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Abstract—Opportunistic networks enable mobile users to par-
ticipate in various social interactions with applications such as
content distribution and micro-blogs. Because of their distributed
nature, securing user interactions relies rather on trust than
hard cryptography. Trust is often based on past user interactions
such as in reputation systems relying on ratings. Yet, a more
fundamental trust, social trust – assessing a user is genuine with
honest intentions – must be established beforehand as many
identities can be created easily (i.e., sybils). By leveraging the
social network structure and its dynamics (conscious secure
pairing and wireless contacts), we propose two complementary
approaches for social trust establishment: explicit social trust
and implicit social trust. Complexity, trust propagation and
security issues are evaluated using real world complex graphs,
synthetic mobility models and mobility traces. We show how our
approach limits the maximum number of sybils independently
of the network size and is more robust against manipulation
attacks compared to state-of-the-art approaches such as PGP-
like certification chains and distributed community detection
algorithms.

I. I NTRODUCTION

Opportunistic networks will change the way people com-
municate by allowing direct one-hop communications between
handheld devices carried by human beings while on the move.
Users will be involved in participatory interactions with their
surrounding using applications (e.g., mobile social networking,
content distribution [1], flea-markets, micro-blogs) enhancing
the experience of real-world social networks with digital
and ubiquitous features. With these applications, users will
publish their input or services (e.g. content, sold objects, blog
entries) and subscribe based on their solicitations. Inputs will
disseminate from their authors to consumers through relays
in a delay-tolerant epidemic fashion from hop to hop using
mobility without routing per se. While areas of operations are
mainly developing countries, for no fixed wireless infrastruc-
ture is required, urban citizens will also enjoy a free and open
network that made the success of the Internet at its early stage.

In such an open environment where no central authority
can be assumed, infrastructure-based and hard cryptographic
solutions are often traded for threshold cryptography [2] or
PGP-like chains [3]. Another prevailing solution used to secure
interactions between possibly unknown users is trust. For
instance, it is often considered in recommendation systems
based on ratings, where trust relies on (i) the service (or
content) quality provided by others and (ii) trust in other users’
opinions having similar taste. This trust, however, requires
interactions between users in order to be established. What is
more, pure opportunistic networks cannot ensure a one-to-one
binding between an identity and a user. Compared to real-
world social networks, their digital counterpart allow to easily

generate fake identities, known as sybil users [4]. These sybils
can then obtain a higher influence in the system. Trust must
hence be considered at a more fundamental level.

In this paper, we consider the most basic level of trust
that can and must be achieved in opportunistic networks,
i.e. social trust: the belief that an identity is genuine and
that the user’s intentions are honest. By leveraging the so-
cial network structure and its dynamics (i.e., secure pairing,
wireless contacts [5]), we propose two approaches for social
trust establishment that are robust to sybil attacks:explicit
social trustandimplicit social trust. We furthermore argue that
neither PGP-like certificate chains nor distributed community
detection algorithms [6] are suited to achieve this.

Explicit social trust is based on consciously established
friend ties by building a robust tree-like graph of paired users.
In contrast to PGP and Capkun et al.’s approach [7], which
assume unconditional transitivity of trust, we calculate trust
as a function of hop distance and interconnection resulting
in decreasing trust with increasing hop distance and higher
trust in users that are well connected in the resulting graph.
Explicit social trust conveys trust that the identity is notsybil
and verifies the honesty of the user’s intentions since he or
she paired consciously and can thus be easily detected and
identified if misbehaving.

Implicit social trust leverages mobility properties using
complex network tools, since one might not pair with every
encountered user (e.g., some friends or familiar strangers). It
builds another graph up to two-hops based on the familiarity
of surrounding peers (i.e., the accumulated time of being in
proximity) and the similarity (i.e. the amount of common
familiars) to reinforce trust in a user. Implicit social trust
conveys trust in the originality of identities due to their
persistency, i.e. not being fast switching as sybils. Trustin
the honesty of the user’s intentions is not explicitly captured,
but again, since the identity is persistent a misbehaving user
(possibly sybil) would be easily spotted and punished.

Section II presents related work. Section III presents our
social trust establishment algorithms, which are evaluated in
Section IV in terms of complexity, dynamics and resilience
against compromised nodes generating sybils. Section V dis-
cusses how to further secure our approach with prospects for
further investigations. Section VI concludes our work.

II. RELATED WORK

A sybil attack [4] describes the attempt to create many
identities in order to gain larger influence in a reputation sys-
tem, abandon bad reputation or evade responsibility of his/her
actions. In order to detect such attacks, Piro et al. [8] observe



that sybil users can only communicate serially and thus cause
much fewer collisions at the MAC layer. SybilGuard [9]
considers that sybil users have only a few trust relationships
which can be highlighted by carefully observing the social
graph. Location-based sybil detection is also an effective
measure [10] but requires specialized hardware. Note that all
these approaches only provide a probabilistic assessment of a
node being sybil.

Reputation systems are an ideal target for sybil attacks [11],
[12]. These systems rely on disseminated user ratings to
allow for an informed selection of content by estimating a
prospective source’s reputation beforehand. Liars or sybil liars
try then to influence ratings in the system about a user or a
service. The similarity of direct and received ratings may be
evaluated to assess trust in future opinions [13], [14]. To avoid
the manipulation of ratings, Quercia et al. propose to store
them in tamper-proof tables certified by witnesses [15], [16].
Note that all these approaches rely their trust at the rating
level, which requires interactions in the first place, whileour
approach focuses on a lower level of trust, social trust.

Since one cannot prevent users from generating multiple
identities, one way to limit the influence of sybils is to
proactively establish trust in the identities being genuine. In
classical networks, trust is established by a certificate authority
(CA) through a public key infrastructure (PKI) [17]. In a pure
opportunistic network this approach is useless since no fixed
infrastructure and thus no authorities can be assumed. The CA
duty can, however, be distributed to nodes which can generate
their own credentials and sign certificates of others when
paired. Following this track, Capkun et al. [18] allows users to
build certificate chains similar to PGP under the assumptionof
unconditional transitivity of trust along the chain paths.Other
approaches limit trust exclusively to consciously selected
friends [7] (non-transitive) or small groups [19]. Our approach
relies on both friend ties and conditional transitivity of trust,
depending on hop distance and social interconnection.

Besides crypto-related approaches, trust establishment can
leverage mobility properties and network structures usingthe
rich set of complex social network tools. For instance, commu-
nity detection algorithms extract the underlying structure with
the highest modularity when fed with a network topology [20],
[21], [22]. Distributed versions for opportunistic networks such
as proposed by Hui et al. [6], [23] classify users in different
categories i.e., friends, familiar strangers, and strangers. Each
category can be assigned different trust values e.g., to choose
trustworthy forwarders in DTNs. This approach, however,
defines strict categories and was not designed with security
in mind especially against sybil attacks. This is why we claim
that community detection algorithms are not suited for trust
establishment and propose a novel approach next.

III. SOCIAL TRUST ESTABLISHMENT

In the following, we propose two kinds of complementary
social trust,explicit and implicit, and how to combine them.

A. From Friend Ties to Explicit Social Trust

The central elements of explicit social trust are consciously
selected friend ties. Due to the mobility of the devices, users
can establish secure and reliable friend ties whenever they

meet by secure pairing. In contrary to PGP and Capkun et
al. [18], we assume conditional transitivity of trust1 depending
on hop distance and connectivity, i.e. trust in a user connected
to several common friends is higher than in a user with one
single connection over various hops. Through chains of paired
friends, the human entity behind the identity is verified which
ensures that the identity is not sybil. On the downside, secure
pairing requires conscious user interaction and cannot be
performed automatically. Thus, the resulting graph will only be
loosely connected without guarantees of regular interactions.

The procedure works as follows. Each time a node is
encountered the friends lists are exchanged and saved in a
friendship graphGF . The friendship graph is organized inLd

levels, comprising nodes at the same distanced from the local
noden0. Edges only exist between nodes in sequenced levels.
The graph is constructed by a slightly modified breadth-first
search (BFS) algorithm. The modification consists of allowing
various edges from nodes inLd to connect to the same single
node inLd+1. For every node in the friendship graphGF , a
trust valuetei is calculated according to Algorithm 1.

Algorithm 1 Explicit Social Trust
1: ni: A node (local node:n0)
2: ei,j : Edge fromni to nj

3: FRi: Set containing all friends ofni

4: GF : Friendship Graph ofn0

5: tei: Explicit social trust value ofni

6: Ld: Set of nodes with distanced from n0 in GF

7: tei = 1 ∀ ni ∈ L1

8: for all nodesni in proximity do
9: acquireFRi from ni and updateGF

10: buildGF and getLd ∀ d
11: for all d ≥ 1 do
12: for all nj in Ld+1 do

13: tej =
∑

nk∈Ld:∃ek,j

tek

max(
∑

nl∈Ld+1:∃ek,l
1, c) · d

14: end for
15: end for
16: end for

The algorithm gives all direct friends a trust value of1.
A portion of each node’s trust propagates to the next level,
depending on the number of child nodes, resulting in each
node receiving some trust from each parent node. This results
in more trust for well connected nodes (i.e. with many parent
nodes). Since the number of nodes increases with each level,
a node’s trust decreases with the hop distanced, depending on
the connections to the previous level. To force this decrease
in sparse graphs, e.g. chains, a minimum degradation factorc
is introduced.

An example of how Algorithm 1 propagates trust is shown
in Figure 1. The root of the graph is the local node followed by
the direct friends on levelL1. The dashed lines are friend ties
that exist, but are ignored by the algorithm, since the nodesare
on the same level. In the circle are the trust values calculated
by the root node withc = 2. The algorithm allows forte > 1
which is the case for one of the nodes onL2. Since no node
should be more trusted than a direct friend,te is bound to1.

An evaluation of the performance, the expected trust distri-
bution, and security concerns will be given in Section IV-A.

1According to Swamynathan et al. [24] transitivity is valid for up to 6 hops.
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Fig. 1. Friendship GraphGF

B. From Contacts to Implicit Social Trust

In everyday life, there are certain individuals we regularly
share the same space or activity with, i.e. the familiars. These
familiars can be easily identified by analyzing contact duration
and/or contact frequency of the surrounding peers and sharing
this information with those.

The advantage of this approach is the automatic operation
without the need for conscious user interactions (e.g. pairing).
Compared to the friendship graph, the mobility dynamics
are captured, resulting in more opportunities to establish
trusted relations in the vicinity. However, this approach cannot
guarantee that a certain entity is behind the proclaimed identity
and thus is not as secure as explicit social trust. Nevertheless,
a certain amount of trust in a familiar can be justified since
the identity cannot be a fast living, which is useful against
sybil attacks.

Algorithm 2 Implicit Social Trust
1: ni: A node (local node:n0)
2: fi,j : Familiarity valueni has fornj

3: Fi: Set containingfi,j of all nj

4: tii: Implicit social trust value ofni

5: fsi =
∑

j fi,j
6: for all nodesni in proximity do
7: updatef0,i
8: acquireFi from ni

9: for all nj do

10: tij =
f0,j

fs0
︸︷︷︸

familiarity

+
∑

k

f0,k

fs0
·

fk,j

fsk − fk,0
︸ ︷︷ ︸

similarity
11: end for
12: end for

Implicit social trust relies on the familiarity and the similar-
ity of the nodes. Familiarity denotes the accumulated contact
time and similarity describes to which degree two nodes
familiars coincide. Both values are normalized, so the sum of
all familiarities and all similarities is1 each. Algorithm 2 keeps
the familiarity valuesf0,i up to date by keeping track of the
connection times with the surrounding nodes similar to regular
community detection algorithms [6]. The set of all familiarity
values is exchanged with all encountered nodes, thus giving
a node a local approximation of the weighted network graph
at 2 hops2. The implicit social trusttij in another nodej is
calculated by adding its familiarity and similarity (see Line
10 in Alg. 2). This results in a trust value in the range [0,2),
whereas values greater than1 are negligibly rare.

2Two hops are enough, since the purpose of implicit trust is to asses the
surrounding nodes. For further hops, explicit trust or a reputation system has
to be used.

phone protein facebook SW CAVE SF
# nodes 76 1846 63730 100 100 100
avg. degree 2.95 2.39 25.64 ~4.00 ~4.00 ~3.80
diameter 9 19 14 ~8.3 ~11.5 ~7.2
clustering coeff. 0.26 0.07 0.15 ~0.26 ~0.50 ~0.05

TABLE I
RAW GRAPH PROPERTIES

C. Combining Metrics

The explicit and implicit social trust can be combined to-
gether to a consolidated social trust value. A trusted interaction
partner is then identified if the consolidated trust is abovea
certain thresholdthlu, i.e.: we · te + wi · ti ≥ thlu wherewe

and wi represent the weights for explicit and implicit trust,
respectively. The weighting of both trust values may depend
on the user and environment as discussed in Section V.

IV. EVALUATION

In this section we determine the complexity of establishing
trust, analyze how trust propagates and discuss security related
aspects, such as the resilience to sybils, using real-world
graphs as well as synthetic graph models. The evaluation is
done for both, the implicit and explicit social trust, whereas
the evaluation of the combined social trust is omitted due to
space constraints and left for future work

A. Explicit Social Trust

We rely on three real-world graphs consisting of the phone
records of the MIT Reality traces [25], the protein interaction
network [26] and the facebook graph from the New Orleans
network3 [27]. Some properties of the raw graphs are shown
in Table I. Additionally, synthetic graphs based on the small-
world (SW), caveman (CAVE) and scale-free (SF) model were
used. For all graphs, edges represent friend ties (i.e., secure
pairing). These graphs are processed to compute the friendship
graph (GF ). The Watts and Strogatz model [28] is used to
construct the small-world graph. Then nodes of the network
are arranged to a ring and edges are established withk of their
neighbors. Then, each edge is rewired with a probabilityp to
a random node outside thek neighbors. The same is done
for the caveman model,(k + 1)-cliques are build and each
edge is rewired to a node outside the clique with probability
p. The caveman model differs from the small-world model by
having non-overlapping communities. In the scale-free model,
each node is assigned a popularity according to the power law
distribution with minimum values and shapeα. Then, nodes
are chosen independently at random and connected according
to their popularity. The parameters that were used for the
following evaluation, aren = 100, k = 4, p = 0.01, s = 2
andα = 2 unless otherwise specified. All simulations results
are the average over all possible combinations with multiple
runs for the synthetic models. The graphs represent the steady-
state regime of pairing i.e., after one has paired with most of
his trusted friends and has encountered most of his possible
contacts to acquire their list of paired friends (FRi). We leave
the analysis of the transient behavior with respect to mobility
and pairing dynamics for future work.

Complexity: The calculation of the trust valueste, can be
performed during the construction ofGF by the modified BFS
algorithm resulting in a complexity ofO(bd) with b being

3Thanks to Alan Mislove for the data set.
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the branching factor (i.e. number of friends) andd being the
depth of the resulting tree. To improve scalability for large n,
we treat nodes with a trust value below0.01 as leaves, thus
ignoring all links they might have to lower levels of the tree.
This reduces the average time for trust computation by 99%
for the facebook graph.

Regarding the communication overhead, it depends only on
the amount of friends a node has and thus scales withO(b).

Trust Propagation: Algorithm 1 makes sure, each direct
friend has a trust value of1. Trust propagates through the
direct friends to their friends on the next level and so on. One
property of our algorithm is that the overall trust per leveld, Td

is constant i.e.,∀d, Td = T1 = |L1|. As the tree widens, trust
is divided among more nodes and at some point the individual
trust becomes negligible.

Figure 2 shows the average trust value (with std. dev.)
assigned to nodes for a given level (or hop distance) for all
graphs. For the calculation ofte, c is set to 2 and nodes
with te < 0.01 are treated as leaves, resulting in no nodes
having trust past a distance of 5. The dotted lines mark the
trust values of0.1 and 0.01 as a reference. We can see that
most of the nodes achieving a trust value higher than0.1 are
under 3 hops away. Furthermore, this trust value is a good
tradeoff to capture a large portion of the network that can still
be reasonably trusted. The trust values in the facebook graph
degrade faster over the hop distance due to the graph’s high
average node degree (see Table I). A fast degradation with hop
distance does not mean that the total amount of distributed
trust (

∑
d Td) is smaller as Table II(a) shows. Actually, the

amount of trust received by a node mainly depends on its
degree as shown next. Figure 3 shows the average total trust
per node inGF for different network sizes. The mean trust per
node degree is around1.6 for all the graphs. From both figures,
we can conclude that the propagated trust does not depend on
the network size nor its structure but on the average degree of
a node. This makes our approach highly scalable.

Security: Since explicit trust is based on pairing, its re-
silience relies on the user’s understanding of the necessity of
only selecting trustworthy peers to pair with. Nevertheless,
a device may be compromised with malware, an orthogonal

C

S3 S1 S0 S2 S4

SS

(a) Scenario 1

C

S0

S1

(b) Scenario 2

Fig. 4. Sybil Scenarios

problem which is beyond the scope of this paper. Detecting
misbehavior of compromised nodes is the task of a reputation
system and will not be discussed here. However, a compro-
mised node,C, can be used as an anchor point for sybil nodes,
Sx with x ∈ N. This way, a compromised node may increase
the influence over other nodes or outsource misbehaviors to
sybils to remain undetected.

To analyze the influence of generated sybil users of one
compromised node, we consider two scenarios that differ in
the strategy used to add sybils to the graph (see Figures
4(a) and 4(b)). In Scenario 1, all sybils are connected to the
compromised node whereas in Scenario 2, a chain of sybils
is built. Figure 5(a) shows for Scenario 1, the ratio of trust
assigned to a sybil by all other nodes to trust a legitimate
node gets on average. We compute this ratio (or percentage)
as a function of the number of generated sybils under the
compromised node. For all graphs, the trust in a sybil is never
as high as in a normal user and decreases with the increasing
number of sybils. It converges quickly to a low percentage
and actually, considering a trust threshold of0.1, only up to
10 sybils have an assigned trust value above it. The special
sybil userSS from Figure 4(a) is less dependent on the amount
of sybils and stabilizes at around15− 20% as can be seen in
Figure 5(b). Similar results are obtained for Scenario 2 but
are not shown due to space constraints. A more severe case
would be to have cooperating compromised nodes, resulting
in better connectivity for the generated sybils. This scenario is
not evaluate since we assume that the infiltration of an actual
node is hard.

Why Not Use Certificate Chained-Based Approaches:
With PGP or Capkun et al. [18], trust is transitive indepen-
dently of the chain length or the number of disjoint paths.
A sybil user would thus only need to establish one trusted
relation to gain full trust with all the others. Other approaches
such as [7] do not allow for transitivity and only paired friends
are trusted. Therefore sybils have to establish trust with all
victims one by one. This conservative approach increases time
and complexity resulting in very sparse trust relations.

Our approach is a tradeoff between those approaches that
allows friendship transitivity depending on the hop distance
and connectivity in the social graph. Trust in well-connected
friends of friends will increase the number of trust relations
but similar to Sybilguard [9], sybil users are ignored because
of their low social interconnection.

B. Implicit Social Trust

To evaluate implicit social trust we use two real-world
traces consisting of the MIT Reality traces [25] and the
Haggle Infocom’05 traces [5]. Additionally, two synthetic

4



(a) Explicit Trust Value Statistics
phone protein facebook SW CAVE SF

Total distributed trust per node 4.61 3.91 46.93 6.87 5.80 6.50
# nodes w/ trust≥ 0.10 8.2 6.4 50.4 12.5 9.5 12.3
# nodes w/ trust≥ 0.01 16.4 22.5 515.8 29.75 20.4 37.9

(b) Implicit Trust Value Statistics
MIT Haggle SW CAVE

Total distributed trust per node 2.00 2.00 2.00 2.00
# nodes w/ trust≥ 0.10 5.4 2.5 6.7 8.6
# nodes w/ trust≥ 0.01 26.65 37.3 30.7 22.49

TABLE II
TRUST VALUE STATISTICS
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Fig. 5. Sybil Scenario 1

mobility contact processes based on small world (SW) and
caveman (CAVE) graphs were used. The underlying graphs
are constructed as described in the previous section apart
from k being set to10. The contacts are simulated in the
following way: a nodeni is chosen uniformly at random and
its contact nodenj is chosen uniformly at random either from
ni’s neighbors in the underlying graph with probabilityq or
from all n nodes with probability(1 − q). The duration of
a contact is power law distributed with minimum valuesd
and shapeαd. For the following evaluation30000 contacts
are generated withq = 0.5 and the valuessdn = 20 and
αdn = 1 for neighbors andsdr = 5 and αdr = 2 for the
random contacts.

Complexity: Algorithm 2 considers only one’s familiars
and their familiars and has thus complexityO(b2), b being
the branching factor, i.e. the average number of familiars.
Although the complexity is much lower than for the explicit
social trust withd > 2, it can still be computationally intensive
for a large number of familiars. In order to keep this aspect
under control, an appropriate aging mechanism is necessary
as discussed in the next section.

As far as data transfer is concerned, only the list of
familiarity values has to be exchanged, thus the exchanged
data is in the order ofO(b)

Trust Propagation: The maximal propagated trust per node
is bound to 2 as seen in Table II(b). Half of the assigned trustis
based on the familiarity and the rest is based on the similarity
of the nodes (see Alg. 2). Although the amount of trust is
limited, the number of trusted nodes are still comparable to
explicit social trust (compare Table II(a) and II(b)).

To understand how our algorithm behaves, we compared it
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Fig. 6. Distribution of Trust Values in Local Community

against the modularity-based hierarchical community detection
algorithm of Blondel et al. named Louvain [21]. Figure 6
represents the average (and std. dev.) values of implicit trust for
all nodes assigned to the categories identified by the Louvain
algorithm (i.e. community member, in related community, not
in community). The dotted line marks the trust values of0.1
and 0.01 as a reference. The correlation of trust values and
the Louvain categories is evident, our algorithm can hence
indirectly expose the structure of the local communities in
the network. The caveman process has a clear community
structure, thus lacking related communities and showing the
best correlation. The communities detected in the real-world
traces are large, resulting in large trust variances.

Security: The main goal of implicit social trust is to make
sure the node is not a fast switching identity. The process
of assigning trust should be resilient to attacks. Algorithm 2
assesses trust of a node by the node’s familiarity and similarity.
To become trusted with a target, with respect to normalized
familiarity, an attacker would have to increase its familiarity
and decrease the familiarity of all the target’s familiars.For
the former, the attacker needs to be physically near the target
and for the latter, to jam all beacons in the targets surrounding
which requires a big effort and is easily detectable. Likewise,
the similarity can be forged by increasing the familiarity with
all nodes in the targets familiar set, also requiring physical
presence. Cooperation among the sybils may also improve
their received trust by pretending high similarity. However,
transitivity of trust is very limited and sybils have to be present
to gain influence, hence the incorporation of additional sybils,
as for the explicit social trust is not as effective but we will
evaluate possible attack scenarios and enhance our approach
in future work. Nevertheless, mobility anomaly detection as
well as other sybil countermeasures [8], [10] can be used to
further increase the effort needed for an attack.

Why Not Use Classical Community Detection:One may
wonder why we did not use a community detection algorithm
such as the one proposed by Hui et al. [6] in the first place
since our approach achieves the same, indirectly. The reason
is their discrete output and ease of manipulation especially for
distributed versions. A community detection algorithm usually
has a binary output, either a node is in one’s community or not.
Hierarchical algorithms (e.g. Louvain) may produce a non-
binary output, but mapping the hierarchies to trust values is
still inaccurate and not very meaningful. Since nodes at the
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core of a community and at the border should not have the
same trust values, especially in large communities, classical
community detection is insufficient.

The bigger issue however, is the manipulation-proneness
of distributed community detection algorithms. The three dis-
tributed algorithmsSimple, k-CliqueandModularity proposed
by Hui et al. can all be manipulated in several ways by an
attacker in order for him/her to be included in a community
by exchanging manipulated familiarity and community sets
for example. With our approach, trust assigned to a node
only depends on direct observables (i.e. contact time), without
relaying on information received by that node (i.e. the nodes
familiars set).

V. D ISCUSSION ANDFUTURE DIRECTIONS

One rationale behind our approach using explicit and im-
plicit social trust is to have smooth levels of trust between
untrusted and trusted relations as in real-world social networks.
Transitivity in certification chains and community detection
define no barriers or strict barriers among social categories,
respectively, which may not reflect reality accurately.

We have, however, not discussed thoroughly how to weight
explicit and implicit social trust. Depending on the environ-
ment (e.g., friendly vs. unfriendly), explicit and implicit social
trust should be weighted dynamically, for example, by putting
more weight in the former in unfriendly environments. But
actually even explicit trust itself could output differenttrust
values by not treating equally direct friend ties (and their
successors in the graph) such as co-workers, schoolmates,
friends or family members with whom we are paired; this
to reflect different trust for different affairs. Also related
to the environment is the representativeness of the implicit
social graph as a user will evolve in different communities
with time. An aging mechanism has to be applied to remove
old or random encountered users and not end up with a
clique resulting in a meaningless even structure. Preliminary
results show that dynamic aging based on the online contact
aggregation approach by Hossmann et al. [29] provides more
robustness to the implicit social trust by searching for theop-
timal representation of the current underlying social network.

So far, we assumed users to be embedded in social envi-
ronments with social trust (either explicit, implicit or both).
But what if none of the surrounding peers is in either social
graphs such as a user traveling alone in a new city? Then no
interactions would be triggered. In this case, adapting aging
to fast changing environments would help. As an alternative,
reputation systems can provide higher levels of trust. Yet,more
security can be brought to received ratings by weighting them
with the social trust and hence counteract liars (sybils). Future
work must investigate the interrelation between social trust and
reputation systems.

For all these reasons, we will further investigate how we
can leverage and adapt to the context and environment.

VI. CONCLUSION

In this paper, we have shown the importance of reconsid-
ering the fundamental level of trust in opportunistic networks
i.e., trust in an identity being genuine and honest as opposed to
fake identities also known as sybils. We proposed two secure

and scalable algorithms to assess explicit and implicit social
trust. We have shown that approaches such as PGP-like chains
and community detection are not suited for trust establishment
in opportunistic networks. With our approach, the number of
influential sybils in bounded e.g., to a maximum of 10 for
SW graph (k = 4), independently on the network size. We
believe that our approach has many fields of applicability from
securing DTN routing/forwarding to more resilient reputation
systems.
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