
DEVELOPMENT, TESTING,
DEPLOYMENT AND OPERATION OF

WIRELESS MESH NETWORKS

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Thomas Staub

von Wohlen BE

Leiter der Arbeit:
Professor Dr. Torsten Braun

Institut für Informatik und angewandte Mathematik

DEVELOPMENT, TESTING,
DEPLOYMENT AND OPERATION OF

WIRELESS MESH NETWORKS

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Thomas Staub

von Wohlen BE

Leiter der Arbeit:
Professor Dr. Torsten Braun

Institut für Informatik und angewandte Mathematik

Von der Philosophisch-naturwissenschaftlichen Fakultät angenommen.

Der Dekan:
Bern, 27.05.2011 Prof. Dr. Silvio Decurtins

Abstract

Wireless Mesh Networks (WMNs) are a key technology to provide inexpensive
ubiquitous network access to end users and sensing equipment in urban, rural, and
developing areas. WMNs seamlessly integrate with existing traditional fixed or
cellular networks and extend their network coverage. Like any other network, a
WMN and the services running on top of it go through a life cycle consisting of
development, testing, deployment and operation. This thesis contributes solutions
addressing various challenges encountered in each phase of the life cycle.

First, we designed a flexible framework for development and testing of new
protocols and architectures. The framework is based on traffic interception by
a virtual wireless interface and on network emulation. It offers instruments to
comprehensively test real prototype implementations within a well controllable
environment. Hence, diverse conditions and scenarios can be efficiently evaluated.

Second, a build system for an own embedded Linux distribution tailored to
mesh nodes has been implemented. It supports cross-compilation for various node
platforms and incorporates features of a novel management architecture. We de-
signed this management architecture to safely handle configuration and software
updates and to avoid costly on-site repairs in WMNs. The architecture also guar-
antees the remote accessibility to all network nodes in the presence of configuration
errors and faulty updates.

Further, we tested the applicability of WMNs for environmental monitoring in
an outdoor deployment. The deployment delivered expert knowledge concerning
the deployment processes, such as identification of best practises, evaluating the
equipment and its usability for future outdoor deployments.

As another practical application of WMNs, a video conferencing system on
construction sites was investigated. The temporally deployed WMN in such sce-
nario was designed to be easily set up and operated by a non-expert user.

Finally, a prototype implementation has proven the feasibility of an autonomous
deployment of a WMN using unmanned aerial vehicles for communication in
emergency and disaster scenarios.

Contents

List of Figures v

List of Tables x

1 Introduction 1
1.1 Problem Statement . 3

1.1.1 Development Phase . 3
1.1.2 Testing/Implementation Phase 4
1.1.3 Deployment Phase . 4
1.1.4 Network Operation Phase 5

1.2 Research Contributions . 6
1.2.1 Operating System and Management for WMNs 7
1.2.2 Development and Testing Support 7
1.2.3 WMN for Environmental Monitoring 8
1.2.4 Deployment Support for an Ad-Hoc WMN 8
1.2.5 Autonomous Deployment of a WMN using Unmanned Aerial

Vehicles . 9
1.3 Summary of Contributions . 9
1.4 Thesis Outline . 10

2 Related Work 13
2.1 Wireless Mesh Networks . 13

2.1.1 Routing . 16
2.1.2 Multi-Channel Communication 20
2.1.3 Network Management 22

2.2 WMN Nodes . 24
2.2.1 WMN Hardware Platforms 24
2.2.2 Embedded Operating Systems Distributions 27

2.3 Network Simulation and Emulation 29
2.3.1 Network Simulation . 29
2.3.2 Network Emulation . 31

2.4 Existing WMN Deployments and Testbeds 33
2.4.1 Outdoor Deployments 34
2.4.2 Testbeds . 35

i

2.5 Deployment Support for Wireless Mesh Networks 37
2.6 Unmanned Aerial Vehicle Hardware 38
2.7 Regulations . 39
2.8 Conclusions . 40

I General Frameworks and Tools 41

3 Operating System and Management for WMNs 43
3.1 Introduction . 44
3.2 ADAM: Concept and Architecture 46

3.2.1 Decentralised Distribution Mechanism 46
3.2.2 Self-Healing . 47
3.2.3 Separation of Software and Configuration Data 48

3.3 ADAM: Build System . 48
3.4 ADAM: Management Operation 52

3.4.1 ADAM Distribution Engine 52
3.4.2 Configuration Module 54
3.4.3 New Node Module . 54
3.4.4 Software Update Module 55
3.4.5 Command Module . 58
3.4.6 Lost Node Detection . 58
3.4.7 Web-Based Management 58

3.5 Evaluation . 61
3.6 Conclusions . 63

4 Development and Testing Support 65
4.1 Introduction . 66
4.2 VirtualMesh Concept and Architecture 67
4.3 VirtualMesh Communication Protocol 69
4.4 Host Virtualisation . 72
4.5 Client Implementation . 73
4.6 Wireless Simulation Server . 79

4.6.1 Components . 79
4.6.2 Message Flow . 81
4.6.3 Protocols . 82

4.7 ADAM/VirtualMesh Integration 87
4.8 Evaluation . 87

4.8.1 VirtualMesh Test Setup 89
4.8.2 Functional Evaluation using ADAM 89
4.8.3 Performance Evaluation 92

4.9 Conclusions . 99

ii

II Application Specific Use Cases 103

5 WMN for Environmental Monitoring 105
5.1 Introduction . 106
5.2 Application Scenario . 106
5.3 Equipment . 107

5.3.1 Mesh Nodes and Antennas 107
5.3.2 Power Supply for the Mesh Nodes 108
5.3.3 Masts . 110
5.3.4 Wall Mounting . 111
5.3.5 Tools and Utilities . 111

5.4 Deployment Parameters . 111
5.5 Software . 115
5.6 Planning, Predeployment, and Deployment 115
5.7 Evaluation . 120
5.8 Conclusions . 125

6 Deployment Support for an Ad-Hoc WMN 127
6.1 Motivation . 128
6.2 OViS Concepts and Architecture 129

6.2.1 Requirements . 130
6.2.2 Network Setup . 131
6.2.3 Multi-Channel Communication 133
6.2.4 Message Flow between OViS Client and the Mesh Node . 135

6.3 OViS Mesh Nodes . 136
6.4 OViS Deployment Applications 138
6.5 Evaluation . 145

6.5.1 Determination of RSSI Thresholds 146
6.5.2 OViS Performance Evaluation 147
6.5.3 Multi-Hop Throughput 149
6.5.4 Multi-Channel Performance 149

6.6 Conclusions . 150

7 Autonomous Deployment of a Wireless Mesh Network using Unmanned
Aerial Vehicles 153
7.1 Introduction . 154
7.2 Scenario . 155

7.2.1 Search Mode . 156
7.2.2 Positioning of UAVs . 156
7.2.3 Single Airborne Relay 156
7.2.4 Multi-Hop Airborne Relay 157

7.3 System Components . 158
7.3.1 Communication Types 160
7.3.2 Prototype . 161

iii

7.4 Communication Protocol . 162
7.4.1 Protocol Messages . 162
7.4.2 Message Flow . 164

7.5 Remote Control Client . 166
7.6 Evaluation . 168

7.6.1 Determination of Optimal Signal Strength Thresholds . . 168
7.6.2 Multi-Hop Performance 170
7.6.3 Effect of Too Far Away Nodes 170

7.7 Conclusions . 171

8 Conclusions and Outlook 173
8.1 Summary . 174
8.2 Outlook . 176

9 Acronyms 179

Bibliography 183

List of Publications 203

Curriculum Vitae 211

iv

List of Figures

1.1 Wireless mesh network. 1
1.2 Usual life cycle of a network consisting of development, testing /

implementation, deployment, and operation. 2
1.3 Systematic overview of contributions. 6

2.1 Hybrid wireless mesh network. 14
2.2 Optimised flooding OLSR: classical vs. multi-point-relay flooding. 18

(a) Classical full flooding. 18
(b) Multipoint Relays. 18

2.3 PCEngines WRAP.2C with an indoor case. 25
2.4 PC Engines ALIX.3d2 system board. 26
2.5 Meraki Mini with an indoor case. 26
2.6 OpenMesh professional router OM1P. 27
2.7 Quadrocopter from HiSystems Ltd. - a small unmanned aerial ve-

hicle. 38
2.8 Quadrocopter flight electronics: main processor board Flight-Ctrl,

four brush-less controllers, GPS module, NaviCtrl with three-axis
magnetic field sensor. 39

3.1 Example of a WMN: One node is temporarily unavailable, e.g.,
due to lack of power. Another node is added to the network for the
first time. Multiple nodes can provide management functionality
for the network. 45

3.2 Distribution of node configuration and software updates. 47
(a) Nodes periodically check for updates (green arrows). A new

configuration is injected at a management node (M) or a nor-
mal node. 47

(b) First nodes (A, B) get the update from node M (orange arrows). 47
(c) Next nodes (C, D) get the update from node A and B. 47

3.3 ADAM: Steps of the build and set-up process for a node. 50
3.4 Run time layout of system RAM and the secondary storage for

PCEngines ALIX/WRAP, Meraki Mini and OpenMesh OM1P nodes. 51
3.5 Detailed boot process. 52
3.6 General ADAM management architecture. 53

v

3.7 Integration of a new node into an existing network. 55
(a) New node searches for networks having an ESSID that matches

an IPv6 prefix. 55
(b) New node automatically configures a valid IPv6 address and

tries to get its configuration from neighbours. After the new
node has received its configuration, it is fully integrated into
the network. 55

(c) If no configuration is available, the node announces its state
to a management node. The user has to generate a new con-
figuration. The new node is integrated in the network after
having received the generated configuration. 55

(d) After the new node has received its configuration, it is fully
integrated into the network. 55

3.8 Safe software update process for Linux kernel and root file system
with automatic fall back to previous software image. 57

3.9 ADAM: Management of network configuration. 59
3.10 ADAM: Modification of selected network configuration. 59
3.11 ADAM: Edit the network configuration of an individual node. . . 60

4.1 General concept: Traffic interception and emulation of the wireless
medium via subdivision of the network stack. 68

4.2 VirtualMesh architecture with real nodes, virtualised nodes, and
the simulation model. 69

4.3 Message format to communicate with the model: data transmission
and node registration. 71

4.4 A node with native Linux network stack (a) and a node with our
virtual network interface (b) (iwconnect) communicating with the
OMNeT++ simulation model. 76
(a) Physical interface. 76
(b) Virtual interface . 76

4.5 Access to virtual interfaces and its parameters using libvif. 77
4.6 Packet flow between two nodes interconnected by the OMNeT++

simulation model. 78
4.7 Message flow inside the simulation model ’WlanModel’. 81
4.8 Node registration. 83
4.9 Node de-registration. 84
4.10 Node configuration. 86
4.11 Experimental setup with multiple virtualised wireless nodes run-

ning on a XEN virtualisation server and a simulation server hosting
the WlanModel. 89

4.12 Summarised RTT results for quantifying infrastructure network de-
lay. 93

4.13 iwconnect/VirtualMesh communication protocol RTT overhead with
respect to payload size. 94

vi

4.14 iwconnect/emulation protocol RTT overhead with respect to trans-
mission interval. 94

4.15 RTT with various payload sizes (distance = 300m, transmission
interval = 1s). 95

4.16 RTT with concurrent streams (distance = 300m, transmission in-
terval = 1s). 96

4.17 WlanModel scalability (distance = 300m, transmission interval =
1s, payload size = 56B). 97

4.18 WlanModel multi-hop behaviour (distance = 500m, transmission
interval = 1s, payload size = 56B). 98

4.19 Aggregated throughput for parallel transfers using TCP and UDP. 98
4.20 Multi-hop throughput results. 99

5.1 Map of Switzerland with the location of CTI-Mesh network. . . . 107
5.2 CTI-Mesh network deployed in the area Neuchâtel - Payerne, Switzer-

land. 108
5.3 Deployed nodes. 109

(a) Node03 in Corges. 109
(b) Node04 in Belmont. 109

5.4 Node05 deployed near Belmont. 109
5.5 Node06 on the platform roof of the MeteoSwiss building in Payerne.110
5.6 Water protected enclosure. 111
5.7 Power supply box with solar charger, lead acid battery, passive PoE

adapter, yellow electric cable, and twisted pair cable. 112
5.8 Assembling of node01 on the platform roof of the University of

Neuchâtel. 113
5.9 Helpful special tools. 113

(a) Amplitude compass. 113
(b) Mast level. 113
(c) Socket wrench with ratchet handle. 113

5.10 Complete assembly of telescopic mast in horizontal position before
final setup. 118

5.11 Concrete paving slab to prevent sinking in of the tripod, sand bag
and iron stake to stabilise mast. 119

5.12 Primarily used fixedly mounted threepart guying clamp and its re-
placement part, a movable guying clamp to prevent torsion of mast. 120

5.13 Broken mast due to strong winds and loose guying (node02). . . . 121
5.14 Screenshot of IP camera streaming over WMN. 122
5.15 TCP bandwidth for the connections to node01. 123
5.16 TCP bandwidth for each link. 123
5.17 ETX values for best route from node01 to node06. 124
5.18 Route availablity to node06/IP camera at node01. 124
5.19 Received signal strengths for all six links. 125

vii

6.1 Motivation for OViS: An electrician requires instructions to solve
an issue at the switching unit in the basement of a building. Unfor-
tunately, there is no reception of cellular networks in the basement. 128

6.2 OViS: A temporary WMN provides Internet connectivity in the
basement and, therefore, enables video-conferencing to discuss prob-
lems comfortably and efficiently. 129

6.3 Stepwise deployment of the temporary network for OViS. 130
(a) Gateway node deployed. 130
(b) Intermediate node deployed. 130
(c) Complete network deployed. 130

6.4 OViS network topology: OLSR (IPv4). 132
6.5 OViS network topology: OLSR (IPv6) with IPv4-in-IPv6 tunnel. . 132
6.6 OViS network topology: Full OLSR (IPv4). 133
6.7 OViS: Deployment and configuration steps for multi-channel com-

munication. 134
(a) Step 1 . 134
(b) Step 2 . 134
(c) Step 3 . 134

6.8 OViS: Message sequence for the deployment of a mesh node. . . . 135
6.9 Prototype of a battery-powered OViS WMN node. 136
6.10 OViS components on a wireless mesh node. 137
6.11 OViS Support Process: Deployment of a temporary communica-

tion infrastructure for on-site video conferencing by an inexperi-
enced user. 138

6.12 Command-line and graphical OViS clients for personl computers. 140
(a) OViS command-line client 140
(b) Mac OS X OViS client . 140

6.13 OViS full-screen kiosk application optimised for the Asus R2H
UMPC. 141

6.14 OViS deployment process guided by an Android application (Part I). 142
6.15 OViS deployment process guided by an Android application (Part

II). 143
6.16 OViS deployment application for iOS (running on iPhone). 144
6.17 OViS deployment application for iOS (running on iPad). 145
6.18 Achievable single hop throughput in relation with the received sig-

nal strength indicator (RSSI). 146
6.19 OviS deployment test scenario. 147
6.20 Throughput of different deployments: non-guided deployment, OViS

deployment, and manually optimised. 148
6.21 Signal strengths achieved after deployment with OViS and after

manual optimisation with relocating the nodes and aligning the an-
tennas. 149

6.22 Throughput depending on the number of hops. 150

viii

6.23 Throughput in a two hop scenario using single and multi-channel
communication. 150

7.1 Flying UAV swarm carrying a temporary WMN. 155
7.2 Multi-Hop Airborne Relay Scenario. 155
7.3 Process of connecting two distant clients by one single flying WMN

node (airborne relay). 157
7.4 System components of UAVNet: WMN node with UAV controller

and IEEE 802.11s mesh access point (MAP), UAV electronics and
UAV client. 159

7.5 Communication types in UAVNet: Serial to interconnect WMN
node and UAV, IEEE 802.11s for data and control traffic. 160

7.6 UAVNet: Flight electronics connected by a serial connection to the
WMN node. 161

7.7 Flying quadrocopter UAV carrying a WMN node. 162
7.8 UAVNet: Protocol messages. 163
7.9 Message flow for a scenario with and without known direction to-

wards the location of the second client (manual and autonomous
search). 164

7.10 Message flow for subscribing to notification service. 165
7.11 Remote Control Application (iPad): Selection of network deploy-

ment scenario. 166
7.12 Remote Control Application (iPhone): setting the scenario, confir-

mation, and monitoring of flying UAVNet. 167
7.13 GUI-Marker representing the current state of a UAV. 167
7.14 TCP throughput between two WMN nodes depending on signal

strength. 168
7.15 UDP throughput between two WMN nodes depending on signal

strength. 169
7.16 RTT between two stationary WMN nodes depending on signal

strength. 169
7.17 TCP and UDP throughput over multiple hops. 170
7.18 TCP and UDP throughput between two distant nodes. 171

ix

List of Tables

2.1 Comparison of evaluation in network simulation, network emula-
tion and real world testbeds. 29

3.1 Qualitative analysis of the ADAM management architecture. . . . 63

4.1 Possible solutions for the implementation of the virtual wireless
interface. 75

4.2 VirtualMesh wireless configuration settings consisting of static pa-
rameters directly set in the simulation model WlanModel and dy-
namic parameters propagated from the virtual interfaces. 90

4.3 Qualitative analysis of simulation, testbeds, and VirtualMesh. . . . 100

5.1 Links using 1000mW EIRP. 115

6.1 Available OViS client applications. 139

7.1 UAVNet deployment scenarios and options. 158

x

Preface

The following PhD thesis is based on work performed during my employment as
a research and lecture assistant at the Institute of Computer Science and Applied
Mathematics (IAM) of the University of Bern, Switzerland. The research con-
ducted in this thesis has been partially supported by the Swiss National Foundation
project ”Mobile IP Telephony (MIPTel)” (grant number: 200020-113677/1), the
”EuQoS” Integrated Project of the European Union 6th Framework Programme
(grant number IST FP6 IP 004503) and the technology transfer project ”Wireless
Mesh Networks for Interconnection of Remote Sites to Fixed Broadband Networks
(CTI-Mesh)” funded by the Swiss Commission for Technology and Innovation
(CTI) (grant number: 9795.1 PFES-ES).

I would like to thank everybody who provided me with support, ideas, under-
standing, and encouragement during the course of my PhD thesis. First, I want
to express my gratitude to Prof. Dr. Torsten Braun, head of the Computer Net-
work and Distributed Systems group (CNDS), who supervised and encouraged my
work. He offered me an interesting and challenging work environment and the op-
portunity to participate in national and European research and technology transfer
projects.

I would also like to thank Prof. Dr. Andreas Kassler for reading this work and
providing valuable feedback and Prof. Dr. Matthias Zwicker, who was willing to
be co-examiner.

Many thanks go to my colleagues at the institute and in our research group
for being part of a great team. In particular, I want to thank Carlos Anastasi-
ades, Markus Anwander, Florian Baumgartner, Thomas Bernoulli, Peppo Bram-
billa, Marc Brogle, Desislava Dimitrova, Kirsten Dolfus, Philipp Hurni, Dragan
Milic, Benjamin Nyffenegger, Ruy de Oliveira, Matthias Scheidegger, Gerald Wa-
genknecht, Markus Wälchli, Attila Weyland and Markus Wulff. Special thanks go
Ruth Bestgen, the secretary of the CNDS research group, for her support in the
administrative tasks during all these years. She is the heart and the soul of our
office.

I would also like to thank all the students, who contributed to this thesis in one
way or another. In particular, thanks go to Daniel Balsiger, Reto Gantenbein, Al-
ican Geycasar, Adrian Hänni, Abdalla Hassan, Jana Krähenbühl, Michael Lusten-
berger, Simon Morgenthaler, Christine Müller, Stefan Ott, Marcel Stolz, and Roger
Strähl, who performed their Bachelor’s and/or Master’s thesis under my guidance.

xi

I would like to express my thanks to Paul Kim Goode, Markus Wälchli and
Kirsten Dolfus for proofreading the thesis.

I am very grateful to my family, especially my parents Werner and Madeleine
Staub, my brother Stefan Staub and my girlfriend Manuela Gugler, for supporting
me in many ways and being always patient during the years of my PhD thesis. I
would also like to thank Manuela for her understanding and sharing a wonderful
time with me.

I would also like to thank my friend Philipp Berger, with whom I played squash
and went to the gym for many years. This weekly activity helped in balancing the
brain-centric research work.

xii

Chapter 1

Introduction

Wireless mesh networks (WMNs) are a key technology for providing simple and
inexpensive network access in scenarios where fixed (wired or cellular) network
access is unavailable or expensive in installation. Such scenarios include offering
public wireless network access in urban areas as well as connecting remote areas
to existing network infrastructure. A key feature and requirement of WMNs is
the provisioning of wireless broadband services. In addition, the application range
covers wide areas requiring multi-hop routing and management.

Figure 1.1: Wireless mesh network.

WMNs offer a cost-efficient last-mile access network to end user devices and
sensing equipment, e.g., wireless sensor networks (see Figure 1.1). They provide
means to interconnect isolated networks and to enhance wireless network coverage
in urban and rural areas over a robust and redundant communication infrastruc-
ture. They usually consist of static (stationary) mesh routers and mobile or static
mesh clients. Both support multi-hop communication. Depending on the scenario,
clients may act as routers too.

Like any other network, a WMN and the services running on top of it traverse a
given life cycle. This life cycle can be generally split into the following four phases
(see Figure 1.2):

Development: In order to provide new services to the customer, network proto-
cols and services have to be specified, implemented, and evaluated. After re-
quirement analysis, a first implementation of the specified protocol is usually

1

Figure 1.2: Usual life cycle of a network consisting of development, testing / implemen-
tation, deployment, and operation.

evaluated in a network simulator. Development and evaluation in a network
simulator provides flexibility in terms of abstraction, cross-layer interaction,
and scalability. It supports fast prototyping, enables quick introduction of
new ideas, and allows the evaluation under various conditions supported by
a flexible parametrisation process.

Testing/Implementation: After a successful evaluation in a simulator, the pro-
tocols and services are implemented and tested on the target platform(s).
Hence, the protocol and service specifications are migrated and adapted to a
real hardware platform. The migration step is in general time-consuming due
to the necessity to cope with peculiarities and variations of embedded hard-
ware platforms as well as the operating system(s) running on top of them.
The migration is divided into several iterations of prototyping and evalua-
tion. For complexity reasons, often a real small-scale testbed is used. The
final release of the software is preceded by extensive pre-deployment tests in
a medium-scale testbed.

Deployment: When the pre-deployment tests have succeeded, the software is re-
leased for roll-out and deployment in the target (customer) network. These
steps include careful planning and scenario analysis. Environmental, social,
and regulatory aspects are considered on a refined inspection. Of course,
these aspects have to be taken into account from the beginning of the life
cycle, since fundamental failure in satisfying them would negatively affect
the success of the entire deployment. From a technical point-of-view, node
locations need to be specified and the equipment, consisting of WMN nodes,

2

1.1. PROBLEM STATEMENT

enclosures, antennas, mounting solutions, and power supplies, needs to be
arranged. Having prepared the hardware, the developed software is installed
on the nodes. The network settings are configured and the nodes are de-
ployed.

Operation: The network operation phase starts as soon as the network is deployed
and functional. Network operation requires certain maintenance tasks. Emerg-
ing software bugs and the provision of new functionality require software
updates for the operating system of the network nodes. Network manage-
ment is necessary to monitor the systems and to reconfigure the network to
meet changing requirements of users and network topology. Finally, chang-
ing requirements might demand new development phases.

1.1 Problem Statement

For wide deployment of WMNs, several challenges in each phase of their life cycle
have to be solved. Concerning the development phase, engineers need to assess the
limitations of a simplified development and modelling process in a simulator. Sev-
eral limitations are faced at the testing phase as well. While the migration to the
target platform introduces mainly technical challenges, the implementation and de-
ployment in a small-scale testbed is intrinsically not able to cover all requirements
of the target large-scale network. Challenges in the deployment phase include
mechanical, organisational (node locations, regulations), and environmental con-
ditions. Finally, during network operation, erroneous software or configuration
updates can lead to costly on-site repairs.

1.1.1 Development Phase

The challenges in the development phase are related to abstraction level and ac-
curacy of the simulation model. For example, simulation results are heavily influ-
enced or even biased by the chosen wireless propagation model. The propagation
model might be too simple for accurate modelling of the real environment. In addi-
tion, the impact of the operating system or the device drivers as well as restrictions
of real node hardware, are not covered in simulations. Furthermore, exact tim-
ings of operating systems, real-world restrictions, or limited resources can only be
roughly approximated in network simulations. This extends to cross-layer inter-
actions that can be implemented rather easily into network simulation, but require
more effort for being implemented on real systems. A real network stack and ap-
plications are typically not included into a simulation environment. For the given
reasons, simulation results can significantly differ from results obtained by real
application scenarios using real hardware. Therefore, possible limitations of the
simulation environment need to be identified and assessed accordingly. Therefore,
an early transition to a real prototype, which is then tested in a controlled environ-
ment (see Section 1.2.2), would be beneficial.

3

1.1. PROBLEM STATEMENT

1.1.2 Testing/Implementation Phase

Concerning the testing phase, the migration to real hardware is difficult for a num-
ber of reasons. The system engineer has to consider the limitations of the tar-
get platform(s). Embedded devices are usually restricted in terms of RAM, stor-
age, and CPU power. They further require an operating system and tools that are
specially tailored to them and have their own limitations. Different CPU archi-
tectures require cross-compilation and make an additional step for setting up a
cross-compilation tool-chain (cross-compiler, cross-linker etc.) necessary. On the
occasion where cross-layer interactions are necessary, the system engineer needs
to search for solutions to implement them on the real operating system with real
drivers. The migration to real hardware can be simplified by a comprehensible
cross-compilation build system for an embedded Linux operating system (see Sec-
tion 1.2.1).

After implementation on the target platform, any new service and protocol re-
quires evaluation in a testbed. Thereby, several limitations have to be faced. The
number of nodes in a testbed is commonly limited, preventing scalability tests to
some extent. Testing a prototype is time-consuming and error-prone since testbeds
are rarely implemented in a completely isolated environment. Hence, interference
caused by electro-magnetic radiation from external networks and devices, such
as high-voltage power lines, smart-phones of employees, etc., have an impact on
test results. External influences make debugging in a testbed difficult and time-
consuming.

Due to varying conditions and unlike testing in network simulations, testing in
real testbeds provides limited reproducibility of the results. The management of
testbeds is demanding and iterative. Configuration errors during tests may cause
nodes to become unavailable and lead to on-site repairs of the nodes. Another
aspect is the complexity of setting up and testing mobile scenarios.

For the given reasons, it is challenging to use testbed outcomes for both the
software development and the final network deployment. There are gaps between
development and testing of protocols and services in a network simulator, re-
implementing them in a small-scale testbed and the final deployment in the tar-
get network. In order to facilitate the implementation and evaluation of the final
product, it would be beneficial to provide a system that combines the flexibility
of a network simulation with real implementations, and that additionally provides
useful means to assess the limitations of both abstraction levels compared to the
target large-scale implementation. A possible solution is to replace the real wire-
less drivers with virtual device drivers, which then redirect all traffic to a simulation
model for emulation of the wireless medium (see Section 1.2.2).

1.1.3 Deployment Phase

There are several challenges that a network engineer faces during the deployment
phase. In addition to software-specific issues such as the stability of existing wire-

4

1.1. PROBLEM STATEMENT

less network drivers, administrative issues such as political regulators, the iden-
tification of appropriate node sites and getting agreements with the land/building
owners to place and access the network routers and clients can be cumbersome
tasks. Furthermore, there are mechanical challenges (e.g., aligning the antennas),
and the need to protect the nodes from environmental and meteorological condi-
tions. The latter includes weather sealing of the nodes, lightning protection, and
storm-proof fastening of the masts.

The deployment of a WMN is time-consuming and requires careful planning
and expert knowledge limiting the applicability of WMNs to certain scenarios.
Future deployments of WMNs would gain from a common knowledge-base of
deployment experiences, best practises, and tested equipments (see Section 1.2.3).

In scenarios, such as setting up temporary communication infrastructures for
construction sites or for disaster recovery, a temporary WMN needs to be deployed
rapidly from scratch by a non-expert. In such scenarios, semi-automatic (guided)
or even a completely automatic deployment might be beneficial. A semi-automatic
can be supported by a self-configuring WMN and an electronic guide that instructs
the user through the deployment process (see Section 1.2.4). Completely automatic
deployment of a WMN can be provided by using flying robots carrying the mesh
nodes (see Section 1.2.5).

1.1.4 Network Operation Phase

The major challenge during the network operation phase is to guarantee continu-
ous remote access to the network nodes. Persistent network access for all network
nodes needs to be guaranteed, even in the presence of faulty software updates or
configuration errors. Network maintenance might be hindered in areas with re-
stricted access (e.g., roof tops) or in hostile environments (e.g., disaster areas). In
those environments, reliable operation of the network is of particular importance
since on-site maintenance and repair is time-consuming and expensive. To some
extent and in some scenarios, robustness and reliability can be increased by physi-
cal redundancy of network nodes. However, this is not always feasible due to finan-
cial and/or political restrictions. Moreover, physical redundancy might be ineffec-
tive in the presence of a large-scale network failure. In addition to reliable opera-
tion and physical redundancy of nodes, network robustness further requires reliable
and robust software and configuration update mechanisms. Minimally, network
node failures due to update and maintenance mechanisms should be prevented.
This is best achieved by avoiding software and configuration updates. Such a solu-
tion, however, is not feasible, since network operation requires software adaptation
in order to support new services provided by the network nodes or to fix software
bugs to guarantee security and correct operation of the network. Unfortunately,
software and configuration updates always entail a certain risk of loosing remote
access to the network nodes. Solutions that minimise this risk should always be
favoured. Section 1.2.1 presents a solution based on self-healing mechanisms and
a decentralised distribution of software and configuration updates.

5

1.2. RESEARCH CONTRIBUTIONS

1.2 Research Contributions

Figure 1.3: Systematic overview of contributions.

In the following, we outline our approach to provide a robust, long-term operat-
ing WMN infrastructure and software solution. A complex framework for support-
ing a WMN during its life cycle has been developed. Figure 1.3 shows an overview
of all contributions of the thesis. The components address the various challenges
mentioned in the previous section, partly in functionality for specific phases and
partly in designs and interactions covering multiple phases. The chronological life
cycle of a WMN is shown from left to right in Figure 1.3. Solutions related to spe-
cific phases are depicted in the respective context. Testbeds and implementations,
which cover aspects of the entire life cycle, are shown below the time line. The
relations between the real world implementations and the supporting components
(VirtualMesh/ADAM) are indicated by arrows.
The different contributions involve the following units (of functionality):

• ADAM provides a cross-compilation build system for a tailored Linux op-
erating system, addressing the heterogeneity of WMN hardware platforms
in testing/implementation. Concerning the network deployment/operation,
ADAM provides management functionality to support safe software and
configuration updates in a WMN.

• VirtualMesh is a module providing efficient prototyping and testing. It sup-
ports scalability and mobility tests using real implementations (based on vir-
tualisation concepts).

6

1.2. RESEARCH CONTRIBUTIONS

• The developed components and tools have been applied to and refined in
multiple real implementations, each with specific requirements. The deploy-
ment of a WMN for environmental monitoring (CTI-Mesh) both required
and delivered expertise in the deployment process itself and its impacts, as
well as in setting up an equipment tested in a real outdoor deployment. The
OViS project required an “as easy as winking” deployment of a temporary
WMN, e.g., for application on construction sites. A further specialisation
and adaptation was required in UAVNet, which is based on autonomous de-
ployment of a mobile WMN using unmanned aerial vehicles (UAV), e.g., for
the purpose of disaster recovery management.

1.2.1 Operating System and Management for WMNs

Our first contribution consists of the system ”Administration and Deployment of
Ad-hoc Mesh networks” (ADAM). ADAM provides a build system for a cus-
tomised Linux operating system, which has been ported to various embedded de-
vices used as mesh nodes in a WMN. In addition, ADAM provides a network
management architecture that safely handles software and configuration updates
in a WMN - the main challenge in network operation. In contrast to existing net-
work management solutions, ADAM provides excellent functionality to guarantee
nodes’ accessibility in the presence of faulty configuration and software updates.
ADAM optimises the availability of network nodes by using a fully decentralised
software and configuration distribution approach and by several fall back mecha-
nisms. In addition, it can cope with temporarily off-line nodes. It does require nei-
ther a co-located management network nor a working routing protocol like other
management solutions. ADAM is presented in Chapter 3.

1.2.2 Development and Testing Support

The second contribution is the testing and evaluation architecture VirtualMesh,
which spans the gap between development in a network simulator and testing in a
real testbed. VirtualMesh addresses numerous drawbacks of both network simula-
tions and real testbed experiments. On one hand, it includes real world parameters
such as operating system timings in the evaluation. On the other hand, it provides
means to diminish time-consuming prototype testing in a real testbed, the burden
of setting up and maintaining large testbeds for scalability tests, and the complexity
introduced by mobility tests in a real testbed. The key idea of VirtualMesh is to
combine features of simulation (scalability, fast and flexible testing) and testing on
real systems (operating system timings, real software). VirtualMesh implements
the real network stack and application software on top of an emulated network. It
emulates the wireless channel and node mobility by simulation. It can further use
host virtualisation for the mesh nodes, i.e., run multiple virtualised nodes on one
single host. VirtualMesh is, therefore, able to provide a virtualisation of a com-
plete wireless mesh network. Concerning the Linux networking stack, the intro-

7

1.2. RESEARCH CONTRIBUTIONS

duced virtual driver behaves as a normal wireless network card driver; it handles
traffic redirection to the simulator instead of sending over the wireless medium.
VirtualMesh is fully transparent to any software located above the virtual network
driver and provides flexible testing by integrating a simulated network. System-
atic and comfortable testing is provided for efficient software development as well
as for extensive pre-deployment tests. This also provides benefits for subsequent
real testbed implementations and the final deployment. In contrast to existing solu-
tions, the virtual wireless device driver enabled network emulation in VirtualMesh
provides a high integration of the wireless emulation, high flexibility, and good
scalability at low costs. VirtualMesh is discussed in Chapter 4.

1.2.3 WMN for Environmental Monitoring

Our third contribution is demonstrating the applicability of WMNs for environ-
mental monitoring in a rural area using the 5 GHz frequency band. The mesh
routers have been equipped with directional antennas to bridge large distances of
up to several kilometres. The mesh network interconnected several sensors for
environmental monitoring to a fibre based backbone over a distance of more than
20 km and proved the usability and feasibility of WMNs as access networks for en-
vironmental monitoring. The deployed WMN used ADAM as operating system for
the WMN nodes and benefits from ADAM’s management feature to safely update
configurations and software during its lifetime. The deployment activity demon-
strated that such a network can be operated self-sustaining using solar-power. Our
experiments provided a number of valuable contributions to the research and de-
velopment community, including a documentation of extensive deployment expe-
riences, emerged best practises, and the evaluation of appropriate tested equipment
for various terrains. Our deployment activities are described in Chapter 5.

1.2.4 Deployment Support for an Ad-Hoc WMN

The On-site Video System (OViS) for construction sites is another contribution.
Its key innovation is the semi-automatic deployment of temporary battery-powered
WMNs by guiding non-expert users with an electronic wizard. OViS has been
developed and implemented for an electric installations company. The major mo-
tivation of the electric installation company is minimising the number of on-site
visits to reduce costs. With OViS, large construction sites can be supported by a
video conferencing system, which reduces the need of physical presence of elec-
trical engineers. OViS provides network connectivity even to the basements of
buildings, where coverage by cellular networks is scarce or unavailable. The de-
ployment process is semi-automatic and is assisted by comprehensible instructions
to guide a non-expert user through it. The user is only required to place the net-
work nodes according to the installation instructions displayed on a mobile client.
Necessary configurations for the network are automatically handled by the sys-
tem. We have developed a working prototype, consisting of battery-powered mesh

8

1.3. SUMMARY OF CONTRIBUTIONS

nodes, which run the ADAM operating system and management, and a mobile
client, which runs the deployment wizard application (electronic guide). We im-
plemented deployment wizards for mobile clients running several major operating
systems (Linux, Mac OS X, Windows) and smart-phones (Android, iPhone/iPad).
Skype has been used as communication application to connect on-site users with
office experts. Thus, installation issues and solutions can be discussed using an
ad-hoc video conferencing system. OViS is presented in Chapter 6.

1.2.5 Autonomous Deployment of a WMN using Unmanned Aerial
Vehicles

Our last contribution is a deployment framework (UAVNet) supporting an auto-
matic deployment of a WMN using small Unmanned Aerial Vehicles (UAVs).
UAVNet’s main application area is in first response scenarios occurring after natu-
ral disasters such as avalanches, flooding, and earthquakes. These scenarios require
an automatically deployable and adaptive communication infrastructure, e.g., for
video communication between the action forces. The nodes of the UAV network
need autonomous location adaptation and arrangement according to the existing
network requirements. Of course, these requirements can vary significantly in time
given the nature of the application scenario. Most scenarios in the described appli-
cations require reliable and continuous network connectivity. In order to provide
that connectivity, the UAVs have been equipped with mesh nodes communicating
over IEEE 802.11s and running ADAM operating system. We have shown the fea-
sibility of such mobile flying WMNs to connect end systems by performing a pro-
totype implementation. The prototype WMN is remotely controlled and monitored
by a user-friendly application running on iPhone/iPad devices. The development
of the prototype was supported by the ADAM build system. VirtualMesh provides
systematic testing functionalities for future extensions of the UAVNet prototype.
UAVNet is discussed in Chapter 7.

1.3 Summary of Contributions

During the development and application of the involved projects, forming this the-
sis, a number of contributions have been achieved. The main contributions can be
summarised as follows:

• Frameworks and tools

– ADAM: A management framework for WMNs tailored to embedded
Linux systems has been developed. ADAM includes a management ar-
chitecture for fault-tolerant configuration and software updates within
a WMN, guaranteeing the accessibility of the nodes and, therefore,
avoiding on-site repairs. Additionally, a user-friendly and modular

9

1.4. THESIS OUTLINE

build system for a tailored embedded Linux distribution has been pro-
vided. It supports cross-compilation for heterogeneous WMN node
platforms.

– VirtualMesh: VirtualMesh provides a novel testing and evaluation in-
frastructure for WMNs and Mobile Ad-hoc Networks (MANETs). Vir-
tualMesh exploits and applies advantages of both network simulations
and real testbeds. Its key innovation is the introduction of wireless
device driver enabled network emulation, where modifications of the
wireless device settings are automatically propagated to the network
emulation.

• WMN application scenarios with application specific tools

– An outdoor wireless mesh network for environmental monitoring has
been deployed. The deployment has shown the practicability of WMNs
for large-distance environmental monitoring. It has improved the un-
derstanding of real world WMN deployments. Valuable knowledge in
choosing and applying tested equipment has been gained. The gained
knowledge has been made available to the research community. As a
result of the deployment, useful best practises for future outdoor WMN
deployments have emerged.

– OViS: A system for semi-automatic and guided deployment of a tem-
porary WMN on construction sites has been developed and deployed.
The OViS system provides a rapidly deployable communication infras-
tructure for online engineering support on construction sites. The OViS
system has achieved a significant simplification of the deployment and
application of WMNs for non-expert users.

– UAVNet: UAVNet provides the autonomous deployment of a tempo-
rary WMN using Unmanned Aerial Vehicles (UAV). It automatically
establishes network connectivity between action forces in emergency
and disaster recovery scenarios by a flying WMN.

1.4 Thesis Outline

The thesis is structured as follows. In Chapter 2, we investigate the work of others
in relation to the developments described in the thesis. It is further helpful for un-
derstanding the main concepts of the thesis. In Part I (Chapters 3-4), we discuss our
developed frameworks and tools. Chapter 3 presents our contribution concerning
operating systems and management platform for WMNs (ADAM). It covers the
development of an operating system tailored to WMN nodes and a fault-tolerant
management architecture that improves node accessibility. In Chapter 4, we dis-
cuss VirtualMesh, a novel testing and evaluation architecture, which fills the gap
between network simulation and testing in a real testbeds. In Part II (Chapters 5-
7), we apply our tools to WMN application scenarios and present our experiences

10

1.4. THESIS OUTLINE

and developed application-specific tools. Chapter 5 describes the deployment and
operation of an outdoor WMN for environmental monitoring. It documents our
hard- and software setup. Gained experiences and a deployment process with best
practises are examined. Chapter 6 discusses OViS, our deployment framework for
temporary battery-powered WMN to perform video conferencing on construction
sites. In Chapter 7, we present UAVNet, an autonomous deployment framework
that provides a flying WMN for first response disaster monitoring. Finally, Chap-
ter 8 concludes the thesis, presents further improvements, and discusses interesting
and promising future directions of research.

11

Chapter 2

Related Work

This chapter contains background information and related work discussion, which
will assist the understanding of the research presented in this thesis. First, Wire-
less Mesh Networks (WMNs) are introduced as one of the key technologies to
provide ubiquitous network access to end users and sensing equipment. WMNs
extend wireless network coverage in urban areas and offer wireless broadband con-
nectivity to rural or developing areas, which are not covered by wired or cellular
networks due to cost reasons. Other application areas are temporary networks for
various purposes, e.g., disaster recovery and emergency situations.

After the general introduction of WMNs, relevant work in the area of rout-
ing, network management, operating systems, network evaluation by simulation
and emulation, as well as existing WMN deployments and testbeds are discussed.
Moreover, the hardware platforms that have been used for our contributions are
described.

2.1 Wireless Mesh Networks

Wireless mesh networks (WMN) are evolving into an important access technology
for broadband services. They provide an efficient way to interconnect isolated
networks as well as to enhance the network coverage at low costs. WMNs bring us
much closer to the vision of being on-line anywhere anytime.

The authors of [3, 4, 33, 160] provide an overview of WMN technology and its
applications. WMNs are based on wireless ad-hoc networks. They consist of two
node types: mesh routers and mesh clients. Both support multi-hop communication
and may act as routers. Additionally, a mesh router may be equipped with multi-
ple radio interfaces based on the same or different wireless access technologies.
The mesh routers are rather static than mobile and form a wireless mesh backbone.
They offer gateway and bridge functionalities to other networks. Mesh clients are
mobile or static devices, which connect over multi-hop communication to a mesh
router. They normally are more sensitive to power consumption than static mesh
routers, which may be directly connected to the electricity network. The classifi-
cation of WMNs leads to three main network categories: infrastructure, client, and

13

2.1. WIRELESS MESH NETWORKS

Figure 2.1: Hybrid wireless mesh network.

hybrid meshes. Infrastructure WMNs build a wireless backbone for conventional
clients. Community and neighbourhood networks can be built using this type of
mesh networks. Client WMNs offer peer-to-peer connectivity among client de-
vices and are similar to mobile ad-hoc networks (MANETs). The third category
is formed by hybrid WMNs that are in fact a combination of the other two types
and are the most commonly used WMNs (see Figure 2.1). The most important
characteristics of a WMN are:

• Multi-hop wireless communication: WMNs are based on multi-hop com-
munication to extend the network coverage and still efficiently the channel
capacity at the same time. Moreover, clients without direct-line-of-sight to
the network access point can be connected over multiple hops.

• Support for ad-hoc networking: In order to provide easy deployment, in-
creased flexibility and adaptability, WMNs use ad-hoc routing mechanisms
and ad-hoc connectivity. Routes within the network are automatically estab-
lished and do not require manual configuration.

• Self-(*) properties, such as self-configuration, self-healing and self-organisation:
Besides ad-hoc networking, WMNs include additional self-(*) properties
to reduce the deployment and maintenance effort and to improve the fault-
tolerance.

• Mobility depending on the mesh node type: Mesh clients can be mobile
whereas mesh routers, forming the wireless backbone, are usually rather
static.

14

2.1. WIRELESS MESH NETWORKS

• Multiple types of network interfaces: In order to provide access to the Inter-
net and other fixed and cellular networks, mesh nodes can be equipped with
various network interfaces. The mesh nodes then provide gateway function-
ality between the network technologies.

• Power constraints depending on the mesh node type: Mobile mesh clients
can be sensitive to power consumption as they are battery-powered. In con-
trast, usually mesh routers do not have strict power constraints if they are
either directly connected to the electricity grid or solar-powered.

• One or multiple radios per node: In order to increase the capacity, mesh
nodes can be equipped with multiple radios. This enables the usage of dif-
ferent orthogonal channels leading to an improved usage of the available
frequency spectrum and less contention on a given channel.

• Heterogeneity of radios: Mesh routers can be equipped with different types
of radios. For example, the wireless back haul network can use IEEE 802.11n
radios or WiMAX radios whereas IEEE 802.11a/b/g is used for the access of
mesh and conventional clients.

• Compatibility and interoperability with existing wireless networks: WMNs
are based on existing radio technologies and have to guarantee the com-
patibility with their specification in order to support mesh and conventional
clients.

• Cost-efficiency: The usage of multi-hop wireless communication in WMNs
avoids the expensive set up of wired or cellular infrastructures. Due to their
self-(*) capabilities, WMNs can further use of inexpensive commercial off-
the-self (COTS) equipment to provide a cost-efficient extension of the net-
work coverage.

WMNs are considered to be a valuable communication technology for the follow-
ing scenarios [3, 4]:

• Broadband home networking (cost efficient “last mile”)

• Community and neighbourhood networking

• Enterprise networking

• Metropolitan area networks

• Transportation systems

• Building automation

• Health and medical systems

• Surveillance systems

15

2.1. WIRELESS MESH NETWORKS

• Emergency/disaster systems

• Vehicular networks, i.e., wireless multi-hop networks on board of trains,
buses, ships, or air planes

2.1.1 Routing

The most important aspect for easy deployment and self-configuration of WMNs
is ad-hoc routing. There exist several ad-hoc routing protocols, which can be cat-
egorised in single-path and multi-path routing protocols according the number of
established paths between a source and a destination. In the following, routing
metrics are explained first as they are necessary for route selection in any routing
protocol.

Routing Metrics

If the routing decision is based on a simple hop count metric, the network perfor-
mance might be reduced due to the selection of lossy links. There is a need for
advanced routing metrics. Expected Transmission Count (ETX) [60] assigns each
link a metric that represents the estimated number of transmissions of a packet be-
fore its successful reception. ETX is the sum of all link metrics on the route. Long
routes and routes with lossy links obtain only bad grades.

Although ETX performs better than shortest path routing based on hop count, it
does not take the heterogeneity of multiple radios into account. ETX only considers
loss rates on the links and not their bandwidth. Therefore routes based on few
long-range radio links are preferred to routes with more short-range radio links,
even if they have less bandwidth and limit the spatial reuse [67]. For example,
ETX favours routes with IEEE 802.11b links (max data rate = 11 Mbps) to routes
with 802.11a (max data rate = 54 Mbps) links. Links with IEEE 802.11b radios are
selected by the routing scheme as IEEE 802.11b radios usually have a longer range
than IEEE 802.11a radios. This reduces the achievable throughput of the network.

A significant improvement of ETX that considers the bandwidth of the links
is the Expected Transmission Time (ETT) metric [67]. It is based on the expected
transmission time of a fixed size packet on a link. This time depends on the link
bandwidth and loss rate.

Weighted Cumulative Expected Transmission Time (WCETT) [67] extends
ETT to take the channel diversity into account. MR-LQSR (Multi-Radio LQSR)
is an enhancement of Link Quality Source Routing (LQSR) that uses the WCETT
metric. The authors have implemented and tested the routing protocol in the Mesh
Connectivity Layer (MCL). ETX and WCETT are sending probes at a fixed rate to
determine the loss rate. Unfortunately, the loss rate also depends on the data rate
used. The authors of [111] address this problem by comparing the measured loss
rate with multiple probing rates supported by the wireless technology. The chan-
nel diversity component of WCETT does not consider “allowable” spatial reuse of
channels and punishes all links sharing a channel equally, even if they are enough

16

2.1. WIRELESS MESH NETWORKS

physically separated to avoid interference. Therefore, the performance of WCETT
degenerates with increasing network size [157].

Airtime link metric ca [95] is defined as amount of channel resources con-
sumed by the transmission of a test frame of size Bt over a particular link (see
Equation 2.1). The airtime is calculated by using the data rate r currently em-
ployed for the transmission of the test frame and the frame error rate ef , i.e., the
probability of a transmission error. The airtime link metric considers different radio
technologies by specific overhead constants O.

ca =
(

O +
Bt

r

)
1

1− ef
(2.1)

Single-Path Routing

In contrast to MANETs, WMNs provide infrastructure support, have usually less
mobility and different power-constraints, introduce different a hierarchical net-
work, and support multi-radio/multi-channel communication. Nevertheless, WMNs
and MANETs share some common characteristics such as ad-hoc networking and
self-organisation. Therefore, some single-path MANET routing protocols such
as Ad hoc On-demand Distance Vector Routing (AODV) [133], Dynamic Source
Routing (DSR) [99], Destination-Sequenced Distance Vector Routing (DSDV) [146],
Topology Broadcast based on Reverse-Path Forwarding (TBRPF) [133], and Opti-
mized Link State Routing (OLSR) [54] are often used in deployments of WMNs.

The above-mentioned routing protocols can be categorised in reactive and proac-
tive (table driven) schemes. In reactive (on-demand) protocols, a route is only es-
tablished if it is required for data transfer. This reduces the control overhead and
saves bandwidth and energy during inactivity periods, but the network may suffer
from significant delays until a valid route is established. If a node wants to transmit
data, it has to request first a route to the destination by transmitting a route request
(RREQ) message to the network. The destination or intermediate node can then
reply with a route reply (RREP) message. AODV [133] and DSR [99] are typi-
cal examples for reactive routing protocols. AODV is a distance vector protocol.
Therefore, a routing entry does not contain the complete route to the destination but
only the next hop, i.e., only partial routing information. A routing entry contains
destination, next-hop, cost metric for the complete path, and a sequence number.
If a route to a destination has not been used or re-activated for a certain period
of time, a routing entry is automatically removed. In contrast, DSR includes the
complete route information to reach the destination in the routing table and each
packet. Intermediate nodes cache learnt routes in order to reply directly on RREQ
messages.

Proactive (table driven) protocols update their routing information independent
of the traffic by periodically transmitting topology control messages. Routes are,
therefore, always available for data transmission. This results in lower latency
than observed in reactive protocols, but produces a high overhead to keep the net-

17

2.1. WIRELESS MESH NETWORKS

work topology information consistent on all nodes. Typical representatives are
DSDV [146] and OLSR [54]. In DSDV, nodes periodically broadcast their com-
plete routing tables. Routes are calculated based on the Bellman-Ford algorithm.
Sequence numbers in the routing entries guarantee loop-freeness.

(a) Classical full flooding. (b) Multipoint Relays.

Figure 2.2: Optimised flooding OLSR: classical vs. multi-point-relay flooding.

OLSR [54] is a proactive link state routing protocol. It uses HELLO and Topol-
ogy Control (TC) messages to discover and then disseminate link state information.
All nodes periodically broadcast HELLO messages including their neighbour list.
Thus, all nodes are aware of their two-hop neighbourhood. Each node then selects
a minimal set of Multi-Point-Relays (MPR) to reach all two hop neighbours. A
control message is then only rebroadcasted if it has not been received before and
if the node belongs to the MPR set (see Figure 2.2). OLSR uses Host and Net-
work Association (HNA) messages to disseminate network route advertisements
in the same way TC messages advertise host routes. Like the above-mentioned
routing protocols, the original OLSR uses the hop count metric for routing. The
commonly used open source implementation of the OLSR [187, 188] olsrd uses
the ETX routing metric. OLSRv2 [53] incorporates ETX as standard metric.

The work-in-progress standard IEEE 802.11s [41, 92, 95] represents a com-
pletely different routing approach. The mesh routing is performed on the MAC
layer (layer-2 routing), whereas AODV, DSR, DSDV etc. use routing on the IP
layer (layer-3). Consequently, an IEEE 802.11s mesh is completely transparent for
the IP layer, i.e., IPv4/IPv6, Address Resolution Protocol (ARP) and Dynamic Host
Configuration Protocol (DHCP). The Hybrid Wireless Mesh Protocol (HWMP) [12]
is defined as default routing protocol for IEEE 802.11s. It provides a reactive
protocol for mobile networks based on AODV with a radio-link aware metric. In
addition, HWMP includes pro-active tree-based routing by periodic root announce-
ments.

In our network for environmental monitoring and the temporary WMN for con-

18

2.1. WIRELESS MESH NETWORKS

struction sites, we used the olsrd implementation of OLSR with ETX as routing
scheme as it is widely used in the community. Moreover, as our networks consist
only of one type of radio and the data rates are fixed, more advanced routing met-
rics are not necessary. In UAVNet, we used the IEEE 802.11s mesh routing with
the airtime link metric.

Multi-Path Routing

WMNs are prone to transmission failures, node failures, link failures, route breaks,
as well as congested nodes or links due to the unreliability of the wireless medium,
resource-constrained nodes or dynamic topology. These failures also affect the
communication quality. Multi-path routing can provide a solution by establishing
multiple paths between a source and a destination, providing an increased reliabil-
ity and fault tolerance of the data transmission as well as load balancing.

Several multi-path routing approaches enhance the well-known single path
routing protocols AODV [133] and DSR [99] with multi-path functionality. Split
Multi-Path Routing (SMR) [118] is probably the most well known descendant of
DSR. It extends DSR to create maximally disjoint paths. The routing scheme pro-
hibits intermediate nodes to generate RREP messages. Intermediate nodes forward
duplicate RREQs if they arrive on a different link than the one(s) already seen and
if their hop count is equal or lower than the one of the already seen RREQs. The
destination answers the first route request with a RREP. This represents the shortest
delay path. Then the destination selects from the later arriving RREQ a maximally
disjoint path to it. Both paths are used equally for data transmission.

AOMDV [122] and AODVM [211] are multi-path routing protocols that are
based on AODV. AOMDV discovers multiple disjoint and loop-free routes in a
single route discovery. In order to keep track of multiple paths, the routing entries
contain a list of the next-hops along with the corresponding hop counts. All next
hops have the same sequence number. Furthermore, a node maintains an advertised
hop count for each destination, which is the maximum hop count in all paths. Each
duplicated route advertisement received by a node defines an alternate path. To
guarantee loop-freedom, a node only accepts paths with hop counts lower than the
advertised hop count for that destination. The neighbour list and advertised hop
count are reinitialised when a route advertisement with a higher sequence number
is received.

In AODVM, intermediate nodes do not drop duplicate RREQ packets; the re-
dundant RREQ information is stored in a RREQ table at the intermediate node.
The destination answers each received RREQ (from different neighbours) with a
RREP. Nodes on the path overhear the RREPs. If a node is assigned to a route, it is
deleted from its neighbours’ RREQ tables. This method finds node-disjoint paths.

The authors of [184] propose a Quality-of-Service (QoS) extension for SMR.
It satisfies multiple QoS requirements by adaptively using forward error correction
(FEC) and multi-path routing mechanisms. It can fulfil a delay, a delay and band-
width, or a packet loss requirement. This is achieved by adjusting the number of

19

2.1. WIRELESS MESH NETWORKS

used paths, the parity length of the FEC, and the traffic distribution rate on each
path. This computation considers local link information from all links, which build
up the available paths. It can be executed either by the source or by the destination.
If it is done by the destination, the required local link information is collected in
the RREQ, else it is collected in the RREP. Each node is responsible to collect or
predict (both mechanisms are possible) the local link information and add it to the
RREQ and the RREP respectively.

Resilient Opportunistic Mesh Routing (ROMER) [212] is another routing so-
lution for wireless mesh networks. It directly uses the path diversity of multiple
routes to enhance the robustness of the routes. ROMER builds up a runtime for-
warding mesh, centred on the long-term minimal cost path between the source and
the destination on per-packet basis. The forwarding mesh offers actual candidate
routes. ROMER selects the actual highest-rate link and randomly other currently
available high-rate links and delivers the data packet redundantly on these paths.

In our opinion, multi-path routing could significantly enhance the reliability
and robustness of WMN deployments, e.g., for environmental research. There-
fore, we evaluated multi-path routing in student projects [80, 88]. Testing our
Linux implementation of AODVM [139, 181] showed that AODVM, like AODV,
suffers from the existence of communication gray zones [119]. In such zones no
data communication is possible, although the HELLO messages indicate neigh-
bour availability. Moreover, our tests showed that network should have a certain
size in order that multi-path routing provides benefits. Otherwise, no alternative
link or node-disjoint paths exist. Therefore, we did not use multi-path routing in
our small-sized networks.

2.1.2 Multi-Channel Communication

The network capacity of a WMN can be significantly increased by communicat-
ing over multiple non-interfering channels [13], resulting in an improved usage of
the available frequency spectrum. Multi-channel communication enables parallel
transmissions in the network and increases multi-hop communication performance
by reduced interference. Moreover, the contention on a single channel is reduced.

In order to employ multi-channel communication, WMN can be equipped with
multiple radio interfaces and the channels have to be properly assigned to these
interfaces. Existing channel assignment strategies can be classified as static, dy-
namic, or hybrid depending on how frequently the channel assignment is per-
formed [57, 114].

Static Channel Assignment

When using a static channel assignment, all network interfaces are bound to fixed
channels either permanently or for long periods of time. In order to guarantee net-
work connectivity, neighbouring nodes require at least one interface to be tuned to
a common channel. If a node has fewer network interfaces than available channels,

20

2.1. WIRELESS MESH NETWORKS

a static assignment cannot efficiently use the available frequency spectrum. The
static channel assignment is, for example, applied in the Hyacinth testbed [151,
152].

Dynamic Channel Assignment

Dynamic channel assignment allows the nodes to frequently switch their interfaces
from one channel to another. All available channels may be selected dynamically
for communication, even if nodes hold less interfaces than available channels. If
two nodes want to communicate, they need to ensure that they switch their inter-
faces to a common channel before. Two possible coordination mechanisms are
split phase and hopping. Both require time synchronisation among the nodes.

In the split phase approach, the time is split into a control and a data phase.
During the control phase, all nodes switch their interfaces to a common default
channel. By exchanging control messages, the nodes then agree which channels are
used during the data phase. Example protocols are Multichannel Access Protocol
(MAP) [48] and Multichannel MAC Protocol (MMAC) [165].

Hopping protocols can either use a common channel hopping sequence or in-
dependent hopping sequence. In common hopping, all network nodes follow a
common channel hopping sequence for the control traffic. After having exchanged
control messages on the current channel of the hopping sequence, a communica-
tion pair leaves the common hopping cycle for the data transmission. Examples for
common hopping protocols are Hop-Reservation Multiple Access (HRMA) [185],
Channel Hopping Multiple Access (CHMA) [192] and CHMA with Packet Train
(CHAT) [193]. Independent hopping protocols divide the time in slots like com-
mon hopping approaches, but the nodes then follow independent channel hopping
sequences. These sequences are learnt by the neighbours during overlaps in their
hoping sequences. If a node wants to transmit data, it follows the hopping sequence
of the receiver. An example is Slotted Seeded Hopping (SSCH) [11].

Hybrid Channel Assignment

A hybrid scheme combines static and dynamic channel assignment strategies. It
requires at least two radio interfaces per node. Static (or semi-dynamic) channel
assignment is used for the fixed interface, dynamic channel assignment for the
switchable interface(s). Dedicated control channel protocols use this hybrid ap-
proach. They assign the fixed interfaced to a common control channel, on which
then the channel assignment of the other interfaces is coordinated. Examples are
Dynamic Channel Allocation (DCA) [209] and DCA with Power Control (DCA-
PC) [210].

Hybrid Multichannel Protocol (HMCP) [113, 114] introduces a different hy-
brid channel assignment scheme. Each node statically assigns a channel to one of
its interfaces (fixed interface), dynamic channel assignment is used for all other
interfaces. Fixed interfaces are used for receiving data whereas the dynamic inter-

21

2.1. WIRELESS MESH NETWORKS

faces are used for sending data. Each node announces the fixed channel through
periodic HELLO messages. A sender then dynamically switches one of its inter-
faces to the discovered fixed channel of the receiver. After having discovered all
fixed channels, no channel coordination is needed anymore.

Net-X [50, 51, 115] is a framework for multi-channel communication support
on Linux systems by introducing a channel abstraction layer. It uses the HMCP
routing protocol. Net-X was developed for Linux 2.4 kernels. In cooperation
with Karlstad University, we ported the Net-X framework to recent Linux 2.6 ker-
nels [130]. Karlstad University further integrated OLSR with Net-X [45] and re-
placed the standard scheduler of Net-X by a QoS-aware one to prioritise voice over
IP traffic [46]. The Net-X framework represents a possible extension for OViS (see
Chapter 6).

Adjacent Channel Interference

In the described multi-channel protocols, orthogonal, i.e., non-overlapping, chan-
nels are used to avoid interference and to increase the aggregated network through-
put. It is assumed that IEEE 802.11b/g offers three orthogonal channels whereas
IEEE 802.11a/h offers 11, 12, or 13 orthogonal channels depending on country-
specific regulations. However, measurements showed that network performance
may still be degraded significantly due to adjacent channel interference (ACI) [7,
49]. ACI is caused by out-of-band radio leakage of wireless transceivers due to im-
perfect filters. Transmissions on neighbouring channels in the frequency spectrum
may interfere with each other due to this power leakage. It is, therefore, recom-
mended to use separated channels, i.e., leave out some channels in the assignment.
According to [47], the network throughput for a given channel separation is only
predictable for a data rate of 6 Mbps in IEEE 802.11a. When using higher data
rates or automatic rate control, ACI and resulting network throughput cannot be
reliably predicted based on the channel separation.

2.1.3 Network Management

A WMN, like other networks, requires management functionality such as moni-
toring, reconfiguration, and software updates. In the case of WMN testbeds, this
management functionality can be established out-of-band by an additional infras-
tructure, e.g., wired or wireless back-haul networks. For a productive/operational
network, this is neither feasible nor desirable. Management functionality for pro-
ductive WMNs has, therefore, to communicate in-band, i.e., using the same com-
munication network for management and data transmission.

Besides the Simple Network Management Protocol (SNMP) [43, 44], existing
management approaches tailored for WMNs include JANUS [154], DAMON [149],
MeshMan [10], MAYA [121], ATMA [150], and Abaré [147, 148]. Some provide
only monitoring functionality, whereas others are full management solutions.

22

2.1. WIRELESS MESH NETWORKS

Monitoring

JANUS [154] is a fully distributed agent based monitoring architecture using a
peer-to-peer overlay network for communication. Its architecture is similar to
SNMP. JANUS has been developed for Windows-based WMNs using the Mesh
Connectivity Layer (MCL) [126]. Besides missing management capabilities, the
current implementation, based on a standard JAVA virtual machine, cannot be run
on resource restricted devices, such as small embedded devices.

The Distributed Ad-hoc Network Monitoring (DAMON) [149] provides dis-
tributed monitoring of multi-hop networks using agents collecting relevant data.
It only provides monitoring and depends on AODV routing. Therefore, it is not
suitable for general-purpose WMN scenarios.

Meshman [10] is a management architecture providing an SNMP replacement
that considers network dynamics in WMNs. By combining source routing with
a hierarchical address scheme, it is independent of the routing scheme used. Un-
fortunately, the current implementation only provides information retrieval, but no
configuration.

Full Management Solutions

MAYA [121] is based on OpenWrt (see Section 2.2.2) and AODV routing. It pro-
vides mechanisms to configure multiple selected nodes either over remote secure
shell or by sending an encrypted UDP packet. It relies on a working routing proto-
col and cannot handle nodes off-line during configuration time. As a fact, MAYA
cannot change the used routing protocol.

ATMA [150] is a management framework for wireless testbeds. It deploys a
parallel multi-hop WMN to provide out-of-band centralised management of the
actual testbed to guarantee the accessibility of the testbed device. The co-located
management WMN uses Linksys WRT54G wireless routers with OpenWrt as op-
erating system. Routing is performed by a modified version of AODV. ATMA is
based on a client-server architecture. An agent is running on each ATMA node
of the management network and provides auto-configuration of the node. It first
assigns a temporary IPv4 address from the auto-configuration IP address range
(169.254.0.0/16) [52]. Then it connects to reachable wireless networks until it re-
ceives a beacon from a central management server. If the ATMA agent has discov-
ered a management server, it automatically performs a registration. Henceforth, the
management server can configure the testbed device that is connected the ATMA
node. ATMA can guarantee accessibility to the testbed devices in any circum-
stance. It can easily deal with misconfigured nodes in the testbed. Although, the
out-of-band management approach of ATMA might be reasonable for testbed man-
agement, it is not suitable for productive network. Nevertheless, the boot strapping
of the ATMA agent provided helpful insights for our own work.

Abaré [147, 148] provides a software-assisted process for installation and man-
agement of a WMN. It is based on a central database to co-ordinate the manage-

23

2.2. WMN NODES

ment. The firmware is delivered individually to each node. It cannot cope with
misconfigured nodes.

There are several standardised approaches to manage and update broadband
equipment of operators. Control And Provisioning of Wireless Access Points
(CAPWAP) [39, 40, 134] is a standard for managing multiple wireless access
points by a centralised controller. It targets large deployments of conventional
wireless single-hop networks, but not multi-hop networks such as WMNs. TR-
069 [26] is a SOAP based standard for management of end customer devices, e.g.,
DSL routers. It provides auto-configuration, service provisioning, software up-
date, and monitoring by a central auto-configuration server. TR-069 clearly targets
wired networks and is not directly applicable to wireless multi-hop networks.

Cfengine [34] is a powerful framework for network and system management. It
uses distributed agents to perform policy-based network and system administration
tasks. These agents periodically pull policy-based specifications of maintenance
tasks from their neighbours and apply them independently. It is also possible to
simulate a push method by invoking the pull mechanism remotely. This simu-
lated push could reduce the propagation time of an update. Cfengine offers a lot
of flexibility by its concept of dynamic grouping of nodes into classes, to which
then certain policies are applied. Classification is performed fully distributed on
each node. The resulting class membership defines all other actions. Although,
cfengine has been proposed for fixed networks, the distributed agent concept fits
perfectly the management requirements of WMNs. Therefore, we used cfengine
for implementing our management architecture (see Chapter 3).

As humans are prone to errors, erroneous configurations and faulty software
updates may be applied to a WMN destroying the accessibility of individual nodes
and resulting in costly on-site repairs. An ideal management architecture for WMNs
should, therefore, guarantee the availability of the network independently of con-
figuration errors and faulty software updates and should use in-band communica-
tion. None of the existing approaches currently provides this functionality.

2.2 WMN Nodes

WMN nodes are usually built upon embedded hardware platforms and run an op-
erating system, specially tailored for these resource restricted embedded hardware
platforms.

2.2.1 WMN Hardware Platforms

Several commercial hardware platforms are available for WMNs, e.g., PCEngines,
Linksys, Cambria, Avila, Tropos, and Cisco. WMN nodes can be deployed in
various environments. The nodes should be energy efficient. Outdoor deployments
may further require weather protection against weather influences, e.g., additional
weatherproof enclosures. WMN nodes are usually realised as embedded systems,

24

2.2. WMN NODES

i.e., computer systems designed to perform few dedicated functions. Especially
for community networks, the devices have to be priced low-cost. This section
introduces four wireless mesh node platforms that have been used for our research
work.

PC Engines WRAP

The PC Wireless Router Application Platform (WRAP) [143] is an embedded
board based on an x86 compatible CPU. The boards used for our testbed are the
WRAP2.C and its RoHS (EU restriction of the use of certain hazardous substances
in electrical and electronic equipment) compliant successor board WRAP2.E. These
boards contain a 233 MHz AMD Geode SC1100 CPU (fast 486 core), 128MB
RAM, CompactFlash card slot for the secondary storage, one Ethernet port, two
miniPCI sockets, and one serial port. A battery can be added to power the real-
time clock (RTC). We have preferred WRAP to any Linksys Router based solution
with OpenWrt due to its ability to carry two wireless miniPCI cards. This en-
ables multi-radio/multi-channel communication. In our work, we used two IEEE
802.11a/b/g cards. The boards are sold for a competitive price (100 USD).

Figure 2.3: PCEngines WRAP.2C with an indoor case.

PC Engines ALIX

The PC Engines ALIX series [144] are a higher performance replacement for the
WRAP sold for the same price. The system’s design is quite similar. The ALIX.3d2
boards used in our testbed, for the outdoor deployment (see Chapter 5), and in
OViS (see Chapter 6) have an x86 compatible 500 MHz AMD Geode LX800 CPU,
256 MB RAM, a CompactFlash socket to be equipped with a exchangeable storage
card, one Ethernet port, two miniPCI sockets, one serial port, and two USB ports.
An RTC battery can be added. The AMD Geode processor contains a hardware

25

2.2. WMN NODES

watchdog, i.e., a timer that reboots the node if not periodically reset. This helps in
recovering a node from a non-responsive state (self-healing).

Figure 2.4: PC Engines ALIX.3d2 system board.

Meraki Mini

Another type of node is the Meraki Mini [125]. It is a much smaller device than
the WRAP/ALIX board. It is built upon a System on a Chip (SoC) module from
Atheros and contains a 180 MHz MIPS 4KEc CPU, 32 RAM, 8 MB NAND storage
and a wireless interface. Most parts are integrated in the SoC. The node further
provides an Ethernet port and an internal UART serial port. It has low energy
consumption. Meraki is a spin-off company of the MIT Roofnet project. We have
selected the Meraki Mini as a platform for our work due to its competitive price,

Figure 2.5: Meraki Mini with an indoor case.

26

2.2. WMN NODES

which is crucial for community and neighbourhood networks. The Meraki Mini has
been priced at 50 USD at commercial launch, but the price has been significantly
increased afterwards and we switched to the OpenMesh platform.

OpenMesh Mini and OM1P

The OpenMesh Mini [136] is a low cost wireless mesh router built upon the same
hardware than the Meraki Mini, which is an Atheros AR2315(A) SoC with 180 MHz
MIPS 4KEc CPU, 32 RAM, and 8 MB NAND storage. It includes an IEEE
802.11b/g wireless interface (Atheros RF2316). In contrast to a Meraki Mini,
Open-Mesh OM1P further contains a hardware watchdog at the same costs. The
device is, therefore, a real replacement for the Meraki Mini. It contains an internal
UART serial port. The used OpenMesh OM1P nodes for UAVNet due to the device
size and low energy consumption (see Chapter 7).

Figure 2.6: OpenMesh professional router OM1P.

2.2.2 Embedded Operating Systems Distributions

Linux, a standard operating system for personal computers and servers, is also
widely used as an operating system for embedded systems; such as routers, ac-
cess points, and wireless mesh nodes. There are two main Linux distributions and
build systems for embedded devices, namely OpenWrt [14] and OpenEmbedded
(OE) [37].

The OpenWrt [14] Linux distribution is tailored for embedded devices. Instead
of the standard GNU C library (Glibc) [123], it uses the small C library replacement
µClibc [5] to reduce the footprint of the compiled software, which is desirable for
embedded devices. The standard UNIX tools (e.g., sh, cp, mv, grep, sed, and awk)
are replaced by the multi-call binary BusyBox [6], which provides the same func-
tionality but with a smaller memory footprint. OpenWrt uses a package manager

27

2.2. WMN NODES

based approach for software installation on the nodes. This provides a high flexi-
bility for customisation of individual nodes with existing packages, but requires a
read/write file system on the secondary storage. Often more RAM memory than
secondary storage is available on inexpensive wireless mesh nodes (e.g., Open-
Mesh OM1P with 32 MB RAM and 8 MB flash storage). In this case, OpenWrt
provides less software and functionality than our own Linux distribution (ADAM),
which uses a compressed read-only software image. Software packages in Open-
Wrt can only be retrieved from a central instance, to which each node requires
a connection during the update. There is no support to get cached updates from
the neighbours. If software has to be updated on all nodes, each node individu-
ally fetches this update from the central server. In contrast, ADAM can retrieve
software and configuration updates directly from neighbour nodes. ADAM further
separates node specific configuration and node-type specific software to guarantee
the same software level on all nodes and to efficiently distribute updates. This can-
not be implemented using OpenWrt. Although, most users of OpenWrt download
pre-compiled software packages from the software repositories, one can also build
its own software package by the freely available and open source build system of
OpenWrt. OpenWrt supports the cross-compilation of many software packages
for a wide variety of embedded devices. The OpenWrt team provides patches for
cross-compilation and the µClibc support of various software packages. We used
some of these patches in ADAM.

The second Linux distribution for embedded devices, OpenEmbedded [37], is a
collection of recipes for the BitBake [38] tool to automatically compile and install
packages for an embedded Linux system. In OpenEmbedded, the customisation of
the compilation and installation process is highly flexible. A separation of binaries
and configuration data, therefore, could be implemented. Unfortunately, OE is
difficult to understand due to its complexity. Another drawback is the poor support
of µClibc [5] for building compact software images. Ångström [107] is a user-
friendly OE distribution, but it suffers from the same drawbacks of the package
manager based software installation as OpenWrt.

A different approach for building a Linux system is described in the manual
Linux From Scratch (LFS) [19]. It provides systematic/step-by-step instructions to
manually build a Linux system from the available sources. All instructions are well
documented and alternatives are explained. Therefore, a user can customise every
aspect with these instructions and explanations. Cross-compilation aspects are han-
dled by the subproject Cross Linux From Scratch (CLFS). It provides an excellent
documentation for the process of building a cross-compiler using the GNU Com-
piler Collection (GCC) [79]. After the installation of operating system headers, the
following components are installed and compiled one by one: machine-specific
Executable and Linkable Format (ELF) binary tools, intermediate cross-compiler,
target C library, and final cross-compiler. Being a collection of documentation and
software patches, the major disadvantage of CLFS is the missing automated build
process. Nevertheless, instructions and cross-compilation patches found in CFLS
helped us in the development of our own cross-compilation build system (see Sec-

28

2.3. NETWORK SIMULATION AND EMULATION

Network
Simulation

Network
Emulation

Real world
testbed

Simplifications - high abstraction + definable + none
Reproducibility + easy + easy - difficult

(interferences)
Fidelity - low + high + real system
Scenario setup + easy + easy - complex
Scalability + high + medium

- bad
(hardware-based)

- bad

Network traffic - modelled +real or modelled + real
Support of
mobility

+ easy + easy - difficult

Duration - variable + soft real-time + real time
Costs + cheap + cheap

(software-based)
- expensive
(hardware-based)

- expensive

Table 2.1: Comparison of evaluation in network simulation, network emulation and real
world testbeds.

tion 3.3).

2.3 Network Simulation and Emulation

In the development and evaluation of new communication protocols and services
for wireless networks, network simulation and network emulation are commonly
used before testing in a real testbed. Whereas network simulation has its focus in
fast-prototyping of new ideas and their evaluation using abstract models, network
emulation is used to test the real implementations in a controlled environment.
Table 2.1 summarises briefly the different evaluation methods for WMNs [31, 108].

2.3.1 Network Simulation

Network simulation describes an evaluation process that first implements an ab-
stract model of a network, then executes this model on a computer system and
analyses the received output. It perfectly supports fast-prototyping of new ideas,
protocols, and architectures. Network simulation provides several advantages for
the design phase of new protocols and network mechanisms. First, the imple-
mentation on a network simulator is much simpler than the implementation and
deployment of a real system. Second, the behaviour of the new protocols and ar-
chitectures can be directly investigated under various conditions including node

29

2.3. NETWORK SIMULATION AND EMULATION

mobility, at a large scale and in a repeatable manner. Network simulation provides
the developer an immediate feedback of his/her design decisions and parametrisa-
tion, without implementing a prototype on a real system and its time-consuming
and costly testing in a testbed. Moreover, simulation supports the analysis at differ-
ent abstraction levels of complex systems, to which category a computer network
certainly belongs. A modular approach helps in understanding complex systems
by dividing problems into smaller comprehensible tasks and modelling only the
necessary parts. A model at a high abstraction level is easier to understand and
to analyse than a model that already contains all details, but it can still provide
reliable insights on the system’s behaviour. The level of details may be increased
stepwise in subsequent simulation models (top-down approach).

Although abstraction helps in the design process, it also represents a risk that
the simulation model does not reflect the complete system behaviour. In general,
the results of a simulation should be interpreted with care and depending on the de-
sired goal. Simulation models are often not realistic enough to provide results fully
at instruction execution level, or with high fidelity radio or power consumption
characteristics. The simulation models provide their own (simplified) implementa-
tions of network protocols and applications. However, a real computer network is
a highly distributed system, consisting of independent nodes. A simulation model
often fails in considering all aspects of the operating systems, e.g., timing or hard-
ware drivers.

Despite the drawbacks, network simulation is a valuable tool for fast-prototyping
in the development of new protocols and architectures. Commonly used discrete-
event network simulators are ns-2 [194], ns-3 [116], OMNeT++ [195, 196, 197],
GloMoSim [213], and QualNet [158].

The network simulator OMNeT++ [195, 196, 197] is open-source and freely
available for personal and academic use. Its implementation follows the object-
oriented programming scheme using the programming language C++. It is highly
modular and very well structured. Even core components, such as the event sched-
uler, are pluggable and can be easily exchanged. Moreover, OMNeT++ provides
a convenient and rich graphical user interface (GUI), which directly visualises the
simulation run. It significantly simplifies development and debugging by offer-
ing introspection of all objects at any time during the simulation run. OMNeT++
includes several simulation models for wired and wireless communication with a
vast support for mobility models and communication protocols. Hence, we have
selected OMNeT++ for VirtualMesh (see Chapter 4).

Direct integration of real network stacks into a network simulator is an interest-
ing approach to increase the fidelity of the simulation and to test complex protocol
behaviour [27, 98]. OppBSD [27] integrates the TCP/IP stack of FreeBSD in the
network simulator OMNeT++. The Network Simulation Cradle [98] project pro-
vides support for using the real network stacks of Linux, FreeBSD, and OpenBSD
with the network simulator ns-2 [194]. The integration of real TCP/IP stack pro-
vides results that are closer to a real world network. Nevertheless, OppBSD and
Network Simulation Cradle do not support the testing of native unaltered applica-

30

2.3. NETWORK SIMULATION AND EMULATION

tions, e.g., secure remote shell or Skype.

2.3.2 Network Emulation

Whereas simulation abstractly models a complete network, network emulation [23,
24, 83, 101, 110, 155, 203, 208, 214] just duplicates the characteristics of the under-
lying network, e.g., by the use of simulation or system-level implementation. The
network emulator then interconnects real systems by applying these characteristics
to the network traffic. Network emulation is valuable for network research and
protocol development, as it can approximate the real environment more accurately
than pure simulation, e.g., by considering processing delays introduced by appli-
cations, operating system, and hardware. In [97] the authors validated the wireless
model in the network simulator ns-2 [194] by comparing measurements of a real
network setup with an emulated and simulated network. They concluded that with
a proper parametrisation the simulation model can approximate the real network,
but some aspects like delays introduced by hardware and operating system can-
not be considered in the simulation. Their emulated network, however, provided
results that matched the real measurement more accurately than the simulation.

Besides the high fidelity of the results, network emulation further offers good
reproducibility and easy set up of different test scenarios including mobility. In the
following, several approaches are discussed regarding their scalability, the accu-
racy of the wireless model and the ability to modify the wireless setup during the
test.

Combining Network Emulation and Host Virtualisation

The combination of host virtualisation and network emulation also used in our own
work has been proposed by [71], [110], and [215] to increase scalability. These
three approaches are explained in more detail in the following.

The approach presented in [71] tries to integrate the behaviour of the real net-
work stack and the operating system into the testing process by using virtualised
hosts connected through an emulation framework. The virtual hosts are running a
L4 microkernel on top of a real-time kernel. To integrate the wireless network be-
haviour, the hosts are connected by the 802.11b network emulator MobiEmu [214].
The wireless interface driver has been modified to communicate with the emula-
tor instead of the physical interface, but keeping the interface to the applications
unaltered. A drawback of the approach is inherited by the use of MobiEmu, the
communication is either possible without errors or not at all. It does not model
signal propagation and communication errors. Unfortunately, no results about the
accuracy of the setup are available. It also does not propagate configuration settings
of the wireless device.

UMIC-Mesh [215] is a hybrid WMN testbed. Besides a testbed with real wire-
less mesh nodes, UMIC-Mesh provides virtual nodes by using XEN [17] virtual-
isation. The virtual nodes are interconnected by a combination of advanced net-

31

2.3. NETWORK SIMULATION AND EMULATION

working features of the Linux kernel. This includes packet filtering for controlling
the communication between the nodes. The virtual network is only intended for
software development and functionality validation. Therefore, the behaviour of the
wireless medium has not been modelled in this approach.

JiST/MobNet [110] provides a comprehensible Java framework for simulation,
emulation, and real world testing of a wireless ad-hoc network. It allows running
the same tests independently of platform and abstraction level. MobNet is a wire-
less extension on top of the Java in Simulation Time (JiST) simulator [18]. The
drawback of this approach is that most communication software and network pro-
tocol stacks are written in C/C++ and not in Java and, therefore, a further transition
to a real-world system may be necessary afterwards.

The newly developed network simulator ns-3 [116] also adopted the concept
of host virtualisation. It allows the integration of virtualised nodes running native
applications and protocol stacks under the Linux operating system. The virtualised
nodes in ns-3 are connected through a TUN/TAP device of the Linux kernel and
a proxy node to the simulation. However, there is no support to modify device
parameters of the simulation directly and dynamically by the virtualised nodes, es-
pecially for wireless devices. A similar approach for traffic redirection and internal
representation of virtualised nodes has been selected and extended in our work (see
VirtualMesh in Chapter 4). Our extensions include the support of direct manipula-
tions of the wireless device parameters through usual system tools (e.g., iwconfig)
and the propagation of dynamic parameters during the emulation.

Synchronised Network Emulation

When injecting real network traffic into a network simulator, there is always the
problem that the simulation may not keep pace with the real network. The simula-
tion may be too slow. In order to cope with the problem of a simulator overload dur-
ing network emulation, the concept of synchronised network emulation [198, 200]
has been introduced. It replaces real hosts with virtualised hosts using XEN. A
central synchronising component then controls the time flow of the virtual hosts
by an adapted scheduler for XEN. It keeps them synchronised with the network
simulator OMNeT++ [195]. Synchronised network emulation represents a valu-
able extension to avoid scalability problems and could extend our own emulation
approach, described in Chapter 4.

SliceTime [199, 201] is a platform for accurate network emulation of wireless
networks. It picked up our approach of a virtual wireless driver (Chapter 4) and
provides wireless driver-enabled synchronised network emulation for ns-3.

Off-line Emulators

Off-line network emulators, such as W-NINE [145] and QOMET [23, 24], handle
the real-time requirement by off-line processing of a previously generated com-
munication scenario. They use a two-stage approach. The first stage is completely

32

2.4. EXISTING WMN DEPLOYMENTS AND TESTBEDS

off-line. A discrete event simulator converts the wireless scenario into a time-series
of network states. This state description is then delivered to the wired network em-
ulator Dummynet [155] in order to emulate the wireless link between end points.
The end points are standard computers emulating the wireless nodes. The com-
munication is sent over Dummynet using a wired network. QOMB [22] extends
QOMET to support multi-hop communications.

W-NINE, QOMET and QOMB provide repeatability and testing of real appli-
cation software. They provide high accuracy of wireless properties as sophisticated
models can be used in the off-line stage. Off-line network emulators cannot be used
if wireless parameters are modified during the course of the emulation, e.g., by ap-
plication or by operating system feedback. They are, therefore, not suitable for
testing software that influences the wireless interface of a node, which would be
required to support full testing of advanced schemes for WMNs. Thus, off-line
emulation is not considered in our own work.

FPGA-based wireless emulators

Another approach to satisfy real-time requirements is to implement the wireless
channel in hardware, by a dedicated micro-controller. The authors of [29, 103]
propose such a wireless emulator using a hardware channel simulator. The unal-
tered network nodes are packed in radio frequency (RF) shielded boxes and their
radio interfaces are connected to the hardware channel simulator, which then emu-
lates the signal propagation using a field programmable array (FPGA). The channel
simulator supports directional antennas and mobility. The system presented in [29]
supports 15 nodes operating in 2.4 GHz ISM band. The main advantage of an
FPGA-based wireless emulator is the provided repeatability in combination with
a real MAC layer and a realistic physical layer supporting multipath fading. The
main drawbacks are the high costs for RF-shielding and appropriate FPGA and the
limited scalability as only few nodes can be supported by a single FPGA. Instead of
the costly hardware-based emulation, software based emulation has been selected
for our own work as it provides more flexibility and reduced costs due to the usage
of commodity hardware.

In summary, a good approach for the development of new protocols and ser-
vices is to start with testing an idea in simulation and upon success to implement a
first real prototype that is then further studied in a network emulation environment.
After the evaluation with network emulation, the prototype implementation can be
further tested in a real testbed or deployment.

2.4 Existing WMN Deployments and Testbeds

Existing deployments are either related to research such as Transit Access Points
(TAPs) [104], MIT Roofnet [1, 2, 25], Microsoft Research [66, 67], Berlin Roofnet
[166], Heraklion MESH [8], WiLDNet [142], QuRiNet [205, 206, 207], UMIC-

33

2.4. EXISTING WMN DEPLOYMENTS AND TESTBEDS

Mesh [215, 216], DES-Mesh [28, 85, 86] and KAUMesh [62, 105] or provide
public network services in a metropolitan area such as the ”free the net” [124]
initiative in San Francisco and the freifunk.net [74] community networks.

2.4.1 Outdoor Deployments

The authors of [104] analyse the challenges of building a broadband wireless Inter-
net access network. They propose an architecture based on fixed, wired-powered
“Transit Access Points” (TAP). The TAPs form the wireless backbone of an in-
frastructure WMN. The “Technology for All” (TFA) network [42] represents a
deployment of a WMN as a cost efficient “last mile”. In cooperation with TFA,
Rice University developed and deployed a WMN in one of Houston’s most eco-
nomically disadvantaged neighbourhoods. It aims to strengthen under-resourced
communities by providing free access to information technology, educational and
work-at-home tools. The network is based on twelve mesh nodes equipped with
802.11b radios and AODV is used as routing protocol. The usage of mesh tech-
nology instead of a new wire line infrastructure reduces drastically the costs of
covering the area with broadband Internet access. The residents receive an entry-
level service of 128 Kbps for free. Higher service levels are available at moderate
rates.

MIT’s Roofnet [1, 2, 25] consists of about 50 wireless mesh routers, which
interconnect Ethernet networks in apartments in Cambridge, MA, USA. It is using
IEEE 802.11b radio interfaces with additional omni-directional antennas. Some
nodes share their digital subscriber line (DSL) and, therefore, act as gateway to
the Internet. New users can easily join the network by installing the provided
hardware and software kit. Roofnet requires no configuration of the network or
planning. It routes packets using a new routing protocol, which is based on DSR
and employs the ETX metric instead of simple hop-count. Roofnet provides an
average throughput between nodes of about 627 kbps and the whole network is
well served by just a few Internet gateways.

Berlin Roofnet [166] is an IEEE 802.11-based community WMNs, similar to
MIT’s RoofNet project in Berlin. The nodes are operated individually by students
with their own equipment. The target is to build the network in a completely self-
organising/self-configuring way for inexperienced users.

Heraklion MESH [8] provides a metropolitan multi-radio mesh network that
covers approximately 60 km2 with 14 nodes in Heraklion, Greece. The nodes
consist of a mini-ITX board with an x86 1.3 GHz CPU and 512 MB RAM, 40
GB HDD, up to four IEEE 802.11a/b/g Atheros-based cards. The network uses
directional antennas to bridge distances of 1 to 5 km. In order to guarantee the
accessibility of the nodes, a secondary wireless node, and an intelligent remote
power switch is co-located to each node. The nodes are running Gentoo Linux as
operating system and use OLSR as routing protocol.

WiLDNet [142] provides low-cost network connectivity in rural and remote
areas (developing regions) using WiFi-based Long Distance (WiLD) links (10 -

34

2.4. EXISTING WMN DEPLOYMENTS AND TESTBEDS

100 km). Two production networks are maintained in India and Ghana and have
shown that the commonly used Carrier Sense Multiple Access / Collision Avoid-
ance (CSMA/CA) scheme is not suitable for long distance links. A Time Division
Multiple Access (TDMA) scheme showed significant performance improvements
for the long distance links.

QuRiNet [205, 206, 207] is a WMN deployed in the Quail Ridge natural re-
serve in California, USA. It serves for environmental monitoring. QuRiNet uses di-
rectional antennas. Its nodes are based on embedded boards similar to PCEngines
WRAP equipped with two IEEE 802.11b/g wireless cards. All nodes are solar-
powered. The lessons learnt are inline with the ones described in Chapter 5.

The Mesh Do-It-Yourself guide [100] tries to apply the experiences made in
MIT Roofnet, Berlin Roofnet and in the freifunk.net community network to rural
Africa. It provides a step-by-step guide to setup a WMN based on the freifunk.net
firmware and covers some aspects of the deployment. The book ”Wireless Net-
working in the Developing World” [73] provides a more comprehensive guide for
setting up an affordable communication infrastructure for development areas using
inexpensive off-the-self equipment. The description of our WMN for environmen-
tal monitoring in Chapter 5 contributes to these efforts by additional deployment
experiences and tested equipment.

2.4.2 Testbeds

Microsoft Research integrates ad-hoc routing and link quality measurements in an
inter-position layer framework called mesh connectivity layer (MCL) [66, 67, 126].
MCL is a Windows driver that implements a virtual network adapter. The ad-
hoc network is shown as an additional network interface to the rest of the system.
Routing in the MCL is done by a modified version of DSR called Link Quality
Source Routing (LQSR). It is well suited for small networks with low mobility and
no restrictions on power consumption.

UCSB MeshNet [20] consists of 25 nodes distributed at the University of Cal-
ifornia at Santa Barbara. The nodes are built upon two Linksys WRT54G wireless
routers that are interconnected over Ethernet. One wireless router is the actual mesh
node running AODV whereas the second is used for the out-of-band management
of ATMA (see Section 2.1.3).

Hyacinth [151] is an IEEE 802.11-based multi-channel WMN testbed at the
State University of New York. It uses nine small form-factor personal computers
equipped with two 802.11a wireless cards. The nodes run Windows XP as operat-
ing system. Two nodes serve as gateways to the wired network.

UMIC-Mesh [215, 216] consists of 51 mesh nodes spread over two buildings
at the Computer Science department of the RWTH Aachen University. It uses
WRAP/ALIX boards with two IEEE 802.11a/b/g cards and omnidirectional anten-
nas. The nodes are interconnected by a wired backbone to guarantee accessibility
and simple management of the testbed. Experiments are centrally managed and the
nodes load their operating system over the Network File System (NFS). It is a stan-

35

2.4. EXISTING WMN DEPLOYMENTS AND TESTBEDS

dard Ubuntu Linux distribution. Besides to the real testbed, UMIC-Mesh includes
a virtualised environment by host virtualisation using XEN [17]. In UMIC-Mesh,
the connectivity between the virtual nodes is configurable, but does not provide a
complete emulation of the wireless medium.

The Distributed Embedded Systems Testbed (DES-Mesh) [28, 85, 86] is a re-
search testbed at the Freie Universität Berlin and consists of 115 mesh nodes. It
uses ALIX boards with two IEEE 802.11a/b/g miniPCI cards, one IEEE 802.11a/b/g
USB dongle, and omnidirectional antennas. Additionally, wireless sensor nodes
(MSB-A2) are co-located at each WMN node and form a parallel wireless sensor
network testbed. All nodes are interconnected by a wired backbone for manage-
ment. Similar to UMIC-Mesh, the nodes load their operating system over the wired
network and mount the root file system from a central server.

KAUMesh [62, 105] is a WMN testbed consisting of 20 mesh nodes deployed
on Karlstad University Campus. The node hardware compromises a Cambria
GW2358-4 embedded board with 667 MHz Intel IXP435 XScale CPU (ARM
processor architecture), 128 MB RAM, two Ethernet interface, a CompactFlash
card socket and four miniPCI sockets. The node is equipped with three IEEE
802.11a/b/g cards. The nodes are connected to a wired backbone and can be re-
set remotely. Network monitoring is performed out-of-band using the open source
software Nagios [76]. The testbed management of KAUMesh provides node reser-
vation and access control. It is used for research on multi-channel communication,
packet aggregation and opportunistic mesh connectivity [45, 46, 47, 61, 63, 64, 65,
117, 168].

Another approach for testing real implementations in a very flexible network is
provided by the ORBIT testbed [153]. It provides a configurable indoor radio grid
for controlled experimentation and an outdoor wireless network for testing under
real-world conditions. The indoor radio grid offers a controlled environment as
an isolated network, in which background interferences can be injected. Although
the 20 x 20 grid of nodes offers a large variety of different topologies, it can be
too restricted and mobility tests are even more limited. Furthermore, the scarce
ORBIT resources may be not available for all experiments.

The network testbed Emulab [204] provides various experimentation facili-
ties with advanced experiment management controls. For experiments with wired
networks, network nodes run standard operating systems (FreeBSD, Linux, and
Windows XP) and communicate over an emulated network using Virtual LANs
and the emulator Dummynet [155]. Emulab has been extended to the wireless
domain [203] by an IEEE 802.11a/b/g testbed. Several nodes with real wireless
interfaces are deployed on the floors of an office building and can be integrated in
an Emulab experiment scenario. Besides the lack of mobility support, the Emulab
wireless testbed suffers from limited repeatability due to the shared location in an
office building with interferences from productive networks.

Limited mobility is supported in a further testbed, named mobile Emulab [101].
However, the current mobile Emulab is not suitable for IEEE 802.11-based net-
works. Small robots, whose movements can be remotely controlled through an

36

2.5. DEPLOYMENT SUPPORT FOR WIRELESS MESH NETWORKS

Emulab control script, carry wireless sensor motes with 900 MHz radios. The cur-
rent setup uses an IEEE 802.11b network for the remote control. This and the size
of the testbed room limit possible extensions of mobile Emulab for WLAN exper-
iments. Moreover, the robots-based testbed is a costly and scarce resource similar
to the ORBIT testbed.

2.5 Deployment Support for Wireless Mesh Networks

A rapidly deployable WMN for first response scenarios has been proposed in [167].
It uses OLSR routing and battery-powered mesh nodes. The network is deployed
by a user walking within the area that has to be covered with wireless connectiv-
ity. Therefore, the user carries an active node that constantly monitors its links
to previously deployed nodes and provides user feedback. The node periodically
broadcasts probe requests, which are answered by probe replies of the previously
deployed nodes. Using these replies, the active node receives bi-directional signal-
to-noise ratio (SNR) measurements and can monitor its network connectivity. If
connectivity falls below a certain threshold, the node indicates that it has to be de-
ployed. The focus of the work is to cover a potentially large area with wireless
coverage, whereas certain scenarios, such as the construction site in Chapter 6,
require that a potentially large distance is covered by the network. The proposed
deployment mechanism is considered to be a possible solution in scenarios where
a large area has to be covered with wireless connectivity when using robots or
unmanned aerial vehicles for the network deployment (see Chapter 7).

There are several research projects that employ flying robots, i.e., unmanned
aerial vehicles (UAVs), for establishing rapidly deployable communication infras-
tructures. Examples are AUGNet [32], SMAVNET [89, 90], AVIGLE [156], Air-
shield [59], and AWARE [135].

Ad Hoc UAV-Ground Network (AUGNet) [32] is a MANET consisting of
nodes mounted at fixed sites, on ground vehicles, and in fixed-wing UAVs. It
uses an embedded computer similar to the PCEngines WRAP with IEEE 802.11b
wireless interfaces. A more advanced system is SMAVNet [89, 90], which uses a
swarm of fixed-wing UAVs that autonomously establish an emergency network for
disaster recovery between multiple ground users. The UAV swarm automatically
adapts to the current communication needs by communication based swarming. In
contrast to SMAVNet, AVIGLE [156] and Airshield [59] employ small quadro-
copter UAVs to provide communication infrastructures. AWARE [135] provides
middle-ware and functionalities required for the cooperation among UAVs and tar-
gets a self-deploying network by means of UAVs based on autonomous helicopters.
Chapter 7 describes our own prototype of a flying WMN using small quadrocopter
UAVs.

37

2.6. UNMANNED AERIAL VEHICLE HARDWARE

Figure 2.7: Quadrocopter from HiSystems Ltd. - a small unmanned aerial vehicle.

2.6 Unmanned Aerial Vehicle Hardware

Figure 2.7 shows a small unmanned aerial vehicle (UAV) that we have used for
UAVNet, described in Chapter 7. The UAV is a quadrocopter from the Mikrokopter
community project [35], which was started in 2006.

Its principle of flight is as follows: Four rotors with fixed propellers are mounted
in the same horizontal plane and turn pairwise in two opposite directions, i.e.,
the front/back rotors turn clockwise whereas the left/right rotors turn counter-
clockwise. The rotating propellers, therefore, just produce a lift of the quadro-
copter. The torsional moments annihilate and the quadrocopter goes up, hovers,
or declines depending on the speed the rotors. In order to fly in one direction, the
quadrocopter increases the speed of the rotor that is opposite to the wished flight
direction and brings the quadrocopter in an inclined position. The quadrocopter
flies in the wished direction. The quadrocopter, therefore, can fly forwards and
backwards (roll), to the left and to the right (roll). In order to turn the quadrocopter
around its vertical axe (yaw), a speed difference between back/front and left/right
propellers is introduced, the torsional moments do not annihilate anymore resulting
in a rotation of the quadrocopter.

A Mikrokopter quadrocopter contains various control electronics to provide a
stable flight (see Figure 2.8). First, the so-called Flight-Control controls the brush-
less engines by four brush-less controllers. It determines the current position in
air by three rotation speed sensors (gyroscopes) and a vertical acceleration sensor,
which measures the angle towards the earth. An optional height sensor provides

38

2.7. REGULATIONS

Figure 2.8: Quadrocopter flight electronics: main processor board Flight-Ctrl, four brush-
less controllers, GPS module, NaviCtrl with three-axis magnetic field sensor.

relative height values. According to these sensor values, the Flight-Control adjusts
the speeds of the engines and provides a stabilised flight of the quadrocopter. The
NaviCtrl, a second controller boards, offers the possibility of autonomous flights
by adding a GPS receiver and a three-axis magnetic field sensor (compass).

We have selected the Mikrokopter quadrocopter electronics for UAVNet (see
Chapter 7) due to its good availability, moderate costs, open source software, and
community support.

2.7 Regulations

Communications are usually regulated. Knowing these regulations is, therefore, an
important aspect of each network deployment. In the following, we show regula-
tions relevant for our outdoor deployment described in Chapter 5.

Alongside with other specifications, these regulations for communications limit
the maximum transmit power by the equivalent isotropically radiated power (EIRP)
[96]. EIRP is defined as the emitted transmission power of a theoretical isotropic
antenna to produce the same peak power density as in the direction of the maximum
antenna gain. It is calculated by subtracting cable losses and adding the antenna
gain to the output power.

Swiss regulations released by Federal Office of Communication (OFCOM) re-
strict outdoor communications following the IEEE 802.11h standard to the higher
5 GHz frequency band (5.470 – 5.725 GHz) [132]. IEEE 802.11h extends IEEE
802.11a with transmit power control (TPC) and dynamic frequency selection (DFS)
to cope with regulations in Europe. The effective regulations relevant for our work
are listed in the technical interface specification RIR1010-04 [132], which is based
on EN 301 893 [72]. They include the following restrictions:

• A maximum value of 1000 mW (30 dBi) equivalent isotropically radiated
power (EIRP) is permitted with TPC. A maximum value of 500mW EIRP
is permitted without TPC. With TPC, an 802.11h device shall automatically
reduce its transmit power to the lowest level that guarantees a stable and
reliable connection considering the expected attenuation and the variability
of signal quality at the receiver. TPC results in reduced interference to other
systems sharing the same frequencies. The lowest value in the TPC range of
a device has to be at least 8 dB below the maximal EIRP limit.

39

2.8. CONCLUSIONS

• Dynamic frequency selection (DFS) is mandatory. It shall detect interference
from radar systems, automatically switch to another channel, and, therefore,
avoid concurrent operation with these systems on the same frequency. In
addition, uniform spreading of the used spectrum is required.

2.8 Conclusions

In this chapter a general overview of Wireless Mesh Networks, their applications
scenarios and basic concepts have been given. We introduced relevant related
work in the area of routing, network management, operating systems, and eval-
uation methods for developments in the area of WMNs, i.e., network simulation
and network emulation. Moreover, we described existing WMN deployments and
testbeds, regulations and deployment frameworks.

In the next part of the thesis, we describe our general frameworks and tools,
namely ADAM and VirtualMesh. The next chapter presents ADAM, which pro-
vides a management framework for WMNs and build system for an operating sys-
tem tailored for WMN nodes. Chapter 4 then discusses VirtualMesh, a novel test-
ing and evaluation architecture.

In Part II (Chapters 5-7), we then apply the general frameworks and tools
to WMN scenarios, including a WMN for environmental monitoring, an ad-hoc
WMN for video conferencing on construction sites, and a flying WMN for disaster
recovery management. We further present our experiences and application specific
tools.

40

Part I

General Frameworks and Tools

41

Chapter 3

Operating System and Management
for WMNs

In this chapter, we describe a management architecture for WMNs and MANETs,
namely Administration and Deployment of Adhoc Mesh networks (ADAM) [15, 16,
128, 172, 174, 180]. ADAM avoids costly on-site repairs and reconfigurations of
nodes in WMNs due to misconfiguration, corrupt software updates, or unavailabil-
ity of nodes during updates. It improves the accessibility of individual nodes in
all these situations. Its main concept is based on decentralised distribution mecha-
nisms for safe configuration and software updates as well as on self-healing mech-
anisms.

ADAM introduces epidemic distribution of configuration and software updates,
i.e., nodes periodically fetch (pull) newly available updates from their one-hop
neighbours. This mechanism can cope with nodes being unavailable during the
update process. It provides full flexibility with a modular approach including full
support of IPv6 and configuration of network services. Fall back mechanisms guar-
antee a node’s accessibility and allow it to be recovered even from faulty software
updates.

Besides the main contribution, which is a flexible and extensible framework to
set up and maintain a heterogeneous WMN by safe reconfigurations and software
updates, the ADAM framework provides a simple, intuitive build system for an
embedded Linux distribution. This build system automates all steps required to
compile and generate a Linux distribution optimised for WMNs, supporting all
ADAM management features, from software source archives.

The structure of this chapter is as follows: Section 3.1 discusses the motivation
for the development of ADAM. In Section 3.2, the main concept and the architec-
ture of ADAM are explained. Section 3.3 presents the ADAM build system for an
embedded Linux distribution, tailored for WMN nodes. The management opera-
tion of ADAM is then discussed in Section 3.4. After the evaluation in Section 3.5,
Section 3.6 concludes Chapter 3.

43

3.1. INTRODUCTION

3.1 Introduction

Most existing deployments of WMNs (see Section 2.4) cover large geographical
areas and include node locations that are difficult to reach, e.g., roof tops. In ad-
dition, they may be deployed in hostile environments such as desert, mountain, or
arctic regions. Physical access to certain node sites may be very restricted or even
impossible due to administrative or technical reasons. In general, on-site repairs
are time-consuming and costly. Therefore, their number should be minimised.

During network lifetime, reconfiguration and software updates are necessary in
any WMN. For example, if a security bug is discovered, a bug fix has to be installed
as a software update to avoid security attacks. An example for a software update
and reconfiguration is the deployment of new developments in MAC and routing
protocols within the network. Unfortunately, there is always the risk that faulty re-
configurations and software updates may disrupt the nodes’ network connectivity,
which often results in manual on-site repairs, i.e., repairs that a network operator
goes on-site to have physical access to the broken nodes.

The three main reasons for on-site repairs are modified network parameters,
corrupt software updates and nodes that become unavailable during the processing
of updates. First, modifications of the network parameters, especially the radio
parameters such as reducing transmission power or changing the wireless channel,
may drastically impact the network topology or even cause disconnection of some
nodes from the network. Second, a corrupt software update may prevent a node
from working correctly. Third, some nodes may be temporarily unavailable during
the reconfiguration or software update distribution. Afterwards, they may not able
to integrate themselves into the network due to modifications missed during their
disconnection from the network. Examples are solar-powered nodes with drained
batteries or transmission difficulties due to special weather conditions. Without
any self-healing mechanism providing an automatic recovery, costly physical on-
site access is required to repair these disconnected nodes.

The most important design consideration for a management architecture is
avoiding situations such as mentioned above. Additionally, certain peculiarities
of WMNs have to be considered, including limited capabilities and resources of
the mesh nodes and limited network capacity for management and software up-
dates. A mesh node is usually an embedded device without a display. It only has
limited computational capabilities and a limited amount of random access memory
and flash-based secondary storage. Common operating systems for mesh nodes
are specially tailored embedded Linux distributions. A management architecture
should be lightweight and not significantly increase the operating system’s con-
sumption of resources such a CPU time, main memory and secondary storage.
Moreover, management operations, including software updates, should only use
few network resources.

In the following, we use the exemplary scenario of a WMN with regular mesh
nodes and management nodes, as illustrated in Figure 3.1. Although the WMN
can be heterogeneous and consist of different node types, i.e., different hardware

44

3.1. INTRODUCTION

platforms with different capabilities, nodes of the same type usually run the same
software and only differ in their configuration. As described above, some of the
nodes may be temporarily unavailable. This limiting factor has to be considered
in the management architecture. Management functions can be performed either
by distinct management nodes or by ordinary mesh nodes. Management nodes are
usually equipped with better hardware than the regular mesh nodes and can provide
more features. Their primary task is the monitoring of the network as well as the
configuration of all network parameters. For the ease of use, their functionalities
can be accessed via a web interface. They could further include advanced tools,
e.g., software image generators or a complete development environment. During
the lifetime of the network, new nodes may be added to the network, others may
be removed.

Figure 3.1: Example of a WMN: One node is temporarily unavailable, e.g., due to lack of
power. Another node is added to the network for the first time. Multiple nodes can provide
management functionality for the network.

A management architecture for a WMN has to fulfil the following requirements:

• The management operation should be fully distributed and decentralised to
prevent a single point of failures.

• Network connectivity of the nodes has to be guaranteed even in presence
configuration errors and software updates in order to avoid costly on-site
repairs.

45

3.2. ADAM: CONCEPT AND ARCHITECTURE

• Management communication should be always encrypted and only take place
between authenticated nodes to prevent malicious actions or hijacking of the
network.

• As routing protocols should be configurable, the management architecture
should be independent of any specific routing mechanism.

• In the on-going transition to IPv6, a management architecture for WMNs
should already fully support of IPv4, IPv6 and IPv4/v6 dual stack operation
to support all possible deployment options.

• To support future modifications and improvements, the management archi-
tecture should be modular and extensible in terms of manageable configura-
tion parameters

• The management framework should be portable to support various node
hardware platforms found in WMN deployments. This includes resource-
constraint low-cost devices commonly used in community networks.

• The network management should be user-friendly, e.g., provide a web-based
front-end.

3.2 ADAM: Concept and Architecture

ADAM meets the requirements of the described scenario by building on the three
main concepts, which includes decentralised distribution of software and config-
urations, self-healing mechanisms, and separation of node specific configuration
and node type specific binary software images.

3.2.1 Decentralised Distribution Mechanism

The first main concept of ADAM is a decentralised mechanism for distributing
software and configuration updates (see Figure 3.2). Each node periodically pulls
new software or configuration updates from its one-hop neighbours. Therefore, up-
dates are epidemically propagated from one node to the other throughout the entire
network. A periodicity of two minutes provides a good trade-off between manage-
ment overhead and a timely propagation of the updates. The update mechanism
works independent of the routing protocol used. If a node is not reachable during
the reconfiguration, it fetches the updates when it is up again. If the gathered up-
dates target the node, they are automatically applied. The successful application,
as well as network connectivity, is guaranteed by self-healing mechanisms, which
are the second main concept of ADAM.

46

3.2. ADAM: CONCEPT AND ARCHITECTURE

(a) Nodes periodically check for updates
(green arrows). A new configuration is in-
jected at a management node (M) or a normal
node.

(b) First nodes (A, B) get the update from
node M (orange arrows).

(c) Next nodes (C, D) get the update from
node A and B.

Figure 3.2: Distribution of node configuration and software updates.

3.2.2 Self-Healing

The self-healing capabilities of ADAM are manifold. They include monitoring
of the network topology during updates, detection of isolated nodes, and auto-
matic rollback to the latest running software if a software update fails to boot
properly. Monitoring of the network topology and appropriate reaction is the first
self-healing mechanism. If network parameters are modified that may disrupt net-
work connectivity, self-healing mechanisms recover the network connectivity. One
example is the discovery of a reduced number of neighbours after lowering the
transmission power. ADAM step-wisely increases the transmission power to the
previously set value in order to reach at least predefined network connectivity. The
detection of isolated nodes is the second self-healing mechanism. It supports that
temporarily unavailable nodes can be reintegrated into the network, even if the net-
work configuration has completely changed during their absence. Isolated nodes
may discover their state and follow an automatic lost node procedure for re-joining
the network. The final self-healing mechanism takes care of faulty software up-
dates. Although ADAM uses checksums to detect data corruption and to guarantee
error-free transmission of updates, the configured software updates may still con-

47

3.3. ADAM: BUILD SYSTEM

tain errors that prevent the nodes from properly booting after the update. If such
errors occur, an automatic rollback process is started. The node then automatically
reboots and loads the latest known working software.

3.2.3 Separation of Software and Configuration Data

ADAM separates software and configuration data on a node to exploit similari-
ties between the nodes and reduce the amount of transferred data in a network. It
is not efficient to just distribute a software image for each individual node. Most
software such as the operating system kernel and binaries for tools and applica-
tions are the same for similar types of nodes. Therefore, each node in an ADAM
network contains two image files. One image file holds the operating system ker-
nel and the binaries. This image is the same for all nodes of a similar type. The
other image just holds all the node specific parts. These are mainly configuration
files, which can vary for individual nodes. ADAM even splits up this configuration
image into the normal configuration files and a special network configuration file.
This network configuration file holds all dynamic network parameters, from which
the normal configuration files are automatically generated. Dynamic parameters in-
clude IP settings, default routes, external DNS and NTP servers, IP forwarding and
firewall rules, ad-hoc routing protocol, and the settings for services such as IPv6
router advertisement daemon, NTP and DNS running on the node. The full config-
uration image of an individual node with a size of 1 MB is usually not distributed.
Therefore, ADAM only needs to distribute this network configuration file with a
size of 10 KB for each node and the software image for each node type (<6 MB).
This drastically reduces the total amount of transferred data for an update.

3.3 ADAM: Build System

No existing build system for an embedded Linux distribution (e.g., OpenWrt, OE
or CFLS described in Section 2.2.2) properly supports all requirements for ADAM,
e.g., splitting binaries and configuration. As none was suitable for the implemen-
tation of the ADAM management approach, we decided to develop an own build
system based on the documentation of CFLS and some patches from OpenWrt.

The ADAM build system is especially tailored for WMNs and supports several
target platforms. To prove heterogeneity support, we currently use nodes from
three vendors, namely PCEngines ALIX and WRAP embedded boards, Open-
Mesh Mini and OM1P, and Meraki Mini (see Section 2.2.1). The nodes differ
in their processor architecture (x86 compatible, MIPS), their amount of RAM (32
- 256 MB) and secondary storage (8 MB - 4 GB). Despite these significant differ-
ences, all nodes provide similar functionality of installed utilities and software to
the user.

ADAM provides a build system that produces software and configuration im-
ages for different node types. The operating system is a fully customised embed-

48

3.3. ADAM: BUILD SYSTEM

ded Linux. It offers all key functionalities for a WMN node within a small memory
footprint (< 6 MB), which is a key factor for the deployment on small embedded
systems. In order to achieve this small footprint, ADAM uses the same tools as
OpenWrt. The µClibc [5], that requires only 400 KB of storage, replaces the stan-
dard C library, and BusyBox [6] replaces the standard UNIX tools (e.g., sh, cp, mv,
grep, sed, and awk), saving more than 4 MB of storage compared to the standard
tools. In contrast to OpenWrt, the Linux kernel and the binaries are stored in a
read-only compressed image on secondary storage, which is decompressed to the
RAM during run-time. This results in up to 6 MB additional software packed on
the OM1P (8 MB secondary storage) compared to running OpenWrt with a file
system on the secondary storage.

The goal of the ADAM build system is to simplify all necessary steps for image
creation. It avoids a steep learning curve for new users by an easily understand-
able modular approach and focusing on functionalities used in WMNs. It provides
a simple and intuitive command-line interface. It is easily extendable to support
additional software packages as well as to support other hardware platforms by
integrating new build profiles, containing all necessary build parameters for hard-
ware platform, such as board name, processor architecture and default software
packages. Moreover, the software requirements of ADAM are moderate. A stan-
dard desktop machine with a current Linux distribution (Fedora, Ubuntu, Debian,
Gentoo) providing the ordinary development and build tools, such as the GNU
compiler collection (gcc) and its standard development tools, is sufficient to use
ADAM.

The ADAM build system consists of two tools, namely the build-tool to com-
pile the software and the image-tool to pack the software correctly into the images.
Figure 3.3 illustrates the necessary steps to build a Linux distribution for an ADAM
mesh node. It uses colour codes for the used tools (orange, green, yellow, red). The
first three steps use the build-tool (orange), steps 4 and 7 the image-tool (green).
Steps 4 and 5 are either performed by the web management front-end or manu-
ally (yellow). The final installation and deployment (red) in step 8 is completely
node-specific and, therefore, has to be performed manually.

In step 1, after installation of the ADAM build system, the set-up procedure
is started by the build-tool. It creates a build environment for the target platform
by adding a user on the local machine. The command shell environment of the
new user, e.g., alix-builder, is set up with all necessary parameters for the cross-
compilation process, such as library and compiler paths. The parameters are de-
fined in the build profile of the selected target platform.

In step 2, the tool-chain for the cross-compilation is set up and installed for
the user. The operating system headers are installed. Then, machine-specific Exe-
cutable and Linkable Format (ELF) binary tools, the intermediate cross-compiler,
the C library µClibc for the target platform and the final cross-compiler are com-
piled and installed one after the other. The final cross-compiler is used to compile
all software packages for the target platform in step 3.

An individual software package in ADAM is defined as a recipe for compi-

49

3.3. ADAM: BUILD SYSTEM

lation and installation. It is implemented as simple shell script. Executing this
script downloads the particular package source archive, decompresses it, applies
necessary patches, configures it for cross-compiling and installs the binaries and
configuration files to the correct directories after successful compilation.

In step 4, the image-tool is used to generate the software image for the target
platform and individual configuration images for each node.

In steps 5 and 6, cryptographic key pairs for the distribution engine and the
network configuration for each node are generated. The node-specific keys and
the network configurations are then injected into the configuration image of the
corresponding node in step 7. In the final step, the generated Linux system images
are loaded onto the secondary storage of the new nodes or distributed using the
ADAM distribution engine.

Figure 3.3: ADAM: Steps of the build and set-up process for a node.

Besides software and configuration image, the image-tool creates another im-
age type - the so-called stand-alone image. This specific image is fully self-
contained and does not require any configuration image. In ADAM, it is only
used for testing purposes and the installation of normal software images on the
secondary storage of Meraki and OpenMesh nodes. The boot loader of these nodes
does not support writing files larger than 5 MB to the secondary storage. There-
fore, a stand-alone image is booted over the network to write the software images

50

3.3. ADAM: BUILD SYSTEM

under the temporary Linux system.

Figure 3.4: Run time layout of system RAM and the secondary storage for PCEngines
ALIX/WRAP, Meraki Mini and OpenMesh OM1P nodes.

Figure 3.4 shows the run-time memory layout of ADAM nodes. Depending on
the platform, a node can store multiple software and configuration images. During
run-time, a software image and a configuration image are mapped to a root file
system. As the state, such as random seeds and log files, should not be lost, when
software or configuration images are exchanged, it is stored in a special permanent
storage on the node, which is also mapped to the root file system in the RAM.

Figure 3.5 illustrates the boot process of an ADAM node. After being switched
on, the boot loader reads the boot configuration and loads the Linux kernel and the
initial RAM based file system from the software image. During OS initialisation,
the kernel then loads the root file system. After initialisation the content of con-
figuration image is mapped on top of the root file system, the permanent storage
with the node’s state and log files is mounted in the system. The Linux system ap-
plies the network configuration, starts the configured system services including the
time-based job scheduler. The system is now fully functional and the job scheduler
periodically starts the ADAM distribution engine.

ADAM nodes load their entire file system into RAM in order to increase the
system performance and to take care of the limited write cycles of the secondary
storage (CompactFlash cards, NAND storage). ADAM uses the Initramfs file sys-
tem, which provides flexible memory management, i.e., its size in RAM can grow
and shrink as needed. Using Initramfs, the entire file system is writable and indi-
vidual files can be modified. These modifications are, however, not saved over a
reboot due to the reload of the original software and configuration images at the
next boot. Therefore, ADAM includes a procedure to write back files to the con-
figuration image and to save them permanently over reboots.

51

3.4. ADAM: MANAGEMENT OPERATION

Figure 3.5: Detailed boot process.

3.4 ADAM: Management Operation

After initial installation, each node holds a software image and a configuration
image with the initial network configuration. The node is physically deployed at
the final location (e.g., on a rooftop). Henceforth, physical access to the node may
be costly or difficult. Therefore, the node should be completely managed from
remote by the ADAM configuration framework.

Figure 3.6 shows the general ADAM management architecture. It consists of
the ADAM distribution engine and modules for network configuration, integration
of new nodes, software update and a generic command module. The modules are
described in the following subsections.

3.4.1 ADAM Distribution Engine

The ADAM distribution engine for configuration and software updates is based on
the distributed management agent architecture of cfengine (see Section 2.1.3). It is
implemented as custom scripts and policies for the distributed agents of cfengine.
The pull based decentralised distribution can cope with nodes that are unreachable
during configuration. It further guarantees encrypted and authenticated manage-
ment communication, but requires time synchronisation. In contrast to cfengine,
ADAM does not rely on an external NTP server or a battery-driven real time clock
for time synchronisation. Before each distribution round, an ADAM node synchro-
nises the system time with its neighbours by connecting to a time service running
on their web servers. Each node periodically starts reachable neighbour detection,
synchronises its clock, connects to all its detected one-hop neighbours and checks

52

3.4. ADAM: MANAGEMENT OPERATION

Figure 3.6: General ADAM management architecture.

the availability of newer network configurations or software images. If there are
updates available, they are pulled by the node. This epidemic distribution mecha-
nism even works without a configured routing protocol.

Nodes that have been offline during the distribution of the updates get the con-
figurations and software updates from their neighbours as soon as they are online
again. If critical parameters, such as the wireless communication channel or fre-
quency band, have been modified, a node has no connection to any of its former
neighbours and can, therefore, not fetch the update. It is the automatically re-
integrated into the network using the lost node detection (see Section 3.4.6).

In order to be independent of other network configuration settings, the ADAM
distribution communicates over a dedicated IPv6 network using Unique Local
IPv6 Unicast Addresses (RFC 4193 [93]). The dedicated IPv6 network is always
present, cannot be switched off, and is only used for the management traffic. Al-
though running on the same physical network interfaces, there is a clear distinction
between this management network and the configurable IPv4/IPv6 networks used
for data transmission.

Upon reception of new network configurations or new software, the node auto-
matically applies them using the configuration and the software update module, if
it is the target, i.e., the network file contains its host name, and the software image
matches the node type. Otherwise, the files just remain in the exchange storage in
order to be distributed to other nodes.

The ADAM security concept is based on the cfengine tool and employs state-
of-the art authentication and encryption methods. The nodes authenticate each
other based on public key – host name pairs, which are exchanged and manually
approved prior to deployment. The communication is encrypted using a random
session key. After initial public key exchange, the ADAM distribution engine op-
erates under the assumption of mutual trust among all configured nodes.

53

3.4. ADAM: MANAGEMENT OPERATION

3.4.2 Configuration Module

The configuration module is started by the ADAM distribution engine if a new net-
work configuration (<hostname>.conf) has been received. The <hostname>.conf
file contains key value pairs for most configuration parameters, e.g., eth0 IP=
”130.92.66.40”. These dynamic parameters are used to generate and update most
of the other configuration files. If the file name matches the host name of the node,
the configuration module automatically applies the new network configuration to
the node, restarts the network interfaces, and reloads all affected system services.
The configuration module provides high modularity and is easily extensible. All
parameters related to network configuration including common services can be set
in a single configuration file. In addition, the configuration module fully supports
IPv6.

3.4.3 New Node Module

The ADAM distribution engine only accepts communications from known nodes.
In order to guarantee encrypted communication, it has to know the public keys
of all its communication peers in advance. The new node module handles the
integration of new nodes, of which public keys and network configurations are
unknown within the network.

A newly set-up node includes already all configurations and keys of the other
network nodes. In contrast, the already deployed nodes are not aware of the new
node. The network administrator provides the public key and network configura-
tion of the new node to the new node module, which then distributes them using
the ADAM distribution engine. If the ADAM web configuration tool is used to
generate the new configuration, keys and network configurations are automatically
handed over to the new node module.

In ADAM, new nodes can be easily integrated into the WMN. In order to pro-
vide full flexibility and to consider all possible deployment situations, a network
configuration of the new node can be directly generated and loaded on the node
during its setup, preloaded and distributed in the network, or not generated until
the new node tries to join the network. The new node is directly integrated into the
network if it has all necessary keys and the network configuration has not changed
since the node setup. If the new node holds a deprecated or no network configura-
tion, the new node procedure is started.

Figure 3.7 depicts this new node procedure necessary for adding a new non-
configured node to the network. A standard image has been loaded to the new
node. Furthermore, the node has received a unique host name, its public/private
key pair, as well as the public keys of the other network nodes. The keys are
essential to guarantee that only authorised nodes can connect to the network.

Due to the separate permanent IPv6 management network, the process of new
or lost nodes joining the network is as follows. After connecting to the wireless net-
work with the ESSID being the IPv6 network prefix, a new node contacts its neigh-

54

3.4. ADAM: MANAGEMENT OPERATION

(a) New node searches for networks having an
ESSID that matches an IPv6 prefix.

(b) New node automatically configures a valid
IPv6 address and tries to get its configuration
from neighbours. After the new node has re-
ceived its configuration, it is fully integrated
into the network.

(c) If no configuration is available, the node an-
nounces its state to a management node. The
user has to generate a new configuration. The
new node is integrated in the network after
having received the generated configuration.

(d) After the new node has received its config-
uration, it is fully integrated into the network.

Figure 3.7: Integration of a new node into an existing network.

bours for network configuration and software updates using the distribution engine
as it always has an automatically assigned valid IPv6 address. If a network configu-
ration or software update is available, the newly deployed node simply loads them
from one of its neighbours, applies them, and is then fully integrated in the net-
work. If no network configuration is available at the neighbours, the node signals
its lack of a valid network configuration over the distribution engine throughout the
network towards the management nodes. The user is then prompted to generate a
configuration on the management node.

3.4.4 Software Update Module

The software update is responsible for applying a new software image to the node.
Software images are distributed together with an update file that contains detailed
information about the specific update action. It contains the file name of the soft-
ware image, the node type, the update version, and a checksum of the software
image. If the node retrieves a new software image by the ADAM distribution

55

3.4. ADAM: MANAGEMENT OPERATION

engine, the software update module checks if node type, version, and checksum
match. If positive, the module calls the update procedure specific for the node
type. For nodes with sufficient secondary storage capacity, the safe update proce-
dure is started. It supports the availability of the nodes even after faulty updates.
Platforms without sufficient secondary storage do not support this safe update pro-
cedure. Consequently, a failed software update requires physical access physical
access in case of such platforms, e.g., Meraki Mini and the OpenMesh OM1P.

The safe software update procedure of ADAM can recover from a failed soft-
ware update by rebooting with the previously working software image. In order to
support this functionality, a node requires sufficient storage capacity to hold at least
two software images in its secondary storage. The safe software update process is
based upon an additional update partition on the secondary storage and the boot
loader grub’s ability to perform the following actions at boot time according to its
configuration files:

• Install the Master Boot Record (MBR) pointer to another boot partition. The
node then boots from this partition the next time.

• Boot the operating system from the current boot partition.

Employing these actions enables booting an updated kernel and performing a
fall back to the previous software update when the kernel from the software update
fails to boot, e.g., due to a kernel panic or a corrupt root file system.

For implementing the safe software update, a node contains two partitions. The
second (update) partition holds a secondary set of boot loader configuration files
that boots the current software image known to be working. In case of an update,
the software update module copies the update image to the first partition and adjusts
the boot entry on the first partition to boot this image at the next reboot. The node
is rebooted. During start-up, the boot loader rewrites the MBR to point to the safe
entries on the second partition. If the update image can be successfully booted,
the update is made permanent by replacing the standard image and readjusting the
boot loader files. Otherwise, a boot flag of Linux enforces a reboot, if a kernel panic
occurs or the root file system could be reloaded. In this case the node automatically
reboots and loads the standard image using the same boot loader configuration
on the second partition. In this way, a safe update of the software image can be
guaranteed in any circumstances.

Figure 3.8 shows the detailed safe software update process. In the following,
the sequences of the software process for the following three situations are:

Normal operation: The system is in default configuration (S1). No update is
planned. Therefore, the system remains in default configuration after a re-
boot (N1/N2).

Successful update: The system is in default configuration (S1). The MBR points
to /dev/hda1. The default image would be loaded after reboot. An update

56

3.4. ADAM: MANAGEMENT OPERATION

Figure 3.8: Safe software update process for Linux kernel and root file system with auto-
matic fall back to previous software image.

is intended (U1). The layout of grub is changed to update layout (U2). The
update image is copied to /dev/hda1 (S2). As MBR points to /dev/hda1, from
where grub configuration is read at the next reboot (U3), the boot loader grub
sets MBR pointer to /dev/hda2 and loads the update image. If the update has
been successful, the layout is reverted to the default layout (U4/U5) and the
default image is replaced by the update image (S3). During the next reboot
the boot loader (grub) configuration on /dev/hda2 is read. MBR is changed
to point to /dev/hda1 again. The default image is loaded from /dev/hda1
(U6/U7). The node returns to normal operation (S1).

Faulty update: The system is in default configuration. MBR points to /dev/hda1
(S1). The update image is copied to /dev/hda1 and the update layout is
set (U1/U2/S2). The system is rebooted (U3). MBR is reset to point to
/dev/hda2. The update image is loaded. The update image produces a kernel
panic (E1). The node is automatically rebooted (E2) and is now in error state
(S4). As the MBR points to /dev/hda2, the MBR is reset to boot /dev/hda1
next time and the default image is loaded (E3). The node runs with the old
kernel again. The update image is removed; the layout is reset to default
(E4). The node returns to normal operation (E4/S1).

The safe update of each node concerns only the software image, which contains
the kernel and the basic software of the system. Before starting a safe update
procedure, ADAM checks the correctness of the boot loader configuration files
and corrects them if necessary.

57

3.4. ADAM: MANAGEMENT OPERATION

3.4.5 Command Module

The node-specific configuration images are not directly distributed as an entire im-
age over the ADAM distribution engine due to the huge transmission overhead.
There are usually only small changes in the configuration image. Adding, remov-
ing and modifying configuration files in the configuration image is performed by
the generic command module. This module can execute user-defined commands
on a predefined set of nodes. The commands are written in a command file, which
is then propagated together with data files within the network using the ADAM
distribution engine. Upon reception of a command file for the node, the command
module executes the command and registers the execution time, the exit status, and
a possible output of the command in a reply file, which is then distributed within
the network. For example, if a bug fix for the file hotplug2.rules should be applied
to some nodes, a command file with instructions for the file replacement is copied
together with the new file to the exchange directory of a node. ADAM distributes
the files within the network and the bug fix is applied on all specified nodes. In
the example, only 10 KB of data have to be transmitted instead of an entire new
configuration image with a size of 1 MB.

3.4.6 Lost Node Detection

There are scenarios, in which a node can totally loose its connectivity to all other
network peers due to misconfiguration that is not properly handled by sanity checks
during the updates. After a predefined time-out without any network connection,
the node, therefore, resets its transmission power to the maximum value and then
searches on all wireless channels for an ad-hoc network with the service set iden-
tifier that matches an IPv6 prefix. If a network is found, the node connects to it
and then fetches a new network configuration (new node procedure). We recom-
mend to configure a time-out of 2 h due to epidemic distribution mechanism and
the software update time of about 50 min for the low cost nodes (Meraki Mini
and OpenMesh OM1P). The lost node detection is part of the monitoring and self-
healing mechanisms shown in Figure 3.6.

3.4.7 Web-Based Management

ADAM introduces management nodes to provide a user-friendly web-based man-
agement front-end that helps the user performing common management tasks, e.g.,
generating network configurations and network keys or uploading new images. As
additional software is required for this functionality, only more powerful nodes,
e.g., ALIX nodes, provide web-based management functionality. The build target
alix-mgmt of the ADAM build system includes all necessary additions such as a
web server and some scripts to the normal alix image.

The ADAM management front-end is illustrated in Figures 3.9 - 3.11. Fig-
ure 3.9 shows the front-end for the configuration management for an entire net-
work. On the left top corner, the currently deployed network is shown. Then

58

3.4. ADAM: MANAGEMENT OPERATION

Figure 3.9: ADAM: Management of network configuration.

Figure 3.10: ADAM: Modification of selected network configuration.

59

3.4. ADAM: MANAGEMENT OPERATION

Figure 3.11: ADAM: Edit the network configuration of an individual node.

60

3.5. EVALUATION

either this deployed configuration is loaded as actual configuration to be edited
or a new configuration has to be created. After modification, the configuration is
either saved to a USB memory stick or it is deployed to the network. The front-
end further offers the possibility to load a configuration, which is stored on a USB
memory stick. The loaded configuration can then be either modified again or di-
rectly deployed in the network.

Figure 3.10 shows the front-end for editing the configuration for an entire net-
work. The only static parameters of an ADAM based network are the root password
of the nodes and the IPv6 prefix, which is used for permanent IPv6 management
network and its ESSID. The front-end shows all deployed nodes and offers their
management including adding new ones. The configuration can be edited for each
individual node. The various network parameters that can be modified are shown
in Figure 3.11.

If a new node is added to the currently deployed network configuration, its
public encryption key and network configuration are automatically transferred to
the ADAM distribution engine during the deployment. All keys and network con-
figurations can be downloaded as compressed archive from the configuration man-
agement (see Figure 3.9). This archive can then be injected into the configuration
image of the new node (see step 7 in Figure 3.3).

In addition, the configuration management web front-end in Figure 3.9 offers
uploading software and configuration images for deployment within the network.

3.5 Evaluation

The most crucial requirement for a management and software update architecture is
to guarantee the nodes’ accessibility in any circumstances, i.e., in presence of con-
figuration errors, faulty software updates, and nodes unavailable during reconfigu-
ration. ADAM succeeds in guaranteeing the nodes’ accessibility by a decentralised
software and configuration distribution and several self-healing mechanisms. A de-
tailed qualitative analysis of ADAM can be found in Table 3.1.

The proper functionality of ADAM has been verified within our own testbed at
the Institute of Computer Science and Applied Mathematics with ALIX, WRAP,
Meraki Mini and OpenMesh nodes (see Section 2.2.1). Several software and con-
figuration updates performed in the testbed proved the full functionality of both
management architectures. To evaluate the times used for ADAM management,
we set up a small testbed consisting of four nodes being all within a common
communication range; an ALIX node, two Meraki Mini nodes, and an OpenMesh
OM1P node. Using software built with ADAM, booting an ALIX node takes up
to 30 s, a Meraki Mini or an OpenMesh OM1P node up to 5 min. The one-hop
distribution took up to 2.5 min for a software image of 6 MB and up to 2 min for a
network configuration file. Upon reception of a software update at an ALIX node,
it takes about 1 min until it is reachable again, if the update could be successfully
applied. If a faulty software update is distributed and then applied to an ALIX

61

3.5. EVALUATION

node, the safe-update procedure automatically reverts the node to the former state
and the node is also reachable again after about 1 min. Due to slow write speed of
the secondary storage, the update takes up to 50 min on a Meraki Mini node or an
OpenMesh OM1P. In case of an updated network configuration with modified net-
work address, an ALIX node is reachable after 30 s, a Meraki Mini or OpenMesh
OM1P after 1.5 min under the new IP address. If a node is misconfigured and does
not have access to the network anymore, it is automatically reintegrated into the
network after 2 h as defined in the default configuration.

In order to test the command module, we set up a chain topology with the same
four nodes (ALIX, Meraki01, Meraki02, OMP1). A command file for Meraki01,
Meraki02, and the OM1P was injected at ALIX node. The commands were exe-
cuted after 40 s on Meraki01 (1-hop), 3 min 36 s on Meraki02 (2-hop), and 4 min
54 s on the OM1P. The ALIX node received the reply files after 1 min 6 s (Mer-
aki01), 4 min 32 s (Meraki02), and 6 min 46 s (OM1P). These times highly depend
on the distribution engine, which uses a random back off time (0 - 60 s) to prevent
synchronous connections of all nodes.

ADAM
Management
Decentralised distribution engine +
Executable from each node +
Support for temporary unavailable
nodes

+

Self-healing mechanisms +
Independent of routing +
Fixed parameters (ESSID), host name, cryptographic

keys
External time synchronisation or
battery-powered RTC

optional

Splitting of images software image (< 6 MB),
configuration image (< 1 MB),
network configuration (< 10 KB)

Directly distributed files software image, node specific
network configuration

Modular design +
Management framework portable +
Additional features - generic command module
Software image
Linux kernel version 2.6.26 - 2.6.38

62

3.6. CONCLUSIONS

Wireless driver Madwifi (Linux kernel version ≤
2.6.28), ath5k and ath9k (Linux
kernel version > 2.6.28)

Support for IEEE 802.11s +
IPv4/IPv6 support + / +
Build system
Automated build process +
Automated image creation +
Modularity +
Extensibility with new software +
Cross-compilation +
Platforms supported ALIX, WRAP, OpenMesh Mini,

OpenMesh OM1P, Meraki Mini,
XEN

Adding new build targets +
Support for VirtualMesh (see
Chapter 4)

+

Requirements for build system desktop computer with recent Linux
distribution (Ubuntu ≥10.10
recommended)

Delivery of the build system download as compressed archive
(1.5 MB)

Table 3.1: Qualitative analysis of the ADAM management architecture.

3.6 Conclusions

In this chapter, we proposed a novel management architecture for WMNs, namely
ADAM. During the network lifetime, several management activities, such as re-
configuration and software updates, are necessary in any WMN. Misconfiguration
and corrupt software updates may disrupt the network connectivity of some nodes.
This leads to costly on-site access and repairs.

In order to guarantee the accessibility of individual nodes, ADAM introduced a
decentralised distribution mechanism for software and configuration updates, self-
healing mechanisms, and a safe software update procedure. Furthermore, it splits
the node’s firmware in two parts, a node specific configuration image (∼ 1 MB) and
a binary software image that is the same for a specific node type (< 6 MB). Instead
of distributing a firmware image for each node throughout the network, ADAM
only has to distribute one image per node type. In order to reduce the data to be
transmitted, ADAM also extracts all dynamic and configurable network parameters
from the node-specific configuration image (∼ 1 MB) to a single network config-
uration file (∼ 10 KB). All other configuration files are then automatically derived

63

3.6. CONCLUSIONS

from this file. Since only the network configuration file has to be distributed, the
management traffic is significantly reduced.

Due to the decentralised distribution mechanism, ADAM can cope with un-
available nodes and automatically repairs configuration and software update er-
rors. It is completely independent of a fully operable routing protocol and works
completely in-band, i.e., it does not require the presence of an additional backbone
network for management. ADAM just uses a separate permanently configured
IPv6 network for the management running on the same physical interfaces to allow
the modification of all network parameters for the data networks. ADAM fully
supports the usage and configuration of IPv4/IPv6 communication.

The ADAM build system supports cross-compilation and simplifies the prepa-
ration of a customised embedded Linux operating system for several mesh node
types. It is user-friendly, easy to understand and extendable. The ADAM frame-
work is released under GPLv2 license [173].

Our qualitative evaluation shows that ADAM fulfils all requirements of a com-
prehensive management architecture for WMNs.

There are several further possible extensions for the ADAM framework. Self-
healing capabilities can be enhanced to react faster on disruptive configuration up-
dates. Other extensions of ADAM are an automatic dependency calculator for
the software packages or a semi-automatic conversion of OpenWRT packages to
ADAM build scripts and patches. Currently, we are adding ARM Cortex-A8 based
Gumstix Overo computer-on-modules as a new target to the ADAM build system.

ADAM provides excellent support for the operation of WMNs by an embed-
ded Linux distribution and a management framework. Moreover, ADAM’s build
system represents a valuable tool for prototype implementations on different plat-
forms. In the next chapter, we describe a flexible framework for extensive testing
of these prototype implementations in a controlled environment instead of a real
testbed.

64

Chapter 4

Development and Testing Support

In this chapter, we describe VirtualMesh, a flexible and comprehensive framework
for development and testing of new protocols and architectures for WMNs and
MANETs[176, 177, 77, 179]. Its key novelty is the concept of wireless device
driver enabled network emulation. VirtualMesh simplifies the commonly used pro-
cedure of development for new protocols and architectures utilising evaluation by
network simulation and testing of a prototype in a testbed.

Development and testing of new software for WMNs and MANETs is gener-
ally cumbersome and split into at least two phases, which are often not unified.
First, new protocols and architectures are implemented and evaluated in a network
simulation environment. Second, a prototype on real hardware is implemented
and evaluated in a testbed. Unfortunately, testing by simulation often requires the
developer to write software that is not directly portable to testbeds and does not in-
clude real operating systems and network stacks, whereas pure prototype testing on
real hardware is extremely time-consuming and expensive. Testbeds might suffer
from irrepressible external interference, which makes debugging extremely diffi-
cult. Real-world testbeds usually support only a limited number of test topologies
and sites. Moreover, large-scale mobility tests are generally resource intensive and
impractical.

VirtualMesh provides a testing architecture, which can be used before evalu-
ation in a real testbed or the final deployment in the productive network. It sig-
nificantly simplifies the testing process by combining the strengths of the network
simulation, such as the controlled environment and scalability, and prototype test-
ing, such as using the real network stacks and real applications. VirtualMesh offers
instruments to comprehensively test the real communication software, including
the network stack, inside a controlled environment and under various conditions
and scenarios, including node mobility.

VirtualMesh classifies as a network emulation approach (see Section 2.3.2). It
is based on emulation of the wireless medium by a network simulation and the
introduction of virtual wireless interfaces, which redirect the wireless traffic of
native or virtualised nodes over the emulated wireless medium. The properties
of the virtual wireless interface can be modified in the exact same manner as the

65

4.1. INTRODUCTION

ones of a real wireless interface. The modifications are automatically propagated
to the simulation model and applied during runtime - a novel feature introduced by
VirtualMesh.

Employing host virtualisation drastically increases the flexibility and scalabil-
ity of VirtualMesh. By adding virtualised nodes to an existing testbed or even fully
virtualising an entire testbed, VirtualMesh provides significantly increased scala-
bility with reduced hardware costs and administrative effort.

Section 4.1 illustrates key problems solved by VirtualMesh. In Section 4.2,
the basic concept and the general architecture of VirtualMesh are illustrated. Sec-
tion 4.3 presents the communication protocol used for the connection of the nodes
with the wireless network simulation. Section 4.4 explains the concept of host
virtualisation. Then, the implementation of virtual wireless interface is described
in Section 4.5. Section 4.6 presents the implementation of the emulated wireless
medium. In Section 4.8 the evaluation results of VirtualMesh are discussed. Fi-
nally, Section 4.9 summaries our VirtualMesh activities and presents our conclu-
sions.

4.1 Introduction

For commercial utilisation of WMNs, new communication protocols as well as
new costumer services have to be developed. The development process in WMNs
is typically split into evaluations by simulations and testing a real prototype in a
testbed.

First, protocols and architectures are implemented and evaluated in a network
simulator. Afterwards, a prototype is implemented on the target platform such as
Linux and tested inside a testbed before deployment in the real network. Simu-
lation provides most flexibility in testing. Different and large scale experiments
as well as experiments with mobility of devices and users are possible. Thus, the
focus here can be set on testing and debugging the functionality of the proposed
protocols. Unfortunately, simulation models cannot cover all influences of the op-
erating system, the network stack, the hardware, and the physical environment due
to complexity constraints. Therefore, the transition from simulation models to the
deployable solution remains challenging.

Testing the prototype in a testbed during the implementation process is time-
consuming, costly, and very limited in test scenarios. Due to economic reasons, the
scale of the testbeds is limited and they are often not deployed in isolated environ-
ments, which limits the reproducibility of the results. Interferences with existing
networks are possible and irrepressible, which makes debugging of new proto-
cols very challenging. Furthermore, the number of test topologies is limited and
mobility tests are impracticable. Moreover, WMNs provide an even more com-
plex testing challenge compared to simple wireless access networks. They support
mobile users and high-throughput applications. Their architecture contains self-
configuring and self-healing mechanisms, which have to be included in the tests.

66

4.2. VIRTUALMESH CONCEPT AND ARCHITECTURE

Cross-layer protocol stack interactions have to be tested in a controlled environ-
ment without any irrepressible influences. Moreover, the tests have to cover time
and delay aspects of the real network stack. Not all these tests can be fully done in
simulations; it is also difficult to perform them in a testbed.

We propose to use network emulation based on simulation models (see Sec-
tion 2.3.2). We use the final operating software of the nodes, to replace the wireless
interfaces with virtual ones, and to emulate the physical medium for gaining more
control in the development process. This substantially enhances the testing pro-
cess, as the real software stack may be evaluated within a controlled environment.

Our contribution is an emulation framework for WMNs called VirtualMesh,
which is based on the network simulator OMNeT++ [195, 196]. This framework
offers enhanced evaluation of communication software written for real and virtu-
alised nodes on top of an OMNeT++ simulation model. Communication software
can be tested without any adaptations over an emulated network using OMNeT++.
VirtualMesh uses real mesh nodes with a real network stack. It intercepts wire-
less traffic before transmitting it over the air and forwards it to a simulation model.
This simulation model offers a vast flexibility in topologies and mobility tests. It
supports changing topologies and different mobility scenarios. This makes auto-
mated testing of the real communication software with a high variety of scenarios
possible. In contrast to experiments in a real testbed, there are no irrepressible
influences on the experiments such as interference from neighbouring networks
and power lines, steel structures of buildings, or changing weather conditions. In
addition, VirtualMesh facilitates the setup of large scale scenarios by host virtual-
isation, which has been proposed by several works presented in Section 2.3.2. As
first network emulation approach, VirtualMesh has introduced the concept of a vir-
tual wireless driver that allows the modification of the device parameters through
usual system tools (e.g., iwconfig) and the direct propagation of the dynamic de-
vice parameters during the emulation. This concept has been adopted by SliceTime
for the network simulator ns-3 (see Section 2.3.2).

4.2 VirtualMesh Concept and Architecture

The main concept of VirtualMesh is to intercept and redirect real traffic generated
by real nodes to a simulation model, which then handles network access and the
behaviour of the physical medium. The network stack is split into two parts as
shown in Figure 4.1. The application, transport, and Internet layers are handled by
the real/virtualised node. At the MAC layer the traffic is captured by a virtual net-
work interface and then redirected to the wireless simulation model, the so-called
WlanModel. The WlanModel calculates the network response according to the vir-
tual network topology, the propagation model, the background interference, and
the current position of the nodes. Only the MAC layer and the physical medium
are simulated. All the other layers remain unchanged and work just as in a real
testbed of embedded Linux nodes. Consequently, VirtualMesh requires only mini-

67

4.2. VIRTUALMESH CONCEPT AND ARCHITECTURE

mal modifications of the network stack, i.e., the adoption of virtual interfaces, and
achieves a good decoupling between real network stack and the emulated medium.

MAC

Internet (ARP, IP and ICMP)

Transport (TCP, UDP, ...)

Application

Real or Virtualized Nodes

WlanModel (Simulation Server)

native / virtualized

emulated
wireless medium

Physical

Figure 4.1: General concept: Traffic interception and emulation of the wireless medium
via subdivision of the network stack.

The general architecture of VirtualMesh is shown in Figure 4.2. It consists of
an arbitrary number of computers hosting the simulation model and real or virtu-
alised mesh nodes. A wired infrastructure network interconnects the nodes and
the model. The wireless interfaces of the nodes are replaced by virtual interfaces,
which communicate over the infrastructure network to the WlanModel using the
VirtualMesh communication protocol (see Section 4.3). The infrastructure network
provides the communication channel between the nodes and the WlanModel. The
entire traffic sent to the virtual interfaces is forwarded to the WlanModel, which
processes the messages in its wireless simulation model and sends the response to
the virtual interfaces of involved nodes. The network scenario in the simulation
model reflects an arbitrary network topology, which is not related to the physical
positions of the participating nodes. A key feature of VirtualMesh is that not only
real nodes with virtual wireless interfaces are supported, but also virtualised hosts.
This directly addresses the scalability problems of testbed infrastructures without
additional effort for the protocol developers. In our setup, host virtualisation is per-
formed by XEN [17], but other virtualisation techniques could be used too. Host
virtualisation provides additional scalability of the system. One standard server
machine (Pentium D dual-core 3.2 GHz, 1 GB RAM) may hold up to ten virtual
mesh nodes without any problem.

Nodes that participate as wireless nodes in the network scenario require that
VirtualMesh client tools are installed. These client tools manage the virtual inter-
faces of the nodes and connect them to the wireless emulation (WlanModel). They
further propagate any modification of the virtual interface settings to the simulation
model. The VirtualMesh client tools are discussed in detail in Section 4.5.

The simulation server, hosting the WlanModel, is connected to all nodes through

68

4.3. VIRTUALMESH COMMUNICATION PROTOCOL

Figure 4.2: VirtualMesh architecture with real nodes, virtualised nodes, and the simulation
model.

the infrastructure network. The server injects the forwarded traffic received from
the virtual interfaces of the nodes into the WlanModel, which then computes the
wireless propagation between the nodes and sends the correct response to the cor-
responding nodes. WlanModel is fully implemented as a simulation model for the
network simulator OMNeT++ [196, 197]. It takes advantage of all features of OM-
NeT++ or its extension frameworks such as INET [94] or MiXiM [202]. Thus, it
can make use of all different physical layer simulation models implemented in OM-
NeT++. In its standard configuration, VirtualMesh uses the IEEE 802.11b stack of
the INET framework for modelling the wireless driver functionality. The imple-
mentation of the WlanModel is discussed in Section 4.6.

4.3 VirtualMesh Communication Protocol

In order to communicate between the virtual/real WMN nodes and the simulation
server holding the simulation model over the infrastructure network, VirtualMesh
requires a communication protocol that meets its specific requirements, such as
high performance packet forwarding, dynamic adaptation of the emulated network
and wireless parameter propagation. For VirtualMesh, high performance opera-
tion of the packet forwarding for exchanging the original wireless traffic is crucial.
Therefore, the protocol should only introduce minimal delays in packet genera-
tion and transmission. The simulation model has to support dynamic scenarios
with nodes joining and leaving the emulated network. Thus, it has to be informed

69

4.3. VIRTUALMESH COMMUNICATION PROTOCOL

about these changes timely. Any modification of a wireless interface parameter on
a node has to be propagated transparently to the simulation model. In addition, the
simulation model must be able to map the packets to the corresponding wireless
node.

There are two possible solutions for transmitting the wireless parameters to the
simulation model. All required parameters of the virtual wireless interface either
are piggybacked with each forwarded wireless frame, or dedicated configuration
messages are exchanged for the wireless configuration. There are several draw-
backs of piggybacking. Including the wireless parameters in each data packet does
not only increase the transmission overhead, it also introduces significant delays
to the packet processing in the simulation model. The simulation model has to
process the wireless configuration for each packet. As the wireless configuration
usually remains unchanged during the transmission of multiple packets, the second
solution with dedicated messages has been selected for VirtualMesh. Configuration
messages are only exchanged in case of modified settings. To reduce complexity,
configuration settings are sent uni-directionally from the nodes to the simulation
model. Fully featured feedback of configuration parameters from the simulation
model back to the nodes remains a possible extension for future work.

The VirtualMesh communication protocol uses the User Datagram Protocol
(UDP) as transport protocol due to the low-latency requirement. The connection-
less datagram service of UDP provides a better performance than the Transport
Control Protocol (TCP). The drawbacks of UDP such as no sequence guarantee
and no retransmission in case of errors can be accepted in VirtualMesh, as in-
terconnections of the nodes with the simulation server over the dedicated infras-
tructure network can be considered as optimal. In any case, even some lost data
packets would have a lower impact on VirtualMesh than many delayed packets.
In summary, UDP provides the best match considering the traffic pattern of the
transported wireless frames. The VirtualMesh communication protocol, therefore,
transmits its five protocol messages over UDP. These message types are described
in the following.

Figure 4.3 shows the five message types of VirtualMesh necessary for node
management, traffic tunnelling, and propagation of configuration settings. Mes-
sages are REGISTRATION, ACK, DE-REGISTRATION, DATA, and CONFIGU-
RATION.

At start-up, each node intending to participate in the wireless emulation of
VirtualMesh registers itself by sending a REGISTRATION message to the simu-
lation server. This message contains the host identification (unique id, e.g., the
uniquely assigned MAC address 000b6bdbe502), a sequence number (msg id), the
host name (e.g., node01), the infrastructure IP address (IPv4 or IPv6), the port
where the VirtualMesh client tools are listening for incoming traffic, and the num-
ber of interfaces. It further contains the initial values for all dynamic parameters
such as interface name, MAC address, and index as well as wireless parameters
(e.g., channel, transmission power, MAC level retries, and receiver sensitivity) for
each virtual interface. The REGISTRATION message is sent by the VirtualMesh

70

4.3. VIRTUALMESH COMMUNICATION PROTOCOL

Ethernet Packetsizetype:
data

DATA Message

host
id

type:
register

host
name

IP
v4 / v6 port

REGISTRATION Message

#
interfaces

vif
name

msg
id

host
id

vif
MAC

vif
index

vif
parameters

CONFIGURATION Message

type:
cong

host
id

vif
index

parameter
type

parameter
value

DE-REGISTRATION Message ACK Message

type:
ack

type: de-
register

vif
index

msg
id

host
id

msg
id

host
id

Figure 4.3: Message format to communicate with the model: data transmission and node
registration.

client tools just after start-up of the node. The REGISTRATION message is retrans-
mitted if it is not acknowledged by the model through an ACK message within a
predefined time-out, e.g., 10 s. After successful reception of the acknowledge-
ment, the node can start transmitting its wireless traffic to the model. Upon node
registration, the simulation model created an internal representation of the external
node.

If a node leaves the wireless emulation, a DE-REGISTRATION message is
sent to the simulation model. The simulation server then removes the node from
the simulation model. After de-registration, the simulation server neither accepts
traffic from this node nor does it forward traffic to the node.

DATA messages are used for encapsulating regular wireless network traffic and
to exchange it between nodes and the simulation model. Network traffic is sent
as DATA messages. A DATA message contains the intercepted Ethernet frame,
its size, the message and host identification and the involved virtual interface. In
VirtualMesh, the management network uses a larger maximum transfer unit (MTU)
to compensate for the overhead of these DATA messages and to guarantee that
no packet fragmentation is necessary when using the standard MTU for the data
traffic coming from the nodes. The commonly used 1 Gbps infrastructure network
supports MTU sizes up to 9000 bytes. At startup, the VirtualMesh client tools
check the correctness of MTU sizes of the management network.

If any dynamic wireless parameters, such as the current communication chan-
nel and transmission power, have changed on the node, a CONFIGURATION mes-
sage is sent to the model. The CONFIGURATION message includes the host iden-

71

4.4. HOST VIRTUALISATION

tification, the index of the interface with the changes, and all the changed parame-
ters of the interfaces as type/value tuples. After the parameters are supplied to the
model, it can calculate the simulation behaviour. In order to minimise the overhead
of message handling in the simulation model and to avoid blocking situations, Vir-
tualMesh does not acknowledge CONFIGURATION messages. In the worst case,
emulation continues using the old values.

In order to ensure the correct behaviour, a node using the VirtualMesh commu-
nication protocol can be in one of three protocol states. The node is either in the
unconnected, registration pending or connected state. Being unconnected, the node
has no connection to the simulation server. The node drops any wireless traffic. As
soon as the node has sent a REGISTRATION message to the simulation server, it
is in the registration pending state and waits for the confirmation of the registra-
tions. The node still drops any wireless traffic. If no ACK has been received after
five seconds, the node retransmits its REGISTRATION message. The registration
is successful if the node receives an ACK message. The node is now connected.
DATA and CONFIGURATION messages can now be exchanged between the node
and the simulation server. By sending a DE-REGISTRATION message, the node
leaves the wireless emulation and returns to the unconnected state.

The message flow between virtual/real WMN nodes and the simulation model
is described in Section 4.5, whereas the message flow inside the simulation model
is shown in Section 4.6.2. The complete protocols for node registration, de-registra-
tion, packet transmission, and configuration propagation are illustrated step-by-
step in Section 4.6.3.

4.4 Host Virtualisation

Host virtualisation provides additional scalability for VirtualMesh. It reduces the
necessary administrative effort for complex test scenarios and effectively lowers
the costs of protocol development by reduced hardware cost and more flexibility in
testing. Multiple virtual hosts, so-called guests, are running on top of a hypervisor
or virtual machine monitor (VMM) on common x86-compatible hardware. The
hypervisor presents a virtual hardware platform to the guests and monitors their
execution. VirtualMesh can be used with different virtualisation products as long as
they support Linux as guest operating system. For the VirtualMesh prototype, we
have selected the XEN virtualisation platform [17]. XEN is a powerful and efficient
open-source solution for host virtualisation. It can be integrated into several kernels
of free operating systems such as Linux, NetBSD, FreeBSD, or OpenSolaris. It
offers full virtualisation and para-virtualisation for node virtualisation.

Full virtualisation provides a complete simulation of the underlying hardware.
A full-virtualised host uses the real device drivers, which then work on top of an
emulated hardware layer. All software, including the operating system and the
device drivers, run unmodified, in the same way as on the raw hardware. In con-
trast, para-virtualisation introduces some adaptations to the guest operating system.

72

4.5. CLIENT IMPLEMENTATION

The software interface of a para-virtualised machine is similar, but not identical,
to that of real hardware. Therefore, the drivers for network and block devices are
replaced. In our scenario, the para-virtualised host employs our standard embed-
ded Linux system, which is also running on a real node. It makes use of the new
para-virtualisation feature of recent Linux kernels (paravirt ops) that allows it to
run on native hardware and as a para-virtualised machine. The para-virtualised
operating system kernel accesses the network and block devices through a XEN
specific driver. Since both approaches are available in Linux by default, they have
been compared in Section 4.8.3 and the evaluation results have been discussed to
motivate the choice of utilising para-virtualisation.

4.5 Client Implementation

Traffic interception/redirection at the MAC layer and emulation of the wireless
medium represent the fundamental concept that VirtualMesh builds upon. In or-
der to modify the network stack at the client, several tools are necessary for the
traffic interception/redirection. These VirtualMesh client tools are described in the
following. Section 4.6 then describes the wireless simulation server.

The VirtualMesh client tools have to notify the simulation model about all
packets that should be sent over the emulated wireless network. In our design
the client tools simply forward the original packets to the WlanModel server. We
introduce a virtual wireless interface, to which all applications can transparently
send their traffic. Furthermore, the client nodes should be able to transparently
configure the virtual wireless interfaces like normal wireless interfaces using the
same API. Configuration changes are then automatically propagated to the simu-
lation model during run-time. This offers enhanced flexibility in testing, e.g., of
management architectures.

An important design choice is which operating system and mechanisms are
used as a basis for the implementation of VirtualMesh. For prototyping VirtualMesh,
the Linux operating system has been selected as it is widely used in embedded sys-
tems and in the research community. The open source character of Linux and the
big developer community simplifies the implementation of extensions and modifi-
cations. Wireless device drivers as well as some external wireless driver projects,
e.g., Madwifi [186] providing drivers for Atheros wireless cards, are accessed
through the Wireless Extension (WE) [189] API. The WE is a set of commands
that controls the kernel settings through the ioctl device. User-space tools such
as wireless-tools [190] and wpa supplicant [120] use the WE API to configure
the wireless devices. Recently, a major kernel development step tries to unify the
wireless support. Recent kernels, therefore, include a new Netlink-based interface
(nl80211 [91]), which is shared by some newer wireless drivers. Moreover, a new
wireless configuration tool iw [21] has been introduced. Migration to the new API
is an on-going development.

Considering the different technologies currently available in the wireless sup-

73

4.5. CLIENT IMPLEMENTATION

port of Linux, VirtualMesh should provide transparent virtual interfaces, but still
avoid being dependent on kernel structures due to on-going development. There
are principally two possibilities to provide a transparent virtual wireless interface
in Linux. The VirtualMesh functionality could be implemented as a new dedicated
Linux kernel module. This kernel module would extend the packet encapsulation
of the IP-in-IP device with the traditional WE API. Additionally, the new device
would be configured by a new user-space utility communicating with the kernel,
e.g., via Netlink [91] or sysfs [127]. A major advantage of this approach is that no
alternation of existing tools (e.g., ifconfig, iwconfig) is necessary due to the same
API (WE). Another advantage is a lower packet delay, as all performance critical
parts reside directly within the kernel. However, there is an important drawback
of this approach: any future change in Linux kernel wireless API may break the
compatibility to the new module, as it is not part of the kernel source tree. As
experimental network features are often used in embedded domain, it is likely that
a new incompatible kernel version may be required soon. The second approach
is to integrate as much functionality as possible in user-space by using the exist-
ing TUN/TAP [109] device driver. The operating system considers a TUN/TAP
interface as a normal network device. Instead of forwarding the received packets
to a hardware device, a TUN/TAP interface forwards the packets to a user-space
process. In user-space, the packets are then encapsulated and sent to the simulation
server. The wireless device configuration can be handled by a shared library, which
manages the internal device state. Obviously, the additional context switches dur-
ing the packet forwarding introduce additional delays. Moreover, wireless tools
need to be enhanced to query the external settings of virtual wireless interface. By
imitating the WE API, compatibility can be still guaranteed. As this solution uses
the standard Ethernet interface, it provides transparent network access for applica-
tions. Moreover, it simplifies the development, as the client tools are completely
implemented in user-space. Table 4.1 summarises the discussion of both possible
implementation approaches.

In favour of this simplified development, a broader applicability, and lower de-
pendency on future kernel developments we decided against implementing a new
kernel module and selected the second approach using the existing TUN/TAP mod-
ule and user-space tools. In our approach, the testing environment is not bound to
a specific out-of-tree kernel add-on and the daemon could even be ported to other
operating system platforms that offer a POSIX system interface and a TUN/TAP
driver (e.g., *BSD, Darwin). The remaining dependency is limited to the imple-
mentation of the current configuration interface.

Our virtual wireless device is built on top of the TUN/TAP device of the Linux
kernel. The VirtualMesh client tools consist of three parts: the virtual interface
library libvif, the vifctl utility and the system service iwconnect (see Figure 4.4).
The library libvif abstracts the access to the virtual interfaces including their states.
It provides a WE compatible API to modify the virtual interface from existing
configuration tools. This is achieved by imitating the ioctl system calls in libvif and
a small modification in configuration tools to call the libvif functions if the kernel

74

4.5. CLIENT IMPLEMENTATION

Own driver in the
Linux kernel

Existing TUN/TAP
driver

Compatibility with
existing tools

+ full
(+) inclusion of header
file

WE API compatibility + full (+) imitation of WE API

Dependency on Linux
kernel development

- high
+ low, TUN/TAP
updated as part of
official kernel tree

Development effort - high (kernel space) + low (user space)

Portability - limited to Linux
(+) portable POSIX
systems with TUN/TAP
driver

Table 4.1: Possible solutions for the implementation of the virtual wireless interface.

ioctl calls fail. Using the utility vifctl, virtual interfaces are created or deleted. The
iwconnect system service connects the virtual wireless interface to the simulation
server. It processes any Ethernet frames received from the TUN/TAP device and
forwards the encapsulated frames to the simulation model. In the reverse direction,
the iwconnect re-injects the network traffic that it receives from the simulation
model back into the Linux networking stack via the TUN/TAP device.

In order to be operational, a network interface of a node has to be parametrised
before its usage. It is configured during the machine installation and adapted dur-
ing the network operation. A standard Linux network interface (see Figure 4.4a) is
configured using net-tools or using the ip-route2 suite (i.e., using the commands if-
config or ip). Additionally, for wireless devices, wireless parameters such as wire-
less channel, operation mode, transmission power, Ready-to-Send/Clear-to-Send
threshold, and encryption, are set by the wireless-tools (e.g., iwconfig) through the
WE API of Linux. By using the kernel’s TUN/TAP driver, our virtual device be-
haves the same as any Linux network device. Hence, no changes in the network
configuration itself are required. Furthermore, the wireless parameters of our vir-
tual interface can be set by a slightly patched version of wireless tools such as
iwconfig (see Figure 4.4b), which then sets the parameters using libvif.

The virtual interface library (libvif) abstracts the access to the virtual wireless
interfaces. Figure 4.5 illustrates this access to the virtual wireless interfaces. In-
stead of accessing parameters in the Linux kernel using the WE API, applications
can modify the parameters of the virtual wireless interface through the shared li-
brary libvif. In contrast to normal device drivers, where the properties are stored in
the kernel address space, the properties of the virtual interface are stored in a per-
sistent global address space, from which they are loaded when the shared library
libvif is accessed. Therefore, libvif offers a public API, which imitates the WE
API of the kernel. Moreover, it provides vifctl device management functions to
create and delete the interfaces. The shared library libvif is not directly involved in

75

4.5. CLIENT IMPLEMENTATION

hardware device

App

Linux
Network

Stack

network
interface

wireless
extensions

w
ire

le
ss

 to
ol

s

ne
t-t

oo
ls

, i
p-

ro
ut

e2

Node with physical interface

driver rmware

(a) Physical interface.

iwconnect

driver (tun)

App

Linux
Network

Stack

network
interface libvif

w
ire

le
ss

 to
ol

s

ne
t-t

oo
ls

, i
p-

ro
ut

e2

Node with virtual interface

Simulation model

emulated network
device (WlanNIC)

vi
fc

tl

VirtualHost

(b) Virtual interface

Figure 4.4: A node with native Linux network stack (a) and a node with our virtual net-
work interface (b) (iwconnect) communicating with the OMNeT++ simulation model.

traffic redirection or wireless emulation. It just provides iwconnect the necessary
information about the virtual interfaces for the packet forwarding to the simulation
server.

The system service iwconnect is responsible for the communication with the
simulation server. It receives all packets transmitted to the virtual interface and
encapsulates them in new packets, which are sent to the host running the simu-
lation model. In the opposite direction, iwconnect is listening on a UDP port for
packets coming from the simulation model. These packets are then de-capsulated
and original Ethernet frames are injected back into the network stack via the vir-
tual interface, which then passes them to the application. Figure 4.6 illustrates
this process. The numbers in the figure correspond to the individual steps taken.
The complete wireless traffic of the node is processed by the virtual interface, the
iwconnect system service, and the simulation model in the same manner.

Figure 4.6 shows the packet flow from the application at source node S to the
destination node D. Both nodes are connected to the simulation model on host

76

4.5. CLIENT IMPLEMENTATION

libvif

TUN Device

Client Conguration Tools

create, delete, query, modify VIF

iwconnect

VirtualMesh Interface (VIF)

shared
memory

create, delete

Wireless Device Properties
(Txpower, RTS, Channel, etc.)

read, write

vifctl
wireless-tools

Figure 4.5: Access to virtual interfaces and its parameters using libvif.

H . The application at node S sends the packets to the Linux network stack (1)
where they are intercepted by the virtual wireless interface vifx (2). The original
Ethernet frames are then redirected to iwconnect (3), which encapsulates them in
new packets (4). These packets are transmitted through the Ethernet interface ethx
(5) to the simulation model on host H (6). At host H , the packets are fed into the
simulation model (see Section 4.6 for details). After processing in the simulation
model, the resulting packets are encapsulated again and sent to their destination
node D (7). There, the packets are received via the Ethernet interface ethx (8) and
the iwconnect system service (9). The iwconnect service extracts the packets and
injects them back into the network stack via the virtual interface vifx (10). Finally,
the application at node D receives the packets (11). This packet redirection is fully
transparent for the applications and the network stack.

For accurate simulations, the simulation model needs to incorporate several
additional static and dynamic parameters describing the external nodes and the
current configurations of their wireless interfaces. Static parameters (e.g., IP ad-
dress and listening port of the iwconnect system service) are set at start-up of the
node. iwconnect has to register itself at the model by a REGISTRATION message
(see Section 4.3). This message also includes the initial values of the dynamic
wireless parameter such as channel and transmission power. During run-time, fur-
ther configuration changes are propagated by CONFIGURATION messages to the
simulation model.

The propagation of wireless parameters to the simulation model during run-

77

4.5. CLIENT IMPLEMENTATION

Figure 4.6: Packet flow between two nodes interconnected by the OMNeT++ simulation
model.

time is a sophisticated feature that has been introduced by VirtualMesh and was
not present in any other wireless emulation solution. The simulation model is auto-
matically reconfigured with the wireless parameters that are set dynamically by the
usual configuration tools at the wireless nodes. This offers possibilities for testing
management architectures that reconfigure the wireless interfaces on VirtualMesh.
If VirtualMesh is extended with feedback mechanisms from the network emulation
to the virtual wireless driver, even the multi-channel and multi-interface framework
Net-X [51, 115] could be tested on top of VirtualMesh.

The propagation feature is implemented by standard POSIX message exchange
based on inter-process communication (IPC). At node start-up, the system service
iwconnect creates a message queue, which then is polled for notifications. If a con-
figuration tool, e.g., iwconfig, or any other application modifies a parameter of the
virtual wireless interface through the shared library libvif, the shared library sends a
notification messages to the IPC queue. The system service iwconnect receives this
notification and sends the changed parameters with a CONFIGURATION message
to the simulation server, which then updates the simulation model. The notification
mechanism can be extended to include also the dynamic management of wireless
devices or even information about power management, which can then be reflected
in the simulation model.

78

4.6. WIRELESS SIMULATION SERVER

4.6 Wireless Simulation Server

The central part of VirtualMesh’s wireless emulation is the wireless simulation
server. It hosts the simulation model WlanModel, which processes the original
link layer traffic received from the wireless nodes and models the emulated wire-
less medium. The WlanModel receives traffic coming from external nodes, calcu-
lates the system’s response, and then sends the processed packets back to external
nodes. The simulation model has been written for the network simulator OM-
NeT++ [195, 196]. In order to calculate the network response in the emulated
wireless medium, the WlanModel employs the IEEE 802.11b implementation of
the INET[94] simulation framework. VirtualMesh extends the existing simulation
models to represent the involved wireless nodes within the simulation model using
their virtual interface parameters. It further adds an own real-time scheduler to
the simulation core of OMNeT++. This scheduler receives the forwarded wireless
traffic from the nodes’ iwconnect system service and injects it into the wireless
simulation. The nodes can be freely positioned in the simulation model regard-
less of their physical position or virtual nature. Node mobility can be supported
be either using existing mobility models of OMNeT++ or by the inclusion of mo-
bility traces in the simulation model. In the following, individual components of
the WlanModel, its packet flow, and the different processes for node registration,
node de-registration, packet transmission, packet reception, and the configuration
are discussed in more detail.

4.6.1 Components

The WlanModel has been implemented using and extending the OMNeT++ net-
work simulator, which provides an advanced module system. In order to process
the external traffic of the VirtualMesh nodes, the WlanModel adds a new real-time
scheduler VirtualMeshScheduler to the OMNeT++ simulation core and provides
a dynamic wireless network simulation model using several newly developed and
some existing modules. The newly developed modules are the real-time scheduler
VirtualMeshScheduler, the ProtocolHandler, NodeManager, and the VirtualHost
module including the VifBackend. The WlanModel uses existing modules to model
the wireless network behaviour. This includes the INET implementation of an
IEEE 802.11b network stack Ieee-80211NicAdHoc (WlanNIC), the radio propaga-
tion model driven by INET’s ChannelControl, and various mobility models.

The core component of the WlanModel is the new real-time scheduler Vir-
tualMeshScheduler (see Figure 4.7). It replaces the standard scheduler of OM-
NeT++, which co-ordinates the event messages that are used for communication
between the modules in OMNeT++. It is a soft real-time scheduler and adds the
required functionality for VirtualMesh. The VirtualMeshScheduler includes the
external traffic received from the wireless nodes in the simulation and adds mes-
sages to the event scheduling queue of OMNeT++. Therefore, it listens on the port
2424 for arriving packets. VirtualMesh’s soft real-time scheduler uses the follow-

79

4.6. WIRELESS SIMULATION SERVER

ing scheduling policy: Internal messages and arriving forwarded network packets
are added to a global message queue with an event time. The scheduler checks
the queue for events to be processed. If there are currently no messages with due
event times, the scheduler listens on the network socket for further arriving packets.
If a network packet has arrived, the scheduler immediately notifies the Protocol-
Handler module, which then takes the care of the packet. After a time-out, the
scheduler then checks the global queue again for the next iteration.

The ProtocolHandler module handles the communication with the external real
or virtualised wireless nodes and implements the processing of messages of the Vir-
tualMesh communication protocol (see Section 4.3). The ProtocolHandler module
forwards the information to the NodeManager or a VirtualHost module depending
on the received message type (REGISTRATION, DE-REGISTRATION, CONFIG-
URATION, or DATA).

The NodeManager module manages the wireless nodes that are participating
in the wireless simulation. Nodes are dynamically registered and de-registered at
the NodeManager through the iwconnect system service running on each node.
Upon reception of a REGISTRATION message the NodeManager creates and reg-
isters a new VirtualHost. It removes the VirtualHost after reception of a DE-
REGISTRATION message.

The VirtualHost module represents a wireless node and all its parameters within
the simulation. It is a compound module consisting of the modules VifBackend,
WlanNIC and some other INET modules. It stores the parameters of the corre-
sponding wireless node such as the host name, the host identification, and host
address. The node’s current position is handled by an INET mobility model that
also supports the configuration of various mobility models.

The VifBackend module handles the communication between the interface rep-
resentation in the simulation model and the virtual wireless interface of the cor-
responding node. Upon reception of a DATA message, VifBackend creates a new
RAWEtherFrame with the Ethernet frame encapsulated in the DATA message. The
RAWEtherFrame simply wraps the original Ethernet frame within the simulation.
Upon reception of a RAWEtherFrame from the simulation model, the VifBackend
send the Ethernet frame as DATA message to the external node. Upon reception of
a CONFIGURATION, it adapts the wireless settings of the WlanNIC.

The WlanNIC, i.e., Ieee-80211NicAdHoc, of the INET framework, implements
an IEEE 802.11 wireless network adapter. It models the IEEE 802.11 MAC layer
and implements the radio propagation model. It supports the wireless ad-hoc com-
munication necessary for WMNs. Its wireless channel can be modified during the
simulation, which is an essential feature for the dynamic configuration propagation
in VirtualMesh.

The ChannelControl is the central component of the INET wireless network
model. It monitors which nodes are within each others’ communication range.
These nodes receive the frame and decide by themselves if they can receive the
packet or have to discard it. The ChannelControl supports multiple channels, but
does not model either co-channel or adjacent channel interference.

80

4.6. WIRELESS SIMULATION SERVER

4.6.2 Message Flow

Figure 4.7: Message flow inside the simulation model ’WlanModel’.

The message flow within the WlanModel is shown in Figure 4.7. It shows the
individual components, which are described in more detail in the following. The
numbers in the brackets represent the steps in Figure 4.7.

Upon packet reception (1), the new packet is stored in the interface receive
buffer, the VirtualMeshScheduler is informed (2) and schedules a notification mes-
sage with the reception time for the ProtocolHandler module (3) in the global mes-
sage queue of the simulation. This message queue is then processed step-by-step,
ensuring that required timing constraints are met.

As soon as the ProtocolHandler module gets a notification message (3), it pro-
cesses the received messages coming from outside the simulator (4). If a new
external node registers its presence to the model, the ProtocolHandler calls the
NodeManager (5), which handles the REGISTRATION message. The NodeMan-
ager is responsible for the administration of external nodes inside the simulation
model. If the registering node does not already exist in the simulation model, the
NodeManager creates a new instance of VirtualHost and saves all node attributes
(host name, infrastructure IP address, listening port) to the node database of the
VirtualHost. After successful initialisation, the VirtualHost acknowledges its pres-
ence to the external node by an ACK message. If the node was already existing, the
NodeManager only instructs the VirtualHost to acknowledge its presence again.

Upon DATA message reception (4), the ProtocolHandler first checks whether

81

4.6. WIRELESS SIMULATION SERVER

the sending node has already registered at the NodeManager (5). If no registration
exists, the packet is dropped immediately. Otherwise, the ProtocolHandler notifies
the VifBackend of the corresponding VirtualHost (6). The VifBackend processes
the packet (7). The encapsulated original Ethernet frame is included in a new
RAWEtherFrame packet, which is then transmitted to the WlanNIC of the Virtual-
Host (8). The WlanNIC uses the current wireless parameters for the transmission
to the next node (9). Changes of the wireless parameters of external nodes are
propagated to the simulation model by the transmission of a CONFIGURATION
message. The ProtocolHandler is only involved in the processing of incoming
traffic to the simulator. Henceforth, the existing IEEE 802.11 model implementa-
tions of INET takes care of the packet (10) until it has been received again by a
VirtualHost module (11). The WlanNIC checks whether the packet belongs to this
node by checking the MAC addresses. If yes, it is forwarded to the MsgHandler
(12). Otherwise, it is omitted. The VifBackend generates a new DATA message that
includes the packet (13). When the Interface Send Buffer receives a DATA packet
from the VifBackend (14), the packet is finally forwarded over the system network
(15) to the external node.

4.6.3 Protocols

In the following, the different processes in VirtualMesh are shown step-by-step,
covering the communication between the real node and simulation model as well
as the communication inside the simulation model. Five processes exist in Vir-
tualMesh. First, the external node has to register itself at the simulation model
(node registration). It can also cancel its registration within the model afterwards
(node de-registration). When successfully registered, the external node can trans-
mit packets (packet transmission) to its representation in the simulation model.
After packet processing inside the simulated network, an internal representation
of a node receives the packet and then transmits it to the connected external node
(packet reception). By the transmission of a CONFIGURATION message, the ex-
ternal nodes can modify their interface parameters (node configuration). The num-
bers in the brackets (4.6.x and 4.7.y) reflect the steps in Figure 4.6 and Figure 4.7.
In addition, node registration, de-registration, and configuration are illustrated in
Figure 4.8-4.10.

Node registration

Figure 4.8 illustrates the node registration. A node is added to the simulation model
after sending a REGISTRATION message. The detailed steps are as follows:

1. The node with a VirtualMesh interface boots. The configuration of the virtual
interface contains the IP address and the port of the simulation model.

2. The node’s iwconnect system service sends a REGISTRATION message to
the model (4.6.4 - 4.6.6).

82

4.6. WIRELESS SIMULATION SERVER

3. The simulation model adds the node to the NodeManager (4.7.1 - 4.7.5) and
replies with an acknowledgement.

4. The NodeManager creates a new VirtualHost. The node database of the
VirtualHost is initialised with the values of the REGISTRATION message.
This includes host name, the infrastructure IP address and the listening port
of the PacketModeller, number of interfaces and their configuration (name,
MAC, transmission power, MAC level retries, receiver sensitivity etc.).

5. Positions and mobility patterns of the VirtualHost have to be configured in-
advance by the OMNeT++ setup file and are, therefore, already present in-
side the simulation model.

6. Upon reception of the acknowledgement, the node is registered and can
send/receive traffic to/from the simulation model.

External node
Simulation model

Virtual
Host

Protocol-
Handler

Node-
Manager

node boots

REGISTRATION message

ACK message

iwconnect

creates new
VirtualHost

packet
transmission
to the model

10s

Figure 4.8: Node registration.

Node de-registration

In Figure 4.9, a node de-registers by sending a DE-REGISTRATION message to
the simulation model. The node is then removed from the simulation model. The
detailed steps are as follows:

1. A shutdown of the iwconnect system service, e.g., when rebooting the ex-
ternal node, triggers the transmission of a DE-REGISTRATION message. It
forces the VirtualHost to leave the emulated network (4.6.4 - 4.6.6).

83

4.6. WIRELESS SIMULATION SERVER

2. Upon reception of a DE-REGISTRATION message, the ProtocolHandler in-
vokes a node removal by the NodeManager (4.7.1 - 4.7.5). In order to avoid
delays and blocking when rebooting the external node, the reception of a
DE-REGISTRATION message is not acknowledged.

3. The NodeManager removes the corresponding VirtualHost.

Node registration and de-registration allow the emulation of dynamic networks.
Nodes can join and leave the network. They are automatically added or removed
from the simulation model. This is beneficial, for example, to test a configura-
tion and management framework. The effects of nodes rebooting, or becoming
unavailable, at certain configuration times can be evaluated.

External node
Simulation model

Virtual
Host

Protocol-
Handler

Node-
Manager

node
shuts down

DE- REGISTRATION message

removes
VirtualHost

stopped

node
unavailable

iwconnect

Figure 4.9: Node de-registration.

Packet transmission

The process for packet transmission from a node with a virtual wireless interface
to the emulation model is as follows:

1. The source application at the node sends a packet to the virtual interface vif
(4.6.1, 4.6.2).

2. The iwconnect system service encapsulates this packet and then redirects it
as a DATA message to the simulation model (4.6.3 - 4.6.6).

3. The DATA message is received by the simulation model and it is stored in
the Receive Buffer(4.7.1).

84

4.6. WIRELESS SIMULATION SERVER

4. The VirtualMeshScheduler is notified and schedules the notification message
to the ProtocolHandler (4.7.2, 4.7.3).

5. The ProtocolHandler checks message type and, via NodeManager, whether
the sender of the DATA message exists (4.7.4, 4.7.5). If it exists, it receives
a pointer to the corresponding VirtualHost.

6. The ProtocolHandler calls the VifBackend of the VirtualHost to handle the
packet (4.7.6).

7. The VifBackend gets the DATA message and a new RAWEtherFrame is trans-
mitted (4.7.7 - 4.7.10).

(a) The DATA message is read from the Receive Buffer (4.7.7).

(b) A new RAWEtherFrame packet is created (4.7.8).

(c) The original Ethernet frame of the DATA message is copied to the new
packet.

(d) The destination address of the RAWEtherFrame packet is set to the des-
tination MAC address of the original Ethernet frame.

(e) The packet is passed to the WlanNIC (4.7.9).

(f) The packet is transmitted inside the simulation model (4.7.10).

(g) The RAWEtherFrame message is transmitted to the corresponding Vir-
tualHost (4.7.9, 4.7.10).

Packet reception

The following steps are necessary for the packet reception by a node with a virtual
wireless interface:

1. VirtualHost receives a packet through the WlanNIC (4.7.11) and passes it to
the VifBackend (4.7.12).

2. The VifBackend encapsulates the Ethernet frame inside a new DATA mes-
sage, including the infrastructure IP address and listening port of the corre-
sponding external node, and then transmits it to the Interface Send Buffer of
the model (4.7.13, 4.7.14).

3. The DATA message is then forwarded to the external node (4.7.15).

4. The iwconnect system service at the external node then decapsulates the
packet and injects the Ethernet packet to the network stack of the node (via
the virtual interface vifx) (4.6.7 - 4.6.11).

85

4.6. WIRELESS SIMULATION SERVER

External node
Simulation model

Protocol-
Handler

wireless parameter
modication by
wireless tools

libvif
CONFIGURATION
message

VirtualHost

VifBackend

WlanNIC

update node db

iwconnect

Figure 4.10: Node configuration.

Node configuration

In order to propagate modified wireless parameters to the simulation model, a
CONFIGURATION message is transmitted from the node to the simulation model
(see Figure 4.10). The detailed steps of this process are explained in the following:

1. The wireless interface configuration of the external node is modified by the
wireless tools such as the iwconfig utility.

2. The patched version of the iwconfig tool propagates all wireless configura-
tion changes via libvif to the shared memory vif configuration.

3. Then, the iwconnect system service is triggered to send a CONFIGURATION
message to the simulation model (4.6.3 - 4.6.6).

4. The simulation model then processes the CONFIGURATION messages (4.7.1
- 4.7.7).

(a) The ProtocolHandler reads the CONFIGURATION message (4.7.4).

(b) It then checks whether a representation of the external node exists in
the model with the help of the NodeManager (4.7.5).

(c) The ProtocolHandler then invokes the VifBackend of the correspond-
ing VirtualHost to process the CONFIGURATION message (4.7.6, 4.7.7).

(d) The VifBackend stores the new wireless parameter values in the node
database.

(e) Henceforth, the VirtualHost uses the new values for packet transmis-
sions inside the model.

86

4.7. ADAM/VIRTUALMESH INTEGRATION

The nodes can modify the parameters of their wireless network interfaces by
the wireless tools (iwconfig utility), at any time during the simulation. Even scenar-
ios with dynamic multi-channel communication are possible. However, the sim-
ulation model has to be extended to support them, principally the used network
simulator OMNeT++ already supports them.

4.7 ADAM/VirtualMesh Integration

VirtualMesh provides an ideal testing framework for ADAM (see Chapter 3) with
its distributed software and configuration update mechanism based on cfengine (see
Section 3.4.1).

In order to run an ADAM image in a virtualised environment, some modifi-
cations were necessary to the Linux distribution produced by ADAM. We added
a new node profile ’xen’, which compromises of all necessary modifications to
ADAM’s build-tool. These modifications include an adapted configuration of the
Linux kernel to support XEN virtualisation and the TUN device driver, the addi-
tion of the VirtualMesh client tools, and a new network initialisation script. The
network initialisation script creates virtual wireless interfaces with vifctl, in case
no physical wireless interfaces are found at start-up. This guarantees that the same
ADAM image can be run on real node hardware and on virtualised XEN nodes
within VirtualMesh. ADAM’s image-tool has been extended to create virtual disk
images with the boot loader Grub that are suitable for XEN. These modifications
guarantee full compatibility of ADAM with both the VirtualMesh XEN environ-
ment and the simulation server.

Due to XEN’s boot loader pygrub [106], which behaves like Grub and reads
the Grub configuration, ADAM’s safe update procedure works without any further
modification in a VirtualMesh emulation. Thus, network configuration and soft-
ware images can be updated over the emulated network. Further developments of
ADAM can be fully tested with VirtualMesh.

4.8 Evaluation

VirtualMesh has been evaluated considering functional / qualitative and perfor-
mance / quantitative aspects. VirtualMesh is using an emulation approach to create
a testing infrastructure for real implementations of protocols and architectures for
wireless mesh and ad-hoc networks under various, but realistic conditions. It sup-
ports the participation of real Linux based hosts as wireless nodes in the emulated
network. In order to be usable for its main purpose, i.e., pre-deployment tests with
the real software stack, VirtualMesh has to fulfil the following requirements:

• VirtualMesh should not change the behaviour of the network protocols and
applications running on top of it. It has to be fully transparent for the upper
layers. This has been verified in our functional evaluation in Section 4.8.2.

87

4.8. EVALUATION

• In addition, neither bandwidth nor delays of the wireless network should be
heavily influenced by VirtualMesh. Due to traffic interception, traffic redi-
rection to a simulation model, and the optional node virtualisation, the archi-
tecture of VirtualMesh introduces some additional delays to the system. The
performance evaluation in Section 4.8.3 quantifies the effect of VirtualMesh
on delays and network bandwidth.

The distributed VirtualMesh architecture is very flexible: a VirtualMesh sys-
tem can simply be extended by additional nodes or virtualisation hosts connected
to the infrastructure network. Unfortunately, the infrastructure network used in
the distributed VirtualMesh architecture also introduces an additional small delay
to all wireless communication (see Section 4.8.3). In addition, the infrastructure
network limits the entire bandwidth of all traffic processed by VirtualMesh. A
usual setup for VirtualMesh uses 1 Gbps Ethernet as network technology. Employ-
ing the low latency interconnection such as Infiniband [56] may further reduce the
transmission delay. However, the packet processing of the OMNeT++ simulation
model primarily determines the additional delay for a wireless packet transmission
in VirtualMesh. The computations of the simulation models may be too intensive
to be performed in real-time, which might add some small delays not found in a
real wireless transmission. Therefore, VirtualMesh cannot provide any hard real-
time guarantee for the wireless emulation. Nevertheless, the accuracy of the soft
real-time scheduler is sufficient for most scenarios.

Setting up a test scenario using VirtualMesh is more demanding than a pure
simulation and requires some additional work to be done by the user/developer.
VirtualMesh’s approach with multiple real nodes that participate in an emulated
wireless network adds some additional complexity to the setup of experiments and
the data acquisition compared to a pure network simulation. In contrast to the
autonomous self-contained system of a network simulation, VirtualMesh has a dis-
tributed concept to incorporate real wireless nodes as well as virtualised nodes in
the wireless emulation. All applications communicating over the emulated wire-
less network are running on the different hosts. This requires event triggering and
logging to be placed directly on the individual nodes. If the execution of all test
events and the data acquisition is automated by scripts, VirtualMesh still achieves
a high degree of repeatability even when using complex scenarios. These scripts
also allow repeating the scenario with different parameter sets. As result of these
efforts, the measurements made within VirtualMesh mirror the normal operation of
the nodes running a Linux-based operation system and the real applications with a
high degree of accuracy and in a realistic scenario. This includes slight variations
of the results that may be observed for test runs made under the same conditions.

In the following sections, VirtualMesh has been evaluated under functional
and performance aspects. First, the general experimental setup is described in Sec-
tion 4.8.1. Section 4.8.2 then provides a functional evaluation of VirtualMesh,
whereas Section 4.8.3 evaluates the system performance of VirtualMesh under dif-
ferent conditions.

88

4.8. EVALUATION

4.8.1 VirtualMesh Test Setup

Figure 4.11: Experimental setup with multiple virtualised wireless nodes running on a
XEN virtualisation server and a simulation server hosting the WlanModel.

The experimental setup for the VirtualMesh evaluation is shown in Figure 4.11.
It consists of two servers connected over a 1 Gbps Ethernet cross-link, dedicated
solely to the infrastructure traffic of VirtualMesh and has an MTU set to 2000 bytes.
The first server runs XEN virtualisation to host multiple virtual machines, which
represent the wireless nodes in our setup. The virtual machines are running the
embedded Linux distribution built by the ADAM framework (see Chapter 3) and
include the VirtualMesh client tools. The second server runs the simulation model
WlanModel in command-line mode as a prioritised system service on a Linux op-
eration system. In order to reduce system latencies, we granted the highest CPU
scheduling policy to the WlanModel process.

The used configuration of the WlanModel emulates an IEEE 802.11b based
wireless network. All wireless parameters are summarised in Table 4.2. They are
divided into static and dynamic parameters. Static simulation parameters are pre-
configured before starting the wireless emulation. Dynamic parameters are config-
ured directly at the wireless nodes. They are constantly reflected in the simulation
model after the nodes have been registered at the simulation model. They can be
dynamically adapted. For example, the dynamic driver reconfiguration can provide
topology control by adapting the transmission power of the nodes.

4.8.2 Functional Evaluation using ADAM

VirtualMesh has been designed to integrate real communication nodes in an em-
ulated wireless network. We implemented the VirtualMesh client-tools for mesh

89

4.8. EVALUATION

Description Parameter Type Value
Number of radio channels static 13
Maximum transmission power static 50.0 mW
Signal attenuation threshold static -110 dBm
Path loss exponent α static 2
Radio carrier frequency static 2.4 GHz
Wireless device bit rate static 11 Mbps
Contention window for normal data frames static 32 packets
Contention window for broadcast frames static 32 packets
Maximum queue length in frames static 14 packets
Base (thermal) noise level static -110 dBm
Signal/Noise ratio threshold (SNR) static 4 dB
Wireless channel dynamic 1
Transmission power dynamic 17 dBm
Radio sensitivity dynamic -85 mW
RTS/CTS threshold dynamic 2346 B (off)
Maximum number of retries dynamic 7

Table 4.2: VirtualMesh wireless configuration settings consisting of static parameters di-
rectly set in the simulation model WlanModel and dynamic parameters propagated from
the virtual interfaces.

nodes running a Linux operating system. Due to modest soft- and hardware re-
quirements, VirtualMesh runs on most Linux installations including our own em-
bedded Linux distribution ADAM (see Chapter 3). This section provides a func-
tional evaluation of VirtualMesh using ADAM in the XEN virtualisation setup
shown in Figure 4.11. We verified that VirtualMesh fulfils the following three
functional requirements:

• Transparency for applications on standard Linux clients

• Transparency for virtualised nodes running our ADAM Linux distribution

• Proper operation of a routing protocol running on virtually mobile nodes

First functional tests are performed with two physical machines running the
Ubuntu Linux distribution and the VirtualMesh client tools. The transparent op-
eration of several existing Linux applications, such as remote administration with
secure remote shell (ssh), file transfers using the file transfer protocol (FTP) and
secure copy (scp), has been successfully verified in VirtualMesh.

We repeated the basic tests using ADAM nodes to verify the transparent op-
eration of VirtualMesh with ADAM. As expected, the network traffic is handled
completely transparently. All services on the nodes can be accessed, e.g., the web
server and the secure remote shell. The full protocol stack operates as being lo-
cated in a real wireless network. This includes ARP, IPv4, IPv6, UDP, TCP, etc.

90

4.8. EVALUATION

Even ADAM’s distributed software and configuration update mechanism based on
cfengine (see Section 3.4.1) works just like in a real network. Network configu-
ration and software images can be updated over the emulated network. Although
the system update involves a reboot of the node, it can be performed without any
problem due to the node registration and de-registration process of VirtualMesh.
During the system update, the new image consisting of a new Linux kernel and a
new root file system is copied to the node’s virtual hard disk. After modification of
the boot loader files, the ADAM node is rebooted using the updated system image.
The system update works completely transparent in a VirtualMesh setup. This
makes VirtualMesh a valuable tool for the development of ADAM management
extensions.

As a last functional test, we have set up an ad-hoc routing scenario with twelve
mobile wireless nodes running ADAM Linux. We configured OLSR as ad-hoc
routing protocol on the nodes. The node mobility is pre-defined by a mobility trace.
Some of the nodes are permanently moving. OLSR correctly adapts the routing ta-
bles according to the changing topologies. As OLSR runs as application on the
nodes and all its control traffic is transferred through the virtual wireless device
driver of VirtualMesh, OLSR operated fully transparent within the VirtualMesh
emulated wireless scenario. OLSR cannot distinguish the emulated network com-
pared from a real network. Therefore, VirtualMesh represents a valid tool for the
evaluation of real implementations of layer-3 routing protocols, e.g., AODV, DSR,
DSDV, TBRPF.

In contrast to layer-3 routing protocols, VirtualMesh cannot be used for testing
the real implementations of layer-2 routing protocols, such as IEEE 802.11s, due
to its current implementation with traffic redirection by a virtual wireless interface
driver. For example, if a user wants to set up a scenario with IEEE 802.11s, he/she
has to include the IEEE 802.11s functionality in the VirtualMesh simulation model.

Another limitation of VirtualMesh is that current implementation does not pro-
vide feedback of MAC and radio parameters from the simulation model to the
virtual device driver. For example, if a cross-layer protocol requires the number of
MAC level retransmissions, the current implementation of VirtualMesh does not
delivers this parameter. VirtualMesh needs to be extended by a feedback mecha-
nism before such cross-layer protocols could be tested completely in a VirtualMesh
emulated network.

Our functional tests showed that VirtualMesh does not affect the normal oper-
ation of the participating nodes and applications. It is even able to imitate com-
plex scenarios with software and configuration updates on the individual nodes. It
provides a full virtualisation of various wireless network scenarios without losing
functionality of the nodes under test. In Section 4.8.3, the performance of Vir-
tualMesh is evaluated and its overhead is quantified.

91

4.8. EVALUATION

4.8.3 Performance Evaluation

In order to evaluate the performance of VirtualMesh, latency and throughput mea-
surements have been performed. First, we present our latency measurements and
quantify the effect of the infrastructure network, the virtualisation, and the wireless
emulation. Second, the effect on achievable throughput is quantified.

Network Latency Measurements

Network latency usually is measured as round-trip time (RTT). It represents the
time required to send a packet to another network host and to receive its immediate
reply. In our evaluations, we used the standard ping tool from the iputils pack-
age [112]. It sends an ICMP Echo Request to the other network hosts and then
measures the time until it receives the corresponding ICMP Echo Reply.

The RTT measurements were performed with different payload sizes. The pay-
load sizes range from 56 bytes to 1472 bytes in the wireless emulation. In the
infrastructure network, the evaluation includes payload sizes up to 1532 bytes in
order to include the encapsulated packet with an MTU of 1500 bytes and 32 bytes
for the VirtualMesh header. The measurement interval was varied from 0.1 to 1
second. All RTT measurements were run for 1’000 seconds. As the first RTT mea-
surement in a sequence is sometimes significantly higher than the following ones
due to the ARP look-up. Hence, it is omitted in our evaluation.

Infrastructure Network Latency

The VirtualMesh evaluation starts with the infrastructure network latency. The
infrastructure network introduces three additional delaying effects for traffic trans-
mitted in VirtualMesh. First, the transmission over the infrastructure network adds
some delay. Each packet has been transmitted twice over the infrastructure network
for each transmission over one emulated wireless link. Second, the delay may be
further increased through system virtualisation. Third, the traffic en-decapsulation
of the VirtualMesh communication protocol through iwconnect and the WlanModel
adds some delay. The three delaying effects have been tested with the following
host combinations:

(a) Two physical hosts connected via 1 Gbps cross-link

(b) Physical host to paravirtualised host connected via 1 Gbps cross-link

(c) Physical host to full-virtualised host connected via 1 Gbps cross-link

(d) Two physical hosts connected via 1 Gbps cross-link and using the VirtualMesh
communication protocol through iwconnect

(e) Physical host to paravirtualised host connected via 1 Gbps cross-link and using
the VirtualMesh communication protocol through iwconnect

92

4.8. EVALUATION

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

(a) (b) (c) (d) (e)

R
TT

 [m
s]

Figure 4.12: Summarised RTT results for quantifying infrastructure network delay.

Figure 4.12 shows the results for the five different scenarios. It combines the
medians of all results received for the different packet sizes and data rates. It shows
the maximal RTT as top bar, the minimal RTT with as bottom bar, the median as
thick line in the middle, and the 25% and 75% quantiles of all measurement series.
In all scenarios, the RTT increases for higher packet sizes in all scenarios, e.g., in
(a) the median RTT is about 0.19 ms for 56 bytes payload and about 0.25 ms for
1532 bytes payload. The maximum RTT in Figure 4.12 depicts the average value
for the maximum payload size.

As expected, the results for the virtualisation setups (b)(c) show some addi-
tional delays compared to the native scenario (a) due to the packet handling at
the virtualisation server. When using paravirtualisation (b), the average additional
delay is almost negligible with values between 0.04 to 0.06 ms. In contrast, the
full virtualisation setup (c), using the hardware emulation layer (Hardware Virtual
Machine), adds a significantly higher delay of up to 0.3 ms. Full virtualisation
is, therefore, no option for VirtualMesh as it would have a huge impact on the
emulation accuracy. As consequence, full virtualisation is completely omitted in
the following evaluations. An interesting point is that the involvement of virtu-
alisation in (b) and (c) does not modify the traffic characteristics, as the average
standard deviation remains around 15 µs. When running the RTT measurements
over the virtual interface using iwconnect and the VirtualMesh communication pro-
tocol over either a native link (d) or a physical-paravirtualised link (e), an average
delay of 0.06 ms is added respectively to the delay of the native link (a) and the
physical-paravirtualised link (b). Paravirtualisation further adds some additional
delay in scenario (e), as the user-space daemon iwconnect is more sensitive to pro-
cess scheduling of the hypervisor.

Figures 4.13 and 4.14 further illustrate this effect. They compare the RTT over-
head and the standard deviations of native and paravirtualised scenarios. Whereas

93

4.8. EVALUATION

 0
 0.02
 0.04
 0.06
 0.08

 0.1
 0.12
 0.14
 0.16

56 128
256

512
768

1024
1280

1472

[m
s]

Packet size [Bytes]

RTT overhead iwconnect/1Gbps-native (d)
RTT overhead iwconnect/1Gbps-PV (e)

Figure 4.13: iwconnect/VirtualMesh communication protocol RTT overhead with respect
to payload size.

 0
 0.02
 0.04
 0.06
 0.08

 0.1
 0.12
 0.14
 0.16

1 2 4 10

[m
s]

Packet transmission frequency [1/s]

RTT overhead iwconnect/1Gbps-native (d)
RTT overhead iwconnect/1Gbps-PV (e)

Figure 4.14: iwconnect/emulation protocol RTT overhead with respect to transmission
interval.

the latency overhead remains constant with 80 µs over all payload sizes for the
connection with two physical hosts, it slightly increases for the paravirtualised host
with the payload size. The overhead for the connection with a paravirtualised host
is about 20 µs higher than for connection with only physical hosts. In general, the
standard deviation increases as soon as the traffic is forwarded by iwconnect over
the VirtualMesh communication protocol. The results in Figure 4.14 show that
shorter transmission intervals increase the amount of outliers and lead to a higher
standard deviation in the paravirtualisation scenario.

In summary, both the paravirtualisation and the traffic redirection by iwconnect
individually add additional delays in the range of 40 to 80 µs to the packet trans-
mission in VirtualMesh. As full virtualisation in XEN multiplies the delays, it is
not considered a reasonable option for VirtualMesh. When used in combination
with virtualisation, the traffic redirection by iwconnect slightly modifies the traffic
characteristics, which is shown by a higher standard deviation.

94

4.8. EVALUATION

Wireless Emulation Accuracy

After having quantified the delay introduced by the infrastructure network, the
wireless emulation accuracy of the entire VirtualMesh system is now discussed.
For evaluation, the measurements received with VirtualMesh are compared with a
simple OMNeT++ simulation. First, the RTT over different distances between two
ADAM wireless nodes connected to the simulation model are tested. The nodes
have been placed in the simulation with distances of 1 m and 580 m. 580 m is the
maximum transmission range that can be reached with the settings in Table 4.2.
The theoretical difference of the two delays due to signal propagation is calculated
with 3.86 µs. Pure simulation matches this result with a RTT of 1.242 ms for 1
m distance and 1.246 ms for 580 m. Emulation results in 1.6 ms RTT, which is
about 0.35 ms higher than the values of pure simulation and has a higher standard
deviation. It shows that VirtualMesh cannot realistically model delaying effects of
only a few microseconds such as the influence of the distance on the propagation
delay.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

56 128
256

512
768

1024
1280

1472

R
TT

 [m
s]

Packet size [Bytes]

OMNeT++ Simulation
VirtualMesh Emulation

Figure 4.15: RTT with various payload sizes (distance = 300m, transmission interval =
1s).

The next experiment evaluates the performance of VirtualMesh with differ-
ent packet rates and payload sizes. The scenario consists of two ADAM wireless
nodes with a distance of 300 m between them in the WlanModel. As no abnor-
malities have been observed in the comparison with different packet rates, only
the RTT results for 1 packet/s and different payload sizes is shown in Figure 4.15.
The complete result set can be found in [77]. The emulation results closely fol-
low the simulation results, just with the previously discussed latency overhead of
about 0.35 ms. The standard deviation of the VirtualMesh results also follows the
measured standard deviation of the infrastructure network. The simulation results
show a higher standard deviation, which seems to be an anomaly in the simulation
configuration or implementation.

In order to test VirtualMesh under load, a concurrent network stream has been
added to the scenario described above. The concurrent TCP network stream should

95

4.8. EVALUATION

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

0 0.8 1.6 2.4 3.2 4.8 6.3

R
TT

 [m
s]

Stream bandwidth [Mbps]

Simulation 56 Bytes
Simulation 1472 Bytes
Emulation 56 Bytes
Emulation 1472 Bytes

Figure 4.16: RTT with concurrent streams (distance = 300m, transmission interval = 1s).

keep VirtualMesh busy. We evaluated stream bandwidth between 0.8 and 6.3
Mbps, whereas 4 Mbps starts to saturate the IEEE 802.11b wireless link. The
TCP streams are produced by the TCPSessionApp for the simulation scenario and
with netcat and curl for the VirtualMesh scenario. Figure 4.16 shows an exciting
result. The results for VirtualMesh are additionally delayed by 0.35 ms compared
to pure simulation, as measured previously. However, with a concurrent stream
using more than 1.6 Mbps bandwidth, the RTT results for VirtualMesh are below
the ones for the simulation. A possible explanation is the different implementation
of traffic generation for simulation and VirtualMesh. Nevertheless, there is no neg-
ative influence of the concurrent stream to VirtualMesh. Moreover, the simulation
suffers from an inaccurate handling of the concurrent stream as the RTT slightly
decreases for bandwidth above 3.2 Mbps. VirtualMesh then displays its advantage,
i.e., using real applications and network stacks, and produces results that matches
the real world behaviour more closely than the simulation. This basic test shows
the advantage of having real software and network stacks under test when using
VirtualMesh’s wireless emulation approach.

Simulation Latency Overhead

The scalability of VirtualMesh was tested in scenarios with additional wireless
nodes. First, the influence of additional nodes that are not involved in the transmis-
sion is quantified. Due to position and state checks, any additional node increases
the computational overhead of the propagation model, i.e., simulation model. In
the test scenario, the RTT between two wireless nodes is tested with an increas-
ing number of nearby nodes. The additional nodes are within transmission range
and placed in a grid around the two communication peers. The influence of un-
involved nodes on the RTT measurements is shown in Figure 4.17. The overhead
is roughly proportional to the number of additional nodes. In this scenario, Vir-
tualMesh suffers from the soft real-time scheduling used in the simulation model.

96

4.8. EVALUATION

Virtualisation does not influence the result. The additional delays are only caused
by calculations within the WlanModel. The WlanModel verifies for each node if it
could receive the currently transmitted packet. The required calculations slightly
delay the packet transmission in VirtualMesh for increased number of nodes.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4

2 3 4 5 8 12
 0

 10

 20

 30

 40

 50

 60

 70

R
TT

 [m
s]

D
el

ay
 [µ

s]

Number of wireless nodes

RTT overhead per host

Figure 4.17: WlanModel scalability (distance = 300m, transmission interval = 1s, payload
size = 56B).

Multi-Hop Latency

For developments in wireless mesh networks, accurate results in multi-hop scenar-
ios are crucial. The second scalability scenario, therefore, tests the multi-hop be-
haviour of VirtualMesh. It consists of several wireless nodes placed in a row. Static
routing and interspaces of 500 m guarantee that packets are passed from node to
its direct neighbour towards the destination. As Figure 4.18 shows, the results re-
ceived using VirtualMesh fit the ones using pure simulation. An additional latency
of the emulation can be observed for connections with more than six hops. It in-
creases with the number of hops as each hop involves two additional transmissions
between simulation model and the iwconnect. VirtualMesh can perfectly imitate
the multi-hop behaviour of a wireless network. Therefore, it can be seen as a valid
testing infrastructure. The remarkably higher standard deviation of the simulation
results is caused by differences in the ARP implementation of the simulation and
in reality. Once again, this shows that the emulation approach, with integration of
the real protocol implementation, has significant advantages over pure simulation.
To sum up, the received results attest VirtualMesh a good behaviour considering
scalability. Connection with up to ten hops can be handled without any restriction
when using the current emulation model and virtualisation.

Bandwidth

Another important metric for a network connection is its bandwidth. Throughput
measurements have been performed with the tools netperf (TCP STREAM) [102]

97

4.8. EVALUATION

 0

 5

 10

 15

 20

 25

1 2 3 4 5 6 7 8 9 10

R
TT

 [m
s]

Number of hops

OMNeT++ Simulation
VirtualMesh Emulation

Figure 4.18: WlanModel multi-hop behaviour (distance = 500m, transmission interval =
1s, payload size = 56B).

and nc [82] in the emulation, and with extended versions the existing simulations
EtherClientApp, TCPSessionApp and the UDPBasicApp in the pure simulation.
TCP throughput is measured by the completion time of 200 MB bulk transfers.
UDP traffic is measured by the UDPBasicApp sending packets of 1 MB size in
short intervals to saturate the link. The total amount of transferred data after 300 s
is then used to calculate the maximal UDP throughput.

Like for the RTT measurements, the impact of the infrastructure network and
the traffic redirection is quantified between two end systems. The measured band-
widths with netperf for the 1 Gbps cross link are 904.56 Mbps to the native host
and 578.64 Mbps to a virtualised host. The traffic redirection halves the values to
546.4 Mbps and 305.52 Mbps. Unfortunately, the traffic redirection with iwcon-
nect does not scale with the 1 Gbps cross link. But, the provided bandwidth is still
more than sufficient for experiments with an IEEE 802.11b wireless network with
a maximal bandwidth of 11 Mbps (1.375 MB/s), or an IEEE 802.11a/g wireless
network with a maximal bandwidth of 54 Mbps (6.750 MB/s).

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 2 3 4

Ag
gr

eg
at

ed
 T

hr
ou

gh
pu

t [
M

bp
s]

Number of parallel transfers

Simulation Ethernet
Simulation UDP
Simulation TCP

VirtualMesh netperf
VirtualMesh nc

Figure 4.19: Aggregated throughput for parallel transfers using TCP and UDP.

98

4.9. CONCLUSIONS

After quantifying the impact of the infrastructure network and the traffic redi-
rection, concurrent transmissions, and the multi-hop transmissions are measured.
Figure 4.19 shows the measured aggregated average throughput in scenarios with
1-4 concurrent streams. The received results correspond to the net bandwidth
that can be achieved in an IEEE 802.11b network [159] due to random transmis-
sion delays of MAC protocol CSMA/CA implementation and individual frame ac-
knowledgements. There are no results for pure Ethernet transmission and UDP for
concurrent streams as both are lacking any congestion avoidance mechanism, and
would lead to full saturation with only one stream. The TCP implementation of
OMNeT++ discards some valid ACK messages in wireless simulations, resulting
in a reduced TCP throughput in the simulation. The problem has been confirmed
by the OMNeT++ developers for wireless simulations, but it could not be fixed so
far. This shows the benefit of VirtualMesh using the real TCP/IP stack of Linux. To
sum up, the results in Figure 4.19 attest VirtualMesh realistic scalability in terms
of parallel streams.

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

1 2 3 4 5

Th
ro

ug
hp

ut
 [M

bp
s]

Number of hops

OMNeT++ UDP Throughput
VirtualMesh netperf

Figure 4.20: Multi-hop throughput results.

A final experiment measures the achievable bandwidth in multi-hop scenar-
ios (see Figure 4.20). The nodes are placed in a chain topology, as in the RTT
multi-hop measurements. VirtualMesh almost exactly matches the results of the
simulation for up to four hops. It provides the expected behaviour. The end-to-end
throughput decreases proportionally with the number of intermediate nodes. For
more than four hops, VirtualMesh provides slightly lower bandwidth values than
the simulation. To sum up, VirtualMesh matches the simulation results and pro-
vides correct values for maximal throughput, concurrent streams, and multi-hop
communication.

4.9 Conclusions

In this chapter, VirtualMesh has been proposed as a new testing architecture that
simplifies pre-deployment testing and development for protocols and architectures

99

4.9. CONCLUSIONS

Simulation Testbeds VirtualMesh
Transparency - + +
Portability of protocols - + +
Correctness of network
behaviour

- + +

Scalability of tests + - +
Repeatability of tests + - +
Mobility tests + - +
Development/equipment costs + - +

Table 4.3: Qualitative analysis of simulation, testbeds, and VirtualMesh.

for WMNs and MANETs. After development and evaluation with network simu-
lators, wireless mesh communication solutions require extensive pre-deployment
testing of their target platform implementations. This is difficult to achieve in a
real testbed, as irrepressible sources of interference exist. Furthermore, the variety
of testing topologies is limited and mobility tests are impracticable. Therefore, we
have designed VirtualMesh as a new testing architecture to be used before going
to a real testbed. VirtualMesh is based on interception of wireless traffic at nodes
and redirection to a simulation model that provides more flexibility and a control-
lable environment. Table 4.3 summarises the benefits of VirtualMesh compared to
simulation and evaluation in testbeds.

In comparison to other solutions (see Section 2.3), VirtualMesh provides a high
integration of network emulation to real and virtualised hosts. The wireless drivers
of the nodes are replaced by a virtual device that redirects traffic to an OMNeT++
simulation model instead of transmitting it over the air. This is fully transparent to
the Linux network stack and the applications. The normal network stack and all
applications can be used without any modification. Furthermore, even the standard
configuration utilities can be used for wireless network configuration, as the virtual
driver acts in the same way as in a standard wireless network driver under Linux.
All configuration parameters may be set using common configuration tools. Slice-
Time [199, 201], a wireless network emulation extension for ns-3, has recently
adopted our approach of a virtual wireless device driver.

VirtualMesh is used as an intermediate step before going to a real testbed and
the final deployment. It offers the evaluation of the real protocol implementations
on nodes running the final operating system and network stack in a controlled en-
vironment. Therefore, it can deliver results that match the network behaviour in
a real testbed. VirtualMesh offers a scalability of tests comparable with pure sim-
ulation when using host virtualisation. It also provides good repeatability even
though it cannot offer the repeatability of a network simulation, which delivers
exactly the same results when started with the same parameter set. Node mobil-
ity in VirtualMesh is supported by the simulation model and can be defined either
by different mobility models or by mobility traces. The high flexibility in setting

100

4.9. CONCLUSIONS

up different test scenarios and host virtualisation drastically reduce the costs for
testing the real implementations.

The focus of VirtualMesh is on the evaluation of wireless networks. It supports
all common WMN scenarios, such as community networks and Internet sharing
with virtual nodes acting as gateways. Although VirtualMesh has primarily been
designed to test WMNs, it is not limited to them. The concept can also be applied
to other wireless networks, e.g., mobile ad-hoc networks (MANET).

A main advantage of VirtualMesh is the dynamic node management. Node
registration and de-registration provides testing facilities even for management and
software distribution frameworks that require rebooting of nodes, e.g., to update the
operating system kernel or the communication software. During shutdown, a node
just de-registers from the model and is not available until it registers again after
being re-started.

We have evaluated the performance impact of VirtualMesh on delay and through-
put. Our experiments have proven the full functionality of the VirtualMesh testing
infrastructure. VirtualMesh introduces only negligible additional delays for traffic
redirection and per real node inside a simulated path (0.35 ms per hop). The major
part of the delay is caused by the infrastructure network - only a small fraction by
the simulation overhead. Although VirtualMesh cannot accurately model effects
that last for only few microseconds, such as difference in propagation delays de-
pending on distance due to traffic redirection in user-space and the soft real-time
scheduler, it is still a valid tool. Our experiments show that VirtualMesh is still able
to realistically model real-world conditions in the milliseconds range. In contrast
to simulations, it avoids problems of incomplete and inaccurate protocol imple-
mentations as a real Linux network stack can be used. The multi-hop behaviour
of VirtualMesh accurately models the expected real world behaviour and matches
the simulation. Our scalability tests have shown that VirtualMesh generally scales
well. The achieved maximum bandwidth for all scenarios matches the simulation
results. VirtualMesh models an IEEE 802.11b network accurately. The simula-
tion model in VirtualMesh could be easily extended to provide support for IEEE
802.11a/g/h. As VirtualMesh does not introduce additional limitations, it is a per-
fect tool for protocol developers and practitioners to test developed software for
WMNs prior to actual deployment.

Similar to other emulation frameworks, one problem of VirtualMesh is that
the simulation may be too slow and cannot keep pace with the injected network
traffic. Thus, the simulation model of VirtualMesh demands to be run on a powerful
machine and to communicate over a distinct and high-performance management
network. However, there may still be an overload situation. Therefore we plan to
integrate the concept of synchronised network emulation [200] into VirtualMesh.

Even though VirtualMesh supports dynamic networks with nodes joining and
leaving, as well as modifications of wireless parameters, some parameters such as
the node positions and mobility pattern have to be pre-defined in the simulation
model by using either existing mobility models or mobility traces. This limitation
can be removed by propagating position updates through configuration messages

101

4.9. CONCLUSIONS

to the simulation model in the future. Currently, the propagation of wireless pa-
rameters is unidirectional from the nodes to the simulation server. Delivering return
values from the simulation model is very interesting for future work as it could pro-
vide support for passive scanning of a wireless interface in the promiscuous mode
(channel sniffing) and retrieval of SNR values. Another possible enhancement is
the full support of highly dynamic multi-channel scenarios.

Currently, the simulation model supports nodes with virtual IEEE 802.11b net-
work interfaces. In order to test other network technologies, they have to be added
to the simulation model of VirtualMesh. The emulation model could then be ex-
tended to automatically select the correct simulation model for the used virtual
wireless network device on the node including the corresponding individual param-
eter set. The client tools could be enhanced to support different wireless interfaces
such as, e.g., IEEE 802.15.3, Bluetooth, or WiMAX. In [55, 30] we have expanded
the VirtualMesh concept to the area of wireless sensor networks. A prototype is
currently under development.

To employ VirtualMesh in the area of wireless sensor networks, the wireless
model has to be extended. The wireless model provides almost unlimited possibil-
ities for extensions. For example, the advanced MiXiM framework [202] with so-
phisticated MAC and physical models could replace the currently most frequently
used INET models. Another future extension is the migration of the VirtualMesh
client tools to the new Netlink-based wireless configuration interface of the Linux
kernel. This would enable testing networks with the upcoming IEEE 802.11s stan-
dard.

VirtualMesh is released as open-source software under General Public License
version 2 and available for download [178].

Part I introduced ADAM and Virtual as general frameworks and tools for sup-
porting the life cycle of WMNs. In Part II (Chapters 5-7), we apply our devel-
opments to different WMN application scenarios, including a WMN for environ-
mental monitoring, an ad-hoc WMN for video conferencing on construction sites,
and a flying WMN for disaster recovery management. Moreover, we present our
experiences and developed application-specific tools.

102

Part II

Application Specific Use Cases

103

Chapter 5

WMN for Environmental Monitoring

In this chapter, we describe our outdoor deployment of a WMN for environmen-
tal monitoring, funded by the Swiss Commission for Technology and Innovation
(CTI)[169, 170, 171, 175]. Henceforth, we call our outdoor WMN deployment
CTI-Mesh. It evaluated the utility and feasibility of WLAN-based WMNs in ap-
plication scenarios, where remote sites need to be connected to a fixed broadband
network. Examples for such scenarios are high-bandwidth multimedia sensor net-
works deployed in areas where fixed broadband networks have not yet been de-
ployed or where it is considered too costly to deploy them. It has been tested
whether the used hardware and software components are appropriate for the in-
tended application scenarios. A deployment of a typical real world application as
an outdoor testbed has been realised in the area of Neuchâtel Payerne, Switzerland.

Our contribution is the real deployment of a working 5 GHz WMN outdoor
testbed using directional antennas with links up to 14 km in a rural area, whereas
existing deployments often focus urban areas, e.g., MIT Roofnet, Berlin RoofNet,
Heraklion Mesh. In contrast to urban networks, where nodes can be mounted
on rooftops, the deployment in a farmland area requires that the nodes are solar-
powered and mounted on masts, similar to QuRiNet network. Our deployment
proved that the selected hardware and software components are suitable for the
target scenario. Moreover, we share our valuable experiences in order to facili-
tate similar WMN setups in the future. As with any real-world deployment, many
unexpected challenges arose prior to and during network setup and operation that
demanded timely fixes and design decisions. Our documented experiences and best
practises provide a good starting point for any future WMN outdoor deployment in
rural and mountainous areas. In addition, we present evaluations of our deployed
network, which was operational for about three months in 2009.

In CTI-Mesh, we proved the feasibility of a wireless mesh access network con-
necting remote locations to a fibre backbone network. CTI-Mesh gives control
back to the network users. A company, researchers, or a community can deploy
their own broadband access networks. Inexpensive broadband access is, therefore,
not limited anymore to areas, where commercial operators see their profits. It can
be brought to any remote area where it is required.

105

5.1. INTRODUCTION

First, we introduce the CTI-Mesh project in Section 5.1 as well as the selected
scenario for our outdoor feasibility test in Section 5.2. Afterwards, we present the
used equipment in Section 5.3. Then, in Section 5.4, based on the regulations and
equipment, we calculate important scenario parameters like the maximum permit-
ted output power for the wireless network interface cards, minimum antenna/mast
heights, and the expected received signal strengths. Section 5.5 presents the used
operating software of the WMN. Afterwards, we proceed with the description of
the planning and deployment in Section 5.6, which includes valuable experiences
made during the planning and deployment. Section 5.7 shows our evaluation of the
CTI-Mesh network and, finally, Section 5.8 concludes this chapter.

5.1 Introduction

Several application scenarios, such as environmental monitoring or meteorological
data acquisition, require network connectivity in remote locations. This broadband
network connectivity is not yet ubiquitously available; it might not be deployed
in some areas due to commercial reasons, it does not deliver enough data band-
width, or it is just too expensive. A cost-efficient network technology is therefore
a necessity for the connection of remote locations and sensors to the broadband
network.

The technology transfer project CTI-Mesh funded by the Swiss Commission
for Technology and Innovation (CTI) and the participating industry partners eval-
uates the usefulness and feasibility of WLAN-based WMNs, where remote sites
have to be connected to a fixed broadband network. The WMN should provide
robust, reliable broadband network access guaranteeing a sufficient quality of ser-
vice (QoS) for connecting high-bandwidth multimedia sensors for environmental
monitoring. Besides the University of Bern, three industry partners, MeteoSwiss,
SWITCH, and PCEngines, with different interests were involved in the CTI-Mesh
project.

5.2 Application Scenario

CTI-Mesh connected a weather station located at Payerne to the fibre backbone
with an access point at Neuchâtel. Due to the topography in the selected area
(hills), forests and buildings, there is no direct line of sight between the network
end points. A camera sensor had to be made accessible over a wireless mesh access
network to the Internet by two paths utilising redundancy concepts in order to pro-
vide robustness and reliability (see Figures 5.1 and 5.2). The network consisted of
six nodes, of which the four intermediate nodes were solar-powered (see Fig. 5.4
for an intermediate node). One end point of the wireless mesh access network,
node01, was mounted on the rooftop of the University of Neuchâtel. It acted as
gateway to the fibre backbone. The other end point, node06, operated as gateway

106

5.3. EQUIPMENT

Figure 5.1: Map of Switzerland with the location of CTI-Mesh network.

to the sensor network with an IP capable camera. The four remaining nodes con-
nected the two gateways and established two independent and redundant paths (see
Figure 5.2).

5.3 Equipment

In the following, we describe the equipment used for our outdoor deployment. It
includes the mesh nodes, antennas, electrical power supply, mast, mounting mate-
rial, and tools. Our equipment list is a good starting point; it might facilitate any
future deployments of outdoor wireless mesh networks.

5.3.1 Mesh Nodes and Antennas

The PCEngines Alix.3D2 embedded board forms the core of our mesh nodes (see
Section 2.2.1). Its two miniPCI slots hold two IEEE 802.11a/b/g/h cards. As sec-
ondary storage, a 1 GB CompactFlash card is used. To keep accurate date and time
in case of reboots or power outages, a small backup battery is added to the board
to power the real-time clock (RTC). The node is packed in an aluminium weather
sealed outdoor enclosure (see Figure 5.6). The enclosure fulfils the ingress protec-
tion standard IP67 [70], i.e., the enclosure is dust-tight and protected against the
effects of temporary immersion in water.

Two directional panel antennas (23 dBi gain, 9◦ beam width) are connected

107

5.3. EQUIPMENT

Figure 5.2: CTI-Mesh network deployed in the area Neuchâtel - Payerne, Switzerland.

through 0.5 m low loss antenna cables (1.62 dB) and N-type pigtails to the wireless
cards. The node’s Ethernet interface is extended outside of the enclosure by a
weather sealed Ethernet jack. A twisted pair cable then provides electric power
and network connectivity to the node.

5.3.2 Power Supply for the Mesh Nodes

The mesh nodes in CTI-Mesh were powered either by the electricity grid or by so-
lar panels. The two nodes mounted on the buildings of the University of Neuchâtel
and MeteoSwiss (node01, node06) were connected via a lightning protector and a
power over Ethernet (PoE) adapter to the standard electricity supply. The four in-
termediate nodes were supplied with electricity by solar power equipment. Besides
a 80 W solar panel, the equipment consisted of an aluminium supply box, a solar
charger, an acid battery (65 Ah, 12 V), and a passive Power Over Ethernet (PoE)
adapter (see Figure 5.7).

A twisted pair cable to the electricity supply box connected the node on top
of the antenna mast. This cable also provided network connectivity over Ethernet
for on-site maintenance, which proved to be useful throughout the deployment and
operation phase. In compliance with best practises, we mounted the solar panel
vertically, which on one hand reduced the efficiency of the panel, but avoided other
energy harvesting problems due to leaves, dust, rain, snow, and icing. The bat-
tery was dimensioned to support the self-sustaining node operation without being

108

5.3. EQUIPMENT

(a) Node03 in Corges. (b) Node04 in Belmont.

Figure 5.3: Deployed nodes.

Figure 5.4: Node05 deployed near Belmont.

109

5.3. EQUIPMENT

Figure 5.5: Node06 on the platform roof of the MeteoSwiss building in Payerne.

recharged by the solar panel for about ten days. During normal operation, the
measured power consumption of a mesh node was approximately 3.3 W (271 mA,
12 V).

5.3.3 Masts

Telescopic masts (sideways slotted aluminium tubes, max. height 9 m) with tripods
were used to install the directional antennas and the mesh node in order to minimise
disturbance and building activities. The mast type has been selected considering
costs, transportability, project duration, and higher acceptability for the landowners
providing the node sites for the installations. A mast tripod and a rope guying held
the telescopic mast. We weighted the tripod with sand bags in order to get a basic
stability of the mast. Iron stakes further fixed the tripod to the ground. The mast
was guyed on two levels, each with three ropes. We selected a braided polyester
guy rope with low stretch and easier handling rather than a steel guy wire. A
first rope equipped with thimbles and wire clamps on both sides was connected
with S hooks to the guying clamp on the mast and to the rope tightener. Then, a
second rope was attached to the other side of the tightener and thereafter fixed to
the ground by a wooden pile.

110

5.4. DEPLOYMENT PARAMETERS

Figure 5.6: Water protected enclosure.

5.3.4 Wall Mounting

The above described mounting support was used for all nodes except the node on
the platform roof of the University of Neuchâtel. There, we mounted the anten-
nas and the mesh node on a L-tube that has been anchored to the wall (see Fig.
5.8). Mounting of the antennas and nodes required several small parts like U-bolts,
screws, and nuts.

5.3.5 Tools and Utilities

In order to assemble and mount the mesh nodes for the feasibility study, different
tools were required (see Figure 5.9). The most important ones were a sledge ham-
mer, slotted and Philips screw drivers, different wrenches, Allen keys, water pump
pliers, a hammer, a knife, an angle measurement plate protractor, binoculars, a cli-
nometer, an amplitude compass, a digital Volt/Ampere meter, a RJ45 crimp tool, a
tester for twisted pair cables, a mast level, and two carpenter’s levels. Moreover,
a socket wrench with ratchet handle made life easier. A foldable ladder was use-
ful as well. A sack barrow helped transporting the material and relieved the back.
Finally, a folding chair made on-site configuration tasks more comfortable.

5.4 Deployment Parameters

During the planning phase of the project, we calculated the relevant deployment pa-
rameters for our setup, such as maximum transmit power, minimal antenna heights,
and expected received signal power levels. These include the maximum permitted
output power of the wireless network interface cards to comply with regulations,
the minimal required antenna heights to guarantee good connectivity, and the ex-
pected received signal power levels to cross-check during the deployment.

111

5.4. DEPLOYMENT PARAMETERS

Figure 5.7: Power supply box with solar charger, lead acid battery, passive PoE adapter,
yellow electric cable, and twisted pair cable.

Swiss regulations released by OFCOM limit the maximum transmission power
to a value of 1000 mW EIRP when using TPC (see Section 2.7). EIRP [96] is
defined as the emitted transmission power of a theoretical isotropic antenna to pro-
duce the same peak power density as in the direction of the maximum antenna gain.
It is calculated by subtracting cable losses and adding the antenna gain to the out-
put power (see Equation 5.1). The received power level at the receiver input (Si)
is shown in Equation 5.2. For our calculations we used the Free Space Loss (FSL)
propagation model [75] as defined in Equation 5.3.

EIRP = Pout − Ct + Gt (5.1)

Si = Pout − Ct + Gt − FSL + Gr − Cr (5.2)

whereas
EIRP := Equivalent Isotropically Radiated Power in dBi
Si := Received power level at receiver input in dBm
Pout := Transmitted output power in dBm
Ct := Transmitter cable loss/attenuation in dB
Gt := Transmitting antenna gain in dBi
Gr := Receiving antenna gain in dBi
FSL := Free Space Path Loss in dB
Cr := Receiver cable loss/attenuation in dB

112

5.4. DEPLOYMENT PARAMETERS

Figure 5.8: Assembling of node01 on the platform roof of the University of Neuchâtel.

(a) Amplitude compass. (b) Mast level. (c) Socket wrench with
ratchet handle.

Figure 5.9: Helpful special tools.

113

5.4. DEPLOYMENT PARAMETERS

FSL = 10 log((
4π

c
df)2) = 20 log((

4π

c
)df) (5.3)

= 20 log(d) + 20 log(f) + 20 log(
4π

c
) (5.4)

= 20 log(d) + 20 log(f)− 147.55 (5.5)

whereas
FSL := Free Space Path Loss in dB
f := Frequency in Hz
c := Speed of light in a vacuum 300’000’000 m/s
d := Distance between transmitter and receiver in m

It is required that at least 60% of the first Fresnel zone are free of any obsta-
cles in order to use the FSL model for calculation of the attenuation. Otherwise,
additional attenuation has to be added. Equation 5.6 calculates the radius of the
zone that has to be free around the line of sight. The earth’s curvature is a further
obstruction of the Fresnel zone. Hence, the minimum antenna height has to con-
sider it as well. Equation 5.7 defines the additional antenna height ECm due to the
earth curvature [191]. It also considers the effect of atmospheric refraction, which
causes ray distraction at microwave frequencies. In practice, the reception of the
microwave signal is possibly somewhat beyond the optical horizon. The minimum
antenna height Hmin is then defined in Equation 5.8. For our calculations in Ta-
ble 5.1, we used the values EIRP = 30dBm, f = 5.5GHz, Cr = 1.62dB, and
Ct = 1.62dB.

FZr(m) = 0.6× 1
2

√
d×c
f

(5.6)

ECm = d1×d2
12.8×k (5.7)

Hmin = ECm + FZr(m) (5.8)

whereas
FZr(m) := Radius for 60% of the first Fresnel zone
ECm := Additional antenna height due to earth curvature
d1, d2 := Distances point↔sender/receiver in km.
k := 4

3× earth radius (6’371 km)

As all our node sites were located on top of hills, our telescopic masts with a
height of 9 m were sufficient to guarantee no obstacles in the first Fresnel zone.
Keeping the antenna heights below 10 m, further avoids the necessity to request
building permission from the local authorities.

114

5.5. SOFTWARE

Table 5.1: Links using 1000mW EIRP.
Nodexx dm FZr[m] Hmin[m] FSL[dB] Si[dBm] Pout[mW]

01⇔ 02 11500 7.513 9.463 128.47 -77.09 7.277
02⇔ 03 10300 7.110 8.668 127.51 -76.13 7.277
03⇔ 06 1070 2.291 2.308 107.85 -56.46 7.277
06⇔ 05 6760 5.760 6.431 123.86 -72.47 7.277
05⇔ 04 1000 2.215 2.223 105.26 -53.87 7.277
04⇔ 01 14100 8.319 11.239 130.24 -78.86 7.277

5.5 Software

For the CTI-Mesh deployment, we used ADAM (see Chapter 3), our own Linux
distribution, as operating system for the mesh nodes. The configuration of the
wireless network interface of ADAM was extended to be compliant with the Swiss
regulations (see Section 2.7) in terms of maximal transmit power, TPC and DFS.
ADAM facilitated the network configuration of the entire network, as all relevant
parameters are hold in only one single configuration file per node. Using ADAM,
we could further safely update the software and configuration of the WMN nodes
without requiring a co-located management network. Failed software update were
automatically recovered and did not lead to broken nodes, which would have re-
quired time-consuming disassembling of the masts.

As wireless driver, we used a patched version of MadWifi 0.9.4 [186]. Other
parts of the communication software are the Linux IPv4/IPv6 dual stack and a rout-
ing daemon. ADAM already fully supports IPv4 and IPv6. The routes inside the
wireless mesh network are automatically established by the olsrd routing daemon
[187], an open source implementation of the OLSR with ETX routing metric (see
Section 2.1.1).

A concurrent IPv4 and IPv6 configuration has been selected for the CTI-Mesh
network. Public IPv4 and IPv6 addresses have been assigned to every wireless in-
terface in the network. In addition, the gateway node (node01) in Neuchâtel and
the mesh node (node06) in Payerne have public IP addresses assigned to their Eth-
ernet interface enabling access to either the fibre backbone or the IP webcam. The
network could also have been setup with network address translation for the IPv4
addresses at the gateway node. However, due to easier accessibility, all nodes used
public IP addresses. Every intermediate mesh node ran a DHCP server providing
private addresses on its Ethernet interface for on-site maintenance.

5.6 Planning, Predeployment, and Deployment

A field test requires several steps in planning and predeployment. We recom-
mend the following actions as our best practise: time planning, selection of testing
area, finding appropriate locations for intermediate nodes, reconnaissance of node

115

5.6. PLANNING, PREDEPLOYMENT, AND DEPLOYMENT

sites, agreements with landowners, determining and ordering appropriate equip-
ment and tools, preparation of equipment, setup of software and configuration,
pre-deployment tests, and final deployment.

A complex project with several external dependencies requires extensive time
planning and scheduling. One has to consider the availability of means of trans-
portation, equipment, and external parties, such as public administration and landown-
ers. Further restrictions may be caused by site accessibility and prevailing weather
conditions.

Besides a time schedule, a testing area and the elevated node sites providing
line-of-sight connections are required. Accurate electronic maps help to determine
candidate locations for the deployment. As there are always differences between
maps and reality, a next step is to go on-site (reconnaissance) and verify whether
the sites are actually useable. Then, the landowners have to be contacted in order
to get permission for using their property for the tests. For getting the agreements,
we had the best experiences when talking face-to-face.

Another activity is checking and preparing the equipment. Once the ordered
equipment has been delivered, completeness and functionality should be checked.
It is then advisable to prepare the material before going in the field, e.g., assembly
of nodes and antenna, preparing guying ropes by cutting them and adding thimbles
and wire clamps.

The next step should be a predeployment test. All equipment is assembled
completely and set up outdoors. This helps in identifying defective and missing
parts. Moreover, first stability tests of hardware and software can be performed.

After the predeployment tests, one can proceed to the final deployment. Of
course, there are problems that arise after the planning and predeployment phase.
The next section gives an overview of different challenges that occurred during our
entire deployment.

During the deployment, we had to find practical solutions to several problems
and challenges. We classify the challenges into the following five categories:

• Software problems

• Mechanical challenges, missing or defective material

• Technical communication problems

• Natural environment

• Administrative challenges

Software Problems

Some software problems occurred during the project. First, the outdoor use of
IEEE 802.11h (TPC and DFS) in combination with ad-hoc mode is not commonly
used in the community and, therefore, not the highest priority for the developers
of the wireless driver. Thus, the wireless driver provided poor support for these

116

5.6. PLANNING, PREDEPLOYMENT, AND DEPLOYMENT

configuration settings, i.e., it was not extensively tested, and the implementation
had several errors. By applying several patches from the OpenWrt project [14],
we significantly improved the system’s stability and operation. Second, the rout-
ing daemon stopped working occasionally. Monitoring the routing daemon and
restarting if necessary solved this problem.

Mechanical Challenges

The mechanical challenges included correct antenna alignment at setup, sinking in
of tripods, torsion of mast elements by fixed guying clamps, and defective material.
The correct alignment of the antennas is crucial as directional antennas were used.
After having calculated the angles and elevations by using maps, there were four
mechanical problems for correct alignment.

First, the two antennas had to be fixed to the top mast element with the cor-
rect intermediate angle. We adjusted the pre-calculated angle using a precision
mechanic universal Bevel protractor.

The second problem was keeping the exact direction of one antenna aligned
to a reference system on the bottom element of the telescopic mast, which is then
at eye level. Any attempt to lift the mast elements in vertical position resulted in
torsion of the top element compared to the bottom element. Therefore, we assem-
bled the mast completely in horizontal position and then erected it in one piece (see
Figure 5.10). In order to transcribe the antenna direction to the reference plate, we
used two carpenter’s levels when the mast was in horizontal position. One carpen-
ter’s level was positioned on one of the antenna and balanced. The reference plate
was then aligned and balanced with the other one. Using an amplitude compass
on the reference plate, the antenna could then be aligned correctly. Since prelimi-
nary tests [175] revealed that visual alignments of the antenna failed, an amplitude
compass and an inclinometer have been used for correct alignment. Afterwards, we
fine-tuned the alignment with the help of the received signal strength. Although the
alignment with the amplitude compass generally worked well when being in fields,
there was magnetic interference from generators on the platform roof of the Uni-
versity of Neuchâtel, which required us to make several attempts for the correct
alignment of the antennas of node01.

The third mechanical challenge was the sinking in of the tripod into the soft and
rain-sodden soil after heavy rain falls. The results were lopsided masts. Thus, we
stabilised the ground with concrete paving slabs as shown in Figure 5.11). Another
option is using aluminium tripod mount plates, which can also offer the possibility
to easily equalise the inclination of the tripod.

The fourth mechanical challenge was an unexpected torsion of some mast ele-
ments, which occurred over time and resulted in wireless connection losses of the
directional antennas. The cause of the torsion was the fixed mounted type of guy-
ing clamps used. On all node sites, not all of the guying ropes could be fixed with
intermediate angles of 120◦. Therefore, the ropes’ tensions produce a torsional
force, which then turned the mast element. New movable guying clamps (fibre-

117

5.6. PLANNING, PREDEPLOYMENT, AND DEPLOYMENT

Figure 5.10: Complete assembly of telescopic mast in horizontal position before final
setup.

enforced plastic discs) as shown in Figure 5.12 solved the problem by decoupling
the mast elements and the guying.

In pre-deployment tests, the complete equipment was set up. The tests showed
the necessity of two guying levels to avoid oscillations of the mast top holding
the antennas. Moreover, they helped us to identify missing or defective material
before the final deployment, minimising the consequences such as unnecessary
on-site corrective actions and delays.

Technical Communication Problems

During the network setup two communication problems appeared. First, we dis-
covered unexpected packet loss on the wired link between the border router and the
gateway node node01. The dedicated twisted pair cable (100 m) in combination
with the data link lightning protector produced high attenuation and collisions. Re-
ducing the cable length to 50 m by taking advantage of the existing building wiring
eliminated the problem and resulted in the expected 0 % packet loss on the wired
link. Second, the different wireless links interfered with each other as they com-
municated on the same channel. The interference was reduced by alternating use
of three channel sets and exploiting the two available antenna polarisations (hori-
zontal and vertical).

118

5.6. PLANNING, PREDEPLOYMENT, AND DEPLOYMENT

Figure 5.11: Concrete paving slab to prevent sinking in of the tripod, sand bag and iron
stake to stabilise mast.

Natural Environment

The natural environment had several influences on our feasibility study. Besides
described problems due to the rain-sodden ground, fog, storms, and animals had
an impact on the network. The solar panels used should have normally produced
enough energy to charge the batteries and power the mesh nodes twenty-four-seven
throughout the year, independent of weather conditions. Nevertheless, we observed
two nodes that completely drained their batteries and thus stopped working for
approximately one week in November 2009. The other two solar-powered nodes
had completely charged batteries in the same period during daytime. In fact, bad
weather conditions, including locally dense fog over several weeks, prevented the
solar panels from producing enough energy to charge the batteries. Once the solar
panel delivered again enough electric power, following the bad weather period, the
nodes restarted normal operation without any intervention by an operator.

Furthermore, parts of our equipment were severely damaged during storms.
First, lightning destroyed the web cam on the roof of the MeteoSwiss building dur-
ing a thunderstorm. The mesh node was not affected due to the data line lightning
protector. Second, a wind storm broke one of the masts as one guying rope had be-
come loose (see Figure 5.13). As no further mast was buckled, even during heavier
windstorms, we are convinced that the selected mast material is sufficient as long as
the guying is correctly applied. Birds of prey (common buzzards) used our masts
and antennas as raised hides/perches. Since they also sat on the antenna cables,
they loosened the connector on the antenna. Tightening and gluing the connector

119

5.7. EVALUATION

Figure 5.12: Primarily used fixedly mounted threepart guying clamp and its replacement
part, a movable guying clamp to prevent torsion of mast.

reduced the effect. We did not succeed in keeping the birds away from the masts.
Other animals taking profit of our installations, such as spiders, ants, beetles, and
mice did not influence the network performance.

Administrative Challenges

The last category is formed by administrative challenges. First, we required the
agreements for hosting a node. After the time-consuming determination of appro-
priate node sites and their landlords, convincing the landlord to give an agreement
was demanding. Face-to-face communication and showing the equipment were
the key elements for success. Second, determination of the suppliers for all the
required equipment and tools was difficult and keeping track of all the parts and
pieces is a necessity.

5.7 Evaluation

The aim of the deployment activities was to connect sensing equipment over a
WMN to the wired/fibre backbone. As a show case application, an IP camera
was connected and accessible from the Internet during the deployment (see Fig-
ure 5.14).

120

5.7. EVALUATION

Figure 5.13: Broken mast due to strong winds and loose guying (node02).

In [175], we presented some preliminary measurements. During these mea-
surements, strong winds caused periodic movements of the antenna tops which
resulted in high packet losses. In the final deployment, guying the antenna to the
ground with ropes eliminated this effect.

For all measurements, the CTI-Mesh network used a fixed data rate of 6 Mbps
for the IEEE 802.11h interfaces. Setting higher data rates is possible, but the
longest links stretching over 10 km may then become unavailable.

In order to give an impression of the achievable bandwidth over the deployed
network, we performed TCP bandwidth measurements using the tool iperf [78].
These results are shown in Figure 5.15 and 5.16. The measurements were started
in sequence and lasted for 10 min. Data values were produced for periods of 10 s.
In the graphs, the data is represented by its median value, the 25% percentile and
the 75% percentile (box), and the minimum and maximum values (whiskers).

First measurements were run from the nodes towards the gateway (node01)
(see Figure 5.15). The results are similar for all nodes, with a median value of
439 kbps. Due to the alternating use of the two available antenna polarisations
(horizontal and vertical) and of three channel sets, there is almost no intraflow
interference along the multi-hop path (02 → 01, 03 → 02 → 01, 06 → 03 →
02 → 01, 04 → 01, 05 → 04 → 01, 06 → 05 → 04 → 01). The bottleneck for
the TCP transmissions was the link with the lowest bandwidth.

121

5.7. EVALUATION

Figure 5.14: Screenshot of IP camera streaming over WMN.

Figure 5.16 presents the second measurements, performed between direct neigh-
bours. It shows that the overall bandwidth is mainly limited by the long distance
links above 6 km. The capacity of the 1 km link between node04 and node05
reaches about 55% of the set data rate (6 Mbps), which lies slightly below the
commonly reported throughput values. In fact, this link could not be positioned
ideally. A bordering forest located in the middle of the link covered more than
the 50% of the first Fresnel zone. The low value for the 1 km link between node06
and node03 may be explained by the fact that setting the correct elevation angle (3◦

due to the difference in altitude) for the antennas, was very difficult with our equip-
ment. Moreover, the link is aligned directly with the city centre of Payerne. By a
channel scan, we identified several neighbouring concurrent wireless networks that
our directional antenna can receive and, therefore, resulted in interference.

In order to monitor the network’s availability and the link/route quality, we
logged the routes to node06 with the corresponding routing metric ETX (Expected
Transmission Count) cost values at node01 every 10 min. This was performed
using standard functionality of the olsrd routing daemon. ETX defines the number
of transmissions that are required to successfully transmit a packet. In Figure 5.17,
the weekly ETX values are depicted and show that most values are near to the
optimum of 3.0 for the three hop path (node01↔node06). The whiskers show the
minimum and maximum values. ETX values above 9.0 usually occurred when the
connection was lost or after the connection became available again.

Figure 5.18 provides an overview of the general route availability towards
node06 and the IP camera for 81 days. It shows the percentage of the day dur-

122

5.7. EVALUATION

 0

 100

 200

 300

 400

 500

 600

02
!

01

03
!

02
!

01

06
!

03
!

02
!

01

04
!

01

05
!

04
!

01

06
!

05
!

04
!

01

TC
P

ba
nd

wi
dt

h
(k

bp
s)

Figure 5.15: TCP bandwidth for the connections to node01.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

06
!

05

05
!

04

04
!

01

06
!

03

03
!

02

02
!

01

TC
P

Ba
nd

wi
dt

h
(k

bp
s)

Figure 5.16: TCP bandwidth for each link.

123

5.7. EVALUATION

ing which at least one valid route is available. Several events had an impact on the
route availability, e.g., wind breaking the mast of node02 on day 45, which was
replaced nine days later. Moreover, stability problems of the wireless driver led to
non-functioning wireless devices. The effect could be minimised by automatic ser-
vice restarts and reboots after day 44. The drawback of some unnecessary restarts
is that the maximal achievable route availability was reduced to about 99%. In
many situations, this network performance may be sufficient, as most sensor data
can be aggregated and then transmitted with some delay. Moreover, redundant
paths can be used to cope with short link outages. By periodic ICMP ECHO mea-
surements, we further measured the average delay and the corresponding packet
loss on the path between node01 and node06. After fixing the software issue and
replacing the mast of node02 (day 54), the measured average round trip time (RTT)
was improved to 11.6 ms and the average packet loss to 7.18%.

 0

 10

 20

 30

 40

 50

 60

 70

 35 37 39 41 43 45

Ex
pe

ct
ed

 T
ra

ns
m

is
si

on
 C

ou
nt

 (E
TX

)

Week

Figure 5.17: ETX values for best route from node01 to node06.

old software final settings
mast replacednode02: mast broken

 0
 20
 40
 60
 80

 100

 0 10 20 30 40 50 60 70 80

Pe
rc

en
ta

ge
 o

f d
ay

wi
th

 v
al

id
 ro

ut
e

(%
)

Day with d0 = 24.8.2009

Figure 5.18: Route availablity to node06/IP camera at node01.

In order to verify our deployment, we logged the signal strength values at each
node (see Figure 5.19). The resulting median values are symmetric for both direc-

124

5.8. CONCLUSIONS

-100

-90

-80

-70

-60

-50

-40

-30

-20

01
02

01
02

02
03

02
03

03
06

03
06

01
04

01
04

04
05

04
05

05
06

05
06

R
ec

ei
ve

d
Si

gn
al

 S
tre

ng
th

s
(d

Bm
)

Link

Figure 5.19: Received signal strengths for all six links.

tions of the same link and correspond to the calculated signal strengths Si(dBm) in
Table 5.1. The variance of the results is partly due to TPC adjusting the transmis-
sion power.

Despite using alternating antenna polarisations, high quality cabling, orthogo-
nal channels and channel separation, the network performance may still suffer from
adjacent channel interference and, if using multi-radio systems, board crosstalk and
radiation leakage [7, 49, 131]. Although not observed in our setup, increased sep-
aration of the antennas and additional shielding is possible and recommended.

5.8 Conclusions

In this chapter, the outdoor deployment of a WMN for environmental monitoring
(CTI-Mesh) has been discussed. The CTI-Mesh access network interconnected
remote sensors, including a live cam, to a fibre based network backbone over a
distance of more than 20 km.

We presented our deployment experiences for this solar powered wireless ac-
cess mesh network for meteorological data acquisition. These experiences and the
established deployment process provide a valuable starting point for any future
WMN outdoor deployments. They help in being aware of common problems and
pitfalls, directly avoiding them, and finally saving a lot of time. Our experiences
show that one of the most important steps in the deployment process is prede-
ployment testing. Extensive predeployment tests are crucial to avoid unnecessary
delays or project failure. Therefore, we strongly advise to perform them carefully.
Besides testing the communication software, it is advisable to set up the complete
nodes including masts and solar equipment before on-site deployment. This en-

125

5.8. CONCLUSIONS

ables identification of missing or defective equipment and tools before going into
the field. Moreover, replacement parts should always be kept available. Otherwise,
setup and repairs may be delayed by additional on-site operations or even by long
delivery times for spare parts. The network deployment including all preparation
steps took about three months.

We proved that a wireless access network is feasible and that the utilised equip-
ment is appropriate for such deployments in the selected region. The double-guyed
aluminium mast with the tripod placed concrete paving slabs resisted strong winds
and thunderstorms. The electronic equipment was properly shielded against var-
ious weather conditions including rain and snowfalls. The utilised equipment is
flexible and adaptable and, therefore, provides an appropriate solution for various
terrains.

We further demonstrated that the network can be operated completely self-
sustained, i.e., the network nodes can be powered by solar equipment consisting of
solar panel, charger, and battery. This requires an appropriate dimensioning of the
solar panel and the battery, which takes into account local weather effects, such as
locally dense fog.

Concerning the feasibility and usability of access network, our evaluations of
the CTI-Mesh network showed that our setup can provide a requested robust net-
work service for transmitting weather data (430 kbps over 20 km). The network
performance is sufficient for the use case. The network stability might be further
improved, e.g., by replacing or extending the OLSR routing daemon to avoid route
fluctuations and migration of the used MadWifi wireless driver to its successor
driver, the completely open source wireless driver ath5k. Moreover, integrating a
hardware watchdog that could recover a node from undefined states could enhance
self-healing mechanisms.

To sum up, the CTI-Mesh deployment provides tested low cost equipment and
software for an outdoor deployment of wireless mesh access network. It further de-
livers empirical data for the configuration and performance of an outdoor WMN.
In addition, the established deployment process defining best practices and docu-
mented challenges with their solutions provide an excellent starting point for any
similar outdoor network deployment.

CTI-Mesh employed ADAM (see Chapter 3) for network management. ADAM
provided an embedded operating system specially tailored for the WMN nodes, of-
fering all necessary functionality for the CTI-Mesh deployment. It simplified the
configuration of the entire network, as all relevant parameters can be set in only one
file per node. ADAM guaranteed the distribution of configuration and software up-
dates even in situation where certain nodes were temporarily off-line, e.g., due to
empty batteries. ADAM’s safe software update procedure for the used ALIX nodes
ensured that the software images could be safely exchanged. There was no risk of
a broken node, which would have required a time-consuming disassembly of the
mast. Self-healing mechanisms increased the robustness of the deployed network.
Using the ADAM management framework, CTI-Mesh did not require a co-located
management network like other deployments, e.g., Heraklion Mesh.

126

Chapter 6

Deployment Support for an Ad-Hoc
WMN

After the manual deployment of an outdoor WMN for environmental monitor-
ing, we present two support frameworks for the deployment of ad-hoc WMNs
in the following two chapters. These frameworks either guide the user in the
deployment process or even offer a fully automatic deployment of a WMN (see
Chapter 7). In this chapter, the first framework, called On-site Video System
(OViS) [140, 182, 183], is presented. It offers semi-automatic deployment of a
temporary network as a communication infrastructure for different support appli-
cations, e.g., an audio/video conferencing system. It guides an inexperienced user,
by means of an electronic wizard, how to correctly deploy a temporary WMN for
the purpose of video conference system.

OViS was developed motivated by a problem occurring at an electric installa-
tions company, which wanted to reduce the number of costly visits of its electrical
engineers to construction sites. By using an audio/video conferencing system, en-
gineers would be able to support multiple construction sites per day and further
reduce time wasted through unnecessary travel. The audio/video conferencing sys-
tem, i.e., video conference, requires network connectivity at the problematic sites.
Unfortunately, there is usually no coverage by an already installed wired or by a
cellular data network in the basements of buildings, where most electric installation
problems occur. However, larger construction sites have an own Internet connec-
tion in one of the construction containers. The challenge is then how to extend this
connection to the basements without introducing safety risks, such as tripwires.

OViS provides this connectivity by a temporary battery-powered WMN, whose
deployment can be quickly performed even by inexperienced users. The user is
guided by a wizard-like deployment application during the deployment process. By
following instructions of this deployment application, the user sets up the network
step-by-step. He/she is instructed to deploy the mesh nodes at reasonable distances
based on received signal strength indicator (RSSI) measurements. OViS handles
the configuration of the WMN and completely hides this from the user. The OViS
deployment wizard exists in versions for different systems and operating systems,

127

6.1. MOTIVATION

including versions for Android and iOS smart phones.
Section 6.1 presents the motivation for OViS, which provides a semi-automated

deployment of a temporary WMN for video conference. Following, we discuss the
architecture and concepts in Section 6.2, the implementation on the mesh nodes
in Section 6.3, and the implemented deployment applications (wizards) in Sec-
tion 6.4. Section 6.5 provides an evaluation of our OViS temporary network and of
the deployment process. Section 6.6 concludes this chapter.

6.1 Motivation

Nowadays, information and communication technology (ICT) has already brought
significant cost savings to several industries, including the building construction
industry. During the construction of a building, modifications may require costly
on-site visits of engineers to adapt plans to the new circumstances. ICT solutions,
such as video conferencing systems, may reduce the number of on-site visits sig-
nificantly. Video conferencing enables the engineers to remain in the office and
yet to comprehend problems and particularities of complex new situations, adapt
their planning, and then instruct the workers on-site. Unfortunately, in-building
communication networks, as well as electric installations, are set up very late in
the building construction process. In addition, communication over cellular mo-
bile networks (GSM/UMTS) is often not possible inside buildings, especially in
basements.

Figure 6.1: Motivation for OViS: An electrician requires instructions to solve an issue at
the switching unit in the basement of a building. Unfortunately, there is no reception of
cellular networks in the basement.

As deviations and adaptations to the plan are quite common during building
construction, an electric installations company’s engineers often have to support
their electricians in adapting the planning on-site. The costly engineers then spend
a lot of their working time by travelling from the office to the construction site
and back. The obvious solution of using a phone often fails due to the following
two reasons. First, the situation may be too complicated to be explained on the

128

6.2. OVIS CONCEPTS AND ARCHITECTURE

phone. A picture or a video could illustrate a complex situation more easily. Sec-
ond, the complicated electric installations including the switching units are usually
situated in the basement out of reach of any cellular network (GSM/UMTS) (see
Figure 6.1). Therefore, the electrician has to go outside the building in order to
make a phone call to the main office or to send a picture or video. If more data is
required, he/she has to return to the basement to check the circumstances or to make
another photo. Afterwards, he/she has to leave the building again to communicate
with the engineer. An audio/video conferencing system that enables communica-
tion whilst being next to the problematic installation would be beneficial and would
give the company a competitive advantage.

A temporarily disposable communication infrastructure, which enables on-
site audio/video conferencing functionality, would therefore constitute a much-
appreciated benefit. It should be simple, straightforward, and safe in its deploy-
ment. As on-the-fly cable installations are safety risks on a construction site, we
investigated the usability and applicability of a WMN with battery-driven nodes as
a temporary communication infrastructure, as shown in Figure 6.2, and developed
our on-site video-conferencing system (OViS). The application of WMNs for tem-
porary venues and spontaneous networking has also been suggested in [4]. In order
to provide ”as easy as winking” deployment, OViS includes self-configuration and
self-awareness mechanisms and guides the inexperienced user through the deploy-
ment by a wizard application.

Figure 6.2: OViS: A temporary WMN provides Internet connectivity in the basement and,
therefore, enables video-conferencing to discuss problems comfortably and efficiently.

6.2 OViS Concepts and Architecture

Figure 6.3 illustrates the general deployment process of the temporary WMN in
OViS. A user takes the bag containing the components of OViS, namely battery-
powered mesh nodes, a client device (e.g., smart phone or tablet PC), and an Eth-
ernet cable. He/she first deploys the gateway node near to the local router in the
construction container (see Figure 6.3a). Then he/she takes the next node out of

129

6.2. OVIS CONCEPTS AND ARCHITECTURE

(a) Gateway node deployed.

(b) Intermediate node deployed.

(c) Complete network deployed.

Figure 6.3: Stepwise deployment of the temporary network for OViS.

the bag, switches it on, and walks into the direction of the problematic switching
unit. At a reasonable distance, the first intermediate node is deployed (see Fig-
ure 6.3b) and the user proceeds with the deployment of nodes until he/she reaches
the switching unit (see Figure 6.3c). After the successful network deployment, the
user is in front of the switching unit. He/she can start a video conference to discuss
the problem and to clarify the next steps with an expert/engineer back in the office.
The audio/video conferencing system helps in finding a solution more efficiently,
as the engineer can grasp the problem a lot easier with live video/pictures and can
instruct the electrician to check/show some parts of the system, if necessary. The
engineer may even consult additional documentation in the office and give imme-
diate feedback.

6.2.1 Requirements

In order to be usable as a communication system for audio/video conferencing,
OViS has to fulfil the following requirements:

130

6.2. OVIS CONCEPTS AND ARCHITECTURE

• Easily deployable by an inexperienced user

• Quick setup time

• Network bandwidth supporting video-conferencing systems (throughput ≥
1 Mbps)

• Self-sustaining operation for hours

• Independent of localisation mechanisms

Following the first requirement, we cannot assume any prior knowledge about
networking, especially wireless multi-hop networks, from the user. He/she is not
aware how to deploy a wireless multi-hop network correctly, e.g., the ideal distance
between the nodes or the configuration steps for a network interface. Nevertheless,
he/she should be able to deploy the network correctly within a reasonable time
(less than 10 minutes) at any place, where connectivity is necessary. This deploy-
ment process has to be flexible in order to work at different locations regardless of
obstacles and interferences. Finally, the deployed network has to provide enough
bandwidth for supporting a video conference and work for hours without additional
user interaction, i.e., the nodes have to run battery-powered for a couple of hours.
Since no absolute positioning information is available indoors or only with costly
equipment, OViS has to support the deployment process without it.

Our solution is a deployment wizard application (OViS client) that guides the
user throughout the deployment process, and a completely self-configuring WMN.
The OViS client instructs the user to perform all necessary steps, such as connect-
ing a node to the local router by an Ethernet twisted pair cable or switch a node on.
It provides easily comprehensible instructions for the placement of the nodes, such
as ”move further away from the previous node”. For delivering these instructions
to the user, the OViS client interprets the measured RSSI values between the cur-
rent node and the previously deployed one. In order to provide acceptable network
performance and to reduce mutual interference between neighbouring links, OViS
employs multi-channel communication.

6.2.2 Network Setup

A user principally deploys an OViS network in a chain topology between the local
router and the location of the problem just before he/she wants to communicate.
Nevertheless, there are still several options for the network setup of OViS. In the
following three design alternatives are discussed. In all design alternatives, we
assume that the local router provides IP addresses using the dynamic host configu-
ration protocol (DHCP) [68].

The OViS network could be setup by deploying an ad-hoc routing protocol on
all OViS network participants, i.e., mesh nodes and the client (see Figure 6.6). In
our case, OLSR is used as routing protocol. The full OLSR topology can either
be IPv4 or/and IPv6. However, it would require OLSR to be installed on the OViS

131

6.2. OVIS CONCEPTS AND ARCHITECTURE

Figure 6.4: OViS network topology: OLSR (IPv4).

client, representing a major drawback of the approach. Although, OLSR imple-
mentations are existing and even available for mobile platforms, such as Android
and iOS, they cannot be installed without voiding the guarantee of the smart phones
by modifications. Therefore, this approach limits possible platforms for the OViS
client and is completely discarded.

Figure 6.5: OViS network topology: OLSR (IPv6) with IPv4-in-IPv6 tunnel.

The second approach, shown in Figure 6.5, avoids this limitation by introduc-
ing an additional network just for the last node and the OViS client. It is based
on an IPv6-only mesh network with OLSR. In order to stay compatible with IPv4
Internet and applications, an IPv4 network for the OViS client is connected to the
IPv4 network of the local router by an IPv4-in-IPv6 tunnel between the last node
and the gateway node. As soon as IPv6 is widely deployed, the whole topology
could be easily switched to IPv6 by removing tunnelling and IPv4 network parts.
This would simplify the set up of video conference, as all network devices are prop-
erly addressable and directly reachable. Obviously, the approach suffers from the
additional complexity for the tunnelling as long as IPv4 compatibility is required.
Tunnelling includes additional headers to packets. In consequence, the maximum
transmission unit (MTU) on the OViS client has to be manually decreased in order
to avoid additional packet fragmentation, which results in a significantly lowered
network performance.

The finally selected third approach is depicted in Figure 6.4. It structures the
network in three private IPv4 subnets, which are the router network, the WMN

132

6.2. OVIS CONCEPTS AND ARCHITECTURE

Figure 6.6: OViS network topology: Full OLSR (IPv4).

using OLSR for routing, and an access network for the OViS client. The access
network is announced to the mesh nodes and the gateway by the Host and Network
Association (HNA) mechanism of OLSR. The advantage of this approach is its
simplicity. The OViS client can just use common IPv4 communication without
any restrictions and special configuration. Thus, various platforms for the OViS
client can be used. The network topology is completely transparent for the client.
Potential drawbacks, such as special configuration of the last node to properly send
HNA messages, can be completely hidden from the end user. Common video-
conferencing solutions also hide the fact that all traffic from the OViS client has
to pass through two nodes doing network address translation (NAT) and that the
OViS client is not directly addressable from the Internet.

6.2.3 Multi-Channel Communication

The OViS network uses multi-channel communication to reduce the intra-flow in-
terference and to increase the network throughput. The different links in the OViS
should not interfere with each other. Moreover, there might be several existing
networks using 2.4 GHz in the surroundings of the construction site. Using IEEE
802.11a in the 5 GHz ISM band for the WMN, avoids the crowded 2.4 GHz ISM
band with countless interfering nodes and provides more non-interfering/orthogonal
channels for the multi-channel communication. However, as many smart phones
and portable devices only support communication using IEEE 802.11b/g and we
do not want to exclude the usage of these devices, the last link between the last
mesh node and the OViS client still uses communication in the 2.4 GHz band.

During the network deployment, OViS has to automatically set up a multi-
channel network using both frequency bands, 5 GHz and 2.4 GHz. Figure 6.7
explains the basic steps to connect an additional node to the wireless multi-channel
network. The OViS client always uses channel 11 in the 2.4 GHz band to com-
municate with the node N+1 to be deployed in the next step. Node N is already
deployed and running. As the next step, node N+1 is switched on. At startup, node
N+1 sets its two wireless interfaces to channel 1 and 11 of the 2.4 GHz band. The
OViS client can now communicate with node N+1 (see Figure 6.7a). In step 2,
the OViS client reconfigures the node accordingly, i.e., the first interface is config-

133

6.2. OVIS CONCEPTS AND ARCHITECTURE

(a) Step 1

(b) Step 2

(c) Step 3

Figure 6.7: OViS: Deployment and configuration steps for multi-channel communication.

134

6.2. OVIS CONCEPTS AND ARCHITECTURE

ured to use the same channel (here: X) in the 5 GHz as the second interface of the
previously deployed node N via channel 11 (see Figure 6.7b). In step 3, the OViS
client also reconfigures the second interface to a channel (here: Y) in the 5 GHz
band. After this reconfiguration step, the OViS client cannot communicate with
node N+1 anymore. Therefore, step 3 is omitted, if node N+1 is the last node to
be deployed (see Figure 6.7c). The OViS client stores the state information about
the channels used and is, therefore, able to appropriately distribute the channels
during the whole deployment process. The channel assignment in OViS separates
channels in order to avoid adjacent channel interference (ACI) and operates with
the channel sequence 36, 104, 140, 40, 112, 48, 116, 52, 120, 56, 124, 60, 128, 64,
132, 100, 136.

6.2.4 Message Flow between OViS Client and the Mesh Node

Figure 6.8: OViS: Message sequence for the deployment of a mesh node.

The configuration and deployment process requires communication between
the OViS client and the node that is currently deployed. This communication is
always performed using channel 11 in the 2.4 GHz band. Figure 6.8 shows the
message sequence of this communication. After being switched on by the user, a

135

6.3. OVIS MESH NODES

mesh node announces its presence to the OViS client by sending custom HELLO
messages. The OViS client listens to these HELLO messages and then lists the
detected nodes. The user now selects the current node, whose first interface is
reconfigured afterwards. The OViS client node instructs the user to place the node
according to the received RSSI measurements between it and the previous node. If
the node has been deployed, the OViS client also reconfigures the second interface
and instructs the user to take the next node.

It is worth noting that the entire management communication between the OViS
client and the mesh node uses the permanently present IPv6 of ADAM (see Chap-
ter 3). Management tasks are performed using this automatically configured IPv6
network, whereas data traffic uses freely configurable IPv4 or IPv6 networks. This
approach provides the highest flexibility as it can be easily used today as all our
target devices already include IPv4/IPv6 dual stacks. It is fully future-proof as it
also works in a pure IPv6 network.

6.3 OViS Mesh Nodes

The OViS network consists of ordinary WMN nodes. Our prototype uses ALIX
embedded boards (see Section 2.2.1) running our own embedded Linux distribu-
tion ADAM, described in Chapter 3. Besides the operating system tailored for
WMN, OViS profits from ADAM’s management feature and the single network
configuration file per node. For communication, both wireless interfaces of the
nodes are used in combination with the new wireless device driver ath5k. Lithium-
Polymer batteries (12 V, 3200 mAh) are used to power the mesh node and to make
them independent of the electric grid. Figure 6.9 shows our prototype hardware.

Figure 6.9: Prototype of a battery-powered OViS WMN node.

Figure 6.10 shows the main components of OViS on a mesh node. They con-
sist of the OViS pinger, a web server, the OViS signal strength monitor, the OViS

136

6.3. OVIS MESH NODES

Figure 6.10: OViS components on a wireless mesh node.

network configurator, and the OViS network watcher. The OViS pinger is responsi-
ble to announce the presence and the state of the mesh node to the OViS client.
The HELLO messages are sent over UDP to the IPv6 link-local multicast ad-
dress (ff02::1) and port 4379. They include host name and gateway status (yes
or no) besides the source IPv6 address. The OViS client then uses this information
to display the node and initiate communication for the deployment process. The
node is configured through an HTTPS Common Gateway Interface (CGI). Using
this interface, the client can retrieve the current RSSI values from the OViS sig-
nal strength monitor or remotely reconfigure the node. On request of the client,
the OViS signal strength monitor delivers the current RSSI value, retrieved by the
Linux standard tool iw. For reconfiguration, several commands are supported. The
sequence pass=kji9dkk, iface=wlan0, freq=5180, essid=ovismesh reconfigures the
first wireless interface of the node to use the frequency 5.180 GHz and to set the
ESSID to one used for the mesh network. As only authorised clients should access
the remote network configuration, an authentication token has to be delivered with
every call. By using a CGI script for the implementation of the management com-
munication, we profit from the socket management features and the traffic encryp-
tion of the existing web server. This significantly reduces the development effort.
As CGI scripts are running with the unprivileged permissions of the web server,
we cannot directly perform configuration actions. The OViS network configurator,
therefore, only changes the ADAM network configuration file and cannot directly
reconfigure the network interfaces. In order to immediately apply the modified net-
work configuration file, we employ a new system service (OViS network watcher)
that uses the new Linux file monitoring feature inotify to be notified in case of

137

6.4. OVIS DEPLOYMENT APPLICATIONS

file modifications. If the file has changed, the OViS network watcher restarts the
network service, which then applies the changes.

6.4 OViS Deployment Applications

The OViS client provides the interface between the user and OViS. It consists of
two independent parts, the deployment wizard, and the video conferencing appli-
cation. First, the OViS client has to guide the user through the entire deployment
process. All technical details of the deployment have to be hidden from the user.
The OViS client should only provide comprehensible instructions that any arbitrary
person can follow in order to quickly deploy an OViS network and profit from it.

Figure 6.11: OViS Support Process: Deployment of a temporary communication infras-
tructure for on-site video conferencing by an inexperienced user.

Figure 6.11 illustrates the complete deployment process from the user’s point
of view. The user takes the bag with all the OViS components and first goes to
the location of the local router, e.g., the on-site office in one of the construction
containers. He/she takes out the OViS client, switches it on, and starts the OViS
deployment application, which then guides the user throughout the deployment
process. The user is first instructed to take the Ethernet cable and one of the nodes
from the bag, to connect the node with the cable to the local router, and then to
switch the node on. If the node works correctly and has network connectivity, the
OViS client instructs the user to deploy it as a gateway. He/she is then instructed
to unbag the next node, switch it on, and move with it towards the target location.

OViS now constantly monitors the RSSI values of the link to the previous node
and provide feedback to the user. Therefore, the OViS client queries the current

138

6.4. OVIS DEPLOYMENT APPLICATIONS

RSSI value every second. If the RSSI value is too high, too many nodes might be
required to reach the target location. The user is then instructed to proceed into the
direction of the target. If the RSSI value is becoming too low, no constant network
connection can be established. The user is then instructed to move back towards
the previous node. According to our evaluations in Section 6.5, a reasonable RSSI
value is between -50 and -70dBm for the used hardware. If the RSSI is in this
range, the user is instructed to deploy the node and to take the next node. As soon
as he/she has reached the target location, he/she stops the deployment and then
starts the video conferencing system.

We developed OViS deployment applications for different software and hard-
ware platforms. They include a command-line client, a personal computer (PC)
client for Linux, Mac OS X and Windows operating systems, a full-screen kiosk
application for an Ultra Mobile PC (UMPC), as well as smart phone applications
for Android [84] and iOS [9] devices. Table 6.1 provides an overview on all devel-
oped OViS clients.

Supported OS Programming
Language

GUI framework

Command-line Linux, Mac OS
X, Windows

Python -

PC client Linux, Mac OS
X, Windows

Python wxWidgets

UMPC client Linux Python Tk/TkInter
Android client Android Java Android
OViS App iOS Objective C iOS

Table 6.1: Available OViS client applications.

The command-line client is mainly used for system tests (see Figure 6.12a).
The PC client application for standard desktop and mobile computers has been
written using the Python programming language and the cross-platform GUI li-
brary wxWidgets [161, 162]. It runs on Linux, Mac OS X and Windows oper-
ating systems and provides the operating system’s native look and feel (see Fig-
ure 6.12b).

For our target scenario, the construction site, the command-line and the PC
client are not suitable. An integrated appliance with special hardware is required.
Therefore, we developed a prototype using an Asus R2H Ultra Mobile PC (UMPC),
a mobile computer with a touch screen (800 x 480 pixels). It contains a 900 MHz
Intel Celeron CPU, 1.2 GB RAM and a wireless network interface and runs a Linux
operating system. The UMPC client is developed with Python programming lan-
guage and the the GUI library Tk [58, 141]. In order to provide a smooth user
experience of a highly integrated appliance, the UMPC automatically logs a spe-
cific user in and starts the OViS application. After the successful deployment, the
user can directly start the video conference (e.g., Skype) from the application. Fig-

139

6.4. OVIS DEPLOYMENT APPLICATIONS

(a) OViS command-line client

(b) Mac OS X OViS client

Figure 6.12: Command-line and graphical OViS clients for personl computers.

ure 6.13 shows the UMPC full-screen kiosk application. It guides the user through
the deployment process as described earlier. Besides textual instructions, it uses a
graphical feedback for the node placement. If the RSSI value is around the ideal
value of -60 dBm (±10 dBm), two green arrows indicate that the node should be
placed here. If RSSI value is between ±10 dBm and ±20 dBm of the ideal value,
yellow arrows indicate if the user have to move either closer or further away from
the previous node. Red arrows are used if the value varies more than ±20 dBm.
Additionally, an acoustic feedback has been introduced such that the user does not
need to look constantly on the screen. The repetition speed of the beeps maps to
the colours of the graphical representation, i.e., no beeps = green, slow beeps =
yellow, fast beeps = red. The pitch of the acoustic beep indicates the direction.
Beeps with low pitch instructs the user to move further away, whereas beeps with
high pitch instruct the user to move closer to the previous node.

140

6.4. OVIS DEPLOYMENT APPLICATIONS

Figure 6.13: OViS full-screen kiosk application optimised for the Asus R2H UMPC.

141

6.4. OVIS DEPLOYMENT APPLICATIONS

Figure 6.14: OViS deployment process guided by an Android application (Part I).

142

6.4. OVIS DEPLOYMENT APPLICATIONS

Figure 6.15: OViS deployment process guided by an Android application (Part II).

143

6.4. OVIS DEPLOYMENT APPLICATIONS

Figure 6.16: OViS deployment application for iOS (running on iPhone).

144

6.5. EVALUATION

Using the heavy UMPC is still not the best solution; therefore, we implemented
OViS clients for the smart phones based on the two major platforms Android and
iOS. Android is a Linux based operating system developed by Google. It runs
on smart phones from different vendors. Apple’s iOS is the operating system of
the widely spread iPhones and iPads. Although, there are some problems, e.g.,
lacking ad-hoc networking support of the used Android version, the smart phone
applications represent the best user experience of OViS. As the Android phone used
for development does not have a front-facing video camera, the current Android
application only provides a SIP based audio communication and the exchange of
static pictures. Screenshots are shown in Figures 6.14 and 6.15. In order to support
all currently mobile devices of Apple, we developed a universal application that
runs on iPod touch, iPhone and iPad. The GUI is adapted to the capabilities of the
devices (see Figures 6.16 and 6.17). For video conferencing, existing applications,
such as Skype or Apple’s Face-time, can be used.

Figure 6.17: OViS deployment application for iOS (running on iPad).

6.5 Evaluation

The evaluation of OViS compromises two parts: the determination of RSSI thresh-
olds and the actual performance evaluation.

145

6.5. EVALUATION

6.5.1 Determination of RSSI Thresholds

 0

 5

 10

 15

 20

 25

 30

-80.0 -70.0 -60.0 -50.0 -40.0 -30.0

Th
ro

ug
hp

ut
 [M

bp
s]

RSSI [dBm]

Auto rate
Fixed rate (54 Mbps)

Figure 6.18: Achievable single hop throughput in relation with the received signal strength
indicator (RSSI).

Before evaluating the performance of OViS, we have to determine reasonable
RSSI threshold values to deploy the mesh nodes. It is a trade-off between the mini-
mum number of nodes to bridge a distance and required network bandwidth to sup-
port a high quality video conference. Therefore, we evaluated the achieveable TCP
throughput versus the RSSI values over a single hop using NetPIPE [163, 164].
Figure 6.18 shows the measured maximum achievable TCP throughput in relation
to RSSI values, when either using automatic data rate control or the fixed data rate
of 54 Mbps. With the used hardware and automatic data rate control, a connection
can be established if the RSSI value is at least -85 dBm, although the connection
is very unstable. Stable connections can be established if the RSSI value is higher
than -80 dBm resulting in a network throughput higher than 7 Mbps. The maxi-
mum throughput significantly augments by increasing RSSI values, e.g., 16 Mbps
for -70 dBm and 22 Mbps for -60 dBm. The maximum throughput is reached at
an RSSI value of -60 dBm, i.e., higher RSSI values do not result in any improve-
ments. When using a fixed data rate of 54 Mbps instead of the automatic data rate
control, the throughput is increased from 16 Mbps to 19 Mbps for an RSSI value
of -70 dBm. However, for values below -70 dBm, connections are unstable. There-
fore, we selected the automatic data rate control mechanism due to the increased
stable operation domain (up to -80 dBm). We have set the target RSSI threshold
for the deployment of an OViS node to -60 dBm (±10 dBm). The tolerance range
has been defined to avoid contradicting instructions to move back and forth due
to RSSI fluctuations resulting from the user moving in walking pace. The target
RSSI value of -60 dBm includes a tolerance margin and ensures stable network
operation even in case of temporary varying interfence conditions. The deployed
network then sustains video conference at a decent quality in any circumstance.

146

6.5. EVALUATION

Therefore, we configured the OViS clients to check the RSSI every second and
to instruct the user to deploy the mesh node if two consecutive RSSI values of -
60 dBm (±10 dBm) are measured on the link to the previous node. As a node is
usually carried at around 1 m above ground and then perhaps deployed directly on
the ground, the actual RSSI after the deployment might be worse.

6.5.2 OViS Performance Evaluation

After a successful determination of reasonable RSSI thresholds for the OViS de-
ployment, we started our evaluation of OViS by verifying its usability and per-
formance in a real world situation. Figure 6.19 depicts the scenario for the test
deployment. A temporary network consisting of four mesh nodes over three floors
is deployed. One notebook is deployed next to the first node on the top floor. The
three other nodes are then either placed ”randomly” by an inexperienced user or
deployed according to the instructions of the OViS deployment wizard. The TCP
throughput was measured between the two notebooks using NetPIPE [163, 164].

Figure 6.19: OviS deployment test scenario.

Figure 6.20 shows the TCP throughput measured on the network deployed with
and without using the instructions of the OViS client. In addition, it shows the
results of a manually optimised deployment. The values represent the average net-
work throughput and the standard deviation. The OViS network reaches a through-
put of 3-3.5 Mbps, which is sufficient for a video-conferencing system. In order to
compare the performance of the OViS deployment with the performance of a non-
guided (random) deployment, a non-expert user was instructed to just deploy three
intermediate nodes at his discretion. This deployment only offered a throughput of
1.8 Mbps, the half throughput of the OViS network. Depending on the deployment
choice of the user, the throughput could be either lower or higher and reaching the
performance of OViS. The user could even select an insufficient number of nodes
resulting in a non-working network. For example, network connectivity could not
be reached with only one intermediate node in our scenario whereas two interme-
diate nodes would be sufficient. In order to classify the effectiveness of OViS,
we manually optimised each link of the network deployed by OViS. By realigning

147

6.5. EVALUATION

the antennas and moving the nodes a few centimetres, we improved the RSSI val-
ues of all links still covering the same distance. This optimisation took more than
15 min and was only valid at this point in time. Therefore, it only serves as optimal
value. Figure 6.21 shows the improved RSSI values compared with the original
ones, measured with the Linux standard tool iw. The values represent the average
and the standard deviation for ten measurements. Our fine-tuning improves the
RSSI values by about 10 dBm on the vertical links. This is mainly due to antenna
adjustments. The used antennas have a higher gain in the horizontal plane. After
the manual adjustments, the throughput was measured again and a significant im-
provement of the throughput to values of 6-6.5 Mbps was observed. A proposal
for getting better results when using OViS is to extend our nodes with two addi-
tional antennas. Using one vertically aligned antenna and one horizontally aligned
antenna per wireless interface and enabling antenna diversity support, OViS could
provide better results on the vertical distances.

 0

 1

 2

 3

 4

 5

 6

 7

 8

Non-expert OViS Optimised

Th
ro

ug
hp

ut
 [M

bp
s]

Scenario

Figure 6.20: Throughput of different deployments: non-guided deployment, OViS deploy-
ment, and manually optimised.

In summary, the results show that OViS can guide an inexperienced user in the
deployment of a temporary network that meets the requirements of a reliable video
conference. It provides a significantly better result than a non-guided deployment
and guarantees network connectivity. The average network throughput is more
than sufficient for the use case. However, the measurements after the manual fine-
tuning show that the OViS deployment is not perfect, but this is not necessary
to meet the communication requirements. An improvement for the throughput of
the OViS deployment may be achieved by using multiple antennas with antenna
diversity. The currently used antennas are slightly directed in the horizontal plane,
an additional vertically directed antenna might be beneficial.

148

6.5. EVALUATION

-80

-70

-60

-50

-40

-30

-20

-10

 0

Node01-02 Node02-03 Node03-04 Node04-Laptop

R
SS

I [
dB

m
]

OViS network
Manual optimisation

Figure 6.21: Signal strengths achieved after deployment with OViS and after manual op-
timisation with relocating the nodes and aligning the antennas.

6.5.3 Multi-Hop Throughput

Although the single hop measurements showed a maximum throughput of 22 Mbps
in Figure 6.18, the optimised multi-hop deployment only offered a throughput of
6-6.5 Mbps. Therefore, we evaluated the throughput with an increased hop count.
The test scenario was as follows: The network first consisted of two nodes com-
municating with each other over a wireless link (IEEE 802.11a). These two nodes
were connected by Ethernet to the notebooks running NetPIPE. Intermediate nodes
were then added to the setup, forming a chain topology by using the channels 36
(5180 MHz), 104 (5520 MHz) and 140 (5700 MHz) for the individual links. Fig-
ure 6.22 shows the measured average throughput values as well as the standard
deviations for a fixed rate of 54 Mbps and automatic rate control. A single link
offers a throughput of 21 Mbps respectively 21.5 Mbps, as already measured in
Figure 6.18. Although orthogonal channels were used, the throughput is drasti-
cally decreased for two (6.4 Mbps respectively 12 Mbps) and three hops (5.6 Mbps
respectively 7.5 Mbps). The measurements are inline with Figure 6.20. The multi-
channel communication did not provide the expected multi-hop throughput. There-
fore, we quantified the effect of multi-channel communication in the next experi-
ment.

6.5.4 Multi-Channel Performance

The following evaluation quantifies the benefit of using multi-channel communi-
cation in OViS. The test scenario consisted of a network with three nodes placed
in a chain topology. All links provided a signal quality of at least -50 dBm. First,
all nodes were communicating on the same channel 36 (5180 MHz). Second, the
two links used the channels 36 (5180 MHz) and 104 (5520 MHz). Figure 6.23
depicts the received results. In the used scenario, multi-channel communication

149

6.6. CONCLUSIONS

 0

 5

 10

 15

 20

 25

 30

 1 2 3

Th
ro

ug
hp

ut
 [M

bp
s]

Number of hops

Auto rate
Fixed rate (54 Mbps)

Figure 6.22: Throughput depending on the number of hops.

improved the throughput by 1 Mbps due to the reduced interference between the
two links. Multi-channel communication is, therefore, beneficial, although it did
not delivered the expected benefits. Possible reasons are adjacent channel inter-
ference [47, 49], board crosstalk and radio leakage of the wireless cards [131], or
insufficient physical separation of two antennas [7].

 0

 2

 4

 6

 8

 10

 12

Single channel Multi-channel

Th
ro

ug
hp

ut
 [M

bp
s]

Figure 6.23: Throughput in a two hop scenario using single and multi-channel communi-
cation.

6.6 Conclusions

In this chapter, we presented OViS as a support framework for an ad-hoc de-
ployment of WMNs. OViS targets the use case of a temporary communication

150

6.6. CONCLUSIONS

infrastructure for an audio/video conferencing system on a construction site to
reduce costs. By using the audio/video conferencing system, an electrical engi-
neer can support multiple construction sites more efficiently. Unfortunately, most
problems usually occur at the switching units in the basements of the building in
constructions without any network coverage by wired or cellular networks. OViS
provides network connectivity by deploying a temporary battery-powered WMN,
which propagates the Internet access from the on-site office to the basements. Em-
ploying a wireless network, OViS does not introduce additional safety risks, such
as tripwires. However, the deployment of a WMN is usually a task for a network
expert. The contribution of OViS is to enable an inexperienced user to easily and
quickly deploy the WMN. OViS achieves this by automatically configuring the
network and by a deployment wizard (application) that guides the user with easily
understandable instructions to place the WMN nodes in appropriate distances.

We developed OViS clients for the following platforms:

• Personal computers with Linux, Mac OS X or Windows operating systems

• OViS integrated appliance based on an UMPC with a touchscreen

• Smart phones and mobile devices with Android

• iOS based devices such as iPod touch, iPhone and iPad

Using one of these OViS clients, an inexperienced user can quickly deploy
a working communication infrastructure for an audio/video conferencing system,
which has been verified in our evaluation. A network deployed according to the
instructions of the OViS client is always connected and provides a throughput of
3-4 Mbps, which is more than sufficient for the use case.

The implementation of OViS was simplified by the ADAM build system and
the ADAM management framework. OViS run the embedded Linux distribution
created with the ADAM build system on its WMN nodes. Due to the modularity of
the build system, the newly developed software for the OViS nodes, e.g., the OViS
pinger, as well as all necessary extensions of existing software could be easily
integrated. The entire process of building the firmware for the OViS has been
automated by employing the ADAM build system. In addition, ADAM’s concept
of one single network configuration file per node simplified the re-configuration
process used in OViS.

Our measurements showed that used automatic rate control mechanism pro-
vides a more reliable network connection, but a lower throughput than just fixing
the data rate to the maximum. A better data rate control mechanism would be
beneficial. The multi-hop performance needs to be further investigated. Instead of
using a fixed channel allocation, OViS could make use of a multi-channel MAC
protocol. The OViS network could then automatically adapt the used communi-
cation channels to the currently received interference. Extending the OViS with a
third wireless interface dedicated for the client access would be beneficial to allow

151

6.6. CONCLUSIONS

adding nodes after the first deployment and to cover areas instead of just bridging
a distance.

In the next chapter, we further automatise the network deployment and investi-
gate a completely autonomous network deployment using flying robots.

152

Chapter 7

Autonomous Deployment of a
Wireless Mesh Network using
Unmanned Aerial Vehicles

Whereas a semi-automatic (guided) deployment of a temporary WMN by non-
expert users was described in Chapter 6, this chapter introduces a framework for
completely autonomous deployment of WMNs [87, 129]. The framework, termed
UAVNet, focuses on a deployment of a WMN using small Unmanned Aerial Ve-
hicles (UAVs). There are several application scenarios where a deployment of a
communication network is beneficial. A major application of UAVNet is to re-
place destroyed or missing communication infrastructure, e.g., in emergency or
disaster recovery scenarios. UAVNet enables connectivity between end systems of
rescuers using one or more flying mesh nodes. Extensions to provide network cov-
erage over a pre-defined area are possible. Other applications are the support for
environmental monitoring or data aggregation in remote wireless sensor networks
for agricultural purposes.

UAVNet includes a concept and a prototype implementation of an autonomously
deployable temporary WMN consisting of WMN nodes carried by small quadro-
copter UAVs. The flight control electronics of these UAVs is connected to the
WMN nodes over a serial line (see Figure 7.4). Hence, a custom UAV con-
troller service on the WMN node can indirectly control the flight of the UAV by
adding/removing navigation points. The prototype of UAVNet can autonomously
interconnect two communication peers (clients) by establishing an aerial WMN
between them.

The structure of this chapter is as follows: Section 7.1 discusses the motivation
for the development of UAVNet. After the presentation of the considered scenar-
ios in Section 7.2, the components of UAVNet and the communication protocol
between these components are shown in Section 7.3 and Section 7.4 respectively.
Section 7.5 presents our remote control application for iPhone/iPad. In Section 7.6,
we provide an evaluation of our prototype. Section 7.7 concludes this chapter.

153

7.1. INTRODUCTION

7.1 Introduction

In first response and disaster recovery scenarios, e.g., after avalanches, flooding,
or earthquakes, communication infrastructures are often not available as they have
not been previously deployed in the affected area or have been destroyed during
such an event. As efficient distribution of information among the rescuers and
the tactical operation centre is crucial, a temporary communication infrastructure
is set up in the first phase of a rescue operation. This temporary communication
network enables multimedia communication between the rescuers and the tactical
operation centre. Multimedia data consisting of pictures and videos may help in
the assessment of the situation and finally in delivering a common situation report
that facilitates operation control.

A WMN can provide such a temporary broadband communication infrastruc-
ture for emergency and disaster recovery scenarios. However, as it has to be de-
ployed immediately after the start of the rescue operation, the deployment should
be easy, requiring only limited man power. The network should be constantly
adaptable to the communication needs. An ideal solution is a fully autonomous
network deployment without manual interaction.

There are two options for the autonomous deployment of WMN nodes. The
nodes can be carried by either land-robots or UAVs (flying robots). As traversing
terrain following a natural disaster can be very challenging, land-robots face several
mechanical problems, e.g., climbing an obstacle. Some sites might even not be
reachable by a land-robot.

UAVs offer a solution to avoid these mechanical challenges and provide bet-
ter site accessibility. In addition, they could provide better network coverage (air
relays) than land robots. As first response scenarios are usually very dynamic, a
flying WMN offers better adaptability to the current communication needs of the
rescuers. The UAVs can further deliver aerial images of the event. Therefore, we
selected UAVs as platform for autonomous deployment of temporary WMNs for
emergency operations, called UAVNet.

A drawback of UAVs is their continuous energy consumption needed to stay
airborne in contrast to land-robots, which can go to sleep as soon as they have
reached its final destination. A complete solution, therefore, requires strategies for
autonomous replacement and recharging of the UAVs.

UAVNet can provide broadband network connectivity by a flying WMN. It
combines existing WMN technology with an existing quadrocopter UAV plat-
form to provide an ad-hoc communication infrastructure, which is established au-
tonomously and can dynamically adapts to the current communication needs. Thus,
each UAV carries a small WMN node, which is interconnected to its flight elec-
tronics in order to adapt the flight according to the deployment scenario, i.e., a
controller component on the WMN node can adapt the current flight of the UAV.
Multiple communicating UAVs then form the flying WMN, such as the swarm
shown in Figure 7.1. The WMN is automatically established using IEEE 802.11s
(see Section 2.1.1).

154

7.2. SCENARIO

Figure 7.1: Flying UAV swarm carrying a temporary WMN.

7.2 Scenario

The current version of UAVNet is able to establish ad-hoc WMNs for one specific
scenario, namely the airborne relay scenario. In this scenario, a temporary WMN
is established to interconnect two distant clients. The network consists of one or
multiple flying communication relays (see Figure 7.2) and a remote control client
providing a user-friendly control interface to initialise and monitor the network
deployment.

Figure 7.2: Multi-Hop Airborne Relay Scenario.

155

7.2. SCENARIO

7.2.1 Search Mode

We assume that the location of at least one client is known when deploying a tem-
porary WMN with UAVNet. In order to find the second client, either the user pro-
vides UAVNet the direction towards the approximate location of the second client
or he/she instructs UAVNet to perform an autonomous search. In the first case, i.e.,
given an approximate location, the UAV first flies into the specified direction until
it discovers the second client by receiving a position update. The second client
is identified by its MAC address. In case that multiple clients are present, client
identification is assisted by a predefined list. In the second case, when using au-
tonomous search mode, the UAV flies on a spiral track around the first client in
order to find the second client.

7.2.2 Positioning of UAVs

UAVNet includes two positioning options for placing the UAVs between the dis-
tant clients. It can position them using either GPS coordinates of the clients or
signal strength measurements in addition to GPS coordinates. If only GPS coor-
dinates of the clients are used, the UAVs are placed evenly on the connection line
between the two clients. An obvious drawback of this positioning approach is that
it does not consider the variation of client-specific communication ranges nor any
environmental interference resulting in varying connection quality.

An improved positioning approach is to place the UAVs according to the re-
ceived signal strengths. This positioning process is explained for a single airborne
relay in Section 7.2.3 and for a multi-hop airborne relay in Section 7.2.4.

7.2.3 Single Airborne Relay

In the single airborne relay scenario, the UAV is first placed on the connection
line equidistant between the clients. Then it measures the signal strengths from
both clients and flies towards the client with the lower signal strength. During its
repositioning, the UAV constantly monitors the received signal strengths from both
clients. The positioning process completes when the signal strengths to both clients
are equal. A threshold is used to avoid permanent repositioning.

Figure 7.3 shows the process of connecting two distant clients by a single air-
borne wireless relay. The two clients (client 1 and client 2) are running but out of
communication range of each other. The deployment process of UAVNet consists
of seven numbered steps:

1. The deployment of UAVNet begins with the first UAV. When being switched
on, a UAV permanently announces its presence.

2. A remote control client, listening to these announcements, discovers the
UAV. The user selects the UAV and the appropriate deployment scenario
(here: single airborne relay) on the remote control client, which then in-
structs the UAV to start the network deployment.

156

7.2. SCENARIO

Figure 7.3: Process of connecting two distant clients by one single flying WMN node
(airborne relay).

3. The co-located client 1 also receives the presence announcements of the UAV
and replies by providing its own geographic position to the UAV.

4. The UAV now searches for the other client either by flying into a predefined
direction or by an autonomous search.

5. As soon as the UAV comes into communication range of client 2, its pres-
ence announcements trigger the transmission of the geographical position of
client 2.

6. The UAV now positions itself in-between the two clients and then flies to-
wards the client with the lower signal strength until the signal strengths to
both clients are equal.

7. The two clients can now communicate using the established airborne relay.

7.2.4 Multi-Hop Airborne Relay

In case of a multi-hop airborne relay scenario, the network deployment employs
first the same steps as the single airborne relay (steps 1-5) to determine the position
of client 2. The only difference is that the user has to select the option multi-
hop airborne relay on the remote control client at the initialisation of the network
deployment. After having completed the first five steps of the single airborne relay
deployment, the deployment of multi-hop airborne continues with steps 6 - 14:

6. After discovery of client 2, UAV 1 positions itself in the middle of the con-
nection line between the two clients.

7. Afterwards, it flies towards client 1 until the measured received signal strength
from the first client reaches a pre-defined value.

157

7.3. SYSTEM COMPONENTS

8. UAV 1 announces that it has reached its final position by notifications to the
remote control client.

9. UAV N+1 is switched on and receives the positions of both clients and all
previously deployed UAVs from the remote control client.

10. UAV N+1 is first positioned 10 m away of UAV N into the direction the
second client. As it knows all positions of the previously deployed UAVs,
collision avoidance is simple as UAV N+1 can simply fly around the already
deployed UAVs.

11. UAV N+1 then continues to fly into the direction of the second client and
constantly monitors the received signal strength to UAV N. If this received
signal strength matches a pre-defined value, UAV N+1 stays at its current
position.

12. UAV N+1 announces its arrival at the final destination to the remote control
client.

13. Steps 9-12 are repeated until the currently deployed UAV has a sufficient
connection to the second client, i.e., the received signal strength matches a
pre-defined threshold.

14. The two clients can now communicate using the established multi-hop air-
borne relay.

Table 7.1 summarises the currently supported deployment scenarios and op-
tions, which a user can selected on the remote control client. In addition to the
eight possible combinations of the airborne relay scenario, a monitoring option
offers monitoring of the current network deployment by multiple remote clients.

Search mode Positioning
Single airborne relay directional or

autonomous
geographically or signal
strength

Multi-hop airborne
relay

directional or
autonomous

geographically or signal
strength

Monitoring - -

Table 7.1: UAVNet deployment scenarios and options.

7.3 System Components

Figure 7.4 presents the system components of UAVNet belonging to the commu-
nication UAVs and to the remote control units. A communication UAV consists of
the UAV electronics and a WMN node. The UAV electronics contain all hardware

158

7.3. SYSTEM COMPONENTS

Figure 7.4: System components of UAVNet: WMN node with UAV controller and IEEE
802.11s mesh access point (MAP), UAV electronics and UAV client.

components and software necessary to control the flight of the UAV. The attached
mesh node can monitor and control the flight of the UAV using a serial connection
to the Navigation Control. As a main logical component, UAVNet introduces the
UAV Controller, which runs on the mesh node. Its purpose is to control the flight
of the UAV towards a specific location, according to the current scenario. It is,
therefore, responsible for all communication between the mesh node and the UAV
electronics. By implementing the serial protocol of the used UAV platform [36],
the UAV Controller can control the flight path of the UAV by adding and remov-
ing navigation points in the flight list of the Navigation Control. Thus, the UAV
Controller can instruct the UAV to fly to a specific location. Moreover, the UAV
Controller processes the periodic announcements of the Navigation Control, con-
taining important flight parameters such as the current GPS position, height, flight
direction, speed and battery level. All functionality for communicating with the
UAV electronics is encapsulated in the library libuavint.

For flight coordination, scenario control and monitoring, the UAV Controller

159

7.3. SYSTEM COMPONENTS

has to communicate with other UAVs and the remote control clients. For this,
it uses the WMN established by IEEE 802.11s (see Section 2.1.1). The entire
functionality to handle the external control traffic is encapsulated in the library
libuavext, which is available for different UNIX based operating systems, e.g.,
Linux, MacOSX and FreeBSD. The different control messages are described in
detail in Section 7.4.1.

The remote control client, in our case an iPhone/iPad, uses the library libuavext
to control and monitor the UAVNet WMN using IEEE 802.11s connections. It
offers the user a convenient interface to select the deployment scenario of UAVNet.
Afterwards, it provides monitoring capabilities by subscribing to the notification
service running on the WMN nodes.

7.3.1 Communication Types

Figure 7.5: Communication types in UAVNet: Serial to interconnect WMN node and
UAV, IEEE 802.11s for data and control traffic.

Figure 7.5 depicts all employed communication types in UAVNet. Serial com-
munication is used to interconnect the on-board WMN nodes to the flight electron-
ics. IEEE 802.11s is used for the control traffic between the individual UAVs with
attached WMN nodes, and between the WMN nodes and remote control client, i.e.,
for exchanging scenario control and notification messages. The established IEEE
802.11s WMN is used for the data communication between the network clients.

160

7.3. SYSTEM COMPONENTS

7.3.2 Prototype

For our prototype, we use small quadrocopter UAVs with on-board WMN nodes.
The quadrocopters are based on the Mikrokopter platform (see Section 2.6). The
quadrocopters run the standard unmodified firmware from Mikrokopter commu-
nity project. In order to implement the UAVNet prototype, it has not been neces-
sary to adapt the firmware of the UAV. The complete UAVNet software has been
implemented on the on-board WMN node, which is an OpenMesh OM1P node
(see Section 2.2.1). Figure 7.6 shows the flight electronics and the on-board WMN
node. The serial port of the OM1P is connected to the debug port of the Navigation
Control of the flight electronics through a logic level converter (3.3 V to 5 V).

Figure 7.6: UAVNet: Flight electronics connected by a serial connection to the WMN
node.

The WMN nodes run our own embedded Linux distribution ADAM as op-
erating system (see Chapter 3). The ADAM build system is an ideal fit for the
development process of the UAVNet software by providing an easily understand-
able and usable cross-compilation build system. It offers the same software on
all supported hardware platforms, including the necessary networking components
for UAVNet and full IPv4/IPv6 support. Routing is performed on layer 2 by the
IEEE 802.11s (see Section 2.1.1). The recent Linux kernel versions in ADAM
support the up-coming standard IEEE 802.11s by the open source implementation
open80211s [137]. The support for the special wireless chip set of the OM1P node
has to be added to the ath5k wireless driver [69].

Figure 7.7 shows a flying UAV with an on-board WMN node. Our first pro-

161

7.4. COMMUNICATION PROTOCOL

totype of UAVNet consists of three of these UAVs, two notebooks as clients, and
an iPhone or iPad as remote control client, which is described in more detail in
Section 7.5.

Figure 7.7: Flying quadrocopter UAV carrying a WMN node.

7.4 Communication Protocol

UAVNet requires a communication protocol to coordinate the network deployment
between all network participants, such as UAVs, remote control clients, and WMN
clients. For example, a UAV has to announce its presence, the remote control client
has to send commands to a UAV, and the clients have to submit their positions.

7.4.1 Protocol Messages

Figure 7.8 shows the UAVNet protocol messages that are exchanged between UAVs,
clients and the remote control application. There are eight message types of UAVNet
necessary to coordinate the autonomous network deployment: HELLO, SCENARIO,
OWN POSITION, ACK, ABORT, DIRECTION, UN-/SUBSCRIBE, and NOTIFICA-
TION.

• HELLO messages are periodically broadcasted by a UAV to announce its
presence. They contain the host name of the UAV (e.g., uav01.unibe.ch)
and the current state including the running scenario (e.g., airborne relay),
positioning mode (geographic coordinates or signal strength), search mode

162

7.4. COMMUNICATION PROTOCOL

Figure 7.8: UAVNet: Protocol messages.

(direction or search spiral) and, if available, MAC addresses and GPS posi-
tions of the clients.

• A SCENARIO control message is transmitted by the remote control client
to a UAV in order to start the network deployment. It contains the selected
scenario, the selected positioning mode, the selected search mode, and addi-
tional options, such as a list of the client MAC addresses.

• An OWN POSITION message contains the geographic coordinates of a net-
work client.

• An ACK message provides feedback on the correct application of a control
message, e.g., a SCENARIO message.

• An ABORT message is used to abort the network deployment.

• A SUBSCRIBE message contains the IPv4/IPv6 address of a subscriber for
the notification service of a UAV.

• A NOTIFICATION message is periodically sent to all subscribers of the no-
tification service on a UAV. It includes the current position, height, battery
level, heading, speed, host name, and current state of the UAV. Notification
messages are routed within the WMN whereas HELLO messages are link-
local.

The UAVNet messages are transmitted either over TCP or UDP. The reliable
transport service of TCP is used for all control messages, namely SCENARIO,
OWN POSITION, ACK, ABORT, DIRECTION, and SUBSCRIBE messages, as the
loss of one of these message would affect the control flow. The UAV is listening
for these messages on port 7654. The HELLO messages are broadcasted and thus
use UDP to port 7655. NOTIFICATION messages are sent as unicast messages
also using UDP but on port 7656.

163

7.4. COMMUNICATION PROTOCOL

7.4.2 Message Flow

Figure 7.9: Message flow for a scenario with and without known direction towards the
location of the second client (manual and autonomous search).

In the following, the three message flows of the UAVNet communication dur-
ing the network deployment are explained in detail. There are the two message
flows for the deployment scenarios with and without a given direction to the sec-
ond client and the message flow for the notification service.

Figure 7.9 depicts the combined message flow of the two deployment scenarios,
a) with the manual search and b) with the autonomous search mode. When using
option a), the direction towards the location of the second client is known and
can, therefore, be delivered by the remote control client. The user switches on the
remote control client. Then he/she switches on the first UAV, which immediately
announces its presence by the periodic broadcast of HELLO messages. The remote
control client discovers the UAV allowing the user to configure the deployment
scenario, e.g., the single hop airborne relay. The user determines the direction

164

7.4. COMMUNICATION PROTOCOL

of the approximate location of the second client and selects either positioning by
geographic client locations or by signal strength measurements. The remote control
client then starts the deployment process by sending a SCENARIO control message
to the UAV.

As option a) with the manual search has been selected, the UAV requests the
direction from the remote client, which delivers it by transmitting a DIRECTION
message. The UAV acknowledges the correct reception of the DIRECTION mes-
sage. Concurrently, the co-located client 1 replies to the HELLO messages by
sending its own position. If the UAV has received the position of the first client,
it sends an acknowledgement and then starts its flight into the specified direction
towards client 2. If the UAV is within the communication range and the state in the
HELLO message requests a position of a client, client 2 replies to a HELLO mes-
sage by sending its own position. Having the positions of both clients, the UAV
can now fly to its final position either by using geographic positioning or by signal
strength measurements. After establishing the WMN, the two clients are able to
communicate over the airborne relay.

In case of an unknown position of the second client, the message flow with
option b) is used (see Figure 7.9). It is almost the same as in the first scenario, but
without transmitting a DIRECTION message. After having all necessary settings,
the UAV then searches the second client by flying on a spiral track around the first
client. After the discovery of the second client, the message flow is again the same
as in the first scenario.

Figure 7.10: Message flow for subscribing to notification service.

In order to provide monitoring functionality of all UAVs in UAVNet, a remote
control client can subscribe to a notification service on each UAV (see Figure 7.10).
After discovering the UAV, a remote control client sends a SUBSCRIBE message to

165

7.5. REMOTE CONTROL CLIENT

the discovered UAV. The UAV then acknowledges the request and adds the remote
control client to the subscriber list. Henceforth, the UAV sends unicast messages
containing state information to all subscribers.

7.5 Remote Control Client

Figure 7.11: Remote Control Application (iPad): Selection of network deployment sce-
nario.

In order to remotely control the UAVNet prototype, we developed a control
client as an iPhone/iPad application, termed Remote Control App. It offers a con-
venient interface to use the UAVNet system. It is fully aware of the location and
orientation of the iPhone/iPad. By using the GPS receiver of the device, the Remote
Control App shows the current position of the user on an electronic map. This map
is automatically oriented towards the magnetic North by employing the electronic
compass of the device. Moreover, the Remote Control App adjusts its graphical
user interface automatically to the device orientation (horizontal or vertical).

The representation of the electronic map is based on the route-me library [81]
and can work with maps from different sources, e.g., the OpenStreetMap project
[138]. Figure 7.11 shows the map displayed in landscape orientation on an iPad.

The control options for selecting the deployment scenario are shown on the left
side of the electronic map (see Figure 7.11). The deployment options are airborne

166

7.5. REMOTE CONTROL CLIENT

Figure 7.12: Remote Control Application (iPhone): setting the scenario, confirmation,
and monitoring of flying UAVNet.

relay, multi-hop airborne relay, area coverage (as a support for future extensions
of UAVNet), and monitoring. After selecting the appropriate scenario including
search and positioning mode, the user sets up the scenario, selects the UAVs to be
used, and starts the deployment process. Figure 7.12 depicts this process of the
Remote Control App on an iPhone.

Figure 7.13: GUI-Marker representing the current state of a UAV.

After the start of the deployment, the Remote Control App can monitor the
entire UAVNet as it subscribes to the notification service on all UAVs. According
to the received notification messages, the current state of the UAVs is graphically
represented on the electronic map. Figure 7.13 illustrates the indication markers
related to the UAVs characteristics: a blue arrow representing the current speed
(length) and flight direction of the UAV, a red dot showing the exact GPS position,

167

7.6. EVALUATION

and the current altitude relative to the start location.

7.6 Evaluation

In order to evaluate the performance of UAVNet, RTT and TCP/UDP through-
put measurements have been performed. RTT is evaluated by using the standard
ping tool from the iputils package [112]. Our evaluations are based on 1’000 ping
measurements with a payload size of 56 bytes and a measurement interval of 0.1
seconds. The TCP and UDP throughput have been measured with the netperf mea-
surement tool [102] using the TCP STREAM and UDP STREAM tests.

7.6.1 Determination of Optimal Signal Strength Thresholds

 0

 5

 10

 15

 20

-100 -90 -80 -70 -60 -50 -40 -30

TC
P

Th
ro

ug
hp

ut
 [M

bp
s]

Signal Strength [dBm]

Figure 7.14: TCP throughput between two WMN nodes depending on signal strength.

First, in order to find optimal locations (positions) of the UAVs, we need to
establish reasonable thresholds for the signal strength. We, therefore, measured
the TCP and UDP throughput and the RTT between two nodes while the distance
between them was gradually decreased. The OM1P mesh nodes have an IEEE
802.11b/g radio. At the beginning of each measurement, the signal strength was
determined by the Linux standard tool iw. Figure 7.14 depicts the average TCP
throughput values and the corresponding standard deviations (whiskers) of netperf
TCP STREAM tests. For received signal strengths higher than -70 dBm, a TCP
throughput of about 10 Mbps has been reached. For lower signal strength values,
the TCP throughput decreases significantly as more packet retransmissions are re-
quired to recover lost packets. The maximum TCP throughput in Figure 7.14 is
lower than measured in OViS (22 Mbps) as an OM1P is less powerful than an
ALIX node.

168

7.6. EVALUATION

 0

 5

 10

 15

 20

-100 -90 -80 -70 -60 -50 -40 -30

U
D

P
Th

ro
ug

hp
ut

 [M
bp

s]

Signal Strength [dBm]

Sent
Received

Figure 7.15: UDP throughput between two WMN nodes depending on signal strength.

The corresponding results for the UDP throughput, given the same scenario,
are shown in Figure 7.15. For a received signal strength higher than -70 dBm,
an average UDP throughput of 16 - 17.4 Mbps is reached, which is significantly
higher than for TCP as expected. Similar to the TCP throughput measurements,
the average UDP throughput values also significantly decrease for received signal
strength lower than -70 dBm. As UDP has no flow and congestion control, the
reported send rate is higher than the actual receive rate in the UDP STREAM test
of netperf. Thus, some packets are lost.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

-100 -90 -80 -70 -60 -50 -40 -30

R
TT

 [m
s]

Signal Strength [dBm]

Figure 7.16: RTT between two stationary WMN nodes depending on signal strength.

Together with the TCP and UDP throughput, the RTT was also measured. Fig-
ure 7.16 depicts the average RTT values and the standard deviations. For signal
strengths lower than -70 dBm, the values increase as the automatic data rate con-

169

7.6. EVALUATION

trol switches to lower data rates.
Based on the performed measurements and our experiences with OViS, we

selected a signal strength threshold of -60 ± 10 dBm to be used for the positioning
of the UAVs.

7.6.2 Multi-Hop Performance

 0

 2

 4

 6

 8

 10

 12

 14

 16

Th
ro

ug
hp

ut
 [M

bp
s]

1 Hop 2 Hops 3 Hops

TCP
UDP sent

UDP received

Figure 7.17: TCP and UDP throughput over multiple hops.

Second, we used the determined signal strength threshold to evaluate the multi-
hop performance of the proposed flying WMN. We used IEEE 802.11s with the
airtime metric on the OM1P nodes. Four stationary nodes were placed outdoors
in a chain topology using the determined optimal signal strength threshold of -60
± 10 dBm. The TCP and UDP throughput were measured between the first node
(node01) and the other three remaining nodes (node02, node03, node04). The re-
sults in Figure 7.17 represent the average values and the standard deviations. As
our UAVNet prototype uses only one radio and single channel communication, an
expected throughput decrease, due to the channel sharing, is observed. For exam-
ple, the throughput significantly decreases in a two-hop scenario as node02 now has
to forward the packets to node03 using the same radio as for the communication
with node01. Interestingly, there is only a small decrease when communicating
over three hops compared to two hops. The communication on the last link be-
tween node03 and node04 is almost not affected by the communication on the first
link due to the positioning of the nodes.

7.6.3 Effect of Too Far Away Nodes

To show the effect of too far away nodes, we placed two nodes (node01, node03) at
the maximum distance defined by their transmission ranges, i.e., at a signal strength
of about -100 dBm. The nodes were deployed outdoors and remained at the same

170

7.7. CONCLUSIONS

 0

 1

 2

 3

 4

 5

 6
Th

ro
ug

hp
ut

 [M
bp

s]

node01 - node03 node01- node02 - node03

TCP
UDP sent

UDP received

Figure 7.18: TCP and UDP throughput between two distant nodes.

position throughout the experiment. We then measured the TCP and UDP through-
put between these two nodes as well as with an intermediate node (node02) in
between. Figure 7.18 shows a significantly increased throughput in case of an addi-
tional intermediate node. Whereas the direct connection provides a TCP and UDP
throughput of less than 0.3 Mbps, the 2-hop connection provides TCP throughput
of 2.7 Mbps and a UDP throughput of 3.7 Mbps, which is enough for emergency
communication, including video conferencing. The throughput values match the
ones of Figure 7.17.

7.7 Conclusions

In this chapter, we proposed a concept for an autonomous deployment of a tem-
porary flying IEEE 802.11s WMN for emergency and disaster recovery scenarios.
The concept is based on WMN nodes that are carried by small quadrocopter UAVs.
The on-board WMN node is connected to the electronic autopilot of the UAV in
order to enable the autonomous network deployment. Thus, the WMN node can
indirectly control the flight of the UAV by adding/removing navigation points. The
network deployment is coordinated among the flying WMN nodes and the remote
control client over the IEEE 802.11s WMN.

We have proven the feasibility of a flying network by a prototype implementa-
tion based on small quadrocopter UAVs and OpenMesh OM1P mesh nodes, com-
municating over IEEE 802.11s. This prototype autonomously interconnects two
distant clients via one or multiple airborne relays. The network deployment is
initialised depending on the desired scenario using a user-friendly remote control
application running on iPhone/iPad devices. The remote control application further
provides monitoring of the flying WMN.

All further development of the UAVNet prototype can be excellently supported

171

7.7. CONCLUSIONS

by VirtualMesh, our wireless driver-enabled network emulation framework (see
Chapter 4). VirtualMesh offers testing of real UAVNet implementations without
the risk of crashing costly UAVs and in a larger scale than normally possible in a
real testbed. In order to fully support the testing of UAVNet, VirtualMesh has to be
extended to support UAVs in the simulation model and propagating their positions.

There are several possible extensions for our prototype of UAVNet. First, a
replacement and recharging strategy would keep the system working without as-
sistance for several hours or days. UAVs with low battery capacity should auto-
matically leave the formation and fly to a recharge station. The formation adapts
automatically to ensure network connectivity. After recharging, the UAVs can be
reintegrated in UAVNet. Second, a strategy for maximising network coverage of a
specified area can be introduced. The UAVs should autonomously position them-
selves over a user-defined area such that to maximise the network coverage, given
the number of available UAVs. The UAV swarm can further adapt to the current
communication needs by placing more UAVs in areas with more clients than in
sparsely populated areas.

In addition, UAVNet provides a basic prototype for our research project ”Op-
portunistic Routing for Highly Mobile Ad-hoc Networks” (ORMAN) and helps
in developing appropriate topology control algorithms and opportunistic multi-
channel routing protocols for highly mobile networks. Topology control should
guarantee that the UAV swarm always forms an interconnected communication
network. It may be based on the concept of virtual springs taking the inverse RSSI
values as spring forces to adjust the swarm constantly to the new environment. New
opportunistic routing protocols should take advantage of all available data from the
UAV, e.g., position, speed, flight direction, and altitude.

172

Chapter 8

Conclusions and Outlook

Wireless mesh networks are a key technology to achieve ubiquitous broadband net-
work access for various application scenarios. WMNs and the services running on
top of them undergo a common life cycle covering development, testing, deploy-
ment, and operation. In order that WMNs can be pervasively used, the phases in
their life cycle requires appropriate tools, architectures, best practises, and tested
equipment. In this thesis, we addressed the following challenges in the life cycle
of a WMN:

• Heterogeneous embedded hardware platforms for WMN nodes with limited
capabilities have to be supported in a WMN. We addressed the challenge
of heterogeneity by a comprehensible cross-compilation build system for
an embedded Linux system tailored for WMN nodes. It provides the same
software for different hardware platforms. By storing the software in a com-
pressed read-only image, even low cost nodes with only 8 MB of permanent
storage can provide similar software functionality as more powerful nodes.

• Guaranteeing remote accessibility to all network nodes in the presence of
faulty configuration and software updates to prevent costly on-site repairs is
a major challenge during network operation. Our solution employs a decen-
tralised distribution mechanism for updates and self-healing mechanisms.

• Prototype implementations have to be adequately, iteratively and flexibly
tested under various conditions. As this is not possible in a real testbed with
a limited scale, or only at high costs, we introduced the concept of wireless
device driver enabled network emulation. It combines the flexibility and
scalability of network simulation and testing the real prototype. Our solution
provides a high integration through a virtual device driver. This virtual driver
replaces the standard wireless device driver and redirects the network traffic
and all device parameters to a simulation model, which emulates the wireless
medium and provides support for node mobility.

• Various challenges concerning an outdoor deployment, e.g., equipment, soft-
ware or mechanical problems, and environmental conditions, were addressed

173

8.1. SUMMARY

by providing best practises and deployment experiences for future deploy-
ments.

• The deployment of a WMN is not trivial and requires expert knowledge. In
order to enable non-experts to rapidly deploy a temporary WMN, we intro-
duced a deployment procedure using an electronic guide that instructs the
user through the deployment.

• Some application scenarios, such as disaster recovery, require immediate
availability of a broadband communication infrastructure. As a guided WMN
deployment procedure may too time-consuming, the network has to be au-
tomatically established without manual interaction. We implemented a pro-
totype of a flying WMN using small quadrocopter UAVs carrying the mesh
nodes. The prototype provides an autonomous deployment of a WMN be-
tween two remote clients.

To provide solutions to all these challenges, we developed a comprehensive
WMN framework consisting of the following components:

• ADAM Build System: A modular cross-compilation build system for an
embedded Linux distribution, tailored for nodes of a WMN.

• ADAM Management: A management architecture for safe and fault-tolerant
configuration and software updates within a WMN.

• VirtualMesh: An inexpensive testing infrastructure based on network emu-
lation and a virtual wireless interface driver, offering a transparent replace-
ment of the real driver, i.e., dynamic propagation of wireless settings to the
network emulation.

• CTI-Mesh: Documented experiences, best practises, a tested deployment
process, tested equipment, and tested software obtained during the deploy-
ment of an outdoor WMN for environmental monitoring.

• OViS: A battery powered WMN supporting semi-automated (guided) net-
work deployment by non-expert users.

• UAVNet: An autonomous deployment concept and architecture for a WMN
using flying robots carrying the mesh nodes.

8.1 Summary

Our first contribution includes the ADAM management architecture, which avoids
costly on-site repairs and reconfigurations in WMNs due to misconfiguration, cor-
rupt software updates, or unavailability of nodes during updates (see Chapter 3).
The node’s accessibility is guaranteed by using a decentralised distribution mech-
anism for software and configuration updates, self-healing mechanisms, and a

174

8.1. SUMMARY

safe software update procedure. The management in ADAM is performed com-
pletely in-band, i.e., it does not require any additional network co-located for man-
agement. Moreover, the decentralised distribution of configuration and software
updates works completely independent of routing mechanisms. Updates are ef-
ficiently distributed by splitting the node’s firmware into node specific and type
specific parts. Isolated nodes, e.g., due to misconfiguration, automatically re-join
the WMN using recovery mechanisms. Faulty software updates are automatically
recovered by the mesh node using a boot loader mechanism. In contrast to existing
management solutions, ADAM improves the availability of the network indepen-
dently of configuration errors and faulty software updates and works completely
in-band. ADAM significantly reduces the number of costly on-site management
actions and the overall network operation costs.

In addition to ADAM management, we developed a cross-compilation build
system for an embedded Linux distribution for several mesh node types (see Chap-
ter 3). The ADAM build system is modular, user-friendly, easy to understand, and
extendable. It perfectly supports the developer in compiling software for heteroge-
neous WMN hardware platforms.

VirtualMesh provides adequate, iterative and flexible testing of prototype im-
plementations under various conditions (see Chapter 4). It significantly simplifies
the testing process by combining network simulation, providing a controlled en-
vironment and scalability, and prototype testing in a real testbed. VirtualMesh is
based on traffic interception and redirection by a virtual wireless driver and emu-
lating the wireless medium by a network simulator. In contrast to other emulation
approaches, VirtualMesh provides a high integration of the virtual driver and the
network emulation model. The virtual network driver is completely transparent for
the operating system, i.e., all configuration changes are directly propagated to the
simulation model and influence the network emulation. This is currently a unique
feature, which can only be found in expensive hardware emulation. Our evalua-
tions proved that VirtualMesh is a valuable testing architecture, which can be used
prior to evaluations in a real test-bed or the final deployment in the productive
network.

In CTI-Mesh, we have proven the feasibility and applicability of a WMN for
interconnecting remote sensors to a fibre based network backbone over a distance
of more than 20 km (see Chapter 5). The solar-powered WMN with directional
links provided the requested robust network service for transmitting weather data.
Valuable contributions to the research and development community are the docu-
mentation of extensive deployment experiences, best practises for deployment, the
tested deployment process, as well as the tested equipment and software. They
represent a valuable starting point for any future WMN outdoor deployments. This
knowledge helps in preventing common problems and pitfalls, resulting in signifi-
cant time savings.

In OViS, we addressed the deployment of a temporary WMN by non-experts
by using a guided deployment process (see Chapter 6). The temporary WMN
includes battery-powered nodes that are deployed by non-expert users following

175

8.2. OUTLOOK

the easily understandable instructions of a deployment wizard application running
on a handheld or smart phone device. The network is then automatically config-
ured to use multi-channel communication. We have proven the feasibility of the
semi-automated, i.e., guided, network deployment by non-expert users. An OViS
network can be used in various situations, where there is a need for a temporary
broadband network to support on-site operation, e.g., installation on construction
sites, in mines, tunnels etc.

UAVNet provides an autonomous deployment concept and architecture for a
WMN using flying robots carrying the mesh nodes for emergency and disaster
recovery scenarios (see Chapter 7). We have proven the functionality of such a
flying network by a prototype implementation based on small quadrocopter UAVs
and OpenMesh OM1P mesh nodes, communicating over IEEE 802.11s. UAVNet
autonomically deployed a network that interconnected two distant end systems.
The UAVNet prototype offers starting network deployment according to different
scenarios using a user-friendly remote control application running on iPhone/iPad
devices. The application monitors flying mesh nodes. UAVNet provides a basic
prototype for our research project ”Opportunistic Routing for Highly Mobile Ad-
hoc Networks” (ORMAN).

In summary, we developed tools to support the development, testing, deploy-
ment and operation of WMNs for various application scenarios, e.g., environmen-
tal monitoring, construction sites, and disaster recovery. Our contributions bring
WMNs closer to be pervasively deployed in various application scenarios.

8.2 Outlook

There are several possible directions for future research and development starting
from our work. ADAM Linux and management can be extended to support the
configuration of more routing protocols, to support more software packages and
to include multi-channel protocols for communication. In order to simplify the
addition of new software, the development of an automatic converter of OpenWrt
software packages could be envisioned. The ADAM build system can be extended
to provide a dependency calculator for software packages. ADAM can be further
extended to support additional platforms. Currently, ARM Cortex-A8 based Gum-
stix Overo computer-on-modules are being added as a new target platform for the
project ”Location Based Analyzer”.

In order to increase the applicability of VirtualMesh to additional testing sce-
narios, VirtualMesh could be extended to synchronised network emulation, bi-
directional propagation of wireless parameters, and the extension to other network
technologies.

Although VirtualMesh proved high scalability when the simulation model is
run on a powerful machine and the communication runs over a dedicated high
performance network, complex scenarios or sophisticated radio models may still
lead to overload situations, where the simulation model cannot keep pace with

176

8.2. OUTLOOK

the injected traffic. A solution is to integrate the concept of synchronised net-
work emulation [200] into VirtualMesh. In this approach, a central synchronising
component, connected to the simulation model, controls the time flow for the in-
volved virtualised nodes. This offers testing in larger topologies using complex
radio propagation models on commodity hardware, keeping the benefits of testing
the real prototype implementations.

Support for scanning for available networks, passive scanning of a wireless
interface in the promiscuous mode (channel sniffing) and retrieval of SNR values
requires propagation of the wireless parameters from the simulation model back to
the nodes. VirtualMesh currently only supports the propagation in the opposite di-
rection. An extension to support bi-directional exchange of the wireless parameters
would extend the applicability of VirtualMesh to further scenarios.

The current implementation of the VirtualMesh supports IEEE 802.11b/g net-
works. As the concept is quite flexible, it can be easily extended to support other
network technologies, e.g., WiMAX, Bluetooth or LTE. The support of additional
technologies requires additional simulation models and adapted virtual drivers that
match the APIs of the real drivers of the corresponding technologies. Another open
issue is the support for the new Netlink-based wireless configuration interface of
the Linux kernel for IEEE 802.11a/b/g/h/n devices.

CTI-Mesh showed that the deployment of an outdoor WMN with directional
antennas is a time-consuming process, which could be simplified by an appropriate
deployment application on a smart phone. For example, the correct alignment
of the antennas is a cumbersome task. After a first alignment with a compass,
fine-tuning is performed by stepwise turning the antenna in one direction while
measuring the received signal strength at the outstation. Using a notebook for this
task is not very practical due to its size / weight. The antenna alignment process
could be supported and simplified by a smart phone application. The application
could provide easy understandable visual and acoustic instructions as in OViS.
To receive signal strength measurements, it either automatically connects to the
outstation or triggers a probing request from the station currently deployed. With
the help of such deployment wizards, WMNs with directional antennas could be
deployed by non-expert users.

Instead of assigning the channels statically during the deployment process,
OViS could make use of multi-channel MAC protocols to adapt the channel as-
signment dynamically during the network lifetime. The concept of OViS could
be enhanced to provide network coverage of an area instead of only bridging a
distance.

The prototype of UAVNet offers various possibilities for research. Replace-
ment and recharging strategies for the UAV swarm are necessary to keep the net-
work working for several hours. New topology control algorithms are required
to adapt the network to changing communication needs or optimally covering an
area. Algorithms for area coverage could be based on virtual springs using mea-
sured signal strengths as spring forces. Furthermore, new opportunistic routing
protocols could take advantage of all available data from the UAV, e.g., position,

177

8.2. OUTLOOK

speed, flight direction, and altitude.

178

Chapter 9

Acronyms

ACI Adjacent Channel Interference

ADAM Administration and Deployment of Adhoc Mesh networks

AODV Ad hoc On-demand Distance Vector Routing

ARP Address Resolution Protocol

CAPWAP Control And Provisioning of Wireless Access Points

CHAT CHMA with Packet Train

CHMA Channel Hopping Multiple Access

CLFS Cross Linux From Scratch

CPU Central Processing Unit

CTI Swiss Commission for Technology and Innovation

DAMON Distributed Ad-hoc Network Monitoring

DCA Dynamic Channel Allocation

DFS Dynamic Frequency Selection

DHCP Dynamic Host Configuration Protocol

DNS Domain Name System

DSDV Destination-Sequenced Distance Vector Routing

DSL Digital Subscriber Line

DSR Dynamic Source Routing

EIRP Equivalent Isotropically Radiated Power

179

ELF Executable and Linkable Format

ETT Expected Transmission Time

ETX Expected Transmission Count

FEC Forward Error Correction

FPGA Field Programmable Array

FTP File Transfer Protocol

GCC GNU Compiler Collection

GNU GNU is Not Unix

GPS Global Positioning System

HMCP Hybrid Multichannel Protocol

HNA Host and Network Association

HRMA Hop-Reservation Multiple Access

HTTP Hypertext Transfer Protocol

HWMP Hybrid Wireless Mesh Protocol

IEEE Institute of Electrical and Electronics Engineers

IP Internet Protocol

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

JiST Java in Simulation Time

LAN Local Area Network

LFS Linux From Scratch

LQSR Link Quality Source Routing

MANET Mobile Ad-hoc Network

MAP Multichannel Access Protocol / Mesh Access Point (IEEE
802.11s)

MCL Mesh Connectivity Layer

MMAC Multichannel MAC Protocol

180

MPR Multi-Point-Relays

MTU Maximum Transfer Unit

NAT Network Address Translator

NFS Network File System

OE OpenEmbedded

OFCOM Swiss Federal Office of Communication

OViS On-site Video System

PC Personal Computer

QoS Quality of Service

RAM Random Access Memory

ROMER Resilient Opportunistic Mesh Routing

RREP Route Reply

RREQ Route Request

RSSI Received Signal Strength Indicator

RTT Round Trip Time

SMR Split Multi-Path Routing

SNMP Simple Network Management Protocol

SNR Signal-to-Noise Ratio

SSCH Slotted Seeded Hopping

TBRPF Topology Broadcast based on Reverse-Path Forwarding

TC Topology Control

TCP Transport Control Protocol

TFA Technology for All

TPC Transmit Power Control

TTL Time to Live

UAV Unmanned Arial Vehicle

UDP User Datagram Protocol

181

USB Universal Serial Bus

WCETT Weighted Expected Transmission Count

WMN Wireless Mesh Network

WRAP Wireless Router Application Platform

WSN Wireless Sensor Network

182

Bibliography

[1] D. Aguayo, J. Bicket, S. Biswas, D. S. J. D. Couto, and R. Morris, “MIT
Roofnet Implementation,” http://pdos.lcs.mit.edu/roofnet/design/, August
2003.

[2] D. Aguayo, J. Bicket, S. Biswas, G. Judd, and R. Morris, “Link-Level Mea-
surements from an 802.11b Mesh Network,” in International Conferences
on Broadband Networks (BroadNets), San José, CA, USA, October 25-29
2004.

[3] I. F. Akyildiz and X. Wang, “A Survey on Wireless Mesh Networks,” Com-
munications Magazine, IEEE, vol. 43, no. 9, pp. 23–30, 2005.

[4] I. F. Akyildiz, X. Wang, and W. Wang, “Wireless Mesh Networks: a Sur-
vey,” Computer Networks Journal (Elsevier), vol. 47, no. 4, pp. 445–487,
15 March 2005.

[5] E. Andersen, “µClibc: A C Library for Embedded Linux,” http://www.
uclibc.org, 2011.

[6] E. Andersen, R. Landley, B. Reutner-Fischer, D. Vlasenko, and various de-
velopers, “BusyBox,” http://www.busybox.net/, 2011.

[7] V. Angelakis, S. Papadakis, N. Kossifidis, V. A. Siris, and A. Traganiti, “The
Effect of Using Directional Antennas on Adjacent Channel Interference in
802.11a: Modeling and Experience With an Outdoors Testbed,” in 4th In-
ternational Workshop on Wireless Network Measurements (WiNMee 2008),
Berlin, Germany, March 2008.

[8] V. Angelakis, M. Genetzakis, N. Kossifidis, K. Mathioudakis, M. Ntelakis,
S. Papadakis, N. Petroulakis, and V. A. Siris, “Heraklion MESH: An Ex-
perimental Metropolitan Multi-Radio Mesh Network,” in 2nd ACM Inter-
national Workshop on Wireless Network Testbeds, Experimental evaluation
and CHaracterization (WINTECH 2007), Montreal, QC, Canada, Septem-
ber 10 2007.

[9] Apple Inc., “iOS Operating System,” http://developer.apple.com/devcenter/
ios, April 2011.

183

http://pdos.lcs.mit.edu/roofnet/design/
http://www.uclibc.org
http://www.uclibc.org
http://www.busybox.net/
http://developer.apple.com/devcenter/ios
http://developer.apple.com/devcenter/ios

BIBLIOGRAPHY

[10] V. Aseeja and R. Zheng, “MeshMan: A Management Framework for Wire-
less Mesh Networks,” in IFIP/IEEE International Symposium on Integrated
Network Management (IM ’09), Long Island, New York, USA, June 1-5
2009, pp. 226 –233.

[11] P. Bahl, R. Chandra, and J. Dunagan, “SSCH: Slotted Seeded Channel
Hopping for Capacity Improvement in IEEE 802.11 Ad-Hoc Wireless Net-
works,” in 10th Annual International Conference on Mobile Computing and
Networking (MobiCom ’04). Philadelphia, PA, USA: ACM, September 26
- October 1 2004, pp. 216–230.

[12] M. Bahr, “Update on the Hybrid Wireless Mesh Protocol of IEEE 802.11s,”
in 4th IEEE International Conference on Mobile Adhoc and Sensor Systems
(MASS 2007), Pisa, Italy, Oct. 2007, pp. 1–6.

[13] A. Baiocchi, A. Todini, and A. Valletta, “Why a Multichannel Protocol can
Boost IEEE 802.11 Performance,” in 7th ACM international symposium on
Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM
’04), Venice, Italy, October 4-6 2004, pp. 143–148.

[14] M. Baker, G. Rozema, and various developers. (2011) OpenWrt: a Linux
Distribution for Embedded Devices. http://openwrt.org/.

[15] D. Balsiger, “Administration and Deployment of Wireless Mesh Networks,”
Master’s thesis, University of Bern, Bern, Switzerland, April 2009.

[16] D. Balsiger and M. Lustenberger, “Secure Remote Management and Soft-
ware Distribution for Wireless Mesh Networks,” Bachelor’s thesis, Univer-
sity of Bern, Bern, Switzerland, September 2007.

[17] P. Barham, B. Dragovic, K. Fraser, S. Hand, and T. Harris, “Xen and the Art
of Virtualization,” in 9th ACM Symposium on Operating Systems Principles
(SOSP ’03). Bolton Landing, NY, USA: ACM, October 19 - 22 2003, pp.
164–177.

[18] R. Barr, Z. J. Haas, and R. van Renesse, “JiST: Embedding Simulation Time
into a Virtual Machine,” in EUROSIM Congress on Modelling and Simula-
tion, Noisy-le-Grand, Paris, France, September 6-10 2004.

[19] G. Beekmans, M. Burgess, J. Gifford, J. Huntwork, Archaic, K. Moffat,
M. C. Esparcia, R. Oliver, and N. Coulson, “Linux From Scratch (LFS),”
http://www.linuxfromscratch.org, 2011.

[20] E. M. Belding-Royer, K. C. Almeroth, H. Lundgren, K. Ramachandran,
A. Jardosh, M. Benny, and A. Hewatt, “UCSB MeshNet,” http://moment.
cs.ucsb.edu/meshnet/, April 2011.

184

http://openwrt.org/
http://www.linuxfromscratch.org
http://moment.cs.ucsb.edu/meshnet/
http://moment.cs.ucsb.edu/meshnet/

BIBLIOGRAPHY

[21] J. Berg, “iw: CLI Configuration Utility for Wireless Devices,” http://
wireless.kernel.org/en/users/Documentation/iw, 2010.

[22] R. Beuran, L. T. Nguyen, T. Miyachi, J. Nakata, K.-I. Chinen, Y. Tan, and
Y. Shinoda, “QOMB: A Wireless Network Emulation Testbed,” in Global
Telecommunications Conference (GLOBECOM 2009), Honolulu, Hawaii,
USA, November 30 - December 4 2009, pp. 1 –6.

[23] R. Beuran, J. Nakata, T. Okada, L. T. Nguyen, Y. Tan, and Y. Shinoda,
“A Multi-Purpose Wireless Network Emulator: QOMET,” in International
Conference on Advanced Information Networking and Applications Work-
shops, vol. 0. Gino-Wan, Okinawa, Japan: IEEE Computer Society, March
25-28 2008, pp. 223–228.

[24] R. Beuran, L. T. Nguyen, K. T. Latt, J. Nakata, and Y. Shinoda, “Qomet: A
versatile wlan emulator,” Advanced Information Networking and Applica-
tions, International Conference on, vol. 0, pp. 348–353, 2007.

[25] J. C. Bicket, D. Aguayo, S. Biswas, and R. Morris, “Architecture and Eval-
uation of an Unplanned 802.11b Mesh Network,” in 11th Annual Inter-
national Conference on Mobile Computing and Networking (MOBICOM
2005), Cologne, Germany, August 28 - September 2 2005, pp. 31–42.

[26] J. Blackford, H. Kirksey, and W. Lupton, “TR-069 Amendment 3 - CPE
WAN Management Protocol,” The Broadband Forum, Fremont, California,
USA, Tech. Rep. 1, November 2010.

[27] R. Bless and M. Doll, “Integration of the FreeBSD TCP/IP-stack into the
Discrete Event Simulator OMNet++,” in 36th Winter Simulation Conference
(WSC’04), Washington, D.C., USA, December 5-8 2004, pp. 1556–1561.

[28] B. Blywis, M. Güneş, F. Juraschek, and J. Schiller, “Trends, Advances,
and Challenges in Testbed-based Wireless Mesh Network Research,”
ACM/Springer Mobile Networks and Applications (MONET), February
2010, Special Issue on Advances in Wireless Testbeds and Research Infras-
tructures.

[29] K. Borries, G. Judd, D. Stancil, and P. Steenkiste, “FPGA-Based Channel
Simulator for a Wireless Network Emulator,” in IEEE 67th Vehicular Tech-
nology Conference (VTC2009-Spring), Barcelona, Catalunya, Spain, April
2009.

[30] T. Braun, G. Coulson, and T. Staub, “Towards Virtual Mobility Support in
a Federated Testbed for Wireless Sensor Networks,” in 6th Workshop on
Wireless and Mobile Ad-Hoc Networks (WMAN 2011). Kiel, Germany:
Electronic Communications of EASST, March 10 2011.

185

http://wireless.kernel.org/en/users/Documentation/iw
http://wireless.kernel.org/en/users/Documentation/iw

BIBLIOGRAPHY

[31] T. Braun, M. Diaz, J. E. Gabeiras, and T. Staub, End-to-End Quality of
Service Over Heterogeneous Networks. Springer, August 2008.

[32] T. X. Brown, B. Argrow, C. Dixon, S. Doshi, R. george Thekkekunnel, and
D. Henkel, “Ad hoc UAV Ground Network (AUGNet),” in AIAA 3rd “Un-
manned Unlimited” Technical Conference, Chicago, IL, USA, September
20-23 2004.

[33] R. Bruno, M. Conti, and E. Gregori, “Mesh Networks: Commodity Multhop
Ad Hoc Networks,” IEEE Communications Magazine, vol. 43, no. 3, pp.
123–131, March 2005.

[34] M. Burgess, “A Tiny Overview of Cfengine: Convergent Maintenance
Agent,” in 1st International Workshop on Multi-Agent and Robotic Systems
MARS/ICINCO, Barcelona, Spain, September 2005.

[35] H. Buss and I. Busker, “Mikrokopter Platform,” http://www.mikrokopter.de,
April 2011.

[36] ——, “Mikrokopter Serial Protocol,” http://mikrokopter.de/ucwiki/en/
SerialProtocol, April 2011.

[37] C. Larson, M. Lauer, et al., “OpenEmbedded Project,” http://www.
openembedded.org, 2011.

[38] C. Larson, Phil Blundell, et al., “BitBake - a Generic Task Executor,” http:
//developer.berlios.de/projects/bitbake, 2011.

[39] P. Calhoun, M. Montemurro, and D. Stanley, “Control and Provisioning of
Wireless Access Points (CAPWAP) Protocol Binding for IEEE 802.11,”
RFC 5416 (Proposed Standard), Internet Engineering Task Force, Mar.
2009. [Online]. Available: http://www.ietf.org/rfc/rfc5416.txt

[40] ——, “Control And Provisioning of Wireless Access Points (CAP-
WAP) Protocol Specification,” RFC 5415 (Proposed Standard), In-
ternet Engineering Task Force, Mar. 2009. [Online]. Available:
http://www.ietf.org/rfc/rfc5415.txt

[41] J. Camp and E. Knightly, “The IEEE 802.11s Extended Service Set Mesh
Networking Standard,” IEEE Communications Magazine, vol. 46, no. 8, pp.
120 –126, 2008.

[42] J. D. Camp, E. W. Knightly, and W. S. Reed, “Developing and Deploy-
ing Multihop Wireless Networks for Low-Income Communities,” in Digital
Communities, Napoly, Italy, June 2005.

[43] J. Case, R. Mundy, D. Partain, and B. Stewart, “Introduction and
Applicability Statements for Internet-Standard Management Framework,”

186

http://www.mikrokopter.de
http://mikrokopter.de/ucwiki/en/SerialProtocol
http://mikrokopter.de/ucwiki/en/SerialProtocol
http://www.openembedded.org
http://www.openembedded.org
http://developer.berlios.de/projects/bitbake
http://developer.berlios.de/projects/bitbake
http://www.ietf.org/rfc/rfc5416.txt
http://www.ietf.org/rfc/rfc5415.txt

BIBLIOGRAPHY

RFC 3410 (Informational), Internet Engineering Task Force, Dec. 2002.
[Online]. Available: http://www.ietf.org/rfc/rfc3410.txt

[44] J. Case, M. Fedor, M. Schoffstall, and J. Davin, “Simple Network
Management Protocol (SNMP),” RFC 1157 (Historic), Internet Engineering
Task Force, May 1990. [Online]. Available: http://www.ietf.org/rfc/rfc1157.
txt

[45] M. C. Castro, P. Dely, A. J. Kassler, F. P. Delia, and S. Avallone, “OLSR
and Net-X as a Framework for Channel Assignment Experiments - Poster
Presentation,” in WiNTECH 09, Beijing, China, September 21 2009.

[46] M. C. Castro, P. Dely, A. J. Kassler, and N. H. Vaidya, “QoS-Aware Chan-
nel Scheduling for Multi-Radio/Multi-Channel Wireless Mesh Networks,”
in WiNTECH 09, Beijing, China, September 21 2009.

[47] M. C. Castro, A. Kassler, and S. Avallone, “Measuring the Impact of ACI in
Cognitive Multi-Radio Mesh Networks,” in IEEE 72nd Vehicular Technol-
ogy Conference (VTC), 2010.

[48] J. Chen, S.-T. Sheu, and C.-A. Yang, “A New Multichannel Access Protocol
for IEEE 802.11 Ad Hoc Wireless LANs,” in 14th IEEE International Sym-
posium on Personal, Indoor and Mobile Radio Communications (PIMRC
2003), vol. 3, Bejing, China, September 7-10 2003, pp. 2291–2296.

[49] C.-M. Cheng, P.-H. Hsiao, H. Kung, and D. Vlah, “Adjacent Channel Inter-
ference in Dual-radio 802.11a Nodes and Its Impact on Multi-hop Network-
ing,” in IEEE GLOBECOM 2006, San Francisco, CA, USA, 27 November -
1 December 2006.

[50] C. Chereddi, P. Kyasanur, and N. H. Vaidya, “Design and Implementation of
a Multi-Channel Multi-Interface Network,” in 2nd International Workshop
on Multi-Hop Ad Hoc Networks: From Theory to Reality (REALMAN ’06).
Florence, Italy: ACM Press, May 26 2006, pp. 23–30.

[51] ——, “Net-X: a Multichannel Multi-Interface Wireless Mesh Implementa-
tion,” SIGMOBILE Mob. Comput. Commun. Rev., vol. 11, no. 3, pp. 84–95,
2007.

[52] S. Cheshire, B. Aboba, and E. Guttman, “Dynamic Configuration of
IPv4 Link-Local Addresses,” RFC 3927 (Proposed Standard), Internet
Engineering Task Force, May 2005. [Online]. Available: http://www.ietf.
org/rfc/rfc3927.txt

[53] C. D. T. Clausen and P. Jacquet, “The Optimized Link State Routing Proto-
col version 2,” IETF Draft RFC draft-ietf-manet-olsrv2-11, April 2010.

187

http://www.ietf.org/rfc/rfc3410.txt
http://www.ietf.org/rfc/rfc1157.txt
http://www.ietf.org/rfc/rfc1157.txt
http://www.ietf.org/rfc/rfc3927.txt
http://www.ietf.org/rfc/rfc3927.txt

BIBLIOGRAPHY

[54] T. Clausen and P. Jacquet, “Optimized Link State Routing Protocol
(OLSR),” RFC 3626 (Experimental), Internet Engineering Task Force, Oct.
2003. [Online]. Available: http://www.ietf.org/rfc/rfc3626.txt

[55] G. Coulson, T. Braun, and T. Staub, “Adding Virtual Mobility to a Federated
Testbed for Wireless Sensor Networks: a Proposal,” Universität Bern, Insti-
tut für Informatik und angewandte Mathematik, Bern, Switzerland, Tech.
Rep. IAM-10-004, August 2010.

[56] H. A. Council, “Interconnect Analysis: 10GigE and InfiniBand in
High Performance Computing,” http://www.hpcadvisorycouncil.com/pdf/
IB and 10GigE in HPC.pdf, 2009, White Paper.

[57] J. Crichigno, M.-Y. Wu, and W. Shu, “Protocols and Architectures for Chan-
nel Assignment in Wireless Mesh Networks,” Ad Hoc Networks, vol. 6, pp.
1051–1077, September 2008.

[58] F. Damiani and P. Giannini, “Tkinter - Python’s De-Facto Standard GUI
(Graphical User Interface) Package,” http://www.python.org/topics/tkinter,
April 2011.

[59] K. Daniel, B. Dusza, A. Lewandowski, and C. Wietfeld, “AirShield: A
System-of-Systems MUAV Remote Sensing Architecture for Disaster Re-
sponse,” in IEEE International Systems Conference 2009 (SysCon). Van-
couver, British Columbia, Canada: IEEE, March 2009, pp. 196 – 200.

[60] D. S. J. De Couto, D. Aguayo, J. Bicket, and R. Morris, “A High-
Throughput Path Metric for Multi-Hop Wireless Routing,” in 9th ACM In-
ternational Conference on Mobile Computing and Networking (MobiCom
’03), San Diego, California, September 14-19 2003.

[61] P. Dely, M. Castro, S. Soukhakian, A. Moldsvor, and A. Kassler, “Practi-
cal Considerations for Channel Assignment in Wireless Mesh Networks,”
in IEEE Broadband Wireless Access Workshop, held in conjunction with
Globecom 2010, Miami, FL, USA, December 6-10 2010.

[62] P. Dely and A. Kassler, “KAUMesh Demo,” in 9th Scandinavian Workshop
on Wireless Ad-hoc Sensor Networks (Adhoc’09), Uppsala, Sweden, May
4-5 2009.

[63] P. Dely, A. Kassler, N. Bayer, H.-J. Einsiedler, and D. Sivchenko, “FUZ-
PAG: A Fuzzy-Controlled Packet Aggregation Scheme for Wireless Mesh
Networks,” in 7th International Conference on Fuzzy Systems and Knowl-
edge Discovery (FSKD’10), Yantai, China, August 10 - 12 2010.

[64] P. Dely, A. Kassler, N. Bayer, and D. Sivchenko, “An Experimental Compar-
ison of Burst Packet Transmission Schemes in IEEE 802.11-based Wireless

188

http://www.ietf.org/rfc/rfc3626.txt
http://www.hpcadvisorycouncil.com/pdf/IB_and_10GigE_in_HPC.pdf
http://www.hpcadvisorycouncil.com/pdf/IB_and_10GigE_in_HPC.pdf
http://www.python.org/topics/tkinter

BIBLIOGRAPHY

Mesh Networks,” in IEEE Global Telecommunications Conference GLOBE-
COM 2010, Miami, FL, USA, December 6-10 2010.

[65] P. Dely, A. Kassler, and D. Sivchenko, “Theoretical and Experimental Anal-
ysis of the Channel Busy Fraction in IEEE 802.11,” in Future Network Mo-
bile Summit, Florence, Italy, June 16-18 2010.

[66] R. Draves, J. Padhye, and B. Zill, “Comparison of Routing Metrics for
Static Multi-Hop Wireless Networks,” in Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communications SIG-
COMM ’04. Portland, Oregon, USA: ACM Press, August 30 - September
3 2004, pp. 133–144.

[67] ——, “Routing in Multi-Radio, Multi-Hop Wireless Mesh Networks,” in
10th Annual International Conference on Mobile Computing and Network-
ing (MobiCom ’04). Philadelphia, Pennsylvania, USA: ACM Press,
September 26 - October 1 2004, pp. 114–128.

[68] R. Droms, “Dynamic Host Configuration Protocol,” RFC 2131 (Draft
Standard), Internet Engineering Task Force, Mar. 1997, updated by RFCs
3396, 4361, 5494. [Online]. Available: http://www.ietf.org/rfc/rfc2131.txt

[69] W. Dubowik, “Atheros: Fix ath5k Support on ar2315/2317,” http://repo.or.
cz/w/openwrt.git/commit/cf521fcca87ee5330d41200c3470ca78e6519eb3,
April 2011.

[70] EN 60529:1991/A1, Degrees of Protection Provided by Enclosures (IP
Code) (IEC 60529:1989), European Committee for Standardization, 1991.

[71] M. Engel, M. Smith, S. Hanemann, and B. Freisleben, “Wireless Ad-
Hoc Network Emulation using Microkernel-Based Virtual Linux Systems,”
in 5th EUROSIM Congress on Modeling and Simulation, Cite Descartes,
Marne la Vallee, France, September 6-10 2004, pp. 198–203.

[72] ETSI, Broadband Radio Access Networks (BRAN); 5 GHz High Perfor-
mance RLAN; Harmonized EN Covering Essential Requirements of Article
3.2 of the R&TTE Directive (ETSI European Standard EN 301 893 V1.5.1),
European Telecommunications Standards Institute, December 2008.

[73] R. Flickenger and et al, Wireless Networking in the Developing World,
2nd ed. wndw.net, 2007, 978-0-9778093-6-3.

[74] Freifunk Community, “Freifunk - Project for Free Wireless Networks and
Frequencies (Open Spectrum),” http://freifunk.net, 2011.

[75] H. T. Friis, “A Note on a Simple Transmission Formula,” in Proceedings of
the I.R.E. and Waves and Electrons, vol. 34, no. 5, May 1946, pp. 254–256.

189

http://www.ietf.org/rfc/rfc2131.txt
http://repo.or.cz/w/openwrt.git/commit/cf521fcca87ee5330d41200c3470ca78e6519eb3
http://repo.or.cz/w/openwrt.git/commit/cf521fcca87ee5330d41200c3470ca78e6519eb3
http://freifunk.net

BIBLIOGRAPHY

[76] E. Galstad and various developers, “Nagios,” http://www.nagios.org/, April
2011.

[77] R. Gantenbein, “VirtualMesh: An Emulation Framework for Wireless
Mesh Networks in OMNeT++,” Master’s thesis, University of Bern, Bern,
Switzerland, June 2010.

[78] M. Gates, A. Warshavsky, A. Tirumala, J. Ferguson, J. Dugan, and various
developers, “NLANR/DAST : iperf - The TCP/UDP Bandwidth Measure-
ment Tool,” http://iperf.sourceforge.net/, 2009.

[79] GCC Steering Committee, “GNU Compiler Collection (GCC),” http://gcc.
gnu.org, 2011.

[80] A. Gecyasar, “Ad-Hoc Multipath Routing Protokolle,” Bachelor’s thesis,
University of Bern, Bern, Switzerland, November 2006.

[81] J. Gentle, M. Tyson, V. Vyskocil, and various developers, “Route Me
- Open Source iPhone-Native Slippy Map,” https://github.com/route-me,
April 2011.

[82] G. Giacobbi, “The GNU Netcat Project,” http://netcat.sourceforge.net/,
April 2011.

[83] L. Girod, T. Stathopoulos, N. Ramanathan, J. Elson, D. Estrin, E. Osterweil,
and T. Schoellhammer, “A System for Simulation, Emulation, and Deploy-
ment of Heterogeneous Sensor Networks,” in 2nd International Conference
on Embedded Networked Sensor Systems (SenSys ’04). Baltimore, Mary-
land, USA: ACM Press, November 3-5 2004, pp. 201–213.

[84] Google Inc., “Android,” http://www.android.com, April 2011.

[85] M. Güneş, F. Juraschek, B. Blywis, Q. Mushtaq, and J. Schiller, “A Testbed
for Next Generation Wireless Networks Research,” Special Issue PIK on
Mobile Ad-hoc Networks, vol. 34, no. 4, 2009.

[86] O. Hahm, M. Güneş, and K. Schleiser, “DES-Testbed A Wireless Multi-
Hop Network Testbed for Future Mobile Networks,” in 5th GI/ITG KuVS
Workshop on Future Internet, Stuttgart, Germany, June 9 2010.

[87] A. Hänni, “iPad/iPhone App as a Frontend for Prototype of a Highly Adap-
tive and Mobile Communication Network using Unmanned Arial Vehicules
(UAVs),” Bachelor’s thesis, University of Bern, Bern, Switzerland, to be
submitted.

[88] A. Hassan, “Simulations on Multipath Routing Based on Source Routing,”
Bachelor’s thesis, University of Bern, Bern, Switzerland, August 2008.

190

http://www.nagios.org/
http://iperf.sourceforge.net/
http://gcc.gnu.org
http://gcc.gnu.org
https://github.com/route-me
http://netcat.sourceforge.net/
http://www.android.com

BIBLIOGRAPHY

[89] S. Hauert, S. Leven, J.-C. Zufferey, and D. Floreano, “Communication-
based Leashing of Real Flying Robots,” in IEEE International Conference
on Robotics and Automation (ICRA), 2010, pp. 15–20.

[90] S. Hauert, J.-C. Zufferey, and D. Floreano, “Evolved Swarming Without
Positioning Information: An Application in Aerial Communication Relay,”
Autonomous Robots, vol. 26, no. 1, pp. 21–32, 2009.

[91] K. K. He, “Why and How to Use Netlink Socket,” Linux Journal, 2005,
http://www.linuxjournal.com/article/7356.

[92] G. Hiertz, D. Denteneer, S. Max, R. Taori, J. Cardona, L. Berlemann, and
B. Walke, “IEEE 802.11s: The WLAN Mesh Standard,” Wireless Commu-
nications, IEEE, vol. 17, no. 1, pp. 104 –111, February 2010.

[93] R. Hinden and B. Haberman, “Unique Local IPv6 Unicast Addresses,” RFC
4193 (Proposed Standard), Internet Engineering Task Force, Oct. 2005.
[Online]. Available: http://www.ietf.org/rfc/rfc4193.txt

[94] R. Hornig, “INET Framework for OMNeT++,” http://inet.omnetpp.org/,
2010.

[95] IEEE P802.11 Task Group S, “IEEE P802.11sTM/ D5.0, draft amendment
to standard IEEE 802.11TM: Mesh Networking,” IEEE, April 2010, work in
progress.

[96] IEEE Standard Information Network, IEEE 100 The Authoritative Dictio-
nary of IEEE Standards Terms, 7th ed. New York: IEEE: The Institute of
Electrical and Electronics Engineers, 2000.

[97] S. Ivanov, A. Herms, and G. Lukas, “Experimental Validation of the ns-
2 Wireless Model using Simulation, Emulation, and Real Network,” in
4th Workshop on Mobile Ad-Hoc Networks (WMAN’07) in conjunction
with the 15th ITG/GI - Fachtagung Kommunikation in Verteilten Systemen
(KiVS’07). Bern, Switzerland: VDE Verlag, February 26 - March 2 2007,
pp. 433–444.

[98] S. Jansen and A. McGregor, “Performance, Validation and Testing with
the Network Simulation Cradle,” in 14th IEEE International Symposium on
Modeling, Analysis, and Simulation (MASCOTS ’06). Monterey, Califor-
nia, USA: IEEE Computer Society, September 11-14 2006, pp. 355–362.

[99] D. Johnson, Y. Hu, and D. Maltz, “The Dynamic Source Routing
Protocol (DSR) for Mobile Ad Hoc Networks for IPv4,” RFC 4728
(Experimental), Internet Engineering Task Force, Feb. 2007. [Online].
Available: http://www.ietf.org/rfc/rfc4728.txt

191

http://www.linuxjournal.com/article/7356
http://www.ietf.org/rfc/rfc4193.txt
http://inet.omnetpp.org/
http://www.ietf.org/rfc/rfc4728.txt

BIBLIOGRAPHY

[100] D. Johnson, K. Matthee, D. Sokoya, L. Mboweni, A. Makan, and
H. Kotze, “Building a Rural Wireless Mesh Network - A Do-It-
Yourself Guide to Planning and Building a Freifunk Based Mesh
Network,” http://wirelessafrica.meraka.org.za/wiki/images/f/fe/Building a
Rural Wireless Mesh Network - A DIY Guide v0.7 65.pdf, October 30
2007.

[101] D. Johnson, T. Stack, R. Fish, D. M. Flickinger, L. Stoller, R. Ricci, and
J. Lepreau, “Mobile Emulab: A Robotic Wireless and Sensor Network
Testbed,” in 25th IEEE International Conference on Computer Communi-
cations (INFOCOM 2006), Barcelona, Spain, April 23-29 2006.

[102] R. Jones, “netperf - Network Performance Benchmark,” http://www.netperf.
org/, April 2011.

[103] G. Judd and P. Steenkiste, “Repeatable and Realistic Wireless Experimen-
tation through Physical Emulation,” in 2nd Workshop on Hot Topics in Net-
works (Hot-Nets II), Boston, MA, USA, November 2003.

[104] R. Karrer, A. Sabharwal, and E. Knightly, “Enabling Large-scale Wireless
Broadband: The Case for TAPs,” in 2nd Workshop on Hot Topics in Net-
works (Hot-Nets II), Cambridge, MA, USA, November 2003.

[105] A. Kassler, M. Castro, P. Dely, J. Karlsson, and A. Lavén, “KAUMesh,”
http://www.kau.se/en/kaumesh, 2011.

[106] J. Katz, “pyGrub,” http://wiki.xensource.com/xenwiki/PyGrub, 2010.

[107] K. Kooi, T. Chick, M. Juszkiewicz, P. Sokolovsky, P. Balister, H. H.
von Treskow, and B. Guillon, “The Ångström distribution,” http://www.
angstrom-distribution.org, April 2011.

[108] J. Krähenbühl, “Theory and Hands-on Exercises with Network Simulators
for E-Learning on Distributed Systems,” Master’s thesis, University of Bern,
Bern, Switzerland, September 2007.

[109] M. Krasnyansky and F. Thiel, Universal TUN/TAP device driver, 2002.

[110] T. Krop, M. Bredel, M. Hollick, and R. Steinmetz, “JiST/MobNet: Com-
bined Simulation, Emulation, and Real-World Testbed for Ad Hoc Net-
works,” in WinTECH ’07. New York, NY, USA: ACM, 2007, pp. 27–34.

[111] G. S. Kulkarni, A. Nandan, M. Gerla, and M. B. Srivastava, “A Radio Aware
Routing Protocol for Wireless Mesh Networks,” UCLA Electrical Engineer-
ing, UCLA Computer Science, Los Angeles, CA, Tech. Rep. TR-UCLA-
NESL-200503-12, March 2005.

[112] A. Kuznetsov and Y. Hideaki, “Linux iputils,” http://www.linuxfoundation.
org/collaborate/workgroups/networking/iputils, 2010.

192

http://wirelessafrica.meraka.org.za/wiki/images/f/fe/Building_a_Rural_Wireless_Mesh_Network_-_A_DIY_Guide_v0.7_65.pdf
http://wirelessafrica.meraka.org.za/wiki/images/f/fe/Building_a_Rural_Wireless_Mesh_Network_-_A_DIY_Guide_v0.7_65.pdf
http://www.netperf.org/
http://www.netperf.org/
http://www.kau.se/en/kaumesh
http://wiki.xensource.com/xenwiki/PyGrub
http://www.angstrom-distribution.org
http://www.angstrom-distribution.org
http://www.linuxfoundation.org/collaborate/workgroups/networking/iputils
http://www.linuxfoundation.org/collaborate/workgroups/networking/iputils

BIBLIOGRAPHY

[113] P. Kyasanur, J. So, C. Chereddi, and N. H. Vaidya, “Multichannel Mesh
Networks: Challenges and Protocols,” IEEE Wireless Communications [see
also IEEE Personal Communications], vol. 13, no. 2, pp. 30–36, April 2006.

[114] P. Kyasanur and N. H. Vaidya, “Routing and Interface Assignment in Multi-
Channel Multi-Interface Wireless Networks,” in IEEE Wireless Communi-
cations and Networking Conference (WCNC 2005), vol. 4, New Orleans,
Louisiana, USA, March 13 - 17 2005, pp. 2051–2056.

[115] P. Kyasanur, C. Chereddi, and N. H. Vaidya, “Net-X: System eXtensions for
Supporting Multiple Channels, Multiple Interfaces, and Other Interface Ca-
pabilities,” University of Illinois at Urbana-Champaign, Urbana, IL, USA,
Tech. Rep., August 2006.

[116] M. Lacage, M. Weigle, C. Dowell, G. Carneiro, G. Riley, T. Henderson, and
J. Pelkey, “The Network Simulator ns-3,” http://www.nsnam.org/, 2009.

[117] A. Lavén and A. Kassler, “Multi-channel anypath routing in wireless mesh
networks,” in IEEE Globecom 2010 Workshop on Heterogeneous, Multi-hop
Wireless and Mobile Networks (HeterWMN 2010), Miami, USA, December
6 2010.

[118] S.-J. Lee and M. Gerla, “Split Multipath Routing with Maximally Disjoint
Paths in Ad Hoc Networks,” in IEEE International Conference on Commu-
nications (ICC), vol. 10, Helsinki, Finlandia, June 11-14 2001, pp. 3201–
3205.

[119] H. Lundgren, E. Nordström, and C. Tschudin, “Coping with Communica-
tion Gray Zones in IEEE 802.11b Based Ad Hoc Networks,” in 5th ACM
International Workshop on Wireless Mobile Multimedia (WOWMOM ’02).
Atlanta, Georgia, USA: ACM, September 28 2002, pp. 49–55.

[120] J. Malinen, “Linux WPA/WPA2/IEEE 802.1X Supplicant,” http://hostap.
epitest.fi/wpa supplicant/, 2010.

[121] D. Manzano, J.-C. Cano, C. Calafate, and P. Manzoni, “MAYA: A Tool For
Wireless Mesh Networks Management,” in IEEE Internatonal Conference
on Mobile Adhoc and Sensor Systems (MASS 2007), Pisa, Italy, October
8-11 2007, pp. 1–6.

[122] M. K. Marina and S. R. Das, “Ad hoc On-demand Multipath Distance Vec-
tor Routing,” ACM SIGMOBILE Mobile Computing and Communications
Review, vol. 6, no. 3, pp. 92–93, July 2002.

[123] R. McGrath, U. Drepper, and various developers, “GNU C Library (Glibc),”
http://www.gnu.org/software/libc/, 2011.

193

http://hostap.epitest.fi/wpa_supplicant/
http://hostap.epitest.fi/wpa_supplicant/
http://www.gnu.org/software/libc/

BIBLIOGRAPHY

[124] Meraki Inc., “Meraki ’free the net’ Project in San Francisco,” http://sf.
meraki.com, 2007. [Online]. Available: http://meraki.com/about/freethenet/

[125] ——, “The Meraki Mini / Indoor Wireless Platform,” http://meraki.com,
2007.

[126] Microsoft Research, “Mesh Connectivity Layer (MCL),” http://research.
microsoft.com/en-us/projects/mesh/.

[127] P. Mochel, “The sysfs Filesystem,” in Proceedings of the 2005 Linux Sym-
posium, July 2005.

[128] S. Morgenthaler, “Management Extensions for Wireless Mesh and Wireless
Sensor Networks,” Bachelor’s thesis, University of Bern, Bern, Switzerland,
March 2010.

[129] ——, “Prototype of a Highly Adaptive and Mobile Communication Net-
work using Unmanned Aerial Vehicles (UAVs),” Master’s thesis, University
of Bern, Bern, Switzerland, to be submitted.

[130] C. Müller, “Implementation of a Multichannel Multiradio Prototype on Em-
bedded Linux,” Bachelor’s thesis, University of Bern, Bern, Switzerland,
May 2010.

[131] J. Nachtigall, A. Zubow, and J.-P. Redlich, “The Impact of Adjacent Chan-
nel Interference in Multi-Radio Systems using IEEE 802.11,” in Wireless
Communications and Mobile Computing Conference (IWCMC ’08), Crete
Island, Greece, August 6-8 2008, pp. 874–881.

[132] OFCOM, 784.101.21 / RIR1010-04, 5470 - 5725 MHz, Wideband Data
Transmission Systems, 2nd ed., Federal Office of Communications (OF-
COM), Switzerland, January 1st 2009.

[133] R. Ogier, F. Templin, and M. Lewis, “Topology Dissemination Based
on Reverse-Path Forwarding (TBRPF),” RFC 3684 (Experimental),
Internet Engineering Task Force, Feb. 2004. [Online]. Available: http:
//www.ietf.org/rfc/rfc3684.txt

[134] B. O’Hara, P. Calhoun, and J. Kempf, “Configuration and Provisioning
for Wireless Access Points (CAPWAP) Problem Statement,” RFC 3990
(Informational), Internet Engineering Task Force, Feb. 2005. [Online].
Available: http://www.ietf.org/rfc/rfc3990.txt

[135] A. Ollero, “Platform for Autonomous Self-Deploying and Operation of
Wireless Sensor-Actuator Networks Cooperating with Aerial Objects,” http:
//aware-project.net/, August 2009.

[136] Open-Mesh, “Open-Mesh OM1P,” http://www.open-mesh.com/, 2011.

194

http://sf.meraki.com
http://sf.meraki.com
http://meraki.com/about/freethenet/
http://meraki.com
http://research.microsoft.com/en-us/projects/mesh/
http://research.microsoft.com/en-us/projects/mesh/
http://www.ietf.org/rfc/rfc3684.txt
http://www.ietf.org/rfc/rfc3684.txt
http://www.ietf.org/rfc/rfc3990.txt
http://aware-project.net/
http://aware-project.net/
http://www.open-mesh.com/

BIBLIOGRAPHY

[137] Open80211s Consortium (Nortel, cozybit, one laptop per child, Google),
“open80211s - A Reference Implementation of the Upcoming IEEE 802.11s
Standard on Linux,” http://open80211s.org/, April 2011.

[138] OpenStreetMap contributors, CC-BY-SA, “Map Data from Open-
StreetMap,” http://www.openstreetmap.org/, April 2011.

[139] S. Ott, “Experimental Evaluation of Multi-Path Routing in a Wireless Mesh
Network Inside a Building,” Bachelor’s thesis, University of Bern, Bern,
Switzerland, February 2009.

[140] ——, “Automated Deployment of a Wireless Mesh Communication Infras-
tructure for an On-site Video-conferencing System (OViS),” Master’s thesis,
University of Bern, Bern, Switzerland, to be submitted.

[141] J. Ousterhout, M. DeJong, A. Kupries, D. Fellows, K. Lehenbauer, J. Nijt-
mans, J. Hobbs, G. A. Howlett, D. Porter, K. Kenny, M. Sofer, J. English,
and D. Steffen, “Tk Graphical User Interface Toolkit,” http://www.tcl.tk,
April 2011.

[142] R. Patra, S. Nedevschi, S. Surana, A. Sheth, L. Subramanian, and E. Brewer,
“WiLDNet: Design and Implementation of High Performance WiFi Based
Long Distance Networks,” in 4th USENIX Symposium on Networked Sys-
tems Design & Implementation, Cambridge, MA, USA, April 11-13 2007,
pp. 87–100.

[143] PC Engines GmbH, “Wireless Router Application Platform (WRAP),”
www.pcengines.ch, 2006. [Online]. Available: www.pcengines.ch

[144] ——, “ALIX system boards,” www.pcengines.ch, 2011. [Online].
Available: www.pcengines.ch

[145] T. Perennou, E. Conchon, L. Dairaine, and M. Diaz, “Two-Stage Wire-
less Network Emulation,” in IFIP World Computer Congress - Workshop
on Challenges of Mobility, Toulouse, France, Aug. 22–27 2004.

[146] C. E. Perkins and P. Bhagwat, “Highly Dynamic Destination-Sequenced
Distance-Vector routing (DSDV) for mobile computers,” in Conference
on Communications Architectures, Protocols and Applications (SIGCOMM
’94). London, United Kingdom: ACM, 1994, pp. 234–244. [Online].
Available: http://doi.acm.org/10.1145/190314.190336

[147] B. Pinheiro, V. Nascimento, W. Moreira, and A. Abelém, “Abaré: A De-
ployment and Management Framework for Wireless Mesh Network,” in
IEEE Latin-American Conference on Communications (LATINCOM ’09),
Medellin, Colombia, September 10-11 2009, pp. 1 –6.

195

http://open80211s.org/
http://www.openstreetmap.org/
http://www.tcl.tk
www.pcengines.ch
www.pcengines.ch
http://doi.acm.org/10.1145/190314.190336

BIBLIOGRAPHY

[148] B. Pinheiro, V. Nascimento, E. Cerqueira, W. Moreira, and A. Abelém,
“Abaré: A Coordinated and Autonomous Framework for Deployment and
Management of Wireless Mesh Networks,” in FMN, ser. Lecture Notes in
Computer Science, S. Zeadally, E. Cerqueira, M. Curado, and M. Leszczuk,
Eds., vol. 6157. Springer, 2010, pp. 100–111.

[149] K. N. Ramachandran, E. M. Belding-Royer, and K. C. AImeroth, “DAMON:
A Distributed Architecture for Monitoring Multi-Hop Mobile Networks,” in
First Annual IEEE Communications Society Conference on Sensor and Ad
Hoc Communications and Networks (IEEE SECON 2004), Santa Clara, CA,
USA, October 4 - 7 2004, pp. 601–609.

[150] K. N. Ramachandran, K. C.Almeroth, and E. M. Belding-Royer, “A Frame-
work for the Management of Large-Scale Wireless Network Testbeds,” in
1st Workshop on Wireless Network Measurements (WiNMee 2005), Riva del
Garda, Trentino, Italy, April 3 2005.

[151] A. Raniwala and T.-c. Chiueh, “Architecture and Algorithms for an IEEE
802.11 -Based Multi-Channel Wireless Mesh Network,” in 24th Annual
Joint Conference of the IEEE Computer and Communications Societies (IN-
FOCOM 2005)., vol. 3, Miami, FL, USA, March 2005, pp. 2223 – 2234.

[152] A. Raniwala, K. Gopalan, and T.-c. Chiueh, “Centralized Channel Assign-
ment and Routing Algorithms for Multi-Channel Wireless Mesh Networks,”
Mobile Computing and Communications Review, vol. 8, no. 2, pp. 50–65,
2004.

[153] D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu, K. Ramachandran, H. Kremo,
R. Siracusa, H. Liu, and M. Singh, “Overview of the ORBIT Radio Grid
Testbed for Evaluation of Next-generation Wireless Network Protocols,” in
IEEE Wireless Communications and Networking Conference (WCNC 2005),
vol. 3, March 2005, pp. 1664 – 1669.

[154] R. Riggio, N. Scalabrino, D. Miorandi, and I. Chlamtac, “JANUS: A Frame-
work for Distributed Management of Wireless Mesh Networks,” in 3rd
International Conference on Testbeds and Research Infrastructure for the
Development of Networks and Communities (TridentCom 2007), Orlando,
Florida, USA, May 21-23 2007, pp. 1–7.

[155] L. Rizzo, “Dummynet: A Simple Approach to the Evaluation of Network
Protocols,” SIGCOMM Computer Communication Review, vol. 27, no. 1,
pp. 31–41, 1997.

[156] S. Rohde, N. Goddemeier, C. Wietfeld, F. Steinicke, K. Hinrichs, T. Os-
termann, J. Holsten, and D. Moormann, “AVIGLE: A System of Systems
Concept for an Avionic Digital Service Platform Based on Micro Unmanned

196

BIBLIOGRAPHY

Aerial Vehicles,” in IEEE International Conference on Systems, Man, and
Cybernetics (SMC). Istanbul, Turkey: IEEE, October 2010.

[157] S. Roy, A. K. Das, R. Vijayakumar, H. M. K. Alazemi, H. Ma, and
E. Alotaibi, “Capacity Scaling with Multiple Radios and Multiple Channels
in Wireless Mesh Networks,” in First IEEE Workshop on Wireless Mesh
Networks (WiMesh), Santa Clara, CA, USA, September 26 2005.

[158] Scalable Network Technologies, “The QualNet Network Simulator,” http:
//www.scalable-networks.com/, 2011.

[159] M. Shen and D. Zhao, “TCP Throughput Performance in IEEE 802.11-based
Multi-hop Wireless Networks,” in 3rd International Conference on Quality
of Service in Heterogeneous Wired/Wireless Networks (QShine ’06). New
York, NY, USA: ACM, 2006, p. 23.

[160] M. L. Sichitiu, “Wireless Mesh Networks: Opportunities and Challenges,”
in Wireless World Congress, Palo Alto, California, USA, May 2005.

[161] J. Smart, R. Roebling, V. Zeitlin, R. Dunn, and various developers, “The
wxWidgets Project,” http://wxwidgets.org/, April 2011.

[162] ——, “wxPython, a Blending of the wxWidgets C++ Class Library with the
Python Programming Language,” http://www.wxpython.org, April 2011.

[163] Q. Snell, A. Mikler, J. Gustafson, and G. Helmer, “NetPIPE: A Network
Protocol Independent Performance Evaluator,” in IASTED International
Conference on Intelligent Information Management and Systems. Wash-
ington, D. C., USA: J. S. Wong, June 5-7 1996.

[164] Q. Snell, A. Mikler, J. Gustafson, G. Helmer, D. Turner, and T. Benjegerdes,
“NetPIPE: A Network Protocol Independent Performance Evaluator,” http:
//www.scl.ameslab.gov/netpipe/, August 2009.

[165] J. So and N. H. Vaidya, “Multi-Channel MAC for Ad Hoc Networks: Han-
dling Multi-Channel Hidden Terminals Using a Single Transceiver,” in 5th
ACM International Symposium on Mobile ad hoc networking and comput-
ing (MobiHoc ’04). Roppongi Hills, Tokyo, Japan: ACM Press, May 24 -
26 2004, pp. 222–233.

[166] R. Sombrutzki, A. Zubow, M. Kurth, and J.-P. Redlich, “Self-Organization
in Community Mesh Networks - The Berlin RoofNet,” in 1st Workshop
on Operator-Assisted (Wireless Mesh) Community Networks (OpComm),
Berlin, Germany, September 18-19 2006, pp. 1–11.

[167] M. R. Souryal, A. Wapf, and N. Moayeri, “Rapidly-Deployable Mesh Net-
work Testbed,” in 28th IEEE Conference on Global Telecommunications
(GLOBECOM’09). Honolulu, Hawaii, USA: IEEE Press, November 30 -
December 4 2009, pp. 5536–5541.

197

http://www.scalable-networks.com/
http://www.scalable-networks.com/
http://wxwidgets.org/
http://www.wxpython.org
http://www.scl.ameslab.gov/netpipe/
http://www.scl.ameslab.gov/netpipe/

BIBLIOGRAPHY

[168] B. Staehle, D. Staehle, R. Pries, M. Hirth, P. Dely, and A. Kassler, “Measur-
ing One-Way Delay in Wireless Mesh Networks - An Experimental Investi-
gation,” in 4th ACM PM2HW2N Workshop, Tenerife, Canary Islands, Spain,
October 26 - 30 2009.

[169] T. Staub, M. Anwander, K. Baumann, T. Braun, M. Brogle, K. Dolfus,
C. Félix, and P. K. Goode, “Connecting Remote Sites to the Wired Back-
bone by Wireless Mesh Access Networks,” in 16th European Wireless Con-
ference, Lucca, Italy. IEEE Xplore, April 12 - 15 2010, pp. 675 – 682.

[170] T. Staub, M. Anwander, K. Baumann, T. Braun, M. Brogle, P. Dornier,
C. Félix, and P. K. Goode, “Wireless Mesh Networks - Connecting Remote
Sites,” SWITCH Journal, pp. 10–12, March 2010.

[171] T. Staub, M. Anwander, M. Brogle, K. Dolfus, T. Braun, K. Baumann,
C. Félix, and P. Dornier, “Wireless Mesh Networks for Interconnection of
Remote Sites to Fixed Broadband Networks (Feasibility Study),” Univer-
sität Bern, Institut für Informatik und angewandte Mathematik, Tech. Rep.
IAM-09-007, December 2009.

[172] T. Staub, D. Balsiger, M. Lustenberger, and T. Braun, “Secure Remote Man-
agement and Software Distribution for Wireless Mesh Networks,” in 7th In-
ternational Workshop on Applications and Services in Wireless Networks
(ASWN 2007), Santander, Spain, May 24-26 2007, pp. 47–54.

[173] T. Staub, D. Balsiger, S. Morgenthaler, and T. Braun, “ADAM:
Administration and Deployment of Adhoc Mesh networks,”
http://rvs.unibe.ch/research/software.html, February 2011.

[174] T. Staub, D. Balsiger, S. Morgenthaler, M. Lustenberger, and T. Braun,
“ADAM (Administration and Deployment of Adhoc Mesh networks),” in
Demo session for the KuVS Communication Software Award co-located with
KiVS’09, Kassel, Germany, Kassel, Germany, March 6-7 2009.

[175] T. Staub, M. Brogle, K. Baumann, and T. Braun, “Wireless Mesh Net-
works for Interconnection of Remote Sites to Fixed Broadband Networks,”
in Third ERCIM Workshop on eMobility, University of Twente, Enschede,
The Netherlands, May 27 - 28 2009, pp. 97–98.

[176] T. Staub, R. Gantenbein, and T. Braun, “VirtualMesh: An Emulation Frame-
work for Wireless Mesh Networks in OMNeT++,” in 2nd International
Workshop on OMNeT++ (OMNeT++ 2009) held in conjuction with the Sec-
ond International Conference on Simulation Tools and Techniques (SIMU-
Tools 2009), Rome, Italy, March 6-7 2009.

[177] ——, “VirtualMesh: An Emulation Framework for Wireless Mesh and
Ad-Hoc Networks in OMNeT++,” SIMULATION: Transactions of the

198

BIBLIOGRAPHY

Society for Modeling and Simulation International, first published online
July 2010. [Online]. Available: http://sim.sagepub.com/content/early/2010/
07/01/0037549710373909.abstract

[178] ——, “VirtualMesh,” http://www.iam.unibe.ch/∼rvs/research/software.html,
2011.

[179] ——, “VirtualMesh: An Emulation Framework for Wireless Mesh and Ad-
Hoc Networks in OMNeT++,” SIMULATION: Transaction of the Society
for Modeling and Simulation International, Special Issue: Software Tools,
Techniques and Architectures for Computer Simulation, vol. 87, no. 1-2, pp.
66–81, January 2011, SAGE Print.

[180] T. Staub, S. Morgenthaler, D. Balsiger, P. K. Goode, and T. Braun, “ADAM:
Administration and Deployment of Adhoc Mesh networks,” in 3rd IEEE
Workshop on Hot Topics in Mesh Networking (IEEE HotMESH 2011) affili-
ated to 12th IEEE Symposium on a World of Wireless, Mobile and Multime-
dia Networks (WoWMoM 2011), Lucca, Italy, June 20 - 24 2011.

[181] T. Staub, S. Ott, and T. Braun, “Experimental Evaluation of Multi-Path
Routing in a Wireless Mesh Network Inside a Building,” in 5th Workshop on
Mobile Ad-Hoc Networks WMAN 2009, Kassel, Germany, March 5-6 2009.

[182] ——, “Automated Deployment of a Wireless Mesh Communication Infras-
tructure for an On-site Video-conferencing System (OViS),” in 4th ERCIM
Workshop on eMobility co-located with the 8th International Conference
on wired/Wireless Internet Communications (WWIC 2010), Lulea, Sweden.
Lulea University of Technology, May 2010.

[183] M. Stolz, “iPhone/iPad Mesh Deployment Tool for Onsite Video System
(OViS),” Bachelor’s thesis, University of Bern, Bern, Switzerland, to be sub-
mitted.

[184] H. Sun and H. D. Hughes, “Adaptive Multi-path Routing Scheme for
QoS Support in Mobile Ad-hoc Networks,” in International Symposium
on Performance Evaluation of Computer and Telecommunication Systems
(SPECTS ’03), Montreal, Quebec, Canada, July 2003, pp. 408–416.

[185] Z. Tang, , Z. Tang, and J. J. Garcia-Luna-Aceves, “Hop-Reservation Multi-
ple Access (HRMA) for Ad-Hoc Networks,” in IEEE Infocom 1999 (INFO-
COM), New York, NY, USA, March 21-25 1999, pp. 194–201.

[186] The MadWifi project, “Linux Kernel Drivers for Wireless LAN Devices with
Atheros Chipsets,” http://madwifi-project.org/, 2009.

[187] The olsr.org Project, “The olsr.org OLSR daemon: an adhoc wireless mesh
routing daemon,” http://www.olsr.org/, 2009.

199

http://sim.sagepub.com/content/early/2010/07/01/0037549710373909.abstract
http://sim.sagepub.com/content/early/2010/07/01/0037549710373909.abstract
~

BIBLIOGRAPHY

[188] A. Tonnesen, “Implementing and Extending the Optimized Link State Rout-
ing Protocol,” Master’s thesis, University of Oslo, Department of Informat-
ics, 2004.

[189] J. Tourrilhes, “Wireless Extensions: A Wireless LAN API for the Linux Op-
erating System,” http://www.hpl.hp.com/personal/Jean Tourrilhes/Linux/
Linux.Wireless.Extensions.html, 2010.

[190] ——, “Wireless Tools for Linux,” http://www.hpl.hp.com/personal/Jean
Tourrilhes/Linux/Tools.html, 2010.

[191] E. P. J. Tozer, Broadcast Engineer’s, Referencebook. 200 Wheeler Road,
Burlington, MA 01803, USA: Focal Press - an imprint of Elsevier, 2004,
vol. 0-2405-1908-6.

[192] A. Tzamaloukas and J. Garcia-Luna-Aceves, “Channel-Hopping Multiple
Access,” in IEEE International Conference on Communications (ICC 2000),
vol. 1, New Orleans, Louisiana, USA, June 18-22 2000, pp. 415 –419.

[193] ——, “Channel Hopping Multiple Access with Packet Trains for Ad Hoc
Networks,” in 7th International Workshop on Mobile Multimedia Commu-
nications (MoMuC 2000), Tokyo, Japan, October 2000.

[194] University of Southern California, Information Sciences Institute (ISI), “Ns-
2: Network simulator-2,” http://www.isi.edu/nsnam/ns/.

[195] A. Varga, “The OMNeT++ Discrete Event Simulation System,” in European
Simulation Multiconference (ESM’2001), Prague, Czech Republic, June 6-9
2001.

[196] A. Varga and R. Hornig, “An Overview of the OMNeT++ Simulation En-
vironment,” in 1st International Conference on Simulation Tools and Tech-
niques for Communications, Networks and Systems (Simutools ’08). Mar-
seille, France: ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering), March 3-7 2008, pp. 1–10.

[197] ——, “OMNeT++: An Extensible, Modular, Component-Based C++ Sim-
ulation Library and Framework,” http://www.omnetpp.org/, 2011.

[198] E. Weingärtner, “Synchronized Network Emulation,” in Proceedings of the
ACM SIGMETRICS Student Thesis Panel. Annapolis, MD: ACM, 2008.

[199] E. Weingärtner, H. V. Lehn, and K. Wehrle, “Device-Driver Enabled Wire-
less Network Emulation,” in 4th International ICST Conference on Simula-
tion Tools and Techniques SIMUTools 2011, Barcelona, Spain, March 21-25
2011.

200

http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Linux.Wireless.Extensions.html
http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Linux.Wireless.Extensions.html
http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Tools.html
http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Tools.html
http://www.omnetpp.org/

BIBLIOGRAPHY

[200] E. Weingärtner, F. Schmidt, T. Heer, and K. Wehrle, “Synchronized Net-
work Emulation: Matching Prototypes with Complex Simulations,” SIG-
METRICS Perform. Eval. Rev., vol. 36, no. 2, pp. 58–63, 2008.

[201] E. Weingärtner, F. Schmidt, H. vom Lehn, T. Heer, and K. Wehrle, “Slice-
Time: A Platform for Scalable and Accurate Network Emulation,” in 8th
USENIX Symposium on Networked Systems Design and Implementation,
Boston, MA, USA, March 30 - April 1 2011.

[202] K. Wessel, M. Swigulski, A. Küpke, and D. Willkomm, “MiXiM (Mixed
Simulator): A Simulation Framework for Wireless and Mobile Networks,”
http://mixim.sourceforge.net/, April 2011.

[203] B. White, J. Lepreau, and S. Guruprasad, “Lowering the Barrier to Wireless
and Mobile Experimentation,” in First Workshop on Hot Topics in Networks
(HotNets-I), Princeton, New Jersey, USA, October 28-29 2002.

[204] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,
M. Hibler, C. Barb, and A. Joglekar, “An Integrated Experimental Environ-
ment for Distributed Systems and Networks,” in Fifth Symposium on Oper-
ating Systems Design and Implementation. Boston, MA, USA: USENIX
Association, December 9-11 2002, pp. 255–270.

[205] D. Wu and P. Mohapatra, “QuRiNet: A Wide-Area Wireless Mesh Testbed
for Research and Experimental Evaluations,” in 2nd International Confer-
ence on COMmunication Systems and NETworkS (COMSNETS), Bangalore,
India, January 5 2010.

[206] D. Wu, D. Gupta, and P. Mohapatra, “QuRiNet: A Wide-Area Wireless
Mesh Testbed for Research and Experimental Evaluations,” Ad Hoc Net-
works, vol. In Press, Corrected Proof, February 15 2011.

[207] D. Wu, S. Liese, D. Gupta, and P. Mohapatra, “Quail Ridge Wireless Mesh
Network: Experiences, Challenges and Findings,” University of California,
Davis, California, USA, Tech. Rep., 2006.

[208] H. Wu, Q. Luo, P. Zheng, B. He, and L. M. Ni, “Accurate Emulation of Wire-
less Sensor Networks,” in Network and Parallel Computing (NPC’2004),
Wuhan, China, October 18-20 2004, pp. 576–583.

[209] S.-L. Wu, C.-Y. Lin, Y.-C. Tseng, and J.-P. Sheu, “A New Multi-Channel
MAC Protocol with On-Demand Channel Assignment for Multi-Hop Mo-
bile Ad Hoc Networks,” International Symposium on Parallel Architectures,
Algorithms, and Networks, p. 232, December 7-9 2000.

[210] S.-L. Wu, Y.-C. Tseng, C.-Y. Lin, and J.-P. Sheu, “A multi-channel mac
protocol with power control for multi-hop mobile ad hoc networks,” The
Computer Journal, vol. 45, no. 1, pp. 101–110, January 2002.

201

http://mixim.sourceforge.net/

BIBLIOGRAPHY

[211] Z. Ye, S. V. Krishnamurthy, and S. K. Tripathi, “A Framework for Reliable
Routing in Mobile Ad Hoc Networks,” in IEEE Infocom 2003 (INFOCOM),
San Francisco, CA, USA, May 30 - April 3 2003.

[212] Y. Yuan, H. Yang, S. Wong, S. Lu, and W. Arbaugh, “ROMER: Resilient
Opportunistic Mesh Routing for Wireless Mesh Networks,” in First IEEE
Workshop on Wireless Mesh Networks (WiMesh), Santa Clara, CA, USA,
September 26 2005.

[213] X. Zeng, R. Bagrodia, and M. Gerla, “GloMoSim: a Library for Parallel
Simulation of Large-Scale Wireless Networks,” in 12th Workshop on
Parallel and Distributed Simulation (PADS ’98). Banff, Alberta, Canada:
IEEE Computer Society, 1998, pp. 154–161. [Online]. Available:
http://dx.doi.org/10.1145/278008.278027

[214] Y. Zhang and W. Li, “An Integrated Environment for Testing Mobile Ad-
Hoc Networks,” in 3rd ACM International Symposium on Mobile Ad Hoc
Networking & Computing (MobiHoc ’02). Lausanne, Switzerland: ACM,
June 9-11 2002, pp. 104–111.

[215] A. Zimmermann, M. Güneş, M. Wenig, U. Meis, and J. Ritzerfeld, “How
to Study Wireless Mesh Networks: A Hybrid Testbed Approach,” in 21st
International Conference on Advanced Information Networking and Appli-
cations (AINA ’07), Niagara-Falls, Ontario, Canada, May 21-23 2007, pp.
853–860.

[216] A. Zimmermann, A. Hannemann, C. Wolff, L. Schulte, and P. Her-
rmann, “UMIC-Mesh.net - A Hybrid Wireless Mesh Network Testbed,”
http://www.umic-mesh.net/, April 2011.

202

http://dx.doi.org/10.1145/278008.278027

List of Publications

Refereed Papers (Journals, Conferences, Workshops)

• D. Dimitrova, U. Bürgi, G. Martins Dias, T. Braun, and T. Staub, “Inquiry-
based Bluetooth Parameters for Indoor Localisation - an Experimental Study,”
in 5th ERCIM Workshop on eMobility co-located with the 9th International
Conference on Wired/Wireless Internet Communications (WWIC 2010), Vi-
lanova i la Geltrú, Catalonia, Spain, June 14 2011, submitted for publication.

• P. Hurni, M. Anwander, G. Wagenknecht, T. Staub, and T. Braun, “TAR-
WIS - A Testbed Management Architecture for Wireless Sensor Network
Testbeds,” in 7th International Conference on Network and Service Man-
agement (CNSM 2011), Paris, France, October 24-28, 2011, submitted for
publication.

• T. Staub, B. Nyffenegger, D. Dimitrova, and T. Braun, “Operational Support
of Wireless Mesh Networks Deployed for Extending Network Connectivity,”
in 1st International Workshop on Opportunistic Sensing and Processing in
Mobile Wireless Sensor and Cellular networks (MobiSense 2011), Bilbao,
Spain, May 9-11 2011.

• T. Staub, S. Morgenthaler, D. Balsiger, P. K. Goode, and T. Braun, “ADAM:
Administration and Deployment of Adhoc Mesh networks,” in 3rd IEEE
Workshop on Hot Topics in Mesh Networking (IEEE HotMESH 2011) af-
filiated to 12th IEEE Symposium on a World of Wireless, Mobile and Multi-
media Networks (WoWMoM 2011), Lucca, Italy, June 20 - 24 2011.

• T. Braun, G. Coulson, and T. Staub, “Towards Virtual Mobility Support in a
Federated Testbed for Wireless Sensor Networks,” in 6th Workshop on Wire-
less and Mobile Ad-Hoc Networks (WMAN 2011), Kiel, Germany, March 10
- 11, 2011, ISSN 1863-2122.

• T. Staub, R. Gantenbein, and T. Braun, “VirtualMesh: an Emulation Frame-
work for Wireless Mesh and Ad Hoc Networks in OMNeT++,” SIMULA-
TION: Transaction of the Society for Modeling and Simulation International,
Special Issue: Software Tools, Techniques and Architectures for Computer
Simulation, Thousand Oaks, CA, USA, Vol. 87, Nr. 1-2, January 1, 2011,
pp. 66-81, SAGE Publications, ISSN 0037-5497.

203

List of Publications

• T. Staub, R. Gantenbein, and T. Braun, “VirtualMesh: An Emulation Frame-
work for Wireless Mesh and Ad-Hoc Networks in OMNeT++,” SIMULA-
TION: Transactions of the Society for Modeling and Simulation Interna-
tional, Special Issue on Software Tools, Techniques and Architectures for
Computer Simulation, Thousand Oaks, CA, USA, July 2, 2010, SAGE Pub-
lications, ISSN 1741-3133, SAGE Online First.

• T. Staub, S. Ott, and T. Braun, “Automated Deployment of a Wireless Mesh
Communication Infrastructure for an On-site Video-conferencing System
(OViS),” in 4th ERCIM Workshop on eMobility co-located with the 8th In-
ternational Conference on Wired/Wireless Internet Communications (WWIC
2010), Lulea, Sweden, May 31, 2010, Lulea University of Technology, ISBN
978-91-7439-103-9.

• T. Staub, M. Anwander, K. Baumann, T. Braun, M. Brogle, K. Dolfus,
C. Félix, and P. K. Goode, “Connecting Remote Sites to the Wired Back-
bone by Wireless Mesh Access Networks,” in 16th European Wireless Con-
ference, Lucca, Italy, April 12 - 15, 2010, pp. 675 - 682, IEEE Xplore, ISBN
978-1-4244-5999-5.

• T. Staub, M. Anwander, K. Baumann, T. Braun, M. Brogle, P. Dornier,
C. Félix, and P. K. Goode, “Wireless Mesh Networks - Connecting Remote
Sites,” SWITCH Journal, Zurich, Switzerland, March, 2010, pp. 10-12.

• M. Wälchli, R. Zurbuchen, T. Staub, and T. Braun, “Backbone MAC for
Energy-constrained Wireless Sensor Networks,” in 34th IEEE Conference
on Local Computer Networks (LCN), Zürich, Switzerland, October 20 - 23,
2009, pp. 77-84, IEEE Explore, ISBN 978-1-4244-4488-5.

• T. Staub, M. Brogle, K. Baumann, and T. Braun, “Wireless Mesh Networks
for Interconnection of Remote Sites to Fixed Broadband Networks,” in 3rd
ERCIM Workshop on eMobility, University of Twente, Enschede, The Nether-
lands, May 27 - 28, 2009, pp. 97-98, University of Twente, Enschede, ISBN
978-90-365-2846-7.

• M. Wälchli, R. Zurbuchen, T. Staub, and T. Braun, “Gravity-based Lo-
cal Clock Synchronization in Wireless Sensor Networks,” in Networking
2009, Aachen, Germany, Vol. 5550/2009, May 11 - 15, 2009, pp. 907-918,
Springer LNCS, ISBN 978-3-642-01398-0.

• T. Staub, R. Gantenbein, and T. Braun, “VirtualMesh: An Emulation Frame-
work for Wireless Mesh Networks in OMNeT++,” in 2nd International Work-
shop on OMNeT++ (OMNeT++ 2009) held in conjuction with the 2nd In-
ternational Conference on Simulation Tools and Techniques (SIMUTOOLS),
Rome, Italy, March 6 - 7, 2009, pp. 1-8, ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering), ISBN
978-963-9799-45-5.

204

List of Publications

• P. Hurni, T. Staub, G. Wagenknecht, M. Anwander, and T. Braun, “A Secure
Remote Authentication, Operation and Management Infrastructure for Dis-
tributed Wireless Sensor Network Testbeds,” in 1st Workshop on Global Sen-
sor Networks (GSN’09) co-located with KiVS’09, Kassel, Germany, Vol. 17,
March 6 - 7, 2009, pp. 1-6, Electronic Communications of the EASST, ISSN
1863-2122.

• T. Staub, D. Balsiger, S. Morgenthaler, M. Lustenberger, and T. Braun,
“ADAM (Administration and Deployment of Adhoc Mesh networks),” in
Demo session for the KuVS Communication Software Award co-located with
KiVS’09, Kassel, Germany, March 6 - 7, 2009.

• T. Staub, S. Ott, and T. Braun, “Experimental Evaluation of Multi-Path Rout-
ing in a Wireless Mesh Network Inside a Building,” in 5th Workshop on Mo-
bile Ad-Hoc Networks (WMAN 2009) in conjunction with the 16th Bi-Annual
Conference on Communication in Distributed Systems (KiVS), Kassel, Ger-
many, Vol. 17, March 5 - 6, 2009, pp. 1-12, Electronic Communications of
the EASST, ISSN 1863-2122.

• T. Staub and T. Braun, “Supporting Real-time Communication in Wireless
Mesh Networks,” in 1st Workshop on Wireless Broadband Access for Com-
munities and Rural Developing Regions (WIRELESS4D’08) held at 1st In-
ternational Conference on M4D, Karlstad University, Sweden, Vol. 2008,
Nr. 62, December 11 - 13, 2008, pp. 48-53, Karlstad University Press, ISBN
978-91-7063-222-8.

• T. Braun, J. Krähenbühl, and T. Staub, “VAT4Net - a Visualization and An-
imation Tool for Network Simulations,” in 6th Symposium on Design, Anal-
ysis, and Simulation of Distributed Systems 2008, Edinburgh, UK, June 16 -
18, 2008, pp. 244-251, ISBN 1-56555-320-9 CD-ROM.

• T. Staub, and T. Braun, “ATOM: Adaptive Transport over Multipaths in
Wireless Mesh Networks,” in 2nd ERCIM Workshop on eMobility, Tampere,
Finland, May 30, 2008, pp. 101-106, University of Tampere, Finland, ISBN
978-952-15-1972-7.

• G. Wagenknecht, M. Anwander, T. Braun, T. Staub, J. Matheka, and S. Mor-
genthaler, “MARWIS: A Management Architecture for Heterogeneous Wire-
less Sensor Networks,” in 6th International Conference on Wired/Wireless
Internet Communications (WWIC’08), Tampere, Finland, Vol. LCNS, Nr.
5031, May 28 - 30, 2008, pp. 177-188, Springer, ISBN 978-3-540-68805-1.

• M. Anwander, G. Wagenknecht, T. Staub, and T. Braun, “Management of
Heterogenous Wireless Sensor Networks,” in 6. Fachgespräch ’Drahtlose
Sensornetze’ der GI/ITG-Fachgruppe ’Kommunikation und Verteilte Systeme’,
Aachen, Germany, July 16 - 17, 2007, pp. 63-66, Distributed Systems Group,
RWTH Aachen University, ISSN 0935-3232.

205

List of Publications

• T. Staub, D. Balsiger, M. Lustenberger, and T. Braun, “Secure Remote Man-
agement and Software Distribution for Wireless Mesh Networks,” in 7th In-
ternational Workshop on Applications and Services in Wireless Networks
(ASWN 2007), Santander, Spain, May 24 - 26, 2007, pp. 47-54, ISBN 978-
84-690-5727-8.

• A. Weyland, C. Latze, T. Braun, and T. Staub, “Linux Implementation and
Evaluation of a Cooperation Mechanism for Hybrid Wireless Networks,” in
6th International Workshop on Wireless Local Networks (WLN) held at IEEE
Conference on Local Computer Networks (LCN), Tampa, FL, USA, Novem-
ber 14, 2006, pp. 939-946, IEEE, ISBN 1-4244-0419-3.

• A. Weyland, T. Staub, and T. Braun, “Comparison of Motivation-Based Co-
operation Mechanisms for Hybrid Wireless Networks,” Computer Commu-
nications, Vol. 29, Nr. 13-14, August 21, 2006, pp. 2661-2670, Elsevier,
ISSN 0140-3664.

• T. Staub, T. Bernoulli, M. Anwander, M. Wälchli, and T. Braun, “Experi-
mental Lifetime Evaluation for MAC Protocols on Real Sensor Hardware,”
in ACM Workshop on Real-World Wireless Sensor Networks (REALWSN’06),
Uppsala, Sweden, June 19, 2006, pp. 25-29, ACM Press, ISBN 1-59593-
431-6.

• A. Weyland, T. Staub, and T. Braun, “Comparison of Incentive-based Co-
operation Strategies for Hybrid Networks,” in 3rd International Conference
on Wired/Wireless Internet Communications (WWIC 2005), Xanthi, Greece,
May 11 - 13, 2005, pp. 169-180, ISBN 3-540-25899-X.

• A. Weyland, T. Staub, and T. Braun, “Liveliness Evaluation of a Cooperation
and Accounting Strategy in Hybrid Networks,” in 4th Workshop on Applica-
tions and Services in Wireless Networks (ASWN 2004), Boston, MA, USA,
August 8 - 11, 2004.

Books

• T. Braun, M. Diaz, J. Enrı́quez-Gabeiras, and T. Staub, “Chinese Translation:
End-to-end Quality of Service Support over Heterogeneous Networks (Eu-
QoS),” Beijing, P.R. China, February, 2010, Publishing House of Electronics
Industry, ISBN 978-7-121-10170-0.

• T. Braun, M. Diaz, J. Enrı́quez Gabeiras, and T. Staub, “End-to-End Qual-
ity of Service Over Heterogeneous Networks,” August 14, 2008, Springer,
ISBN 978-3-540-79119-5.

206

List of Publications

Unrefereed Papers (Technical Reports, Project Deliverables)

• G. Coulson, T. Braun, and T. Staub, “Adding Virtual Mobility to a Federated
Testbed for Wireless Sensor Networks: a Proposal,” Universität Bern, Insti-
tut für Informatik und angewandte Mathematik, Bern, Switzerland, August
30, 2010, IAM-10-004.

• T. Staub, M. Anwander, M. Brogle, K. Dolfus, T. Braun, K. Baumann,
C. Félix, and P. Dornier, “Wireless Mesh Networks for Interconnection of
Remote Sites to Fixed Broadband Networks (Feasibility Study),” Universität
Bern, Institut für Informatik und angewandte Mathematik, Bern, Switzer-
land, December 18, 2009, IAM-09-007.

• M. Brogle, S. Serbu, D. Milic, M. Anwander, P. Hurni, C. Spielvogel, C.
Fautsch, D. Harmanci, L. Charles, H. Sturzrehm, G. Wagenknecht, T. Braun,
T. Staub, C. Latze, and R. Standtke, “BeNeFri Summer School 2009 on De-
pendable Systems,” Münchenwiler, Switzerland, September 8, 2009, IAM-
09-006.

• M. Brogle, D. Milic, M. Anwander, G. Wagenknecht, M. Wälchli, T. Braun,
R. Kummer, M. Wulff, R. Standtke, H. Sturzrehm, E. Riviere, P. Felber,
S. Krenn, C. Ehret, C. Latze, P. Hurni, and T. Staub, “BeNeFri Summer
School 2008 on Dependable Systems,” Quarten, Switzerland, November 18,
2008, IAM-08-003.

• T. Staub, M. Brogle, et al, “Report on Teaching Experiences of the E-Learning
Course, the Improvements to be done and the Improvements Achieved,” Eu-
QoS Deliverable D6.2.4, CEC Deliverable Number 004503/UBern/DS/D6.2.4/
A1, December 28, 2007.

• M. Diaz, D. Morris, T. Staub, et al., “Third Standardization Report,” EuQoS
Deliverable D6.2.5, CEC Deliverable Number 004503/CNRS/DS/D6.2.5/A1,
December 28, 2007.

• M. Potts, M. Günter, T. Staub, et al., “Third Report on Dissemination Activ-
ities (Demonstrations, Publications, Participations. . .),” EuQoS Deliverable
D6.2.6, CEC Deliverable Number 004503/Martel/DS/6.2.6/A1, December
28, 2007.

• T. Braun, U. Ultes-Nitsche, M. Brogle, D. Milic, P. Lauer, T. Staub, G. Wa-
genknecht, M. Anwander, M. Wälchli, M. Wulff, C. Latze, M. Hayoz, C. Ehret,
and T. Nicola, “RVS Retreat 2007,” Quarten, Switzerland, December, 2007,
IAM-07-004.

• D. Morris, T. Staub, M. Brogle, et al., “Second Summary of Standardization
Documents,” EuQoS Deliverable D6.2.2, CEC Deliverable Number 004503/
REDZINC/DS/D6.2.2/A1, January 31, 2007.

207

List of Publications

• T. Staub, M. Brogle, et al., “Report on Teaching Experiences of the E-
Learning Course, the Improvements to be done and the Improvements Achieved
as well as the Newly Produced E-Learning Modules,” EuQoS Deliverable
D6.2.1, CEC Deliverable Number 004503/UoB/DS/D6.2.1/A1, December
26, 2006.

• Martin Potts, T. Staub, et al., “Second Report on Using and Disseminating
Knowledge, Including Description of Dissemination Activities (e.g. Demon-
strations, Publications),” EuQoS Deliverable D6.2.3, CEC Deliverable Num-
ber 004503/Martel/DS/6.2.3/A1, December 26, 2006.

• M. Günther, M. Potts, M. Brogle, T. Staub, et al., “Report on Raising Public
Participation and Awareness,” EuQoS Deliverable D6.1.6, CEC Deliverable
Number 004503/Telscom/DS/D6.1.6/A1, April 30, 2006.

• M. Potts, T. Staub, M. A. Steinemann, et al., “Plan for Using and Dissem-
inating Knowledge, Including Description of Dissemination Activities (e.g.
Demonstrations, Publications),” EuQoS Deliverable D6.1.5, CEC Deliver-
able Number 004503/Martel/DS/D6.1.5/A1, February 6, 2006.

• T. Staub, T. Bernoulli, et al., “D6.1.3 Description of Complete Pilot Course
Implementation and Course Teaching / Learning Platform Including Evalu-
ation Report from Pilot Course Delivery,” EuQoS Deliverable D6.1.3, CEC
Deliverable Number 004503/UoB/DS/D6.1.3/A1, February 6, 2006.

• L. Dairaine, E. Lochin, T. Staub, et al., “First Version of Standardization
Documents, EuQoS Deliverable D6.1.2,” CEC Deliverable Number 004503/
NICTA/DS/D6.1.2/A, September 2, 2005.

• T. Braun, M. Brogle, D. Milic, M. Scheidegger, T. Staub, T. Bernoulli,
M. Wälchli, A. Weyland, and M. Danzeisen, “RVS Retreat 2005,” Griesalp,
Switzerland, June 27 - 30, 2005, IAM-05-002.

• M. A. Alain Steinemann, T. Bernoulli, T. Staub, et al., “Specification of Con-
tents and Didactical Concept of the Course to be Offered,” EuQoS Deliver-
able D6.1.1, CEC Deliverable Number 004503/UoB/DS/D6.1.1./A1, May
31, 2005.

208

! " # $ % " & '(()

!"#$%%&'()*&+,&'-%*&+&./0&12

34#"567(84#"9 **

:4)(;<"=8>##"(9 **

/)>?;"8!48!9 @@@@@@@@@@@@@@@@@@@@@@@@@@@@@

A4BC"=7(&&&&! :4%)"(&&&&! &&&&&&&&&&&D;%%"()4);78&&&&!

E;)"=&?"(&'(-";)9 **

**

**

0";)"(F8&?"(&'(-";)9 **

**

FBC&"(<=$("&C;"(#;)G &?4%%& ;BC&?;"%"&'(-";) &%"=-%)$8?;!&H"(I4%%)&>8?&<";8"&48?"("8&4=%&?;"&

48!"!"-"8"8&J>"=="8&-"8>)K)&C4-"*&'=="&/)"=="8G&?;"&LM()=;BC&7?"(&%;88!"#$%%&4>%&J>"=="8&

"8)87##"8&L>(?"8G&C4-"&;BC&4=%&%7=BC"&!"<"88K";BC8")*&:;(&;%)&-"<488)G&?4%%&48?"(8I4==%&

?"(&/"84)&!"#$%%&'();<"=&NO&'-%4)K&P&A>BC%)4-"&7&?"%&Q"%")K)"%&H7#&2*&/"R)"#-"(&PSSO&

T-"(&?;"&U8;H"(%;)$)&K>#&V8)K>!&?"%&4>I&Q(>8?&?;"%"(&'(-";)&H"(=;"C"8"8&E;)"=%&-"("BC);!)&;%)*

**

W()5D4)>#

U8)"(%BC(;I)

Staub Thomas

99-114-639

Informatik

X

Prof. Dr. Torsten Braun

Bern, 03.05.2011

Development, Testing, Deployment and

Operation of Wireless Mesh Networks

Curriculum Vitae

Personal Details

Name Thomas Staub

Date of Birth December 30, 1979

Address Tulpenweg 111

CH-3098 Köniz, Switzerland

Hometown Wohlen BE, Switzerland

Nationality Swiss

Education

2004 – 2011 Ph.D. student in Computer Science at the University of
Bern, Switzerland

2004 Master of Science in Computer Science, University of
Bern, Switzerland

1999 – 2004 Study of Computer Science at the University of Bern, mi-
nor fields in Mathematics and Microelectronics

1995 – 1999 Grammar school, Thun

211

	List of Figures
	List of Tables
	Introduction
	Problem Statement
	Development Phase
	Testing/Implementation Phase
	Deployment Phase
	Network Operation Phase

	Research Contributions
	Operating System and Management for WMNs
	Development and Testing Support
	WMN for Environmental Monitoring
	Deployment Support for an Ad-Hoc WMN
	Autonomous Deployment of a WMN using Unmanned Aerial Vehicles

	Summary of Contributions
	Thesis Outline

	Related Work
	Wireless Mesh Networks
	Routing
	Multi-Channel Communication
	Network Management

	WMN Nodes
	WMN Hardware Platforms
	Embedded Operating Systems Distributions

	Network Simulation and Emulation
	Network Simulation
	Network Emulation

	Existing WMN Deployments and Testbeds
	Outdoor Deployments
	Testbeds

	Deployment Support for Wireless Mesh Networks
	Unmanned Aerial Vehicle Hardware
	Regulations
	Conclusions

	I General Frameworks and Tools
	Operating System and Management for WMNs
	Introduction
	ADAM: Concept and Architecture
	Decentralised Distribution Mechanism
	Self-Healing
	Separation of Software and Configuration Data

	ADAM: Build System
	ADAM: Management Operation
	ADAM Distribution Engine
	Configuration Module
	New Node Module
	Software Update Module
	Command Module
	Lost Node Detection
	Web-Based Management

	Evaluation
	Conclusions

	Development and Testing Support
	Introduction
	VirtualMesh Concept and Architecture
	VirtualMesh Communication Protocol
	Host Virtualisation
	Client Implementation
	Wireless Simulation Server
	Components
	Message Flow
	Protocols

	ADAM/VirtualMesh Integration
	Evaluation
	VirtualMesh Test Setup
	Functional Evaluation using ADAM
	Performance Evaluation

	Conclusions

	II Application Specific Use Cases
	WMN for Environmental Monitoring
	Introduction
	Application Scenario
	Equipment
	Mesh Nodes and Antennas
	Power Supply for the Mesh Nodes
	Masts
	Wall Mounting
	Tools and Utilities

	Deployment Parameters
	Software
	Planning, Predeployment, and Deployment
	Evaluation
	Conclusions

	Deployment Support for an Ad-Hoc WMN
	Motivation
	OViS Concepts and Architecture
	Requirements
	Network Setup
	Multi-Channel Communication
	Message Flow between OViS Client and the Mesh Node

	OViS Mesh Nodes
	OViS Deployment Applications
	Evaluation
	Determination of RSSI Thresholds
	OViS Performance Evaluation
	Multi-Hop Throughput
	Multi-Channel Performance

	Conclusions

	Autonomous Deployment of a Wireless Mesh Network using Unmanned Aerial Vehicles
	Introduction
	Scenario
	Search Mode
	Positioning of UAVs
	Single Airborne Relay
	Multi-Hop Airborne Relay

	System Components
	Communication Types
	Prototype

	Communication Protocol
	Protocol Messages
	Message Flow

	Remote Control Client
	Evaluation
	Determination of Optimal Signal Strength Thresholds
	Multi-Hop Performance
	Effect of Too Far Away Nodes

	Conclusions

	Conclusions and Outlook
	Summary
	Outlook

	Acronyms
	Bibliography
	List of Publications
	Curriculum Vitae

