Ad-hoc and Hybrid Networks
Performance Comparison of MANET Routing Protocols in Ad-hoc
and Hybrid Networks

Computer Science Project

done by:
Thomas Staub
staub@iam.unibe.ch

head:
Prof. Torsten Braun

assisted by:
Marc Heissenbttel

Computer Networks and Distributed Systems (RVS),
Institute of Computer Science and Applied Mathematics (IAM),
University of Berne, Switzerland

Februar 2004

Contents

Contents 1
[List of Figures| 4
List of Tables 4
4
5
(1.1 Mobile Adnoc Networks 5
(1.2 Hybrid Networks e 5
2 MANET Protocols 6
2.1 Dynamic Source Routing Protocol, 7
[2.1.1 Route DISCovely e 8
212 R Maintenanice 9
[2.2 Destination Sequenced Distance Vector Protocol 9
[2.2.1 Routing Table Management, 9
[2.2.2 Responding to Topology Changes 10
[2.3Ad-hoc On Demand Distance Vector Routing Protocol 10
[2.3.1 Route Discovefy 10
2.5.2 Route Maintenance o 11
2.4 Optimized Linkstate Protodol 11
[2.4.1 NeighborSensing e 11
[2.4.2 Message Flooding and MultipointRelays 11
[2.4.5 Spreading Topology Informations and Calculating Routes 12
[3 Mobility Models| 13
3.1 Random Walk Mobility Modeél, 13
3.2 Random Waypoint Mobility Model 13
[3.3 Random Direction Mobility Modgl 14
4~ Network Simulator 2 (ns2) 14
4.1 StructureofnsS2 e 14
4.2 Functionalitiesofms 15
4 1Ir FIHES e e e e 16
4.5.1 OldWireless Trace File Format 16
4.3.2 New Wireless Trace FlleFormat 17

5.1 Metrics e 17
B5.2 ScenarioManet e 20
6.2.1 MovementModel e 21
£.2.2 CommunicationPatteins L. 21
(.3 ScenarioHybrid 21
£.3.1 Communication Patteins 22
o _Conclusion 22
6.1 Resullls. e 22
0.2 Forthcoming Studies 27
Referenceks 28
I/A_Source Code 30
[B- Source Code Hybrid 32

Abstract

An ad-hoc network is an accumulation of wireless nodes forming a provisional network without
any established infrastructure. Today, there exist various routing protocols for this environment.
This paper compares the performance of some of them. Furthermore, the idea of extending a
cellular network with ad-hoc routing facilities is haunted and the performance of some existing
ad-hoc routing protocols is tested. The performance tests are done by using Network Simulator
2 (ns2). By doing the simulations the need of a routing protocol adapted to the new situation is
shown.

List of Figures

[l Wireless Network Structuries o L 5
[2 Asymmetriclinkl 6
(3 HybridnetworK 6
4 Classification of non-location-based ad-hoc routing protdcols 7
[o DSR Route Discovery exampl€wants to discoveraroute®|. 8
(§] Comparison of two flooding techniqlles 12
[/ SimplifiedUsers Viewof NS 14
(S] Olcland C++:theduallty e 15
9 Packet delivery ratiowith 1, 3, s trafficsources 23
[10 Packet delivery ratio with different MANET routing protodols 24
(11 Routing overnead with 1, 3, Strafficsourices 25
M2 ERRORmMessagesin AODV i 25
13 Routing overhead with different MANET routing protogols 26
14 Packet delivery ratio with 1, 3, 5 traffic sources in a hybrid network (AODV) 26
List of Tables
(1 trace file actionflags e 17
[2 WirelessEvent(old) 18
[OId trace according to the used protocol (Partl) 18
14 Old trace according to the used protocol (Pajtil) 19
[o Old trace according to the used protocol (Partiil) 19
[6 Flag types new wireless traceformat 20
[/ Formatofawirelessevent(neiwv), 20
Listings
(1 MANET Simulation Script 30
[2 Hybrid Simulation Scripto 32
[Running simulation for all scenariofiles 36
14 Generating Routing Overhead Plots 36
[o Generating Packet DeliveryPlptso oo oo 37

1 General

1.1 Mobile Adhoc Networks

A mobile ad-hoc network (MANET) is a collection of nodes, which have the possibility to connect on

a wireless medium and form an arbitrary and dynamic network with wireless links. That means that
links between the nodes can change during time, new nodes can join the network, and other nodes
can leave it. A MANET is expected to be of larger size than the radio range of the wireless antennas,
because of this fact it could be necessary to route the traffic through a multi-hop path to give two
nodes the ability to communicate. There are neither fixed routers nor fixed locations for the routers
as in cellular networks - also known as infrastructure networks 1(a)). Cellular networks consist
of a wired backbone which connects the base-stations. The mobile nodes can only communicate over
a one-hop wireless link to the base-station, multi-hop wireless links are not possible. By contrast, a
MANET has no permanent infrastructure at all. All mobile nodes act as mobile routers. A MANET

is depicted in Figl 1(B).

mobile router
mobile node with routing facility

(a) Infrastructure Network (b) Mobile Ad-hoc Network

Figure 1: Wireless Network Structures

A MANET is highly dynamic. Links and participants are often changing and the quality of the
links as well. Furthermore, asymmetric links are possible as you can see an examplg]in Fig 2. Node
Ais in transmission range of node B, on the other hand node B is not in range of node A. There exist
other reasons for asymmetric links such as a higher signal-to-noise ratio for node A than for node B.

1.2 Hybrid Networks

In hybrid networks the concepts of cellular networks and mobile ad-hoc networks are mixed. On one
side we have a cellular network, on the other side there are mobile nodes with routing facilities. With

5

- - i
s . =
\ Fa Uk ;g

N \ s
'~ N7

Figure 2: Asymmetric link

this approach it is possible to have multi-hop routes between mobile nodes and the base-station. The
covered area of a base-station becomes larger|(Fig. 3). The idea is to gain more efficiency out of the
existing infrastructure, to cover wider areas with less fixed antennas and base-stations and to reduce
power consumption|_[1] shows the benefits of enhancing cellular network with ad-hoc technologies.

_]
'y, - ~ - ~
/'5'"'11, N \\\\\: e ~
iy, S | A
— ‘g / \
/ . = / N \
/ A . \ / \ \
A Y P \
{ A4 i { \ 1
| -'\"*\E m’ |
A}
\ \ / \ \ !
' /)
\ . \ , \ s /
] \ . ’
\ / \ m 7
AN iy, - ~ 7
- $ Hy N — _
~-& iy, I
§] 3
$ TLLL D7 ss
U, I,u\un\“
ﬁ' u

nimn connection between mobile nodes (adhoc routing)
- = . connection between mobile node and basestation

Figure 3: Hybrid network

2 MANET Protocols

New routing protocols are needed to satisfy the specific requirements of mobile ad-hoc networks.
Fig. [4 gives an overview of MANET routing protocols. There exists another large family of ad-
hoc routing protocols, which are location-based. Nodes must be able to determine their location, for
example with GPS, to use these protocols. They are not treated in this project. Two conceptually
different approaches exist for the non-location-based protdcols [2]:

Table-driven (or proactive) The nodes maintain a table of routes to every destination in the network,
for this reason they periodically exchange messages. At all times the routes to all destinations
are ready to use and as a consequence initial delays before sending data are small. Keeping

6

routes to all destinations up-to-date, even if they are not used, is a disadvantage with regard
to the usage of bandwidth and of network resources. It is also possible that the control traffic
delays data packets, because queues are filled with control packets and there are more packet
collisions due to more network traffic. Proactive protocols do not scale in the frequency of
topology change. Therefore the proactive strategy is appropriate for a low mobility network.

On-demand (or reactive) These protocols were designed to overcome the wasted effort in maintain-
ing unused routes. Routing information is acquired only when there is a need for it. The needed
routes are calculated on demand. This saves the overhead of maintaining unused routes at each
node, but on the other hand the latency for sending data packets will considerably increase. Itis
obvious that a long delay can arise before data transmission because it has to wait until a route
to the destination is acquired. As reactive routing protocols flood the network to discover the
route, they are not optimal in terms of bandwidth utilization, but they scale well in the frequency
of topology change. Thus this strategy is suitable for high mobility networks.

Routing protoceols for MANET

| hybrid

proactive

/N

DEDY OLER ZRE D&R ADDV

reactive

FER TORA

AEBR

Figure 4. Classification of non-location-based ad-hoc routing protocols

2.1 Dynamic Source Routing Protocol

The Dynamic Source Routing Protocol (DSR) is a reactive routing protocol (as discussad in [3]). By
the means of this protocol each node can discover dynamically a source route to any destination in
the network over multiple hops. It is trivially loopfree owing to the fact that a complete, ordered list
of the nodes through which the packet must pass is included in each packet header. The two main
mechanisms of DSR afRoute DiscoverandRoute Maintenangavhich work together to discover

and maintain source routes to arbitrary destinations in the network.

2.1.1 Route Discovery

If a nodeS wants to send to a destination nddeit needs a source rout8.searches its Route Cache

for a valid route toD. If the Route Cache contains a valid route, n&directly fills this route into

the header of the packet and sends the data packet following this sequence of hops to the destination
D. No Route Discovery is carried out in this case. If no route is found in the Route Cache, a Route
Discovery is initiated.

ROUTEIREQUEST .. ~ \
1 e

~ -
- > id=2 RRQ S}@f ’\d: 2, RRQ: 512
@__Icﬂ_—aar@-%_b@--—— .

L4 ~

4
™~ ’ -~ -..AO
-~
s
s 3

- &

20

Figure 5: DSR Route Discovery examp®wants to discover a route

Sinitiates the Route Discovery by transmitting a ROUTE REQUEST message as broadcast (Fig.
[5). All nodes in transmission range will receive this message. Non-target nodes will add their address
to the route record in the packet and forward the packet when received the first time. They check
the request id and source node id to avoid multiple retransmissions and if their address is already in-
cluded in the route record to avoid loops. The target Mddends a ROUTE REPLY when it receives
a ROUTE REQUEST. In case of bidirectional links the ROUTE REPLY uses the reversed route of the
ROUTE REQUEST. If the links are unidirection&, will examine its own Route Cache for a route
to S and use this to send the ROUTE REPLY to the initigBoff no route is found in Route Cache
of D, D will start its own Route Discovery, but to avoid infinite numbers of Route Discoveries it will
piggyback the original ROUTE REQUEST message to its own.
The initiator receiving the ROUTE REPLY adds the source route to its Route Cache. When a node
starts a Route Discovery it stocks the data packet in the send buffer. The send buffer should imple-
ment strategies to avoid buffer overflows, i.e. FIFO. The node should occasionally start a new Route
Discovery for the packets in the send buffer until a route is found and the packet can be sent to the
destination and removed from the buffer. Due to limited transmission ranges of the nodes it is possi-
ble that some nodes are not reachable at this time. This can cause lots of useless Route Discoveries.
The use of exponential back-off times between discoveries for the same target limits the wasting of
resources.
In order to raise performance, a node may complement its cache with routing information it gets
by overhearing or forwarding other packets. It is also possible that not only the destination node

8

replies to a ROUTE REQUEST, but also intermediate nodes using cached routes to the destination.
Furthermore, a ROUTE REQUEST can contain a hop limit.

2.1.2 Route Maintenance

The node which originates or forwards a packet using a source route is responsible for confirming
the receipt of the packet by the next node. In the situation of[Fi§oBginates a packet to nod2

over the node4 and2. In this caseS is responsible for receipt &, 1 for 2, and finally2 for S. A

packet is retransmitted until a receipt is received or the number of retransmissions is exceeded. This
confirmation is costless for DSR by using link-level acknowledgement frame defined by IEEE 802.11

or passive acknowledgement [4] (the forwarding of the packet to next but one from the next node is
looked as a confirmation by the node).

If no confirmation is received, the node transmits a ROUTE ERROR message to the original sender
indicating a broken link. The sender will remove this link from its cache and look for another source
route to the destination in its cache. If the route cache contains another source route, the node sends
the packet using this route. Otherwise, it will initialize a new Route Request.

In order to gain performance a node may salvage a data packet that creates the ROUTE ERROR
instead of discarding it. After transmitting the ROUTE ERROR the node searches its Route Cache
for a new source route. It replaces the source route in the data packet with the new source route, marks
the packet to be salvaged and resends the packet. An other mechanism shortens automatically a source
route when intermediate hops are no longer necessary. Additional improvements are piggybacking
ROUTE ERROR information on the next ROUTE REQUEST of the node and caching negative route
information (broken links are cached).

2.2 Destination Sequenced Distance Vector Protocol

The Destination Sequenced Distance Vector Protocol (DSDV) [5] is a proactive, distance vector pro-
tocol which uses the Bellmann-Ford algorithm. Compared to RIP one more attribute is added to the
routing table. The sequence number as new attribute guarantees loop-freedom. It makes it possible
for the mobile to distinguish stale routes from new ones and that is how it prevents loops. DSDV can
only handle bidirectional links.

2.2.1 Routing Table Management

The routing table in each node consists of a list of all available nodes, their metric, the next hop
to destination and a sequence number generated by the destination node. The routing table is used
to transmit packets through the ad hoc network. In order to keep the routing table consistent with
the dynamically changing topology of an ad hoc network the nodes have to update the routing table
periodically or when there is a significant change in the network. Therefore mobile nodes advertise
their routing information by broadcasting a routing table update packet. The metric of an update
packet starts with metric one for one-hop neighbors and is incremented by each forwarding node and

additionally the original node tags the update packet with a sequence number. The receiving nodes
update their routing tables if the sequence number of the update is greater than the current one or it
is equal and the metric is smaller than the current metric. Delaying the advertisement of routes until
best routes have been found may minimize fluctuations of the routing table. On the other hand the
spreading of the routing information has to be frequent and quick enough to guarantee the consistency
of the routing tables in a dynamic network. There exist two types of update packets. One is the full
dump which contains the entire routing table and must be periodically exchanged. The other is an
incremental update which only consists of the information changed since the last full dump.

2.2.2 Responding to Topology Changes

DSDV responds to broken links by invalidating all routes that contain this link. The routes are imme-
diately assigned an infinite metric and an incremented sequence number. Broken links can be detected
by link and physical layer components or if a node receives no broadcast packets from its next neigh-
bors for a while. Then the detecting node broadcasts immediately an update packet and informs the
other nodes with it. If the link to a node is up again, the routes will be re-established when the node
broadcasts its routing table.

2.3 Ad-hoc On Demand Distance Vector Routing Protocol

The Ad-hoc On demand Distance Vector routing protocol (AODV) [6] joins mechanisms of DSR and
DSDV. The periodic beacons, hop-by-hop routing and sequence numbers (guarantee of loop-freedom)
of DSDV and the pure on-demand mechanism of Route Discovery and Route Maintenance from DSR
are combined.

2.3.1 Route Discovery

Whenever there exists a valid route between two communication peers, AODV Route Discovery is not
used. As soon as a route is missing between the two communication partners, e.g. when a new route
to a destination is needed, a link is broken, or the route has expired, the sourc8 bomblcasts

a ROUTE REQUEST message in order to find a route to the destin@tidime nodes forwarding

the ROUTE REQUEST store reverse routefor themselves back t& The ROUTE REQUEST
includes the last known sequence number for that destination. It is flooded through the network until
the destinatiorD or an intermediate node with a valid route @ois reached. When the ROUTE
REQUEST arrives at a node with a valid routeDQoor at D itself, the node sends back a ROUTE
REPLY message that consists of the number of hofi® amd the most recent sequence number. All
nodes that forward this ROUTE REPLY back toward the so@oé the ROUTE REQUEST build
aforward routeto D. Because of the hop-by-hop nature of AODV the nodes store only the next hop
instead of the entire route. As soon as the ROUTE REPLY message arrives at theS&icable

to send packets to the destinatidrby using the already built ufprward route

10

2.3.2 Route Maintenance

To maintain routes the nodes survey the link status of their next hop neighbors in active routes. The
node detecting a link break sends a ROUTE ERROR message to each of its upstream neighbors
to invalidate this route and these propagate the ROUTE ERROR to their upstream neighbors. This
continues until the source node is reached. Normally the nodes in AODV sends periodic HELLO
messages and the failure of reception of three consecutive HELLO messages from a neighbor is
handled as link error. Another possibility of link breakage detection uses link layer notification [6].
This alternative results in a pure on-demand nature of the link breakage detection. A broken link
cannot be identified until packets should be sent over the link. By contrast the HELLO messages in
standard AODV allows the detection of broken links before a packet must be forwarded, but this has
the disadvantage of use of bandwidth for the periodic transmission of HELLO messages. The ROUTE
ERROR message contains a infinite metric for the destination and causes the receiver to invalidate the
route. Now the node must start a new Route Discovery for a connection to this destination.

2.4 Optimized Linkstate Protocol

The Optimized Linkstate Protocol (OLSR) [7] is a proactive linkstate routing protocol. It uses periodic
messages for updating the topology information. OLSR is based on the following mechanisms:

e neighbor sensing based on periodic exchange of HELLO messages
¢ efficient flooding of control traffic using the concept of multipoint relays

e computation of an optimal route using the shortest-path algorithm

2.4.1 Neighbor Sensing

Neighbor sensing is the detection of changes in the neighborhood of the node. ANed=lled
neighbor of noda if the two nodes are directly linked, allowing data transmission in both directions
of the link. The nod€ is called a two-hop neighbor &, if nodeC is not neighbor of node and there
exists a symmetric link betweeh andB and a symmetric link betwed® andC.

For neighbor sensing the node periodically emits HELLO messages. The HELLO message con-
sists of the emitting node’s address, the list of his neighbors, including the link status (e.g. asymmetric
or symmetric). A node thereby informs its neighbors of which neighbors it has confirmed commu-
nication. By receiving a HELLO message, a node generates information describing its two-hop-
neighborhood and the quality of the links in its neighborhood. Each node maintains this information
set which is valid for a limited time only and has to be refreshed to keep it valid.

2.4.2 Message Flooding and Multipoint Relays

HELLO-messages are exchanged between neighbors only. These messages provide topology infor-
mation for the nodes. Because the size of a MANET can be considerable, there is a need for efficient

11

distribution of topological information in a network of any size. The task is to provide a mechanism
which allows spreading information to each node without unnecessary, duplicate retransmissions.
The multipoint relay (MPR) concept decreases the flooding overhead in contrast with full flooding.

o £ o
O
o 0
O O
O
@) O
O
© @
O O O
O
@] & &
(a) Pure Flooding (b) Multipoint Relays

Figure 6: Comparison of two flooding techniques

Full flooding A node retransmits broadcast packet after reception of its first copy, further duplicate
receptions are dropped and not forwarded (Fig.| 6(a)).

MPR flooding Each node chooses independently a set of nodes as MPRs (multipoint relays). For
this purpose it utilizes the information about its two-hop neighbors to get a minimal MPR set.
This set is chosen so that a node reaches all its two-hop neighbors through its MPR relays. Each
nodes maintains a list of nodes which selected it as MPR (MPR selector set). A MPR node only
retransmits a broadcast packet if it is received from a node for which it is located in the MPR
selector set, further receptions of the same packet are droppefl (Fig. 6(b)).

2.4.3 Spreading Topology Informations and Calculating Routes

Finally it is important to spread the topology information to all nodes. All nodes with a non-empty
MPR selector set periodically send a topology control message (TC-message). The TC messages are
spread in the network as described in 2.4.2. A TC message contains the address of its originator and
the MPR set of that node. All MPRs of a node get the reachability information of that node. As a
result all nodes will receive a partial topology graph by using that information and the links of their
set of links to their MPR selectors. The shortest path algorithm is applied to the partial topology graph
for computing the optimal path. Topology information in each node is only valid for a specific period

of time and when it is expired it is removed from the graph.

12

3 Mobility Models

To evaluate the performance of a protocol for an adhoc network, it is necessary to test the protocol
under realistic conditions, especially including the movement of the mobile nodes. A survey of dif-
ferent mobility models follows (cf.[[8]). This includes the Random Waypoint Model that is used in
this article.

3.1 Random Walk Mobility Model

This model is based on random directions and speeds. By randomly choosing a direction l@etween
and27 and a speed between 0 avig,.., the mobile node moves from its current position. A recalcu-
lation of speed and direction occurs after a given time or a given distance walked. The random walk
mobility model is memoryless. Future directions and speeds are independent of the past speeds and
directions. This can cause unrealistic movement such as sharp turns or sudden stops. If the specified
time or distance is short, the nodes are only walking on a very restricted area on the simulation area.

3.2 Random Waypoint Mobility Model

A mobile node begins the simulation by waiting a specified pause-time. After this time it selects a
random destination in the area and a random speed distributed uniformly bedwelsrandV/,, ...

After reaching its destination point, the mobile node waits again pause-time seconds before choosing
a new way point and speed.

The mobile nodes are initially distributed over the simulation area. This distribution is not repre-
sentative to the final distribution caused by node movements. To ensure a random initial configuration
for each simulation, it is necessary to discard a certain simulation time and to start registering simu-
lation results after that time.

The Random Waypoint Mobility Model is very widely used in simulation studies of MANET. As
described in[[9] the performance measures in mobile ad-hoc networks are affected by the mobility
model used. One of the most important parameters in mobile ad-hoc simulations is the nodal speed.
The users want to adjust the average speed to be stabilized around a certain value and not to change
over time. They also want to be able to compare the performance of the mobile ad-hoc routing proto-
cols under different nodal speeds. For the Random Waypoint Mobility Model a common expectation
is that the average is about half of the maximum, because the speeds in a Random Waypoint Model
are chosen uniformly between 0 m/s ang,.. But is this the average speed really reached in sim-
ulations? Not at all, the studies inl [9] show that the average speed is decreasing over time and will
approach 0. This could lead to wrong simulation results.

This phenomenon can be intuitively explained as follows. In the Random Waypoint Mobility
Model a node selects its destination and its speed. The node keeps moving until it reaches its desti-
nation at that speed. If it selects a far destination and a low speed around 0 m/s, it travels for a long
time with low speed. If it selects a speed né&ay,. the time traveling with this high speed will be
short. After a certain time the node has traveled much more time at low speed than at high speed. The

13

average speed will approach 0 m/s. The suggestian in [9] to prevent this problem is choosing, e.g. 1
m/s instead of 0 m/s dg,,;,,. With this approach the average speed stabilizes after a certain time at a
value belowl /2 x V.

3.3 Random Direction Mobility Model

To reducedensity wave# the average number of neighbors by the Random Waypoint Model the
Random Direction Mobility Model was createdensity wavesre the clustering of nodes in one

part of the simulation area. For the Random Waypoint Mobility Model the probability of choosing

a location near the center or a way point which requires traveling through the center of the area is
high. The Random Direction Mobility Model was invented to prevent this behavior and to promote a
semi-constant number of neighbors. The mobile node selects a direction and travels to the border of
the simulation area. If the boundary is reached, the node pauses for a specific time and then chooses
a new direction and the process goes on. Because of pausing on the border of the area, the hop count
for this mobility model is much higher than for most other mobility models.

4 Network Simulator 2 (ns2)

The Network Simulator 2 (ns2) is a discrete event driven simulator developed at UC Berkeley [10, 11].

It is part of the VINT project. The goal of ns2 is to support networking research and education. It

Is suitable for designing new protocols, comparing different protocols and traffic evaluations. Ns2 is
developed as a collaborative environment. It is distributed freely and open source. A large amount of
institutes and people in development and research use, maintain and develop ns2. This increases the
confidence in it. Versions are available for FreeBSD, Linux, Solaris, Windows and Mac OS X.

4.1 Structure of ns2

ns2 is built using object oriented methods in C++ and OTcl (object oriented variant of Tcl). As you

OTcl: Tcl interpreter with
E object-oriented extensions _bljj P Analysis

i i Results
OTel Script NS Simulator Library Tracefiles
Simulation - Event Scheduler
rogram - Network Components NAM
- Network Setup Network Animator

Figure 7: Simplified User’s View of NS

can see in Fig.|7, ns2 interprets the simulation scripts written in OTcl. A user has to set the different
components (e.g. event scheduler objects, network components libraries and setup module libraries)
up in the simulation environment. The user writes his simulation as a OTcl script, plumbs the network

14

components together to the complete simulation. If he needs new network components, he is free to
implement them and to set them up in his simulation as well. The event scheduler as the other major
component besides network components triggers the events of the simulation (e.g. sends packets,
starts and stops tracing). Some parts of ns2 are written in C++ for efficiency reasons. The data path
(written in C++) is separated from the control path (written in OTcl). Data path object are compiled
and then made available to the OTcl interpreter through an OTcl linkage (tclcl) which maps methods
and member variables of the C++ object to methods and variables of the linked OTcl object. The C++
objects are controlled by OTcl objects. It is possible to add methods and member variables to a C++
linked OTcl object. A linked class hierarchy in C++ has its corresponding class hierarchy in OTcl
(fig. [8). Results obtained by ns 2 (trace files, chiap| 4.3) have to be processed by other tools, e.g. the
Network Animator (NAM), a perl or a awk script and gnuplot[12].

OTcl cbjecte

oTel/Ct+ eplits ob
(use tclcl api)

%C++ o

Figure 8: OTcl and C++: the duality

4.2 Functionalities of ns
Functionalities for wired, wireless networks, tracing, and visualization are available in ns2.
e Support for the wired world include
— Routing DV, LS, PIM-SM
— Transport protocols: TCP and UDP for unicast and SRM for multicast
— Traffic sources: web, ftp, telnet, cbr (constant bit rate), stochastic, real audio
— Different types of Queues: drop-tail, RED, FQ, SFQ, DRR

— Quality of Service: Integrated Services and Differentiated Services
— Emulation

e Support for the wireless world include

15

— Ad hoc routing with different protocols, e.g. AODV, DSR, DSDV, TORA
— Wired-cum-wireless networks
— Mobile IP
— Directed diffusion
— Satellite
— Senso-MAC
— Multiple propagation models (Free space, two-ray ground, shadowing)
— Energy models
e Tracing

e Visualisation

— Network Animator (NAM)
— TraceGraph

o Utilities

— Mobile Movement Generator

setdest—n <num.of_nodes> —p pause-time —s <maxspeed
—t <simtime> —x <maxx> —y <maxy>

— Generating Traffic Patterns (CBR / TCP traffic)

ns cbrgen.tcl Ftype cbr | tcp] [—nn nodes] [-seed seed]
[-mc connections] [rate rate]

4.3 Trace Files

There exist two different trace file formats (old and new)l [13, 11]. A new trace file format was
introduced apart from the wireless trace format with joining the tracing in wired and wireless parts in
mind.

4.3.1 Old Wireless Trace File Format

A trace in this format always begins with one of the characters in fable 1. This character is succeeded
by a white space separated list of values specific for the used protocol and the type of the message.
For all wireless traces the values specified in the table 2 are recorded. | Table 8] table 4 gnd table 5
contain the values for the protocols used in the simulations.

16

4.3.2 New Wireless Trace File Format

The structure of the new wireless trace file format is changed to be integrated in the new trace file
format of the entire simulator. The lines of the trace files begin with the same action flagg [table 1)
as in the old format. But this is followed by flag/value pairs. The flags begin with a dash and a letter
that specifies the flag type (see tgble 6). The trace format of a wireless event is shown([ih table 7. To
receive a more complete list see[[13].

5 Simulations

5.1 Metrics

The following metrics are often chosen to compare the different routing protocols:

Packet delivery ratio The packet delivery ratio in this simulation is defined as the ratio between the
number of packets sent by constant bit rate sources (CBR, "application layer”) and the number
of received packets by the CBR sink at destination.

> CBR packets received by CBR sinks

ket del ti
packet dellvery ratie= >~ CBR packets sent by CBR sources

(1)

It describes percentage of the packets which reach the destination.

Routing overhead The sum of all transmissions of routing packets sent during the simulation. For
packets transmitted over multiple hops, each transmission over one hop, counts as one trans-
mission.

routing overhead- Ztransmissions of routing packets (2)

Routing overhead is important to compare the scalability of the routing protocols, the adaption
to low-bandwidth environments and its efficiency in relation to node battery power (in that send-
ing more routing packets consumes more power). Sending more routing packets also increases
the probability of packet collision and can delay data packets in the queues.

send
r | receive
drop
forward

(7]

—

Table 1: These four characters specify the action that was processed to the packet.

17

| with position | without position || Type | Value

$ $ s—r—d—f | action type
$.9d $.9d double Time
$d $d_ int Node ID
($6.2d double X Coordinate
$6.2d) double Y Coordinate
$3s $3s string Trace Name
$4s $4s string Reason
$d $d int Event Identifier
$s $s string Packet Type
$d $d int Packet Size
[$x [$x hexadecimal| Time To Send Data
$x $x hexadecimal Destination MAC Address
$x $x hexadecimal Source MAC Address
$x] $X] hexadecimal Type (ARP, IP)

Table 2: Format of a wireless event

| Event | Format [Type | Value \

ARP | -------
$s string | REQUEST REPLY
$i int Source MAC Address
$i int Source Address
$i int Destination MAC Address
$i] int Destination Address
DSR $i int Number of Nodes Traversed
[$i int Routing Request Flag
$i] int Route Request Sequence Number
[$i int Routing Reply Flag
$i int Route Request Sequence Number
$i int Reply Length
$i int Source of Source Routing
->$i] int Destination of Source Routing
[$i int Error Report Flag
$i int Number of Errors
$i int Report to Whom
$i int Link Error From
- >8I int Link Error To

Table 3: Additional trace information according to the used protocol Part I: ARP, DSR

Path optimality The difference between the number of hops a packet took to reach the destination
and the optimal number of hops to a destination (shortest path).

path optimality= hops a packet took to reach destinatiooptimal number of hops (3)

18

| Event | Format [Type | Value

AODV Request [Ox$x hexadecimal Type
$i int Hop Count
$i int Broadcast ID
[$i int Destination
$i] int Destination Sequence Number
[$i int Source
$i] int Source Sequence Number

(REQUEST)

AODV [Ox$x hexadecimal Type
$i int Hop Count
$i int Broadcast ID
[$i int Destination
$i int Destination Sequence Number
$d double Lifetime
($s) string REPLY, ERROR, HELLO

Table 4: Additional trace information according to the used protocol Part 1l: AODV

| Event | Format [| Type | Value \
P [-------
[$i:$i int:int Source IP Address : Port
$i:$i int:int Destination IP Address : Port
$i int TTL
$i] int Next Hop Address
TCP [$i int Sequence Number
$i] int Acknowledgment Number
Pi int Number Of Times Packet Was Forwarded
$i int Optimal Number Of Forwards
CBR [$i] int Sequence Number
$i int Number Of Times Packet Was Forwarded
$i int Optimal Number Of Forwards
IMEP [$c char Acknowledgment Flag
$c char Hello Flag
$c char Object Flag
0x$04x || hexadecimall Length

Table 5: Additional trace information according to the used protocol Part lll: IP, CBR, IMEP

If there is no congestion nor other "noise”, path optimality measures the ability to use efficiently
network resources by taken the shortest path.

End to end delay The end to end delay is defined as time between the point in time the source want

19

Node Property

IP Level Packet Information
Next Hop Information

MAC Level Packet Information
Application Level Packet Information

oI —=z

Table 6: Flag types new wireless trace format

| Flag | Type | Value \
s—r—d—f | action type
-t double Time
-Ni int Node ID
-Nx | double X Coordinate
-Ny | double Y Coordinate
-Ne | double Node Energy Level
-NI string Trace Name (AGT, RTR ...)
-Nw | string Drop Reason
-Hs | int Node ID
-Hd | int Node ID For Next Hop
-Ma | hexadecimal|l Duration
-Ms | hexadecimall Source Ethernet Address
-Md | hexadecimall Destination Ethernet Address
-Mt | hexadecimal| Ethernet Type
-P string Application Type (arp, dsr, cbr, tcp, ..})

Table 7: Wireless event using the new trace format

to send a packet and the moment the packet reaches it destination.

end to end delay- Tyestination receives packet.source want to sent packet (4)

The end to end delay is important because today many applications (e.g. ip telephony) need a
small latency to deliver usable results. It shows the suitability of the protocol for these applica-
tions.

5.2 Scenario Manet

A pure Manet scenario similar to the simulationslin/[14] was set up in order to gain some experience
and to verify the structure of the experiment. The simulation settings were as follows:

e 50 wireless nodes

e simulation area of500m x 300m. A rectangle area is chosen to have longer distances between
the nodes than in a quadratic area, i.e. packets are sent over more hops.

20

IEEE 802.11 MAC

Two ray ground propagation model

node mobility defined by random waypoint movement model.

constant bit rate traffic

e UDP

5.2.1 Movement Model

The movement of the nodes is defined by tliedom waypointnodel as described in chgp. 3.2. The
movement scenario files are generated bysetdesprogramm included in the ns2 distribution. The
scenario files are charaterized by feusetime The simulation runs for 900 seconds of simulated

time with movement patterns for seven different pause times: 0, 30, 60, 120, 300, 600, 900 seconds.
A pause time of 900 seconds corresponds to a static simulation that is no motion of the nodes at all.
On the contrary by selecting zero seconds as pause time there is continuous motion of the nodes.
Because the performance of the routing protocols is very depended to the movements of the nodes, 10
different movement patterns for each of the seven selected pause times are generated. Each protocol
Is tested with the same 70 movement patterns. Sétdesprogramm offers only the possibility to
specify aVi,4z, Vinin 1S S€t to zero.

5.2.2 Communication Patterns

According to the simulation ir [14] the traffic sources are constant bit rate (CBR) sources. At 150s
of simulated time the traffic sources start to send packets of 64 bytes. The sending rate is fixed to 4
packets per second. Three different communication patterns (one, three and ten sources) were gen-
erated. All communications are peer-to-peer in these patterns. Combining these three patterns with
the 70 movement patterns (chap. 5.2.1) results in 210 different scenario files. For the pure MANET
simulation all these scenario files were tested with each of the three routing protocols (AODV, DSDV,
DSR).

5.3 Scenario Hybrid

The pure Manet situation is enlarged by a base station which is located at the center of the simulation
area (750, 150). The simulation settings are the same as in the Manet situation[(chap. 5.2). The
movement model stays the same, too.

21

5.3.1 Communication Patterns

The communication patterns are adapted to the new situation. Three files are generated (one, three,
ten connections). The base station is always one of the communication peers. Every communication
Is directed to the base station.

6 Conclusion

6.1 Results

There exist some stumbling blocks along the path to valid results of simulations of ns2. First of
all the compilation of the simulator itself is more difficult as assumed. Some changes in the make
file and in some source files were required to build ns2 on a MacOS X machine. The installation
on the sun workstation at the university and on a linux computer was easier, there were only some
operation system independent patches necessary. These Patches for gcc version 3.2 and for correcting
DSR came from the ns2 bug fixes website and the ns2 mailing-list. The attempt to integrate the
OLSR routing protocol (INRIA and NRL version) failed because of wrong ns2 versions, but also with
correct versions it was not possible to get valid results. The reasons were unknown. Unfortunately the
protocols DSR and DSDV did not supply any valid results in the hybrid situation. By searching the
mailing-list indications were found that DSR does not work in hybrid situation. There are no reasons
found for DSDV. The implementations of DSR and DSDV in ns2 need further adaption to get them
work in the hybrid case but this is out of scope of this computer science project.

The results of the manet simulations are similiar to the resulis in [14]. Certain differences exist in
the results.

Manet AODV The curve for ten sources (Fif. 9(a)) shows a lower packet delivery ratio for pause
times>300s than in the reference paper. Besides the routing overhead for ten sources does not
converge to a small value for large pause times. The standard implementation of AODV in ns2
uses HELLO messages (as described in chapter| 2.3.1) for link breakage detection instead of
the pure on-demand approach (link layer) used_ in [14]. This causes more routing packets than
using only the link layer breakage detection - even with no mobility. Further a lot of route error
messages were sent (Fig] 12). No explanation for these error messages was found. The routing
overhead (Fig. T1(R)) shows a similiar curve than the curve with the error messagés|(Fig. 12).

Manet DSDV The curve of the packet delivery ratio (Fjg. 9(b)) look alike the curve in the reference
paper. DSDV fails to converge below 300s pause time. By high mobility DSDV acts very badly.
Because of stale routing table entries packets are sent or forwarded over broken links and packet
delivery ratio breaks down for lower pause times. DSDV needs a certain time to stabilize the
routes and because of this reason it is not very usable for high mobility scenarios.

Manet DSR The packet delivery ratio for one source (Hig. 9(c)) is significantly lower than for three
or ten sources. This is the effect of promiscuous listening (overhearing) of all the nodes (see

22

chaptef 2.1]1). If there is more traffic in the network, the nodes overhear more routes and have
more information about the network. On the other hand if only one source is sending packets,
the knowledge of the network is limited and more packets are lost.

In the hybrid case no comparison of protocols was possible because of no available implementations
of DSR, DSDV and OLSR which run in a hybrid scenario. AODV is performing in the same manner
as in the pure manet case (Fig.| 14). The same effect occurs. The packet delivery ratio breaks down
for ten sources. The effect of many error messages seems to be increased by the fact of sending all
messages over the base-station. Adapting the implementation of other protocols is necessary to be
able to compare the performance of multiple protocols but this is out of scope of this project.

packet delivery ratio
packet deliw

(a) AODV (b) DSDV

packet delivery ratio

Figure 9: Packet delivery ratio with 1, 3, 5 traffic sources

23

ery

packet deliv

(c) 10 connections

T T 1809% T T T
»—~\",,’f““‘_____>44444__4__>44444/L4444____L44447 b g T T .
R S
. peren e +
[k . 95%
-
o
T oom
H
2
= +
i E
H
3 esx
i
2
-
]
T osex
i
= .
i
S
75%
FOTV ——
SIY -t
DSR -
I L I L L I L i I
100 206 300 4@8 sa6 L 7a8 200 ELL) a -t a8 306 48D 568 £00 700 800
pauss-tine pause— time
1@ax T T T T T T T
L AP Sopss e
N =
95% [) 4
e
@
L em
n
2
> .
£ +
2
S oBsn
l
k]
-
11
d eax
o .
= .
-
75%
7e% L
B 100 20 300 1@ sea can 7aa
pause- tine

Figure 10: Packet delivery ratio with different MANET routing protocols

24

Routing Dwerhead

110000 T T T T T T T T 55000 T T T T T T T
JEEEEE) [
ELLLTS
45008
20008
46068
ECLEENS g 3
b
H
cepea |- B § 35000 1
]
50000 - B 2 soee0 B
ol *.
soe00 |- 1 : e
® 25808 - S q
0008 [! —
20000 e 1
20000 [ty L . -
T o
10000 [* T EBarEes 15002
3 saurces
a I I L . L 1 10008 I I L L I
a 168 288 268 460 506 11 7a8 200 L) B 100 268 306 4@8 560 11}

rauting ousrhesd routing ausrhead

(a) AODV (b) DSDV

45060

48060

35080

zB080

25060

20060

Routing Overhead

15008

16008
5860
B..SOMEGES -
[
a 168 L ELE] 480 s8n 688 7om L 988

routing ouerhesd

(c) DSR

Figure 11: Routing overhead with 1, 3, 5 traffic sources

2588

L

1508

1099 [El

Routing Errors

280 388 488 LT &an
error packets

Figure 12: ERROR messages in AODV

25

erhead

Routing Ow

25808

20060 -

15808 [

10088

saoe [

(a) 1 connection

erhead

Routing v

20060

7e060

£BEED [

seeen

zeeen -

10080 [

erhead

Routing 0w

20000 —
4,
ELLEER S
-
26000 - *
15000 [
18008 | 2,
-3
ECEEN S e
g
o I I I L I
a 188 280 300 408 580 11}

routing ousrhesd

(b) 3 connections

(c) 10 connections

Figure 13: Routing overhead with different MANET routing protocols

Yy

packet deliver

Figure 14: Packet delivery ratio with 1, 3, 5 traffic sources in a hybrid network (AODV)

26

6.2 Forthcoming Studies

Further investigations can be done on the following topics:

e Explanation of the sudden break-down of AODV in the manet situation. Why AODV produces
a large quantity of ERROR messages?

e Simulation using AODV+, an enhanced implementation of AODV which is able to detect gate-
ways, in the hybrid situation [15]

¢ \erification of the implementation of the different routing protocols
¢ \erification of the mobility model and the propagation model

¢ \erification of the 802.11 MAC layer. There exist some mails in the ns2 mailing-list that point
to a possibly broken implementation of 802.11 in the ns2 version 2.26.

e Integration of power consumption. An energy model has to be defined and / or verified. The
routing protocols can be tested in terms of power consumption. New routing protocols can be
developed using power aware routing.

e Test other protocols in the hybrid situation. The implementations of different routing protocols
in ns2 have to be adapted to use them in hybrid simulations.

e Development of a new routing protocol specialized for hybrid networks.

27

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]
[13]

H.-Y. Hsieh and R. Sivakumar, “On using the ad-hoc network model in cellular packet data
networks,” inACMMOBIHOC’02 2002.

E. M. Royer and C.-K. Toh, “A review of current routing protocols for ad-hoc mobile wireless
networks,” IEEE Personal Commun. Mag:ol. 6, no. 2, Apr. 1999.

D. B. Johnson, D. A. Maltz, and J. Broch, “DSR: The dynamic source routing protocol for
multihop wireless ad hoc networks,” &d Hoc Networking Addison-Wesley, 2001, ch. 5, pp.
139-172.

J. Jubin and J. D. Tornow, “The DARPA packet radio network protoc#lsjt. IEEE vol. 75,
no. 1, pp. 21-32, Jan. 1987.

C. Perkins and P. Bhagwat, “Highly dynamic destination-sequenced distance-vector routing
(DSDV) for mobile computers,” ilACM SIGCOMM’94 Conference on Communications Ar-
chitectures, Protocols and Applicatigrisondon, UK, Aug. 1994, pp. 234-244.

C. E. Perkins and E. Royer, “Ad-hoc on-demand distance vector routing/MICSA: 2nd IEEE
Workshop on Mobile Computing Systems and ApplicatiNiesy Orleans, USA, Feb. 1999, pp.
90-100.

T. Clausen, P. Jacquet, P. Muhlethaler, A. Laouiti, A. Qayyum, and L. Viennot, “Optimized link
state routing protocol,” ilEEE INMIC’01, Lahore, Pakistan, Dec. 2001.

T. Camp, J. Boleng, and V. Davies, “A survey of mobility models for ad hoc network research,”
Wireless Communications & Mobile Computing (WCMC): Special issue on Mobile Ad Hoc Net-
working: Research, Trends and Applicatiprsl. 2, no. 5, pp. 483-502, 2002.

J. Yoon, M. Liu, and B. Noble, “Random waypoint considered harmfulJERE INFOCOMM
03, San Francisco, USA, Mar. 2003.

S. McCanne and S. Floyd. (2003, December) ns2 network simulator 2. [Online]. Available:
http://www.isi.edu/nsnam/ns

K. Fall, K. Varadhan, and the VINT project. (2003, December) The ns manual. [Online].
Available: http://www.isi.edu/nsnam/ns/ns-documentation.html

(2003, December) Gnuplot 3.7. [Online]. Availakle: http://www.gnuplot|info

R. Griswold. (2003, December) Ns-2 trace formats. [Online]. Availeble: http://www.k-lug.org/
~griswold/NS2/ns2-trace-formats.html

28

http://www.isi.edu/nsnam/ns
http://www.isi.edu/nsnam/ns/ns-documentation.html
http://www.gnuplot.info
http://www.k-lug.org/~griswold/NS2/ns2-trace-formats.html
http://www.k-lug.org/~griswold/NS2/ns2-trace-formats.html

[14] J. Broch, D. A. Maltz, D. B. Johnson, Y.-C. Hu, and J. Jetcheva, “A performance comparison
of multi-hop wireless ad hoc network routing protocols,Miobile Computing and Networking

1998, pp. 85-97.

[15] A. Hamidian, “A study of internet connectivity for mobile ad hoc networks in ns 2,” Master’s
thesis, Departement of Communication Systems, Lund Institute of Technology, Lund University,

Sweden, January 2003.

29

A Source Code

Listing 1: MANET Simulation Script

shows the usage of the parameters

proc usage{} {
global argvO

puts "\nusage: $argv0\[—adhocRouting AODYDSDV|TORA|DSR|NRLOLSR\] \[—cp connectionpatterR] \[
—sc scenarig]\[—scf folder\]”

}
proc getopt {argc argv} {
global opt
lappend optlist adhocRouting cp sc scf
for {set i 0} {$i < $argc} {incr i} {
set arg [lindex $argv $i]
if {[string range $arg 0 O] != "} continue
set name [string range $arg 1 end]
set opt($name) [index $argv [expr $i+1]]
}
}
proc handleopt{argc argv} {
global opt

get the arguments

read and handle parameters
getopt $argc $argv

if { $opt(adhocRouting) == ""|| $opt(cp) == "" || $opt(sc) == "" || $opt(scf) == "" } {
usage
exit 1

}

}

Class ManetTest

ManetTest instproc init{} {
global opt val

$self instvar ns god.

create simulator instance

set ns_ [new Simulator]
setup topography object

set topo [new Topography]

create trace object for ns and nam

regsub —all — {cbr_files/} $opt(cp) {} tempcp

regsub —all — {scenario-files/} $opt(sc) {} tempsc

regsub —all — {.cbr} $tempcp{} tempcp

regsub —all — {.scen} $tempsc{_} tempsc

regsub —all — {connection} $tempcp{con} tempcp

set tracefd [open trace—files/$opt(adhocRouting)/$tempsc$tempeput.tr w]

30

$ns. trace—all $tracefd

define topology
$topo loadflatgrid $val(x) $val(y)

#

Create God

#

set god. [create-god $val(nn)]

#
define how node should be created
#
puts $opt(adhocRouting)
set val(ifq) Queue/DropTail/PriQueue

if {$opt(adhocRouting) == "DSR”|| $opt(adhocRouting) == "NRLOLSR} {
puts "DSR”
set val(ifq) CMUPTriQueue

}
puts $val(ifq)
#global node setting

$ns. node-config —adhocRouting $opt(adhocRoutingy
—lType $val(ll) \
—macType $val(mac)\
—ifqType $val(ifq) \
—ifgLen $val(ifglen) \
—antType $val(ant)\
—propType $val(prop)\
—phyType $val(netif)\
—channelType $val(chan)
—topolnstance $topo\
—agentTrace ON\
—routerTrace ON\
—macTrace OFF

#
Create the specified number of nodesfal(nn)] and "attach” them
to the channel.

for {set i 0} {$i < $val(nn) } {incr i} {
set node ($i) [$ns. node]

#$node ($i) random—motion 0 ;# disable random motion
}
#
Define node movement model
#

puts "Loading scenario $opt(sc)”
source $opt(cp)

#

Define traffic model

#

puts "Loading connection pattern $opt(cp)”
source $opt(sc)

#
Tell nodes when the simulation ends

31

#

for {set i 0} {$i < $val(nn) } {incr i} {
$ns. at $val(stop).0 "$node($i) reset”;

}

$ns. at $val(stop).0002 "$self finish”

puts $tracefd "M 0.0 nn $val(nn) x $val(x) y $val(y) rp $opt(adhocRouting)”
puts $tracefd ™M 0.0 sc $opt(sc) cp $opt(cp) seed $val(seed)”

puts $tracefd "M 0.0 prop $val(prop) ant $val(ant)”

puts "Starting Simulation...”
$ns. run

}

ManetTest instproc finish{} {
puts "NS EXISTING

$ns. halt
exit 0
}
#
Define options
#
global opt(adhocRouting) opt(sc) opt(cp) val tempcp tempsc
set val(chan) Channel/WirelessChannel
set val(prop) Propagation/TwoRayGround
set val(netif) Phy/WirelessPhy
set val (mac) Mac/80211
set val(ll) LL
set val(ant) Antenna/OmniAntenna
set val(x) 1500 # X dimension of the topography
set val(y) 300 # Y dimension of the topography
set val(ifglen) 50 # max packet in ifqg
set val(seed) 1.0
set opt(adhocRouting) ’
set val(nn) 50 # how many nodes are simulated

set opt(sc)
set opt(scf)
set opt(cp)
set val(stop) 900.0 # simulation time
set tempcp
set tempsc
handleopt $argc $argv
set test [new ManetTest]

B Source Code Hybrid

Listing 2: Hybrid Simulation Script

shows the usage of the parameters
proc usage{} {

global argv0
puts "\nusage: $argvO\[—adhocRouting AODYDSR|OLSR\] \[—cp connectionpatterR] \[—sc scenario
\]J\[—scf folder\]”

32

}

read the parameters
proc getopt {argc argv} {
global opt
lappend optlist adhocRouting cp sc scf

for {set i 0} {$i < $argc} {incr i} {
set arg [lindex $argv $i]
if {[string range $arg 0 0] != ="} continue

set name [string range $arg 1 end]
set opt($name) [index $argv [expr $i+1]]

}
}
#
Define options
#
set val(chan) Channel/WirelessChannel
set val(prop) Propagation/TwoRayGround
set val(netif) Phy/WirelessPhy
set val(mac) Mac/80211
#set val(ifq)
set val(ll) LL
set val(ant) Antenna/OmniAntenna
set val(x) 1500 # X dimension of the topography
set val(y) 300 # Y dimension of the topography
set val(ifglen) 50 # max packet in ifqg
set val(seed) 1.0
set opt(adhocRouting) ’
set val(nn) 50 # how many nodes are simulated

set opt(sc)

set opt(scf)

set opt(cp)

set val(stop) 900.0 # simulation time
set tempcp

set tempsc

#
Main Program
#

#

Initialize Global Variables
#

get the arguments

read and handle parameters

getopt $argc $argv

if { $Opt(adhOCRouting) == ""H $0pt(cp) == " || $0pt(SC) == " H $Opt(SCf) - nn}{
usage
exit

create simulator instance

set ns_ [new Simulator]
set up for hierarchical routing

33

$ns. node-config —addressType hierarchical

AddrParams set domainnum. 2 ;# number of domains (wired and wireless
lappend clusternum 1 3 # number of clusters in each domain
AddrParamsset cluster.num_ $clusternum

lappend eilastlevel 1 11 20 20 # number of nodes in each cluster

AddrParams set nodesnum. $eilastlevel # of each domain
setup topography object
set topo [new Topography]

create trace object for ns and nam

regsub —all — {cbr_files/} $opt(cp) {} tempcp

regsub —all — {scenario-files/} $opt(sc) {} tempsc

regsub —all — {.cbr—bs} $tempcp {} tempcp

regsub —all — {.scen} $tempsc{_-} tempsc

regsub —all — {connection} $tempcp{con} tempcp

set tracefd [open "trace—files/hybrid/$opt(adhocRouting)/$tempsc$tempeput.tr” w]

$ns. trace—all $tracefd

define topology
$topo loadflatgrid $val(x) $val(y)

#

Create God

#

set god. [create-god $val(nn)]

puts "$opt(adhocRouting)”

set ifgueue Queue/DropTail/PriQueue
if {$opt(adhocRouting) == "DSR”|| $opt(adhocRouting) == "NRLOLSR} {
set ifgueue CMUPriQueue

puts "Used queue: $ifqueue”
set W(0) [$ns. node 0.0.0]

#
define how node should be created
#

sets node configurationfor basestation node
$ns. node-config —adhocRouting $opt(adhocRoutingy
—lType $val(ll) \

—macType $val (mac)\

—ifqType $ifqueue)

—ifgLen $val(ifglen) \

—antType $val(ant)\

—propType $val(prop)\

—phyType $val(netif)\

—channelType $val(chan)
—topolnstance $topo\

—wiredRouting ON\
—agentTrace ON\

34

—routerTrace ON
—macTrace OFF

#create the basestation node
set temp{1.0.1 1.0.2 1.0.3 1.0.41.0.51.0.6 1.0.7 1.0.81.0.91.0.101.1.11 1.1.12 1.1.13 1.1.14
.1.15 1.1.16
1.1.171.1.18 1.1.19 1.1.201.1.21 1.1.22 1.1.23 1.1.24 1.1.251
.1.26 1.1.27 1.1.28 1.1.29 1.1.30 1.2.31 1.2\32
1.2.331.2.341.2.35 1.2.36 1.2.37 1.2.38 1.2.39 1.2.40 1.2.41 1
.2.42 1.2.43 1.2.44 1.2.45 1.2.46 1.2.47
1.2.48 1.2.49 1.2.50 ;# hier address to be usedor wireless
domain
set BS(0) [$ns node 1.0.0]
$BS(0) random-motion 0 # disable random motion

#sets the basestation to the middle of the grid
$BS(0) set X_ $val(x)/2.0

$BS(0) set Y_ $val(y)/2.0

$BS(0) set Z_ 0.0

#configure for mobilenodes
$ns. node—config —wiredRouting OFF

#
Create the specified number of nodesfal(nn)] and "attach” them
to the channel.

for {set i 0} {$i < $val(nn) } {incr i} {
set node ($i) [$ns. node [lindex $temp [expr $i]]]
$node ($i) random-motion 0 # disable random motion
$node ($i) base-station [AddrParams addr2id [$BS(0) nodaddr]]

}

$ns. duplex—link $W(0) $BS(0) 5Mb 2ms DropTail
$ns. duplex—link—op $W(0) $BS(0) orient leftdown

#

Define connections

#

puts "Loading connection pattern...”
source $opt(cp)

#

Loads movement model

#

puts "Loading scenario file...”
source $opt(sc)

#
Propagate the stop of Simulation to the nodes
#
for {set i 0} {$i < $val(nn) } {incr i} {
$ns. at $val(stop).0 "$node($i) reset”;
}

$ns. at $val(stop).0002 "puts\"NS EXITING...\” ; $ns_ halt”
puts $tracefd "M 0.0 nn $val(nn) x $val(x) y $val(y) rp $opt(adhocRouting)”

puts $tracefd "M 0.0 sc $opt(sc) cp $opt(cp) seed $val(seed)”
puts $tracefd "M 0.0 prop $val(prop) ant $val(ant)”

35

puts "Starting Simulation...”
$ns. run

Listing 3: Running simulation for all scenario files

#1/usr/bin/perl —w
my @cpfiles=<cbr_files/x.cbr>; #We now have those files in tharray @cp—files
my @folders=("4","5","6”,”7",78”,79");
my @protocols=("DSDV");
foreach $proto (@protocols){
foreach $folder (@folders)
my @scfiles<scenario-files/$folder/xs20.scen>;
foreach $cpfile (@cpfiles){
foreach $scfile (@scfiles)
system("ns manettest.tcl —adhocRouting $proto—sc $scfile —scf $folder —cp
$cpfile”);
print "\nns manettest.tcl —adhocRouting $proto—sc $scfile —scf $folder —cp
$cpfile durchgefuehrt”;
}

Listing 4: Generating Routing Overhead Plots

#!/usr/bin/perl —w

Thomas Staub

project student

#

University of Berne, Switzerland

my $numberOfRoutingPackets = 0;

my $file = "testfile”;

my @pausetimes = (0,30,60,120,300,600,900);

my $speed = 20;

my @sources = (1,3,10);

my @protocols = ("AODV", "DSDV”,"DSR");

my @folders = (”0”,”1","2","3","4","5","6","7","8","9");

foreach $proto (@protocols){

foreach $source (@sources]
$output = "gnuplot/roh” . $proto . "_s” . $speed . “con” . $source;
open(OUTPUT, "> $output”);
print OUTPUT "# routing overhea{n”;
print OUTPUT "# $proto speed $speed sources $souha¥;
print OUTPUT "# pause-time | routing overheadn”;

foreach $pausetime (@pausetimes])
$numberOfRoutingPackets = 0;

foreach $folder (@folders){
$file = "trace—files/”.$proto . "/".$folder.”/node50Qp” . $pausetime
. "_.s" . $speed . " . $source . "con-out.tr”;
open(FILE,”< $file”) or die "Could not open file $file : $!”;
while (defined ($line =FILE>)) {
chomp $line;

36

count the routing packets

if ($line =7 /sxRTR.«/){
$numberOfRoutingPackets ++;

}

}

$numberOfRoutingPackets = $numberOfRoutingPackets/ @folders;
close(FILE) or die "Could not close file $file : $!”;
print OUTPUT "$pausetime \t " . $numberOfRoutingPackets . {n”;

}
close(OUTPUT) ;

}
#generates a gnuplotfor one protocol and all numbers of sources
$gnuplot = "gnuplot<< !\nset terminal png monochrom@set ylabel\”Routing Overhead”\nset

xlabel \"routing overhead”\nset output\”images/manet/”. $proto . Zroh_sources.png”\
nset key right bottom boxnset size 1.0,0.8nplot ”;
for ($i=0; $i <= $#sources $i++) {

unless ($i== #sources)
$gnuplot .= "\"gnuplot/roh.” . $proto .”_s” . $speed . “con” . $sources[$i
] . "\"” title " .$sources[$i] .” sources’ with linespoints, ”;
else {
$gnuplot .= "\"gnuplot/roh.” . $proto .”_s” . $speed . “con” . $sources[3i
] . "\” title ’” .$sources[$i] .” sources’ with linespointsgn!”;
}

system ($gnuplot);

}

#generates a gnuplot, that compares all protocols with 1,3,10 connections
foreach $source (@sources]
$gnuplot = "gnuplot<< !\nset terminal png monochrom@set ylabel\”Routing Overheay”\nset
xlabel \"routing overhead”\nset output\”images/manet/comparisanon”.$source.”roh.png
\"\nset key right bottom boxnset size 1.0,0.8nplot ”;
for ($i=0; $i <= $#protocols;Fi++) {

unless ($i== #protocols)
$gnuplot .= "\"gnuplot/roh.” . $protocols[$i] . "_s” . $speed . “con”
.$source.\" title '" . $protocols[$i] . "' with linespoints, ";
else{
$gnuplot .= "\"gnuplot/roh.” . $protocols[$i] . "_s” . $speed . “con”
.$source.\" title " . $protocols[$i] .”’ with linespoints\n!”;
}

system ($gnuplot);

Listing 5: Generating Packet Delivery Plots

#!/usr/bin/perl —w

Thomas Staub

project student

#

University of Berne, Switzerland

my $sent = 0;
my $received = 0;

37

my $file = "testfile”;

my @pausetimes = (0,30,60,120,300,600,900);

my $speed = 20;

my @sources = (1,3,10);

my @protocols = ("AODV”,"DSDV", "DSR") ;

my @folders = (”0”,”1","2","3","4”,"5",76","7","8",79");

foreach $proto (@protocols){

foreach $source (@sources]
$output = "gnuplot/pdr” . $proto . "_s” . $speed . “con” . $source;
open(OUTPUT, "> $output”);
print OUTPUT "# packet delivery ratign”;
print OUTPUT "# $proto speed $speed sources $souha¥;
print OUTPUT "# pause-time | packet delivery ratign”;

foreach $pausetime (@pausetimes])

$sent = 0;
$received = 0;

foreach $folder (@folders){
$file = "trace—files/”.$proto . "/".$folder.”/node50Qp” . $pausetime
. ".s" . $speed . " . $source . "con-out.tr”;
open(FILE,"< $file”) or die "Could not open file $file : $!";
while (defined ($line =FILE>)) {
chomp $line;

#count the sent packets

if ($line =7 /sxAGT.xcbr.x/){
$sent++;

}

count the received packets
if ($line =7 /rxAGT.xcbr.x/){
$received ++;

}

}
}
$received = $received/ @folders;
$sent = $sent/@folders;
close(FILE) or die "Could not close file $file : $!7;

print OUTPUT "$pausetime \t " . (($sent != 0)? $received / $sent: 0%100
” \n";
}
close(OUTPUT) ;
}
#generates a gnuplotfor one protocol and all numbers of sources
$gnuplot = "gnuplot<< !\nset terminal png monochrom@set ylabel\”packet delivery ratid”\
nset format y\"%.0f%%\"\nset yrange [70:100\nset xlabel\”pause-time\”"\nset output\”
images/manet/”. $proto . ‘pdr_sources.png”\nset key right bottom boxnset size 1.0,0.8
\nplot ”;
for ($i=0; $i <= $#sources $i++){
unless ($i== #sources)
$gnuplot .= "\"gnuplot/pdr.” . $proto .”_s” . $speed . “con” . $sources[Si
] . "\” title '” .$sources[$i] .” sources’ with linespoints, ”;
else {
$gnuplot .= "\"gnuplot/pdr.” . $proto .”_s” . $speed . "con” . $sources[$i
] . "\" title ' .$sources[$i] .” sources’ with linespointsn!”;

38

}

system ($gnuplot);

}

#generates a gnuplot, that compares all protocols with 1,3,10 connections
foreach $source (@sourcesy
$gnuplot = "gnuplot<< !\nset terminal png monochrom@set ylabel\”packet delivery ratid”\
nset format y\"%.0f%%\"\nset yrange [70:100\nset xlabel\”pause-time\”\nset output\”
images/manet/comparisaaon”.$source.”pdr.png\"\nset key right bottom boxnset size 1

.0,0.8\nplot ”;
for ($i=0; $i <= $#protocols;fi++) {
unless ($i== #protocols)
$gnuplot .= "\"gnuplot/pdr.” . $protocols[$i] . "_s” . $speed . “con”
.$source.\" title " . $protocols[$i] . "’ with linespoints, ”;
else{
$gnuplot .= "\"gnuplot/pdr.” . $protocols[$i] . "_s” . $speed . “con”
.$source.\" title " . $protocols[$i] .”"’ with linespoints\n!";
}

system ($gnuplot);

39

	Contents
	List of Figures
	List of Tables
	Listings
	General
	Mobile Adhoc Networks
	Hybrid Networks

	MANET Protocols
	Dynamic Source Routing Protocol
	Route Discovery
	Route Maintenance

	Destination Sequenced Distance Vector Protocol
	Routing Table Management
	Responding to Topology Changes

	Ad-hoc On Demand Distance Vector Routing Protocol
	Route Discovery
	Route Maintenance

	Optimized Linkstate Protocol
	Neighbor Sensing
	Message Flooding and Multipoint Relays
	Spreading Topology Informations and Calculating Routes

	Mobility Models
	Random Walk Mobility Model
	Random Waypoint Mobility Model
	Random Direction Mobility Model

	Network Simulator 2 (ns2)
	Structure of ns2
	Functionalities of ns
	Trace Files
	Old Wireless Trace File Format
	New Wireless Trace File Format

	Simulations
	Metrics
	Scenario Manet
	Movement Model
	Communication Patterns

	Scenario Hybrid
	Communication Patterns

	Conclusion
	Results
	Forthcoming Studies

	References
	Source Code
	Source Code Hybrid

