS2 sources for RMST.

We analyze the influence of hop-to-hop reliability on the performance of UDP,
TCP and RMST. We compare the packet loss ratio of UDP packets between the
MAC protocol without reliability, implicit and explicit ACK, and the combi-
nation of H2HR with it. Afterwards, we compare the impact of the reliability
mechanisms on the throughput using UDP, TCP with and without TSS, and
RMST in the hop-to-hop and the end-to-end mode. Throughput is considered
as the time required to transmit a certain number of bytes.

Four different scenarios are used to evaluate our cross-layer design commu-
nication architecture (line scenario, cross scenario, parallel scenario, and grid
scenario, as shown in Fig. 3. To compare the transmission time, the paths in
every scenario have 7 hops each. Data of 20 bytes or 1000 bytes are transmitted.
In the line scenario, there is one connection (0→7). In the cross scenario, there
are two connections (0→14, 1→13). In the parallel scenario, there are two paral-

lel connections (0→15, 1→14). In the grid scenario, there are three connections,
which end all on node 0. The connections are routed with the shortest path
first algorithm. Every link is weighted equally. Thus, there are nodes (9, 18),
which hold two connections. We measure the transmission time of each connec-
tion separately. In all scenarios, no energy-saving functions such as duty cycles
are implemented, because the focus is on the transmission performance.

2

0

0 x [m]

y [m]

0

300

600

900 1

3

4

5

6

7

8

9

10

11

12

13

14

300 600 900

(a) Cross Scenario

8

13

0

1

2

0 300 600 900x [m]

y [m]

0

300

900

4

3

5

6

7

9

10

11

15

12

14

600

(b) parallel scenario

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40

1 2 3 4 5 6 70

41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

0 300 600 900x [m]

y [m]

0

300

600

900

(c) Grid Scenario

1 2 3 4 5 6 70
0 300 600 900x [m]

(d) Line Scenario

Fig. 3. Evaluation Scenarios.

For our simulation, we use an as realistic as possible radio model. According
to the CC2420 manual [13] and the Castalia Simulator [14], we tuned the follow-
ing values: carrierFrequency: 2.4E+9 Hz; bit-rate: 250 kbps; bandwidth: 10000
Hz; pathLossAlpha: 2; sensitivity: -95 dBm; thermalNoise: -110 dBm; dataLa-
tency: 0.002 ms; CarrierSenseLevel: -77 dBm; transmission power: 1mW. The
error rates between the nodes are very high, but reflect a real life scenario. In
the line scenario, the average error rate between two neighbor nodes is around
20-25% according to previous measurements [3]. In the cross and square grid sce-
narios, the error rates are higher, because more nodes interfere with each other,
especially in high traffic situations. The global buffer for the packets is limited to
5. In the explicit ACK mode, the MAC protocol has 3 retransmission attempts
in the failure case. In the implicit ACK mode, a retransmission is retried twice.
We use TCP Reno with a TCP window of 312 bytes. H2HR is configured as
follows: the number of retransmission attempts is 6. Detecting a congestion, it
waits chosen randomly between 4 ms and 11 ms. After detecting interferences
H2HR, waits between 3 ms and 6 ms. Because the length of the MAC frame
is limited to 128 bytes, the payload of a TCP packet is 78 bytes long and of a
UDP packet is 90 bytes long. In the 20 bytes scenario, one packet is transmitted
by UDP and RMST, and 5 packets by TCP. The 1000 bytes scenario requires
29 packets for TCP (including 13 data packets), 12 packets for UDP, and 11
packets for RMST. 50 different simulation runs were executed.

20

40

60

80

100

line

 parallel
 1000 Byte

 cross

 grid

line

 parallel
 20 Byte

 cross

 grid

pa
ck

et
 lo

ss
 [%

]

UDP Packet Loss Ratio

explicit MAC-ACK + H2HR
explicit MAC-ACK

implicit MAC-ACK + H2HR
implicit MAC-ACK

no reliability

Fig. 4. Packet Loss Ratio for UDP with and without Reliability Mechanisms.

Fig. 4 shows the packet loss ratio of UDP packets transmitted in the four
scenarios with a stream of 20 bytes and 1000 bytes. The percentage values are cal-
culated over the absolute number of transmitted packets for all simulation runs.
Without any reliability mechanism, the packet loss ratio is very high. When
transmitting 1000 bytes, approximately 94% to 98% of packets are lost. When
transmitting 20 bytes, the packet loss ratio is between 63% and 73%. One packet
leads to less interferences. The packet loss ratio decreased when the simple MAC
reliability mechanisms without H2HR support is used. Using overhearing, the
loss ratio is higher, because there are only two retransmission attempts. Due to
less interferences between the nodes, the packet loss ratio in the line scenarios
is lower than in the grid scenarios. Using H2HR in collaboration with the MAC
protocol decreases the packet loss ratio dramatically. The probability of success-
ful delivery of a packet is almost 100%, but there is no guaranteed reliability.

 0

 0.5

 1

 1.5

 2

 line parallel cross grid

tim
e

[s
]

1000 Byte UDP

explicit MAC-ACK + H2HR
explicit MAC-ACK

implicit MAC-ACK + H2HR
implicit MAC-ACK

no reliability

 0

 0.05

 0.1

 0.15

 0.2

 line parallel cross grid

tim
e

[s
]

20 Byte UDP

explicit MAC-ACK + H2HR
explicit MAC-ACK

implicit MAC-ACK + H2HR
implicit MAC-ACK

no reliability

Fig. 5. Time Transmitting Data using UDP.

Reliability mechanisms increase the probability of successfully delivered pack-
ets to the next hop, but it decreases the performance. Fig. 5 shows the influence
of the reliability mechanism on the transmission time of 1000 bytes and 20 bytes
respectively for the four different evaluation scenarios. Without reliability mech-

anisms, the required time to transmit the number of bytes is the shortest, but
the packet loss ratio is very high. Just a few of the 12 packets of the 1000 bytes
stream are successfully transmitted (usually just one or two). For example, the
time required to reach the receiver is lower for packets number 3 and 8 than for
packets number 2 and 12. In the 20 bytes scenarios, often no packet is success-
fully transmitted. In this case, the result is not used for the simulation results.
The random backoff time of the MAC protocol has a small influence on the
transmission time and adds some delay. Increasing the reliability with H2HR
together with MAC retransmissions decreases the performance. Transmitting
1000 bytes takes between 550 ms (line scenario) and 1160 ms (grid scenario)
compared to 370 ms up to 490 ms without any reliability mechanism. Using
the MAC retransmissions without H2HR collaboration, the transmission time
increases approximately 35% to 60%. The increased transmission time is caused
by the retransmission attempts of H2HR, and the retransmission attempts of
the MAC protocol. TCP tries to guarantee the delivery of packets. Without any
additional reliability mechanisms, TCP does not work in typical WSNs. Even
connection establishment does not work then. The TCP handshake needs two
transmissions from sender to receiver and back (in our scenario this means 14
hops). The probability of a packet loss in the network is very high.

 0

 10

 20

 30

 40

 50

 line parallel cross grid

tim
e

[s
]

1000 Byte TCP

explicit MAC-ACK + H2HR
explicit MAC-ACK

implicit MAC-ACK + H2HR
implicit MAC-ACK

 0

 2

 4

 6

 8

 10

 line parallel cross grid

tim
e

[s
]

20 Byte TCP

explicit MAC-ACK + H2HR
explicit MAC-ACK

implicit MAC-ACK + H2HR
implicit MAC-ACK

Fig. 6. Time Transmitting Data using Pure TCP without TSS.

Fig. 6 shows the influence of H2HR on the transmission time for a TCP con-
nection. We measured the time interval between the time a connection has been
established and closed after the last packet has been transmitted successfully. We
compared the influence of using H2HR with both ACK modes. In every scenario,
transmitting 1000 bytes or 20 bytes using H2HR decreases the transmission time
dramatically. In no case, a TCP end-to-end retransmission is necessary. The out-
liers in the boxplots without using H2HR occurred because of one or more TCP
retransmissions. Each TCP retransmission costs approximately 3 seconds, which
is the default value for a retransmission timer used by TCP Reno.

Fig. 7 shows the influence of having TSS as additional protocol. In general,
using TCP with TSS is much faster than pure TCP. It optimizes the connection
establishment. If H2HR is not used, it improves the performance by retransmit-

 0

 2

 4

 6

 8

 10

 line parallel cross grid

tim
e

[s
]

1000 Byte TCP with TSS

explicit MAC-ACK + H2HR
explicit MAC-ACK

implicit MAC-ACK + H2HR
implicit MAC-ACK

 0

 0.2

 0.4

 0.6

 0.8

 1

 line parallel cross grid

tim
e

[s
]

20 Byte TCP with TSS

explicit MAC-ACK + H2HR
explicit MAC-ACK

implicit MAC-ACK + H2HR
implicit MAC-ACK

Fig. 7. Time Transmitting Data using TCP with TSS.

ting lost packets within 1.5*RTT [2] by an intermediate node. Using H2HR with
pure TCP and TCP with TSS has similar results. Using TSS smooths the out-
liers by preventing end-to-end retransmissions. Especially in scenarios with high
traffic (1000 byte grid scenario for example), TSS has a positive influence on
the transmission time. Because H2HR can react on interferences and congestion
much faster than TSS or TCP, the influence of H2HR is much stronger. This can
be seen in the outliers in Fig. 7(b). In these cases, the MAC protocol collapses
and TSS intervenes (if H2HR is not active). If there are no problems, implicit
ACK is faster then explicit ACK. No ACK frames have to be transmitted.

 0

 2

 4

 6

 8

 10

 line parallel cross grid

tim
e

[s
]

1000 Byte RMST (hop-to-hop)

explicit MAC-ACK + H2HR
explicit MAC-ACK

implicit MAC-ACK + H2HR
implicit MAC-ACK

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 line parallel cross grid

tim
e

[s
]

20 Byte RMST (hop-to-hop)

explicit MAC-ACK + H2HR
explicit MAC-ACK

implicit MAC-ACK + H2HR
implicit MAC-ACK

Fig. 8. Time Transmitting Data using RMST in the Hop-to-Hop Mode.

Fig. 8 shows the measurements for the RMST protocol in the hop-to-hop
mode. In the 20 bytes scenarios, there are almost no problems with interferences
and congestion. H2HR has no influence, all problems are solved by the MAC
protocol. The performance is almost as good as using UDP. It is much better
than using TCP with TSS, because of additional packets for the connection
establishment and the positive ACK frames. In the 1000 bytes scenarios, H2HR
and the reliability mechanisms of RMST have to intervene. If H2HR is not active,
RMST handles the retransmissions. This takes a long time, especially in the grid

scenario with a lot of retransmissions caused by congestion. In the scenarios with
less interferences and congestions, implicit ACK is faster than explicit ACK,
because in the implicit ACK mode, no ACK frames have to be transmitted (the
same has been observed for TCP with TSS, see Fig. 7). In the grid scenario,
there are interferences and congestion. Node 9 and 18 hold 2 connections each.
The third connection produces additional interferences (hidden node problem).
Thus, packets have to be retransmitted (by the MAC protocol). The implicit
ACK mode is slower than the explicit ACK mode, because the retransmission
costs much more time (due to the random backoff time).

Fig. 9 shows the comparison of the several transport protocols (UDP, pure
TCP, TCP with TSS, RMST end-to-end mode, and RMST hop-to-hop mode).
H2HR is used in combination with explicit ACK mode. UDP has the best perfor-
mance in all scenarios. The reasons are clear: no connection establishment and
no ACK frames are required. With H2HR, the successful delivery of all packets
is very probable (see Fig. 4). But unlike to the reliable transport protocols, this
is not guaranteed. Using UDP, there are outliers in the cross, parallel and grid
scenarios. In these cases, the MAC protocol could not handle the situation (con-
gestion, interferences) and H2HR retransmits the lost packets. RMST in both
modes has a very good performance, because it uses negative ACKs and has
no connection establishment. TCP with TSS performs better than pure TCP,
because TSS prevents TCP end-to-end retransmissions (in case H2HR collapses)
and optimizes the connection establishment. In the 20 bytes scenario, UDP and
RMST have almost the same performance. The MAC protocol (or H2HR) can
handle all situations and no retransmissions (end-to-end or hop-to-hop) are nec-
essary in RMST. Because of the connection establishment and positive ACKs,
the performance of pure TCP and TCP with TSS is significantly lower. In the 20
bytes scenario, there are less congestion situations and thus, the increased trans-
mission time is caused by connection establishment. With TSS, the connection
establishment and the acknowledgment handling is optimized. Generally we can
say, with higher traffic (bigger packets to transmit), TCP with TSS has a sim-
ilar performance as RMST. With lower traffic (just one packet to transmit),
RMST is much better and performs similar to UDP. Bigger packets are typical
for management tasks, e.g., code update.

6 Conclusion

In this paper we presented a cross-layer designed communication architecture
containing a 802.15.4 conform beacon-less MAC protocol, the Hop-to-Hop Re-
liability (H2HR) protocol and TCP Support for Sensor Nodes (TSS). These
protocols collaborate via a cross-layer interface. The H2HR protocol is harmo-
nized with the beacon-less 802.15.4 MAC protocol and uses the acknowledgment
mechanisms implemented by the MAC protocol. In general, hop-to-hop reliabil-
ity mechanisms affect the performance of TCP, UDP, and RMST in WSNs. In
case of UDP, H2HR increases the ratio of successfully delivered packets dramat-
ically but at the expense of a higher transmission time. In case RMST, (in both

 0

 0.5

 1

 1.5

 2

 2.5

 3

 line parallel cross grid

tim
e

[s
]

1000 Byte with explicit MAC-ACK + H2HR

UDP
RMST H2H
RMST E2E

TCP with TSS
TCP

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 line parallel cross grid

tim
e

[s
]

20 Byte with explicit MAC-ACK + H2HR

UDP
RMST H2H
RMST E2E

TCP with TSS
TCP

Fig. 9. Comparing the Transport Protocols using Explicit ACK and H2HR.

modes), we showed that using H2HR produces the best results regarding the
transmission performance. In case of TCP, the collaboration of H2HR and TSS
has the strongest effect on the performance.

References

1. A. Dunkels, T. Voigt, J. Alonso, H. Ritter, J. Schiller: Connecting Wireless Sensor-
nets with TCP/IP Networks. WWIC’04, 143-152, Frankfurt/O., Germany, Feb’04.

2. T. Braun, T. Voigt, A. Dunkels: TCP Support for Sensor Networks. WONS’07,
162-169, Obergurgl, Austria, Jan’07.

3. M. Anwander, G. Wagenknecht, T. Braun: Management of Wireless Sensor Net-
works using TCP/IP. IWSNE’08, 1-8, Santorini Island, Greece, Jun’08.

4. H. Balakrishnan, S. Seshan, E. Amir, R. H. Katz: Improving TCP/IP Performance
over Wireless Networks. Mobicom’95, 2-11, Berkeley, CA, USA, Nov’95.

5. C. Barakat, E. Altman: Bandwidth Tradeoff between TCP and Link-level FEC.
Computer Networks, 39(2):133-150, Jun’01.

6. Z. Fu, P. Zerfos, H. Luo, S. Lu, L. Zhang, M. Gerla: The Impact of Multihop
Wireless Channel on TCP Throughput and Loss. INFOCOM’03, 1744-1753, San
Francisco, CA, USA, Apr’03.

7. A. Dunkels, T. Voigt, J. Alonso, H. Ritter: Distributed TCP Caching for Wireless
Sensor Networks. MedHocNet’04, Bodrum, Turkey, Jun’04.

8. C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, F. Silva: Directed Dif-
fusion for Wireless Sensor Networking. IEEE/ACM Transaction on Networking,
11(1):2-16, Feb’02.

9. F. Stann, J. Heidemann: RMST: Reliable Data Transport in Sensor Networks.
SNPA’03, 102-112, Anchorage, AK, USA, May’03.

10. C. Y. Wan, A. T. Campbell, L. Krishnamurthy: PSFQ: A Reliable Transport
Protocol for Wireless Sensor Networks. WSNA’02, 1-11, Atlanta, GA, USA, Sep’02.

11. V. Srivastava, M. Motani: Cross-Layer Design: A Survey and the Road Ahead.
IEEE Communications Magazine, 43(12):112-119, Dec’05.

12. OMNeT++: Discrete Event Simulation System, http://www.omnetpp.org.
13. CC2420: Datasheet for the Chipcon CC2420 2.4 GHz IEEE 802.15.4 compliant

RF Transceiver, Online, Jan’09.
14. H. N. Pham, D. Pediaditakis, A. Boulis: From Simulation to Real Deployments in

WSN and Back. WoWMoM’07, 1-6, Helsinki, Finland, Jun’07.

