
DATA EXCHANGE IN INTERMITTENTLY
CONNECTED CONTENT-CENTRIC NETWORKS

Bachelorarbeit
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Tobias Schmid
2013

Leiter der Arbeit:
Professor Dr. Torsten Braun

Institut für Informatik und angewandte Mathematik

Contents

Contents i

List of Figures iii

List of Tables iv

Listings v

1 Introduction 1
1.1 Motivation and Task Formulation . 1

1.1.1 Motivation . 1
1.1.2 Task Formulation . 2

1.2 Outline . 2

2 Related Work 3
2.1 Content-Centric Networks . 3

2.1.1 CCN Packets . 3
2.1.2 Content Naming . 4
2.1.3 Data Storage in CCNx . 4
2.1.4 File Transfer in CCNx . 5

3 Design and Implementation of Resume Operations in CCNx 9
3.1 Problem Description . 9
3.2 Meta Information . 10
3.3 Resume Capability in CCNx Transfer Processes 11

3.3.1 ccnsimplecat resume . 11
3.3.2 ccncat resume . 12

3.4 Data Structure for Meta Information . 13
3.4.1 ContentName with Integrated Version Number 13
3.4.2 Next Segment to Receive . 14
3.4.3 Position of the Partial Data File . 14

3.5 Implementation of the Resume Capability . 14
3.5.1 Resume Capability without Pipelining 15
3.5.2 Resume Capability with Pipelining 21

i

4 Evaluation 27
4.1 Application Scenario . 27
4.2 Hardware / Technology . 29

4.2.1 ADAM Operating System . 29
4.3 Testing Setup . 29
4.4 Results . 32

4.4.1 Influence of the Block Size . 32
4.4.2 Influence of the Pipeline Size . 34
4.4.3 Influence of the Network Connection 38
4.4.4 Processing Overhead . 40
4.4.5 Discussion . 41

5 Conclusion 43
5.1 Summary . 43
5.2 Conclusion . 43
5.3 Future Work . 44

6 Appendix 45
6.1 Code Listings . 45

6.1.1 Source Code of the Transfer Applications 45
6.1.2 ccn fetch . 46

7 Technical Appendix 47
7.1 Configuration of Wireless Mesh Nodes with ADAM 47

7.1.1 Hardware . 47
7.1.2 Software . 47

Bibliography 58

ii

List of Figures

2.1 CCN packet types [1] . 3
2.2 CCN naming . 4
2.3 Sequential data transfer in CCNx . 6
2.4 Pipelined file transfer in CCNx . 7

(a) Requests . 7
(b) Data processing . 7

3.1 Sequential file transfer with resume capability 11
(a) Requests . 11
(b) Data processing . 11

3.2 Pipelined file transfer with resume capability 12
(a) Requests . 12
(b) Data processing . 12

3.3 Example ContentName extraction process . 14
3.4 Application flow of ccnsimplecat . 15
3.5 Function flow of incoming content(...) . 16
3.6 Application flow of ccnsimplecat resume . 18
3.7 Function flow of incoming content(...) with resume capability 19
3.8 Application flow of ccncat . 22
3.9 Application flow of ccncat resume . 24

4.1 Application scenario explained in four steps 28
4.2 Applied testing architecture with mesh nodes 30
4.3 ccnsimplecat vs. ccnsimplecat resume . 33
4.4 ccnsimplecat vs. ccncat with / without resume capability (pipeline sizes 1, 2, 16) 35
4.5 ccnsimplecat resume vs. ccncat resume . 36
4.6 wireless vs. ethernet with pipelining . 39

iii

List of Tables

3.1 Description of the stream information used in the ccn fetch library 13
3.2 Mapping of the meta information value in ccnsimplecat resume 20

4.1 Test cases ccnsimplecat vs. ccnsimplecat resume 32
4.2 Test cases ccncat vs. ccncat resume . 34
4.3 Performance gain of the resume capability using multiple pipelines 37
4.4 Test cases wired and wireless . 38
4.5 Transfer time for transferring a file without disruptions 40

iv

Listings

3.1 Meta information struct . 13
3.2 Struct: ccn closure . 17
3.3 State information . 17
4.1 Command to generate random files . 30
4.2 Insert files into CCNx repository . 30
6.1 Definition of the fetch stream . 46
7.1 Setting up the cross-compiling environment 48
7.2 Build the tool chain for the cross-compiling environment 48
7.3 Default board packages . 48
7.4 Build openssl with rc2 support . 49
7.5 CCNx buildscript . 49
7.6 Hacking the regulatory domains of the wifi devices 50
7.7 Compiling the packages . 55
7.8 Generating the standalone image . 56
7.9 Generating the real image . 56
7.10 Generating the configuration image . 56
7.11 Open serial communication console using minicom 57
7.12 Open ssh console . 57
7.13 Send file to node using scp . 57

v

Acknowledgement

On this page I would like to thank everybody who supported me to write this bachelor thesis.
First I would like to thank my coach Carlos Anastasiades. He supported me trough the whole

process of writing this thesis, had an ear for discussing problems with the thesis and gave inputs
when I was blocked with my work.

After that I would like to thank Prof. Dr. Torsten Braun who allowed me to write this thesis
in his research group. I am also very grateful for the resources that were generously provided by
the research group of Prof. Braun.

Last but not least my work colleagues and office mates Jürg Weber and Alexander Striffeler
who have been there for solving problems, drinking coffee, killing time and fooling around.

vi

Abstract

Content-Centric Networking (CCN) is another approach of network architecture and accessing
data within networks. In contrast to host-based network architectures, content-centric networks
have no need to know their neighbours and the whole network topology because data is requested
based on a content specific identifier and not a host identifier. For this reason, content-centric
networks are suitable for dynamic mobile networks with many moving devices.
The project CCNx has the goal to implement this approach as a open source framework. In this
thesis the existing file transfer applications of the CCNx framework have been extended with a
resume capability.
The evaluation of these extended applications showed that the resume capability enables a con-
stant effective transfer time independent of the number of interrupts during a file transfer. Using
a pipeline size of 16 and a block size of 4096 bytes enabled the fastest transfer rate. Nevertheless
the results pointed out that the CPU of resource constrained devices limits the maximal reached
transfer rate independent of the network connection.

viii

Chapter 1

Introduction

When the Internet architecture was developed network devices and computers were not inte-
grated in the environment the same way as today. Mobile computing was just a dream because
the devices were too big to carry around. The Internet architecture has been developed to share
resources and the communication was limited to wired connections. Since then technology
evolved very fast and many constraints have disappeared. Nowadays, it is even possible to use
the air to exchange data between mobile devices.

Today’s network connections are used mostly to exchange data. It is important to receive
a specific requested content but the real location of the content source is irrelevant. With
the increasing dissemination of mobile devices such as smart phones or tablets, that fact is
reinforced.

For this reason, different information-centric networking approaches have been developed. One
prominent approach is Content-Centric Networking (CCN) [1]. The open source framework
implementation CCNx [2] is the basis of this thesis.

1.1 Motivation and Task Formulation

1.1.1 Motivation

In content-centric networks (CCN) data is organized in segments. A user who is interested in
the content can express Interest packets to receive the corresponding data segments in return. If
a consumer has received all the segments, he can save the data to a file. In case of an interrupted
transfer the received data is incomplete and useless. The transfer has to be restarted from the
first segment. Depending on the mobility or contact time of a device, certain files can never be
completely received. Requests with short connection interrupts or small data chunks may be
provided by a local cache, however, if connection interrupts are long, the data may not be longer
available there.

1

1.1.2 Task Formulation

The goal of this thesis is to develop an application that enables file downloads in intermittently
connected networks based on the current CCNx framework [2].
The work comprises the following tasks:

• study the current CCNx file transfer applications

• identify requirements to extend these applications with a resume capability1

• implement the resume capability extension

• compile the current CCNx code on a current ADAM[3] image

• evaluate the resume applications on real mesh nodes in different scenarios

1.2 Outline

The remainder of this report is organized as follows. Chapter 2 presents the basics of content-
centric networking. Chapter 3 describes the idea and implementation of the resume capability
in CCNx. After that we evaluate the new application with different scenarios and parameters in
Chapter 4. Finally, in Chapter 5, we discuss the developed approach and conclude our work.

1The resume capability enables storing of already received data so that in case of a disrupted file transfer obtained
data does not have to be retransferred.

2

Chapter 2

Related Work

2.1 Content-Centric Networks

Content-centric networking was introduced in a paper by Van Jacobson[1]. His research group
at the Palo Alto Research Center (PARC) started to implement an open-source project called
CCNx[2].

2.1.1 CCN Packets

In CCN, communication is based on two basic packet types: Interest and Data. Figure 2.1
shows the Interest packet for requesting content and the Data packet to deliver data which is
called ContentObject in CCNx.

Figure 2.1: CCN packet types [1]

An Interest packet contains a prefix or the complete ContentName of the requested Con-
tentObject and some selectors which allow to restrict the origin and matching of the Data packet.

3

A Data packet is defined as follows: It contains the ContentName, the Signature, the Signed-
Info and the data itself.

There is an important rule for sending and receiving packets in CCNx; at most one Data
packet is sent per Interest packet. If no Data packet matching an Interest arrives within a given
time, a data is non-existent assumption will be made. This rule is a key behaviour for the
implementation of the resume capability. Details are discussed later in chapter Design and Im-
plementation of Resume Operations in CCNx.

2.1.2 Content Naming

Another essential part of content-centric networking is the content naming. Because content is
requested by name a clever way of handling content names is necessary. A hierarchical name
structure is suitable for this use case.

Figure 2.2: CCN naming

As shown in Figure 2.2 CCNx ContentNames can be represented by URIs which are easily
read and remembered by humans. Every component between two slashes (/) represents a hier-
archy level. Further every content has a version number and is split into several segments. To
indicate the version and the segment markers are used. Versioning is implemented with times-
tamps. A v marker followed by a timestamp represents the version of the packet. Similar the
segment number is given after the s marker. The first segment holds the segment number 0, for
each additional segment the segment number will be incremented.

2.1.3 Data Storage in CCNx

In CCNx there are different ways of storing data. For persistent storing of data the CCNx
repository is used. The ContentStore is used for caching data.

2.1.3.1 ContentStore (CS)

The ContentStore is like a cache for arrived Data packets. The received packets are stored in
memory which allows a fast access time. If a packet arrives that is already included in the
ContentStore it will be discarded. The life time of packets in the ContentStore is limited by the
memory size and the freshnessSecond flag which is embedded in the Data packet header.

4

2.1.3.2 Repository

Repositories enable persistent storage of data on dedicated storage devices.
There are two different repository applications, one implemented in C the other in Java.

The repository application written in C (called ccnr) has replaced the Java application (called
ccn repo) due to its better performance and integrated synchronization facility[4]. To share data
over the repository they first have to be inserted. The inserting process includes segmentation,
signing and encoding of the data which has only to be done once. After that inserted data is
include in a file which can be stored persistent.

2.1.4 File Transfer in CCNx

The CCNx framework provides different applications to transfer files. Some of the applications
offering the same functionalities are existing both in Java as well as in C. In this thesis we would
only have a look at the C implementation because of the portability to embedded systems. Two
command line transfer applications, ccnsimplecat and ccncat have been considered in this work
and are presented in this section.

5

2.1.4.1 ccnsimplecat

The ccnsimplecat application provides sequential data transfer. The communication is per-
formed segment by segment and only one data segment can be requested at a time. Figure
2.3 shows a sample request between a consumer and a content source. For obvious reasons this
sort of file transfer is not very efficient but helps to understand the mechanisms of CCNx.

The application requests data with a given ContentName starting with segment number zero
(s0). After data retrieving the segment number is incremented by one. This step will be repeated
until the final packet, indicated by a final block identifier, is received. Every Interest will time out
if not answered within a defined period of time. Unanswered Interests are reexpressed infinitely
often until the Data packet arrives or the application is terminated manually.

Figure 2.3: Sequential data transfer in CCNx

6

2.1.4.2 ccncat

The ccncat file transfer application implements transfer pipelining. Pipelining means multiple
Interest requests can be transmitted concurrently without receiving data in return. The maximum
number of Interests that can remain unanswered at a time is defined by the pipeline size. Running
ccncat with pipeline size 1 equals ccnsimplecat. The received data is buffered and will be put in
the correct sequence afterwards.

Figure 2.4 shows a sample file transfer with a pipeline size of 4. The sequence diagram
in Figure 2.4(a) shows that data packets sent by the source can arrive in an arbitrary order.
Received packets are stored in the memory until it is possible to reassemble the data in the
correct order (see Figure 2.4(b)). The data packets are reassembled in a buffer.
The ccncat application writes the data stored in the buffer to the standard output after that the
buffer will be cleared. Checking if new data is in the buffer is implemented as a polling process
which is discussed in detail in chapter Design and Implementation of Resume Operations in
CCNx.

Like in ccnsimplecat, unanswered Interests are reexpressed in an infinite loop until either the
data arrives or a stream error occurs which forces the application to terminate.

(a) Requests (b) Data processing

Figure 2.4: Pipelined file transfer in CCNx

7

Chapter 3

Design and Implementation of Resume
Operations in CCNx

In CCNx, segments are requested subsequently and are printed to the standard output. By
piping the standard output stream to a file it is possible to save data. If the connection between
a requester and a content source breaks before the completion of a file transfer, the transmission
fails. No state information about already received segments is stored and therefore, the requester
will request already received segments at the next try. Therefore, the complete file transmission
has to be performed at once at the same time. In case of short disconnections, these segments
may still be hold in the cache but in case of long disconnections or high traffic volumes and
large file sizes, the segments may need to be retransmitted over the wireless medium. In this
section we will describe the resume capability that is developed in this work. In Section 3.1
the problem addressed in this thesis is discussed. Section 3.2 introduces the meta information
used for implementing the resume capability. Section 3.3 shows a visualization of the proposed
approach. After that Section 3.4 introduces a new data structure for storing the proposed meta
information. Finally Section 3.5 describes the implementation of the resume capability in both
of the file transfer applications.

3.1 Problem Description

To be able to resume a transfer in CCNx, one has to know which segments already have been
received and from which segment to start the resumed transfer. Currently CCNx provides vari-
able and fixed segment lengths, therefore the size of the following segment is unknown. This
leads to the problem that it is not possible to reconstruct the resume parameters out of the stored
partial data. Because the segment block size in a file may vary, it is not possible to calculate the
segment number of the last transferred segment. Hence, additional meta information is stored
on the receiver side to support the resume capability.

9

3.2 Meta Information

To resume an aborted transfer at least the following meta information needs to be stored:

name of the ContentObject
To remember which data chunks of a ContentObject already have been received the Con-
tentName needs to be known.

version of the ContentObject
Consumers usually request data without knowledge of the delivered version but when they
try to resume a transfer there may already be other versions with the same ContentName
available. To avoid inconsistencies the same content version has to be retrieved. In CCNx
the version is encoded as a timestamp and has to be stored in the meta information.

next segment to receive
To have an entry point for a future resume one has to know from which segment to start.
For this reason the incremented segment number of the last received segment is stored in
the meta information.

position of the partial data file
To ensure that the partial data file has not been modified outside of the CCNx file transfer
application the file position is saved after every inserted data chunk.

Some guidelines are needed so that the application is able to find already stored data if the
transfer will be resumed. The received partial data is written to the temporary file filename.part
and the meta information is stored in filename.meta. The file name consists of the human read-
able representation of the ContentName without any markers. These files are kept on the device
and are used to resume the transfer in case of regained connectivity. If a resume leads to a suc-
cessful transfer the partial file is renamed to the filename without special extension and the meta
information file will be removed from the storage device.

10

3.3 Resume Capability in CCNx Transfer Processes

This design idea will be implemented for the ccnsimplecat and the ccncat file transfer applica-
tions which have been introduced in Section 2.1.4.1 and 2.1.4.2. The main behavior of these
applications is kept and resume capability is added. Hence, the application names are modified
by appending resume.

3.3.1 ccnsimplecat resume

(a) Requests (b) Data processing

Figure 3.1: Sequential file transfer with resume capability

Figure 3.1 shows the extended behavior of the ccnsimplecat application introduced in Section
2.1.4. Figure 3.1(a) shows the request process in case of an Interest timeout. After n successfully
received segments, the request for segment n+1 times out. Figure 3.2(b) illustrates the handling
of the meta information. While the transfer makes progress the meta information is kept and
updated in memory. In case of an Interest timeout the meta information is written to the .meta
file.

11

3.3.2 ccncat resume

(a) Requests (b) Data processing

Figure 3.2: Pipelined file transfer with resume capability

Similar to ccnsimplecat resume, Figure 3.2 shows the behavior of ccncat introduced in Section
2.1.4.2 with the resume capability feature. The request scenario considered in 3.2(a) is similar
to Figure 3.1(a) but more than one segment is requested at the same time.
Figure 3.2(b) illustrates the data processing of the ccncat resume application: Again meta in-
formation is stored in memory until an Interest timeout occurs. The difference between cc-
nsimplecat resume and ccncat resume is the moment of the meta information update. With
ccnsimplecat resume the next segment number to receive can be updated after every received
segment, while with ccncat resume one has to wait until an ordered block of continuous seg-
ments is received. So the meta information entry depends on the time of last block processing
and not directly on the last received segment.

12

3.4 Data Structure for Meta Information

The meta information is a very important part to enable the resume capability. In this section
we explain how we retrieve and update it in the file transfer applications.

Listing 3.1 shows the definition of the metainfo struct we have introduced to store the meta
information within the transfer application. In order to ensure compatibility among both transfer
applications, e.g. starting a transfer with pipelining using ccncat resume and resuming it by
simplecat resume or vice versa, we use meta information which is equipped with all necessary
parameters used for both application. Table 3.1 describes the function of the parameters in the
ccn fetch library.

s t r u c t metainfo {
char ccn_name[MAX_URI_LENGTH];
seg_t readSeg;
intmax_t readStart;
seg_t segsRead;
long i n t partFileSize;

};

Listing 3.1: Meta information struct

field in stream struct function in the fetch stream
readSeg the segment for the current read position (next segment to receive)
segsRead number of segments already read
readStart the file read position at segment start

Table 3.1: Description of the stream information used in the ccn fetch library

Since ccnsimplecat resume uses less resume parameters we provide the missing information
for ccncat resume through a suitable mapping to enable interoperability between both applica-
tions. We will introduce this mapping in Section 3.5.1.

3.4.1 ContentName with Integrated Version Number

In CCNx each human readable ContentName is encoded to a binary sequence of components for
internal use. Such a binary sequence of components enables an easier matching process between
the ContentName in an expressed Interest and potential Data packet candidates. Because the
human readable ContentName is a regular string of valid characters, it is used as filename for
the partial data and meta information files. The different markers within the ContentName allow
us to extract specific information from the string.

In this work, the version number is stored as part of the ContentName. We do not store it
separately to avoid reassembling both fields again before every resume operation.

In the most common case a consumer requests data with a ContentName without any mark-
ers, so the CCNx framework adds the missing information about the version and the segment

13

number automatically. In CCNx the order of the markers is always the same, so we can make
assumptions about the appearance of the ContentName string. An example name string is shown
in Figure 2.2 in Section 2.1.2 : The name prefix is followed by the version and finally the seg-
ment number is written. As a consequence we can take the segment marker as a stop indicator
for the version information and extract the version string.

Figure 3.3: Example ContentName extraction process

Figure 3.3 illustrates with an example how a ContentName including version and segment
information is processed to get only the necessary components of it.

3.4.2 Next Segment to Receive

The segment number following the version information in the naming string is already extracted
by the existing file transmission applications in order to express subsequent Interests.

There are different ways of generating the number of the next segment to receive: In ccn-
simplecat resume we take the extracted segment number of the last received ContentObject and
increment it. In ccncat resume it is more complex due to the pipelining. The basic idea is to use
the stream information which is generated to perform a pipelined transfer. The mechanism is
explained in Section 3.5.2.

3.4.3 Position of the Partial Data File

The ftell(...) function of the C standard library is needed to get the file position of the partial file
which is used to verify that the partial file has not been modified outside the transfer applications.

3.5 Implementation of the Resume Capability

There are two different implementations of the resume capability. In Section 3.5.1 we describe
the implementation of ccnsimplecat resume which implements the resume capability without
pipelining. In Section 3.5.2 we introduce the implementation of the ccncat resume applications
which provides the resume capability with pipelining.

14

3.5.1 Resume Capability without Pipelining

3.5.1.1 ccnsimplecat

Figure 3.4 shows a flow chart of ccnsimplecat. First the application checks whether there is a
syntactically correct ContentName. If the ContentName is valid, the version of the available
ContentObjects is resolved and the first Interest is built. Otherwise the application terminates
without transferring data.
When an Interest has been built, it can be expressed and processed. The part “Process Interests
for a given time“ describes very generally the main part of the transfer process. This part handles
the content processing and consists of a processing function called incoming content(...) and two
data structures (ccn closure and mydata) which we explain in the following paragraphs.

Figure 3.4: Application flow of ccnsimplecat

15

3.5.1.1.1 Processing of Incoming Content

The function incoming content(...) will be called for every received segment.
In this function all processing, including writing data to the standard output, timeout han-

dling and generating subsequent Interests is done. The function relies on data contained in two
structs which we will introduce in the next paragraph.
Figure 3.5 illustrates the workflow of the incoming content(...) function. The end states (which
are illustrated as colored boxes on the right side) are return statements of the incoming content(..)
function except in the case of invalid data. An invalid data field results in an internal error and
leads to immediate application termination. If the last expressed Interest times out it will be
reexpressed in order to ensure that the requested data will arrive. Moreover the function checks
whether the received segment is the final block. If the final block arrives the *done flag in the
mydata struct (see Listing 3.3) will be set to true and the data transfer is assumed to be finished.
Otherwise there are still segments missing and the Interest for the next segment request will be
built and expressed.

Figure 3.5: Function flow of incoming content(...)

16

3.5.1.1.2 Data Structures

The first structure is called ccn closure and is shown in Listing 3.2. It contains data used by the
incoming content(...) function and is accessible from each call of incoming content(...).

The type ccn handler hides a function pointer referencing the content processing function.
In case of ccnsimplecat this is the incoming content(...) function. Furthermore there is a void
pointer called data which can be used to point to a data object on the heap. The application
ccnsimplecat resume introduces a structure for this case called mydata which is shown in Listing
3.3. Finally there is an integer field called intdata which is used to store the segment number of
the last received segment.

s t r u c t ccn_closure {
ccn_handler p; /**< client-supplied handler */
void *data; /**< for client use */
intptr_t intdata; /**< for client use */
i n t refcount; /**< client should not update this directly */

};

Listing 3.2: Struct: ccn closure

The struct mydata is used for storing states and flags which are accessible through the whole
transfer process due to its allocation on the heap. The integer field *done is used to store whether
the final block has arrived or not. A value of 1 indicates that the application may terminate with
success. Another integer field is called allow stale and it contains a boolean value (0 or 1)
indicating if stale data is allowed.

s t r u c t mydata {
i n t *done;
i n t allow_stale;

};

Listing 3.3: State information

17

3.5.1.2 Adding Resume Capability

Figure 3.6 shows the application work flow of the ccnsimplecat resume application as an ex-
tended version of ccnsimplecat.

Figure 3.6: Application flow of ccnsimplecat resume

The first change in the work flow (see (1) in Figure 3.6) is the check whether the transfer
could be resumed or has to be started from scratch. The application searches for available partial
files and meta information filename.part and filename.meta introduced in Section 3.2.

If both of these files exist the initial Interest is built upon the loaded meta information.
Otherwise the application has to resolve the version of the requested ContentObject using the
ccn resolve version(...) function and the initial Interest starts with segment number zero which
indicates the ContentObject is requested from the beginning. After this case distinction the
Interest can be expressed.

18

The circles (2), (3), (4) and (5) in Figure 3.6 emphasize changes in the incoming content(...)
function which we show in Figure 3.7.

Figure 3.7: Function flow of incoming content(...) with resume capability

Already in the first step of the work flow changes have been made. The timeout handling
has been completely revised (see (a) in Figure 3.7): Instead of reexpressing the Interests for an
infinite number of times, we have introduced a reexpression limit. If the limit is reached, the
application stores the meta information into the meta information file and terminates afterwards
(see (a) in Figure 3.7). This limit is useful to distinguish short from long connection interrupts.
Short connection interrupts are caused by fluctuating signal strength or packet loss, so after one
to three reexpressions the connectivity should be rebuilt and the transfer can continue. On the
other hand during a long connection interrupt an Interest reexpression does not help because the
content source is not reachable.

19

The next change affects the data output (see (b) in Figure 3.7): Instead of piping the whole
data stream to the standard output, we implement a native file storing function that allows to
store data on a persistent storage device. We store the partial data and meta information file in
the current working directory by default. So the user has to start the transfer application from
the same working directory as before otherwise the application is not able to find the partial
data and meta information.

The next change (see (c) in Figure 3.7) affects the part which checks whether the last
received data chunk is already the last segment of the file indicated by a final block identifier or
if there are more segments to be received. If the received segment is the last segment, clean up
operations are performed. These clean up operations include the deletion of existing meta data
files and renaming the data file by removing the .part extension. If it is not the last segment, the
meta information in the memory needs to be updated (see (d) in Figure 3.7) and the Interest for
the next segment to receive has to be built.

The retrieved meta information is stored in the struct metainfo as explained above (see
Listing 3.1). Because the same struct is used in the main method and in the incoming content(...)
function it is allocated on the heap.
To use the struct within the incoming content(...) function a pointer is needed to know where
on the heap the struct is allocated. Because the struct mydata (see Listing 3.3) is everywhere
accessible within the incoming content(...) function, we extended it with a pointer to the
metainfo struct.

The ContentName including the version of the transferred file does not change during the
data transmission. Therefore the ContentName with the version will be extracted at the begin-
ning. After that, the information will be loaded into the metainfo struct.

The meta information will be updated within the incoming content(...) function. We can get
the next segment to receive using the incremented intdata field of the mydata struct which stores
the segment number of the last transferred segment.

As there are five fields to fill but just three values necessary for the ccnsimplecat resume
application there exists a mapping of these values (see Table 3.2).

field in metainfo struct data in ccnsimplecat resume
ccn name ContentName with version
readSeg next segment to receive
segsRead next segment to receive
readStart partial file size
partialFileSize partial file size

Table 3.2: Mapping of the meta information value in ccnsimplecat resume

After updating the meta information the Interest for the next segment to receive will be built
and expressed.

20

3.5.2 Resume Capability with Pipelining

3.5.2.1 ccncat

Comparing ccncat to ccnsimplecat shows us that the ccncat application is implemented on a
higher abstraction level. The ccncat transfer application uses the ccn fetch library which is
providing streaming access for fetching segmented CCNx data including pipelined transfer,
while ccnsimplecat implements the whole stream processing in a single function.

The ccn fetch library provides three important functions, i.e. ccn fetch open, ccn fetch read
and ccn fetch close. They are similar to commonly known file handling functions (fopen(...),
fread(...), fclose(...)).

ccn fetch open
The function ccn fetch open(...) creates a fetch stream struct for a given ContentName.
More information about the fetch stream struct can be found in Appendix 6.1.

ccn fetch read
The ccn fetch read(...) function fills a buffer with data received by the fetch stream and
returns a positive integer value for the number of bytes fetched or a negative integer in
case of an error. Because the buffer size is limited, only a small part of the data can be
processed at the same time. Therefore, this operation is repeated periodically until the
entire ContentObject is transferred.

ccn fetch close
To close a fetch stream properly the function ccn fetch close(...) has to be called. Since
the fetch stream contains pointers to memory allocated on the heap, clean up is necessary
to avoid memory leaks.

21

Figure 3.8: Application flow of ccncat

Figure 3.8 shows the work flow of the main routine of the ccncat application. The routine
starts with a syntactical check of the ContentName parameter. If the ContentName is valid
a new fetch stream will be opened with the ccn fetch open(...) function for the requested
ContentName. If this stream has successfully been created, data could be read by polling
ccn fetch read(...) within a while loop.

22

Unlike in the ccnsimplecat application, error handling is done in the main method specif-
ically within the while loop of the polling process. Errors which could possibly occur are
encoded with a specific number. So it is possible to handle different cases.

When data is received it is written to the standard output and the poll process can proceed.
Finally after leaving the while loop, the opened stream has to be closed properly with the

ccn fetch close(...) function.

3.5.2.2 Adding Resume Capability

To set up a new fetch stream based on captured meta information, we have to adapt the
underlying ccn fetch library.

Because the function ccn fetch open(..) creates a fetch stream starting a transfer from the
beginning, we have created a new function called ccn fetch open resume(...) which allows
to create a fetch stream based on meta information. The new function extends the existing
ccn fetch open function with more parameters. To avoid a very long parameter list we hand
over the whole metainfo struct (shown in listing 3.1) since almost all of the stored information
is used for creating the fetch stream.

The changes of ccn fetch open resume(...) compared to ccn fetch open(...) include the follow-
ing points:

• The version resolving is no longer necessary since we can take the ContentName with
version from the meta information

• Several stream information have to be set based on the meta information:

+ fs->readSeg = minfo.readSeg;
+ fs->readStart = minfo.readStart;
+ fs->readPosition = minfo.readStart;
+ fs->segsRead = minfo.segsRead;

• The stream has to be started from the segment saved in the readSeg variable instead of
zero.

+ NeedSegment(fs, fs->readSeg);
- NeedSegment(fs, 0);

23

Figure 3.9 illustrates the adapted application work flow for the ccncat resume transfer
application.

In ccncat resume, different from ccncat, the application searches for meta files (see (1) in
Figure 3.9). If there are no meta information files available the stream will be created with the
ccn stream open function starting at segment number zero as in the original ccncat application.
Otherwise the meta information contained in the file is loaded into the metainfo struct as intro-
duced in listing 3.1. After that the fetch stream will be created with the ccn fetch open resume
function.

Figure 3.9: Application flow of ccncat resume

24

The desired data can be retrieved by opening a fetch stream. As mentioned above we have
to poll the ccn fetch read(...) within a while loop for new data fragments. The delivered data
gets copied into a buffer and the function returns a value. If the return value is a positive integer
the number indicates the number of bytes that are newly added to the empty buffer. As shown
at point (5) in Figure 3.9, instead of printing it to the standard output we can save it to the
partial data file and we have to update the metainfo struct with the current stream state. There-
fore we copy the values stored in the stream struct (Table 3.1) to the metainfo struct (Listing 3.1).

Otherwise if the polling fails, we get a negative return value. The negative return value
corresponds to an error code as shown below.
We compare the different actions between ccncat and ccncat resume.

-2 = CCN FETCH READ TIMEOUT
Reason: some of the Interests timed out
Action without resume: reexpress the timed out Interests and poll again
Action with resume: If timeout limit has not exceeded, reexpress the timed out Interests
and poll again. Otherwise save the meta information persistently to a file, leave the while
loop and terminate the application without a completed transfer (As shown at point (3) in
Figure 3.9).

-4 = CCN FETCH READ END
Reason: file has been successfully transferred
Action without resume: leave the polling loop
Action with resume: leave loop, rename the partial data file and remove the meta informa-
tion file (As shown at point (4) in Figure 3.9).

other error codes < 0
Reason: fatal stream error
Action without resume: terminate application with exit code 1
Action with resume: we cannot guarantee that the partial data is in a consistent state so
we remove the partial data file as well as the meta information file (if any) and terminate
application with exit code 1 (As shown at point (2) in Figure 3.9).

After leaving the while loop we have to close the file stream properly, so that we can
terminate the application successfully.

25

Chapter 4

Evaluation

In this chapter we want to measure the efficiency of the developed transfer applications.

In particular, we would like to answer the following questions:

• Are there any benefits of using the new file transfer applications with resume capability?

• What are the advantages of pipelined file transfers compared to sequential single segment
file transfers?

• Does the block size influence the completion time of file transfers?

• When is it useful to resume an interrupted transfer and when should we drop the received
data and start the transfer from scratch?

4.1 Application Scenario

The evaluation was performed based on an application scenario shown in Figure 4.1. There are
two participants in this scenario: one of them is the content source, the other one consumes data
from the content source. The consumer occasionally loses connectivity to the content source,
i.e. corresponding to users losing connectivity because of mobility.

The following scenario is defined for wireless networks but can easily be adapted to wired
networks by unplugging the network cables and temporarily leaving the local network. Based on
this scenario we created a script to obtain test results and measured the transfer time for different
file sizes. The test script runs on the consumer device and will be explained in section 4.3.

27

Below the resume scenario is described in four steps.

Step 1
The mobile devices have to be in connectivity range of each other (green circle) and the
consumer requests data by sending Interests. The content provider serves the mobile
device with data as long as the requested data exists in the repository.

Step 2
The mobile device leaves the serving range of the content provider but is continuously
sending Interests for the not yet completed file transfer. The content provider does not get
any of these Interests because the mobile device is too far away and consequently does
not return any data objects.

Step 3
After a specific number of unsuccessful Interest requests without receiving data in return
the mobile device is in a timeout state and the transfer will be interrupted.

Step 4
Later, the mobile device enters the connectivity range of the content provider again and
requests the data again. In this step the transfer will be finally completed.

Figure 4.1: Application scenario explained in four steps

28

4.2 Hardware / Technology

The implementation was tested on PCEngines ALIX boards [5] using the ADAM operating
system described below with the CCNx extension specified in the Technical Appendix 7.1.2. In
the following we refer to these ALIX boards as mesh nodes.

Such a mesh node contains a mainboard with an AMD Geode CPU, two wireless LAN
cards and a flash card used as storage device. Detailed hardware information is provided in the
Technical Appendix 7.1.1.

With this hardware we are able to test different transfer scenarios using wireless and wired
connections.

4.2.1 ADAM Operating System

ADAM[6] is the acronym for Administration and Deployment of Adhoc Mesh networks. The
ADAM operating system provides a build environment to configure and deploy certain mesh
networks. It is based on the Linux kernel and is designed to run on different embedded archi-
tectures. Due to this goal the number of features is limited, nevertheless the operating system
provides all of the necessary tools used in mesh networks. This approach allows to keep the
image of the operating system small so that it can be directly run out of the memory or does
not need a lot of disk space. The build environment is package based and supports an easily
integration of additional features and tools.

4.3 Testing Setup

In this section we describe the testing setup. There is one mesh node which shares content
through a CCNx repository service and another node which consumes the data. Because it is
difficult to control disconnections due to mobility on embedded systems, we implemented an
evaluation mode to test the transfer applications. The evaluation mode requires a command line
parameter for the breakpoint and is enabled on the requester. The breakpoint value is indicating
after which number of transmitted segments a connection timeout occurs. Additionally, we
compare the wireless transmission results with wired transmissions on the same nodes.

Figure 4.2 gives an overview of the configuration of the different network interfaces. For
the main tests a wireless adhoc network with the IEEE802.11a standard has been used. Addi-
tionally a wired connection over a Fast-Ethernet (100MBit) device was configured. The wired
connection was particularly used to start the test script over an SSH connection. Therefore, the
wireless interface was only used for CCNx traffic while control commands from the control sta-
tion were transmitted over the Ethernet cable. Furthermore, the control station is used to start
the test script.

29

Figure 4.2: Applied testing architecture with mesh nodes

The content source was running the CCNx repository ccnr which was prepared with data
files containing randomly generated data. For example a 1MB file can be generated with the
following command:

dd i f =/dev/urandom of=/path/to/random/1MB bs=1024 count=1024

Listing 4.1: Command to generate random files

After creation, the file has been written to the CCNx repository with different block sizes using
the ccnseqwriter command. For example, for a block size of 1024 bytes we run the following
command:

ccnseqwriter -b 1024 -r ccnx://ccnx.org/filename

Listing 4.2: Insert files into CCNx repository

30

The test script was running on the consumer node simulating the scenario introduced above.
The test script does the following:

1. Start the transfer with one of the developed transfer applications and request the complete
file. Simulate a connection loss with an evaluation parameter after a configurable number
of received segments. Measure the transfer time of the first transfer until the breakpoint
segment arrives and write it into a variable. On the contrary to the real world after the
simulated connection loss no more additional Interests will be expressed therefore the
requester does not receive any additional segments.

2. After a certain delay (see CCND DEFAULT TIME TO STALE=1 below) start the trans-
fer again and run the application until the file transfer has been completed. Measure the
transfer time of the second transfer and save it to a variable.

3. Calculate the total transfer time using both the variables and write the result as well as the
current evaluation parameters into a result file.

4. Repeat step 1 to 3 for a configurable number of times

5. Adapt the breakpoint by a configurable value and start again with step 1.

The configuration of the CCNx instances on the mesh nodes contains the following settings:

CCND DEFAULT TIME TO STALE=1
In order to ensure that the consumer always consumes Data packets out of the CCNx
repository and not a cache, the default stale time is set to 1 second. This means that
received data has a life time of one second in the cache. Additionally, a delay of one
second has been inserted between both transfers of the test script to guarantee that already
received ContentObjects are stale before the second transfer starts.

CCND DEBUG=0
The debug output has been disabled to avoid performance waste on the resource con-
strained ALIX devices.

Unicast face allocation
The current version of the CCNx framework implements the data transfer on the applica-
tion layer above the IP stack. Because of that the CCNx daemon has to know on which
IP address and port number he has to listen and respond to incoming Interests. For this
case we have to manually configure the IP address and port for each mesh node in the test
scenario.

31

4.4 Results

In this section we compare the results of the evaluation scenario described in section 4.1-4.3. In
subsection 4.4.1 we analyze the impact of different block sizes on the transfer time. In subsection
4.4.2 we have a look at the influences of different pipeline sizes on the transfer time. After
that in subsection 4.4.3 we analyze the differences of the transfer time using different network
connections, more precisely wired and wireless connections. Finally in subsection 4.4.4 we
analyze the overhead of processing and holding the meta information to resume a file transfer.

4.4.1 Influence of the Block Size

In this section the transfer applications ccnsimplecat and ccnsimplecat resume which are provid-
ing sequential file transfer with pipeline size of 1 will be examined. In particular, the influence
of different block sizes is compared to transfer times of file transmissions. Table 4.1 shows the
test setup used to evaluate the results shown in this subsection.

parameter unit value
connection type wireless unicast
block size Bytes 1024, 2048, 4096
file size MB 5
number of breakpoints 1 10
runs per breakpoint 2 10

Table 4.1: Test cases ccnsimplecat vs. ccnsimplecat resume

Figure 4.3 shows the comparison of ccnsimplecat and ccnsimplecat resume when transfer-
ring a 5MB file using different block sizes. The y-axis shows the average total transfer time of
the file over a wireless IEEE 802.11a link. The total transfer time consists of the sum of the first
incomplete transfer time until the breakpoint segment arrived and the second transfer time until
the transfer completion as explained in section 4.3. The x-axis shows the breakpoints converted
to kilobytes which indicates the points where the application simulates the connection timeout
during the first transfer try. The vertical bars drawn over the data points are showing the standard
deviation of the test results which have been small for all of the test cases.
1The breakpoint value denotes how many segments have been transmitted until a connection loss is simulated. The
value in the table indicates the number of different breakpoints tested in a test case.

2This value indicates how many transfer times have been measured per breakpoint.

32

Figure 4.3: ccnsimplecat vs. ccnsimplecat resume

The following properties can be observed:

1. Independent of the breakpoint, the total transfer time of the ccnsimplecat resume appli-
cation is constant. Because of the stored partial data we do not have to request already
received data chunks again. In contrast, the time cost of ccnsimplecat increases the later
the download stops. In the worst case of the given test scenario, the download gets in-
terrupted immediately before the transfer has finished. This causes that almost twice the
amount of data has been transmitted and therefore it requires twice the amount of time.

2. The block size of the transferred segments has a significant impact on the transmission
speed. When using small block sizes, the overhead of CCNx, e.g., CCN header, signa-
tures, etc, for data transmissions is greater. Although larger block sizes result in fragmen-
tations at the IP layer, larger block sizes still result in shorter transfer times. Moreover
the number of transmitted packets is larger when using small block sizes which results in
processing overhead due to the verification of more signatures.

The current version of the CCNx framework uses a block size of 1024 bytes as default value.
Moreover the maximal block size is 4096 bytes with CCNx version 0.6.

33

4.4.2 Influence of the Pipeline Size

In this subsection the influence of the pipeline size on the file transfer time will be analyzed. For
this case the ccnsimplecat and ccncat applications have been tested according to test scenario
4.1 with and without resume capability.
Table 4.2 summarizes the parameters used to analyze the influence of the pipeline size on the
transfer time of a 5MB file.

parameter unit value
connection type wireless unicast
pipelines 2,4,8,16
block size Bytes 4096
file size MB 5
number of breakpoints 10
runs per breakpoint 10

Table 4.2: Test cases ccncat vs. ccncat resume

34

Figure 4.4 compares ccncat and ccnsimplecat with and without resume capability over wire-
less IEEE802.11a links. The ccncat application is evaluated with different pipeline sizes while
ccnsimplecat uses sequential file transfers corresponding to a pipeline size of one.

Figure 4.4: ccnsimplecat vs. ccncat with / without resume capability (pipeline sizes 1, 2, 16)

The y-axis denotes the total transfer time of a 5MB file according to the scenario described
in section 4.1. The x-axis denotes again the breakpoints in kilobytes. In order to have a better
overview in Figure 4.4 only the results of the pipeline sizes 1, 2 and 16 using a block size of
4096 bytes are shown.

35

Figure 4.5 shows the transfer times of the applications with resume capability using 1, 2, 4, 8
and 16 pipelines. The axis labeling is equal to the labeling of Figure 4.4 above.

Figure 4.5: ccnsimplecat resume vs. ccncat resume

From Figure 4.4 and Figure 4.5 we conclude the following:

1. As already seen in Figure 4.3 the transfer time of the application with resume capability
is constant.

2. In general, increasing the pipeline sizes results in shorter transfer times. Doubling the
pipeline from 1 to 2 and 2 to 4 halves the transfer time. Adapting the pipeline size from 4
to 8 or 8 to 16 leads to a smaller performance gain as from 2 to 4. A reason for that is the
processing overhead for the signature verification on the mesh nodes. In CCNx each Data
packet is signed so that receivers can verify that the packet has been sent from the desired
publisher. Therefore, every receiver has to validate the signature of each received packet
which causes some processing overhead. On resource constrained devices like on ALIX
boards processing power is limited. No matter how fast the network connection is, there
exists a point where the CPU is not able to process all of the received ContentObjects and
send new Interest for subsequent segments at the same time. Another reason is the oc-

36

cupancy of the wireless medium. Increased medium occupation results in longer waiting
time and more collision.

Pipeline sizes larger than 16 were not tested because this is a hard coded upper limit in the
CCNx source code.

Table 4.3 shows the relative performance gain of pipelined file transfer. To calculate this relative
values the mean of the transfer times for each breakpoint of the ccncat resume application has
been taken. The performance is always based on the sequential file transfer which is denoted
with pipeline size 1. The performance gain value shows the enhancement factor of the data rate
per time. The time gain indicates how much time has been saved compared to a pipeline size of
1 and can be calculated with the following formula:

time gain = 100%− transfer time with pipeline size x
transfer time with pipeline size 1

· 100%

Therefore a time gain of 100% denotes an instant transfer with a transfer time of zero seconds.

pipeline size avg transfer time performance gain time gain
1 52.91 100.00% 0.00 %
2 22.52 234.97% 57.44 %
4 10.64 497.26% 79.89 %
8 8.44 626.65% 84.05 %

16 7.99 662.34% 84.90 %

Table 4.3: Performance gain of the resume capability using multiple pipelines

Viewing the values above again illustrates the fact that pipeline sizes bigger than 8 do not
yield a similar performance gain as from 1 to 2 and 2 to 4.

37

4.4.3 Influence of the Network Connection

In this subsection the influence of different network connections on the transfer time will be an-
alyzed. The tests are performed over wireless IEEE802.11a and wired Fast-Ethernet (100MBit)
links.
Table 4.4 shows the parameters used to analyze the influence of network connection on the
transfer time of a 5MB file.

parameter unit value
connection type wireless / wired unicast
pipelines 16
block size Bytes 4096
file size MB 5
number of breakpoints 10
runs per breakpoint 10

Table 4.4: Test cases wired and wireless

Figure 4.6 shows the results when using a block size of 4096 Bytes and a pipeline size of 16
for wired and wireless transmissions.

38

Figure 4.6: wireless vs. ethernet with pipelining

The x-axis denotes the breakpoints and the y-axis shows the total transfer time of a 5MB file
in seconds. As already seen above, the transfer time of the application with resume capability
is constant while the application without resume has linear growing of transfer times with
increasing breakpoints.

The evaluation showed that the difference in transfer times between wired and wireless
unicast transmission is small. Although the maximal bandwidth of a fast-ethernet connection
(100MBit) is almost double the maximum bandwidth of an IEEE802.11a wireless connection
(54MBit), the performance gain in using ethernet over wireless connection is only minimal. As
explained in section 4.4.2 the signature verification mechanism is the bottleneck which limits
the data throughput on resource constrained devices.

39

4.4.4 Processing Overhead

In this subsection the processing overhead of applications with resume capability will be deter-
mined. Most of the additional actions happen at application start, therefore the actions which
may produce overhead are only executed once per transfer. The list of the additional actions is
shown below:

Application start

• Check for partial data and meta information file

• Allocate meta information struct on the heap

• String parsing to obtain the (partial) filename

• Open or create partial data file

During the transfer

• Write received data chunks to the partial file

• Update meta information in memory after receiving data chunks

After the transfer

• Remove the meta information file if there is any

• Rename partial file

To analyze the impact of the additional actions the transfer time for transferring a whole file at
once without disruption has been measured with all four existing file transfer applications. This
step has been repeated 100 times to calculate the mean transfer time and the standard deviation.

Table 4.5 shows the different test cases with the associated results.

application file size block size pipelines avg. transfer time std. dev.
ccncat 5 MB 4096 16 8.08s 0.11
ccncat resume 5 MB 4096 16 8.09s 0.12
ccncat 10 MB 4096 16 15.78s 0.49
ccncat resume 10 MB 4096 16 15.77s 0.50
ccnsimplecat 5 MB 4096 1 56.14s 0.26
ccnsimplecat resume 5 MB 4096 1 56.69s 0.22
ccnsimplecat 10 MB 4096 1 112.47s 0.36
ccnsimplecat resume 10 MB 4096 1 112.56s 0.68

Table 4.5: Transfer time for transferring a file without disruptions

The values in table 4.5 indicate that the applications with resume capability do not require sig-
nificant processing overhead. The transfer times and the standard deviation of the ccncat ap-
plications differ only in the second decimal digit while the ccnsimplecat applications differ in

40

the first decimal digit. A reason for this behavior is the fact that meta information will only be
written to a file when a connection timeout occurs. Holding and updating meta information in
memory does not take much more time. Another reason is the size of the metainfo struct. The
meta information fields in this struct are limited by its type definitions in C. Because of this type
definitions the meta information can not be greater than 2032 bytes on a regular x86 machine.

4.4.5 Discussion

After analyzing the results we are able to answer the questions formulated at the beginning of
the chapter.

Are there any benefits of using the new file transfer applications with resume capability?
The effective transfer time3 using the resume capability for transferring a file with dis-
ruptions requires approximately the same time as the transfer of the entire file without
disruptions. Compared to the applications without resume capability, the transfer time of
the new applications with resume capability is independent of the breakpoint. Without the
resume capability the transfer time increases with a later breakpoint position.

What are the advantages of pipelined file transfers compared to sequential single segment
file transfers?

Using pipeline size four or higher leads to a huge performance increase compared
to sequential single segment transmissions. Therefore, it is beneficial to use the ccncat
or ccncat resume application to perform fast file transfers. Though the performance gain
with a pipeline size of 8 to 16 is not as much as up to a pipeline size of 4.

Does the block size influence the completion time of file transfers?
The choice of the block size affects the transfer time considerably. The behavior is in-
versely proportional: doubling the block size approximately halves the transfer time. Cer-
tainly this effect is constrained, the CCNx framework allows a maximal block size of 4096
bytes. Because of that behavior the default block size of the CCNx frame work should be
raised from 1024 bytes to 4096 bytes. However, this may have disadvantages in networks
with many collisions, since large block sizes may require fragmentation. If a fragment col-
lides the entire packet needs to be retransmitted including correctly received fragments.
Therefore, the loss of individual packets is more critical than with smaller block sizes.

When is it useful to resume an interrupted transfer and when should we drop the received
data and start the transfer from scratch?

Since through the resume capability there is no performance degradation, it is al-
ways useful to apply the resume capability for file transfers even for small files. But there
are use cases where it makes no sense to use the resume capability. For example: For
video streaming it is not necessary to receive each segment. If a single Interest times
out the frame should be skipped. We do not have to reexpress the Interest because the
missing data will not be used to display the video later.

3effective transfer time: time to transfer a whole file without the time spent during interruptions

41

Chapter 5

Conclusion

5.1 Summary

In this bachelor thesis we extended the implementation of two different file transfer applications
with resume capability and compared their transmission performance with the original imple-
mentation. With this resume capability new application possibilities for the CCNx framework
have been opened. Mobile devices are capable of receiving complete data files even if a transfer
is intermittent. Devices with short contact times are able to share data without need to transfer
everything at once.
During the evaluation we measured parameters in order to maximize transfer speed and pre-
sented performance limitations on resource constrained devices. Based on this parameters we
analyzed the benefits of the applications with the resume capability. Regarding the results one
can infer that the resume capability enables a constant effective transfer time independent of
interruptions.

5.2 Conclusion

The evaluation of these two new file transfer applications led to new insights. The resume pro-
cess causes no significant processing overhead but enables a constant effective transfer time
independent of the number of interrupts. The influence of different block sizes has been deter-
mined. A block size of 4096 Bytes reduced the transfer times significantly compared to smaller
block sizes. Furthermore the benefits of pipelined file transfer have been evaluated. A pipeline
size of 2 approximately halves the transfer times compared to single sequential file transfer and
a pipeline size of 16 reduces it by 84.9 percent. To reach the best transfer performance the pa-
rameters have to be adapted to the underlying hardware. On resource constrained devices the
CPU limits the maximal bandwidth even if the network connection allows a higher one.

43

5.3 Future Work

The implementation of the file transfer applications with resume capability demonstrates the
potential of the resume approach. Nevertheless there are many open questions, problems and
potential optimizations to address.

The CCNx framework provides several transmission parameters which may be considered in
future implementations. For example the freshnessSeconds parameter indicates how long the
content remains valid. After the time has elapsed, content will be marked as stale and can
be removed from the ContentStore. Based on this information it may be determined whether
partial data should be stored or not. For example, if a content file is only valid for a few seconds,
it may not be required to store partial information. Furthermore, the freshnessSeconds can also
be used to automatically remove incomplete files that can no longer be completed.

Another issue affects security and consistency of ContentObjects. The implemented resume
capability does not store the PublisherPublicKeyDigest which allows to identify the publisher
that signed the ContentObject. Without this information it is possible when resuming a transfer,
that another publisher shares a file with the same ContentName but different content. Therefore,
we are not able to distinguish the original from the new publisher. If the new publisher
does not have any evil intentions we only get inconsistent data, but the publisher may also
be able to insert malicious data. Future implementations may therefore compare the identity
of the PublisherPublicKeyDigest with the identity in the signature of the received ContentObject.

Additionally, the storage location for the partial data files has been a design choice and was
set to the working directory of the user. In future implementations it might be useful to create a
shared data folder to remove the restriction that one can only resume from the same directory of
the stored partial files.

44

Chapter 6

Appendix

6.1 Code Listings

To avoid a bloated document the source code is only delivered in an electronic format (attached
DVD). In the following section the created and edited source code files will be declared.

6.1.1 Source Code of the Transfer Applications

6.1.1.1 Edited Source Code

The following files have been edited for this thesis:

/src/ccnx/csrc/cmd/ccnsimplecat.c
The evaluation mode parameter has been added in this file.

/src/ccnx/csrc/cmd/ccncat.c
The evaluation mode parameter has been added in this file.

/src/ccnx/csrc/lib/ccn fetch.c
The function ccn fetch open resume(...) has been implemented in this file.

/src/ccnx/csrc/include/ccn/fetch.h
The declaration of the metainfo struct used in the ccn fetch(...) library has been added in
this file.

6.1.1.2 Newly Created Source Code

The following files have been newly created for this thesis:

/src/ccnx/csrc/cmd/ccnsimplecat resume.c
The transfer application ccnsimplecat resume has been implement in this file.

/src/ccnx/csrc/cmd/ccncat resume.c
The transfer application ccncat resume has been implement in this file.

45

6.1.2 ccn fetch

s t r u c t ccn_fetch_stream {
s t r u c t ccn_fetch *parent;
s t r u c t localClosure *requests; // segment requests in process
i n t reqBusy; // the number of requests busy
i n t maxBufs; // max number of buffers allowed
i n t nBufs; // the number of buffers allocated
s t r u c t ccn_fetch_buffer *bufList; // the buffer list
char *id;
s t r u c t ccn_charbuf *name; // interest name (without seq#)
s t r u c t ccn_charbuf *interest; // interest template
i n t segSize; // the segment size (-1 if variable, 0 if

unknown)
i n t segsAhead;
intmax_t fileSize; // the file size (< 0 if unassigned)
intmax_t readPosition; // the read position (always assigned)
intmax_t readStart; // the read position at segment start
seg_t readSeg; // the segment for the readPosition
seg_t timeoutSeg; // the lowest timeout segment seen
seg_t zeroLenSeg; // the lowest zero len segment seen
seg_t finalSeg; // final segment number (< 0 if not

known yet)
i n t finalSegLen; // final segment length
intmax_t timeoutUSecs; // microseconds for interest timeout
intmax_t timeoutsSeen;
seg_t segsRead;
seg_t segsRequested;

};

Listing 6.1: Definition of the fetch stream

46

Chapter 7

Technical Appendix

7.1 Configuration of Wireless Mesh Nodes with ADAM

7.1.1 Hardware

Since the main benefits of the content centric networking approach can be realized on mobile
wireless devices, the goal of the evaluation was to analyze the impact of the resume capability
on resource constrained mobile devices. For this case the following embedded system hardware
has been used:

• ALIX.3D2 system board (LX800 / 256 MB / 1 LAN / 2 miniPCI / USB)

• 2 x Wistron DNMA92 Atheros 802.11a/b/g/n miniPCI wireless card

• 4 x Antenna reverse SMA dual band

7.1.2 Software

As operation system the ADAM operating system developed at the University of Berne has
been used[6]. Because the CCNx framework was no embedded in the existing build scripts the
existing scripts had to be extended with a new package. In the following part of this document
the necessary changes for running the CCNx framework on ALIX devices is explained.

7.1.2.1 Setting Up the Build Environment

In order to generate an image of the ADAM operating system the build environment cre-
ated by Daniel Balsiger[3] has been used. As a basis the trunk of the adam image
builder hosted on the CDS subversion repository was used. The repository is acces-
sible via https://subversion.cnds.unibe.ch/svn/adam/trunk/. The additonal buildscripts and
the configuration for building ADAM with CCNx support is hosted on a separate branch
https://subversion.cnds.unibe.ch/svn/adam/branches/ccnx

47

https://subversion.cnds.unibe.ch/svn/adam/trunk/
https://subversion.cnds.unibe.ch/svn/adam/branches/ccnx

7.1.2.2 Setting Up the Cross-compiling Environment

As mentioned in Section 7.1.1 these embedded systems are resource constrained devices, so
compiling a whole operating system would take a lot of time. To avoid this it is useful to apply
a cross compiling environment on a performant workstation.

The cross-compiling environment can be set up as shown in listing 7.1

setup the environment
root@hostname:˜/image-builder# ./build-tool setup alix

Listing 7.1: Setting up the cross-compiling environment

After setting up the the profile for the cross compiling environment, the toolchain itself has
to be compiled. Listing 7.2 shows how to start the compiling process for the toolchain.

setup the toolchain for cross compiling
root@hostname:˜/image-builder# ./build-tool toolchain alix

Listing 7.2: Build the tool chain for the cross-compiling environment

7.1.2.3 Additional Configuration for Compiling the CCNx Framework

The CCNx framework has some dependencies which are not in the default ALIX buildprofile.
Because of that the buildconfig which lies in the folder image-builder/buildconfig/alix has to be
updated. The packages expat and ccnx (which will be introduced later) have been added to the
default build configuration.

Update the following line in ˜/image-builder/buildconfig/alix/
buildprofile

BOARDPACKAGES="zlib openssl curl dropbear openntpd nostromo busybox
linux hotplug2 libnl iw module-init-tools iproute2 iputils
ipv6calc iptables flex radvd sudo db cfengine olsrd sqlite2
tunslip codeprop marwis libpcap ptpd libgpg-error libgcrypt crda
strace expat ccnx"

Listing 7.3: Default board packages

48

Further the rc2 encryption in the openssl package has to be activated because it is used by
the ccn keystore.

Update the following lines in ˜/image-builder/buildscripts/
packages/openssl.sh

e l s e
./Configure linux-embedded-${BOARDARCH} --prefix=/ --

openssldir=/etc/ssl no-idea no-md2 no-mdc2 no-rc5 no-sha0
no-smime no-rmd160 no-aes192 no-ripemd no-camellia no-ans1
no-krb5 no-ec no-err no-hw shared zlib-dynamic no-engines
no-sse2 no-perlasm

f i

Listing 7.4: Build openssl with rc2 support

While running CCNx applications on an embedded system it is not possible to use graphical
user interfaces. Because of that only the C applications are compiled in the created package
build script.

The buildscript for the CCNx framework is shown in listing 7.5 and is stored in the image-
builder/buildscripts/packages/ccnx.sh folder.

#!/bin/bash
##
. ${BUILDDIR}/buildscripts/functions
VERSION="0.6.1"
SHA1SUM="467316966851227cc2f731707a14e18b0c6cb1fd"
URL="https://www.ccnx.org/releases/"
FALLBACK="http://www.iam.unibe.ch/˜rvs/research/adam/fallback/"
BUILD_DEPS="toolchain expat openssl"
##

download_gz ccnx &&

cd ${BUILDDIR} &&
tar -xzvf ${SRCDIR}/ccnx-${VERSION}.tar.gz &&
cd ccnx-${VERSION}/csrc &&

export INSTALL_BASE="${INSTALLDIR}"

CC="${CC} -Os -fPIC" ./configure

make &&

make DESTDIR=${INSTALLDIR} install &&

cd ${BUILDDIR} &&
rm -rf ccnx-${VERSION}

Listing 7.5: CCNx buildscript

49

With the additional package script it is possible to compile an operating system image which
runs the CCNx framework on ALIX nodes. For the evaluation some hackings of the wifi fre-
quency regulation had to be done. The kernel has been patched to have no regulatory domains.
These hacks have to be inserted in the buildscript of the linux kernel. The changes are shown in
listing 7.6

#!/bin/bash

##
. ${BUILDDIR}/buildscripts/functions

VERSION="3.2"
SHA1SUM="3460afa971049aa79b8f914e1bfd619eedd19f55"
URL="http://www.kernel.org/pub/linux/kernel/v3.0"
FALLBACK="http://www.iam.unibe.ch/˜rvs/research/adam/fallback"
BUILD_DEPS="toolchain"
##

s e t -e
s e t -u

download_bz2 linux

cd ${BUILDDIR}
rm -rf linux*

tar -xjvf ${SRCDIR}/linux-${VERSION}.tar.bz2
mv linux-${VERSION} linux-${VERSION}-${BOARDNAME}
ln -s linux-${VERSION}-${BOARDNAME} linux
cd linux-${VERSION}-${BOARDNAME}

c a t > regd.diff << EOF
57a58,63
>
> /* Everything allowed */
> #define ATH9K_2GHZ_UNLIMITED REG_RULE(2412-10, 2484+10, 40, 6, 20,

0)
> #define ATH9K_5GHZ_UNLIMITED REG_RULE(5150-10, 5850+10, 40, 6, 30,

0)
>
>
62c68
< .n_reg_rules = 5,

> .n_reg_rules = 2,
64c70
< .reg_rules = {

50

> /*.reg_rules = {
67c73,77
< }

> }*/
> .reg_rules = {
> ATH9K_2GHZ_UNLIMITED,
> ATH9K_5GHZ_UNLIMITED,
> }
72c82
< .n_reg_rules = 4,

> .n_reg_rules = 2,
74c84
< .reg_rules = {

> /*.reg_rules = {
78c88,92
< }

> }*/
> .reg_rules = {
> ATH9K_2GHZ_UNLIMITED,
> ATH9K_5GHZ_UNLIMITED,
> }
83c97
< .n_reg_rules = 3,

> .n_reg_rules = 2,
85c99
< .reg_rules = {

> /*.reg_rules = {
88c102,106
< }

> }*/
> .reg_rules = {
> ATH9K_2GHZ_UNLIMITED,
> ATH9K_5GHZ_UNLIMITED,
> }
93c111
< .n_reg_rules = 3,

> .n_reg_rules = 2,
95c113
< .reg_rules = {

51

> /*.reg_rules = {
98c116,120
< }

> }*/
> .reg_rules = {
> ATH9K_2GHZ_UNLIMITED,
> ATH9K_5GHZ_UNLIMITED,
> }
103c125
< .n_reg_rules = 4,

> .n_reg_rules = 2,
105c127
< .reg_rules = {

> /*.reg_rules = {
109c131,135
< }

> }*/
> .reg_rules = {
> ATH9K_2GHZ_UNLIMITED,
> ATH9K_5GHZ_UNLIMITED,
> }
301c327
< struct ieee80211_supported_band *sband;

> /*struct ieee80211_supported_band *sband;
313c339
< c o n t in u e;

> c o n t in u e;*/
324c350
< i f (!(ch->flags & IEEE80211_CHAN_DISABLED))

> /* i f (!(ch->flags & IEEE80211_CHAN_DISABLED))
328c354
< }

> }*/
EOF
patch --ignore-whitespace ${BUILDDIR}/linux-${VERSION}-${BOARDNAME}/

drivers/net/wireless/ath/regd.c regd.diff

c a t > regd.diff << EOF
111c111
< .n_reg_rules = 5,

52

> .n_reg_rules = 2,
113c113
< .reg_rules = {

> //.reg_rules = {
115c115
< REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),

> //REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
118,120c118,120
< REG_RULE(2467-10, 2472+10, 20, 6, 20,
< NL80211_RRF_PASSIVE_SCAN |
< NL80211_RRF_NO_IBSS),

> //REG_RULE(2467-10, 2472+10, 20, 6, 20,
> // NL80211_RRF_PASSIVE_SCAN |
> // NL80211_RRF_NO_IBSS),
123,126c123,126
< REG_RULE(2484-10, 2484+10, 20, 6, 20,
< NL80211_RRF_PASSIVE_SCAN |
< NL80211_RRF_NO_IBSS |
< NL80211_RRF_NO_OFDM),

> //REG_RULE(2484-10, 2484+10, 20, 6, 20,
> // NL80211_RRF_PASSIVE_SCAN |
> // NL80211_RRF_NO_IBSS |
> // NL80211_RRF_NO_OFDM),
128,130c128,130
< REG_RULE(5180-10, 5240+10, 40, 6, 20,
< NL80211_RRF_PASSIVE_SCAN |
< NL80211_RRF_NO_IBSS),

> //REG_RULE(5180-10, 5240+10, 40, 6, 20,
> // NL80211_RRF_PASSIVE_SCAN |
> // NL80211_RRF_NO_IBSS),
135,138c135,144
< REG_RULE(5745-10, 5825+10, 40, 6, 20,
< NL80211_RRF_PASSIVE_SCAN |
< NL80211_RRF_NO_IBSS),
< }

> //REG_RULE(5745-10, 5825+10, 40, 6, 20,
> // NL80211_RRF_PASSIVE_SCAN |
> // NL80211_RRF_NO_IBSS),
> //}
>
> .reg_rules = {
> REG_RULE(2412-10, 2484+10, 40, 6, 20, 0),
> REG_RULE(5180-10, 5825+10, 40, 6, 20,0),

53

> }
>
EOF
patch --ignore-whitespace ${BUILDDIR}/linux-${VERSION}-${BOARDNAME}/

net/wireless/reg.c regd.diff

patch_src linux
echo Building f o r $BOARDARCH

make distclean
make ARCH=${BOARDARCH} CROSS_COMPILE=${CROSS_TARGET}- mrproper

rm -f .config*
cp ${BUILDCONFDIR}/config-linux .config >${BUILDDIR}/initramfs.cpio
rm -rf ${INSTALLDIR}/lib/modules -rf

make ARCH=${BOARDARCH} CROSS_COMPILE=${CROSS_TARGET}- oldconfig
make ARCH=${BOARDARCH} CROSS_COMPILE=${CROSS_TARGET}- vmlinux
make ARCH=${BOARDARCH} CROSS_COMPILE=${CROSS_TARGET}- modules
make ARCH=${BOARDARCH} CROSS_COMPILE=${CROSS_TARGET}-

INSTALL_MOD_PATH=${INSTALLDIR} modules_install

KVERS=$(grep -E "ˆ(VERSION|PATCHLEVEL|SUBLEVEL)" Makefile | cut -d =
-f 2 | xargs echo | sed -e ’s/ /./g’)

i f [-d ${INSTALLDIR}/lib/modules/${VERSION}-${BOARDNAME}]; then
${INSTALLDIR}/cross-tools/bin/depmod.pl -F System.map -b ${

INSTALLDIR}/lib/modules/${VERSION}-${BOARDNAME}
elif [-d ${INSTALLDIR}/lib/modules/${KVERS}-${BOARDNAME}] ; then

${INSTALLDIR}/cross-tools/bin/depmod.pl -F System.map -b ${
INSTALLDIR}/lib/modules/${KVERS}-${BOARDNAME}

elif [-d ${INSTALLDIR}/lib/modules/${KVERS}] ; then
${INSTALLDIR}/cross-tools/bin/depmod.pl -F System.map -b ${

INSTALLDIR}/lib/modules/${KVERS}
e l s e

${INSTALLDIR}/cross-tools/bin/depmod.pl -F System.map -b ${
INSTALLDIR}/lib/modules/${VERSION}

f i

Listing 7.6: Hacking the regulatory domains of the wifi devices

54

7.1.2.4 Compiling the Packages

Finally the needed image can be built. The process can be done straightfoward as explained
in the README file. In the first step every package has to be compiled. Listing 7.7 shows the
command to execute for that step.

root@hostname:˜/image-builder# ./build-tool packages alix
This will install the following packages in order from left to right:

zlib openssl curl dropbear openntpd nostromo busybox linux hotplug2
libnl iw module-init-tools iproute2 iputils ipv6calc iptables
flex radvd sudo db cfengine olsrd sqlite2 tunslip codeprop marwis
libpcap ptpd libgpg-error libgcrypt crda strace expat ccnx

Packages will be built in: /home/alix-builder
Package sources are in: /home/alix-builder/sources
Extra configuration is in: /home/alix-builder/buildconfig
Packages will be installed to: /home/alix-builder/target
Packages get compiled by: /home/alix-builder/buildscripts/

packages/<package>.sh
Buildlog is in: /home/alix-builder/buildlogs/<package

>.buildlog
Cross-Compiler used: i586-linux-uclibc-gcc
Target system triplet is: i586-linux-uclibc

Are these values reasonable ? Begin installation [y/n]

Listing 7.7: Compiling the packages

55

7.1.2.5 Creating the Image Files

After compiling the packages the image can be built. The file README.build in the doc
folder contains a step by step manual how to build the necessary images. The main steps of this
document are explained in the following lines.

To run the ADAM operating system it is necessary to build three different image files:

• The standalone image which is perfectly adjusted to test node hardware without bricking
it.

./image-tool gen_standalone <boardname> <version>

Listing 7.8: Generating the standalone image

Executing the command shown in listing 7.8 generates an image file called
<boardname>-image-standalone-<version>.bin.gz

• The real image which needs a configuration image for working in a mesh network.

./image-tool gen_image <boardname> <version>

Listing 7.9: Generating the real image

Executing the command shown in listing 7.9 generates the image file called
<boardname>-image-<version>.bin.gz

• The configuration image which contains ssh public keys, the hostname, the network con-
figuration etc.

./image-tool gen_config <boardname> <hostname>

Listing 7.10: Generating the configuration image

The configuration image is called config-<hostname>.default and can be created running
the command shown in listing 7.10.

To setup the configuration follow step 10 of the README.build manual.

The configuration files used for running the ALIX Mesh Nodes mentioned in the Evaluation
chapter can be found at the path /experiments/scripts/setup/nodes/ of the at-
tached DVD.

56

7.1.2.6 Installing the Images on the Device

After generating the necessary image files for running the ADAM operating system the flash
disk have to be formatted and the images have to be installed.

There exists a step by step manual how to create a bootable flash drive with the ADAM
operation system. The manual is called README.alix and can be found in the doc folder of
the ALIX image builder.

When all of this steps have been fulfilled, the flash drive can be plugged into the flash drive
slot of the ALIX mainboard. The operating system is ready to run.

7.1.2.7 Initialize Connectivity to the Mesh Node

There are several ways of connecting and controlling the mesh node:

RS-232 Serial Link
The unix tool minicom is necessary to open a console for sending commands over a serial
link.

First the serial cable has to be plugged into the RS-232 of the mesh node and the usb serial
adapter on the host computer. Thereafter the console can be opened with the following
command:

minicom -D /dev/ttyUSB0 -b 9600

Listing 7.11: Open serial communication console using minicom

Then a common unix login prompt should appear.

SSH Connection using one of the configured network devices
When the network devices are configured correctly, it is possible to get access to the mesh
node using a ssh console. The only thing one has to know is the IP address of the node’s
network device. To open the console the following command has to be used:

ssh root@192.168.0.1

Listing 7.12: Open ssh console

A SSH connection can also be used to transfer files from or to the node. There exists a
command line tool called scp with this functionality. For example for transferring a file
to the node the following command has to be used:

scp /path/to/file root@192.168.0.2:/path/on/mesh/node/

Listing 7.13: Send file to node using scp

57

Bibliography

[1] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in Proceedings of the 5th
international conference on Emerging networking experiments and technologies, ser.
CoNEXT ’09. New York, NY, USA: ACM, 2009, pp. 1–12. [Online]. Available:
http://doi.acm.org/10.1145/1658939.1658941

[2] “Project CCNx,” https://ccnx.org, 2012.

[3] D. Balsiger, “Administration and deployment of wireless mesh networks,” Master’s thesis,
University of Berne, April 2009. [Online]. Available: http://cds.unibe.ch/research/pub files/
Ba09.pdf

[4] “CCN REPO(1) manual page,” October 2012. [Online]. Available: http://www.ccnx.org/
releases/latest/doc/manpages/ccn repo.1.html

[5] “Pcengines alix,” http://pcengines.ch/alix.htm, 2012.

[6] T. Staub, S. Morgenthaler, D. Balsiger, P. Goode, and T. Braun, “Adam: Administration
and deployment of adhoc mesh networks,” in World of Wireless, Mobile and Multimedia
Networks (WoWMoM), 2011 IEEE International Symposium on a, june 2011, pp. 1 –6.

58

http://doi.acm.org/10.1145/1658939.1658941
https://ccnx.org
http://cds.unibe.ch/research/pub_files/Ba09.pdf
http://cds.unibe.ch/research/pub_files/Ba09.pdf
http://www.ccnx.org/releases/latest/doc/manpages/ccn_repo.1.html
http://www.ccnx.org/releases/latest/doc/manpages/ccn_repo.1.html
http://pcengines.ch/alix.htm

	Contents
	List of Figures
	List of Tables
	Listings
	Introduction
	Motivation and Task Formulation
	Motivation
	Task Formulation

	Outline

	Related Work
	Content-Centric Networks
	CCN Packets
	Content Naming
	Data Storage in CCNx
	File Transfer in CCNx

	Design and Implementation of Resume Operations in CCNx
	Problem Description
	Meta Information
	Resume Capability in CCNx Transfer Processes
	ccnsimplecat_resume
	ccncat_resume

	Data Structure for Meta Information
	ContentName with Integrated Version Number
	Next Segment to Receive
	Position of the Partial Data File

	Implementation of the Resume Capability
	Resume Capability without Pipelining
	Resume Capability with Pipelining

	Evaluation
	Application Scenario
	Hardware / Technology
	ADAM Operating System

	Testing Setup
	Results
	Influence of the Block Size
	Influence of the Pipeline Size
	Influence of the Network Connection
	Processing Overhead
	Discussion

	Conclusion
	Summary
	Conclusion
	Future Work

	Appendix
	Code Listings
	Source Code of the Transfer Applications
	ccn_fetch

	Technical Appendix
	Configuration of Wireless Mesh Nodes with ADAM
	Hardware
	Software

	Bibliography

