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Abstract

Content-Centric Networking (CCN) is a new networking approach where communication is
based on names and not host identifiers. Thus, in contrast to host-centric network architectures,
content-centric networks have no need to know their neighbors and the whole network topology
because data is requested based on a content specific identifier and not a host identifier. For this
reason, content-centric networks are suitable for dynamic mobile networks with many moving
devices. The CCNx project implements the CCN concepts as open source framework.

In this thesis an agent protocol as well as a requester application in C based on the CCNx
framework have been developed. The agent-based approach enables requesters to delegate
content retrieval to other nodes, i.e., agents. Agents import retrieved content locally in their
content repository. In case of connectivity disruptions, content retrieval can be resumed (from
any node) whenever content becomes available again. Requester and agent can negotiate during
the delegation phase whether push or pull notifications are used. Once content retrieval has been
completed, agents can notify the requester that content is ready for delivery. When a notification
has been received, the requester can download the content via unicast communication directly
from the agent. Since agents store content in their local repositories, the content density in the
environment is increased.

The implemented applications have been evaluated using the network simulator NS3 and the
NS3-DCE (Direct Code Execution) module. Evaluation of different scenarios in large play-
ground with up to 100 mobile nodes showed that agent-based content retrieval, compared to
broadcast multi-hop content retrieval, is fast and reliable for transferring large files over long
distances even under difficult mobility conditions, e.g., sparse node density. The principles of
content-centric networks can be exploited to resume interrupted content retrievals without a lot
of overhead for finding content sources and building routes. Compared to multi-hop retrieval,
agent-based content retrieval does not generate a lot of network load: in each considered scenario
the amount of transferred messages was lower than with multi-hop.
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Chapter 1

Introduction

When the Internet architecture was developed network devices and computers were not inte-
grated in the environment the same way as today. Mobile computing was just a dream because
the devices were too big to carry around. The Internet architecture has been developed to share
resources and the communication was limited to wired connections. Since then technology
evolved very fast and many constraints have disappeared. Nowadays, it is even possible to use
the air to exchange data between mobile devices.

Today’s network connections are used mostly to exchange data. It is important to receive
a specific requested content but the real location of the content source is irrelevant. With
the increasing dissemination of mobile devices such as smart phones or tablets, that fact is
reinforced.

For this reason, different information-centric networking approaches have been developed. One
prominent approach is Content-Centric Networking (CCN) [1]. The open source framework
implementation CCNx [2] is the basis of this thesis.

1.1 Motivation and Task Formulation

1.1.1 Motivation

In opportunistic networks, content retrieval is particularly challenging because contacts between
users and their mobile devices are not predictable. If a requester and a content source never
meet, they cannot communicate directly. In such a scenario, the requester can delegate the
content retrieval to other nodes with different mobility patterns, i.e., agents, to increase the
probability of finding the content and increase the content density. To avoid denial-of-service
attacks and misuse, the delegation should be performed in a controlled way based on agreements
between requester and agents.

A prototype implementation of agent delegation has been developed in [3]. The goal of this
master thesis is to develop the protocol further. Agents that retrieved content for others must
ensure its authenticity and integrity by providing original headers and signatures. Therefore,
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agents need to ask their own repository to retrieve and store the content. Similar to [4], the
repository needs to be extended to remember already received segments from incomplete file
transfers. Different notification mechanisms (e.g., push and pull notifications) should be imple-
mented and evaluated. Furthermore, flexibility of agent delegation should be improved, so that
agent and requester applications can negotiate the notification type and further parameters.
Finally, suitable scenarios for agent-based content retrieval with multiple nodes (up to 100
nodes) and mobility have to be found, implemented and evaluated.

1.1.2 Task Formulation

The goal of this thesis is to develop an application that enables agent-based content retrieval in
opportunistic content-centric networks based on the current CCNx framework [2].
The work comprises the following tasks:

• extension of the existing CCNx repository (ccnr) to enable opportunistic resume opera-
tions.

• implementation of the agent delegation mechanisms in C based on the work in [3] so that
requesters can delegate content retrieval to agents.

• implementation and comparison of push and pull based notification mechanisms. Flexible
usage by selecting the notification mechanisms during the agent delegation process.

• evaluation of the protocols in a mobile scenario using a network simulator.

1.2 Outline

The remainder of this thesis is organized as follows. Chapter 2 presents the basics of content-
centric networking and agent-based content retrieval. Chapter 3 describes the design and im-
plementation of the agent protocol in CCNx. After that in Chapter 4 the developed agent ap-
plications are evaluated in different scenarios and the obtained results are discussed. Finally, in
Chapter 5 the gained insights are summarized and an outlook for future work in this research
area is presented.
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Chapter 2

Related Work

2.1 Content-Centric Networks

Content-centric networking (CCN) has been introduced by Van Jacobson [1]. The Palo Alto
Research Center (PARC) has implemented a reference implementation of CCN called CCNx[2].
The applications developed in this thesis are based on the source code of CCNx 0.8.2 [5] which
was the most recent version at the time of writing this thesis. Further explanations about the
CCNx protocol always refers to version 0.8.2.

2.1.1 CCNx 0.8.2 vs. CCNx 1.0

Since June 2015 CCNx version 1.0 has been released. There are significant changes between
CCNx 0.8.2 and 1.0 since the source code has been completely rewritten and rearranged in
independent libraries [6]. The source code of CCNx 1.0 is no longer publicly available for
everyone, only binaries and header files are publicly released. The modifications in CCNx 1.0
[7] have also an impact on agent-based content retrieval because longest-prefix matching and
Exclude filters (used in all communication steps, see Chapter 3) are no longer supported. Instead,
only exact name matching is performed in CCNx 1.0. However, the new NDNx framework
[8], which was initially based on the CCNx source code, continues to support longest-prefix
matching [9]. Therefore, we suggest that future versions of agent-based content retrieval are
implemented within NDNx.
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2.1.2 CCN Packets

In CCN, communication is based on two basic packet types: Interest and Data. Figure 2.1
shows the Interest packet for requesting content and the Data packet to deliver data which is
called ContentObject in CCNx.

Figure 2.1: CCN Packet Types [1]

An Interest packet contains a prefix or the complete ContentName of the requested ContentO-
bject and some selectors, i.e., answerOriginKind and scope, which allow to restrict the
origin and matching of the Data packet.
A Data packet is defined as follows: It contains the ContentName, the Signature, the SignedInfo
and the data itself.
There is an important rule for sending and receiving packets in CCNx; at most one Data packet
is sent per Interest packet. If no Data packet arrives in response to an Interest within a given
time, the Interest is retransmitted. After several Interest retransmissions, it is assumed that the
content is not available and the download is stopped.
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2.1.3 Content Naming

Another essential part of content-centric networking is content naming. Because content is
requested by name, a clever way of handling content names is necessary. A hierarchical name
structure is suitable for this use case.

Figure 2.2: CCN Naming

In CCN packets ContentNames are binary encoded, however, ContentNames can be represented
by URIs which are easily read and remembered by humans (as shown in Figure 2.2). Every
component between two slashes (/) represents a hierarchy level. Furthermore, every ContentO-
bject has a version number and is split into several segments. To indicate version and segment
number, markers are used. Versioning is implemented with timestamps. A v marker followed
by a timestamp represents the version of the packet. The segment number is given after the s
marker. The first segment holds the segment number 0, for each additional segment the segment
number is incremented.

Besides segment and version markers the basic name conventions provide extensible command
markers (marker C1) [10]. Extensible command marker are used for commands, queries or other
special identifiers and have the following appearance: %C1.<namespace>.<command>.
The %C1 prefix indicates an extensible marker, followed by a namespace, e.g., the related ap-
plication (%C1.R.xyz for the ccnr repository), followed by the command string. Optionally,
command arguments can be appended delimited by tilde characters (∼).
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2.1.4 Data Storage in CCNx

In CCNx there are different ways of storing data. To store data persistently in CCNx, repositories
are used. The ContentStore is used as cache to keep data temporarily.

ContentStore (CS)

The ContentStore is a cache to keep received Data packets temporarily. The received packets are
stored in main memory (RAM) which allows a fast access time. If a packet arrives that is already
included in the ContentStore it is discarded. The lifetime of Data packets in the ContentStore is
limited by the memory size and the freshnessSeconds flag which is embedded in the Data packet
header and indicates the maximum validity time of the content.

Repository

Repositories enable persistent storage of data on dedicated storage devices.
The repository application written in C (called ccnr) has replaced the Java application (called
ccn repo) due to its better performance and integrated synchronization facility[11]. To share data
over the repository they first have to be inserted. When inserting new content into the repository,
it is divided into segments and signed by the publisher’s public key. This has to be done only once
when including new content, i.e., when synchronizing content among repositories no signatures
need to be created, but the existing one is used. All content of a repository is persistently stored
in a repository file in the local file system.
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2.2 Communication in Opportunistic and Delay-Tolerant Net-
works

Routing in Delay Tolerant Networks (DTN) [12] has been studied for more than a decade.
Since then, many DTN routing protocols [13] have been proposed such as Epidemic Routing
[14], where a node copies its messages to all nodes that it encounters, Spray-and-Wait [15],
which limits the number of forwarded copies, or prediction-based forwarding based on the
history of past encounters [16]. In recent years, increasingly more DTN routing protocols rely
on social characteristics [17] to improve message delivery. Based on neighbor discovery [18],
nodes can create a contact graph to detect communities as well as extract centrality, similarity
and friendship characteristics for more efficient forwarding. Nodes in the same community
regularly see each other and are for example reliable message carriers while nodes that have
long-lasting and regular contacts may be considered as friends, who may even share common
interests [17]. However, mapping contacts to social relations is complex and DTN routing
performance heavily depends on how the mapping (contact aggregation) is performed [19].

Several content-centric networking schemes have been proposed for delay-tolerant or oppor-
tunistic networks. For example, in the context of a mobile peer-to-peer system [20], where
users transmit periodic hello beacons to detect neighbors before connecting to them. Content is
then exchanged pairwise with a solicitation protocol. There is no multi-hop communication and
routing is replaced by the mobility of the nodes. Slinky [21] is another approach where content
is placed in communities (topological structures) ensuring high availability to all nodes. Each
node in a community stores only a fraction of all published content and replies to queries for
that content. On the downside, if community structures change due to mobility, content needs
to be re-distributed in the community, rendering is inefficient for high mobility scenarios.

CEDO [22] is a first approach to extend CCNx with DTN functionality. Interests stay in the
Pending Interest Table (PIT) until they are satisfied. Whenever a contact is detected (through
periodic hello beacons), a message that summarizes all pending Interests is transmitted. A
receiver of such a message sends back all Data messages that it has in the cache. Regular
Interest forwarding via FIB is disabled.

Another approach [23] introduces the concept of logical faces for communication in disaster
scenarios.It assumes that communities (location where content can be retrieved and from where
Interests originated) are static and mobile mules forward messages between communities.
Logical faces are used to map communities to physical interfaces. Whenever mules reach the
corresponding communities, the logical faces become active and Data can be retrieved based on
information in the PIT.

Both approaches [22], [23] keep Interest messages in the PIT until nodes encounter the desired
content source or community. However, Content-Centric Networking (CCN) content may
contain multiple segments, which need to be requested individually and, typically, the requester
does not know the content size until receiving the last segment. Thus, a requester does not know
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how many Interests are required to retrieve the content and there is no immediate feedback
when content transfer is finished (delay-tolerant retrieval via data mules). If too few Interests
are forwarded by a requester, a data mule may not retrieve the complete content and may
need to travel several times between communities. Too many Interests, however, result in
inefficient memory management in the PIT. Since both approaches [22], [23] modify CCN
message processing and message structures significantly, they can not be used in well-connected
networks.

In this work, we assume that DTN communication is only used for a certain time or at a
certain place, e.g., to cover remote areas, or support communication if central communication
infrastructures are temporarily not available. However, eventually people will be using the
infrastructure again. Then, they may want to resume incomplete downloads or upload collected
information without converting and resigning it. Therefore, we use the concept of agent-based
content communication, where content retrieval is delegated to agent nodes. Since delay-
tolerant communication is provided as application module without modifications to regular
CCN message processing, it can combined with multi-hop communication whenever possible.
We base our work on previous work [3] and refine it for more flexible communication in mobile
networks (see next subsection for more details).

If all messages are transmitted via broadcast, Interests address multiple content sources at the
same time. With pervasive caching, content density increases drastically and even more nodes
may be able to respond to Interests. To avoid collisions and enable duplicate suppression,
Data messages need to be delayed. Furthermore, unicast data rates are usually significantly
higher than broadcast rates because they can be adapted based on the distance (signal-to-noise
ratio) between two nodes, whereas broadcast data rates are usually set to the lowest supported
rate. Therefore, we use unicast communication as often as possible in this thesis, e.g., content
download from agent nodes (see section 3.3.3).

Earlier work [24] showed that Dynamic Unicast, i.e., creating dynamic unicast faces to a content
source after initial broadcast requests, result in faster transmission times even for multiple
concurrent requesters. Since Dynamic Unicast is independent from the agent protocol, it can be
combined with the agent protocol in this thesis.

We compare agent-based content retrieval with multi-hop communication in multiple scenarios
with different number of agents, content sources, velocities and file sizes. Because multi-hop
communication may experience disruptions, we use an application from previous work ([4],
[25]) that can persistently store partial files and resume content transfers in case of disruptions
(see section 3.5 for more information).
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2.3 Comparison to Previous Work: Agent-based Content Re-
trieval

In a previous work [3], a prototype implementation of agent-based content retrieval has been
developed and evaluated on Android smart phones. This thesis is based conceptually on [3],
but differs in design, implementation and evaluation. These differences are discussed in the
following subsections.

2.3.1 Design and Implementation

In [3] an agent and a requester application have been implemented using the CCNx Android
library as well as the Android SDK. A basic agent handshake has been introduced and evaluated
in a static configuration with three mobile phones and a laptop (as shown in Figure 2.3).

Figure 2.3: Master Thesis Agent-based Content Retrieval: Evaluation Scenario

The main modifications in the implementation are as follows:

• The agent and requester applications have been rewritten in C in order to enable evalu-
ations with NS3-DCE. Please find more information about NS3-DCE in Section 4.2 of
Chapter 4.

• The existing agent handshake has been modified to:

– follow the CCNx basic name conventions with command markers.

– enable flexibility by defining options such as the notification type, i.e., push or pull,
during agent delegation. In previous work only pull notifications were supported.

– introduce an additional acknowledgment during agent delegation to ensure that
agents have received the delegation. Otherwise, the requester may wait for the con-
tent although no agent is retrieving the content. See Section 3.5 for more informa-
tion.
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• To support content retrieval in opportunistic networks, the existing content repository has
been extended to check whether the entire content is in the repository. This is required
because of disruptions in connectivity, which means that only parts of the content could
be retrieved by the repository. The modification ensures that if the content is not complete
and there is no ongoing content download, the content download is resumed. Based on
this extension the agent application is capable of resuming incomplete content imports
due to disrupted connectivity.

• Furthermore, at the requester side, the extended content fetch library introduced in [4] has
been integrated into the requester application. By using the extended fetch library, content
can be retrieved even in case of short contact times due to disrupted connectivity.

2.3.2 Evaluation

In [3], agent-based content retrieval has been evaluated using up to three Android smart phones
in a static simulation setup. In this thesis the NS3-DCE simulation framework has been used to
simulate wireless communication and mobility in large playgrounds with more than 100 nodes.

Due to Android dependencies and implementation in Java, the application of the former work
was not reusable for evaluations with NS3-DCE. Therefore, agent-based content retrieval has
been completely rewritten in C. With NS3-DCE it was possible to evaluate agent-based content
retrieval and compare it to multi-hop communication in different topology and with different
node densities.
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Chapter 3

Design and Implementation of
Agent-based Data Retrieval in CCNx

3.1 Problem Description

In opportunistic content-centric networks, nodes can exchange information within transmission
range via direct ad-hoc communication without being connected to the Internet. However, trans-
mission range and mobility of nodes is limited such that they may never meet a certain content
source directly. As shown in Figure 3.1, multi-hop communication may also not be possible if
there is no continuous end-to-end path between requester and content source.

Figure 3.1: Problem Formulation: Disjoint Areas

To address this problem certain jobs, e.g., content retrieval, can be delegated to agent nodes
(or agents for short), which move close to content sources and can then execute the jobs, e.g.,
retrieve the content directly. We design an agent application, which is responsible for finding
and fetching content of accepted jobs. When content of a job has been completely retrieved, it
is available for delivery to the requester. In the next subsections, agent-based job delegation is
described in more detail.
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3.2 Agent Process

The whole agent process in content-centric networks can be structured in two roles and four
phases. In the remainder of this section these roles and phases will be described in detail.

3.2.1 Roles

The agent process can be structured in two different roles with separate responsibilities.

Requester

The requester is interested in content or information, which it cannot obtain at its location due
to limited connectivity to the content source. The requester can then delegate content retrieval
to other nodes, which may move to the content source to retrieve the content directly and return
it to the requester. The requester follows a predefined handshake routine to delegate content
retrieval to other nodes (agents).

Agent

The agent receives job delegations from requesters and decides whether it can accept it or not. If
it accepts the job, it will inform the requester. The agent then looks for content of accepted jobs
and fetches it if found. After completing the fetch process of an accepted job, the notification
mode will be activated to notify the requester that the content has been found and is ready for
delivery.

12



3.2.2 Phases

The whole agent process / protocol can be grouped in four different phases.

Phase I: Job Delegation

Figure 3.2 illustrates the first phase (job delegation).
A requester is looking for suitable agents within the agent probing interval. During this time,
the requester sends an init request to its one-hop neighborhood and then probes the cache for
incoming responses. After the agent probing interval, the requester may have received (multiple)
init responses and can delegate the job to one or multiple agents as shown in Figure 3.3. Agents
have to acknowledge received delegations, since agents could have already moved away within
the agent probing interval. A job delegation is only valid for a specified time, in the following
called expiration time, to ensure agents are not searching for the content for an indefinite amount
of time.

Figure 3.2: Agent Process: Phase Ia - Job Delegation

Figure 3.3: Agent Process: Phase Ib - Job Delegation
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Phase II: Content Retrieval

When a job is delegated to one or more agents, the agents become active by executing the
delegated tasks. They are responsible for fetching and storing the requested content within the
defined job expiration time. The agent periodically requests the desired content while moving
around. As soon the content is available it will be imported to the local content repository.
Partially received content, i.e., in case of disruptions, is stored in the local content repository
(persistent storage, keeps original signatures) and the repository import can be resumed later. If
the retrieval time exceeds the expiration time, the job will be aborted independent whether the
job has been completed or not. Once the content is completely fetched, Phase III (notification)
will be activated.

Figure 3.4: Agent Process: Phase II - Content Retrieval

Phase III: Notification

If agents have completed their task, they can notify the requester that the content is available for
download as Figure 3.5 shows.

Figure 3.5: Agent Process: Phase III - Notification

We differentiate two different kinds of notifications: pull and push notification.

1. Push Notification
Applying push notification means that the agent has the leading role for notification. After
delegating content retrieval to agents, the requesters starts listening for push notifications
from agents. As soon as an agent has completely fetched the desired content, it starts to
periodically send notification messages to inform the requester.
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2. Pull Notification
Pull notification means that after job delegation the requester periodically requests notifi-
cations from agents that have completed their task. The agents do not independently send
notification messages but only reply to notification from requesters.

Phase IV: Content Delivery

After the notification phase, the requester can fetch the content from the agent as illustrated in
Figure 3.6. Since information in the notification messages includes content version and host
identifier, e.g., the IP address, the requester creates a direct face to the agent and can directly
retrieve the content from the agent’s repository. Please note that content retrieval from agents
can also be resumed in case of interruptions, i.e., when an agent leaves the transmission range
of the requester. In such a case, content delivery can be resumed when the agent comes in
transmission range again (if before expiration time has elapsed). Once the content has been
completely delivered, the job has successfully finished.

Figure 3.6: Agent Process: Phase IV - Content Delivery
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3.3 Agent Handshake - Message Flow

In this section the message flow of the agent handshake is described in more detail. Therefore,
the messages between requester and agents are visualized in message flow diagrams.

Table 3.1 lists parameters / variables, which are used in the sequence diagrams as well as in the
descriptions and will be explained shortly here.

Term Description
prefix Content name of the requested content written as a human

readable URI without any marker components.
nodeID String representation of the public key of a CCN daemon (ccnd),

used to distinguish the different running ccnd instances.
host identifier Identifier, to distinguish network interfaces of different

hosts/nodes, e.g., the IP or MAC address.
jobID Randomly generated string representation, used as a unique

identifier for each job.
expireTime Unix timestamp to indicate the expiration time of the job.

Table 3.1: Term Declaration

According to the CCNx naming conventions [10] additional extensible command marker com-
ponents appearing as %C1.<namespace>.<cmd> have been introduced. In the following
table the markers are explained.

Marker Description
%C1.A.init Request for available agent resources (delegation phase).
%C1.A.delegate Delegate job to selected agent (delegation phase).
%C1.A.version Request version for content delivery (notification phase).
%C1.A.done Announce that content delivery succeeded and job can be removed

from job queue (notification phase).

Table 3.2: Additional Command Markers
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3.3.1 Delegation

Figure 3.7 shows the message flow for a job delegation. Before a job can be delegated a user has
to start the requester application (ccnar) with the prefix, i.e, content name without content ver-
sion and segment number, and the desired command line parameters. For example, ccnar -n
pull ccnx:/unibe.ch/cds/presentation.pdf defines that content with the name
ccnx:/unibe.ch/cds/presentation.pdf should be retrieved and notification (op-
tion: -n, see more details in Appendix 6.1) should be performed pull-based. If the user’s input is
valid, the requester starts searching for potential agent candidates by sending Interest messages
with the name ccnx:/ferrying/<prefix>/%C1.A.init. The requester may look for
agents for a configurable amount of time, i.e., agent request period (in our implementation: 2
seconds). Agent applications are listening for Interests with the prefix component /ferrying/
and respond (if they have available resources) with a Data message. In the ContentName of the
Data messages, agents append their nodeID.
On the requester side, the appended nodeID is stored in a list of potential agents. After the
agent request period has elapsed, the requester can select an agent from the agent list (if it is
not empty). The requester can then delegate the job to the selected agent using the nodeID and
additional job parameters such as notification type, jobID and expireTime to start a job. Since
agent delegation is performed within an agent request period, an acknowledgment from the se-
lected agent is required to ensure that it has received the job delegation and not moved away. If
no acknowledgment has been received within 1 second, the requester selects another agent from
the candidate list or restarts the agent request period if there are no other agents on the agent list.
After delegation the requester switches to the notification mode depending on the command line
parameter (-n option) in the delegation process (see Appendix 6.1 for more information).

Figure 3.7: Agent Handshake - Delegation
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3.3.2 Content Retrieval

Figure 3.8 shows the content retrieval process. The agent has to search and retrieve re-
quested content. To ensure the authenticity and integrity of the retrieved data, original Data
headers including signatures have to be provided to the requester. Therefore, the requested
Data messages need to be directly imported to the local content repository. To achieve this,
the agent first searches for available content by sending version resolving requests (required
to find the newest version of a content object). Once a content source responds and the
newest version has been identified, the agent starts the repository import with an Interest
with name ccnx:/<prefix>/<version>/%C1.R.sw-c/<parameters>/ (the im-
port process is explained in detail in subsection 3.4.1). The repository application then asyn-
chronously sends Interests and imports incoming Data messages.

Figure 3.8: Agent Handshake - Content Retrieval
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3.3.3 Content Notification

Push Notification

Figure 3.9 shows the message flow of push-based content notifications. After delegating
the job, the requester node sets up an Interest filter listening for Interests with the name
/notify/<jobID>. Agents transmit such Interests periodically after completing content
retrieval. In addition to the jobID the agent also appends the version of the retrieved content
and some optional parameters. Optional parameters are for example host identifiers, i.e, the IP
address, which enables the requester to create a unicast face to directly retrieve the content. This
increases download speeds and saves energy because only requesters receive and process the
transmitted content. As soon as the requester has completed the content retrieval, it replies an
incoming notification messages with a "DONE" flag to tell agents that notification beaconing
can be stopped and the job can be removed from the job queue.

Figure 3.9: Agent Handshake - Push Notification
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Pull Notification

The pull notification message sequence is illustrated in Figure 3.10. After delegating the job
to an agent, the requester starts looking for agents that have completed their jobs by sending
Interests with ContentName ccnx:/notify/<jobID>/%C1.A.version. The marker
%C1.A.version is used to request the ContentVersion of the delegated job, which is required
to download the content. Agents install an Interest filter to reply to such Interests as soon as
they have completely retrieved the content. In Data replies, agents append the version to the
ContentName as well as optional parameters such as, e.g., its own IP address for direct content
retrieval via a unicast face.
Once the requester retrieved the ContentVersion, the delivery process is started. After successful
download, the requester sends an Interest with the %C1.A.done marker to indicate that the job
has been completed. The agent acknowledges this message to indicate that notification will be
stopped by sending a response message with an "ACK" string. Then, the agent can remove the
job from the job queue.

Figure 3.10: Agent Handshake - Pull Notification
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3.3.4 Content Delivery

Figure 3.11 illustrates the content delivery process. Because the content version has been an-
nounced in the notification phase, the requester can directly request content from the agents’
content repository. Data messages starting from segment 0 until the last segment (final bit set)
have to be requested with Interest messages. Once the segment with the final flag arrives the
content delivery is finished. Note that it is possible to use pipelining to fetch the content via
multiple parallel Interests (for more detail see subsection 3.4.3), but the diagram shows only
sequential content retrieval for simplicity.

Figure 3.11: Agent Handshake - Content Delivery

21



3.4 Agent Process Applications

3.4.1 (Extended) Content Repository (ccnr)

To persistently store content and share it among other users, the CCNx framework provides the
content repository application ccnr. In agent-based content retrieval the agent has to ensure
the authenticity and integrity of retrieved data by providing original headers and signatures.
Therefore, retrieved ContentObjects have to be completely imported into the agents’ content
repository. The CCNx repository protocol [26] offers functionalities to import content into an
existing content repository.

Existing Repository Implementation

Two command markers under the R (for repository) namespace are available for importing con-
tent:

• Start Write (%C1.R.sw) requests that the repository retrieves and stores content con-
secutively starting from segment 0 until the final segment.

• Checked Start Write (%C1.R.sw-c) is similar to start write but the repository first
checks whether the content is available in the repository and does not retrieve it again
if this is the case. Different from Start Write, a segment number is required as starting
point for the content request, thus, the repository import can start from a segment number
different than 0.

A repository acknowledges accepted start write import requests with a RepositoryInfo object.
The RepositoryInfo object contains a Type and an InfoString field to return response
information. As soon as the repository acknowledges a start write command, it asynchronously
imports the content by expressing Interest messages in every segment until the final object
is received. This process is completely independent and the repository does not provide any
information about the state of the download to the user.
This is problematic in mobile networks with intermittent connectivity, where the connection
to a content source may break, i.e., download may be disrupted, before the whole content has
been imported into the repository. When the connection is disrupted, the transmitted Interests
will time out. The repository reexpresses expired Interests 5 times, before the import process is
aborted. Once the process is aborted, it has to be restarted manually.
The current implementation of the repository has no mechanism to detect whether stored
content is complete or not. If content is only partially available in the repository only these
segments will be shared.

For the agent process it is necessary to store data persistently. Content in the content store
(cache) can only be stored for a short time due to its limited size. However, content retrieved
by agents may need to be available for multiple hours, days or weeks. Because no mechanism
is available to check whether content is stored completely in the repository or not, the default
ccnr repository is not suitable for the agent application. However, the agent application has to
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ensure that content is completely stored before a requester will be notified about its availability.
The default ccnr repository has been extended by a content validation (for completeness) and
automatic resume functionality.

Extension

A new command marker for content validation (%C1.R.vc) has been introduced. Figure 3.12
shows the validation process and its output in a flow chart. To start a content validation request
an Interest with the name ccnx:/<prefix>/<version>/%C1.R.vc has to be sent. The
repository first checks if content under the requested ContentName is stored or not. If there is
content for that name, the number of segments are counted and it is checked whether there are
missing segments. The last considered segment should contain the final flag to indicate that the
content is complete. As response a RepositoryInfo object is sent including information about
content completeness. If the content is complete, the type is "DATA", otherwise if content is
not in the repository or segments are missing the type is "INFO". For "INFO" RepositoryInfo
objects, an additional InfoString denotes the next segment to request, i.e., segment 0 to start a
download for the first time or the last valid segment to resume it.

Figure 3.12: CCNR Repository Extension - Validate Content (%C1.R.vc)

Combining the content validation (%C1.R.vc) with the checked start write (%C1.R.sw-c)
command enables to resume aborted imports at any time, since content validation provides the
resume point for the additional import process.
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3.4.2 Agent Application (ccna)

Delegation at Agent Application

The agent application is running on mobile nodes and is responsible for retrieving requested
content for delegated jobs. Figure 3.13 gives an overview over the operations of the agent
application. In the initialization phase the agent registers an Interest filter with the prefix
/ferrying. Then, the application listens for Interests with /ferrying and processes
incoming messages. Message processing happens asynchronously. Therefore, multiple requests
can be handled at the same time. Depending on the command markers, included in the Interests’
name, different actions will be triggered. To limit the processing overhead on the agent, the
agent applications maintains a job queue with a limited number of job slots depending on the
available resources.

The following command markers will be handled by the agent application:

• Init Request (%C1.A.init)
If enough resources are available, the agent responds to the init request with a Data mes-
sage (init response). The agent declares his identity in the init response by appending the
nodeID to the content name (see subsection 3.3.1).

• Delegation Request (%C1.A.delegate)
An arriving delegation request contains the nodeID of the selected agent. Therefore, the
agent first checks whether the nodeID is equal to his own nodeID or not. If nodeIDs
match, the delegation request will be acknowledged as described in subsection 3.3.1. The
mandatory parameters jobID and expireTime included in the content name will then be
stored in the job queue in order to start a new job thread. If the nodeIDs do not match, the
Interest is ignored.

Figure 3.13: CCNA Agent Application - Main Loop
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Content Retrieval at Agent Application

Figure 3.14 visualizes the process of a single job thread from the start, i.e., after the job has
been delegated, until thread termination (due to expiration or successful completion). A job
thread is responsible for content probing, repository import and requester notification.

A job thread is started with a reference to the entry in the job queue. In the initialization phase
job parameters, i.e., ContentName, expireTime, notification type, etc, will be read from the
job queue entry before the content retrieval process starts. Because the content import to the
repository is asynchronously performed within the ccnr application, the agent application
is only responsible for initializing, monitoring and resuming the repository import. Content
probing, i.e., checking whether the content download is complete or needs to be resumed is
continuously repeated until imported content is valid or job expireTime has been exceeded.

The content retrieval process is performed in cycles. In a first step content is searched in the
local repository (see subsection 3.4.1). When no content is found locally, the thread periodically
transmits content requests to resolve the newest content version. Finding a content version
indicates that content is currently available. Therefore, the version number is appended to the
ContentName and a repository import is started. While the content repository ccnr is importing
content (independently), the thread sleeps for a few seconds (in our implementation: 1 second)
and then checks for the completeness of the imported content.
The check includes testing for content validity (all segments received) and checking whether
the expireTime has been exceeded. When the repository import has been finished, the validity
check is successful and the content retrieval phase is finished. Otherwise, the content retrieval
process continues in another cycle.

If content is found in the repository but not yet all segments have been re-
trieved, it is checked whether the repository import is still running. To check
this, the highest valid segment numbers between two consecutive validation checks
(ccnx:/<prefix>/<version>/%C1.R.vc) are compared. If the content import
is still running, the thread will go to sleep and re-check the situation later. If no repository
import is running, repository import is resumed. If content retrieval is successful, i.e., can be
completed within the expireTime, the job state is updated to COMPLETE and the notification
phase can start.

Depending on the notification type, an Interest filter for notification messages is registered (pull-
based notification) or periodic notification messages are sent (push-based notification). After
notification messages have been exchanged, retrieved content will be directly delivered from the
content repository (ccnr). This content retrieval application is explained in the next subsection.
The notification process is repeated until expireTime has been exceeded or the requester sends
a job done message. Once a job reaches an end state, i.e., expired or done, the job information
will be removed from the job queue and the thread will be destroyed.
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Figure 3.14: CCNA Agent Application - Job Thread
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3.4.3 Requester Application (ccnar)

The requester application is responsible for delegating jobs and retrieve content as soon as
a content notification has been received from an agent. For each job, a separate requester
application (ccnar) instance has to be started, however, multiple jobs can be delegated at the
same time by running multiple ccnar instances in parallel. Figure 3.15 shows an overview over
the requester process. This process can be split in two subfunctions, namely 1) agent delegation
and 2) notification / content retrieval.

Table 3.3 lists processes and parameters that are used in the requester application together with
their description.

Term Description
agent probing Process of searching for available agent nodes by periodically sending

init requests.
probe delay Time to wait until a new agent probing is started, when no agent is

found.
candidate list List of potential agent candidates found while agent probing.
delegation list List of agents the job is already delegated to, i.e., to avoid redelegation

to the same agent.
delegation interval Minimum amount of time between to agent delegations, if multiple

delegations (for redundancy) are enabled.
maximum number
of agents

Maximum number of agents a job is delegated to.

Table 3.3: Requester Application - Term Declaration

First, content retrieval needs to be delegated to agents. As described in subsection 3.3.1,
init requests (first init request sent to one-hop-neighborhood, subsequent requests sent to
retrieve responses from local cache) are transmitted within an agent request period (in our
implementation 2 seconds) to find potential agents in the neighborhood. We call this agent
probing in the following. Responding agents will be inserted in a candidate list. After the
agent request period has elapsed, an agent is selected from the candidate list for delegation. In
this work, agent selection from the candidate list is performed randomly but future work may
investigate more sophisticated selection criterions such as mobility patterns or social parameters
(see Section Future Work). Agent probing is performed periodically every delegation interval
until the maximum number of delegated agents have been received or the agent delegation has
been finished or aborted.

When a delegation is acknowledged, the nodeID is stored in a delegation list and will be
excluded in subsequent delegations of the same job, e.g., if the agent does not return the
content in time. Otherwise, if the delegation is not acknowledged, the candidate list will be
cleared and after a probe delay (10s in our evaluations) the probing will be restarted. The
candidate list will be cleared because candidate agents may have already disappeared, i.e.,
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within the lifetime of the delegation message. Once the first delegation has been performed
the applications activates the notification / retrieval mode. Depending on the notification type,
periodic notification requests are transmitted (pull-based notification) or an Interest filter for
notification messages is installed (push-based notification). If delegation to multiple agents is
enabled, agent probing and delegation is periodically repeated (despite activated notification
mode) every agent delegation interval until the maximum number of agents is reached or the job
is finished (done or expired).

In the notification mode the requester application waits for notification messages of the pending
jobs. When the agent is in range and transmits a notification message, the delivery process starts.

Content delivery is performed with the extended fetch library, which has been introduced in
previous work [4] to support resume operations. Partial content and meta information as well as
complete delivered data is persistently stored in a download folder on the hard disk.

If content download from the agent has not been completed, the applications stays in notification
mode and waits for further notification messages until the delivery can be resumed or the job time
expires. When the content download from the agent is complete, notification will be terminated
like as described in subsection 3.3.3 and job data will be removed. After that, the application
will be terminated.

Figure 3.15: CCNAR Requester Application - Process
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3.5 Multi-hop Requester Application (ccnacat resume)

In the evaluation we compare agent-based content retrieval to multi-hop communication. In
contrast to agents, requesters do not need to provide received content to others. Therefore, we
decided to use a resume application ([4], [25]) at requesters, which stores received partial files
and resumes disrupted transfers from where they were stopped. In contrast to the extended
repository implementation for agents, retrieved content is not provided to others (private con-
tent). On the plus side, requesters can detect disruptions in connectivity quicker because they
do not need to periodically check the repository if the file is complete (file transfer is performed
only by the resume application). We have extended the resume application with a job expiration
time (similar to agent jobs) to define an upper bound for file transmissions.
Without resume application, multi-hop content retrievals may never be completed if the
multi-hop path is only available for a short time, i.e., not long enough to complete the entire
file download. The resume application extends the default CCNx file transfer application
ccncat, which has only a simple timeout handling. For example, if the connectivity between
two mobile nodes is disrupted, Interests time out. With ccncat, Interests are reexpressed
three times before the application is terminated and received (incomplete) data is discarded.
Another problem occurs if at application start no content source is available, because version
resolving needs to be performed before content download can start. In ccncat, which assumes
continuous connectivity, Interests for version resolving are only retransmitted once and the
application terminates as soon as the retransmitted Interests expires. In contrast, the resume
application continues version resolving until content is found or the job expiration time has
been reached.

Fig 3.16 illustrates the processing steps of the resume application, which has been used at re-
questers. At application start, the application checks for existing resume information from previ-
ous (disrupted) file transfers. If resume information is found, the download is initialized from the
segment where it was disrupted the last time (stored in resume information). Otherwise, if there
is no resume information available, the download at the beginning with segment 0. The applica-
tion requests content segments and writes it to a partial file until the file transfer is completed or
disrupted (three consecutive timeouts of the same segment denote a disruption). If the content
download has been completed, the partial file is renamed and the application is terminated with
job state "DONE".
Otherwise, if the content download has been disrupted, i.e., no more content can be currently
retrieved, the application checks first, whether the expiration time has already been exceeded.
If the job has not been expired yet, resume information, i.e., content name, content version,
next expected segment number (see [4] for more information), will be stored locally. After a
configurable time interval (default: 10s, but 1s in our evaluations), a resume operation can be
performed. This means that the application tries to download the rest of the file starting from the
next expected segment number (resume information). If the expiration time has been exceeded
and the content download has not been completed, the application terminates with the status
"EXPIRED".
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Figure 3.16: Multi-hop Requester Application - Process
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Chapter 4

Evaluation

In this chapter the performance of agent-based content retrieval is evaluated and compared to
multi-hop communication.
In particular, the following questions should be answered after the evaluation:

• Which notification type is more efficient, pull or push notification?

• When is it suitable to use the agent approach and when to use multi-hop transfer?

• Is it possible to resume interrupted content retrieval from one or more source?

• Can agent-based content retrieval benefit from the routing strategy ”Dynamic Unicast”?
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4.1 Evaluation Scenario

The evaluation scenario can be described as an everyday situation and is visualized in Figure
4.1.

Figure 4.1: Evaluation Scenario

There is a round trip hiking trail to a popular spot on a hill. At this popular spot a solar powered
sensor gathering data (e.g., weather data, webcam snapshot, etc...) is installed. At the start of
the trail is the tourist office, which is interested in the sensor data. Unfortunately, the sensor is
too far away for a direct wireless connection and a wired link is also missing. In order to obtain
the data anyway, multi-hop or agent-based content retrieval can be applied. Since a lot of hikers
are on this trail their mobile phones can be used to build opportunistic networks.

To support this scenario, a circular mobility model has been implemented into NS3, where
hikers (in the remainder of this section called nodes) follow a circular path. The nodes (except
requester and content source, which are static) are uniformly random distributed on the whole
trail and move with velocities within a specified range. From time to time the nodes take a
break to enjoy the beautiful view or eat something. This pause time is a configurable parameter.
In addition, there may be regular hikers, which move at regular speed, and lazy hikers, which
move with slower speed and make longer breaks. In the remainder, we refer to lazy hikers as
”bad nodes”.
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4.2 Evaluation Environment

The implementation of the agent process was tested with the Direct Code Execution framework
for the ns-3 network simulator. This frameworks has been used to test the native source code of
CCNx, i.e, without simplifications, in mobile and wireless networks with many nodes.

”Direct Code Execution (DCE) is a framework for ns-3 that provides facilities to ex-
ecute, within ns-3, existing implementations of userspace and kernelspace network
protocols or applications without source code changes.”[27]

In addition to the DCE framework, ns-3 modules have been used to simulate and log the envi-
ronment, namely node emulation, mobility, wireless connectivity.
The defined scenarios have been evaluated on the grid system of University of Berne (UBELIX).

” UBELIX is a Linux High Performance Computing Cluster used for computational
extensive tasks. Currently, UBELIX runs about 225 nodes on which up to 2700 jobs
can be run simultaneously.” [28]

The UBELIX cluster has been used to run multiple simulation instances of a certain scenario in
parallel in order to save time. The UBELIX grid systems allows to submit up to 1200 jobs at
once per user. Because the architecture of a grid system differs from a single workstation, the
DCE framework has been patched to run on the UBELIX cluster.

To evaluate the huge amount of generated log and result files a comprehensive message analyzer
tool suite has been written in Python. Log files are parsed and necessary information is extracted
in order to analyze the scenarios.
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4.3 Evaluation Setup

In this section the simulation parameters and metrics are explained. In addition, the global
parameters, which are used for all evaluations, are defined in this section.

4.3.1 Parameter Description

Table 4.1 contains a list of parameters, which are used in the evaluation scenarios. These param-
eters are introduced and explained here.

Parameter Description

Topology
Simulation Mobility Mobility model of mobile nodes.
Requester Nodes Number of nodes interested in receiving content.
Source Nodes Number of nodes offering content.
Mobile Nodes Number of nodes with agent or forwarder capabilities.
Source Position Position of the source node in the area.
Requester Position Position of the requester node in the area.
Node Speed Speed of the mobile nodes.
Pause Time Pause time of mobile nodes.

Simulation
Simulation Length Maximum number of seconds the simulation runs.
Simulation Skip Time Number of seconds to run mobility model before events will be started.
Run Number Number of runs (with different seed) per scenario.

Requester
File Size Size of the transmitted data.
Notification (agent only) Notification type (push / pull).
Expiration Time Maximum number of minutes to retrieve data.
Max Agents Maximum number of agent delegations per job.
Notification Interval Number of seconds between two notification messages.
Delegation Interval Number of seconds between two agent delegations.
Agent Request Period Number of seconds until agent is selected from candidate list.

Table 4.1: Parameter Description
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4.3.2 Global Parameters

Table 4.2 contains parameters which are the same for all evaluation scenarios.
To simulate common network conditions, the wireless 802.11g standard in the 2.4 GHz
channel range has been used. The NS-3 YansWifi module (described in [29]) has been
used because it includes common radio simulation models (i.e., wireless channel prop-
agation loss and delay). In this simulation a free space area has been simulated by
applying the ns3::ConstantSpeedPropagationDelayModel (speed of light) and
ns3::LogDistancePropagationLossModel [30] model. Table 4.2 lists applied pa-
rameters for these models. With these parameters, the wireless transmission range is approxi-
mately 130m.

Parameter Description

Network
Wireless Standard 802.11g
Wireless Channel 2.4GHz
Log Distance Exponent 3.0
Reference Loss 40.0 dB
Energy Detection Threshold -86.0 dBm
CCAMode1 Threshold -90.0 dBm

Simulation
Simulation Skip Time 7200s (2h)
Run Number 100

Requester
Max Agents 1, 5, 10
Notification Interval 1s
Delegation Interval 10s
Agent Request Period 2s

Table 4.2: Global Parameters
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4.4 Notification type: Pull vs. Push

In this section the notification types push and pull are compared.

4.4.1 Parameters

In Table 4.3 the evaluation parameters are shown, a description what these parameters mean can
be found in Table 4.1. The results discussed in this section consist of all possible parameter
permutations which led to 1200 simulation runs per notification type. In our circular evaluation
scenario contact time of source and agent nodes is limited due to mobility behavior.

Parameter Description

Topology
Simulation Mobility Circle (Radius 250m, Circumference 1570.80m)
Requester Nodes 1
Source Nodes 1
Mobile Nodes 5, 10, 20, 50
Source Position (100, 400) in 1000 x 1000 m playground
Requester Position (400, 100) in 1000 x 1000 m playground
Bad Nodes Amount 0%, 50%, 75%
Node Speed (Good Nodes) Uniform Distributed Random Value: 1 - 1.4m/s
Node Speed (Bad Nodes) Uniform Distributed Random Value: 0.7 - 1m/s
Pause Time (Good Nodes) 30s
Pause Time (Bad Nodes) 1200s

Simulation
Simulation Length 21600s (6h)

Requester
File Size 1MB (name: ccnx:/ccnx.org/4K1024KB, content objects: 251)
Notification (agent only) push, pull
Expiration Time 180min (3h)

Table 4.3: Push vs. Pull Notification: Parameters
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4.4.2 Retrieval Time

In this subsection the retrieval time of agent-based content retrieval is analyzed. The retrieval
time is the time elapsed from starting until stopping the requester application due to successful
content delivery or job expiry. In agent-based content retrieval, the path length from requester
to content source and back has a direct influence on the retrieval time. In the ideal (fastest) case,
the agent walks to the source, retrieves the content and returns directly to the requester, i.e.,
without any waiting times, thus, the time needed to walk from requester to the source and back
is given by the movement speed and can not be reduced.

Figure 4.2: Push vs. Pull Notification: Retrieval Time - 0% Bad Nodes

Figure 4.2 shows the retrieval time of pull and push notification without bad nodes. This means
that the node speed for each mobile node is in the range 1 to 1.4 m/s and the pause time varies
between 0 and 30s. The x-axis shows the number of mobile nodes (potential agents) and the
y-axis the retrieval time, i.e., time from agent delegation until receiving the content, in seconds.
Per x-axis label six box plots are drawn, the left three boxes show the retrieval time for pull
notification with 1, 5 and 10 delegated agents and the right three the same for push notification.
Comparing corresponding results for pull and push notification shows that the median retrieval
time as well as the inter-quartile range are nearly equal. Thus, the notification type does not
have an impact on the retrieval time.

Figure 4.2 reveals two more things:

• Delegating jobs to more than one agent, results in shorter retrieval times. Mobile nodes
move with varying velocities in a range of 1 to 1.4 m/s and randomly perform occasional
breaks between 0 and 30s. Therefore, the chance to select a node which finishes the round
trip faster than others increases with increasing number of delegations.

• With an increasing number of mobile nodes on the movement path, the inter-quartile range
of the retrieval time decreases. Because more nodes are available on the path, agents can
be delegated quicker and, thus, jobs can be finished earlier.
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4.4.3 Notification Messages / Data Sent

To avoid medium occupation and save resources for other transmissions as well as energy, trans-
mitted notifications should be reduced to a minimum. Therefore, the number of transmitted
notifications as well as the size of transmitted notifications are suitable performance metrics.
Because notification messages differ in size for different types (push-based notifications are
larger, see Chapter 3 for more details), the number of transmitted messages as well as the size of
transmitted messages need to be evaluated.

(a) Sent Messages

(b) Transmitted Data

Figure 4.3: Push vs. Pull Notification: Notifications - 75% Bad Nodes

Figure 4.3(a) shows on the y - axis the number of transmitted notification messages and the
x-axis the number of mobile nodes (potential agents) in the network. The number of transmitted
pull notification messages is approximately the same independent of the number of delegated
agents, while the push notifications increase drastically with the number of delegated agents, i.e.,
50 mobile nodes with 5 agents lead to 2.5 times more messages with push-based notifications
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compared to pull-based notifications. With 10 delegated agents, push-based notifications result
in even 4.5 times more notifications. Furthermore, it is also visible that for push notifications to
multiple agents the number of transmitted messages increases with increasing number of mobile
nodes (node density). Due to the fact that the node density is higher, agent delegations can be
performed faster. For this reason the agents walk close together and start push notifications only
with a small time delay.
Thus, push notification generates more messages as soon as two or more agents have been
delegated (assuming that they both meet the content source, retrieve the content and start the no-
tification phase). Only if delegation is performed to one agent, push notifications result in fewer
notifications. This is due to the fact that push notifications do not start until content retrieval is
complete, while we perform pull notifications periodically starting already immediately after
job delegations (because we do not make any assumptions when the download will be finished).
However, pull based notification could be optimized if certain assumptions would be made, i.e.,
estimating the agent’s return time based on the assumed distance between requester and content
source. However, such optimizations have not been considered in this work. Thus, if agent
delegation is performed to more than 1 agent, pull notifications should be preferred.

In Figure 4.3(b) we show the size of transmitted notification bytes for both push and pull based
notifications.
We would like to emphasize that pull notifications are relatively small (around 70 bytes per
message) because they do not contain detailed information, such as content version, parame-
ter payloads including host identifier etc. This information is only included in the response
to pull notifications, thus, not periodically transmitted but only returned in response to a pull
notification. Push-based notifications, however, contain a parameter payload, e.g., version of
retrieved content, host identifier such as IP address to create direct face, etc., and are, therefore,
42% larger, i.e., around 100 bytes. Because notifications are periodically transmitted (beacons),
smaller messages are more efficient in terms of transmitted bytes.
Figure 4.3(b) shows that, although we used a very basic strategy for pull-notifications (right after
agent delegation), which can be greatly optimized, pull-based notifications result only in 30%
more transmitted bytes than push notifications in case of 1 delegated agents. If jobs are delegated
to more agents, the overhead for push-notifications increases even more, i.e., for 50 mobile
nodes and 10 delegated agents 6.67 times more data is transmitted with push-based notifications
compared to pull-based notifications. These results again demonstrate the efficiency of pull
notifications, even without any optimizations.

39



However, homogeneity of nodes mobility behavior like in the previous scenario is not guaran-
teed, i.e., it may happen that some agents move very slow and need a lot of time to return to the
requester. In order to analyze such a case, the scenario has been repeated with 75% bad nodes,
i.e., they have a slower speeds between 0.7 and 1 m/s and have longer pause times of 0 up to
1200s.

Figure 4.4: Push vs. Pull Notification: Notification Data Sent - 75% Bad Nodes

Figure 4.4 shows the amount of transmitted notification bytes for different node densities. The
transmitted notification bytes are affected by bad nodes because bad nodes need more time to
deliver the content to the requester, thus, the notification period is longer. Please recall that
we use an unoptimized strategy for pull-based notifications, which starts directly after agent
delegation. Therefore, in scenarios with only 1 agent, the number of transmitted notification
bytes (median, 75-quantile and max values) is significantly worse than in the previous scenario
in Figure 4.3(b) without bad nodes. Furthermore, we can observe that pull-based notifications
are more affected by bad nodes than push-based notifications. If a bad node is selected as
agent, it will require more time to travel the path to the content source and back. Because push-
based notifications start only after the content has been retrieved, i.e., at the content source,
fewer notifications are sent compared to pull-based notifications, which start immediately after
delegation.

4.4.4 Summary

The notification types do not have a significant impact on the retrieval time but the number of
transmitted notifications as well as the transmitted bytes. The notification type can be negotiated
during agent delegation depending on the network scenario and the number of expected agent
delegations. As a rule of thumb, we can say that pull notifications should be used if more
than one agent delegation will be performed. The overhead of pull notifications in terms of
transmitted bytes for only one agent is relatively small. Therefore, in the remainder of this
thesis, we only use pull-based notifications.
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4.5 Network Approach: Agent vs. Multi-hop

In this section the requirements and conditions for efficient and successful data transfer using
agent-based and multi-hop content retrieval are analyzed.

4.5.1 Fixed Path Length, Variable Density, Fixed File Size

Parameters

In Table 4.4 the applied parameters are shown. An explanation what these parameters mean can
be found in Table 4.1. The results discussed in this section consist of all possible parameter
permutations which led to a total of 4800 simulation runs.

Parameter Description

Topology
Simulation Mobility Circle (Radius 250m, Circumference 1570.80m)
Requester Nodes 1
Source Nodes 1
Mobile Nodes 5, 10, 25, 50
Source Position (100, 400)
Requester Position (400, 100)
Bad Nodes Amount 0%, 50%, 75%
Node Speed (Good Nodes) Uniform Distributed RandomValue: 1 - 1.4m/s
Node Speed (Bad Nodes) Uniform Distributed RandomValue: 0.7 - 1m/s
Pause Time (Good Nodes) 30s
Pause Time (Bad Nodes) 1200s

Simulation
Simulation Length 21600s (6h)

Requester
File Size 1MB (name: ccnx:/ccnx.org/4K1024KB, content objects: 251)
Notification (agent only) pull
Expiration Time 180 (3h)

Table 4.4: Agent (Pull) vs. Multi-hop: Parameters
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Job State

In the first step of the evaluation the job state has been analyzed to find out which approach
succeeds under which conditions.

There are three possible job states:

• Done: The requested content has been completely retrieved.

• Expired: The requested content has not been found within the given expiration time.

• Interrupted: Only parts of the content could be retrieved within the given expiration time.

Figure 4.5: Agent (Pull) vs. Multi-hop: Job State - 100 Runs

We compare agent-based content retrieval to multi-hop communication for different node densi-
ties. Figure 4.5 shows the job state of agent-based content retrieval compared to multi-hop in a
circular topology with a radius of 250m. The x-axis shows the number of nodes in the network
and the y-axis the number of runs. In total, we performed 100 evaluation runs for every con-
figuration. If the node density is high, e.g., with 50 nodes corresponding to an average density
of 31.42m between nodes, multi-hop communication can always finish. However, with lower
densities, multi-hop communication may not always be successful. For example, with 20 nodes
corresponding to a density of 78.54m between nodes, only 90 % of the jobs can be finished
while 10 % of the jobs are interrupted. Interrupted jobs require more time to finish, i.e., for this
10% interrupted jobs, the requester has retrieved on average only 26% of the file. This illus-
trates that although node density would suggest that multi-hop communication is possible (i.e.,
78.54m between nodes and transmission range of 130m), there may be disruptions since mobile
nodes do not move at the same constant speeds, i.e., there is no uniform node distribution. For
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10 nodes, the node density corresponds to 157.1m between nodes which is slightly more than
a wireless transmission range. As Figure 4.5 shows, even in this case, some packets can still
be retrieved with multi-hop in 14% of the cases, however, the nodes retrieve on average only
30% of the file. For an even lower density, i.e., 5 nodes correspond to 314.2m between nodes no
multi-hop content transmission can be completed. However, as Figure 4.5 shows, agent-based
content retrieval can always finish independent of the node density.

Retrieval Time

Next, we want to evaluate the content retrieval time with multi-hop and compare it to the retrieval
time of agent-based content retrieval.

Figure 4.6: Agent (Pull) vs. Multi-hop: Retrieval Time - Successful Jobs - 0% Bad Nodes

Figure 4.6 compares on the y-axis the retrieval time of the agent approach with multi-hop
communication for a different number of mobile nodes in the network (x-axis). For every label
on the x-axis, four box plots are shown: the left three box plots show agent-based content
retrieval for a different number of agent delegations and the box plot on the right shows the
multi-hop results. Recall that multi-hop cannot finish content downloads for 5 and 10 nodes,
hence, there is no box plot for these densities. Thus, only results for 20 and 50 nodes are
available for multi-hop. The shaded area denotes the time that would be required to walk around
the circle with a constant velocity between 1 and 1.4m/s.

Figure 4.6 shows that the median retrieval time for all agent parameters is approximately equal
and within the shaded area (time to walk around the circle). In case of low node densities, there
may be slightly higher maximum values because it may take longer until a node is seen, i.e.,
until an agent can be delegated. For multi-hop, content can be retrieved for 20 and 50 nodes.
In case of 50 nodes, the density is high enough such that a continuous path between requester
and source can be guaranteed at all times. In this case, multi-hop communication can result in
388 % faster transmission compared to agent-based content retrieval. However, if node density
is slightly lower, e.g., with 20 nodes, the retrieval via multi-hop communication requires in
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median 321% more time (and in the worst case even 716% more time). The reason for the
higher content retrieval time at lower content densities are disruptions caused by nodes moving
at different speeds.

Figure 4.7: Agent (Pull) vs. Multi-hop: Retrieval Time - Successful Jobs - 75% Bad Nodes

Figure 4.7 shows the retrieval times in case of 75% bad nodes. While bad nodes do not have
a significant influence on multi-hop retrieval times, i.e., node density is much more important,
they may have a large influence on agent-based content retrieval if only one agent has been
selected. This behavior is expected because agent-based content retrieval depends on agent
mobility, i.e., time until content is retrieved and the agent returns to the requester for content
delivery. If there are many bad nodes, e.g., here 3 out of 4 nodes, the probability of selecting
a bad node is high. Therefore, in case of expected bad nodes, it may be a better strategy to
delegate content retrieval to multiple redundant agents since content retrieval time can then
be decreased, i.e., the probability that one of the delegated agents is a good node increases.
Furthermore, we would like to note that the probability to select multiple bad nodes increases
for an increasing number of mobile nodes, i.e., 75% of them are bad, and the number of agent
delegations remains constant in our evaluations (1, 5 or 10). This is visible in Figure 4.7 by
the higher maximum retrieval time values for 20 and 50 mobile nodes with 5 and 10 agent
delegations.

44



4.5.2 Variable Path Length, Fixed Density, Fixed File Size

In our next evaluations, we evaluate agent-based content retrieval for different path lengths. To
ensure that multi-hop communication is possible, we adapt the number of mobile nodes to ensure
a minimum density for multi-hop communication.

Parameters

As Table 4.5 shows, we also evaluate radii of 375m and 500m. The number of mobile nodes
has been adapted for these radii, so that the distances between nodes is on average 31.42m and
78.54m. Because of the longer paths with larger radii, the simulation length as well as the
expiration time has been extended linearly to the path length.

Radius [m] 250 375 500

Topology
Mobile Nodes for Density 78.5 20 30 40
Mobile Nodes for Density 31.4 50 75 100
Number of Hops (estimated) 7 10 13
Round-trip distance [m] 1570.80 2356.19 3141.59
Source Position (100, 400) (150, 600) (200, 800)
Requester Position (400, 100) (600, 150) (800, 200)

Simulation
Simulation Length 21600s (6h) 32400s (9h) 43200s (12h)

Requester
Expiration Time 180 (3h) 270 (4.5h) 360 (6h)

Table 4.5: Agent (Pull) vs. Multi-hop: Parameters for Radii 250, 375 and 500m
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Table 4.6 shows the values of the remaining parameters. Their meaning are described in Table
4.1.

Parameter Description

Topology
Simulation Mobility Circle (Radii: see Table 4.5)
Requester Nodes 1
Source Nodes 1
Bad Nodes Amount 0%
Node Speed (Good Nodes) Uniform Distributed RandomValue: 1 - 1.4m/s
Pause Time (Good Nodes) 30s

Requester
File Size 1MB (name: ccnx:/ccnx.org/4K1024KB, content objects: 251)
Max Agents 1
Notification (agent only) pull

Table 4.6: Agent (Pull) vs. Multi-hop: Parameters
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Retrieval Time

Figure 4.8 shows the retrieval times (y-axes) for different radii (x-axis) and different node den-
sities.

(a) Density 31.42 m

(b) Density 78.54 m

Figure 4.8: Agent (Pull) vs. Multi-hop: Retrieval Time - Successful Jobs - 0% Bad Nodes

Figure 4.8(a) shows the content retrieval time for a high node density of 31.42m between nodes.
As expected the agent retrieval times increase with increasing radius because the circumference,
i.e., path the agent needs to travel, increases. As observed before, retrieval times with 1 agent
are slightly (around 5 %) longer than with multiple agents.
Similarly, the content retrieval via multi-hop also increases for increasing radii because more
hops are required to reach the content source. Surprisingly, multi-hop communication increases
more than linearly with increasing hop distance, i.e., by a factor of 3 from a radius of 250m to a
radius of 500m. Figure 4.8(a) shows that if the density is high, multi-hop communication results
always in faster content retrieval times compared to agent-based content retrieval.
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Figure 4.8(b) shows the same evaluation for a lower node density, i.e., on average 78.54m be-
tween nodes. Retrieval times of agent-based content retrieval do not increase much compared to
the high density (cf. Fig. 4.8(a)), i.e., the slight increase can be explained by a slightly longer
time until agent delegations can be performed. However, multi-hop content retrieval times in-
crease significantly because of more frequent disruptions in case of longer path lengths. For radii
of 500m multi-hop retrieval is not even possible anymore, i.e., 77 % of the jobs are interrupted
(i.e., they retrieve on average only 11% of the content) and 23% expired (i.e., requester does not
retrieve a single content object).

Figure 4.9: Agent (Pull) vs. Multi-hop: Multi-hop Resumes - Successful Jobs - 0% Bad Nodes

Figure 4.9 shows the number of resume operations for successful content retrievals via multi-hop
communication in both node densities. The number of resume operations indicates disruptions
in path availability. The x-axis shows the different radii and the y-axis the number of resume
operations. For every x-label two box plots are shown, on the left side multi-hop transmission
with density 31.42m and on the right side multi-hop transmission with density 78.54m. Figure
4.9 shows that the number of resume operations increases with increasing radii. However, with
a high density of in average 31.42m between nodes, the median values are always very low, i.e.,
below 5 for a radius of 500m. But for a low density of 78.54m between nodes, there are already
25 resumes for a 250m radius and more than 100 resume operations for a radius of 375m (recall
that the file size is 1MB, i.e., 251 content objects). These values confirm the assumption of
frequently disrupted paths for density 78.54m.

48



Messages - Mobile Nodes

Besides job state and retrieval time, the network load is an important metric to measure
transmission efficiency in opportunistic networks. The average number of messages transmitted
by all mobile nodes in a simulation run have been evaluated.

The box plots show the statistics over 100 runs. In particular, we focus on transmitted/forwarded
Interest messages (Figure 4.10), transmitted Data messages (Figure 4.11) and received duplicate
Data messages (Figure 4.12).

Figure 4.10: Agent (Pull) vs. Multi-hop: Sent Interests - 0% Bad Nodes - Density 31.42m

Figure 4.10 shows the transmitted Interest messages (logarithmic scale on y-axis) by mobile
nodes on average for different radii (x-axis). The red dotted line denotes the minimum number
of Interests to retrieve the content over one hop.

Agents transmit Interests for content probing, i.e., to find the content source and retrieve content.
In our evaluations, we send an Interest for content probing every 1 second. Therefore, a certain
number of Interest messages is required for agent-based content retrieval. Although the number
of transmitted Interests by agents increases linearly with increasing distance/radius, the number
of nodes increases as well (to keep the same density), thus, the average number of Interests for
content probing and retrieval stays constant. As expected, the number of transmitted Interests
increase with an increasing number of agents.
In the multi-hop case, Interests from a requester are forwarded by mobile nodes to the content
source. However, even with 5 or 10 agents, which is a high overhead because 1 agent would be
enough, mobile nodes send on average still 81% (5 agents) and 47% (10 agents) fewer Interests
than via multi-hop communication. As Figure 4.10 shows, the average number of transmitted
Interests by each multi-hop forwarder node is approximately 251 (dotted lines) for 1MB file
with 251 segments. For increasing radii with multi-hop communication, the number increases
even slightly due to more frequent disruptions and retransmissions.
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Figure 4.11: Agent (Pull) vs. Multi-hop: Sent Content - 0% Bad Nodes - Density 31.42m

Figure 4.11 shows on the y-axis the Data messages transmitted by mobile nodes on average.
If content retrieval has only been delegated to one agent, no broadcast content transmissions
will be performed by mobile nodes and the agent only delivers the content, i.e., the 251 Data
messages, to the requester via content source. However, due to the number of mobile nodes in
the network, the number of content transmissions from the agent via unicast is negligible. For
a radius of 250m (50 nodes), a mobile node sends on average 5 content objects, for 375m (75
nodes) it is 3 content objects and for 500m (100 nodes) only 2 content objects.
These are considerably fewer content objects than for multi-hop communication where on aver-
age 112 Data messages, i.e., 45% of all Data messages, are transmitted.
For more agent delegations, i.e., to 5 or 10 agents, the number of transmitted content objects
increases because agents include content to their repository and may, therefore, provide it to
others. This illustrates the importance of agent delegation and in particular, the number of agents
that need to be delegated. In this scenario with high node density and no bad nodes, agents
are delegated in a short time frame and, thus, perform content retrieval near the content source
at approximately the same time. Since content requests are transmitted via broadcast, agents
may retrieve content from the content source as well as other agents. Furthermore, mobile
nodes (non-agents) may also overhear content transmissions, keep it in the cache to provide
it to others. However, even with 10 agent delegations, the number of content transmissions is
still approximately 50% lower compared to multi-hop (250m) and even 75% lower for 5 agent
delegations.

We can observe that the number of transmitted content objects decreases with agent-based
content retrieval for an increasing distance because the number of delegated agents (active
nodes) stay the same, i.e., 1, 5 or 10, and the number of mobile nodes (passive nodes) increase to
keep the same node density. However, the number of content objects transmitted via multi-hop
broadcast does not decrease for an increasing node density and stays approximately the same.
This illustrates that broadcast content transmission is not efficient for long path lengths and high
node densities.
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Figure 4.12: Agent (Pull) vs. Multi-hop: Duplicated Content - 0% Bad Nodes - Density 31.42m

Figure 4.12 shows the average number of duplicated ContentObjects (y-axis) per mobile node
for a node density of 31.42m between nodes. It shows that for such a high node density, the
number of received duplicate content objects is huge, i.e., more than twice the amount of needed
content objects. Because broadcast messages are forwarded to all nodes in the vicinity, nodes in
range of a content source receive the ContentObjects and keep it in the content store (cache). As
soon as these ContentObjects are requested again (e.g., retransmissions or Interests forwarded
via alternative path), all nodes will answer and therefore produce a lot of duplicates.

During agent-based content retrieval, duplicate content transmissions are also possible in case
of multiple agents. Nodes can overhear content transmissions and respond to other agents re-
questing the content.
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4.5.3 Variable Path Length, Fixed Density, Variable File Size

Finally, agent-based content retrieval is compared to multi-hop content retrieval with variable
file sizes. Content transfers with agents depend on the contact time between agent and content
source. In this evaluations, we have selected file sizes, which can be downloaded during this
contact time. In order to have a constant path for multi-hop transmission, a node density of
31.42m between nodes has been used. Table 4.7 shows the applied scenario parameters for
different radii in order to reach equal node densities.

Parameters

Radius [m] 250 375 500

Topology
Mobile Nodes for Density 31.4 50 75 100
Number of Hops (estimated) 7 10 13
Round-trip distance [m] 1570.80 2356.19 3141.59
Source Position (100, 400) (150, 600) (200, 800)
Requester Position (400, 100) (600, 150) (800, 200)

Simulation
Simulation Length 21600s (6h) 32400s (9h) 43200s (12h)

Requester
Expiration Time 180 (3h) 270 (4.5h) 360 (6h)

Table 4.7: Agent (Pull) vs. Multi-hop: Parameters for Radii 250, 375 and 500m
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Table 4.8 shows applied scenario parameters for the topology as well as for the requester. The
parameters are defined in Table 4.1.

Parameter Description

Topology
Simulation Mobility Circle (Radii: see Table 4.7)
Requester Nodes 1
Source Nodes 1
Bad Nodes Amount 0%
Node Speed (Good Nodes) Uniform Distributed RandomValue: 1 - 1.4m/s
Pause Time (Good Nodes) 30s

Requester
File Size 1MB (name: ccnx:/ccnx.org/4K1024KB content objects: 251)

3MB (name: ccnx:/ccnx.org/4K3072KB content objects: 751)
5MB (name: ccnx:/ccnx.org/4K5120KB content objects: 1251)

Max Agents 1
Notification (agent only) pull

Table 4.8: Agent (Pull) vs. Multi-hop: Parameters
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Retrieval Time

Figure 4.13 compares the retrieval time in seconds (y-axis) to retrieve files of 1, 3 and 5MB with
multi-hop and agent-based content retrieval for different circle radii (x-axis). We can observe
that retrieval times of agent-based content retrieval, i.e., median as well as inter-quartile ranges,
stay approximately constant for different file sizes and same radii as long as they can be finished
during the contact time of agent and content source.

Figure 4.13: Agent (Pull) vs. Multi-hop: Retrieval Time - Successful Jobs - 0% Bad Nodes - Density
31.42m

The retrieval time increases linearly with the radius because agent-based content retrieval is
highly depending on agent mobility, i.e., the path length from source to requester and back.
However, content retrieval times over multiple hops increase for increasing file sizes even for
the same radius. Therefore, we can observe that agent-based content retrieval can be even more
efficient than multi-hop communication in high density networks for larger file sizes. For ex-
ample, for a radius of 250m, agent-based content retrieval may be more efficient than multi-hop
communication for content transmissions of 5MB. The larger the distance, the more efficient
becomes agent-based content retrieval. For example for a radius of 500m, agent-based content
retrieval is already more efficient for file transmissions of 3MB. Because agent-based content
retrieval exploits agents’ mobility and retrieves content directly from the content source, it is
independent of node density and disruptions on the path.
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4.5.4 Summary

Agent-based content retrieval works reliable even under conditions where multi-hop communi-
cation fails (sparse mobile node density) or works only with bad performance (a lot of connec-
tion disruptions). In any case applying agent-based content retrieval results in less transmitted
messages compared to multi-hop content retrieval, since content retrieval happens only over one
hop by a few selected nodes, whereas with multi-hop communication messages are flooded to all
available network nodes. Evaluations have shown that agent-based content retrieval is fast and
reliable when transferring large files over long distances. However, agent-based content retrieval
is highly depending on the mobility of agent nodes. The minimal time to get desired content,
i.e., called retrieval time, is limited by the distance from source and requester.
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4.6 Interrupted Content Retrieval: Multiple Sources

Agent-based content retrieval depends on the contact time between agent and content source.
If the content transfer can not be completed at once, it needs to be resumed at a later time.
In previous experiments the file size was chosen, so that content retrieval could be completed at
once in the available contact time to one content source. In these evaluations, we want to evaluate
the performance of resume operations of the agent application in mobile environments, i.e.,
content retrieval from multiple content sources. Therefore, we place multiple content sources
in the topology and select file sizes that cannot be downloaded during the contact time to one
content source. Furthermore, we also evaluate a higher node mobility, which results in shorter
contact times between agents and content sources.
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4.6.1 Parameters

Table 4.9 lists the parameters of this scenario. Three identical content sources (with the same
repository) are placed on the circle. Like in previous experiments, agent nodes are mobile and
move based on our circular mobility model, while requester and content sources are static. Re-
quester and the three content sources are placed in equidistance on the circle, i.e., the distance is
a quarter of the circumference (see coordinates of requester and sources in Table 4.9). We eval-
uate two different mobile speeds and adapt the retrieved file sizes accordingly. For pedestrian
mobility of 1.0-1.4m/s, we set the file size to 20MB and for vehicular mobility, we set the file
size to 2MB. Please note that file sizes with faster speeds are smaller because of shorter contact
times to the content sources. In total 400 runs have been performed.

Parameter Description

Topology
Simulation Mobility Circle (Radius 500m, Circumference 3141.59m)
Requester Nodes 1
Source Nodes 3
Mobile Nodes 40, 100
Source Position (200, 200), (200, 800), (800, 800)
Requester Position (800, 200)
Bad Nodes Amount 0%
Node Speed (Good Nodes) Uniform Distributed RandomValue: 1.0 - 1.4m/s & 10 - 14 m/s
Pause Time (Good Nodes) 30s

Simulation
Simulation Length 43200s (12h)

Requester
File Size 20MB

(name: ccnx:/ccnx.org/4K20480KB, content objects: 5001)
2MB
(name: ccnx:/ccnx.org/4K2048KB, content objects: 501)

Notification (agent only) pull
Max Agents 1
Expiration Time 360 (6h)

Table 4.9: Interrupted Content Retrieval: Parameters
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4.6.2 Message Overhead

In order to analyze the resume capability of the agent application, the message overhead has
been evaluated and compared to a static scenario where the content can be downloaded from the
same content source (no disruptions).

Source Nodes - Sent ContentObjects

Table 4.10 shows the relative overhead of transmitted Data messages by content sources com-
pared to a single static content source (average over 100 runs).

File Size 2 MB 20 MB
Speed 10 - 14 m/s 1 - 1.4 m/s
Contact Time Short Long
# content objects 501 5001

40 Mobile Nodes
Average of retrieved content objects 518.45 5188.1
Std Dev 4.09 15.07
Overhead compared to static content source 3.48% 3.74%
Std Dev (Relative) 0.82% 0.30%

100 Mobile Nodes
Average of retrieved content objects 516.72 5164.55
Std Dev 3.51 12.74
Overhead compared to static content source 3.14% 3.27%
Std Dev (Relative) 0.68% 0.25%

Table 4.10: Interrupted Content Retrieval: Sent ContentObjects 3 Sources - Average 100 Runs

Due to node mobility, a requester may request segments from a content source while still in
range but then be too far away for the reception, i.e., missed content transmission resulting in
overhead because more messages are transmitted by content sources. For higher node speeds
(10-14m/s), the overhead is slightly smaller than for slower speeds (1-1.4m/s), however, the
difference is negligible. We can see that the overhead for resuming file transfers from different
content sources is for both speeds very low, i.e., below 4%. Since no connection setup needs to
be performed, agents can exploit the complete contact time for content retrieval. Furthermore,
we can see that the overhead is slightly smaller for 100 mobile nodes compared to 40 nodes.
This is because for a higher node density, the probability is higher that other mobile nodes may
have overheard missed content transmissions and provide it to the agent before reaching the next
content source. In this case, the next content source does not need to provide the same content
objects again.
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Agent Nodes - Sent Interests

Table 4.11 shows the relative overhead of total transmitted Interests by agent nodes.

File Size 2 MB 20 MB
Speed 10 - 14 m/s 1 - 1.4 m/s
Contact Time Short Long
# content objects 501 5001

40 Mobile Nodes
Average of transmitted Interests 633.5 6826.40
Std Dev 18.98 94.96
Overhead compared to static content source 26.45% 36.50%
Std Dev (Relative) 3.79% 1.90%

100 Mobile Nodes
Average of transmitted Interests 629.47 6786.19
Std Dev 21.17 61.25
Overhead compared to static content source 25.64% 35.70%
Std Dev (Relative) 3.36% 1.22%

Table 4.11: Interrupted Content Retrieval: Sent Interests Agent Node - Average 100 Runs

The Interest overhead is significantly higher than the content overhead, since more Interests are
transmitted for content probing, i.e., looking for a content source. In our implementation, agents
probe periodically for content every second. For higher node speeds, the overhead is lower, be-
cause periods without connectivity to content sources are shorter (the distance can be traveled
faster requiring fewer probing Interests).
Nevertheless this overhead does not drastically affect network load since Interest messages are
relatively small (around 75 bytes, compared to Data messages with around 4500 bytes). Fur-
thermore, Interest forwarding is limited to only one hop.
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4.7 Content Retrieval with Dynamic Unicast

Agent-based content retrieval uses one-hop broadcast communication to find and retrieve
content. Unfortunately, the throughput of broadcast communication is very small compared
to unicast communication. Therefore, the content retrieval with unicast is faster than with
broadcast communication. Thus, more content can be transferred during a given time, i.e., in
case of short contact times due to mobility. In another ongoing master thesis [31] a dynamic
routing mechanism has been introduced. This routing mechanism is able to create unicast
routes based on overheard broadcast content. In this section this routing mechanism, called
Dynamic Unicast, has been applied to the already known scenario. Due to its implementation
in the CCNx daemon, it is not required to change the agent application. The agent application
transmits Interests via broadcast first and the routing mechanism creates a unicast face to the
content source as soon as content has been received via broadcast. Subsequent Interests will
be sent via the unicast face until content is completely transferred or Interests time out. When
Interests transmitted via unicast face time out, the face is deleted and further Interests will be
transmitted again via broadcast.
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Table 4.12 shows the parameters applied in this evaluation. Dynamic Unicast (with SFF for-
warding strategy) has been tested in the circle scenario with 3 content sources. The mobile
nodes move with vehicular mobility (speed: 10-14m/s).

4.7.1 Parameters

Parameter Description

Topology
Simulation Mobility Circle (Radius 500m, Circumference 3141.59m)
Requester Nodes 1
Source Nodes 3
Mobile Nodes 100
Source Position (200, 200), (200, 800), (800, 800)
Requester Position (800, 200)
Bad Nodes Amount 0%
Node Speed (Good Nodes) Uniform Distributed RandomValue: 10 - 14 m/s
Pause Time (Good Nodes) 30s

Simulation
Simulation Length 43200s (12h)

Requester
File Size 10MB

(name: ccnx:/ccnx.org/4K10240KB, content objects: 2501)
20MB
(name: ccnx:/ccnx.org/4K20480KB, content objects: 5001)

Notification (agent only) pull
Max Agents 1
Expiration Time 360 (6h)

Table 4.12: Dynamic Unicast: Parameters
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4.7.2 Message Overhead

Source Nodes - Sent ContentObjects

Table 4.11 shows the relative overhead of transmitted Data messages by content sources com-
pared to a single static content source (average over 100 runs).

File Size 10 MB 20 MB
# ContentObjects 2501 5001

100 Mobile Nodes (absolute values)
Unicast Average 2496.03 5005.02
Broadcast Average 6.58 7.21
Unicast + Broadcast Average 2502.61 5012.23
Unicast + Broadcast Overhead 0.06% 0.22%

Unicast Std Dev 0.82 55.8
Broadcast Std Dev 1.16 1.65
Unicast + Broadcast Std Dev 1.13 56.07
Unicast + Broadcast Std Dev 0.05% 1.12%

100 Mobile Nodes (relative values)
Unicast Average 99.74% 99.86%
Broadcast Average 0.26% 0.14%
Unicast + Broadcast Average 100% 100%

Table 4.13: Dynamic Unicast: Sent ContentObjects - 3 Source Nodes - Average 100 Runs

Dynamic Unicast results in an overhead of less than 0.3% Data messages. The overhead for
the 20MB file is slightly higher because with Dynamic Unicast the 10MB file can be mostly
retrieved from one source, whereas content retrieval of the 20MB file has to be resumed from
a second source. As Table 4.13 shows Data messages are mainly transmitted via unicast links.
Receiving only a few Data messages via broadcast is enough to build a unicast face directly to
the content source.
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Table 4.14 summarizes relative overhead values of broadcast (as shown in Table 4.10) and Dy-
namic Unicast evaluations (as shown in Table 4.13).

Type File Speed Overhead
Broadcast 2MB 10-14m/s 3.48%
Dynamic Unicast 20MB 10-14m/s 0.22%
Difference - Equal Speed 10-14m/s 3.26%

Broadcast 20MB 1-1.4m/s 3.74%
Dynamic Unicast 20MB 10-14m/s 0.22%
Difference - Equal File 20MB 3.52%

Table 4.14: Dynamic Unicast: Content Overhead Sources - Broadcast vs. Dynamic Unicast

Comparing the overhead of transmitted Data messages of Dynamic Unicast with one-hop broad-
cast shows that the overhead is around 3.25% smaller for Dynamic Unicast. Please note that for
file sizes of 20MB with one-hop broadcast the content source contact time is longer since the
node speed is smaller by a factor of 10, while for the 2MB file the contact time is equal to this
scenario (same speed). Content retrieval via unicast links is more reliable and efficient than via
one-hop broadcast, because retransmission in case of collisions can performed on the MAC-
Layer. Furthermore, applying Dynamic Unicast helps reducing network load since messages are
not flooded to all nodes in the network but only forwarded to the required nodes.
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Agent Nodes - Sent Interests

Table 4.15 shows the relative overhead of transmitted Interests by agents compared to a single
static requester (average over 100 runs).

File Size 10 MB 20 MB
# ContentObjects 2501 5001

100 Mobile Nodes (absolute values)
Unicast Average 2504.13 5014.85
Broadcast Average 414.66 809.63
Unicast + Broadcast Average 2918.79 5824.48
Unicast + Broadcast Overhead 16.70% 16.47%

Unicast Std Dev 3.81 56.22
Broadcast Std Dev 18.9 53.88
Unicast + Broadcast Std Dev 20.09 86.69
Unicast + Broadcast Std Dev 0.80% 1.73%

100 Mobile Nodes (relative values)
Unicast Average 85.79% 86.10%
Broadcast Average 14.21% 13.90%
Unicast + Broadcast Average 100% 100%

Table 4.15: Dynamic Unicast: Sent Interests - Mobile Nodes - Average 100 Runs

Like already seen in Table 4.11 of the previous section, the Interest overhead is significantly
higher than the content overhead, since more Interests are transmitted to find content (content
probing). Table 4.16 summarizes the overhead of transmitted Interests for broadcast (as shown
in Table 4.11) and Dynamic Unicast (as shown in Table 4.15) with the same node speed. The
overhead of transmitted Interests with Dynamic Unicast is about 9% smaller than with broadcast.

Type File Speed Overhead
Broadcast 2MB 10-14m/s 25.64%
Dynamic Unicast 20MB 10-14m/s 16.47%
Difference - Equal Speed 10-14m/s 9.17%

Table 4.16: Dynamic Unicast: Interest Overhead Agents - Broadcast vs. Dynamic Unicast
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With Dynamic Unicast the Interest overhead compared to one-hop broadcast is reduced because
of two main reasons. First fewer Interest retransmissions need to be performed with Dynamic
Unicast, because collision handling is performed on the MAC-Layer. Second because larger
files (more Data messages) can be transmitted with Dynamic Unicast the relative overhead for
content probing is smaller.

File Size 10 MB 20 MB
# ContentObjects 2501 5001

100 Mobile Nodes (unanswered Interests - absolute values)
Unicast Average 8.26 19.71
Broadcast Average 297.98 683.91
Unicast + Broadcast Average 306.24 703.62

100 Mobile Nodes (unanswered Interests - relative values)
Unicast Average 0.33% 0.39%
Broadcast Average 71.86% 84.47%
Unicast + Broadcast Average 10.49% 12.08%

Table 4.17: Dynamic Unicast: Unanswered Interests - Mobile Nodes - Average 100 Runs

Additionally, Table 4.17 shows the difference between transmitted Interest and received Data
messages. Comparing the values shows that less than 1% unicast Interests do not receive a Data
message in response. This demonstrates the fact that unicast routes are removed relatively fast if
content is no longer available, i.e., the content source is out of connectivity range and the Interest
lifetime is exceeded. In this case, Interests, i.e, to resume content repository import as well as
to periodically probe for content, are transmitted via broadcast. The amount of unanswered
broadcast Interests is significantly higher (around 70 - 85%) due to its utilization for content
probing.
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4.8 Discussion

After analyzing the results of the different scenarios we are able to answer the questions formu-
lated at the beginning of this chapter.

Which notification type is more efficient, pull or push notification?
The choice of the notification type depends on the network scenario and the number of
expected agents. However, pull notifications should be used if more than one agent dele-
gation will be performed since the amount of transmitted bytes is smaller than with push
notifications. However, applying pull notifications for jobs with only one agent delegation
results in a small overhead of transmitted bytes.

When is it suitable to use the agent approach and when to use multi-hop transfer?
Agent-based content retrieval is suitable for transferring large files fast and reliable over
long distances even under difficult mobility conditions, e.g., sparse node density. In any
case applying agent-based content retrieval results in less transmitted messages compared
to multi-hop content retrieval because messages are only transmitted by one node and not
forwarded by multiple nodes. Due to high dependency on the mobility of the agent nodes,
the minimal time to get desired content, i.e., called retrieval time, is limited by the distance
from source and requester.

Is it possible to resume interrupted content retrieval from one or more source?
By using the developed repository extension, the completeness of content can be validated
and the last valid segment can be identified. Repository import can then be resumed using
the identified segment and results only in a small overhead of transmitted Data messages
by content sources.

Can agent-based content retrieval benefit from the routing strategy ”Dynamic Unicast”?
Agent-based content retrieval can benefit from the routing strategy ”Dynamic Unicast”
in several ways. Retrieving content via unicast increases the download throughput, i.e.,
more data can be transferred during the limited contact time. Furthermore, network load
is reduced since unicast connectivity prevents network flooding by transmitting messages
only to required nodes.
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Chapter 5

Conclusions

5.1 Summary and Conclusion

In this master thesis we developed an agent and requester application with resume capability
in order to evaluate agent-based content retrieval in environments with node mobility. The
performance and behavior of the implemented agent protocol has been measured and compared
to multi-hop content retrieval. During the evaluation important parameters to improve perfor-
mance have been searched and found.

Evaluations have shown that pull notifications are more efficient than push notifications in most
cases, i.e., for delegations to more than one agent. Further, we found out that agent-based
content retrieval enables reliable and fast transfer of large files over long distances even in
difficult mobility conditions. Compared to multi-hop retrieval, agent-based content retrieval
does not generate a lot of network load: in each considered scenario the amount of transferred
messages was lower than with multi-hop.

The principles of content centric networks can be exploited to resume interrupted content re-
trievals without a lot of overhead for finding content sources and building routes.
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5.2 Future Work

The developed agent protocol as well as the implemented agent applications with resume capa-
bilities demonstrate the potential of the agent-based content retrieval approach. Nevertheless,
there are open questions and potential optimizations to address.

In the implemented protocol agent selection is not considered (random selection of agents).
Agent selection is a very wide an complex topic which contains material for another thesis:
to apply agent selection algorithms additional information about the environment and its
members are needed. Existing forwarder selection mechanisms in DTN networks are based
on community graphs or neighborhood maps that are created by collecting hello beacons from
neighboring nodes. However, in content-centric networking, we would like to avoid such hello
beacons because the hosts where content is stored is not important. Therefore, new agent
selection criteria and algorithms need to be developed, e.g., to create a content map based on
overheard transmissions.

In principle, the CCN approach provides more flexibility because the requesters can define
agent selection criteria in the init request and only agents that fulfill these criteria may answer.
This means that agent selection criteria can be different for every application. For example, if
content from a certain geographic region needs to be requested, the init requests can include
those coordinates such that only agents that travel towards those coordinates may answer.

Another approach would be to combine multi-hop data retrieval with agent-based retrieval into
a hybrid solution. In a first step content is searched via multi-hop. If for a given time no content
could be found, data retrieval can be delegated to agents. Furthermore, it may be possible to
enable agents to delegate jobs further to other agents or enable agents to perform multi-hop
content retrieval over a limited number of hops.
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Chapter 6

Appendix

6.1 CCNA Requester Application

./ccnar [-m] [-e expire time] [-n (push|pull)] [-a max agents] [-i
delegation interval] ccnx:/a/b

Start agent request for given ccn URI
-h Produces this message
-m Automatically registers a multicast face for ccnx:/ferrying and

ccnx:/notify prefixes
-e Set how long (in minutes) the agent request is valid.

Default 120min.
Expire time > 0.

-n Notification type (push or pull).
Default push.

-j Pull notification interval (in seconds).
Default 10s.

-a Set max. number of agents per job.
Default: 5.

-i Set delegation interval of a job (in seconds).
Default: 30s.

-p Set number of pipelines for retrieval stream.
Default: 4.

Listing 6.1: Command Line Reference - ccnar
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6.2 CCNA Agent Application

./ccna - CCNx agent daemon
Processes delegated content retrieval request in dynamic environments
-h shows this usage text
-m Automatically registers a multicast face for ccnx:/ferrying and

ccnx:/notify prefixes
-i Push notification interval (in seconds).

Default: 10s, Max: 99s.

Listing 6.2: Command Line Reference - ccna
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