
RAPTOR CODING IN MOBILE CONTENT
CENTRIC NETWORKS

Bachelorarbeit
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Alexander Striffeler
2014

Leiter der Arbeit:
Professor Dr. Torsten Braun

Institut für Informatik und angewandte Mathematik

Contents

Contents i

List of Figures iii

List of Tables v

1 Introduction 1

2 Related Work 3
2.1 Content Centric Networks . 3
2.2 Network Coding . 5
2.3 Raptor Codes . 6

3 Design and Implementation of Raptor Coding in CCN 9
3.1 Raptor Coding in Content Centric Networks 9

3.1.1 Raptor Coding Strategy . 9
3.1.2 Data Structures . 10
3.1.3 Packet Processing . 11

3.2 Naming . 12
3.3 Implementation in OMNeT++ Simulator . 13

3.3.1 CCN Application . 15
3.3.2 Raptor Coding Class . 17
3.3.3 Helper Functions . 18
3.3.4 Serialization . 19
3.3.5 XOR . 21

4 Evaluation 23
4.1 Simulation Environment . 23
4.2 Simulation Scenario . 25
4.3 Simulation Results . 26

4.3.1 Impact of ε . 26
4.3.2 Impact of deltaN . 26
4.3.3 Impact of Playground Size . 29
4.3.4 Impact of Requester Ratio . 31

i

4.3.5 Comparison to Regular CCN Traffic 34
4.3.6 Discussion . 37

5 Conclusion 41
5.1 Summary . 41
5.2 Conclusions . 41
5.3 Future Work . 42

Bibliography 43

ii

List of Figures

2.1 Packet transmissions in CCN to obtain a data packet having an intermediate node
in addition to content source and requesting node. 4

2.2 Butterfly-topology: A basic example for network coding. Node s1 sends packet
X to r1 and s2 wants to send packet Y to r2, both over the two relay nodes in
the middle. The blue and red lines represent packet A and B, respectively. The
purple arrows represent the encoded packet A⊕B. 6

2.3 Node D introduces mobility to the network, following [1, page 6]. Node D
moves and is connected to different nodes A, B and C over time. 7
(a) Timeslot 0 . 7
(b) Timeslot 1 . 7
(c) Timeslot 2 . 7

2.4 Conceptual block diagram of systematic Raptor encoding [2]. 7

3.1 Comparison between common CCN data packets and data packets with encap-
sulated Raptor encoded packets. 10
(a) Common CCN data packet . 10
(b) Packet with network encoded packets encapsulated in data field 10

3.2 Layer architecture in CCN . 12
3.3 Schematic sequence of retrieving encoded packets. Snapshot at the beginning of

the transmissions. 14
3.4 Flow chart describing packet handling in the CCN application. 16
3.5 Simplified UML view on functions of Raptor coding package. 17
3.6 Processing of incoming encoded packets . 18
3.7 Placement of serialization and deserialization in the context of encoding and

decoding processes. 19

4.1 Cumulative number of nodes that have decoded for variable ε. Playground: 5000
x 5000, deltaN = 100. 26

4.2 Cumulative number of nodes that have decoded for variable deltaN. Playground:
500 x 500, ε = 3 . 27

4.3 Cumulative number of nodes that have decoded for variable deltaN. Playground:
1000 x 1000, ε = 3 . 28

4.4 Cumulative number of nodes that have decoded for variable deltaN. Playground:
5000 x 5000, ε = 3 . 28

iii

4.5 Interests sent for variable deltaN on all three playground sizes. ε = 3 30
4.6 Duplicates received for variable deltaN on all three playground sizes. ε = 3 . . 30
4.7 Cumulative number of nodes that have decoded for variable playgrounds. ε = 3,

deltaN = 10. 30
4.8 Number of Interests sent and content received for different playgrounds with

deltaN = 10, ε = 3. 31
4.9 Cumulative number of nodes that have decoded for variable number of re-

questers. Playground: 500 x 500, deltaN = 10, ε = 3. 32
4.10 Cumulative number of nodes that have decoded for variable number of re-

questers. Playground: 1000 x 1000, deltaN = 10, ε = 3. 32
4.11 Cumulative number of nodes that have decoded for variable number of re-

questers. Playground: 5000 x 5000, deltaN = 10, ε = 3. 32
4.12 Number of Interest packets sent for different playground sizes and different

numbers of requesters. deltaN = 10, ε = 3. 34
4.13 Cumulative number of nodes that have decoded for variable playgrounds on log-

arithmic time scale. ε = 3, deltaN = 10. 35
4.14 Comparison of Interest packets sent using Raptor coding application and regular

CCN application on different playgrounds. ε = 3, deltaN=10. 36
4.15 Comparison of Interest packets sent having a reduced ratio of requesting nodes.

ε = 3, deltaN = 10. 36

iv

List of Tables

3.1 Overview of Raptor coding parameters. 14
3.2 Parameters of Raptor coding application . 15

4.1 Common parameters for all simulation scenarios. 24
4.2 Parameters for Gauss-Markov mobility model. 24
4.3 Variable parameters for evaluation scenarios. 25
4.4 Net node density for different playgrounds and 100 nodes. 27
4.5 Net requester density . 33
4.6 Net requester density. Regular CCN performs better where cells are shaded. . . 37

v

Acknowledgment

Many people have participated directly or indirectly in the development of this bachelor thesis.
I am deeply thankful to all of them!

I would like to specially thank my supervisor Carlos Anastasiades for his invaluable ad-
vice and support throughout the whole working process. I also wish to thank my co-supervisor
Nikolaos Thomos for his help on Raptor coding and network coding issues.

I would like to extend my gratitude to Prof. Dr. Torsten Braun for giving me the opportunity
to write this thesis in his research group and for providing an excellent work environment. Last
but not least, I wish to thank my girlfriend and my family for their boundless support.

vii

Abstract

In Content Centric Networks (CCN), data transmission is based on content names instead of
identifiers as in IP networks. Thus, CCN delivers structures for dynamic mobile networks.

Considering such wireless mobile networks, network coding using Raptor codes is capable
of exploiting the broadcast nature of the wireless medium when packets have to be retransmitted
due to congestion, packet loss or mobility: Instead of transmitting an exact copy again, another
linear combination of the encoded packets is sent which may be useful for decoding for any
node within transmission range with high probability.

In this thesis, Raptor coding functionality has been added to CCN using simulations in OM-
NeT++. The experimental evaluation has shown that Raptor codes lead to a significant perfor-
mance gain in environments with high requester density. If collisions occur, which is likely to
happen in such environments, Raptor coding allows the nodes to transmit another linear combi-
nation of the content instead of retransmitting exactly the same packet. This new combination
again may satisfy Interest messages sent by other requesting nodes. On the other hand, in envi-
ronments with low requester density, content transmission using Raptor coding takes more time
and nodes send more Interest packets than with regular CCN. As CCN is strictly Interest-based
and thus requires every data packet to match an Interest packet previously generated, Raptor
coding could not exploit its opportunistic data fetching characteristics.

ix

Chapter 1

Introduction

In contrast to the Internet’s early days, todays network usage does not longer deal with end-to-
end-connections, but clients are rather interested in retrieving data – no matter at which location
or on which node this data is stored. Content centric networks (CCN)[3] facilitate this paradigm
change by identifying content by its name and not by its storage location. When focusing on
wireless networks, mobile nodes may enter or leave specific radio cells. CCNs support mobility
of nodes in a way that each intermediate node caches content. Hence, if a node moves to an
adjacent cell, a node higher in the network hierarchy, for instance a router or proxy server, can
deliver it instead of requesting the content at the remote content source again.

However, in such mobile wireless scenarios, packet collisions are likely to happen. This
might lead requesters to obtain the same packet again, which is a redundant transmission for
other nodes who might have overheard the previous packet. Raptor coding [4] fills this gap
in the way that each additional packet sent on the wireless channel can be advantageous for
any neighbouring node. This can be achieved by Raptor encoding a set of input packets at the
content source, which results in a larger set of encoded packets. From an arbitrary set of encoded
packets, requesters can then reconstruct the original data packets.

In this thesis, we aim to increase both robustness and throughput of the wireless network by
adding Raptor coding to content centric networks.

The aim of this bachelor thesis is to integrate network coding using Raptor codes in content
centric networks using the simulation framework OMNeT++ [5] and implied the following tasks:

• Study related work on content centric networks as well as Raptor coding.

• Develop a sample implementation of Raptor encoding and decoding procedures.

• Implement Raptor coding functionality in CCN using the OMNeT++ framework.

• Evaluate the CCN application with Raptor coding using the OMNeT++ framework.

1

Chapter 2

Related Work

In the following chapter, we briefly summarize related work for the different techniques used in
this thesis. Please note that the terms content packet and data packet will be used interchange-
ably.

2.1 Content Centric Networks

In today’s Internet, users are mostly interested in information and not where the information is
stored. Content centric networks (subsequently also called CCN) deliver an approach to cope
with these changed requirements. The most distinct way CCN differs from conventional IP
protocol is the way packets are transmitted. This procedure is explained below. Furthermore, by
caching content in intermediate nodes, CCN can support mobility in wireless networks.

In CCN, each node operates on three data structures which are of interest for our work [3]

PIT Pending Interest Table: This data structure keeps track of Interests sent upstream in order
to forward the content back to the requesting (downstream) nodes.

CS Content Store: Each received data packet that is being received upon an Interest transmis-
sion is placed in the content store. This enables each node to directly reply to Interests for
this data without forwarding it to other nodes.

FIB Forward Interest Base: This table is used to forward incoming Interests to (potential)
content sources. While IP tables only allow one outgoing interface per IP prefix to avoid
loops, CCN allows several interfaces. CCN FIBs use longest-prefix matching similar to
IP tables.

The sequence of packet transmissions in CCN is illustrated in Figure 2.1: To obtain a file,
the requesting node sends out an Interest for the data packet with a particular name. According
to the entries in the Forward Interest Base (FIB), the requesting node forwards this Interest
on the appropriate face. Each node that receives this Interest then looks up its content store
whether the requested content has already been contained in its cache. If so, it returns a data
packet which will satisfy the Interest sent out by the requesting node. This Interest would then
be consumed at the requester which terminates the current packet transmission. For example, as

3

Figure 2.1: Packet transmissions in CCN to obtain a data packet having an intermediate node in addition
to content source and requesting node.

seen in Figure 2.1, the second node is an intermediate node and has not stored the requested data.
It will then become a requesting node itself, i.e., it will forward the Interest to the neighbouring
nodes. Assume the third node (called Content Source in Figure 2.1) that receives the Interest
has the data buffered in its content store, then it broadcasts in one hop range the corresponding
data packet. The intermediate node now receives this data packet and detects that there is one
pending Interest for this incoming packet. Then it buffers the data packet in its own content
store for further requests and again performs one-hop broadcast on the face on which the Interest
originally arrived.

Since in CCN an Interest with a certain prefix can be used to retrieve data packets, a new
concept is needed to identify data. Therefore, the names of CCN data are structured hierar-
chically: Each name consists of a organizational name, followed by version and segmentation
information, for instance

/unibe/lectures/network/slides.ppt/ segment0

We can recognize two things from the example above: first, there can be several versions of
a file in parallel and each file is subdivided into several segments. For forwarding data, the
nodes perform a longest prefix match lookup which means that for instance a data packet named
/unibe/lectures/slides.ppt/s0 will satisfy an Interest for the name /unibe/lectures/slides.ppt.

By just dealing about data content and not about where it comes from, there are also security
concerns emerging. Rather than trusting in a connection to a server as this is the case in IP, in
CCN, all content packets are authenticated with digital signatures from the content provider. If
content needs to be private, it is additionally encrypted. Content signing is done on both data
and the name. Thus, a receiving node can verify that the data contained in the packet origins
from the provider it expects - names can be securely bound to arbitrary names by the publisher.

The fact that CCN can run over IP facilitates the exploitation of its functional advantages.

4

2.2 Network Coding

In todays networks, a router only forwards packets exactly as it received them. Considering
a wireless topology, the broadcast nature of the wireless medium provides the advantage that
every connected node can receive the transmitted packets at once. However, when packets have
to be retransmitted - which is done by resending an exact copy - there is no knowledge gain
in the network. Sending an alternative representation of a packet, however, leads to additional
information in the network. Using network coding [6], routers perform operations on all packets
that are to be combined – either all packets available in the node or a selected set of input packets.
Several input packets are encoded to form a set of encoded packets. Since a wireless network
is a broadcast medium, everyone who demands to receive a packet out of the encoded ones will
get the same information, i.e. the same set of encoded packets. The task of the receiving nodes
now is to decode the packet(s) they need.

Fig. 2.2 shows a simple network topology where all links have unit capacity. There are
direct links between s1 and r2 and between s2 and r1. Sender s1 wants to send packet X to
receiver r1, while s2 wants to send packet Y to r2. However, all packets sent from s1 to r1 and
s2, r2 respectively need to traverse the link in the middle, which then becomes the bottleneck of
the whole network. Imagine, as a simple example, a network in which all links have the same
capacity with four nodes: sender s1, sender s2, receiver r1 and receiver r2. Without network
coding, the bottleneck needs to be time-shared and thus for sending the two packets, two time-
slots are used. However, by using network coding we can combine (i.e. bitwise XOR) both
packets and send the encoded packet to both r1 and r2 at the same time. Since there are direct
connections between s1 and r2 and between s2 and r1, both receiving nodes can receive the
respectively unrequested packet in the same timeslot. Having this information, the receiving
nodes can then decode the encoded packet and hence extract the information they need. This
is done by again XORing the unrequested content (which is packet X for r2 and packet Y for
r1) with the encoded information: having two packets x and y which are shown by the blue
and the red lines, the purple lines represent the encoded information x ⊕ y. Requester r2 can
now calculate x ⊕ (x⊕ y) = y which equals the packet r2 requested. By sending the same
amount of packets in less transmissions (three transmissions with network coding versus four
without), of course, network coding also minimizes the transmission energy used per packet and
the contention in the wireless medium.

Another variation of network coding is introduced in [7]. If we look at media streams,
packets are often prioritized differently and can be organized in different importance classes.
Network coding can conform to these requirements and handle the packets according to their
priority by using Prioritized Encoding Transmission [7][8]. Of course, the complexity of com-
puting the coding opportunities increases drastically with such increasing dependencies between
packets.

In wireless networks, as a packet traverses multiple hops, its data becomes known to all
intermediate nodes which may deliver massive redundancy. While wired networks provide reli-
able links, wireless networks are affected by unreliable links, limited coverage and furthermore,
their characteristics may vary over time. In addition, wired networks come with a known and
rather static topology and provide collision detection which is not the case for wireless networks.

5

s1 s2

r2 r1

i1

i2

YX

X+Y

Figure 2.2: Butterfly-topology: A basic example for network coding. Node s1 sends packet X to r1 and
s2 wants to send packet Y to r2, both over the two relay nodes in the middle. The blue and red lines
represent packet A and B, respectively. The purple arrows represent the encoded packet A⊕B.

To compensate those characteristics of wireless networks, [1] proposes to exploit the broadcast
nature of wireless networks.

Network coding also increases throughput in unreliable networks. Since all encoded packets
are linear combinations of the data packets to be transmitted, the sending node does not need to
know which packets are still missing at the receiving node - it can just keep sending encoded
packets until the receiver is able to decode the information and then send back an acknowledge-
packet for the whole file [1].

Focusing on mobility (which is the intention of this thesis), network coding is advantageous
as well since the topology may vary quickly and routing updates are costly [1]. However, using
network coding, the mobile node can just broadcast random linear combinations of all packets
the node in range wants to receive. According to Figure 2.3, as long as any of the encoded
packets contains information that is new to any of D’s neighbours, the packet is innovative and
valuable. Hence, the nodes do not need to track any longer which node has received what packets
and can therefore much quicker adapt to changing topologies.

2.3 Raptor Codes

Network coding can improve the throughput of a network connection if all channels are noise-
less. However, having congested channels, network coding should be used with an error correc-
tion code [9], such as Raptor codes.

6

(a) Timeslot 0 (b) Timeslot 1 (c) Timeslot 2

Figure 2.3: Node D introduces mobility to the network, following [1, page 6]. Node D moves and is
connected to different nodes A, B and C over time.

Figure 2.4: Conceptual block diagram of systematic Raptor encoding [2].

For efficient and robust use of network coding, the data needs to be encoded prior to trans-
mission and decoded again when arriving at the destination node. In general, the encoding node
therefore generates messages X from the S packets to be encoded Pi, i ∈ 1, . . . , S as follows:

Xk =
S∑

i=1

gik × Pi (2.1)

where gik is a coding coefficient chosen from a finite field. As many other codes, Raptor
codes [10] are capable of providing the encoded symbols. Raptor codes significantly improve
LT codes. LT-codes (Luby Transformation) are a class of Fountain codes which cannot encode
with constant computation cost if the number of collected output symbols is close to the number
of input symbols [10]. Raptor codes instead allow encoding and decoding with constant cost.
As illustrated in Figure 2.4, Raptor codes are a concatenation of two codes: A pre-code which
is a fixed rate erasure code or a concatenation of such codes itself and LT-codes.

Fountain codes produce a potentially endless stream of output symbols z1, z2, . . . by encod-
ing an input set of k input symbols (x1, . . . , xk). Every output symbol is generated indepen-
dently and randomly using the Formula 2.1 on a finite field F k

2 . One of the nice properties of
Fountain codes is that as each symbol is generated randomly, a decoding node can receive output

7

symbols from different encoding engines, but from the same set of input symbols and can de-
code them. To make practical use of Fountain codes, they depend on a fast encoder and decoder.
Furthermore, the decoder needs to be able to extract the input symbols from any adequate sized
subset of the encoded symbols. Such Fountain codes are called universal. LT-codes were the
first known class of universal Fountain codes.

Raptor Codes are the first known Fountain codes with both linear encoding and decoding
times. For a given amount of input symbols, Raptor codes can produce infinite streams of
symbols such that any subset of symbols of length k(1+ε), where ε is the coding overhead which
is close to 5% for Raptor codes for medium to large codeblocks. This overhead is sufficient to
recover the input symbols with high probability. The advanced performance of Raptor codes is
due to the pre-coding of the input symbols before applying an appropriate LT-code. A LT-code
is a Raptor code without any pre-coding at all. LT-codes have optimal space consumption 1 and
with an appropriate output distribution Ω(x), the overhead of an LT-code isO(log2(k)/

√
k) and

its cost is proportional to log(k) [10]. Since LT-codes have no pre-coding, they compensate their
lack with a very sophisticated output distribution Ω(x).

The component codes of Raptor codes introduced above are not systematic which means
that the input symbols do not always have to be reproduced by the encoder. However, Raptor
codes can be built to be systematic as well (see Fig. 2.4 and [10, page 2563 ff.]).

8

Chapter 3

Design and Implementation of Raptor
Coding in CCN

In this chapter, we will describe our approach to integrate Raptor coding into content centric
networks. Section 3.1 introduces the encoding strategy, naming tasks such as content names
and segmentation are described in section 3.2 and section 3.3 describes the implementation of
Raptor coding in CCN.

3.1 Raptor Coding in Content Centric Networks

3.1.1 Raptor Coding Strategy

Raptor coding implies that intermediate nodes may not only forward encoded packets, but also
encode them. The signature and trust mechanisms embodied in CCN, however, emanate that the
packet is signed by the content source. Checking the signature, the requester can avoid receiving
vulnerable data from a malicious node. Adapting security mechanisms is out of the scope of
this thesis, hence we assume that only content sources encode packets, i.e., no re-encoding is
performed at intermediate nodes. Hence, we do not perform network coding but Raptor coding.

There are two strategies to perform Raptor coding in a network: The first approach is to
encode different parts of a single file or stream that are requested by the same node. The second
approach is to encode packets from different sources that are sent over the same link.

In CCN, it is not possible to encode packets based on their destination because the destina-
tion is not included in the data packet and forwarding on specific faces is only based on prior
expression of matching Interests. Thus, Raptor coding would require nodes to re-encode content
on-the-fly based on forwarding on specific faces. This would increase forwarding delays and
may result in different content files, which are forwarded over the same face, being encoded
together. However, if content with different names was encoded together, forwarding based on
the name, which is a fundamental building block in CCN, would not be feasible anymore. To
reduce this conceptual gap between Raptor coding and CCN in our implementation, we only
apply Raptor coding to different segments of the same file or stream. This preserves the name
prefix and thus does not violate the constraints between name and content.

9

(a) Common CCN data packet (b) Packet with network encoded packets encapsu-
lated in data field

Figure 3.1: Comparison between common CCN data packets and data packets with encapsulated Raptor
encoded packets.

3.1.2 Data Structures

There are two possibilities to transmit encoded information. First, the original CCN Data packet
is encapsulated and included in the data part of another CCN Data packet as shown in Figure
3.1. The header of the encoded Data packet needs to be extended by additional Raptor coding
information, such as seed, number of input symbols K and deltaN . These parameters are
explained later in more detail in section 3.3.1. Second, instead of encapsulating encoded data
packets, only the data part is encoded, i.e., without original header information. This increases
the relative amount of transmitted data in the payload of the encoded packet because CCN header
information of the original data packet is not included in the payload. However, a receiver could
not verify the signature of the original publisher, because it is not available anymore. Therefore,
in this work, the encoded packets are encapsulated in another Data packet with an extended
Raptor coding header (first approach).

Another issue to consider is the number of packets that are encoded together, i.e. the value
of K. Encoding only very few data packets allows a receiver to wait for a shorter time until
receiving the necessary amount of packets to decode. However, this way, the overhead due to
the coding information included in each encoded packet is rather big in relation to the payload
size. On the other hand, with the increasing amount of segments encoded together, the overhead
decreases.

10

For different reasons, we only encode at content sources and decode at requesting nodes:
First, since Raptor coding only takes place at the application layer, intermediate nodes would
need to retrieve the data as well so that content could be re-encoded at the application layer. We
do not consider coding operations at the CCN layer for reasons mentioned in chapter 3.1.3. Sec-
ond, re-encoded content would also need to be signed by the encoder and trust in the encoders’
key is required due to trust constraints entailed in CCN.

As we limit the encoding to content sources, we do not perform network coding but apply
Raptor coding in this thesis.

3.1.2.1 Signatures

In CCN, a node can get data not only from its origin but from any node that has cached this data.
Every requester can verify the authenticity of the content by verifying the publisher’s signature.
If we encode these (signed) packets at an intermediate node, the encoded packets are signed by
another key than from the original publisher. There are two possibilities handling this:

• Do not sign the encoded packet at all. The original data packets are still signed but the
encoded packets are not. This does not correspond to the CCN policy since it requires that
each and every packet is signed. Furthermore, this leads to the problem that malicious
nodes can spread junk packets. Since the packets are not signed, these corrupted packets
cannot be recognized and could mess up the decoding if they are considered as legitimate
packets.

• Sign the packet with the encoding node’s key. In this scenario, every time an inter-
mediate node encodes packets, it signs these with its private key. Now, the receiver can
immediately see which node has encoded the packets and - if necessary - distinguish vol-
nerable sources from trusted ones. However, this requires trust measurements such as
reputation ratings. Additionally, it increases the processing overhead and forwarding de-
lay since packets need to be decoded first before they can be re-encoded.

3.1.3 Packet Processing

There are different possibilities where to process encoded packets. Either we place the whole
encoding and decoding logic in the CCN layer itself or delegate the Raptor coding capabilities
to the Raptor coding application. Figure 3.2 shows how application layer and CCN layer are
connected. In CCN, each node provides an application layer and a CCN layer. The application
is attached to the CCN layer but only the lower layer directly connects to the network.

In the first approach, the CCN layer is responsible for the whole processing of encoded pack-
ets including the collection of sufficient encoded packets that are linearly independent, decoding
the packets if a sufficient large number of packets are received, and encode packets. This ap-
proach has the advantage that encoding can be done in the CCN layer directly without having
the need to send packets up to the application layer. However, the drawbacks are:

• An application does not know how many (and which) packets have already been received
and whether new packets need to be requested.

11

Figure 3.2: Layer architecture in CCN

• Decoded CCN data packets would be included in the cache and, thus, would be deleted
after a short time depending on the cache replacement strategies. To persistently store the
packets, they need to be stored in a repository application.

In the second approach, Raptor coding is performed at the application layer. Thus, a re-
quester stores all encoded packets temporarily in the content store (CCN layer) and persistently
at the CCN application layer. All decoding operations are performed by the Raptor coding ap-
plication at the application layer. Intermediate nodes, which are no requester of content, only
store and forward the packets temporarily at the CCN layer but do not forward and store it at the
application layer.

In this approach, the application monitors whether enough packets have already been re-
ceived for decoding or whether more Interest packets need to be transmitted. However, the main
downside is that packets can only be Raptor encoded at the content sources and requesting nodes
since the packets are only forwarded and retransmitted at intermediate nodes. The implemen-
tation at the application level does not have an impact on regular transmissions without Raptor
coding which implies that other applications building on the same CCN layer remain unaffected.

In this work, we decided to include Raptor coding in the application layer.

3.2 Naming

In CCN, every data packet a node wants to receive must be requested by sending an Interest
packet. Thus, it is not possible to get packets that were not requested explicitly. However,
Raptor coding tries to collect as many data as possible in order to gain further information from
additional encoded packets since every encoded packet represents a linear combination of the
source data packets. Hence, data retrieval in CCN is quite different from what would be ideal
for Raptor coding. To cope with these differences and to exploit the advantages of both worlds,
we need to adapt the processing of Interests and data packets in CCN. However, it still needs to
be possible to exchange conventional CCN data packets along with encoded content.

As explained in chapter 2.1, Interest prefixes need to match content names to trigger data
transmission. This matching is done by performing a longest prefix match of the Interest name
on the data name. Whenever a content message is received in reply to an Interest message, it
is forwarded and removed from the pending Interest table following the bread crump routing
approach.

At the same time, content centric communication should not require messages to be en-
coded and transmission of regular not-encoded messages should still be possible. Therefore, we

12

tag encoded traffic with an identifier between version and segmentation information. While an
example content name of a non-encoded message could be

/unibe/lectures/slides.ppt/ segment

the same name of encoded content now looks like

/unibe/lectures/slides.ppt/ rc/ encodedID

where the prefix rc stands for Raptor encoded packets. Hence, a requester can request en-
coded or unencoded messages by including or avoiding the Raptor coding identifier. The suffix
encodedID specifies the encoded vector. These encoded vectors are being generated at the
content source based on the original data packets and are linearly independant. This prefix-
based naming only works for packets that belong to the same file.

To decode content and restore the original content, a sufficient number of encoded packets
need to be received. To avoid the reception of duplicates, the requester can specify the encode-
dID it wants to receive in the requested name. Avoiding the encodedID in the content name
would lead requesters to add all packets they have already received to exclude filters in the Inter-
est message. Since content may include many encoded packets, the exclude filter and, thus, the
Interest message itself may grow significantly in size. Therefore, the requester specifies in the
Interest message an encodedID that it has not yet received. By including the encodingID in the
Interest prefix, a requester asks for specific, i.e., not yet received packets, from the encoded set,
without sending large Interest packets containing long exclude filters. The first encodedID
equals the seed of the encoding set and it is increased by one for every subsequent encoded
packet. We will explain the retrieval of encoded content with an example in Figure 3.3.

The Raptor coding parameters are summarized in Table 3.1. When looking for encoded
packets of the file /unibe/lectures/overview.pdf, the requesting node, i.e., the Raptor cod-
ing application running on the node, will generate an Interest packet for content /unibe/lec-
tures/overview.pdf/rc. If encoded content is already available, the Interest will request the small-
est available encodedID. If no encoded but unencoded content is available on a nearby node,
the request will trigger the content source to encode the content now. When encoding the con-
tent, a content source generates K + deltaN encoded packets from K input packets. The
requester will then receive the first encoded packet having the lowest identifier which equals
the seed, e.g. /unibe/lectures/overview.pdf/rc/25034. Knowing the seed, the number of encoded
packets K and deltaN , the requester knows the ID range of the given set of encoded packets
and can request more packets directly with the encodedID, which needs to be in the range of
[seed, . . . , seed + K + deltaN]. Every CCNEncodedPkt contains an additional header that
includes information required for Raptor coding. Please refer to chapter 2.2 for further informa-
tion concerning the encoding process.

3.3 Implementation in OMNeT++ Simulator

This chapter will give an overview of the changes that were made in order to encode data packets
in content centric networks. One important aspect in the whole implementation was to minimize
the changes to existing structures to guarantee that Raptor coding would not violate conventional
data transmissions in CCN.

13

K The number of CCNDataPkts combined in this encoding set, i.e. the amount
of input packets in the encoding process.

deltaN The number of encoded packets computed additionally to the number of Input
packets. The number of coded packets available for a specific coding set equals
K + deltaN . This parameter is required to be known by both encoding and
decoding nodes.

seed The seed is a random number computed during the encoding process and
identifies the set of encoded packets. In particular, the sets lowest en-
codedID equals the seed. The range of encodedIDs for a particular set is
[seed, . . . , seed+K + deltaN].

ε The number of packets a requesting node needs to gather to be able to success-
fully decode, in addition to the number of K.

Table 3.1: Overview of Raptor coding parameters.

Figure 3.3: Schematic sequence of retrieving encoded packets. Snapshot at the beginning of the trans-
missions.

14

3.3.1 CCN Application

The CCN application contains all Raptor coding functions. At a content source, the data packets
are encoded upon the reception of the first Interest packet in Raptor encoded content. A requester
needs to express Interests in encoded packets and to decode the content if sufficient packets are
received. The parameters listed in Table 3.2 need to be known to the application:

encodedPackets The number of source packets. In the code as well as in subsequent chapters,
this value is called K. In our simulation, we always chose K to be equal to the
number of segments of the original data.

deltaN The number of linear combinations that are generated additionally to the num-
ber of original data packets K. The number of linear combinations created in
total equals K + deltaN .

epsilon The number of additional linear combinations a requester collects until it is
able to decode. This value is not estimated in advance but can only be observed
by the requester.

rc prefix The prefix used to identify encoded content and distinguish it from conven-
tional, non-encoded content without rc prefix.

provideEncodedContent This option determines whether received encoded packets are registered by
their prefix at the CCND Layer so that Interests from other nodes can be
received and forwarded to the CCN Application. In contrast to the CCND
content store, encoded packets are stored persistently at the CCN Application
layer.

Table 3.2: Parameters of Raptor coding application

The functionality in the Raptor Coding application includes handling of received Interests
and encoded Data packets from the lower CCN layer, encoding and decoding data as well as
sending Interests in encoded data to the lower layer for transmission.

Encoding and decoding tasks are delegated to the RaptorCoding package and are not per-
formed in the application directly. Processing of received Interest and data packets is visualized
in Figure 3.4. If an Interest packet for encoded content reaches the Raptor coding applica-
tion, it first checks whether the content has already been encoded earlier. If so, the encoded
packet is transmitted immediately. Otherwise, the application checks whether the requested
content is available in its raw unencoded form, i.e. original data packets. Having the requested
content available as original data packets, the application starts the encoding to create a set of
K + deltaN encoded packets, which are stored persistently. Responding to the Interest which
caused the encoding process, the first packet out of the set of encoded packets is sent to the lower
layer. In particular, an Interest packet in the general Raptor coding prefix .../rc is answered by
the first encoded packet as soon as the encoding process is finished. From then on, requests for
the same data will be replied directly using the persistent storage. For the CCN layer to know
which data is stored in the application layer’s persistent storage, the appropriate name prefix is

15

registered towards the CCN layer whenever data is added to the persistent storage. While the
encoded packet’s prefix can only be registered after decoding, the prefix for encoded content is
registered as soon as the first encoded packets are received. Thus, every requester can respond to
Interests from other requesters if the requested encodedID is contained in its persistent storage.

Figure 3.4: Flow chart describing packet handling in the CCN application.

One of the most significant differences between the Raptor coding application and conven-
tional CCN applications concerns the strategy with which the different segments are requested:
In conventional CCN applications, all segments are requested in sequential order. In case of
a timeout or missing segment, the corresponding segment is re-expressed and the pipeline size
is set to 1. However, using Raptor coding, it is not required to obtain all packets in sequential
order because they contain linear combinations of multiple segments anyway. Therefore, it is
sufficient to obtain an arbitrary set of K + ε encoded packets to decode and retrieve the original
content. If an encoded packet is not retrieved, instead of a retransmission, the next encoded
packet is requested. The ability to skip packets depends on the value of deltaN , which deter-
mines the number of additionally encoded packets from which ε packets need to be retrieved.
As some packets can be dependent, this might consume some of the deltaN -potential.

Please note that our application never re-expresses an Interest in the same encodedID right
away but proceeds to the next encoded packet it has not received yet. The maximum pipeline
size is never reduced to one but always kept at the maximum. As the decoding process only
requires a set of K + ε packets, it is indifferent if received encoded packets are in sequential
order or not.

Changing to the requesters side, an incoming data packet will be stored in a hash map using
its content name, i.e., the content name without Raptor coding prefix and encodedID, as the key.
The application then checks whether there are already enough packets available to decode. If

16

Figure 3.5: Simplified UML view on functions of Raptor coding package.

yes, the packets are decoded and the resulting original data packets are registered by their prefix
to the CCN layer which means that Interests in these packets will be forwarded to the application
from now on. Otherwise, if the number of received encoded packets is not yet sufficient for
decoding, an Interest packet for the next encoded packet is being expressed.

3.3.2 Raptor Coding Class

This package provides the whole coding functionality required for encoding, requesting and de-
coding the packets. Figure 3.5 shows a simplified UML diagram of the Raptor coding package
hiding attributes and parameters mostly. Please refer to the following subsections for explana-
tions of the methods mentioned. From the application’s point of view, the package masks all
the complexity of the Raptor coding processes by just providing methods for the encoding of
original data packets and for the handling of incoming encoded packets.

3.3.2.1 Process encoded

Every encoded packet is first passed to this function. Figure 3.6 gives an overview of the pro-
cesses that follow.

When an encoded data packet is received at the application layer, it is forwarded to the
Raptor coding class which then checks whether there were already other packets with the same
prefix received earlier. To achieve this, we maintain a hash map which matches a given prefix
with a list of already received packets. Hence, each incoming encoded packet is appended to the
list. Next, depending on the length of this list and the parameter ε, the class decides whether the
node has enough packets to decode or not. In case of enough packets, the decoded packets are
forwarded to the Raptor coding application. If decoding is not possible yet, the function returns
NULL which tells the application to collect further encoded packets.

17

Figure 3.6: Processing of incoming encoded packets

3.3.2.2 Encode

The encoding function takes a set of CCNDataPkts, serializes them using the Boost framework
[12] and performs the encoding actions introduced in chapter 2.2. Serialization and XOR func-
tions are explained in subsections 3.3.4 and 3.3.5 respectively. Upon calculating the encoded
content objects, it creates a set of N = K + deltaN CCNEncodedPkts, sets all the required
header fields such as content name, seed, encodedID, etc. and then passes these packets to the
Raptor coding application.

3.3.2.3 Decode

Decode is the inverse function of encoding: It takes a set of K + ε CCNEncodedPkts, and
decodes the encoded packets to retrieve the serialized original packets, de-serializes them and
returns the set of K CCNDataPkts. After performing matrix operations on the decoded pack-
ets, the deserialization process involves solving a system of equations for which it uses Gaussian
elimination, mentioned in section 3.3.3.

If there was an error during the decoding process, the function returns NULL.

3.3.3 Helper Functions

The Raptor coding application accesses several functions found in other classes in the Raptor
coding package such as:

GPPfunctions This class provides functionalities used during the encoding and decoding pro-
cesses, mainly used for the calculation of coding parameters. These functions
follow the specification of 3GPP [2].

Gauss The Gauss class is restricted to Gaussian elimination, which, however, is a
key component of the decoding process.

nrutil Nrutil is a helper class used for vector and matrix allocation and also delivers
some matrix conversions [11].

18

Figure 3.7: Placement of serialization and deserialization in the context of encoding and decoding pro-
cesses.

3.3.4 Serialization

Performing Raptor coding on CCN data packets requires the input objects to be XOR-ed. How-
ever, data packets do not just consist of primitive data types but also include Strings, Signature
and SignedInfo, which renders XOR-operators in standard C++ useless. In order to be able to
perform the XOR operation using the function xorString explained in section 3.3.5, we have
chosen to use the Boost libraries[12] to serialize data. Serialization will provide a character se-
quence containing all packet data. Figure 3.7 shows at which points in encoding and decoding
the serialization and deserialization take place.

The source code for each packet type in OMNeT++ is generated automatically from specific
declaration files as shown for CCN Encoded Packet and CCN Data Packet in Listing 3.1. The
program opp_msgc provided by OMNeT++ takes such a *.msg-file containing the message
declaration and then generates the *.cc and *.h files which form the C++ class. The automatic
generation of source code makes it impossible to implement the serialization functionality in the
packet code directly. Hence, we had to use a non-intrusive way to implement serialization.
Listing 3.2 shows the serialization of a CCNDataPkt which then invokes the code shown in
Listing 3.3. The serialized character stream can be further handled using common data types,
e.g. std::string.

As this packet contains further custom-made objects, i.e., Content, SignedInfo and Signa-
ture, each of those has to provide serialization functionality itself.

After the decoding process, the data packets are available in serialized form. To obtain
the original CCNDataPkts, deserialization has to be performed. For all classes involved in
serialization, a corresponding deserialization function has to be implemented.

Listing 3.1: Declaration files for CCN Encoded Packet and CCN Data Packet

p a c k e t CCNEncodedPkt e x t e n d s CCNDataPkt{
i n t e n c o d e d P a c k e t s ;
i n t p a c k e t I D ;
i n t s eed ;

}

p a c k e t CCNDataPkt {
s t r i n g contentName ;
S i g n a t u r e s i g ;

19

S i g n e d I n f o s i g i n f o ;
C o n t e n t d a t a ;

}

Listing 3.2: Serialization of CCN Data Packets prior to the encoding process.

f o r (i n t i = 0 ; i < K; i ++) {
i n p u t P a c k e t s−>a t (i) = new s t d : : o s t r i n g s t r e a m (” ”) ;

CCNDataPkt ∗ c u r r e n t = p a c k e t s [i] . dup () ;

b o o s t : : a r c h i v e : : t e x t o a r c h i v e oa (∗ i n p u t P a c k e t s−>a t (i)) ;
oa << ∗ c u r r e n t ;

d e l e t e c u r r e n t ;
}

Listing 3.3: Boost serialization code for CCN Data Packet

/∗ ∗
∗ S e r i a l i z a t i o n u s i n g b o o s t . Boos t v1 . 5 . 0 needs t o be i n s t a l l e d .
∗ /

i n c l u d e <b o o s t / s e r i a l i z a t i o n / s p l i t f r e e . hpp>

namespace b o o s t {
namespace s e r i a l i z a t i o n {

template<c l a s s Archive>
void s ave (Arch ive & ar , c o n s t CCNDataPkt & p ,

unsigned i n t v e r s i o n) {

a r & p . ge tContentName () ;
a r & p . g e t S i g () ;
a r & p . g e t S i g i n f o () ;
a r & p . g e t D a t a () ;

/∗ F i e l d s from cMessage ∗ /
s h o r t i n t k ind = p . ge tKind () ;
a r & k ind ;

i n t 6 4 by teLen = p . g e t B y t e L e n g t h () ;
a r & byteLen ;

}

} / / namespace s e r i a l i z a t i o n
} / / namespace b o o s t
BOOST SERIALIZATION SPLIT FREE (CCNDataPkt)
;

20

3.3.5 XOR

This function acts as an internal helper to perform the XOR operation on character sequences
and is an important part of the encoding and decoding function. Since serialized data is likely to
contain NULL characters, it is important not to use strings in C-style which are NULL-terminated.
If any of the characters in the string matches the string delimiter, all subsequent characters are
lost and deserialization becomes infeasible. Hence, if C-strings were used, the string was cut at
the first appearance of a NULL character, which may be created by the XOR operation on packet
data.

Another difficulty is that the XOR function should also perform reliably for inputs of differ-
ent lengths and empty strings such that the original data can always be retrieved. Therefore, a
custom XOR-operation has been implemented that uses std::strings.

21

Chapter 4

Evaluation

In this chapter, we measure the performance of content centric networking using our Raptor
coding approach described in chapter 3 and compare it to the performance of conventional CCN
communication. In particular, we examine the following:

• How do the parameters deltaN and ε influence the Raptor coding performance?

• How does Raptor coding performance change when the playground size increases and
thus node density decreases?

• What is the impact of different ratios of requesting nodes?

• How does Raptor coding traffic perform compared to regular CCN traffic?

4.1 Simulation Environment

For evaluating the different scenarios named above, we have used OMNeT++ [5] as the simu-
lation framework. The scenarios we have examined all embrace a total of 100 wireless nodes
whereas one of them acts as content source (and thus does not request any content). There are
scenarios for different numbers of requesting nodes. Each requesting node will provide received
encoded packets to other requesters. Each host runs one CCN application, i.e., our Raptor cod-
ing application, and uses one 802.11g radio interface. Each scenario was run 100 times. The
content to be encoded consists of 1000 segments of 4096 bytes which result in K = 1000 in-
put symbols. Table 4.1 gives an overview of the static evaluation parameters. For MAC layer
and wireless transmission parameters, we have used standard values. The value of 100s for the
parameter Start Interest Interval means that all 99 requesting nodes will start requesting content
randomly within the first 100 seconds of the simulation. RTS threshold was set to 10’000 bytes
which means that RTS/CTS will not be used.

All nodes move according to the Gauss-Markov mobility model [13]. The parameters are
listed in Table 4.2

23

Channel and 802.11 radio parameters
Carrier frequency 2.4 GHz
Transmitter power 2.0 mW
Signal attenuation threshold -110 dBm
Path loss coefficient 2
Number of radio channels 1
Thermal noise -110 dBm
Sensitivity -85 dBm
SNR Ratio 4 dB

MAC Layer parameters
WLAN multicast bitrate 2 Mbps
RTS-Threshold 10’000 bytes

CCN App parameters
Content lifetime 60 s
Segment numbers 1000
Pipelining size 16
Start Interest interval 100 s
Segment size 4096 bytes

Table 4.1: Common parameters for all simulation scenarios.

Mobility Parameters (Gauss-Markov model)
Alpha 0.9
Speed 10 mps
Angle 0 deg
Variance 40
Margin 30 m

Table 4.2: Parameters for Gauss-Markov mobility model.

24

Variable parameters
Playground side length 500, 1000, 5000
deltaN 10, 100, 500, 1000
Ratio of Requesters 10, 50, 99

Table 4.3: Variable parameters for evaluation scenarios.

4.2 Simulation Scenario

Having all the evaluation parameters summarized above, we vary the following three parameters
in our evaluations: Playground size, deltaN and requester ratio. Table 4.3 shows the different
values we have used in the evaluated scenarios.

The playground size determines the area in which the individual nodes can move. Since
transmission power and the number of nodes are constant for all scenarios, the playground size
indirectly determines the number of nodes in transmission range, i.e., the node density. The
shape of the playground is always square, i.e., the measures are playground length x playground
length. The results for different playground sizes are shown in subsection 4.3.3.

The parameter deltaN describes the number of encoded packets generated in addition to
the number of input packets (K). Thus, the total number of encoded packets available equals
N = K + deltaN . The higher N , the more packets the requester can choose from in order
to request the required number of encoded packets. This means that the unavailability of an
individual packet affects the requester relatively speaking less since the set of available packets
is generally larger and, thus, the requester can just skip to the next packet if the current packet is
not available. The results for different values of deltaN are shown in subsection 4.3.2.

Third, we varied the proportion of requesting nodes relative to the number of total nodes
to take values of 10%, 50% and 100%. Since the total number of nodes was fixed to 100 and
one node always acted as a content source, the scenario of 100% requesting nodes resulted in an
absolute number of 99 requesters. The impact of different requester ratios is shown in subsection
4.3.4.

The variable ε describes how many packets the receiving node collects in addition to the
amount of input packets before decoding can be performed. This means that any requester will
collect K + ε encoded packets before decoding. As mentioned in chapter 2.2, ε influences the
probability for the receiver to being able to successfully decode. The more packets are available
for decoding, the lower is the probability of failure. We have evaluated the values ε = {3, 10, 20}
and ran the simulations with these parameters 10’000 times without any decoding failures, which
shows that the parameters are robust. These results are in accordance with existing studies [4]
that confirm that the selected ε results in a very low decoding failure probability.

In all the above scenarios, we focus on one-hop broadcast messages and do not use multi-
hop broadcast over several nodes. Content dissemination is achieved by caching and mobility of
nodes.

25

4.3 Simulation Results

This section shows the results of the scenarios described in section 4.2.

4.3.1 Impact of ε

Figure 4.1 shows the time it takes the requesting nodes to receive enough encoded packets for
being able to decode on the largest playground measuring 5000m x 5000m. The x-axis indicates
the time in seconds while the y-axis denotes the cumulative number of nodes that are able to
decode. We can see that the difference between the three scenarios is marginal, i.e., curves are
overlapping. This can also be observed on the two smaller playgrounds measuring 500m x 500m
and 1000m x 1000m as well as for other values for deltaN . The reason for this negligible
difference can be found in the small difference of additional packets: Transmitting 1000 packets,
the difference from the smallest value for ε = 3 to the biggest value ε = 20 is only 17 packets
or 1.7%.

For this reason, we have decided to neglect the effect of the variable ε and to select a value
ε = 3 in all remaining evaluations of this chapter. In a real-world implementation, the value
for ε could be chosen dynamically: A requesting node keeps on collecting additional encoded
packets until the node eventually becomes able to decode.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5000 10000 15000 20000 25000 30000

N
o.

 o
f n

od
es

 th
at

 h
av

e
de

co
de

d

time in [s]

epsilon = 3
epsilon = 10
epsilon = 20

Figure 4.1: Cumulative number of nodes that have decoded for variable ε. Playground: 5000 x 5000,
deltaN = 100.

4.3.2 Impact of deltaN

In our scenarios, as both the number of nodes and the transmission power are fixed, larger
playgrounds always implicate lower node densities and therefore, a requester has fewer neighbor
nodes. We can thus introduce a measure for node density with respect to the node’s transmission
range, which is defined as follows

26

Playground Side Length Net Node Density
500 72.38

1000 18.10
5000 0.72

Table 4.4: Net node density for different playgrounds and 100 nodes.

Net Node Density =
No. Nodes× π × (Transmission Range)2

Playground Area
(4.1)

This value indicates the average number of nodes in communication range of a specific node.
Table 4.4 shows the net node density values calculated using Formula 4.1 for the different play-
grounds. We can observe that while the net node density is high on the two smaller playgrounds,
the value is smaller than one on the largest playground measuring 5000m x 5000m. This means
that in average, nodes will not be able to connect to a neighboring node at all times.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 100 1000

N
o.

 o
f n

od
es

 th
at

 h
av

e
de

co
de

d

time in [s]

deltaN = 10
deltaN = 100
deltaN = 500

deltaN = 1000

Figure 4.2: Cumulative number of nodes that have decoded for variable deltaN. Playground: 500 x 500,
ε = 3

In the first scenario, we evaluated the influence of the parameter deltaN . Figure 4.2 shows
the cumulative decoding time of 99 requesters in a playground size of 500m x 500m. The x-axis
shows the simulation time in seconds while the y-axis shows the number of nodes that have
already decoded the encoded packets and thus reconstructed the original data. Figures 4.3 and
4.4 show the same values but for the two larger playgrounds of 1000m and 5000m side length
respectively. As we can see on the figures, on the two smaller playgrounds, there is virtually no
difference between the different values of deltaN . On the largest playground, however, we can
observe that high values for deltaN are disadvantageous as the speed of content dissemination is
reduced. Having a high value of deltaN , the requester can request a broader range of encoded
packets to satisfy its demands. If a specific encodedID is not available at a certain time, the
node just continues requesting the subsequent encodedID until it reaches the top of the range of
available packets, i.e., the packet with encodedID seed + K + deltaN . Then, the node starts

27

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 200 300 500 1000

N
o.

 o
f n

od
es

 th
at

 h
av

e
de

co
de

d

time in [s]

deltaN = 10
deltaN = 100
deltaN = 500

deltaN = 1000

Figure 4.3: Cumulative number of nodes that have decoded for variable deltaN. Playground: 1000 x
1000, ε = 3

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1000 10000

N
o.

 o
f n

od
es

 th
at

 h
av

e
de

co
de

d

time in [s]

deltaN = 10
deltaN = 100
deltaN = 500

deltaN = 1000

Figure 4.4: Cumulative number of nodes that have decoded for variable deltaN. Playground: 5000 x
5000, ε = 3

28

again requesting the lowest available encodedID. Hence, for fewer encoded packets available,
the probability that a certain node can provide packets which other nodes request, increases.
Vice-versa, having high values for deltaN , the probability of two requesters asking for the same
encodedID decreases and thus the curve gets less steep.

To comply with the CCN request-response scheme, we decided in this thesis that each re-
quester needs to actively request each encoded packet. This means that overheard content only
gets known to the Raptor coding application if an Interest in its name has been expressed. To
profit from the increased encoded packet diversity due to higher values of deltaN , requesters
should be able to detect unsolicited encoded packets arriving at the content store and to retrieve
them before their content lifetime expires and the packet is removed from cache. The character-
istics for different deltaN might of course be different for such strategies.

Another metric is the number of Interest packets a requester has to send prior to receiving the
required number of encoded packets. Figure 4.5 shows the value of deltaN on the x-axis and
the number of messages on the (logarithmic) y-axis for all playgrounds. We can observe that the
number of Interests the requesters require to send do not vary for different values of deltaN on
the two smaller playgrounds. On the largest playground measuring 5000m x 5000m, however,
the number of Interest messages increases for larger values of deltaN . While the number of
Interest messages for deltaN = 100 is only increased by 5% compared to deltaN = 10,
the scenarios with higher values of deltaN = 500 and deltaN = 1000 require much more
Interests to be sent: 43.5% more for deltaN = 500 and 45.7% more for deltaN = 1000, again
in comparison to deltaN = 10. If a node has few neighbors (0.72 in average on the largest
playground) and deltaN is high, as there are more encodedIDs available, the probability that a
requester transmits an Interest in the name of a packet its neighbor has cached is low. Therefore,
it is less likely that nodes can profit from their neighbor’s content store data than with low values
for deltaN . We can further see in Figure 4.6 that the number of duplicates a requester received
while requesting the encoded packets stays about the same for all the four different values of
deltaN .

Overall, we can observe that smaller values of deltaN are preferable for this requesting
strategy. However, the transmission performance heavily depends on the playground size: Due
to the lower net node density on large playgrounds, a requester may often request content that is
not available within its transmission range.

4.3.3 Impact of Playground Size

In this subsection, we fix deltaN to the value that performed best in the previous evaluations
and compare the performance on different playground sizes. Thus, the parameters are set to
deltaN = 10, ε = 3.

Figure 4.7 shows the time required for all 99 requesting nodes to receive enough encoded
packets for being able to decode. The x-axis shows the time in seconds while the y-axis indicates
the cumulative number of nodes that were able to decode. We can observe that the time to receive
enough packets to decode increases significantly with increasing playground size. This is due to
lower net node density and requesters requiring more time to find a content source. From Table
4.4, we can see that on average, several nodes are within a node’s transmission range while on
the largest playground it is not guaranteed that a node has a neighbor. Small values implicate

29

 1

 10

 100

 1000

 10000

 100000

10 100 500 1000

m

es
sa

ge
s

deltaN

Effective Interests sent by Requesters

Playground 500x500
Playground 1000x1000
Playground 5000x5000

Figure 4.5: Interests sent for variable deltaN on all three playground sizes. ε = 3

 1

 10

 100

 1000

 10000

10 100 500 1000

m

es
sa

ge
s

deltaN

Duplicates Received

Playground 500x500
Playground 1000x1000
Playground 5000x5000

Figure 4.6: Duplicates received for variable deltaN on all three playground sizes. ε = 3

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 100 1000 10000

N
o.

 o
f n

od
es

 th
at

 h
av

e
de

co
de

d

time in [s]

Playground 500x500
Playground 1000x1000
Playground 5000x5000

Figure 4.7: Cumulative number of nodes that have decoded for variable playgrounds. ε = 3, deltaN =
10.

30

that nodes might take some time to get within reach of the content source or lose the connection
to the content source for some time. Further, as less nodes are within transmission range, the
probability that a adjacent node’s cache holds the requested packet decreases.

As expected and seen in Figure 4.8, the number of Interests required before nodes can decode
rises along with the playground size. In average, the number of Interests sent on the playground
1000m x 1000m compared to the smallest playground increase by 327%. From the medium
playground to the largest, there is again an increase in Interest messages of over 1500%. As
seen in subsection 4.3.2, the largest playground has by far the lowest net node density. Thus,
the probability that a node gets into the transmission range of the content source or another node
which can provide the requested content decreases as the playground grows. Since any node can
possibly profit from data packets sent by other requesters using one-hop broadcast, requesters
require less Interests to send out by themselves in areas with high node densities. Requesters
can provide content if they have requested the same content earlier and stored them in their
persistent storage or if they have cached a packet at the CCN layer whose content lifetime has
not yet expired.

Additionally, having a higher net node density, the probability for a requester to overhear
content transmission increases. As an example, if a node sees five other nodes within its trans-
mission range, it will be able to overhear some packets these five nodes request.

 1

 10

 100

 1000

 10000

 100000

 500 1000 5000

m

es
sa

ge
s

Playground size

Messages

Interests sent
Content received

Figure 4.8: Number of Interests sent and content received for different playgrounds with deltaN =
10, ε = 3.

4.3.4 Impact of Requester Ratio

In this subsection, we will compare the performance depending on how many nodes request
content, relatively speaking in terms of the total number of nodes. The performance will be
measured by evaluating both the time until nodes become able to decode and the number of
Interest packets a requester needs to send in order to obtain the required number of encoded
packets. The total number of nodes stays fixed to 100 nodes but now, instead of having one
content source and 99 requesters, we reduce the number of requesters to 10 and 50 nodes. The
coding parameters are set to deltaN = 10 and ε = 3.

31

 1

 10

 100

 100 200 300 400 500 600 700 800 900 1000 1100

N
o.

 o
f n

od
es

 th
at

 h
av

e
de

co
de

d

time in [s]

10 Requesters
50 Requesters
99 Requesters

Figure 4.9: Cumulative number of nodes that have decoded for variable number of requesters. Play-
ground: 500 x 500, deltaN = 10, ε = 3.

 1

 10

 100

 200 300 400 500 600 700 800 900 1000 1100 1200

N
o.

 o
f n

od
es

 th
at

 h
av

e
de

co
de

d

time in [s]

10 Requesters
50 Requesters
99 Requesters

Figure 4.10: Cumulative number of nodes that have decoded for variable number of requesters. Play-
ground: 1000 x 1000, deltaN = 10, ε = 3.

 1

 10

 100

 0 5000 10000 15000 20000 25000 30000 35000

N
o.

 o
f n

od
es

 th
at

 h
av

e
de

co
de

d

time in [s]

10 Requesters
50 Requesters
99 Requesters

Figure 4.11: Cumulative number of nodes that have decoded for variable number of requesters. Play-
ground: 5000 x 5000, deltaN = 10, ε = 3.

32

The Figures 4.9, 4.10 and 4.11 show the cumulative number of nodes that retrieved enough
encoded packets for being able to decode for the three playground sizes. The x-axis indicates
the time in seconds while the y-axis shows the cumulative number of nodes that were able to
decode. We can see that on the playground of 500m x 500m, in all three scenarios, it takes about
1000 seconds for all nodes to retrieve the required amount of packets with just a marginal addi-
tional delay for the 10 requesters scenario. The larger the playground, the bigger the difference
in the times until all nodes have decoded for the different ratios of requesting nodes gets. Again,
as the node density is high, the nodes will likely be able to connect to the content source or
another requester already providing the requested content. As explained above, requesters store
requested encoded packets persistently and provide it to others. The content lifetime only has an
influence on cached content at non-requesting nodes but not on persistent storage at requesters.
Hence, requesting nodes can provide already received encoded content to other nodes at applica-
tion level. If less nodes request content, less nodes provide the content they have retrieved, thus,
content dissemination slows down which means it takes longer for all nodes to complete. Also,
having high requester density, more nodes will profit if a packet is transmitted using one-hop
broadcast.

Similar to the net node density measure introduced in subsection 4.3.2, we can define the
measure net requester density, which only takes requesting nodes in account. The net requester
density describes the area covered by all requesting nodes in proportion to the total playground
area and can thus be used to measure node connectivity, i.e., the number of nodes in communi-
cation range of a requesting nodes in average. It is defined as follows

Net Requester Density =
No. Requesting Nodes× π × (Transmission Range)2

Playground Area
(4.2)

Playground size
500 x 500 1000 x 1000 5000 x 5000

No. 99 71.66 17.91 0.71
requesting 50 36.19 9.04 0.36

nodes 10 7.24 1.81 0.07

Table 4.5: Net requester density

Table 4.5 shows the values for the different numbers of requesting nodes. Comparing with
above Figures 4.9, 4.10 and 4.11, we can again observe that scenarios with high net requester
density values perform faster than those with low net requester density.

We can also compare the number of Interest packets the requesters sent out. Figure 4.12
shows the number of Interest packets the application scheduled for different numbers of re-
questers on the three playground sizes. The x-axis denotes the playground size and the y-axis
shows the number of Interest packets. We can see that the scenario with 99 requesters – the one
which finished first and which has the highest requester density – also needed fewest Interest
packets to be transmitted since nodes can profit from Interests sent by others. As seen in Figures

33

4.10 and 4.11, the 50 requesters scenario performed faster than the 10 requesters scenario on
the two larger playgrounds. The same characteristics can be observed concerning the number of
transmitted Interest packets. Having only few requesting nodes, the probability that any adjacent
node can provide the requested packet is lower than if each node requests and stores content.

 1

 10

 100

 1000

 10000

 100000

 500 1000 5000

m

es
sa

ge
s

Playground size

Effective Interests sent

10 Requesters
50 Requesters
99 Requesters

Figure 4.12: Number of Interest packets sent for different playground sizes and different numbers of
requesters. deltaN = 10, ε = 3.

4.3.5 Comparison to Regular CCN Traffic

In this subsection, we compare content transmissions via Raptor coding with regular CCN con-
tent transmissions without Raptor coding. Figure 4.13 shows the time required for all 99 re-
questers to receive enough packets to decode. The x-axis indicates the time in seconds while
the y-axis shows the cumulative number of nodes that finished content transmission. As we can
see, the Raptor coding application outperforms regular CCN by far in terms of transmission time
on the two smaller playgrounds. On the largest playground, using Raptor coding, the first few
nodes get the complete content earlier than in regular CCN. However, in regular CCN, it takes
a shorter time for all nodes to gather the whole content. This can be explained by the different
Interest transmission strategies in Raptor CCN and regular CCN.

In regular CCN, data packets are requested sequentially. If a timeout occurs – due to mobil-
ity or channel loss for instance – the same packet is retransmitted instantly. If several Interest
packets remain unanswered, the requester pauses for four seconds and then again sends an In-
terest packet. In addition, if a timeout occurs, the pipeline window is set to one which means
that a maximum number of one Interest can be pending at a time. For each received segment,
the pipeline window will then again be increased by one until it reaches the pipeline size. In
the Raptor coding approach, the pipeline window is fixed to 16 which is the maximum size for
regular CCN. Hence, a node will always send Interest packets for the next 16 packets it requires.
If a segment is not available, it is skipped and the requester proceeds with the next higher seg-
ment it has not received yet. This strategy is especially advantageous if node density is high

34

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 100 1000 10000 100000

N
o.

 o
f n

od
es

 th
at

 h
av

e
de

co
de

d

time in [s]

Playground 500, Raptor Coding
Playground 500, regular CCN

Playground 1000, Raptor Coding
Playground 1000, regular CCN

Playground 5000, Raptor Coding
Playground 5000, regular CCN

Figure 4.13: Cumulative number of nodes that have decoded for variable playgrounds on logarithmic
time scale. ε = 3, deltaN = 10.

since available content can be collected quickly. On the other hand, having low node density,
this approach keeps sending 16 Interests at a time and thus generates much Interests in situations
where no other node is within transmission range.

Figure 4.14 shows the number of Interest packets the Raptor coding application sends out
until the required number of encoded packets is received, denoting the playground size on the
x-axis and the number of Interest messages on the y-axis. Please note that the y-axis is scaled
logarithmically. We can observe that overall, Raptor coding shows the bigger variance. On
the smallest playground, the average number of Interest messages required is 93% lower in the
Raptor coding scenario than with regular CCN. Having the playground of 1000m x 1000m,
Raptor coding still transmits 80% less Interest packets. However, on the largest playground size
of 5000m x 5000m, Raptor coding requires more Interest packets being sent out in order to
retrieve all required content. This pattern can also be observed in the scenarios where the ratio
of requesting nodes is reduced to 10 and 50 requesting nodes. The effect relates to the reduced
connectivity of nodes which is due to the reduced net requester ratio on large playgrounds. If
no content source within reach can reply to a requester’s Interest packets, it keeps transmitting
Interest packets. As the net requester density is low on the largest playground, this is more likely
to occur than on the smaller playgrounds. In such scenarios, it would be advantageous to adapt
the requesting strategy and reduce the pipeline window if not connected to any node. This would
lower the number of Interests being sent to obtain the required number of encoded packets since
unnecessary Interests are avoided if the requester is not connected to any node.

Next, we want to compare Raptor coding with regular CCN when not all nodes are requesting
content. Figure 4.15 shows the number of Interest packets sent out until the required number
of packets has been received for the scenarios with requester ratios of 10 and 50 percent. The
percentages are indicated in parantheses in the legend. The x-axis shows the playground size
and the y-axis shows the number of transmitted Interest messages. Please note that the y-axis
is scaled logarithmically. We can observe that with Raptor coding, fewer requesters lead to an

35

 1

 10

 100

 1000

 10000

 100000

 500 1000 5000

In

te
re

st
s

Playground size

Sent Interests for Raptor Coding vs. regular CCN with 99 requesters

Interests sent, Raptor coding
Interests sent, regular CCN

Figure 4.14: Comparison of Interest packets sent using Raptor coding application and regular CCN
application on different playgrounds. ε = 3, deltaN=10.

 1

 10

 100

 1000

 10000

 100000

 500 1000 5000

In

te
re

st
s

Playground size

Sent Interests for Raptor Coding vs. regular CCN with reduced requester ratio

Raptor coding (50)
regular CCN (50)

Raptor coding (10)
regular CCN (10)

Figure 4.15: Comparison of Interest packets sent having a reduced ratio of requesting nodes. ε = 3,
deltaN = 10.

36

increase in Interest packets being transmitted. Regular CCN requires approximately the same
number of Interests on the 500m x 500m and 1000m x 1000m playgrounds. However, on the
largest playground, the fewer nodes request content, the more Interests need to be transmitted
in order to receive the requested. While Raptor coding requires less Interests being sent on
the smaller playgrounds with 99 requesters, it transmits 18.75% more Interest messages than
regular CCN in average on the largest playground. If the requester ratio decreases, the number
of additionally transmitted Interests increases. In the scenario with 50 requesters, Raptor coding
sends out 169.8% more Interest messages than regular CCN does. In the 10 requester scenario,
Raptor coding even transmits 217.2% more Interest packets than regular CCN.

As requesters also act as content sources for content they have already received, the decreas-
ing number of requesters also decreases the number of potential content sources. This supports
the conclusion that Raptor coding is advantageous in scenarios with a high net requester density
while regular CCN performs better on areas with a rather sparse net requester density.

Playground size
500 x 500 1000 x 1000 5000 x 5000

No. 99 71.66 17.91 0.71
requesting 50 36.19 9.04 0.36

nodes 10 7.24 1.81 0.07

Table 4.6: Net requester density. Regular CCN performs better where cells are shaded.

Based on Raptor Coding and regular CCN performance, the radio parameters and Equation
4.2, we can derive Table 4.6, which links the net requester density to the different simulation
scenarios. The cells which are shaded grey identify scenarios in which Raptor coding with the
current requesting strategy could not prove to be advantageous over regular CCN. We can see
that having a net requester density below 2, regular CCN performs better. Having a higher net
requester density, however, Raptor coding can reduce both time and number of Interest messages
required to receive data.

Therefore, we can conclude that we either use Raptor coding only in crowded areas with
high node density, or we need to increase the net node density by increasing the transmission
power of the mobile nodes’ antennas (if possible).

4.3.6 Discussion

Having mentioned the three most important questions at the beginning of this chapter, after
analyzing the simulation results, we can now answer them:

How do the parameters deltaN and ε influence Raptor coding performance?

The parameter deltaN determines the number of linear combinations that are generated in addi-
tion to the number of original data packets. ε on the other hand indicates the number of encoded
packets a requester receives until it is able to decode, again in addition to the number of original
data packets.

37

First having a look at the parameter deltaN , the simulation showed that smaller values for
deltaN are advantageous in terms of time needed until decoding is feasible. This also holds
with respect to the number of Interests required in order to get all needed encoded packets. As
requesting nodes cannot detect when content is added to their cache, their ability to overhear
transmissions is limited.

However, regarding ε, there was hardly any discrepancy between the different values. There-
fore, the value for ε should be chosen to comply with a sufficient probability of successful de-
coding as mentioned in chapter 4.2.

How does Raptor coding performance change when the playground size increases and
thus node density drops?

Raptor coding performs much better on smaller playgrounds. When having the same number of
nodes, the bigger the playground, the smaller the chance that a node meets another station which
can provide the requested content. Having an extended set of packets that may be requested in
Raptor coding compared to the input packet set requested in regular CCN, the probability that an
adjacent node can provide the requested content even drops lower. Hence, having low net node
density, Raptor coding cannot improve transmission performance compared to regular CCN.

Above conclusions are made under the assumption that the number of nodes on the play-
ground stays fixed which implicates that the playground size determines the net node density.
We expect that increasing the number of nodes on the largest playground accordingly, i.e., by
factor 25, would lead to similar results to the ones observed on the 1000m x 1000m playground.

What is the impact of different ratios of requesting nodes?

On small playgrounds, the different proportions of requesting nodes do not influence the time
until all requesters are able to decode in a relevant manner since the net node density remains
high in all cases. The larger the playground, however, the bigger the difference: Scenarios with
few requesters show a slow data dissemination which results in longer times until all requesters
can decode. Likewise, a high number of requesters reduce the average number of Interest mes-
sages needed to be transmitted in order to decode the requested content. Both these effects mean
that Raptor coding performs better in environments where many nodes request the same content.

How does Raptor coding perform compared to regular CCN traffic?

Focusing on the smaller playgrounds with sizes of 500m x 500m and 1000m x 1000m, Raptor
coding delivers a mentionable gain in performance with respect to both the time and Interest
messages needed to receive the whole requested content. However, when considering larger
environments and / or environments with net requester density below 2, regular CCN takes less
time for all nodes to receive the content. Similarly, fewer Interests need to be transmitted on the
two smaller playgrounds while the largest playground requires Raptor Coding to transmit more
Interest packets than regular CCN.

We have seen that Raptor coding is advantageous in situations where requester density is
high. This knowledge could be used to deploy Raptor coding in crowded environments where

38

node density is expected to be high, for instance at airports, shopping malls or sports stadiums.
Even time-dependant applications, e.g. at train stations during rush hour, are conceivable.

39

Chapter 5

Conclusion

5.1 Summary

In this bachelor thesis, we added Raptor coding functionality to content centric networks. In case
of collisions or packet loss, Raptor coding allows network nodes to retransmit not exactly the
same packet again but another linear combination of the content requested. This may lead to a
gain of knowledge for other nodes within the transmission range. Simulating different scenarios
using OMNeT++, we measured the time needed to receive all segments of the received content
as well as the amount of Interest packets required being transmitted to achieve this goal.

5.2 Conclusions

The evaluation of the different simulations has shown that Raptor coding is advantageous es-
pecially concerning the time required until all nodes have received the whole content having
environments with high node density and using a relatively small value for deltaN . The pa-
rameter ε does not influence the transmission characteristics but can be chosen to comply with a
sufficient probability of successful decoding or even in a dynamic manner.

However, the full potential of Raptor coding cannot be exploited as the underlying concepts
are very different: Raptor coding is based on the ability of network nodes to overhear transmis-
sions on the wireless medium. CCN, on the other hand, requires each and every data packet
to match an Interest packet previously generated. Hence, CCN does not support opportunistic
overhearing of data packets, which is a key strategy in Raptor coding.

41

5.3 Future Work

One fundamental element of content centric networks – trust and signature – has not been ad-
dressed in this thesis. Thus, when intending to deploy Raptor coding in CCN, a strategy for
signing the encoded packets without impairing the current signature mechanisms that ensure
trust for data packets needs to be engineered.

Also, we have used an integer value to assign IDs to encoded packets. Together with the seed
and the parameter deltaN , the encodedID could identify the set of encoded packets a particular
packet belongs to. When the number of different encoding sets for one set of input packets (i.e.
for one content prefix) increases, the probability of getting overlapping ID ranges or even an
overflow of the data type increases. This absolutely has to be avoided since ambiguous content
names would corrupt the decoding process beside its undesirability in general. Since there was
only one content source producing encoded packets in our simulations, we could neglect this
problem. However, having multiple content sources or introducing re-encoding at each node,
this issue needs to be addressed. In a real-world implementation, prefix matching also included
the signature which is uniquely added to each packet at the content source and which makes
the problem less severe. In the simulations, however, we did not consider signatures. For large
numbers of input packets, even the encodedIDs data type might be changed to ensure that no
overflow occurs.

Running the experiment as OMNeT++ simulation means that processing time is not taken
into account. This could, for instance, have the impact that Interests in encoded content might
expire while the content source encodes the requested packets due to their expiration time of four
seconds. This issue was not relevant for our simulations but should be considered when carrying
the scenarios to physical nodes. This solution could for example involve an additional packet
which tells the requester that original data packets are currently being encoded. This packet will
contain the seed of the encoding by which knowledge the requester can generate Interests in the
encoded packets without additional delay.

For playgrounds with low net requester density, the chosen requesting strategy may not
be ideal. Thus, the requesting strategy might be chosen according to the net requester density.
Also, facilitating the nodes to detect cached content could enhance the ability to overhear content
transmissions and thus reduce the number of Interest messages that have to be sent out. A way
to solve this could be to introduce Interest messages with local scope, i.e., whose reach is limited
to the node the application is connected to.

The thesis has highlighted the huge conceptional gap between strictly Interest-based con-
tent reception in CCN and opportunistic data-accumulation in Raptor coding which was further
explained in chapter 3. Aiming to make use of Raptor coding or network coding in CCN univer-
sally and in an efficient manner, this gap must be conquered.

42

Bibliography

[1] C. Fragouli, D. Katabi, A. Markopoulou, M. Medard, and H. Rahul, “Wireless network
coding: Opportunities x00026; challenges,” in Military Communications Conference,
2007. MILCOM 2007. IEEE, oct. 2007, pp. 1 –8.

[2] M. Luby, M. Watson, T. Gasiba, T. Stockhammer, and W. Xu, “Raptor codes for reliable
download delivery in wireless broadcast systems,” in Consumer Communications and Net-
working Conference, 2006. CCNC 2006. 3rd IEEE, vol. 1, jan. 2006, pp. 192 – 197.

[3] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in Proceedings of the 5th
international conference on Emerging networking experiments and technologies, ser.
CoNEXT ’09. New York, NY, USA: ACM, 2009, pp. 1–12. [Online]. Available:
http://doi.acm.org/10.1145/1658939.1658941

[4] A. Shokrollahi and M. Luby, Raptor Codes, 2011, vol. 6, no. 3-4. [Online]. Available:
http://dx.doi.org/10.1561/0100000060

[5] “OMNeT++ simulation framework,” http://www.omnetpp.org, 2014.

[6] P. Chou and Y. Wu, “Network coding for the internet and wireless networks,” Signal Pro-
cessing Magazine, IEEE, vol. 24, no. 5, pp. 77 –85, sept. 2007.

[7] A. Albanese, J. Blomer, J. Edmonds, M. Luby, and M. Sudan, “Priority encoding trans-
mission,” Information Theory, IEEE Transactions on, vol. 42, no. 6, pp. 1737–1744, Nov
1996.

[8] N. Thomos, J. Chakareski, and P. Frossard, “Prioritized distributed video delivery with
randomized network coding,” Multimedia, IEEE Transactions on, vol. 13, no. 4, pp. 776–
787, Aug 2011.

[9] N. Thomos and P. Frossard, “Network coding of rateless video in streaming overlays,”
Circuits and Systems for Video Technology, IEEE Transactions on, vol. 20, no. 12, pp.
1834–1847, Dec 2010.

[10] A. Shokrollahi, “Raptor codes,” Information Theory, IEEE Transactions on, vol. 52, no. 6,
pp. 2551 –2567, june 2006.

43

http://doi.acm.org/10.1145/1658939.1658941
http://dx.doi.org/10.1561/0100000060
http://www.omnetpp.org

[11] “Nrutil, Numerical Recipes Public Domain Software,” http://www.nr.com/pubdom/nrutil.
c.txt, 2014.

[12] “Boost C++ serialization library,” http://www.boost.org/libs/serialization, 2014.

[13] T. Camp, J. Boleng, and V. Davies, “A survey of mobility models for ad hoc network
research,” Wireless Communications and Mobile Computing, vol. 2, no. 5, pp. 483–502,
2002. [Online]. Available: http://dx.doi.org/10.1002/wcm.72

44

http://www.nr.com/pubdom/nrutil.c.txt
http://www.nr.com/pubdom/nrutil.c.txt
http://www.boost.org/libs/serialization
http://dx.doi.org/10.1002/wcm.72

	Contents
	List of Figures
	List of Tables
	Introduction
	Related Work
	Content Centric Networks
	Network Coding
	Raptor Codes

	Design and Implementation of Raptor Coding in CCN
	Raptor Coding in Content Centric Networks
	Raptor Coding Strategy
	Data Structures
	Packet Processing

	Naming
	Implementation in OMNeT++ Simulator
	CCN Application
	Raptor Coding Class
	Helper Functions
	Serialization
	XOR

	Evaluation
	Simulation Environment
	Simulation Scenario
	Simulation Results
	Impact of
	Impact of deltaN
	Impact of Playground Size
	Impact of Requester Ratio
	Comparison to Regular CCN Traffic
	Discussion

	Conclusion
	Summary
	Conclusions
	Future Work

	Bibliography

