
Prediction of Internet Characteristics

for Distributed Applications

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Matthias Scheidegger

von Sumiswald

Leiter der Arbeit:

Prof. Dr. T. Braun

Institut für Informatik und angewandte Mathematik

Prediction of Internet Characteristics

for Distributed Applications

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Matthias Scheidegger

von Sumiswald

Leiter der Arbeit:

Prof. Dr. T. Braun

Institut für Informatik und angewandte Mathematik

Von der Philosophisch-naturwissenschaftlichen Fakultät
angenommen.

Der Dekan
Bern, 2. Februar 2007 Prof. Dr. P. Messerli

Preface

The work presented in this thesis was performed during my employment as
research and lecture assistant at the Institute of Computer Science and Applied
Mathematics (IAM) of the University of Bern. The research was conducted
within two research projects, the European Union project IST-Intermon and
the Swiss National Science Foundation project XBAC.

I would like to thank everybody who has supported me during my stay at
the Computer Networks and Distributed Systems group (RVS), especially Prof.
Dr. Torsten Braun for supervising the work and for his guidance and advice.

I would also like to thank Prof. Dr. Klaus Wehrle for having accepted to
read and judge this work, and Prof. Dr. Horst Bunke who was willing to be the
co-examinator of this work.

Furthermore, many thanks go to my colleagues at the IAM for numer-
ous fruitful discussions and for creating a very agreeable atmosphere. Spe-
cial thanks go to Florian Baumgartner, Dragan Milic, Marc Brogle, Markus
Wälchli, Thomas Bernoulli, Thomas Staub, Gerald Wagenknecht, and Markus
Wulff. Many thanks go to Benjamin Zahler who worked with me and helped
with developing and implementing. I would also like to thank our system ad-
ministrator Peppo Brambilla and our secretary Ruth Bestgen for their excellent
work.

I am deeply grateful to my relatives and friends Ursula Scheidegger, Bern-
hard Scheidegger, Andrea Schwab, Annina Kienholz, Marc Hugi, and Tobias
Roth for all their support and for having a great time together. Finally, I thank
Anna Mund for her support and understanding and for sharing a wonderful
time.

i

ii

Contents

1 Introduction 1
1.1 Problem Statement . 1
1.2 Contributions . 2
1.3 Thesis Outline . 4

2 Network Modeling and Simulation 7
2.1 Modeling . 8

2.1.1 Queuing Theory . 8
2.1.2 Traffic Modeling . 9

2.2 Simulation . 10
2.2.1 Packet-Based Simulation 11
2.2.2 Parallelization . 15
2.2.3 Abstraction . 18

3 Peer-to-Peer and Overlay Networks 23
3.1 Introduction . 23
3.2 Related Work on Peer-to-Peer and Overlay Networks 25
3.3 Peer-to-peer and Overlay Network Construction 28
3.4 Distance Estimation . 33

3.4.1 Aspects of Distance Estimation Approaches 33
3.4.2 Clustering-based Distance Estimation 34
3.4.3 Coordinates-based Distance Estimation 37

4 Hybrid Simulation 45
4.1 Introduction . 45
4.2 An Abstract Network Model for Inter-Domain Scenarios 48

4.2.1 Multi-Domain Models . 50
4.2.2 Domain Models . 53
4.2.3 Inter-Domain Link Models 54
4.2.4 Hybrid Simulation . 55

4.3 An Extension Mechanism for the ns-2 Simulator 56
4.3.1 The Extension Module Interface 56
4.3.2 Modifications to ns-2 . 57

4.4 Integration into a Network Monitoring and Prediction Toolkit . . 59
4.4.1 Architecture overview . 59
4.4.2 Generating and Processing Simulation Jobs 60
4.4.3 The Tool Chain . 61

4.5 Tests and Experiments . 62

iii

4.5.1 Domain and Inter-domain Link Model Tests 62
4.5.2 Scalability Test . 65
4.5.3 Comparison to Testbed Measurements 67

5 A Peer-to-Peer Distance Prediction Service 71
5.1 Introduction . 71
5.2 Overview of the Proposed Service 72
5.3 Locating Groups . 74
5.4 Identifying Remote Clusters . 76

5.4.1 Background . 76
5.4.2 Distance Difference Calculation 77
5.4.3 The Clustering Algorithm 78
5.4.4 Analysis . 79

5.5 The Peer-to-Peer Prediction Architecture 84
5.5.1 The Global Layer . 85
5.5.2 The Local Layer . 86
5.5.3 Repository Maintenance 88
5.5.4 Resilience to Node Failures 90
5.5.5 Predictions . 90

5.6 Simulations . 91
5.6.1 Identification of Local Groups 91
5.6.2 Remote Cluster Identification 96

5.7 Prototype Implementation and Tests 101
5.7.1 Prototype Design . 102
5.7.2 Tests . 106

6 Conclusions 111

A Mathematical Notes 115
A.1 Proof of the Impossibility to Embed an “Y” Topology in Eu-

clidean Space . 115
A.2 AR Models and Yule-Walker Equations 116

Bibliography 117

iv

List of Figures

2.1 A basic queuing system . 8
2.2 The structure of an ns-2 node . 12
2.3 Three approaches to speeding up simulation 14
2.4 Two parallel logical processes using conservative synchronization 15
2.5 A rollback operation in the Time Warp algorithm 16
2.6 Events in fluid simulation and in packet-based simulation 19
2.7 Closely spaced packets form packet trains unless their inter-

arrival time is greater than a threshold 21
2.8 The RESTART simulation method 22

3.1 Message routing in Chord . 26
3.2 Plaxton routing paths towards 2130 27
3.3 A new node joins and mOverlay network 30
3.4 A step in Meridian’s closest node search algorithm 32
3.5 Distance estimation using dedicated infrastructure in the Internet 36
3.6 Coordinates used in the triangulated heuristic 38
3.7 Embedding of a simple network topology into 2 dimensional Eu-

clidean space . 39
3.8 Vivaldi uses 2-dimensional Euclidean coordinates augmented

with heights . 42

4.1 Scenario of a multi-site VPN network 46
4.2 Extended nodes can simulate whole sub-networks 47
4.3 The basic modeling view . 48
4.4 Routing paths in the multi-domain model’s topology 51
4.5 Generating random values using an interpolated ECDF 53
4.6 Birth and Death Process . 54
4.7 The interface used by simulation modules 56
4.8 Structure of an extended ns-2 node 57
4.9 Example Tcl script loading an example module into an ns-2 node 58
4.10 The part of the Intermon architecture concerned with simulation 60
4.11 Structure of a simulation request 61
4.12 The hybrid simulator’s tool chain for the automatic processing of

simulation requests . 62
4.13 ns-2 setup to simulate the delay of a single ISP 63
4.14 Delay histograms from measurements (upper graph) and simula-

tion (lower graph) . 64
4.15 Simulation topologies for evaluating the throughput of inter-

domain link models . 64

v

4.16 Comparison of an ns-2 to an analytical link: transfer rates 65
4.17 Scalability test – small scenario 65
4.18 Scalability test – big scenario . 66
4.19 Scalability test – inter-domain model scenario 66
4.20 Run times observed in the scalability test 66
4.21 Testbed topology . 67
4.22 Generated traffic in the testbed 67
4.23 Comparison of delays from testbed and simulation scenario . . . 68
4.24 Comparison of throughput from testbed and simulation scenario 68

5.1 Clustered view of the network from the vantage point of a single
group . 74

5.2 Alternative algorithm using Meridian’s closest node search and
mOverlay’s grouping criterion . 75

5.3 Impact of common path segments on end-to-end measurements . 77
5.4 Detailed statistical model . 80
5.5 Simplified statistical model . 80
5.6 Expected out-of-band ratio for several band sizes 82
5.7 Acceptance probability of the out-of-band test with 10% standard

deviation . 83
5.8 Probability to detect a 1% bias for varying standard deviation . 84
5.9 The two-layer structure of the service 84
5.10 The three levels of clustering used in the repository 85
5.11 A node retrieves information about a known IP address 87
5.12 Mean intra group distance for several grouping thresholds 94
5.13 Avg. nodes per identified group for several grouping thresholds . 94
5.14 Mean out-of-band ratio using a 10% band, for several grouping

thresholds . 94
5.15 Mean joining delay per node for several grouping thresholds . . . 96
5.16 Mean joining delay in mOverlay for various parameters 96
5.17 Mean out-of-band ratio in mOverlay for various parameters . . . 96
5.18 Ratio of confirmed neighbor detections with tB = 0.1% 98
5.19 Ratio of confirmed neighbor detections without bias detection . . 98
5.20 Number of confirmed neighbor detections per observation point . 98
5.21 Percentile-percentile plot of round-trip times between identified

neighbors versus the round-trip times between all endpoint pairs 99
5.22 Ratio of confirmed neighbor detections for different parameter

sets, non-averaged RTT values 100
5.23 Ratio of confirmed neighbor detections with available bandwidth 101
5.24 The four layers of the prototype design 102
5.25 CDFs of relative and absolute error of prediction 107
5.26 Ratio of successful predictions versus the rate of requests 108
5.27 The number of nodes assigned to clusters of a given size 109

vi

List of Tables

2.1 Standard stochastic processes for queuing systems 9

5.1 Terms used in our distance prediction service 73

vii

viii

Chapter 1

Introduction

1.1 Problem Statement

The global Internet has grown at an amazing speed over the last decades. What
once started with only a few interconnected computers is now a immense net-
work connecting hundreds of millions of computers. This tremendous growth
comes not without problems. The size and complexity of the Internet makes
its behavior obscure and hard to foresee. New protocols and distributed appli-
cations may perform well in small-scale tests and simulations but still exhibit
unexpected problems when run on the Internet, and changes to the network
topology may have unwanted side effects.

This problem can be approached from two angles. On the one hand, if a dis-
tributed application requires a static deployment that cannot be easily changed
afterwards, sophisticated simulation techniques may be an adequate tool for
predicting the performance of a given deployment scenario. On the other hand,
many recent applications use peer-to-peer designs that adapt dynamically to
changing network conditions in order to gain efficiency and robustness. They
use quality of service measurements of end-to-end paths to find optimal over-
lay topologies. Planning and elaborate simulations are of limited use to these
applications. Instead, accurate and efficient prediction of end-to-end quality of
service is a major factor for their performance. In this work we focus on both,
prediction of application behavior through simulation and the prediction of end-
to-end quality of service to support the adaptivity of distributed applications.

Simulation is a traditional way to assess the viability of a distributed appli-
cation before the actual deployment. Unfortunately, conventional packet-based
simulation tools are not capable of simulating even reasonably sized parts of the
Internet due to its complexity. One problem is that the simulation of Internet
scenarios requires very high amounts of memory and computation time. Paral-
lel simulators running on high-performance computers reduce the computation
times considerably and often have enough memory to store the simulation state
even for large scenarios. But even then, it is very hard to create accurate sim-
ulation scenarios. Routers may be configured in many different ways, and the
traffic patterns in the Internet are very complex. Unlike telephony networks,
the Internet carries traffic generated by thousands of different applications with
varying characteristics. Creating fine-grained scenarios on the packet level would

1

2 CHAPTER 1. INTRODUCTION

be a time-consuming endeavor. Moreover, information about the exact network
topology, router configurations, and traffic patterns is not generally available.
The Internet consists of a vast number of independent administrative domains,
and network administrators do not normally publish details about their net-
works. Therefore, Internet simulations often model the network on a high ab-
straction level that hides unneeded details. The parameters of these models
can often be determined by making measurements on the Internet and do not
require detailed knowledge of the network. Using simpler models also leads to
much faster simulation. Most models are designed to preserve the details of one
aspect of the simulation at the cost of reduced accuracy of the other aspects.
Hence, they must be carefully selected to fit a given scenario.

Part of the reason for the Internet’s success is the ability of many protocols
to operate with very little support from the network itself. The widely used
Transport Control Protocol (TCP) for example only relies on the network’s ca-
pability to route Internet Protocol (IP) packets to their destination. Packet loss
and network congestion are detected and compensated by mechanisms located
at the communication endpoints. This focus on end-to-end mechanisms makes
the Internet flexible towards growth and changes. Unlike TCP, whose adaptivity
is limited to the network path between two communication endpoints, peer-to-
peer networks and other distributed applications may employ more sophisticated
schemes to adjust to changing network conditions. Peer-to-peer networks are
made up of a large number of peers, interconnected by a network of logical links
with no direct relation to the structure of the underlying physical network. The
topology of these links can be dynamically changed to maximize robustness and
efficiency. However, the construction of optimal peer-to-peer topologies is far
from trivial and usually application dependent. One of the basic challenges is
how to predict the characteristics of a network path between two peers. Large-
scale measurements may not be practicable and should be replaced by more
efficient approaches. Various solutions to this distance estimation problem have
been proposed in the literature.

1.2 Contributions

In a first part of this work we address the aspect of predicting Internet behavior
through simulation using high-level abstraction. There are many different ab-
stract models, each one tailored to a specific purpose or type of network. Fluid
simulation for example aggregates packets into fluid flows in order to save the
effort of modeling each of them separately, with the consequence of making TCP
simulation less accurate due to TCP’s sensitivity to the exact timing of packets
and the order of packet losses. Other approaches simplify the modeled topology
at the risk of overlooking possible causes for congestion in the network. Internet
scenarios often consist of several parts, each modeled best with a different ab-
straction. When we simulate a distributed application deployed at several sites
for example we may want to simulate the local networks of the sites in high
detail while modeling the Internet core with more coarse-grained methods.

We have designed and implemented a hybrid simulator aimed at this kind
of scenario. It is based on an extension mechanism to the packet-based ns-
2 simulator that allows to insert plug-in modules into a simulation scenario.
Each of these modules may simulate part of the modeled network using its own

1.2. CONTRIBUTIONS 3

abstraction. We have used this extension to combine packet-based simulation
with an abstract network model for the scalable simulation of inter-domain
networks and large inter-domain traffic aggregates. This network model includes
concepts from time stepped fluid simulation and analytical queuing theory. The
extension mechanism can also be used to include other types of modules into
the same scenario. Connected through an ns-2 topology, they form a simulation
scenario with multiple combined abstractions.

The hybrid simulator has been integrated into a large, distributed architec-
ture for network monitoring, modeling, simulation, and visualization, primarily
aimed at users such as network administrators. The architecture provides seam-
less integration of tools for the various tasks in a single graphical user interface.
For example, a user can schedule measurements on distributed monitors in the
network and, once available, run a simulation scenario based on the resulting
topology and traffic data as well as user-made changes. The simulator output
can then be sent to the visualization component to generate graphical output.

In a second part of the work we concentrate on predicting Internet behav-
ior from an end-to-end perspective. The existing approaches to this distance
estimation problem can be roughly divided into two categories:

• clustering approaches, that cluster endpoints in order to reduce the num-
ber of necessary end-to-end measurements

• coordinates-based approaches, that map endpoints to a coordinate space
and use that space’s distance function to estimate network distances.

Clustering approaches often rely on dedicated infrastructure in the Internet,
which is a hurdle for their deployment. Coordinates-based approaches can only
estimate distances between members of the same peer-to-peer system since inde-
pendent hosts do not know about each other’s coordinate system. Furthermore,
many systems from both categories require a certain minimal size to perform
well, which prohibits local deployment.

Another common problem of distance estimation systems is that they focus
on long term average distances of a single type even though Internet charac-
teristics are diverse and may change rather rapidly over time. Applications
would benefit from additional information like variances or trends of end-to-end
distances. Unfortunately, the computation of more sophisticated predictions
is also more demanding on the computers running the system. Furthermore,
while conventional distance estimation services can operate with very few mea-
surements per endpoint pair such predictions generally require larger series of
measurements.

We propose a service that provides more sophisticated predictions of end-
to-end network characteristics than common distance estimation approaches
because it considers series of distance measurements instead of single, averaged
values. In this system, nodes from the same locations in the network organize in
groups. Inside these groups, the nodes monitor application traffic to obtain end-
to-end measurements and store the results in a peer-to-peer repository. Based
on the data in this repository the service can then make distance predictions.
Since the amount of measurement data in the repository may be large we em-
ploy a clustering algorithm to combine different measurements into a single one
where possible. The peer-to-peer design used in the service distributes the stor-
age of measurement data and the computation of predictions among multiple

4 CHAPTER 1. INTRODUCTION

peers. It also makes additional infrastructure unnecessary. Another desirable
property of the service is that it does not require a large-scale deployment to
be useful. Its peer-to-peer groups may operate in isolation and can provide
distance predictions even if deployed only at a single site.

Our main contributions in this thesis are the following:

• We have developed a hybrid simulator that combines fine-grained packet-
based simulation with a more coarse-grained but efficient inter-domain
network model. This allows for scenarios that would not be possible to
simulate with conventional tools. The hybrid simulator is mainly useful
for predicting the behavior of distributed applications deployed at sev-
eral sites in the Internet. It can employ fine-grained models to simulate
the application itself while using a coarse-grained inter-domain model for
network between the sites.

• In addition to the hybrid simulator, we have implemented a system for the
automatic creation of measurement-based simulation scenarios, scheduling
of simulation jobs, and processing of simulator output. This system was
used as link to integrate the hybrid simulator into a large architecture for
the monitoring, simulation, and visualization of inter-domain networks.

• We have created a quality of service prediction architecture that is aimed
at helping dynamic distributed applications like peer-to-peer networks to
adapt to the quality of service on the underlying physical network. Unlike
other approaches, our service is able to provide sophisticated predictions
for arbitrary types of end-to-end measurements, and it does not require a
large deployment to be useful. Furthermore, it can operate without any
additional infrastructure in the network due to its peer-to-peer design.

1.3 Thesis Outline

Chapter 2 gives an overview of available modeling and simulation techniques
with special focus on their suitability for large-scale Internet scenarios. We
discuss the shortcomings of sequential packet-based simulation and discuss two
main directions of research, parallel simulation and abstraction.

In Chapter 3 we point out the importance of end-to-end adaptability for
protocols and architectures in the Internet, having a closer look at peer-to-peer
networks. The second part of the chapter is concerned with systems support-
ing the adaptability of distributed applications, such as end-to-end distance
estimation services. We state several factors for the usability of these distance
estimation services and discuss the shortcomings of the existing approaches con-
cerning their ease of deployment, their reliance on additional infrastructure in
the network, or the scope of their estimates.

We present a scalable simulator for inter-domain scenarios in Chapter 4. Its
basic idea is to combine the packet-based simulation approach with high-level
abstractions of the network to exploit the advantages of each in a single scenario.
We describe a high-level model specifically aimed at inter-domain networks,
combining elements of queuing theory and time stepped fluid simulation. We
also present the integrated of this hybrid simulator into a toolkit for distributed
monitoring and simulation of inter-domain networks.

1.3. THESIS OUTLINE 5

Chapter 5 we propose a peer-to-peer-based distance prediction service that
has several beneficial properties. Unlike other approaches, it can provide qual-
ity of service predictions for arbitrary hosts in the Internet even if the service
is deployed only at a single site. Moreover, it is able to give predictions of fu-
ture quality of service instead of the simple estimates average round-trip time
commonplace in other schemes. We present the service’s distributed architec-
ture and the clustering algorithms that are key elements for the viability of the
approach.

Finally in Chapter 6, we conclude the thesis by summarizing the results and
contributions.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Network Modeling and
Simulation

Because computer networks are highly complex systems, designing and con-
trolling them is not trivial. It requires tools to study and evaluate possible
alternatives, and to validate the design before building a network. For exam-
ple, before laying a cable an Internet service provider would most likely want to
quantify the potential benefit of the new network link. Also the deployment of a
distributed application that requires additional network infrastructure shouldn’t
be made without prior analysis.

Creating tools for predicting the behavior of computer networks and dis-
tributed applications has been a focus of research for many years. Discrete
event systems (DES) have taken a predominant role in this area because they
provide a natural way to model computer networks. Events occur when a packet
arrives at a computer or when a network link fails, for example. However, there
is no single, commonly accepted DES model for computer networks. Depending
on the goal of the analysis, there are many different approaches to model and
analyze a computer network with discrete event systems. Section 2.1 gives an
overview of possible models for networks and network components.

One approach to studying computer networks is to analyze these models
using mathematical means. This method, called analytical modeling, has the
advantage that it yields closed formulas for many performance measures, which
make dependencies between parameters and the performance of the network
clearly visible. Unfortunately, the structure of real networks is usually too com-
plex to be modeled by analytical means. The assumptions made by such models
often tend to oversimplify the behavior of a real network. Many computer net-
work researchers have thus turned to simulation. In cases where analytical mod-
els are not tractable, simulation often provides sufficiently accurate numerical
approximations of the behavior of network models. Simulations are compara-
ble to laboratory experiments. They mimic the behavior of a real network and
compute its reaction to certain events. By running simulations with many small
variations (usually generated by random number generators) we can determine
statistical characteristics such as the average and variance of measures of inter-
est. However, because of their stochastic nature, simulations can only provide
estimates.

7

8 CHAPTER 2. NETWORK MODELING AND SIMULATION

Simulations are able to model much larger and more complicated computer
networks than analytical models. Nonetheless, a fundamental problem of simu-
lation is that the larger the scenario, the more CPU power it takes to compute
the results. In fact, today’s Internet cannot be faithfully simulated by any
known method. A large body of work has been devoted to this issue. Sec-
tion 2.2 gives an overview of the numerous methods proposed to alleviate this
scalability problem.

2.1 Modeling

When we want to study a computer network we can either build a physical
testbed and observe how it performs, or we can create an abstract model of the
network and try to gain insights by analyzing it. Both approaches have their
merit. Testbeds are generally very costly to build and hard to change. Models
are less realistic than testbeds, but they are also cheap to build and usually
easy to change. In the following we will take a brief look at queuing theory, a
well-known approach for building analytical models of computer networks and
other discrete event systems. We will have a look at traffic modeling.

2.1.1 Queuing Theory

Queuing systems are a popular and well established class of discrete event sys-
tems. They are particularly well-suited for computer networks because of the
importance of queues in network components such as routers. A basic queuing
system consists of a customer (or job) arrival process, one or several servers that
process customer requests, and a queue where customers wait until they can be
served (see Figure 2.1).

Server
Arrival process Departure process

Queue

Figure 2.1: A basic queuing system

Several aspects of a queuing system need to be specified before we can
analyze it. A common way to classify these aspects is Kendall’s notation
A/B/c/K/m/Z, where

A – specifies the arrival process, i.e. the distribution of the time between the
arrival of two consecutive customers (called inter-arrival time).

B – specifies the service time distribution.

c – is the number of (identical) servers in the service station.

K – is the system’s capacity, i.e. the capacity of the queue plus the capacity of
the service station. If omitted, this parameter is assumed to be infinity.

m – is the capacity of the source population. This is commonly set to infinity.

2.1. MODELING 9

Z – specifies the system’s queuing discipline, which dictates the order in
which customers are served. Common choices are FCFS (First-Come-
First-Serve, also known as FIFO), LCFS (Last-Come-First-Serve), RSS
(Random-Selection-for-Service), or PRI (priority scheduling).

Standard choices for A and B are shown in Table 2.1. Based on the queuing
system specification, we can calculate numerous performance measures. Exam-
ples are the utilization of the system, the mean sojourn time of a customer (i.e.
the time between the arrival and the departure of a customer), and the mean
number of customers in the queue. Another important property is the state of
the system, often described using the state probabilities pn. pn describes the
probability that n customers are in the system at a given time.

Table 2.1: Standard stochastic processes for queuing systems

M Markovian/Poisson arrivals (exponentially distributed inter-
arrival times)

D Deterministic (constant)

H Hyper-exponential (linear combination of exponential distribu-
tions)

Ek Erlang-k arrivals.

PH Phase type arrivals.

G or GI General (independent) distribution, i.e. the distribution is not
a priori known.

The abstraction of a queuing system can be easily applied to networking.
Here, a “customer” is usually a packet or cell arriving at a router. Arrival pro-
cesses model applications generating traffic. When a router receives a packet
it determines on which outgoing port it should be forwarded. If the corre-
sponding network interface (server) is busy, the packet will be sent to the queue
according to the queuing discipline. A powerful property of queuing theory
is that queuing systems like the one in Figure 2.1 can be connected to form
a network. However, solving the equations necessary for a large-scale system
of queues may quickly become very time consuming. Moreover, many arrival
processes that lend themselves to queuing systems because of their simplicity
are rather bad approximations of packet arrival processes in a real network.
For example, Markovian arrivals lead to simple formulas, and they may be an
acceptable approximation of arrivals in highly controlled networks such as tele-
phony networks, but they are usually unsuitable for modeling packet arrivals in
the Internet. We examine this problem in more detail in the next section.

2.1.2 Traffic Modeling

One of the most important factors for accurate prediction of Internet behav-
ior are traffic models. Network elements like switches, routers, and links are
relatively easy to model accurately. However, the traffic generated by the end
systems in the network may exhibit arbitrarily complex patterns. This is due
to the fact that this traffic is normally triggered by human interaction (e.g. a

10 CHAPTER 2. NETWORK MODELING AND SIMULATION

person clicking on a link in a web browser, or downloading a file via FTP).
On the Internet, the multitude of utilized protocols with varying characteristics
adds to this problem. Recent work on traffic models for queuing systems [62]
suggests that such complicated arrival processes can be accurately modeled as
Batch Markovian Arrival Processes (BMAPs). However, protocols like TCP,
that adapt to network congestion using a feedback mechanism, remain hard to
model analytically.

In the network core, the traffic arriving at a router is a mix of many appli-
cation flows. It was long assumed that the bursty characteristics of the single
flows would even out in the core of the network and thus allow for approxi-
mation with simple Poisson models. That assumption has proven to be wrong
[90]. Wide-area traffic in the Internet shows self-similar properties. That means
that its short-term variability does not “even out” over larger time-scales like
traffic generated with a Poisson model would. This phenomenon has also been
observed in World Wide Web traffic [24] and local area networks using ethernet
[69].

Nevertheless, for many areas verified traffic models exist. A compilation can
be found in [31]: User “session” arrivals are well-described using Poisson pro-
cesses. Connection sizes and durations can often be modeled using log-normal
distributions, whereas their extremes may be better modeled using heavy-tailed
distributions such as Pareto. Danzig et al. describe an empirical TCP work-
load model as observed at network stubs [27] specifically aimed at wide-area
TCP/IP network simulations. Analytical models for various TCP connection
types such as Telnet, NNTP, SMTP, and FTP are described in [89]. Because of
the dominance of web traffic on the Internet, special attention has been given
to creating models of this type of traffic. Mah [74] has analyzed packet traces of
HTTP conversations to formulate an empirical model for HTTP network traffic.
In [25], execution traces of the somewhat aged NCSA Mosaic web browser have
been analyzed to gain insight into the characteristics of WWW clients. The
Scalable URL Reference Generator (SURGE) [7] also applies analytical models
to web traffic, but instead of including these models in a simulator the authors
use them to drive a traffic generator for physical testbeds.

2.2 Simulation

While analytical models of computer networks have the advantage that they
provide closed formulas for a given problem, they are also hard to come by.
Their complexity makes them tractable only for small scenarios. Moreover,
they often rely on oversimplifying assumptions such as Poisson packet arrivals,
which further reduces their usefulness. Consequently, a large part of current
network research relies on simulations instead of analytical modeling.

Like analytical models, network simulations normally rely on discrete event
systems. However, each simulation run only computes a single outcome the
scenario may have, called sample path or state trajectory. In order to obtain
statistically meaningful results, simulations have to be run several times with
slightly different parameters. This “noise” is created by so-called random num-
ber generators (RNGs), which mimic true random processes using deterministic

2.2. SIMULATION 11

tools (Several algorithms for random number generation can be found in [101]).
Once we have a sufficient number of simulation results we can give good esti-
mates for the behavior of the network.

The most common simulation scheme is sequential event scheduling. Simula-
tions start with a given state of the network and a virtual simulation time that
is usually set to zero. A queue holds the events that have not been executed yet,
sorted by their scheduled activation time. We schedule an event by inserting
it into this queue at the correct position. Some events are inserted before the
simulation starts. These commonly trigger network components such as traffic
sources, which in turn schedule more events. Many simulators define a special
stop event that ends the simulation. The simulator starts by dequeuing the
event with the smallest scheduled time. Then, it sets the simulation time to
that of the event and executes it. The event may change the network state and
schedule additional events. When the event has been processed, the simulator
repeats the procedure with the next event and continues to do so until either no
events are left or it encounters the stop event. This way of simulating discrete
event systems is natural for modeling network components such as routers, since
they are usually implemented in an event-driven fashion themselves.

However, for some applications the event scheduling approach is unnatural
and makes implementing simulation models unnecessarily hard. An approach
that may provide a better environment in these cases is the process-oriented
simulation scheme. Here, simulation entities can be formulated as processes
that resemble the control flow of normal computer programs, with the addition
that a process may also wait for events. For example, a simulated network
client might initiate a connection to a peer, wait until the connection is set
up, then send a message to the peer, wait for a response, and finally terminate
the connection. This alternate way of simulating discrete event systems can
be efficiently implemented using user-level threads, which are available on most
current operating systems. It is well suited for simulating the interaction of
client programs. Nevertheless, most network simulators implement the event
scheduling scheme.

An important aspect of every simulator is the granularity of its network
model. A popular approach, packet-based simulation, simulates networks at
the level of packets and above, but does not explicitly consider lower-level de-
tails like the transmission of frames over ethernet links. While this abstraction
is suitable for a wide range of simulation scenarios it also suffers from severe
scalability problems when applied to large-scale networks. This problem is being
approached by two main directions of research, parallel simulation, and finding
alternative abstractions. In Section 2.2.1 we look at the packet-based approach
and its scalability problems, and we discuss parallel simulation and abstraction
approaches in Sections 2.2.2 and 2.2.3, respectively.

2.2.1 Packet-Based Simulation

When designing a network simulator we have to decide about the level of detail
the simulator should support. There is a tradeoff between the level of detail
of the network model and the time it takes to run a simulation. Fine-grained
network models considering physical details of the network would be preferable
because they produce more accurate results than coarse-grained ones, but they
are impractical since they can only simulate very small networks within an ac-

12 CHAPTER 2. NETWORK MODELING AND SIMULATION

ceptable amount of time. A rather popular compromise is to simulate networks
at the packet-level. This level of detail is sufficient for studying a wide range of
scenarios, including new protocols, routing strategies, and queuing disciplines.

The ns-2 Simulator

The sequential packet-based ns-2 simulator [12] has seen widespread use in the
research community for several years. It has been used to investigate protocols
like the Transmission Control Protocol (TCP) and develop new queuing dis-
ciplines like Random Early Detection (RED). ns-2 provides an object-oriented
split-programming environment: The event engine and all time-critical func-
tionality is implemented in the C++ programming language for efficiency. All
functionality required to configure and control a simulation is available through
an object-oriented variant of the Tcl programming language (OTcl). This en-
sures relative ease of use without noticeably slowing the simulator down. Nev-
ertheless, this also results in a steep learning curve for researchers who need to
extend the simulator. Since we base the implementation of our hybrid simulator
described in Chapter 4 on ns-2 we will take a closer look at ns-2’s design.

The ns-2 simulator models network topologies as a graph using three basic
building blocks: links, nodes, and agents. Links are the edges of the graph
and model the effects of packet transmission through physical links. They can
have several user-specified attributes such as bandwidth, propagation delay, or
bit error rate. A peculiarity of ns-2 is that links also manage packet queues,
although in real networks this would be done by the nodes. Ns-2 nodes are the
vertices of the graph and represent physical machines in the network, such as
workstations or routers. Accordingly, their main tasks are to forward packets
from one link to the next, and to host user applications (called agents in ns-2).
Ns-2 does not model any processing delay in the nodes. Thus, the simulation
of network characteristics such as delay and packet loss depends solely on the
links. Agents model user applications. They are the traffic sources and sinks in
a simulation scenario. Like in real workstations the agents use a port number
to distinguish themselves from other agents on the same node. As we will
see in Chapter 4, our hybrid simulator several modifications to the ns-2 code,
especially to the ns-2 node. The original structure of an ns-2 node is shown in
Figure 2.2.

Link Link Link

Agent

Agent

Agent

A
dd

re
ss

C
la

ss
ifi

er

Po
rt

C
la

ss
ifi

er

Node
Entry

ns-2 Node

Figure 2.2: The structure of an ns-2 node

2.2. SIMULATION 13

We can see that packets arriving at the node directly go into the address
classifier, which is the routing component of the node. It chooses the next link
for a packet depending on its destination address and hands it over to that link
for further transmission. However, if a packet has reached its destination node
the address classifier does not forward it any further but hands it over to the
port classifier. The agent responsible for the packet’s port number will then
receive the packet for processing.

Other Packet-Based Simulators

Opnet [17] is a commercial packet-based simulator. Unlike ns-2, it supports
process-oriented simulation through a language called Proto-C. Moreover,its
node models are made up of interconnected modules, which makes them much
more configurable than their ns-2 counterparts. Being a commercial product,
Opnet also comes with several tools to edit scenarios and analyze simulator
output.

The INET package for the OMNeT++ [135] simulator framework is another
example of packet-based simulation. It includes a variety of models for pro-
tocols used on the Internet such as IP (both, versions 4 and 6), TCP, UDP,
and ICMP. Furthermore, models for network components like routers, switches,
and transmission media of various types are available. It also includes models
for several kinds of applications and routing strategies. If desired, simulation
scenarios can also incorporate details below the packet level such as ARP mes-
sages on ethernet links. The OMNeT++ framework and simulation kernel itself
employs a modular design reminiscent of Opnet.

Scalability Issues of Sequential Packet-Based Simulators

Sequential packet-based simulation has proven useful for investigating various
research problems. Nevertheless, the approach lacks scalability. The sheer num-
ber of events makes the simulation of large-scale Internet scenarios a time con-
suming endeavor. The execution time of a simulation is roughly proportional to
the occurring number of events. Unfortunately, when we increase the size of the
simulated network there are several factors resulting in an increasing number of
events.

• Growing network size leads to a greater average distance between traffic
sources and traffic sinks, making packets take more hops before they reach
their destination. Every hop causes additional events, normally at least
one per hop. In Internet-alike (small-world) topologies the average number
of hops on a network path scales with O

(
log(N)

)
to the number of nodes

N .

• Bigger scenarios normally also include a greater number of flows. It is
reasonable to assume that the number of flows (and thus the number of
transmitted packets) increases proportionally with the number of nodes,
which results in a linear increase of the number of events.

• The number of end users with broadband Internet access is increasing,
causing a higher demand for multimedia services like web radio or video

14 CHAPTER 2. NETWORK MODELING AND SIMULATION

streaming. Consequently, in up-to-date simulation scenarios the band-
width used per flow is rising as well, which again results in a linear increase
of the number of events.

Combined, these effects result in a significant increase of the number of events a
simulator has to process when studying large-scale scenarios. The exact scaling
behavior of a simulator depends on many parameters. Given the considerations
above, we can roughly estimate that the number of events in a scenario scales
with

O
(
B ·N · log(N)

)
, (2.1)

where B is the average bandwidth used by a flow and N is the number of nodes
in the scenario.

There are three independent ways of speeding up simulation (see Figure 2.3)
[29]. Firstly, the implementation of the simulator can be optimized. For ex-
ample, the event scheduling algorithm can be improved with techniques like
calendar queues [14] or timing wheels [136] to have O(1) complexity instead of
the O(log n) complexity of naive implementations. In split-programming sim-
ulators like ns-2, parts of the simulator written in a scripting language (Tcl
in ns-2) can be reimplemented using a lower level compiled language (C++
in ns-2). This optimization approach is the most straightforward but also the
least effective. The improvement gained from code optimization is usually not
very big. Moreover, most widely used simulators already use strongly optimized
code.

Higher level of
abstraction

Faster CPU
Parallelization

Optimized
Implementation

Figure 2.3: Three approaches to speeding up simulation

Another possibility to speed up simulation is to use more CPU power to run
the simulator. With sequential event-based simulators this approach is very lim-
ited because we can only replace a single CPU, which makes the simulation two
or three times faster but cannot be improved further. Parallelization overcomes
this obstacle. Parallel simulators can run on many CPUs at the same time and
thus scale much better to large-scale scenarios. They are especially suited for
super computers with a large number of parallel CPUs. A large body of work
has been devoted to parallel simulation.

A third way to make simulation of large-scale scenarios possible is to reduce
the level of detail. Packet-based simulation is considered a good compromise
between speed of computation and accuracy for many simulation scenarios. For
large-scale networks however, it may be more efficient to use a more coarse-
grained model of the network. Many different possible abstractions for large-
scale simulations have been proposed in the literature. Section 2.2.3 gives an
overview.

2.2. SIMULATION 15

Logical
Process A

Logical Process B

Logical
Process C

Figure 2.4: Two parallel logical processes using conservative synchronization

2.2.2 Parallelization

Most event-based simulations execute events one after the other. This approach
is called sequential event-based simulation. While it is comparatively simple,
it does not exploit the inherent concurrency of a computer network. Events
often only influence their immediate vicinity in the simulated network topology.
Thus, events in different parts of the topology could be simulated independently,
which would allow for distributing the simulation to multiple CPUs. A similar
effect can be found on the time axis. An event early in the simulation has a neg-
ligible effect on events much later in the simulation. The simulation approaches
known as parallel discrete event simulation (PDES) and time parallel simulation
stem from these two observations. They are also referred to as time-division and
space-division approaches. Unfortunately, it is almost never possible to divide a
scenario into completely independent parts. There are always events from one
part that influence another. Since this necessitates expensive “fix up” compu-
tations it is important to find partitionings that minimize the number of such
events.

Space-Parallel Methods

Space-parallel simulators divide the simulated network into partitions (e.g. sin-
gle routers, subnetworks, etc.) and perform the computation for each on a
separate processor. We call the independently running parts of the simulation
logical processes. During execution, the virtual simulation time in each logical
process is roughly the same. Nevertheless there may be differences, which leads
to synchronization problems when the logical processes exchange events. Dis-
crete event simulations require that events are executed in the order of their
scheduled time. This is easy to do in a traditional sequential simulator. Events
are stored in a queue sorted by their activation time, and whenever the simu-
lator is ready to process a new event it simply dequeues the next event from
it. Space-parallel simulations however use several queues, one for each logical
process. Accordingly, they must be synchronized through some mechanism.

Conservative Synchronization A widely used solution to this problem is
conservative synchronization. The logical processes communicate to find a safe
interval of simulation time in which they can be sure to receive no events from
other logical processes. This interval is called the lookahead. While it lasts
the logical process can execute its local events without the need to handle any
external events. When there are no local events left in the lookahead interval,
events are exchanged between the logical processes and a new lookahead interval

16 CHAPTER 2. NETWORK MODELING AND SIMULATION

must be negotiated. Note that the lookahead is not necessarily the same for all
logical processes. A logical process’ lookahead only depends on the events of
another logical process if they in fact exchange events (for example, two adjacent
routers in a network scenario). In the example in Figure 2.4, two traffic sources
(logical processes A and C) send packets to a multiplexer component with a
queue (logical process B). The lookahead interval of B is [t, t′), where t′ is the
time when a packet from either A or C arrives at B. B in turn affects the
lookahead of any logical process that receives its packets.

Several parallel simulators implement the conservative approach (Nops [97],
which is based on TeD [91], and SSFNet / DaSSF [23] to name a few). Con-
servative network simulation has also been used in [41] and [93]. A well-known
algorithm based on process-oriented simulation is described in [79]. Logical pro-
cesses send event messages to each other unless there are no events left to be
sent. In that case they send null messages announcing the interval in which they
will not send any further events. With this information the logical processes can
compute their lookahead interval. Sending null messages protects the approach
from starvation.

Simulation time

Rollback time

Scheduled time of
received event

Current simulation time

Event queue

Saved states

Replayed eventsOlder events

Discarded statesRollback state

 Future events

Anti-messages

Activated anti-messages

Global virtual time

Figure 2.5: A rollback operation in the Time Warp algorithm

Optimistic Synchronization Jefferson [56] pioneered the optimistic ap-
proach to space-parallel simulation with the Time Warp algorithm. Unlike
conservative methods, Time Warp lets logical processes execute events with-
out waiting for external events. Consequently, an event may reach a logical
process whose simulation time has passed the event’s scheduled time. If this
happens, the logical process performs a rollback to a known state just before
the scheduled execution time of the received event, and recomputes the simula-
tion from there. This scheme obviously requires the logical process to regularly
save its state, typically once every few seconds of processing time. Furthermore,
already processed events cannot be discarded because they might be used again
for re-computation after a rollback. The Time Warp algorithm restricts the
memory used for storing state and events by keeping track of the global virtual
time (GVT), the lower bound of all active events in the system. If an event

2.2. SIMULATION 17

was scheduled before the GVT it can be safely discarded. The same is true for
saved states of logical processes from before the GVT. Hence, the amount of
saved states and events does not grow indefinitely (Mattern discusses several
efficient algorithms for GVT approximation in [76]). Another important aspect
of the algorithm is the handling of the possible side effects of events. When a
logical process receives an event scheduled in the past, it does not suffice to just
rollback and recompute the relevant time interval. The events sent during this
interval may have influenced the state of other logical processes. Worse, they
may have caused other processes to send events of their own. This is solved
by maintaining a sorted list of so-called anti-messages. For each message sent
to another process, an anti-message is inserted into this list. If the logical pro-
cess performs a rollback to time t, all anti-messages with a timestamp greater
than t are sent to the appropriate receivers where they have two effects. First,
they cancel out the original message, effectively removing it from the receiver’s
event queue. Second, if the receiver’s simulation time has progressed beyond the
scheduled time of the canceled event, the anti-message triggers a rollback. Thus,
the rollback of a single logical process effects an optimal cascade of rollbacks in
other logical processes. Figure 2.5 illustrates the steps during a rollback of a
single logical process.

Several simulators based on the optimistic method have been developed.
Telesim [134] uses Time Warp to simulate telephony networks. Parsec [5] and its
descendant GloMoSim (Global Mobile system Simulator) [144] are well-known
simulators originally based on the Maisie simulation language [6], which sup-
ports sequential as well as conservative and optimistic parallel simulations. Op-
timistic space-parallel simulation was also used in [110] for evaluating reliable
multicast protocols. Hao et al. [46] have shown that Time Warp works better
with small logical processes.

Federated Simulators Although parallel simulation has been known for long
time, its adoption in industrial simulators has been sparse [84]. This has been
attributed to the industry’s reluctance to reimplement existing and validated
simulation models. A popular approach to alleviate this problem is to federate
existing sequential simulators, i.e. to coordinate several instances of the same
simulator (or even different simulators) with a messaging back-end [78, 84, 107].
This technique has also applied to the ns-2 simulator described in Section 2.2.1
[108, 92].

Time-Parallel Methods

The alternative to partitioning simulation scenarios in space is to partition the
duration of the simulation into subintervals. This can theoretically result in
a high degree of parallelism because the time axis is continuous. Nonetheless,
even on the time axis the problem remains that it is difficult to partition a
simulation scenario into independent parts.

Chandy and Sherman’s algorithm [16], which is in fact a combination of
time-parallel and space-parallel approaches, comprises the basic approaches for
time-parallel simulation. The simulation scenario is partitioned into space-time
regions, which are simulated on independent processors. The simulation of
each region starts with with a guessed initial state. When the final state of
a region becomes known it is sent to the regions that depend on it. These

18 CHAPTER 2. NETWORK MODELING AND SIMULATION

regions then correct their results (if necessary by re-simulating the whole region)
and in turn send their final state to any dependent regions. This correction
step is commonly referred to as a “fix up.” The simulation stops when the
initial states of the regions match the final states of their respective preceding
regions. This approach can significantly speed up simulations, but only if the
scenario is “nearly decomposable,” i.e. communication between the regions is
rare. Otherwise, the simulation may take even longer than sequential event
based simulation. The space-time approach has also been used in Genesis [131].
The “fix up” in time-parallel simulation can be reduced if we can find points in
time where the initial state has no influence anymore [40, 47, 3, 35, 140, 58, 71].

Time-parallel simulation can yield a significant amount of parallelism, and
it may be used to parallelize elements of network simulation that could not be
parallelized using space-division approaches (e.g. single queues). However, it
is only applicable to special cases with relatively little state information. The
state information of large-scale network scenarios is much too big to make time-
parallel simulation viable.

2.2.3 Abstraction

The enormous computational cost for discrete event simulations of large-scale
networks is due to the amount of events the simulator needs to process. Parallel
simulation approaches take advantage of the increased computational power of
parallel computers to process the large amount of events in a reasonable time.
However, even when used in parallel simulators the packet-based approach may
be inadequate for Internet scenarios. We are often missing the information
for creating accurate packet-based models of the network. If we just guess at
the topology and configuration of the network or the composition of network
traffic we may obtain an accurate simulation of an unrealistic model of the
network. In this section we look at the converse approach: simulators that
use simplified, abstract models generating much fewer events while keeping a
reasonable level of accuracy. Several different aspects of a network simulation
scenario may influence the number of generated events; for example, the average
number of packets per flow or the number of hops in a simulation topology.
Abstraction methods simplify the simulation model with respect to one or more
of these aspects, and they often achieve a significant reduction in the number of
events. However, this speedup always come with a loss in simulation accuracy.
Abstractions are normally aimed at a certain aspect of the network scenario and
oversimplify other aspects in order to speed up the computation. Depending on
the problem at hand we thus have to select a suitable abstraction.

One of the most well-known abstractions for network simulation is fluid sim-
ulation. This method models the large amount of packets in a high bandwidth
flow as a homogeneous fluid flowing through the network links. A fluid flow
does not distinguish single packets but only models the changes in bitrate over
time. This eliminates the large amount of packet related events in the simula-
tor. Events are only caused by changes in the bitrate of a a flow, either at its
source or in a network router. Figure 2.6 shows an example of an on/off traffic
source. Every on-period of the traffic source generates a number of packet ar-
rival events – higher bitrates generate more packets. The fluid model however
only generates events when the rate of the traffic source changes,resulting in a

2.2. SIMULATION 19

Fluid rate change
events

Traffic source
bitrate

Packet arrival
events

Time

Time

Time

Figure 2.6: Events in fluid simulation and in packet-based simulation

much smaller event rate. The fluid flow abstraction was first used in [4] and
has recently received attention from the network simulation research community
[60, 67].

Rate changes of a fluid flow propagate through the network at the same
speed as a packet would. For example, when a new flow enters the network it
changes its own rate from zero to a given value, generating a rate change event.
This event then propagates towards the flow’s destination and eventually arrives
at a router. If the router has enough bandwidth available to forward the new
flow it will forward the rate change event unaltered. Otherwise, the new flow
will have to share the available bandwidth with the other flows going through
the router. Depending on the router’s queuing discipline this may cause rate
changes in all concerned flows, generating several new rate change events that
propagate through the network and may in turn cause rate changes themselves.
This is called the ripple effect. As long as the rate change events in a simulator
are few, this effect does not have much impact. In large-scale network scenarios
however it may become a dominant factor, effectively making the fluid simulator
run slower than a packet-level simulator.

The efficiency of fluid simulation as compared to packet-based simulation,
and especially the ripple effect, has been investigated in [73] and later in [72, 29].
The authors found that for a simple tandem queuing network, the number of
events generated by fluid simulation grows quadratically with the number of
queues while the number of events generated by a packet-based simulator only
grows linearly. Conversely, fluid simulation shows sub-linear growth if we keep
the number of queues constant and increase the number of contending flows.
Packet-based simulation still exhibits linear growth in this scenario. The au-
thors have also found the boundaries at which fluid simulation becomes better
than packet-based simulation in the case of tandem queues. A simulation exper-
iment in [29] using the Abilene network as topology shows that fluid simulation
performs well as long as there is no congestion in the network. For the given
scenario, fluid simulation reached a reduction in the number of events of up to
an order of magnitude compared to packet-based simulation. However, above
an average link load of 90% the fluid simulator slows down rapidly and becomes
far slower than the packet-based simulator.

In general, packet-based simulation is more efficient than fluid simulation
if both the number of nodes and the number of flows in a scenario are high.
Furthermore, fluid simulation performs best if the application traffic follows an

20 CHAPTER 2. NETWORK MODELING AND SIMULATION

on/off pattern. This is not the case in the Internet where constantly adapting
protocols like TCP dominate.

The efficiency of fluid simulation can be vastly improved by abandoning the
pure discrete event simulation approach. Time-stepped fluid simulation [142]
splits the simulation time into short intervals during which the bitrates of the
flows do not change. Because the rates of the flows are updated in discrete
intervals, the frequency at which the ripple effect can occur is restricted. This
simplification naturally brings about additional error, which gets bigger with
increasing step size. The authors give an upper bound for the error caused by
time-stepping that is proportional to the step size. When running a simulation
we can thus find a suitable tradeoff between accuracy and speed. Time-stepped
fluid simulation has been shown to perform well for feed-forward networks with
a single traffic class. Unfortunately, it may be hard to model the dynamics of
TCP using the approach.

The hybrid modeling framework presented in [11] follows a similar approach
but is also able to model the behavior of TCP flows. It averages state variables
over very short time scales on the order of a round trip time. Additionally, it
captures the dynamics of the flows using ordinary differential equations, which
allows to model TCP behavior quite faithfully. As such, it fills the gap between
packet-based simulators and fluid simulators.

Another approach to combine time-stepped simulation with TCP is the
Time-Stepped Hybrid Simulation (TSHS) from [42]. Like the approaches dis-
cussed above it models flows as fluid chunks in-between time steps. In contrast
to these methods, fluid chunks are dissolved into a series of packet events when
they reach the endpoint of the flow. The TCP model can then react to sin-
gle packet arrival events like the original protocol would. Any acknowledgment
packets returned by the TCP model will be collected in another fluid chunk
before being sent back. Packets in a fluid chunk are assumed to be equally
distributed over the chunk’s time interval. For more realism the chunks may
also contain a small event list for the packets they contain. Furthermore, TCP
reacts strongly to bursty drops, which are commonplace with drop-tail queuing
discipline in the network. A naive loss model for fluid chunks would drop single
packets out of randomly chosen chunks and thus fail to model the correlations
between packet losses observed in real networks. TSHS mimics this behavior us-
ing a simple algorithm: It randomly chooses a chunk and drops as many packets
as necessary from this chunk. If the chunk is empty and more packets need to be
dropped, the procedure repeats. TCP flows simulated with this approach show
very close resemblance to TCP flows simulated using a packet-based simulator.

A concept similar to fluid chunks is used in [1]. This technique, called
Flowsim, abstracts closely spaced sequences of packets of the same flow into
packet trains. A threshold value serves to find the borders of packet trains.
Packets are appended to a train as long as the time interval between the train’s
tail and the packet’s arrival is smaller than the threshold. Otherwise, the packet
starts a new train. See Figure 2.7 for illustration. The granularity of Flowsim
can be adjusted through this threshold value. Large values result in fast but
coarse-grained simulation while small values make the simulation slower but
closer to packet-based simulation.

Fluid chunks hide the details of single packet arrivals in order to speed up
simulation. Hao et al. [45] follow the same idea with a quite different technique.
Their simulator replaces parts of an ATM networks scenario with analytical

2.2. SIMULATION 21

Packet trains
of flow 1

Packets on
the link

Packet trains
of flow 2

X

X

Figure 2.7: Closely spaced packets form packet trains unless their inter-arrival
time is greater than a threshold

traffic models (i.e. aggregate on/off models) during a simulation run if it de-
tects the possibility to do so. This simplification may result in speedup of one
order of magnitude while maintaining accuracy of end-to-end latency within
5% of the original scenario. Unfortunately, the conditions under which this ap-
proach works are rather strict. The routes in the network must be fixed and
the background traffic must be stationary, a condition rarely met by wide area
networks.

It is often desirable to support fine-grained packet-based flows and coarse-
grained abstracted flows in the same simulator, especially if we want to study
the behavior of a few important flows that encounter background traffic in the
network. Kim [61] proposes a combination of packet-level simulation for fore-
ground flows with network-calculus-based simulation for background flows to
achieve this goal. The flows of both kinds influence each other’s throughput
and delay. This technique results in speedup up to an order of magnitude for
large-scale TCP networks while keeping the error down to 1–2% of the bottle-
neck bandwidth.

The Narses simulator [38] also makes simplifying assumptions about the
traffic in the network. Bottlenecks are expected to occur on the first link (e.g.
the modem link) of a flow or at least in the access network. The network core
should be congestion free, allowing for simpler and more efficient router models.
Narses uses a simple, flow-based traffic model focusing on the throughput of the
flows. A flow allocates just as much bandwidth as it receives in its bottleneck
link. Network delay is not considered in [38].

The abstractions presented so far in this section have one thing in common:
They only abstract the flow of packets on the network but do not simplify
the structure of the network itself, even though this might be beneficial for the
simulation of high-level protocols. Topology abstraction has been used in [44] to
simulate the Internet-scale behavior of the border gateway protocol (BGP) [105],
which has seen wide-spread deployment as a wide area routing protocol. In order
to attain the scalability needed for Internet scale scenarios the simulator only
uses an AS-level topology and models BGP messages purely on the application
layer (The abbreviation AS stands for autonomous system, a BGP term for a
routing domain). Although this abstraction is very application specific, it allows
for studying the behavior of BGP in very large-scale scenarios.

The IP multicast simulator from [51] abstracts the modeled protocols in a
similar way. Instead of modeling the single hops, the multicast tree may be
treated as a collection of direct source-to-destination connections. Naturally,

22 CHAPTER 2. NETWORK MODELING AND SIMULATION

this is only a justifiable abstraction if there is no congestion in the network. A
second optimization implemented in this simulator is to skip the flood-and-prune
tree setup technique of IP multicast and use a pre-constructed tree.

S(t)

t

A

C

C occurs

A occurs

Figure 2.8: The RESTART simulation method

Most approaches that use abstraction simplify only on a few select aspects of
the networks they model. The SHRiNK (Small-scale Hi-fidelity Reproduction of
Network Kinetics) method however scales down the entire simulation scenario
[86]. Predictions for the original scenario can then be obtained by extrapolating
the results from the scaled-down version. SHRiNK reduces the number of flows
in the network, the capacity of the links, and the available buffer space on routers
by the same factor. For IP networks with active queue management, populated
with TCP, UDP, and web flows, performance measures such as queuing delay
and drop probability remain virtually the same. The simulation results become
“noisier” however. Unfortunately, this promising technique fails in the case of
drop-tail queuing disciplines because the scaled down version cannot mimic their
bursty dropping behavior in sufficient detail. SHRiNK works best with smooth
dropping behavior that can be approximated with a Poisson process.

In some situations we are not interested in the average performance of a
network but rather in its behavior in extreme cases. High-reliability system
for example are often advertised as having 99.999% uptime, although in order
to estimate such failure rates with acceptable confidence a simulation must
run very long. The RESTART (REpetitive Simulation Trials After Reaching
Thresholds) [137] method uses a simple but powerful approach to estimate the
rate of rare events. For a rare event A we find a more common event C so
that A ⊂ C and p{A} � p{C} � 1. Because of p{A} = p{C} · p{A|C} we
can thus focus on two smaller problems: estimating the rather frequent event
p{C}, and estimating p{A|C}. RESTART simulates a scenario like any other
simulator, until C occurs. When this happens, the portion in which C occurs is
repeatedly simulated. After a number of trials the simulator proceeds as normal
(Figure 2.8). The advantage of this approach is that fine-grained simulation is
restricted to the “interesting” parts of the scenario.

Chapter 3

Peer-to-Peer and Overlay
Networks

3.1 Introduction

A major factor for the Internet’s success has been its focus on end-to-end mech-
anisms. Protocols such as TCP do not rely on any specific functionality of the
underlying network other than its ability to transmit packets from one endpoint
to another. They adapt to changing conditions in the network without any ex-
plicit signaling from within the network. This transparency of the mechanisms
in the network has enabled tremendous growth of the Internet without major
changes of the architecture. Traditional end-to-end protocols continue to work
even though new technologies on the physical layer and new routing protocols
have been deployed.

The Internet’s focus on end-to-end mechanisms also has drawbacks. For ex-
ample, there is no generally accepted way for an application to make quality
of service reservations on the network path between two endpoints. Efforts like
the integrated service (IntServ) architecture have only had limited success. This
may be partly due to technical reasons like the scalability of the approach or the
requirement to replace many of the routers in the Internet. However, the Inter-
net is also made up of a very large number of interconnected networks owned by
independent parties. These parties have to reach a common agreement if a new
technology shall be globally deployed, which is very hard to achieve. Thus, the
Internet’s explosive growth has also made it slow to adopt new technologies.

In recent years, peer-to-peer systems have not only become popular amongst
Internet users. They have also received considerable attention from researchers
because of their desirable properties, mainly their high scalability and robust-
ness. Traditional client-server architectures employ one server to handle the
requests from a large number of clients. The server machine and its Internet
connection must be sufficiently fast, which can become very costly. Further-
more, if the server fails or its Internet connection breaks the service becomes
unavailable. Peer-to-peer systems on the other hand are often made up of thou-
sands of nodes distributed throughout a large part of the Internet, each taking
the role of both a server and a client. This massively distributed approach re-
duces the performance requirements on a server to the level where it can be run

23

24 CHAPTER 3. PEER-TO-PEER AND OVERLAY NETWORKS

as a background process on a user’s computer. Moreover, node failures only
affect a small part of the service.

Another aspect of peer-to-peer systems may be even more important in the
future. Peer-to-peer systems often create a logical topology between its member
nodes, called an overlay network, that has no direct relation to the topology of
the physical network. Since overlay topologies are purely logical they can be
tailored to the needs of the applications that use them, and they can also rapidly
adapt to changing conditions. Since overlay networks normally rely on a pure
end-to-end approach they can operate without any support from the underlying
network. This approach may be the key to adding new functionality and services
to the Internet since it requires little or no changes to the physical network.

However, constructing efficient overlay topologies is not trivial. If we ran-
domly connect overlay nodes, the logical links between them may span many
physical links on the underlying network. Thus, a message sent from a node
to its neighbor node may in reality travel the distance between two continents.
Therefore, we need mechanisms to determine the possible cost of a logical links,
depending on the nature of the overlay network. In many cases it is sufficient to
know the approximate round-trip time between node pairs. Architectures like
end system multicast may require knowledge about more sophisticated quality
of service properties like the bottleneck bandwidth on the path between two
nodes. In general, we use the term distance to cover all these possible quality of
service measures. A naive implementation of an overlay network might measure
the round-trip time between each pair of overlay nodes. This does not scale
well because the number of possible links grows quadratically with the number
of nodes, resulting in considerable network load just from the relatively cheap
round-trip time measurements. This problem is addressed by so-called distance
estimation services, that estimate the distance between overlay nodes based on
a small, strategically chosen number of measurements.

There are basically two families of distance estimation approaches. One
family performs direct measurements between a number of strategically chosen
nodes and tries to relate these measurements to other nodes in the network
based on their proximity to the measuring nodes. A prominent member of
this family is IDMaps [33]. Approaches from this family often support not
only round-trip time distances but also other kinds of distance measures. The
other family are the so-called coordinates-based approaches. Here, every node
measures its distance to a small set of nodes and tries to infer its coordinates in
a metric space from the measurement results. The distance between two nodes
can then be estimated using the corresponding distance function. Coordinates-
based approaches generally only support round-trip time distances. GNP [82]
is probably the most well-known coordinates-based approach.

In this chapter we give a brief overview of peer-to-peer and overlay networks
in Section 3.2. Then, we discuss approaches to help the construction of locality-
aware peer-to-peer and overlay networks in Section 3.3, and distance estimation
approaches in Section 3.4.

3.2. RELATED WORK ON PEER-TO-PEER NETWORKS 25

3.2 Related Work on Peer-to-Peer and Overlay
Networks

Client-server architectures are a widely-used design principle in the Internet
that employs one server to handle the requests from a number of clients. For
large clients populations the server machine and its network connection must
be adequately dimensioned, which can become very costly. During recent years
the focus of many developers has thus moved away from the standard client-
server model towards more scalable and robust distributed designs. Especially
peer-to-peer and overlay networks have gained in popularity.

In peer-to-peer designs the participating peers communicate directly with
each other, while in client-server designs communication always goes through
the server. Peers can be client and server at the same time, each having only part
of the responsibility a central server would have. The computational load and
network traffic created in a peer-to-peer system is consequently shared among
its peers. The system is also more robust than a client-server design would be
since a failing node or network link will only affect part of it. In contrast, a
failed server in a client-server system affects all participants.

Because of their distributed nature one of the main challenges for peer-
to-peer systems is to maintain a structure that allows peers to route requests
towards a participant who can serve them. This is generally achieved through
logical, application topologies connecting the peers. Such logical networks that
do not have a direct relationship to the structure of the underlying network are
known as overlay networks. The choice of topology and routing algorithm is key
to scalability and robustness of peer-to-peer networks.

Peer-to-peer principles can be found in many traditional Internet protocols
such as the Simple Mail Transfer Protocol [99], the Network News Transfer
Protocol [59], or the Internet Relay Chat Protocol [85]. The approach has seen
renewed popularity with the advent of file sharing services like Napster, Gnutella
[39], and Freenet [18] even though their focus on file sharing raised several
legal issues. Despite their popularity, these systems have several shortcomings.
Napster relied on a central directory server and only used peer-to-peer for file
transfer. In Gnutella the peers broadcast queries throughout a random topology,
which entails a number of problems. For example, queries may fail to find a
file even though it exists in the network. Furthermore, the broadcasted queries
may accumulate, using up all available bandwidth at some peers.

Structured Peer-to-Peer Networks

A new generation of structured peer-to-peer networks solves the problems of the
unstructured (i.e. randomly connected) ones like Gnutella and Freenet. Struc-
tured peer-to-peer networks choose a network topology that aims specifically at
finding information in an efficient way. The central concept is key based routing.
An object or a piece of information is identified by a key (usually an integer key
derived from a hash value or randomly chosen). Messages are then iteratively
routed towards their destination key. This method allows for applications such
as distributed hash tables (DHT) and decentralized object location and rout-
ing (DOLR). The fundamental advantage of a structured approach is that each
iteration brings the message closer to its destination. The random graphs of

26 CHAPTER 3. PEER-TO-PEER AND OVERLAY NETWORKS

unstructured peer-to-peer networks do not allow this, making flooding the only
reliable (but inefficient) way to find information.

Chord A typical example of a structured peer-to-peer network used as a dis-
tributed hash table is Chord [129]. In a Chord network, every node (i.e. peer)
receives a random ID of m-bit length out of a circular key space. The nodes
form a circle in which each one only has to know the node with the next higher
ID, its successor. Furthermore, we compute an m-bit hash value for every piece
of information we would like to store (e.g. using a SHA-1 hash [121]). Key k
is assigned to the first node whose identifier is greater of equal to k. Chords
basic routing scheme is to follow the circular structure of the Chord network
until it finds the appropriate node. However, it uses a simple trick to speed
this up. Every node maintains a so-called finger table, which contains entries
i = 0, . . . ,m − 1 with contact information pointing to the node responsible for
key n+2i (where n is the node’s ID). Figure 3.1 shows an example for the effect
of finger tables in a Chord network with m = 5. The number of hops a message
takes in a Chord network of N nodes scales with O(log N).

N31
N29

N25

N20

N15

N13

N10

N8

N3 N8+1
N8+2
N8+4
N8+8
N8+16

N8
N8
N8
N13
N20

Finger Table

N20+1
N20+2
N20+4
N20+8
N20+16

N25
N25
N25
N29
N8

Finger Table

lookup(28)

K28

Figure 3.1: Message routing in Chord

Plaxton-based Schemes Pastry [109] and Tapestry [146] each use a variant
of Plaxton routing [96] to achieve efficiency similar to Chord’s. Keys in Plaxton
routing consist of several b-bit digits. Nodes are assigned a random key each
and build a routing table according to this key. Let us assume that node N has
been assigned key 2130 with base b = 2. N creates a routing table with 4 rows
and 2b − 1 = 3 entries. The first row contains links to nodes with IDs 0∗, 1∗,
and 3∗ (∗ is the wildcard character); the second row contains links to nodes with
IDs 20∗, 22∗, 23∗; et cetera. Nodes will iteratively forward a message using the
route with the longest matching prefix to the message’s key. If the exact key
cannot be found the message will end up at the node that is numerically closest
to it. Figure 3.2 shows how routes are found towards key 2130. Each route is
labeled with the matching wildcard. If all nodes in a network have complete
routing tables, the number of hops a message takes does not exceed the number
of digits in a key. In our example, a lookup for one of the 256 possible keys
would take a maximum of 4 hops.

Even though Pastry and Tapestry both use a variant of Plaxton routing, they
differ considerably. In addition to the routing table, Pastry nodes maintain a
leaf set and a neighbor set of peer nodes. The leaf set contains nodes with

3.2. RELATED WORK ON PEER-TO-PEER NETWORKS 27

2130

2013

1022

2131
2123

3201

0007

213*

21**

21**

Figure 3.2: Plaxton routing paths towards 2130

numerically close IDs. Since Pastry considers the key space as circular the
nodes in the leaf set are from a small sector around the current node. This set
is used to make the system resilient to node failure. A node can deposit replicas
of stored information on the nodes in the leaf set. Thus, when the node fails
the network can be repaired without loss of information. A node’s neighbor
set contains nodes from its vicinity in the underlying network. New nodes use
this set to refine their initial routing tables and fill them with links to nearby
nodes whenever possible. This reduces the average latency of a lookup. We use
Pastry as a building block for the architecture of our distance prediction service
described in Chapter 5.

Tapestry employs Plaxton routing for decentralized object location and rout-
ing. A node may publish the location of an object it holds using a PublishObject
message, which stores a pointer to the object at the node responsible for the
object’s unique key (the object’s root). Other nodes send requests to this object
using RouteToObject messages. They are first routed towards the object’s key
to resolve the location, and then to the object itself. Tapestry optimizes lookup
by caching pointers to the object along the path from the object’s location to its
root. Thus, a RouteToObject may find a pointer before it reaches the object’s
root and will then be directly sent to the object.

Kademlia The Kademlia peer-to-peer network [77] uses a XOR metric to do
a variant of key based routing also reminiscent of Plaxton’s approach. The dis-
tance between Kademlia’s 160-bit keys is determined by their bitwise exclusive
or (XOR). Kademlia nodes keep a list of 160 k-buckets. Bucket i contains the
closest peers whose IDs have a distance between 2i and 2i+1 to the local node’s
ID. The buckets are kept up to date by monitoring the messages going through
the node. Peers in a bucket may be replaced using a least-recently seen eviction
policy. When a node wants to look up a key x, it selects the α nodes from its
buckets that are the closest to x. Then, it asks each of these nodes for the k
closest nodes to x from their buckets. From the resulting set it selects again the
α nodes and repeats the process. The algorithm stops when on of the nodes
returns the value for x.

CAN The key space in structured peer-to-peer network does not need to be
one-dimensional. Content-Addressable Networks (CANs) [103] use a hash func-
tion that produces d-dimensional Cartesian coordinates that map to a d-torus.
Nodes choose a random position inside this space and store the keys belonging

28 CHAPTER 3. PEER-TO-PEER AND OVERLAY NETWORKS

to the area around them. Each peer also keeps a list of its direct neighbors
for routing. The first node to join will be responsible for the whole coordinate
system. Each following node first locates the node responsible for the area in
which its position lies. Then, it splits this area along one dimension and claims
control over one part. Since the keys are uniformly distributed this procedure
results in a quite even partitioning of the coordinate space when enough nodes
have joined. Routing in this overlay network follows the logical coordinates of
nodes and keys. When a node receives a message to a key x that does not belong
to its own area it will forward the message to the neighbor whose coordinates
are closest to x. If this neighbor has failed it tries to route around the failure
by trying other neighbors in the sequence of their distance to x. The average
number of hops resulting from this routing scheme is (d/4)(n1/d), where d is the
number of dimensions and n the number of peers in the system.

Peer-to-Peer Networks Providing Network Services

While the above peer-to-peer networks provide new functionality to network
applications, many others focus on improving existing Internet services. Re-
silient Overlay Networks (RON) [2] for example connect dedicated machines in
the Internet to form an overlay network capable of routing traffic around net-
work outages and local service degradation. The topology can be changed in a
matter of seconds after a detected outage. Thus, RON does not introduce new
functionality but rather improves the network’s capability to adapt, making it
more resilient to various kinds of failures.

Although protocols for IP multicast have been known for several years, the
deployment of a general multicast service in the Internet has been a long time
coming. The MBone (short for “multicast backbone”) [111] is a statically con-
figured overlay network connecting the parts of the Internet that support mul-
ticast. A multicast session on the MBone may comprise physical as well as
overlay links. Lately, several proposals for purely peer-to-peer-based multicast
have been published. Examples include Overcast [54], Narada [50], SplitStream
[15], ZIGZAG [133], and Multi+ [36]. Since it is often used for the transmission
of real-time data such as video or audio streams, overlay multicast is particularly
sensitive to the choice of overlay topology and potential service degradation in
the network.

3.3 Peer-to-peer and Overlay Network Con-
struction

Many systems supporting topology awareness provide distributed algorithms
for creating efficient overlay topologies that are optimized with respect to the
structure of the underlying physical network. Such algorithms commonly utilize
a method to let overlay nodes distinguish between long, inefficient overlay links
to distant peers and short, efficient ones to peers in their vicinity. This is often
sufficient for significant improvements to the performance of overlay networks,
because if we have the choice between sending a message to a far away node on
the overlay network or to send it to a nearby node it is generally more efficient
to send the message to the nearby node.

3.3. PEER-TO-PEER AND OVERLAY NETWORK CONSTRUCTION 29

Because of the potentially large number of member nodes, a system for
building efficient overlay topologies cannot consider every possible combination
of logical links. The problem of constructing a truly optimal topology for an
overlay network is known to be NP-hard, even if the distances between all nodes
are known [37]. Clustering and grouping are frequently seen solutions to this
problem. It is often sufficient for an overlay node to distinguish between peers
from its local cluster and peers located somewhere else in the overlay network.
In this document we make a distinction between the terms cluster and group.
We use the term cluster for sets of nodes that are, for example, near to each
other in the Internet topology. Nodes belonging to a cluster are not necessarily
aware of that fact. Conversely, if the nodes are aware of the cluster they belong
to and can distinguish between nodes from their cluster and other nodes from
outside the cluster, we use the term group.

Binning A concept useful for adding topology awareness to many structured
peer-to-peer networks is binning [104]. Nodes are assigned to bins based on their
distance to a small set of landmarks such that a bin contains nodes from roughly
the same area in the underlying network. The authors propose a scheme based
on the Content-Addressable Network scheme described in Section 3.2, which
maintains a d-dimensional Cartesian coordinate space partitioned into zones.
While the coordinate space of the original CAN is completely logical and bears
no relation to the physical topology of the network, this approach can be altered
to match the above binning concept by using topology-dependent coordinates
instead of purely logical ones: Each overlay node measures its distance to the
landmarks and sorts the results in ascending order. For example, if a node
measures 21ms round-trip time to landmark l1, 7ms to landmark l2 and 89ms
to landmark l3, the resulting ordering will be l2l1l3. The rationale behind sorting
the landmarks is that nodes with similar orderings of the landmarks are probably
close to each other in the underlying topology. Now, given a set of m landmarks
we can have m! possible orderings. Accordingly, we divide the logical space
into m! bins by dividing the first axis into m partitions, the second axis into
m − 1 partitions, and so on until we have created all possible bins. Nodes
can then be assigned to a bin according to their landmark ordering. A refined
scheme for binning considers not only the ordering of landmarks but also the
absolute round-trip time to each of the landmarks. The round-trip times are
classified into ranges, for example the ranges 0–10ms, 10–50ms, and 50ms and
above. The bin in the above example would then be l2l1l3: 012. A drawback of
this topology-aware binning scheme is that the nodes are not evenly distributed
throughout the virtual coordinate space, a problem that does not occur with a
purely logical assignment to bins. The authors propose dynamic splitting and
merging of bins to even out the number of nodes per bin.

The construction of peer-to-peer topology can benefit from the binning
scheme because nodes from the same bin are usually close to each other and
links between them are therefore short and efficient. Nevertheless, creating a
topology only from short links tends to result in inefficient routing of peer-to-
peer messages. A better scheme is to use a mix of short and long links. If
every node has k links, a good approximation of an optimal topology can be
obtained by making half of the links to nodes in its immediate neighborhood

30 CHAPTER 3. PEER-TO-PEER AND OVERLAY NETWORKS

(i.e. its bin), and half of the link to random nodes in the network. The authors
call this scheme BinShort-Long and have shown that it is able to produce very
efficient topologies.

mOverlay Schemes that use a fixed set of landmark nodes tend to be not
very robust. If a landmark node fails it becomes impossible for joining nodes
to find their place in the topology. By choosing landmarks dynamically we can
get around this problem and improve robustness. mOverlay [145] finds groups
of nodes that are close to each other in the network using a dynamic landmark
scheme. The group locating algorithm of the distance prediction service we
propose later in this document is partly based on this scheme. Accordingly, we
discuss the mOverlay algorithm in detail.

Each group in the overlay network has a leader that keeps track of the
group members and serves as contact point for nodes outside the group. It
also maintains a table of the n nearest neighbor groups and the round-trip
times to each of them. These neighbor groups serve as dynamic landmarks. A
node joining the overlay network determines whether or not to join a group by
making round-trip time measurements to the group’s neighbors and evaluating
the following grouping criterion [145]:

When the distance between a new host Q and group A’s neighbor
groups is the same as the distance between group A and group A’s
neighbor groups, then host Q should belong to group A.

New nodes iteratively search for a group that meets this grouping criterion.
When a node joins the overlay network it first contacts a rendezvous point (RP)
and obtains contact information for a set of randomly chosen boot hosts. For
each boot host it starts a locating process, which tries to find a suitable group
for the node. Using several locating processes increases the robustness of the
approach. The algorithm starts by contacting a boot host, which returns a
message containing its neighbor table. The joining node then measures and
compares its own distances to these neighbor groups. If the grouping criterion
is met the process terminates and the node joins the group of the boot host.
Otherwise, the new node chooses the neighbor group that is nearest to it and
repeats the process. After a predefined number of unsuccessful iterations, or if
all available groups have been visited, the new node creates its own group. When
a node creates a new group it selects its neighbors from the closest groups it
has seen during the locating process, and their neighbors. It then contacts each
of the selected neighbors in order to allow them to adjust their own neighbor
tables if needed. Furthermore, it must tell the rendezvous point about the new
group.

Group 4 Group 1

Group 5 Group 7

Group 8

Group 6

Group 3

Group 2

Rendezvous
Point

Joining
Node

Neighborships of
the visited groups

Path taken by
the algorithm

Figure 3.3: A new node joins and mOverlay network

Figure 3.3 illustrates the locating algorithm. Solid arrows indicate steps in

3.3. PEER-TO-PEER AND OVERLAY NETWORK CONSTRUCTION 31

the algorithm and dashed ones indicate neighborships between the groups that
are used to check the grouping criterion. In this example, the node starts with
group 4, unsuccessfully checks the grouping criterion using groups 1, 2, and 6
as dynamic landmarks and chooses group 1 as the next hop. Here, it repeats
the procedure using groups 2, 5, and 3 (the round-trip time to group 2 does
not have to be measured again). The next hop, group 3, is already the best
candidate for joining. Depending on the grouping criterion, the joining node
now joins group 3 or it creates a new group.

Given a sufficiently robust implementation of the rendezvous point mecha-
nism (which can be easily distributed to several servers), mOverlay’s dynamic
landmark procedure can be quite robust. The topology however, which is purely
constructed from short links, may be prone to so-called net-splits. A net-split
occurs if the joining procedure cannot reach a part of the network due to node
failure. This kind of condition is less probable to occur in topologies that have
both short and long links. Another potential problem of mOverlay is the group
leader, a single point of failure. The authors propose to assign several backup
group leaders but do not go into much detail.

Apart from its use as robust variant of a binning scheme, mOverlay has a de-
sirable property related to distance estimation (distance estimation approaches
are discussed in Section 3.4): groups identified by mOverlay can be considered
as equivalence classes with respect to the round-trip time to other groups, with
little error. Thus, in order to get an estimate for the round-trip time between
two nodes it is sufficient to look at the round-trip time between their respective
groups. This property can be used as the basis for a distance estimation service.
We will focus on this topic later in this document.

Meridian In some cases, we are only interested in finding the closest node in
an overlay network in relation to a given Internet host, irrespective of whether
that host is a member of the overlay network or not. This problem is known as
a closest node search. Meridian [139] is a “framework for performing network
positioning without embedding nodes into a global virtual coordinate space.”
Apart from closest node search it is also aimed at central leader election and
multi-constraint search. We base part of our group locating algorithm described
in Section 5.3 on Meridian’s closest node search.

Meridian nodes form a loosely connected overlay network. They exchange
information about other overlay nodes using a gossip protocol and keep track
of a fixed number of peer nodes. These nodes are sorted into non-overlapping,
concentric rings of exponentially growing width around the Meridian node (see
Figure 3.4). The ith ring contains nodes with latencies between αsi−1 and αsi

from the center, and the outermost ring contains nodes with latencies αsi∗ and
more. Within each ring, the nodes are selected to maximize diversity, which is
quantified through the hyper-volume of the k-polytope formed by the selected
nodes. A closest node search aims to identify the Meridian node that is closest to
a given end system E in the network. To start the procedure we send a request to
an arbitrary Meridian node. This node measures its latency to E and selects the
nodes with similar latencies from its cache. It then contacts each of these nodes
and asks them to measure and report their latency to E. The node with the
smallest latency to E becomes the next hop, and the procedure repeats. When
the next hop is only insignificantly closer than the current one the closest node

32 CHAPTER 3. PEER-TO-PEER AND OVERLAY NETWORKS

[α
s,

 α
s²

)

Current node
Next hop
Measurement
Target host

Figure 3.4: A step in Meridian’s closest node search algorithm

search terminates and the current node is selected. Central leader election is an
extension to this problem where we have several end systems Ei (i = 1, . . . , n)
and search for the overlay node with the smallest average latency to all these end
systems. The above algorithm can easily be adapted to solve this problem: Each
time node would measure the latency to E it measures the average latency for
all Ei instead. The rest of the algorithm remains the same. A multi-constraint
search finds overlay nodes located at given maximum distances di from end
systems Ei. In this variant of the algorithm, the current node chooses any
nodes from its rings as next hops whose distance to the current node does not
imply that it cannot satisfy the constraints. For example, if the current node’s
distance to Ei is 30ms and the constraint is 10ms, a node 5ms away from the
current node would not be chosen as next hop.

Meridian has several desirable features. Its loose structure makes it resilient
to node failures. Furthermore, because of it’s light-weight design it can be
deployed in networked computers without having a big impact on their perfor-
mance.

Netvigator Sharma et al. present a system called Netvigator [122] that is
both an application and a refinement of the landmarks-based approach. Its main
goal, like Meridian, is to find the closest server to a client node from a set of
candidate servers . For this purpose it employs a landmark-based approach with
an extension called milestones. Milestones are intermediate routers between the
client node and a landmark that do not only forward the probing packet but
also send a reply back to the client node. In this way they can be dynamically
discovered while the client node measures its distance to the landmarks. When
the client node has finished measuring it sends the resulting distance vector
(including the distances to the discovered milestones) to a central repository.
There, a clustering algorithm is employed to find the k candidates closest to the
client node and returns the set. The client node now uses direct measurements
to find the closest server from this set. Even though Meridian is very similar in
nature, the two approaches have to the best of our knowledge never been directly
compared. Nevertheless, we can say that Netvigator would be comparatively
complex to deploy because it requires changes to the network infrastructure to
support the notion of milestones.

3.4. DISTANCE ESTIMATION 33

3.4 Distance Estimation

A useful class of systems supporting topology awareness are those concerned
with estimating distances between Internet endpoints. These systems allow
clients to query the distance between two endpoints without having to measure
the distance themselves. In this context, network distance is often a synonym
for round-trip time, but it may also encompass available bandwidth between
peer-to-peer nodes or delay jitter on the path between them. For large sys-
tems it is rarely feasible to actively measure the distance between each pair of
nodes because of the significant network load even simple measurements like
ICMP ECHO messages may entail. The amount of such measurements grows
quadratically with the number of nodes in the system. This scalability problem
is particularly emphasized in distance estimation approaches that consider the
whole of the Internet and not only the nodes belonging to a specific peer-to-peer
or overlay network. The greatest challenge of network distance estimation con-
sequently is to infer good estimates for end-to-end distances from only a small
number of actual measurements. We divide end-to-end distance estimation ap-
proaches into several subclasses. The first subclass uses direct measurements
between a restricted set of Internet nodes and aims to map or combine these
measurements so they can serve as distance estimates for pairs of nodes that
do not make measurements themselves. Since they generally cluster nodes for
this purpose we call them clustering-based approaches. In the second subclass
of distance estimation approaches each node makes a small set of measurements
to special nodes in the Internet and computes synthetic coordinates from these.
The distance between two nodes can then be estimated by applying a distance
function to their respective coordinates.

3.4.1 Aspects of Distance Estimation Approaches

The many proposed variants of distance estimation all have advantages and
disadvantages. In the following we will discuss what we believe are the most
important aspects of distance estimation services.

Scope – Many distance estimation services can only provide estimates for
the distance between pairs of nodes that actively participate in the system.
Coordinates-based approaches for example require each node to compute its own
coordinates, making it impossible to estimate distances to uninvolved nodes.
Even though they are designed for global deployment, these architectures can
only succeed if a positioning software is running on every end system. This
“member scope” is sufficient for many applications. For example, a file sharing
peer-to-peer network does not need any distance information about nodes that
do not participate in the network since all communication takes place between
members of the peer-to-peer network.

Nevertheless, a “global scope” distance estimation service for any pair of
Internet nodes would be useful to a much wider range of applications not nec-
essarily restricted to peer-to-peer and overlay networks. Several approaches are
aimed at providing distance estimates for any two reachable IP addresses in the
Internet. This is achieved by dividing Internet nodes into clusters and relating
the distances between these clusters to the distances between overlay nodes.

34 CHAPTER 3. PEER-TO-PEER AND OVERLAY NETWORKS

Infrastructure requirements – The success of many peer-to-peer networks is
partly due to their ability to run solely on end user systems, without any dedi-
cated servers or additional infrastructure in the network. As for every service,
the cost and complexity of deployment is an important factor for its acceptance.
Some approaches rely heavily on deploying special servers at strategic points in
the Internet. The more servers are deployed and the better their placement, the
better the resulting distance estimates. Distance estimation systems using a
more distributed approach have a clear advantage in this respect. For example,
some coordinates-based approaches calculate the nodes’ coordinates in a totally
distributed way and require no additional infrastructure at all.

Required deployment size – Every distance estimation approach requires a
minimal number of nodes placed at a sufficient number of different locations to
be able to yield acceptably accurate results. In some fully distributed approaches
the number and distribution of the nodes automatically grows with the size of
the network. Conversely, approaches that rely on a fixed set of servers depend
heavily on the servers’ placement. If they should adequately cover the whole of
the Internet we would have to deploy servers in various places around the globe.

Scalability and robustness – A key consideration for any distance estima-
tion scheme is its scalability and robustness. Especially the approaches aiming
for global deployment need to handle a very large number of client requests.
Moreover, the failure of a single node should not render the service unusable.
Systems using peer-to-peer designs often have an advantage in this respect.

Available types of distance estimates – Most distance estimation services only
provide estimates of the round-trip time between hosts. Round-trip time is a
popular choice because it is very cheap to measure. However, there are many
other useful possibilities, like available bandwidth and delay jitter. Services that
can provide several types of distance estimates are useful in more application
scenarios than those concentrating on round-trip times.

Prediction vs. estimation – Network conditions in the Internet change con-
stantly. Human activity produces daily and weekly cycles of network load, and
changes to the network topology and routing may alter an end-to-end path’s
properties permanently. Most distance estimation approaches base their algo-
rithms on a necessarily static perception of the network, which may be ade-
quate for the Internet core but is an oversimplification when considering end-
to-end distances between nodes on the network edge. This problem is often
side-stepped by using more static measures such as the minimum instead of the
average round-trip time. Nevertheless, the Internet’s constant changes require
periodic updates of the system, and even then the estimates may be often out
of date. We believe that instead of estimating static distance values we should
focus on the trends of the distances. Thus, instead of the average round-trip
time between A and B as observed in the past, the service should provide a
prediction of round-trip time between A and B for the near future.

3.4.2 Clustering-based Distance Estimation

The need for a general distance estimation service in the Internet has been
recognized relatively early. SONAR [80], a protocol for distance queries, and

3.4. DISTANCE ESTIMATION 35

Host Proximity Service (HOPS) [32] were discussed in the IETF as early as 1996
and 1997, respectively [33].

IDMaps The Internet Distance Map service (IDMaps) [33] is intended to be
the underlying service that provides the distance estimation for SONAR/HOPS.
It addresses the scalability problem of Internet-wise distance estimation using
two concepts, address prefixes and tracers. Address prefixes are clusters of end-
points sharing a common prefix in their IP addresses. When IDMaps estimates
the distance between two endpoints it really estimates the distance between their
respective address prefixes. The assumption behind this is that the longer the
matching prefixes of two IP addresses, the closer the corresponding endpoints.
This clustering reduces the complexity of the distance estimation problem but
it is not enough to make periodic measurements between all address prefix pairs
tractable. However, a second level of clustering based on so-called Tracers im-
proves the scalability further. Tracers are special nodes deployed around the
Internet so that each address prefix is relatively close to at least one tracer.
They periodically measure the round-trip time to all other tracers and to ad-
dress prefixes close to them. IDMaps estimates the distance between two address
prefixes as the sum of the distance from each address prefix to its nearest tracer,
and the distance between the two tracers. Figure 3.5(a) shows an example for
two address prefixes A and B. Naturally, the accuracy of the estimate heavily
depends on the number and placement of the tracers. The choice of address
prefixes is also a factor. Mechanisms like network address translation may hide
a whole subnetwork behind a single public IP address, rendering the assumption
behind address prefixes invalid. Considerable overestimation may result if we
query the distance between two endpoints from adjacent address prefixes that
use the same tracer, because the distance to the tracer and back may be much
longer than the direct distance between the address prefixes.

Shavitt et al. [123] refine the relatively simple distance estimation of IDMaps.
By using traceroute to measure the distance between tracers we also learn
about the route between them. If we can find “Crossing points,” common nodes
on two distinct routes between tracers, we can often use methods from linear
algebra to calculate the distances between crossing point and tracers. Thus,
we refine the tracer topology without actually making more measurements or
deploying more tracers.

Dynamic Distance Maps A critical factor for the performance and accu-
racy of IDMaps is the number of tracers. Too few tracers make the approach
inaccurate, but too many overly increase the amount of periodic measurements.
The Dynamic Distance Maps method [132] uses mServers, a variant of IDMaps’
tracers that are organized into hierarchical groups. Groups that are high in the
hierarchy represent large areas in the network topology while groups lower in the
hierarchy give a more details picture of smaller areas. Unlike tracers, mServers
only make distance measurements to other mServers in the same group. If we
want to find out the distance between two mServers m1 and m2 that are not
in the same group, we have to find a higher level group containing mServers
p1 and p2 that are parent nodes for m1 and m2, respectively. The measured
distance between p1 and p2 then serves as an estimate for the distance between
m1 and m2. For two regular Internet hosts, the distance is estimated as the dis-

36 CHAPTER 3. PEER-TO-PEER AND OVERLAY NETWORKS

A Address Prefix

Tracer

B

(a) IDMaps

BA

Regular
node

mServer

(b) Dynamic Distance Maps

Figure 3.5: Distance estimation using dedicated infrastructure in the Internet

tance between their nearest mServers. Figure 3.5(b) shows an example where
the measured distance from the second hierarchical level is used to estimate the
distance between A and B.

M-coop The M-coop system [128] follows an approach similar in spirit to
IDMaps but takes advantage of the BGP autonomous system level (AS-level)
topology of the Internet. Each node in the M-coop overlay network has a so-
called area of responsibility, defining the set of IP addresses for which it can
answer queries. This area may comprise several autonomous systems, or only a
part of an autonomous system depending on the number of nodes in the area.
The logical topology between these overlay nodes follows the AS-level topology
of the underlying network. Consequently, in order to estimate the distance
between two overlay nodes we can just follow the shortest path between the
nodes in the overlay topology and sum up the distances of the single hops.
Because the shortest path on the topology closely resembles the path a normal
packet would take on the underlying network this sum is a good estimate of
the total distance between the nodes. Unfortunately, this approach requires
knowledge of the current AS-level graph, and if possible the BGP routing policies
of each autonomous system. The M-coop overlay can therefore only be deployed
on nodes controlled by the ISP since other Internet hosts do not normally receive
BGP messages. Like Dynamic Distance Maps, M-coop was designed to support
more than just one type of distance measure. Measurements may be obtained
actively, or passively by monitoring application traffic. Requests may trigger
additional active measurements.

3.4. DISTANCE ESTIMATION 37

Advantages and Disadvantages of Clustering-based Approaches

The presented clustering-based distance estimation services all have a global
scope, i.e. they can estimate the distance between any pair of reachable IP
addresses. The main drawback of these approaches is their reliance on new
infrastructure in the network. In order to make an accurate distance estimation
between two endpoints they require measurement servers placed close to each.
Because of their global scope, this may add up to a large number of servers and
thus to high deployment costs. Their using fixed servers can also be a problem
for the robustness and scalability of these approaches.

In contrast, our distance prediction service (described in Chapter 5) can
only provide estimates if one of the hosts in question is a member of the service.
However, it does not require any additional infrastructure in the network and
requires only a small deployment to be useful. Its peer-to-peer structure also
makes it more robust and scalable.

IDMaps and M-coop both cluster hosts according to their IP addresses and
assume that hosts with similar addresses have approximately the same distance
to a given measurement server. This may be an over-simplification because a
significant part of a packet’s route may be hidden by mechanisms like network
address translation (NAT) and Mobile IP. Furthermore, finding a good par-
titioning of IP addresses into clusters is not easy without detailed knowledge
of the network topology. Like Dynamic Distance Maps, our approach conse-
quently relies on measurement-based clustering. However, in order to reduce
the required deployment size of our service we use a clustering algorithm that
is able to detect clusters based on measurements made only from a single site.

A commonality between Dynamic Distance Maps, M-coop, and our approach
is that they support arbitrary distance measures. Moreover, M-coop’s measure-
ment strategy resembles the one we use. Nevertheless, both Dynamic Distance
Maps and M-coop are restricted to estimating the current distance between two
hosts. Our approach exploits the observable statistical properties of the mea-
surements to make predictions of the distance in the near future and can also
indicate the expected error of prediction.

3.4.3 Coordinates-based Distance Estimation

A method for Internet distance estimation that has recently received remarkable
attention is to assign synthetic coordinates to network hosts. The advantage
of this approach is that the distance between two coordinates can usually be
calculated using a simple distance function. The coordinates used by distance
estimation approaches usually have no direct relation to the measured distances.
These approaches usually aim to find a set of coordinates in a metric space so
that the metric distance between two coordinates is a good estimate of the net-
work distance between the two Internet hosts they represent. Many methods
use n-dimensional Euclidean space for this mapping. In general, this mapping
cannot be done without introducing some error. The main challenge for these
approaches is thus to find a set of coordinates that minimizes the error of em-
bedding.

Coordinates consume very little memory. If we need to store the distances
between a large set of nodes we can either store large distance matrix growing
quadratically with the number of nodes, or we can simply keep a list of the nodes’

38 CHAPTER 3. PEER-TO-PEER AND OVERLAY NETWORKS

coordinates, which grows linearly with the number of nodes. Moreover, because
of their small size, coordinates can be easily included in protocol messages like
those sent through a peer-to-peer network. When another peer-to-peer node
indirectly receives the message it can estimate its distance to the sender without
any further communication or measurement.

L3

H1

H2

1

2
2

3

3

3

L1

L2
(2, 3, 3)

(2,1,3)

Figure 3.6: Coordinates used in the triangulated heuristic

Basic Methods

Triangulated Heuristic A basic distance estimation approach using coor-
dinates, called triangulated heuristic, was defined in [49]. It was originally
aimed at optimizing shortest-path searches in inter-domain graphs. In this
approach a fixed set of Internet hosts take the role of landmarks. We con-
struct coordinates for a host by making a round-trip time measurement to
each of those landmarks and combining the result to form a vector (see Fig-
ure 3.6). By comparing the vectors of two hosts we can give lower and up-
per bounds for the distance between them. Given landmarks L1, . . . , LN and
hosts H1 and H2, the lower bound for the distance d(H1,H2) between the
hosts is L = maxi∈1,...,N |d(H1, Bi)− d(H2, Bi)|. The upper bound is given by
U = mini∈1,...,N

(
d(H1, Bi) + d(H2, Bi)

)
. A commonly used estimate for the

distance between the hosts is the average (L + U)/2. However, in other work
[82] it has been noted that U is often the better estimate than both, L and
(L + U)/2.

Embedding The majority of coordinates-based distance estimation ap-
proaches aim at embedding node distances in a metric space such that the
metric distance between two coordinates is a good estimate of the network dis-
tance between the two Internet hosts they represent. n-dimensional Euclidean
spaces are a particularly popular choice in this area. Even though the embed-
ding of network distances in Euclidean space generally cannot be done without
error the resulting distance estimates results are often surprisingly good.

We take a closer look at the Euclidean-coordinate-based approach consider-
ing the topology from Figure 3.7(a) as an example. Four nodes connected by
unit length links form a “Y” topology. The distance of two nodes is given by
the sum of the link lengths between them. I.e. if two nodes are neighbors their
distance is 1, otherwise it is 2. Figure 3.7(b) shows the corresponding distance
matrix. A perfect mapping of these nodes to coordinates in an n-dimensional

3.4. DISTANCE ESTIMATION 39

A

B

C D

AB = 1

BC = 1 BD = 1

(a) Original topology

A
B
C
D

A

0
1
2
2

B

1
0
1
1

C

2
1
0
2

D

2
1
2
0

(b) Distance matrix

A (9.891 ; 11.578)

B (9.930 ; 10.463)

C (8.984 ; 9.872)
D (10.916 ; 9.939)

1.116

1.116

1.116

1.933

1.
93

3

1.933

(c) Topology embedded in a 2D Euclidean coordinate system

Figure 3.7: Embedding of a simple network topology into 2 dimensional Eu-
clidean space

Euclidean space requires that the Euclidean distances between the coordinates
equal the distances between the nodes in the topology. Unfortunately, this goal
cannot be achieved. In fact, no “Y” topology with link lengths greater than
zero can be mapped to Euclidean space without error (see Appendix A.1 for
proof). Nevertheless, we can find an Euclidean embedding that minimizes the
error. This is the main challenge for all distance estimation approaches based on
metric spaces. For our example, we can use the two-dimensional Euclidean em-
bedding shown in Figure 3.7(c), which was computed using the GNP approach
discussed later in this section. It minimizes the total square error of embedding

ε =
∑

n,m∈{A,B,C,D}

(d̂(n, m)− d(n, m))2 .

We can see that the embedding slightly overestimates the distances between
neighbor nodes, and underestimates the distances between the other node pairs.
d̂(n, m) is the estimated distance and d(n, m) the actual distance between
nodes n and m. The embedding from Figure 3.7(c) has a total square error
ε = .053835. Each distance will be predicted with a relative error of approx-
imately 7.5%. The coordinates in the example demonstrate another property
often encountered in Euclidean embedding: Minimizing the error may result in
any isometric mapping of the coordinate system, i.e. the system may be arbi-
trarily rotated and translated depending on small factors like the ordering of
the landmarks during the computation.

40 CHAPTER 3. PEER-TO-PEER AND OVERLAY NETWORKS

Existing Approaches

Global Network Positioning Euclidean embedding for network distance
estimation has been used for the first time in [82], in which Ng and Zhang pro-
posed a system called Global Network Positioning (GNP). It is based on a small
set of landmark nodes. GNP works in two phases: it first measures the distance
between each pair of landmark nodes and computes an Euclidean embedding
with minimal total square error. The minimization problem is solved with the
Simplex Downhill algorithm [81] because this algorithm is able to minimize ar-
bitrary functions without requiring additional information like the function’s
derivatives. Once the landmark coordinates have been computed phase two
starts. A node that joins the system will receive a list of the landmarks and
their precomputed coordinates. It will then measure its distance to each of the
landmarks and use the resulting distance vector together with the landmark
coordinates to compute its own coordinates. Like the initial computation this
is done with the Simplex Downhill algorithm. However, the complexity of the
problem is considerably smaller because the landmark coordinates are already
known. GNP has been shown to perform quite well when applied to several
distance matrices of round-trip time based on measurements from the Internet.
Nonetheless, using a fixed set of landmarks makes the approach vulnerable to
node failure or malfunction. If a landmark node fails, or if it maliciously distorts
the round-trip measurements, the computed coordinates will be wrong and re-
sult in bad distance estimates. The network load close to the landmark nodes
may also be a problem if a very large number of nodes measure their distance
to a small set of landmarks.

Network Positioning System In [83], the authors of GNP present a Net-
work Positioning System (NPS) that addresses the shortcomings mentioned
above. The minimization problem for the initial computation of landmark coor-
dinates has been reformulated to allow for decentralized computation. Further-
more, NPS introduces a hierarchical system of reference nodes. Only a small
set of nodes compute their position based on the actual landmark nodes. They
form the first layer. Nodes from the second layer compute their positions based
on reference nodes from the first layer and serve in turn as reference nodes for
the third layer. Obviously, this scheme scales much better than GNP, and is
more robust to temporary failures of the landmarks, although it may also result
in accumulated error in the outer layers. The authors believe that a three-layer
system is the optimum for an Internet-wide service. NPS nodes also recompute
their position regularly in order to adapt to topology changes.

Lighthouses An alternate approach addressing the scalability issues of GNP,
presented in [94], uses dynamically chosen landmarks called Lighthouses. When
a new node joins the system it arbitrarily chooses a number of local reference
points from the set of nodes that have already been positioned. Then, it com-
putes a local coordinate system based on these reference points and calculates
its own position in it. Additionally, it computes a transition matrix between its
local coordinate system and the global one. Evaluation of this distributed ap-
proach based on distance matrices of round-trip time indicate that its accuracy
is comparable to GNP.

3.4. DISTANCE ESTIMATION 41

Practical Internet Coordinates Practical Internet Coordinates (PIC) [22]
addresses GNP’s problem of having fixed landmarks with a simpler approach.
Joining nodes select landmarks from the set of nodes already in the system and
compute their own coordinates using Simplex Downhill, without the additional
local coordinate system used in Lighthouses. PIC nodes may select landmark
by following one of two criteria: (i) They pick the n nodes closest to themselves
in the network topology, or (ii) they pick some of the closest nodes and augment
the set with randomly chosen nodes from anywhere in the system. The second
option is reported to yield better embeddings in general. PIC also addresses
the problem of forged coordinates, which may be more of an issue than in GNP
because landmarks are chosen randomly whereas GNP uses a small set of easily
controllable landmarks. When a node selects its landmarks, it also checks the
triangle inequation on the resulting system. Violations of the triangle inequation
are commonplace network distance matrices. However, very bad violations may
be a sign of forged coordinates. PIC thus removes the nodes from a landmarks
set that violate the triangle inequality “the most.”

Big-Bang Simulation The accuracy of the distance estimates from an Eu-
clidean embedding heavily depends on the algorithm applied to minimize the
error. The Simplex Downhill method employed by GNP is simple to use because
it can be applied to arbitrary functions, but other algorithms may give better
results. Big-Bang Simulation [124] is such an algorithm. It models network
nodes as particles traveling in the Euclidean space under the effect of potential
force fields. Initially, all nodes are placed at the origin of the coordinate sys-
tem. In each iteration the particles move according to Newton mechanics. They
attract or repulse each other depending on whether their distance is too small
or too large, respectively. The field force is derived from the total embedding
error. Eventually, the total embedding error will reach a minimum and the al-
gorithm ends. Big-Bang Simulation was compared to several other embedding
algorithms including Simplex Downhill and has proven to be produce superior
results in most scenarios.

Vivaldi Even though Big-Bang simulation finds very good Euclidean embed-
dings, it shares a shortcoming with GNP: Neither algorithm can be distributed.
This may cause scalability issues when the algorithm is a applied to a very large
system. A possible solution to this problem is Vivaldi [26], a fully distributed
network coordinate system based on an algorithm similar to Big-Bang Simula-
tion. Vivaldi places a virtual spring between pairs of nodes with a rest length
set to the known network distance between the nodes and a current length set
to the distance between the nodes in the current embedding. Depending on the
difference between the current length and the rest length each spring exerts a
force on the connected nodes. Like in Big-Bang Simulation the nodes are moved
through the Euclidean space until they settle in an equilibrium. However, the
algorithm employed by Vivaldi does not rely on a global error to detect conver-
gence because that would make distributed computation impossible. Instead,
it uses a locally calculated timestep δ, which it adapts depending on the lo-
cal error observed by a node. If the error is large, δ should have large values
in order to make the node move quickly to an approximately correct position.
Smaller values of δ allow it to refine its position when it is close to its final

42 CHAPTER 3. PEER-TO-PEER AND OVERLAY NETWORKS

position. Making the movement of nodes dependent on their local error al-
lows for fully distributed computation of the Euclidean embedding, although
one problem remains. If we would place a spring between each pair of nodes,
each node would have to constantly communicate with all other nodes, causing
immense communication overhead. Vivaldi nodes consequently maintain only a
restricted set of springs and update their position if they detect significant error
when communicating with other nodes. A peculiarity of Vivaldi introduced in
later versions is its coordinate system. The authors found that a large part
of the error in Euclidean embeddings is due to the access links of the nodes.
Nodes in the network core can normally be embedded with very little error.
Vivaldi therefore uses 2-dimensional Euclidean coordinates with “heights” to
model the access link. The distance between two nodes is thus given by their
Euclidean distance plus each of their height values (see Figure 3.8). Vivaldi’s
greatest strength is without doubt its fully distributed structure. Nevertheless,
the resulting embeddings are approximately as accurate as those found with
GNP.

x

y

he
ig

ht h1
h2d

distance = h1 + d + h2

Figure 3.8: Vivaldi uses 2-dimensional Euclidean coordinates augmented with
heights

Network distance estimation methods based on Euclidean embedding per-
form surprisingly well in simulation studies. Ledlie et al. criticize that these
simulations generally use static distance matrices and argue that the highly
variable round-trip time measurements on the Internet may severely impair the
accuracy of the resulting distance estimates [68]. The authors propose to apply
a moving-percentile filter to round-trip time measurements to make them more
stable and report significant improvements resulting from this.

PCA-based Coordinates Lim et al. describe an interesting non-Euclidean
variant of the coordinates-based approach [70]. They apply Principal Compo-
nent Analysis (PCA) to a distance matrix of beacon nodes (i.e. landmarks) to
construct an n-dimensional space with a new basis. The number of dimensions
n is determined by the number of principal components whose contribution to
the total variation is more than a predefined threshold. An attractive property
of this approach is that calculating coordinates of joining nodes is very cheap.
They simply create a vector of their distances to each beacon node (similar to
the triangulated heuristic approach shown in Figure 3.6) and multiply it with
the system’s transformation matrix to receive their final coordinates. In con-
trast, the minimization algorithms used in approaches such as GNP are rather
expensive.

3.4. DISTANCE ESTIMATION 43

CHESS In [75], Malli et al. argue against the common assumption that short
round-trip times between two hosts on the Internet usually coincide with other
desirable quality of service properties, such as available bandwidth. They
present large-scale measurements showing that this assumption may lead to
results that are far from optimal. Accordingly, the authors propose a coordinate-
based distance estimation approach that takes application-dependent utility
functions into account. The network paths between nodes that are close in
this coordinate-space have high utility to the application. Depending on the
application this may mean a combination of high available bandwidth and low
round-trip time, for example.

Advantages and Disadvantages of Coordinates-based Approaches

The biggest advantage of coordinates-based approaches is that they can be used
for more than just distance estimation. A good example is the use of coordinates
for binning in content-addressable networks as described in Section 3.3.

For pure distance estimation however they have a number of drawbacks.
Coordinate-based approaches are generally restricted a member scope, i.e. they
can only estimate distances between hosts that have installed special software
and have computed their coordinates. Approaches like GNP could be modified
so that the landmark nodes actively measure their distance to a given endpoint
and compute its coordinates, but this approach could hardly scale. Conversely,
coordinates-based approaches require little or no infrastructure. GNP requires
a small, fixed set of landmark nodes. Fully distributed systems like Vivaldi do
not require any additional infrastructure at all. The increased distribution also
results in better scalability and robustness.

The required deployment size of coordinates-based systems depends on the
distribution of their member nodes in the network. Widely distributed mem-
ber nodes also require widely distributed static or dynamic landmark nodes to
compute their coordinates. Therefore, if we want to estimate distances between
nodes all over the globe we also need globally distributed coordinates-based
system.

Another general drawback of coordinate-based systems is that they are re-
stricted to a single distance measure, which is usually round-trip time. Further-
more, they cannot provide information about the variance, trend, or expected
error of a distance estimate.

44 CHAPTER 3. PEER-TO-PEER AND OVERLAY NETWORKS

Chapter 4

Hybrid Simulation

4.1 Introduction

In traditional, sequential packet-based simulators the simulation scenario is
modeled in terms of nodes and links with individual capacities and delay char-
acteristics. Every time a node sends or receives a packet an event is scheduled.
When simulating networks at the scale of the Internet (or even parts of it) this
approach quickly becomes problematic due to the sheer amount of events to be
processed. Optimizing the simulator’s code may result in minor speedups, but
this normally isn’t enough to be able to simulate large-scale scenarios in rea-
sonable time. Sequential simulation research has been working on this problem
for decades. The problem can be approached in two ways: We can make the
simulation parallelizable in order to benefit from the computational power of
modern high performance computers, or we can simplify the simulation model
in a way that preserves the details we are interested in but only provides coarse
grained simulation of other aspects of the scenario.

Parallelization (see Section 2.2.2) may result in speedups of several orders
of magnitude, but this depends heavily on a good partitioning of the original
network scenario. If we partition the scenario at the wrong places the commu-
nication overhead between the processors may negate the speedup gained from
parallelization. Optimal partitioning is also very dependent on the paralleliza-
tion approach and the simulated scenario. A partitioning that works well in
one case does not necessarily work well in other cases. Setting up or changing
a simulation scenario for a parallel simulator can thus be tedious. Especially in
network research where we often change scenarios to explore different aspects
of a new networking technology this may be a hurdle. Another problem that
occurs with packet-based parallel simulations of large-scale Internet scenarios
ironically stems from what is actually an advantage of the approach: it’s high
level of detail. Even for relatively predictable networks such as telephony net-
works it is hard to make good assumptions about the traffic patterns. In order
to create realistic Internet scenarios we would have to consider many different
protocols that often interact in unpredictable ways. Moreover, the exact topol-
ogy and configuration of the network is rarely known, especially if we simulate
scenarios spanning the networks of several internet service providers (ISPs).
Even in known topologies we may be missing significant details like the queuing

45

46 CHAPTER 4. HYBRID SIMULATION

VPN site 1 VPN site 2

VPN site 3

VPN gateway

Figure 4.1: Scenario of a multi-site VPN network

disciplines used by the routers. For these reasons parallel simulation may be
ill-suited for large-scale Internet scenarios even if the attainable speedup may
be immense.

The second approach to solving the scalability problem of sequential packet-
based simulation is to reduce the complexity of the simulation by hiding unnec-
essary details. Such abstractions only preserve details of interest and simplify
the simulation of other aspects. It is therefore essential to choose the right
abstraction with regard to the network characteristics we are interested in. In
Section 2.2.3 we have presented several different abstraction schemes aimed at
different aspects of the simulated network. A big advantage of abstraction-based
simulators over parallel simulators is their ability to cope with incomplete or
coarse-grained scenarios. For example, if our scenario includes an ISP network
with unknown topology we can still make a coarse-grained model for that net-
work based on the properties that are observable from the outside. Thus, we
simulate the ISP network faithful to the available information. In a packet-
based scenario however, we would have to make a guess at the inner structure
of that ISP network, hoping to faithfully mimic its behavior. This is generally
far from trivial.

Specific simulation approaches and their abstractions are usually imple-
mented in their own simulator programs. This makes them only usable for
the type of network or scenario they were designed for. Nevertheless, many
scenarios of interest could be better simulated if we could combine different
abstractions in the same simulator. Consider the example of a multi-site vir-
tual private network (VPN) as shown in Figure 4.1, consisting of several local
networks connected through so-called tunnels. When simulating a distributed
application deployed at the three sites in this scenario we may want to employ
a fine-grained abstraction such as a normal packet-based approach for the local
networks, while using a more coarse-grained abstraction for the VPN tunnels.
This is especially useful if we do not have detailed information about he network
between the VPN sites and the traffic flowing through it. We may be restricted
to creating a model based on end-to-end measurements between the VPN sites.
This combination is not possible in most available simulators.

We have designed and implemented a hybrid simulator that combines packet-
based simulation with an abstract network model for coarse-grained but efficient

4.1. INTRODUCTION 47

simulation of multi-domain networks. It uses concepts from queuing theory and
fluid simulation (see Chapter 2 for a discussion of these approaches).

The hybrid simulator is based on an extension to the packet-based simulator
ns-2 that is able to introduce arbitrary abstractions into a simulation scenario.
The basic idea is to extend the simulator’s node model using dynamically load-
able modules. When a packet reaches a node it will normally get routed and
forwarded on the next link. In contrast, if it reaches an extended node the exten-
sion module will be given a chance to delay or drop the packet according to its
own abstraction. Because this approach combines several different abstractions
in a single simulator we call it hybrid simulation. The possible applications of
this extension are numerous. For example, it would be possible to implement
detailed router models to make the forwarding delay of the simulator more real-
istic. More importantly, an extension module can simulate a whole sub-network
using an arbitrary abstraction. We use this concept to combine the packet-based
models of ns-2 with our abstract network model for multi-domain networks. In
the above VPN example, we could thus simulate the single sites using a nor-
mal packet-based approach but model the network between the sites using our
coarse-grained abstraction. Figure 4.2 illustrates this concept. The extended
node in the middle simulates a small network instead of just forwarding packets
to the next link.

Figure 4.2: Extended nodes can simulate whole sub-networks

This approach is also particularly suitable for simulating overlay networks
that require additional network infrastructure, such as the clustering-based dis-
tance estimation systems presented in Section 3.4.2. Pure packet-based simula-
tion of these systems is hardly feasible due to the wide distribution of the mea-
surement servers and the complexity of the network between them. Conversely,
if we only model the vicinity of the measurement servers with packet-based sim-
ulation and simulate the parts of the Internet between them as multi-domain
models, we obtain a very scalable simulation scenario.

We will present the multi-domain network model in Section 4.2. The ex-
tension mechanism necessary to integrate it into ns-2 will be discussed in Sec-
tion 4.3.

The hybrid simulator was originally developed in the course of the Intermon
project [52], which aimed at creating an integrated architecture for the moni-
toring, modeling (simulation) and visualization of inter-domain networks. One
of the key features of this architecture is the seamless integration of monitor-
ing, modeling & simulation, and visualization tools. For example, it is possible
to schedule a BGP topology detection task, then use the detected topology to
create simulation scenario, send it to a simulation server, and then analyze the

48 CHAPTER 4. HYBRID SIMULATION

results using various visualization tools, all from the same graphical user in-
terface. The hybrid simulator is one of several simulation tools integrated in
this architecture. Section 4.4 focuses on the details of the hybrid simulator’s
integration, such as the generic simulation job descriptions and the automated
scheduling of these jobs on a simulation server.

The work in this chapter was also presented in [8, 9, 10, 112, 114, 113] and
in technical reports [115, 116, 119, 120, 66].

4.2 An Abstract Network Model for Inter-
Domain Scenarios

Scalability in network simulation is often achieved by reducing the level of detail
of the simulation scenario or of the simulation algorithm. Carefully chosen, such
abstractions of the simulated network can significantly reduce the complexity
of large-scale simulations. In this section we present an abstract network model
that is mainly aimed at simulating inter-domain networks more efficiently than
the traditional packet-based approach while still giving a good approximation of
real network behavior. Its implementation is based on the an extension module
for the ns-2 simulator described in Section 4.3.

The network model is based on the assumption that, over certain time spans,
networks like the Internet can be divided into areas where congestion is negli-
gible, interconnected by bottleneck links. This assumption maps rather well to
networks controlled by a single ISP. In order to satisfy service agreements with
customers, ISPs have an interest to keep their internal networks free of conges-
tion and preferably drop excess traffic at the border links of their domains. If
they didn’t, the excess traffic might congest links inside the ISP’s network and
cause service agreements to be broken. A possible partitioning for inter-domain
networks is thus to model the border links between ISP domains as potentially
congested and the ISP domains themselves as congestion-free. Figure 4.3 shows
this modeling view.

Inter-domain link

Domain

Domain

Domain

Figure 4.3: The basic modeling view

Domain Models We treat congestion free areas as black boxes, which we call
domain models. Separate models for congestion free areas have the advantage
that we can neglect packet losses and excessive queuing in these parts of the

4.2. AN ABSTRACT NETWORK MODEL 49

network and restrict the model to quasi-stationary delay behavior. Apart from
its scalability advantage this approach is primarily useful to model network
areas of which we do not know the exact topology. Again, ISP networks are
good examples since ISPs are naturally reluctant to reveal details about their
inner networks for competitive reasons. The delay behavior of domain models
is based on empirical cumulative distribution functions (ECDFs) simulating the
stationary delays of packets crossing the domain. The ECDF used for delaying a
packet is chosen depending on the ingress and egress nodes on which the packet
enters and leaves the domain, respectively. Alternatively, we can also use a single
ECDF irrespective of a packet’s ingress and egress nodes. A big advantage of
using empirical ECDFs is that we can directly use delay measurements from a
real network to configure a domain model.

Inter-Domain Link Models The bottleneck link models between domains
are called inter-domain link models. This is where packet loss and queuing
delay are simulated. The parameters of an inter-domain link model are similar
to those of a link in a packet-based simulator, namely link capacity and buffer
size. Nonetheless, inter-domain link models are not event-driven. Instead they
use the analytical M/M/1/K queue (i.e. a queue with Poisson arrival and service
processes and a finite buffer) to model the queuing behavior of the link. Packet
drops and queuing delay of the queue depend on the estimated traffic load
on the queue. A special case are the links located at the “borders” of the
simulated network. They connect the network model to the network simulated
using packet-based models.

Application Traffic Models Traffic in this network model is generated by
application traffic models. They take the form of function that return the gener-
ated load at a (monotonously rising) point in time. This may comprise models
for VoIP, Video, HTTP, etc. Due to the coarse-grained nature of the network
model the focus of these traffic generators lies on aggregates of single sources.
For example, an application traffic model may mimic the load generated by a
large number of HTTP sessions. Another possibility is to use a trace-driven
application traffic model that reads the load at a given time from an external
trace file. This is especially useful if we want to feed the simulator with mea-
surements made on a real network. A special kind of application traffic model
is used at the connection points between the network simulated by our abstract
model and the network simulated using packet-based models. Here, we employ
rate estimators to convert packet arrival events to the load values used inside our
network model. Rate estimation is done by calculating the average bitrate of the
packets arriving in a time window. A drawback of application traffic models as
used in our abstract network model is that they do not support adaptive traffic
sources like TCP because of the lack of feedback mechanism. Nevertheless, it is
possible to faithfully simulate TCP if we place the TCP sources and sinks in the
packet-based part of the simulation scenario. Our network model will simulate
packet loss and delay, causing the TCP endpoints in the packet-based part to
adapt their rate. This in turn causes the rate estimator to change its estimate.
The accuracy of this approach naturally depends on the length of the rate esti-
mator’s time window. If the window is too large, the resulting smoothing effect
will distort the TCP simulation.

50 CHAPTER 4. HYBRID SIMULATION

Multi-Domain Models Multi-domain models combine the domain, inter-
domain link, and application traffic models of a network scenario and calculate
their interactions. Given a time t they compute the load on the single inter-
domain links and the resulting end-to-end packet loss ratio and delay. When
packet traverses the multi-domain model, the rate estimator responsible for the
specified ingress link gets updated first. Then, the multi-domain model inspects
the state of the network, updating it if necessary, and calculates both the chance
of packet loss and the delay distribution. A pseudo random number generator
decides whether or not the packet should be dropped given the calculated drop
chance. If the packet is not dropped, another random number distributed ac-
cording the end-to-end ECDF of the packet’s path determines the packets delay.
It would be possible to write a simulator based solely on a multi-domain model
by inspecting and updating the system state in regular intervals. However, for
several reasons it is desirable to combine these models with packet-based simu-
lation. The behavior of an individual flow is easier to describe as a packet-based
model, and many protocol and application models already exist for packet-based
simulators. Furthermore, a combination of fine grained packet-based simulation
and coarse grained analytical models could be very useful in scenarios like the
above example of a multi-site virtual private network.

The simulation method used by our multi-domain models employs a com-
bination of elements from fluid simulation and analytical queuing networks,
namely the application traffic model and the inter-domain links, respectively.
Furthermore, the periodic inspection of the network state is related to time-
stepped fluid simulation. While fluid simulation efficiently models the behavior
of large traffic aggregates, its assumption that packets arrive in determinis-
tic intervals may be quite unrealistic. Using analytical queue models that as-
sume Poisson arrivals we add non-determinism without requiring changes to
the model. On the other hand, Poisson arrivals are generally viewed as too
simple to model large traffic aggregates on the Internet. This view stems from
a pure modeling point of view. Poisson processes are not suitable to model a
traffic aggregate’s packet inter-arrivals since Internet traffic has been shown to
be far burstier. Other approaches, such as Batch Markovian Arrival Processes
(BMAPs) are a much better choice. However, our approach does attempt to
model the long term developments of traffic aggregates. Instead, it models the
queue state at an arbitrary moment in simulation time based on a given load
and link capacity.

In the following sections we will describe the models and algorithm used in
our network model in greater detail.

4.2.1 Multi-Domain Models

The purpose of a multi-domain model is to organize and control domain models,
inter-domain link models, and application traffic models to form a single network
model. Thus, the basis of a multi-domain model is a set of such models and
their parameters, e.g. delay characteristics for domain models, link capacities
and buffer sizes for inter-domain link models. In order to combine these models
to form a multi-domain model we must know how they are interconnected. The
topology of a multi-domain model is a directed graph where the domain and
application traffic models are the vertices and theinter-domain link models are

4.2. AN ABSTRACT NETWORK MODEL 51

Incoming
link 1

Outgoing
link 2

Outgoing
link 1

Rate Est. (1-1)

Rate Est. (1-2)

ATModel

Figure 4.4: Routing paths in the multi-domain model’s topology

the edges. Links are always simplex; duplex links can be created by combining
two simplex links). This topology graph can be stored in standard ways such
as vertex and edge tables.

In order to map the load generated by application traffic models to the right
inter-domain links we define a path for every application traffic model in the
network. A path consists of the traffic model and a sequence of references to
inter-domain links and domain models representing the route the traffic takes
through the network. Figure 4.4 shows the example of a topology with one
incoming link and two outgoing links connecting the multi-domain model to
the packet-based model. Rate estimators compute the load on both possible
routes, one for each outgoing link. A further application traffic model generates
additional load. Note that the path of a normal application traffic model can end
anywhere in the simulated network. However, it is not possible to convert the
load values of application traffic models to packet arrivals in the packet-based
model.

Multi-Domain Load

The load an inter-domain link receives depends on two factors: the load origi-
nally generated by the application traffic models, and any potential packet losses
in upstream links that reduce the load. It is the task of multi-domain models
to simulate the propagation of network load from the application traffic models
to the inter-domain link models along their path, considering any packet loss
along that path. This is achieved with the following algorithm.

We inspect the network at simulation time t. Let the sequence of inter-
domain links Ps = {L1, L2, . . .} be the routing path for the traffic originating at
the application traffic model s. If link Li directly follows link Lj on a path we
call Lj a predecessor of Li. s(t) denotes the generated load of s at time t. The
amount of traffic an inter-domain link L forwards is a function of the offered
load λ, written as L(λ). We assume that 0 ≤ L(λ) ≤ λ. The exact calculation
L(λ) will be discussed later. Note that the offered load λ is the sum of loads of
all the flows sharing the link.

As long as a traffic flow does not share links, the loads of the links La, Lb, . . .
it passes can be calculated by the sequence

λLa
= s(t), λLb

= L1(s(t)), λLc
= L2(L1(s(t))), . . . (4.1)

However, as soon as the flow encounters a shared link we need the to know the
loads of all other flows on the link to calculate the link’s offered load. Conse-

52 CHAPTER 4. HYBRID SIMULATION

quently, step 1 of the algorithm is to compute the independent sequences of all
flows until they meet a shared link. At this point (step 2) we can compute the
offered loads of all these shared links. The offered load λLi

on a shared link
Li is given by the sum of the forwarded loads of all predecessors. If the last
calculated element of the path’s load sequence was λ we can now calculate the
next element with

λ′ =
Li(λLi

)
λLi

λ . (4.2)

We include this information in the calculation of each sequence and go back to
step 1. This procedure repeats until all paths have been followed to their end.
Then, the offered and forwarded loads of all inter-domain links are known.

The above algorithm may be optimized in several ways. First, when updating
the system we only have to pursue changes in the offered load as far as they
make a difference for the whole system. For example, if a traffic model overloads
the first link on its path on one update, any additional load in the next update
will influence only this first link. The forwarded load of this link remains the
same. Furthermore, changes in the offered load may be marginal, in which case
we can ignore this change at the cost of reduced accuracy. We use the following
strategy: If the change in offered load of an application traffic model remains
below a threshold we ignore the change and do not update the load distribution
in the network. However, in order not to accumulate errors we force updates in
regular intervals.

Multi-Domain Loss and Delay

Using on the load distribution calculations above, we can find the delay distri-
butions and packet loss ratios of a multi-domain model’s paths. The packet loss
ratio along the path P = L1, . . . , Ln is given by

1−
n∏

i=1

(
1− λLi − Li(λLi)

λLi

)
(4.3)

where λLi
is again the offered load on link Li.

Delays along a path are modeled in a similar way. The time it takes for a
packet to traverse a domain or an inter-domain link can be described as a random
variable. Let δL be the random variable of the delay caused by inter-domain
link L, and let δL,K be the random variable of delay in the domain between the
inter-domain links L and K (δL,K is only defined if L is a predecessor of K).
Then, the delay distribution on the routing path P is given by

δP =
n∑

i=1

δLi
+

n−1∑
i=1

δLi,Li+1 (4.4)

In order to simulate the delays and possible drops of packets traversing the
network modeled by the multi-domain model we need to generate random values
accordingly. A packet will be dropped if a random value, uniformly distributed
on the interval [0,1], is smaller than the packet loss ratio from (4.3). Simulating
the delay caused by traversing a path through the simulated network is slightly
more complicated. In order to simulate the delay from a single domain or
inter-domain link model, we generate a random value that follows the model’s

4.2. AN ABSTRACT NETWORK MODEL 53

ECDF. The end-to-end delay of a routing path can be simulated by summing
up generated random values for each model along the path. The fact that the
delay distributions of domain models do not change can be used to make this
procedure much more efficient, however. Since these delay distributions are
discrete, their distribution functions can easily be convoluted into a single one,
which reduces the task of simulating the domain delays to the generation of a
single random value. The convolution can be performed efficiently by using the
Fast Fourier Transform algorithm [21]. The delay simulation for the domain
models on a path can thus be done in a single step. Convolving the link delay
distributions is not efficient in normal scenarios as they change rather rapidly
according to the load distribution. Modeling a path’s delay as a random variable
with known distribution has a further advantage. It allows to easily calculate
moments like the mean delay or the path’s jitter, which would be Var(δP) if
interpreted as delay variation. Even though this does not affect the simulators
integration into ns-2 it could be put to use in a stand-alone version of the
simulator.

4.2.2 Domain Models

Domain models represent network “clouds” in a simulation scenario where no
congestion occurs. The partitioning of a topology into domains and inter-domain
links can be freely configured but it must be chosen such as to satisfy this basic
assumption of congestion-free domains as closely as possible. “Clouds” of nodes
under a common management (e.g. an ISP network) are good candidates, since
with policing and shaping performed at the edge routers, congestion within the
domain can be avoided. The chosen abstraction allows that domain models
only simulate the stationary delay behavior of a network cloud and do not react
to changes of network load. Domain models are black boxes; their interior
structure is not explicitly modeled. The highest level of detail in a domain
model is the distinction of paths through the domain. A domain model with n
edge nodes can thus contain n(n− 1) delay models, one for each ingress-egress
node combination. In simpler cases we can use a common delay model for all
paths through the domain. This becomes useful if we lack the information to
create a more complex model. Using simple models can also significantly reduce
the memory consumption of a simulation.

Ra
nd

om
 v

al
ue

 in
 [0

,1
]

Simulated delay

x

f(x)

Interpolated ECDF

ECDF step
function

Figure 4.5: Generating random values using an interpolated ECDF

During preliminary evaluation we found that in many cases empirical cumu-
lative distribution functions (ECDFs) are a good method to model the delay
behavior of network domains. They can be easily built from a series of delay

54 CHAPTER 4. HYBRID SIMULATION

measurements taken from a real network. In the optimal case, one-way delays
should be used, but since this requires clock synchronization of the measurement
endpoints we might have to approximate them by using round-trip time mea-
surements divided by two (which may be a bad approximation if the paths are
strongly asymmetric). For the integration with packet-based simulation we need
to be able to generate random values based on the ECDF. A basic approach is
to store the observations in a table and then randomly select table entries using
a uniform distribution. Given a sufficient sample size, this approach yields very
good results. However, large tables may have a severe impact on the memory
consumption of the simulator. Fortunately, we can usually use linear interpo-
lation to reduce the size of the tables with only minimal additional error. The
procedure can be seen in Figure 4.5. We start by generating a random value x,
uniformly distributed on the interval [0, 1], which designates a position in the
sorted observation table (seen as a step function in the Figure). The two nearest
observations are then interpolated to get a simulated delay value f(x). It is im-
portant to note that ECDF models, while giving good reproductions of observed
first and second-order moments in measurements, ignore any non-stationarity
of the sample.

4.2.3 Inter-Domain Link Models

Inter-domain link models cover the dynamic parts of network behavior, like the
effect of queuing and congestion on delay and packet loss. Since they represent a
single physical link between the interfaces of two nodes it is an obvious approach
to model them as an analytical queues. We chose the simple M/M/1/K queue as
an approximation, that is, a queue with Poisson arrival and service processes, a
single server (the physical link) and system capacity K. The arrival and services
rates λ and µ are given by the link’s offered load and capacity, respectively. The
system capacity K can be set to a typical value (e.g. 128-packet buffers are rather
common in routers).

GFED@ABC0

λ
&&
. . .

µ

ff

λ
((ONMLHIJKK

µ

gg

Figure 4.6: Birth and Death Process

In order to model the behavior of the inter-domain link we have to find the
probability pi of the system to be in state i, where state K means the queue is
full, and state 0 means the system is empty and does not send. The M/M/1/K
queue is a birth and death process as shown in Figure 4.6. For a birth and death
process of this kind the probabilities pi are given by

pi =

1−λ/µ

1−(λ/µ)K+1 , i = 0

(λ/µ)ip0 , i > 0
(4.5)

if λ 6= µ, and

p0 = p1 = . . . = pK =
1

K + 1
(4.6)

4.2. AN ABSTRACT NETWORK MODEL 55

if λ = µ. Since pK is the probability of the system being full it is also the
loss ratio of the link. The functional representation L(λ) of the inter-domain
link used in the computation of load in the network can thus be written as
L(λ) = (1− pK)λ, with pK calculated according to formulas 4.5 and 4.6. From
the probabilities pi we can further construct a discrete density function of the
link’s delay distribution. The number of bytes that are in the system when
another byte arrives is proportional to the time this byte has to wait before it
is sent to the link. δpr is the propagation delay on the link, which depends on
physical properties of the link, e.g. its length. The discrete delay distribution
thus looks like this (

p0 · · · pK−1 pK

δpr + 1
µ · · · δpr + K

µ ∞

)
(4.7)

The infinite delay in the case of a full queue indicates that this packet is effec-
tively lost.

4.2.4 Hybrid Simulation

We enhance the traditional, packet-based simulator ns-2 by enabling its nodes
to contain analytical multi-domain models. A single simulator node can stand
for, and behave like, a whole subnetwork. When a simulated packet reaches an
enhanced node, it triggers an inspection of the underlying multi-domain model
to determine how much the packet should be delayed and whether it should
be forwarded at all. Both decisions are based on the cumulative forwarding
probability and delay distribution calculations described in the above sections.

Packets flowing through the simulated network add to the load on the re-
spective path. In our network model this effect is modeled by rate estimators
that converts packet arrival events into a bitrate estimate for each routing path
between an ingress and an egress link of the multi-domain model. A good way
to estimate bitrates from packet arrival events is to use a sliding time window
algorithm. The number of bytes received in the time window ∆t is added up
and divided by ∆t. We have implemented this by keeping a fixed-size list of
recently arrived packets (we use a 128 packet buffer as a default). Therefore, the
length of the time window changes depending on the packet rate. High packet
rates result in a short time window while low packet rates let the window grow,
up to a configurable bound. There are two reasons for not choosing a fixed-
size time window: First, the number of packets in a a fixed-size window does
not have a natural upper bound. Thus, memory consumption might become a
problem for high bandwidth scenarios. Second, fixed-size windows cannot accu-
rately estimate low packet rates, because if the inter-arrival time of packets is
smaller than the window size, the estimated bitrate will alternate between two
values depending on whether or not there is currently a packet inside the time
window. If the window grows bigger with lower packet rates, we can reduce this
undesirable behavior.

While packets generated in the event-driven simulator may influence the
network models inside enhanced nodes, the load generated by application traffic
models do not create additional packets outside of the enhanced node. Our
approach only allows packets to go through enhanced nodes, not to be created
by them.

56 CHAPTER 4. HYBRID SIMULATION

4.3 An Extension Mechanism for the ns-2 Sim-
ulator

4.3.1 The Extension Module Interface

In order to combine the packet-based approach of ns-2 with other simulation
methods we extend the ns-2 nodes with arbitrary simulation modules. Module
interface units in modified nodes load simulation modules during run-time us-
ing the dynamic loadable library (DLL) mechanism available on most modern
operating systems. After loading, the interface unit tells the module to ini-
tialize itself and asks it to create a simulation module object (internally called
ISP module, because of the original focus of the simulator on inter-domain net-
works). Subsequently, the extended node will notify the simulation module
object about every arriving packet and in turn receive a floating point value
determining whether to drop or to delay the packet. Positive values indicate
that the packet should be delayed by this many seconds; negative values cause
the extended node to drop the packet. If the simulation module object returns
zero the packet will be forwarded without any modification.

ISP module *isp module init(int node id);

class ISP module

{
public:

virtual double process packet(int prev node id, int next node id,

double time, struct ISP pinfo *p);

virtual int command(const int argc, const char*const* argv);

};

Figure 4.7: The interface used by simulation modules

Modules for our extension mechanism have to implement the simple C++
interface shown in Figure 4.7. The init() function is always called when a
module is loaded. It performs any necessary initializations and creates the
simulation module object through which the extended node communicates with
the encapsulated simulation model.

During a simulation run, the node notifies the simulation module object
about every arriving packet, its time of arrival, and its incoming and outgoing
links using the process packet() method and in turn receives a floating point
value indicating whether to delay or to drop the current packet. It is left to
the module to convert the packet arrival events into an internal representation
suitable for the encapsulated abstraction. The ISP pinfo structure passed to
the process packet() method comprises the source and destination addresses
of the packet, its size in bytes, its time-to-live (TTL) field, and its ns-2 packet
type.

Loading and configuration of simulation modules can be done from within ns-
2 Tcl scripts. Extended nodes provide the method attach-module, which takes
the path to the module file as argument and and tells the integrated extension
module interface to load the module. Each module may define its own set of

4.3. AN EXTENSION MECHANISM FOR THE NS-2 SIMULATOR 57

command available through the extended node’s command method. This facility
is mostly used to configure the module. For example, the call modcmd config
configuration.xml might load the file configuration.xml and configure the
module according to its contents. Since these Tcl methods may be called at
any time during a simulation run, modules must be ready to be dynamically
reconfigured or even replaced by other modules.

4.3.2 Modifications to ns-2

Adding the extension mechanism discussed above requires several modifications
to the ns-2 code, especially to the ns-2 node. The original structure of an ns-2
node was discussed in Section 2.2.1.

Link Link Link

Agent

Agent

Agent

A
dd

re
ss

C
la

ss
ifi

er

Po
rt

C
la

ss
ifi

er

Node
Entry

M
od

ul
e

In
te

rf
ac

e

D
el

ay
U

ni
t

External
Delay & Loss Module

Extended ns-2 Node

Figure 4.8: Structure of an extended ns-2 node

Figure 4.8 shows the modifications necessary to extend an ns-2 node. Arriv-
ing packets now go through two additional steps before they reach the address
classifier: the module interface, which provides the mechanism to load external
simulation modules into the simulator, and the delay unit, which is an addi-
tional, simple means to model processing delay in the node.

The focus of this chapter is on the interface unit, which delegates the sim-
ulation to an external delay & loss module providing the interface presented
in Section 4.3.1. In addition to providing the simulation module object with
information about the packet and the current simulation time it must also tell
it on which link the packet arrived and on which link it will leave the node.
Knowledge about the incoming and outgoing links of a packet is indispensable
if the external module is to simulate a sub-network with multiple border links.
Without it the module could not determine the route of a packet through the
sub-network.

It is simple for the extension interface to determine the outgoing link of a
packet. It can just consult the routing table of the extended node’s address
classifier to determine to which link the packet will be forwarded once it has
been processed by the extension module. Unfortunately, there is no easy way
for the extension interface to identify the link through which a packet has been
received. The reason for this is that ns-2 objects use the recv() method of
other ns-2 objects to hand packets over to them, and recv() provides no way to
specify the caller of the method. Therefore, a packet that reaches the interface

58 CHAPTER 4. HYBRID SIMULATION

Load modified constructors

source ispns.tcl

Create the simulator, node, and link objects

set ns [new Simulator]

set n0 [$ns IM-node "Node-0"]

set n1 [$ns IM-node "Node-1"]

set n2 [$ns IM-node "Node-2"]

$ns IM-simplex-link $n0 $n1 1Mb 19ms DropTail

$ns IM-simplex-link $n1 $n2 1Mb 19ms DropTail

Attach a module to the middle node, configure it,

and turn on tracing

[$n1 entry] attach-module example.mod

[$n1 entry] modcmd delay 0.1

[$n1 entry] trace

Figure 4.9: Example Tcl script loading an example module into an ns-2 node

module could have been received on any link connected to the node. For a
normal ns-2 node this is usually not a problem since it does not need to know
the incoming link in order to route a packet. An extended node however needs
this information. We solve this problem by adding a new field to the packet class
of ns-2 and letting the nodes write an identifier into this field whenever they
forward a packet. This field can later be inspected by the extension interface of
a node. Additionally, we create an object reference table for all nodes and links
in the simulator, which is used together with the identifier field to identify the
incoming link of a packet. The object reference table must be updated whenever
we create a new node or link. Special constructors in the Tcl front-end of ns-
2 take care of this. IM-simplex-link and IM-duplex-link accept the same
parameters as the original link constructors. They build a normal ns-2 link
like the original constructor would, but they also create an entry in the object
reference table. The IM-node constructor additionally extends the Tcl node
object it builds with the methods necessary to load and configure extension
modules, attach-module and modcmd.

In addition to the module interface unit extended nodes also contain a delay
unit, which provides a simple way to add a measure of randomness to an ns-2
scenario without having to implement an extension module. When it receives
a packet it waits for a random amount of time before it forwards the packet
to the module interface. The distribution of the additional delay can be either
Gamma or Gauss, or the delay can follow an empiric distribution. The latter
is used to mimic the distribution of measurements from a real device and can
be configured using histogram files. The delay unit may be used to simulate
stationary processing delays. However, it cannot simulate non-stationary effects
(such as load-dependent latency). Also, the delay distribution applied to packets
is always the same, irrespective of the packets’ incoming and outgoing links.

An example script using the module interface facility can be found in Fig-
ure 4.9. It creates a simple scenario of three nodes connected by two simplex
links. The first instruction loads the modified constructors for node and link
objects into the Tcl interpreter. Then, these constructors are used to set up a

4.4. TOOLKIT INTEGRATION 59

simple three node topology with two simplex links. Finally, we load and config-
ure a simple example module into the middle node using the new attach-module
and modcmd commands. The instruction “delay 0.1” causes the example mod-
ule to delay all passing packets by 0.1 seconds. The trace command tells the
extension interface to write events caused by the module to the simulator’s trace
file.

4.4 Integration into a Network Monitoring and
Prediction Toolkit

We have developed the hybrid simulator in the course of the of the European
Union research project Intermon. This project aimed at creating an integrated
architecture for the study of inter-domain networks. The architecture includes
tools for various aspects. Traffic meters and topology detectors gather informa-
tion about the network and make it available to a set of modeling tools. The
models thus created from network measurements can be further used to build
simulation scenarios for on of the four integrated simulators. The data resulting
from measurement, modeling, and simulation can then be visualized using the
integrated visual data mining system.

In this section we describe the our integration of the hybrid simulator and the
analytical extension module described in Sections 4.3 and 4.2 into the Intermon
architecture.

4.4.1 Architecture overview

The Intermon architecture has been designed as a highly distributed system.
Measurements, data storage, simulation and visualization can all be hosted on
individual systems. The communication elements are implemented in Java using
the Java Messaging Standard API (JMS) as a communications middleware. User
requests are handled centrally in the global controller (GC). Depending on the
type of request, the GC sends generic requests to specific tool managers (TMs).
Those are responsible for converting the generic requests into format the tool
understands. Tool managers convert the tool’s output back into a format that
the GC understands and return them. Due to their complexity, simulation tool
have a specialized variant of tool manager called simulation manager.

Many requests a user may send are of a long-term nature, for example re-
quests initiating inter-domain monitoring on a set of network links. This calls
for an asynchronous communication scheme. When a tool manager receives a
request it may either return the results immediately, or it may return a “work
in progress” message and send the results as soon as they are available.

The user can build simulation scenarios using a graphical interface and then
click a button to submit them. Once a simulation request has been submitted
it is sent to the GC, which in turn forwards it to the appropriate simulation
manager. The GC may also check or modify the request. For example, it may
query the global database to retrieve additional information for the specific
simulator and add this information to the request. Once the simulator has
finished processing, the GC sends a notification to the user who initiated the
request, containing information about the location of the results (depending on
the simulator they may have been sent to global database or stored in a remote

60 CHAPTER 4. HYBRID SIMULATION

GUI

Global
Controller

Simulation Requester / Result Viewer

Visual Data Mining

Renderer
Image

data

Simulator
Tasks / Results

Queue

ns-2 Hybrid Inter-IP RTC-FSIM Time Series
Tool Managers

+ Simulators

Simulation
request

Status
notification

Numerical results

Request
Message
Queue

Simulator 1
Bean

Simulation
Request /

Result

Simulation
Request / Result

+ Data

DB
Access

Global
DB

XML
Repository

Simulation
result
storage

Monitoring
results

Figure 4.10: The part of the Intermon architecture concerned with simulation

repository). The user can then request further analysis of the simulation results,
which usually involves the preparation of images by Intermon’s Visual Data
Mining (VDM) toolkit.

4.4.2 Generating and Processing Simulation Jobs

A generic XML-based simulation job description format has been developed
to control the different integrated simulators in a common way. This format
separates the data into sections containing simulator-specific data and sections
with simulator-independent data. Simulation job descriptions are structured as
follows:

Topology: The simulator-independent topology contained in simulation job is
usually a BGP topology based on data previously collected by the Inter-
Route tool [43], which queries BGP data and reconstructs the topology
based on route advertisements and route withdrawals.

User applied changes: After selecting a BGP topology the user can make
changes to it. These changes will be encoded in XML and listed here.
Since each of the available simulators supports different kinds of actions,
the exact format of this part depends on the selected simulator. Possible
changes include removing a link, changing its capacity, or adding flows to
the scenario, amongst others.

Simulator specific parameters: Each simulator has some simulator specific
parameters that are not related to the topology. Those are encoded within
this section, enabling the user to supply general instructions and param-

4.4. TOOLKIT INTEGRATION 61

eters to the simulator. Examples of such parameters are the duration or
the granularity of the simulation.

<simrequest>

<BGPTopologyTree>

BPG topology from the topology detection tool
<AS>

AS description, possibly including recent BGP
path updates

</AS>

. . .
<Link>

Inter-AS link description
</Link>

. . .
</BGPTopologyTree>

<changes>

Simulator dependent changes/additions to the scenario
<action type=’’set link capacity’’

src=’’1111’’ dst=’’2222’’>

1M

Example action changing the link capacity between
ASs 1112 and 2222

</action>

</changes>

<params>

General parameters for the chosen simulator
</params>

</simrequest>

Figure 4.11: Structure of a simulation request

The XML job description is generated by the graphical user interface and sent
via the global controller to the tool manager of the appropriate simulator. Fig-
ure 4.11 shows a simplified XML simulation request as it would be sent to the
simulator.

4.4.3 The Tool Chain

Since network simulations can require a lot of computing power and also can
produce a huge amount of data, scalability was a central aspect during the
design and the implementation of the hybrid simulator’s tool manager and its
underlying tool chain (see Fig. 4.12). The system supports the processing of
simulation requests in parallel and thus supports multiprocessor computers as
well as computer clusters. Naturally, the simulator itself is not made parallel by
this mechanism. Parallelism can thus only be exploited if the simulation server
processes several simulation requests concurrently.

On top of the tool chain that processes the simulation requests resides the
tool manager, which handles communication with the global controller. When

62 CHAPTER 4. HYBRID SIMULATION

Tool Manager

Scheduler

Demultiplexer Simulator Multiplexer

Hands over received job description

Starts job processing

Parses XML
Creates simulator script

Parses trace files
Stores results in data repository
Generates XML reply

Figure 4.12: The hybrid simulator’s tool chain for the automatic processing of
simulation requests

it receives a simulation job, the tool manager automatically returns a short
message to the global controller signaling the graphical user interface that the
job was received and will be processed. After that the tool manager hands
the job to the scheduler, which stores the job description into a temporary
directory on the disk and then initiates a tool chain process for that directory.
After doing this the scheduler does not have to wait until the tool chain finishes
but is immediately ready to receive further job descriptions. The scheduler may
also decide on which computer/processor a particular job should be processed
and therefore can provide flexible load balancing.

The first steps in job processing consist of converting the XML simulation job
description into configuration files for the hybrid simulator, and then starting the
simulator. This is done by the demultiplexer component. After the simulation
has finished, the multiplexer components takes care of processing the simulator
tracefiles and stores the results in a data repository. Finally, it returns a message
telling the system by which URL the results can be obtained.

The messages returned by the hybrid simulator’s tool manager include some
descriptive comments on the content of the reply and indicate the processing
time and the status (e.g. running, ok, canceled, broken) of the simulation job.
As the simulators may produce several different types of results, multiple result
sections may be included in the reply, one for each desired measure (e.g. time
series of throughput, or of end-to-end delay on a certain path). The sub-results
have their own descriptive comment and a type identifier to help visualization.

Using a data repository is necessary since simulation results may grow too
large to be processed directly by the messaging system. Due to performance
reasons, the data repository is usually implemented as an FTP or HTTP server
located on the simulation computer/cluster. Alternatively, for small amounts
of data, the results may also be returned directly within the simulation reply.

4.5 Tests and Experiments

4.5.1 Domain and Inter-domain Link Model Tests

The hybrid simulator divides a network scenario into partitions that are assumed
to be free of congestion (called domains), connected by possibly congested inter-

4.5. TESTS AND EXPERIMENTS 63

domain links. Consequently, the accuracy of the approach depends to a large
extend on these two kinds of models.

Since domain models represent network areas without congestion they may
restrict themselves to simulating stationary delay usually based on delay mea-
surements from the real network. In order to evaluate the performance of a
domain model we can thus compare the measured delays we used for creating
the model to the simulated delays it generates. We have made delay measure-
ments between a computer at the University of Bern and a computer at the
ETH Zürich using ping. Both computers were 9 network hops away from each
other. The network between the University of Bern and the ETH Zürich is the
Swiss scientific network SWITCH, a high bandwidth network that hardly ever
suffers from congestion, which makes it a suitable candidate for modeling with
a domain model.

Extended node

ns-2 source
node

ns-2 sink
node

Domain
model

Rate estimators

Figure 4.13: ns-2 setup to simulate the delay of a single ISP

The simulation was run using the simple topology shown in Figure 4.13. A
constant flow of packets was sent from the source to the sink node within ns-
2. For both, measurements and simulation, we have used a packet rate of one
packet per second. On their way to the sink the packets encountered an extended
node containing a domain model of the network between Bern and Zürich. The
border links connecting ns-2 with this domain model were configured with very
high capacities in order not to distort the results.

Figure 4.14 shows the the histograms of both the measured and the simulated
delays. Both graphs show almost exactly the same delay behavior. This shows
that if we want to simulate a congestion-free part of a network, domain models
can be a very accurate way of modeling delay.

The packet simulated drop ratio of a flow of ns-2 packets sent through a
network modeled by the extension module depends on the accuracy of the inter-
domain link models as well as the behavior of the rate estimators. We have
evaluated the accuracy of both these elements by comparing the throughput
observed in a bottleneck scenario purely based on ns-2 scenario to the packet
loss ratio observed in a scenario that models the bottleneck link using an inter-
domain link model. The scenario consisted of three consecutive links, of which
the middle one was a 2Mbps bottleneck. We have studied the behavior of this
link under five kinds of traffic load: 1 Mbps, 2 Mbps and 4Mbps CBR traffic,
FTP traffic originating at 5 agents on the source node, and a mix of FTP traffic
from 3 sources and 1 Mbps CBR traffic. The topologies used in this experiment
are shown in Figure 4.15.

Figure 4.16 shows a comparison of the transfer rates achieved with both
topologies. In all three CBR scenarios the throughput observed with the pure
ns-2 topology was very similar to the throughput achieved with the inter-domain

64 CHAPTER 4. HYBRID SIMULATION

Measured delay

Seconds

F
re

qu
en

cy

0.004 0.005 0.006 0.007 0.008 0.009 0.010

0
20

0
40

0
60

0
80

0

Simulated delay

Seconds

F
re

qu
en

cy

0.004 0.005 0.006 0.007 0.008 0.009 0.010

0
20

0
40

0
60

0
80

0

F
re

qu
en

cy

Seconds

Simulated Delay

Seconds

F
re

qu
en

cy
Measured Delay

Figure 4.14: Delay histograms from measurements (upper graph) and simulation
(lower graph)

ns-2 source
node

ns-2 sink
node

Bottleneck

link

(a) Pure ns-2 scenario

Extended node

ns-2 source
node

ns-2 sink
node

Bottleneck

link

(b) Hybrid scenario

Figure 4.15: Simulation topologies for evaluating the throughput of inter-
domain link models

link model. Also in the FTP scenario we observe only a minimal difference.
The mixed scenario with CBR and FTP traffic appears to be more problematic.
With both, the ns-2 link and the inter-domain link model, the transfer rate
fails to reach the bottleneck capacity. The TCP-based FTP flows seem to be
unable to exploit the full 1Mbps capacity available to them. However, in the
hybrid topology they appear to fare better than in the pure ns-2 topology. We
believe this is due to the stochastic nature of dropping in the analytical inter-
domain link model. TCP reacts strongly to correlated drops. If it detects two
consecutive packet drops it halves its sending rate. The fact that the inter-
domain link model drops packets randomly makes this situation less likely in
the hybrid topology. This effect is similar to the behavior of random early
detection (RED) queues [30], which are known to enable higher transfer rates
with TCP than traditional drop-tail queues do. RED queues also drop packet
randomly when the buffer starts to fill up.

4.5. TESTS AND EXPERIMENTS 65

CBR-LOW CBR-FIT CBR-HI FTP MIX

0

0.5

1.0

1.5

2.0

NS-2 Link Analytical LinkMbps

Figure 4.16: Comparison of an ns-2 to an analytical link: transfer rates

We conclude that inter-domain link models accurately can model throughput
and packet loss in many scenarios. However, the throughput achieved by TCP
flows may get overestimated in cases where correlated packet drops are frequent.

4.5.2 Scalability Test

In order to demonstrate the scalability of our inter-domain simulation approach
we have created two ns-2 scenarios of different complexity. They are shown in
Figures 4.17 and 4.18. In the small scenario a G.711 voice stream between the
nodes n1 and n4 was used as reference stream. FTPDATA flows were configured
between the nodes n2.1 and n3.2 as well as the nodes n2.2 and n3.1. The middle
link is the bottleneck in this scenario.

n1 n4

n2.1

n2.2

n3.1

n3.2

4 mbps
6 mbps

Figure 4.17: Scalability test – small scenario

In the big scenario shown in Figure 4.18 the topology and the traffic flows
are more complicated. Again, G.711 reference traffic was transmitted between
n1 and n4. Additionally, each of the leaf nodes on the left sent an FTPDATA
flow to a leaf node on the right, determined by the following pattern: if the
source node’s ID is n2.1.x.y it sends traffic to n3.2.y.x. Conversely, if its ID is
n2.2.x.y it sends traffic to n3.1.y.x. This scheme results in a fairly complicated
cross-traffic pattern. Again, the bottleneck in this scenario is the middle link.

We have modeled both scenarios using a multi-domain model (Figure 4.19)
consisting of two domain models A and B and an inter-domain link model as
a bottleneck between them. For the small scenario the domain models were
configured to have zero delay since the ns-2 nodes they represent do not model
any delay either. For the big scenario the domain models were configured using
delay distributions extracted from the ns-2 simulation traces. A represents the
source nodes and B represents the sink nodes. This mapping is possible since

66 CHAPTER 4. HYBRID SIMULATION

n1 n4

n2.1.1.1 – n2.1.1.4 n2.1.2.1 – n2.1.2.4 n2.1.3.1 – n2.1.3.4 n2.1.4.1 – n2.1.4.4

n2.2.1.1 – n2.2.1.4 n2.2.2.1 – n2.2.2.4 n2.2.3.1 – n2.2.3.4 n2.2.4.1 – n2.2.4.4

n3.1.1.1 – n3.1.1.4 n3.1.2.1 – n3.1.2.4 n3.1.3.1 – n3.1.3.4 n3.1.4.1 – n3.1.4.4

n3.2.1.1 – n3.2.1.4 n3.2.2.1 – n3.2.2.4 n3.2.3.1 – n3.2.3.4 n3.2.4.1 – n3.2.4.4

8 mbps
6 mbps

4 mbps
2 mbps

1 mbps

Figure 4.18: Scalability test – big scenario

ns-2 source
node

ns-2 sink
node

A B

Bottleneck link

XS1

XS2

XD1

XD2

Figure 4.19: Scalability test – inter-domain model scenario

there is no bottleneck link in these groups of nodes. In order to add some
dynamics to the scenario, we configured ns-2 generated FTPDATA cross traffic
from XS1 to XD2 and from XS2 to XD1.

We ran both scenarios in ns-2 and compared simulation run time to the time
required to simulate the inter-domain model scenarios. The results are shown
in Figure 4.20. We observe that the small scenario and took virtually the same
amount of time in the original ns-2 simulator as in the hybrid simulator. Both
simulators used around 20 seconds. The big scenario however takes much longer
to simulate in ns-2 while the hybrid simulator requires only slightly more time to
simulate it. This is no surprise considering the very similar multi-domain models
for both scenarios. Nevertheless, these results demonstrate the scalability gain
that can be achieved with suitable abstract scenarios.

Seconds ns-2

Small scenario Big scenario

500

400

300

200

100

0

Hybrid sim

Figure 4.20: Run times observed in the scalability test

4.5. TESTS AND EXPERIMENTS 67

4.5.3 Comparison to Testbed Measurements

In order to evaluate the performance of the simulator compared to a real net-
work we set up a testbed experiment using the extended cross traffic topology
shown in Fig. 4.21. All nodes were Intel-based Linux systems, interconnected
by 100 mbit ethernet links.

A

B

D

C

E F

G

H

Figure 4.21: Testbed topology

Three traffic flows were sent through the network: one from node A to H, one
from B to G, and one from C to G. We used the flow from A to H as reference
for comparison with the simulator results. Each of these flows consisted of
several 1 mbit/s CBR sub-flows, which entered the network with Pareto inter-
arrival times and remained for an exponentially distributed amount of time.
The traffic patterns were precomputed and stored in trace files, one for every
traffic generator. During the experiment the traffic generators would then read
these files and generate traffic accordingly. Figure 4.22 plots the traffic loads
produced by each of these sources. For top graph displays the sum of the three
individual flows. When it rises beyond the theoretical maximum link capacity
indicated by the dashed line we can expect queues to build up. This will lead
to increased delay and packet loss.

 0

 20

 40

 60

 80

 100

 120

 140

 0 100 200 300 400 500 600

M
bp

s

Time (sec)

Total offered load
Load from A
Load from B
Load from C

Max. capacity

Figure 4.22: Generated traffic in the testbed

The corresponding simulation scenario was configured as follows: The eth-
ernet links were modeled with inter-domain link models of the same capacity.
As the delay introduced by the Linux nodes was expected to be minimal we
chose to model them by domain models with zero delay. Interfaces to ns-2

68 CHAPTER 4. HYBRID SIMULATION

were attached at A and H, and a reference stream of packets generated by ns-2
was sent along the path A-D-E-F-H to determine delay and loss ratio. Inside
the extension module, trace-driven application traffic models generated traffic
according to the same trace files as used in the testbed.

Figure 4.23: Comparison of delays from testbed and simulation scenario

Figures 4.23 and 4.24 show a comparison of measurements and simulation re-
sults. The delays in the testbed showed very little variance even with full queues,
which is due to the CBR characteristic of the generated traffic. Consequently,
the inter-domain link models, expecting Poisson arrivals, overestimated the traf-
fic’s burstiness. Nevertheless, the mean of delay was similar in both, testbed
results and simulator traces. In order to illustrate this, Figure 4.23 shows the
simulated delays as a dot cloud and the measured delays as a line. Both graphs
match rather well. Only when nodes E and F are under full load, packet for-
warding in the routers begins to slow down slightly, which leads to the small
gap between simulated and measured delays.

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 100 200 300 400 500 600

oitar tuphguo rhT

Time (sec)

Measured throughput (filtered)
Simulated throughput

Figure 4.24: Comparison of throughput from testbed and simulation scenario

4.5. TESTS AND EXPERIMENTS 69

In contrast to delay the throughput in the testbed proved to be rather bursty.
This didn’t have much effect on the delay as the effect was hardly noticeable in
comparison with queuing delay. However, the resulting small transient queues
caused the throughput graph to be rather noisy. The graph in Fig. 4.24 was
therefore smoothed using a box filter. Nonetheless, it can be seen that the
simulated values closely match the testbed measurements.

70 CHAPTER 4. HYBRID SIMULATION

Chapter 5

A Peer-to-Peer Distance
Prediction Service

5.1 Introduction

A fundamental strategy of the Internet is to move complexity away from the net-
work core towards the network endpoints. Protocols and architectures focus on
end-to-end mechanisms for adaptivity and do not require feedback from network-
internal devices to detect and adapt to varying network conditions. Peer-to-peer
and overlay networks are sophisticated cases of this design approach.

The structure of peer-to-peer networks continuously changes due to nodes
joining or leaving the network. They may also dynamically change their struc-
ture in order to adapt to changing characteristics of the underlying physical
network. This property makes it hard to predict their performance using a sim-
ulation approach like the one we presented in Chapter 4. The cost of creating a
simulation scenario and running the simulator is too high to do this each time
a peer-to-peer network changes its structure.

Nevertheless, peer-to-peer networks still require predictions of the underlying
network’s characteristics in order to adapt. A simple and wide-spread method
is to perform round-trip time measurements between the peer-to-peer nodes
and choose the topology based on the results. However, this method may be
inefficient because of the potentially large number of measurements. There are
numerous architectures and frameworks aimed at optimizing this problem. Dis-
tance estimation services provide estimates of end-to-end characteristics based
on a small number of measurements. In Section 3.4 we have given an overview
of the existing work and its drawbacks, and we have discussed the different as-
pects we believe are crucial for the success of a given approach. In this chapter
we now present a cluster-based end-to-end distance prediction service that was
designed to perform well with regard to these aspects. After giving an overview
of the service in Section 5.2, we describe the algorithms for the construction
of the peer-to-peer structure and for the measurement-based identification of
remote clusters in Sections 5.3 and 5.4, respectively. In Section 5.5 we have
a closer look at the service’s architecture. We present and discuss simulation

71

72 CHAPTER 5. PEER-TO-PEER DISTANCE PREDICTION SERVICE

results in Section 5.6. Finally, we present the design of a prototype implemen-
tation and the corresponding tests in Section 5.7. The work in this chapter was
also presented in [118] and[117].

5.2 Overview of the Proposed Service

Basic Approach

We propose a distance measurement and prediction service that provides a com-
mon distance measurement API to network applications and reduces the mea-
surements made by coordinating the measurement activities. If an application
requests a distance measurement to a known target, the service may return a
prediction rather than making an actual measurement. The service architec-
ture is made up of groups of nodes from the same network location. Inside
these groups, the nodes form a small peer-to-peer network to exchange and
store distance measurements and predictions. The basic structure of this ar-
chitecture was originally inspired by mOverlay. In [145] the authors propose to
use mOverlay groups as the basis for a distance estimation system. However,
the group concept is the only part of our architecture that remains similar to
mOverlay.

Measurements are mostly obtained by observing the regular application traf-
fic of the group members. Applications may notify the service about network
conditions they observe during normal operation. Additionally, network mon-
itors may be used to extract measurements from application flows. If needed
the service may also actively measure distances. Nevertheless, we expect that
passive measurements should be sufficient in most cases since the measurement
requests from clients tend to pertain to the same hosts that the clients com-
municate with. In other words, the most popular measurement targets we will
automatically have the most measurement data available. As such, the basic
approach of the service resembles that of a web proxy server.

Although the construction algorithms of the approach focus on round-trip
time, it is not limited to that measure and can easily handle other types of
measurements. Moreover, because of the amount of available distance measure-
ments, we can employ statistical methods for identifying trends and variances
and even calculating predictions of future distances.

Clustering

The number of distinct measurement targets the service has to handle may be
quite large. However, we can often find clusters of measurement targets that can
be treated as a single unit, normally because they are near to each other in the
network topology. This kind of clustering may greatly reduce the complexity of
storing and managing measurement data.

We use the following definition of a cluster. Let N be the set of endpoints
in the network. dt : N × N 7→ R+

0 is a time dependent distance function if
and only if, for all n ∈ N , dt(n, n) = 0. Note that, in contrast to Euclidean
geometry, neither symmetry

(
d(n, m) = d(m,n)

)
nor the triangle inequation(

d(n, m) + d(m, o) ≥ d(n, o)
)

are required. Given a distance function d we call

5.2. OVERVIEW OF THE PROPOSED SERVICE 73

Table 5.1: Terms used in our distance prediction service

Cluster A set of nodes that are near enough to each other in the network
topology to be treated as an equivalence class with regard to
distance measurements. Nodes belonging to a cluster are not
necessarily aware of that fact. We refer to a node’s cluster as its
local cluster. Conversely, we refer to all other clusters as remote
clusters.

Group Groups are the basic organizational units of the distance predic-
tion service. They consist of nodes from the same cluster that
communicate with each other to coordinate measurements and
exchange the resulting data. We refer to a node’s group as its
local group. Conversely, we refer to all other groups as remote
groups.

C ⊆ N a cluster with respect to d if and only if, for all points t in time

|dt(o, n)− dt(o,m)| < ε, ∀ n, m ∈ C, ∀ o ∈ N \ C (5.1)

where ε is a threshold that depends on the statistical error. The endpoint o is
called the observing node. If two endpoints belong to the same cluster they are
called neighbors. The sets {n} and N are trivial cases of clusters. If C ⊆ D, we
call cluster C a subcluster of cluster D and D a supercluster of C.

It is important to note the difference between the terms cluster and group.
We use the term cluster for sets of nodes that can be treated as equivalence
classes with respect to distance measurements. Nodes belonging to a cluster may
not be aware of the fact. Conversely, a group is an organizational unit of several
nodes that coordinate their distance measurements and exchange the resulting
data. This exchange of distance measurements is only possible if all group
members belong to the same cluster (see Equation (5.1)). Accordingly, there
is a direct relationship between the concepts of clusters and groups. Table 5.1
gives short definitions of both terms for later reference. A practical use of the
relationship between groups and clusters is that, since they are clusters, groups
can be treated as single units by other groups. Figure 5.1 illustrates the concept.
When predicting distances, the local group does not distinguish between remote
hosts and remote groups.

We use two distinct algorithms for identifying groups and clusters, respec-
tively. The algorithm used to form groups is described in Section 5.3. In Sec-
tion 5.4 we present a method to identify neighbors from a single observing node
using time series of measurements, and we show how to use this information to
build clusters.

Group Organization

Groups are roughly organized as follows. A group leader keeps track of the group
members and helps joining nodes find an appropriate group. In order not to
create a single point of failure several members of the group can be assigned as
backup leaders. Normal group members handle the measurement and prediction
requests coming from client applications.

74 CHAPTER 5. PEER-TO-PEER DISTANCE PREDICTION SERVICE

Local
Group

Cluster 1

Cluster 2

Remote group

Figure 5.1: Clustered view of the network from the vantage point of a single
group

Measurements and prediction models are kept in a distributed repository
based on a distributed hash table (DHT) approach. Each group member is re-
sponsible for storing the data of a given set of clusters. The DHT serves as a
lookup mechanism for finding the responsible group member, given a cluster ID
or the IP address of a measurement target. When an group member receives a
distance prediction request it first searches the repository for existing informa-
tion about the target in question. If successful, it returns a predicted distance
value and the corresponding estimated error. Based on the estimated error the
application may then decide to use the predicted distance or to initiate an active
distance measurement.

Advantages of the Proposed Service

The proposed service was designed with regard to the different aspects of dis-
tance estimation services discussed in Section 3.4. A main advantage of the
approach is that it can provide accurate predictions to hosts anywhere on the
Internet even if it is deployed only at a single site. It does not require a large
deployment in order to be useful. Other distance estimation approaches only
yield meaningful results for distances inside the network area in which they are
deployed. Beyond this area, the error grows dramatically. Furthermore, the
service’s peer-to-peer structure does not require any additional network infras-
tructure and makes it scalable and robust.

Unlike other approaches, the proposed service not only provides estimates of
average round-trip times but is able to compute more sophisticated predictions
for any kind of distance measurement. The resulting increased storage and CPU
requirements are distributed over the peer-to-peer network.

5.3 Locating Groups

The problem of assigning nodes to groups based on their proximity in the un-
derlying network topology has been addressed by other approaches. Binning
[104] assigns nodes to a partition of an n-dimensional space based on their po-
sition in the network. IDMaps uses groups of nodes with identical IP address
prefixes assuming that similar addresses imply closeness in the underlying net-
work. However, the groups identified by these approaches are rather coarse
grained and thus not suitable as basis for our architecture. In a first step we

5.3. LOCATING GROUPS 75

have considered using mOverlay’s group locating algorithm (described in Sec-
tion 3.3) for our architecture. Unfortunately, this locating algorithm has a
number of shortcomings, which prompted us to create our own algorithm based
on Meridian’s closest node search [139].

A problem of mOverlay is its topology. Because the groups choose neighbors
from their close proximity the logical links between the groups are very short.
This affects the performance of the locating algorithm, since the algorithm fol-
lows the topology and thus can only make small steps towards the target node. If
the target node is far away, taking bigger steps would be more efficient. Another
problem is that mOverlay’s topology is prone to so-called net-splits.

Group 3

Group 5Group 6

Group 4 Group 1

Group 7

Group 8

Group 2

Rendezvous
Point

Joining
Node

Grouping check using
verification nodes

Path taken by
the algorithm

Figure 5.2: Alternative algorithm using Meridian’s closest node search and
mOverlay’s grouping criterion

In order to overcome these problems we have defined an alternative group lo-
cating algorithm based on both mOverlay and Meridian (a description of Merid-
ian can be found in Section 3.3). mOverlay groups are constructed based on the
following grouping criterion [145]:

When the distance between a new host Q and group A’s neighbor
groups is the same as the distance between group A and group A’s
neighbor groups, then host Q should belong to group A.

We take the group concept from mOverlay but change the overlay structure.
The groups no longer have direct neighbors. Instead, each group leader joins a
network of Meridian nodes and uses Meridian’s node cache as neighbor table.
When a new node wants to join, it goes through the following procedure:

1. The new node locates a boot node (i.e. a group leader) by sending a request
to the rendezvous point.

2. It then asks this boot node to start a Meridian closest node search with
itself as target. The search returns the address of the closest group leader
to the joining node.

3. At this point, the new node checks the grouping criterion to find out
whether or not to join this group. If the criterion is met the new node
joins the group. Otherwise, it creates a new group and becomes a Meridian
node itself.

The algorithm is illustrated in Figure 5.2.
For checking the grouping criterion we use Meridian’s node cache instead

of the direct neighbors used in mOverlay’s algorithm. The group leader found
by the closest node search selects a randomly chosen set of verification nodes
from its node table and creates a list of addresses and latencies to these nodes.
The new node receives this list and in turn measures its latency to each of

76 CHAPTER 5. PEER-TO-PEER DISTANCE PREDICTION SERVICE

the verification nodes. This provides us with two comparable sets. Because
mOverlay’s grouping criterion is formulated in general terms we need to specify
exactly when two distances can be considered “the same.” We say distances x
and y are the same if

x ≥ y ∧ (1− g) · x ≤ y
∨ x < y ∧ (1− g) · y ≤ x

(5.2)

for a grouping threshold g ∈ [0, 1). The test checks the relative difference between
two distances. For example, with a grouping threshold of 0.05 we consider two
distances the same if they are within ±5% of each other. A new node joins a
group if test (5.2) succeeds for every verification node.

We believe that this combined approach to grouping nodes solves the prob-
lems discussed above. Meridian’s closest node search makes the search more
efficient. The approach is also less prone to net-splits than mOverlay because
Meridian nodes maintain a more diverse set of peer nodes. The loose overlay
structure also makes the system more resilient to node failures. A possible draw-
back of our algorithm is that it only checks the grouping criterion for a single
group, which bears the danger that the algorithm might skip over the optimal
one. Fortunately, the results in Section 5.7.2 suggest that this kind of error is
rare.

5.4 Identifying Remote Clusters

5.4.1 Background

In order to make storing and predicting distances to remote nodes more efficient
we have developed a method to detect whether two given remote nodes can be
clustered based on their proximity to each other. A fundamental restriction we
followed is that we cannot expect the remote nodes to run any non-standard
software. Consequently, it becomes impossible to ask one of the nodes to mea-
sure its distance to the other. The reason for this restriction is that if we do
not require any special functionality on the remote nodes we can find clusters
of nodes that are not members of the overlay network. Thus, we can use a
clustering approach even if we deploy the proposed service only at a single site.
In this section we describe a method to identify a possible neighborship of two
remote nodes, based only on time series of distance measurements to these nodes
made from a single observation point. This method can be used for both, mea-
surements of round-trip time and measurements of available bandwidth (and
possibly others we did not consider).

In order to detect neighborships between remote nodes we define distance
difference functions δo(n, m), which take values close to 0 if dt(o, n)−dt(o,m) ≈
0 (the positive case), and larger values otherwise. We require these functions to
be commutative, i.e. δo(m,n) = δo(n, m).

With a single observation point a single measurement to two endpoints is
not sufficient for cluster detection. However, similarity in several successive
measurements may indicate a neighborship. We therefore use time series of
measurements for distance difference estimation. From the field of network to-
mography [20, 28] we know that time series of end-to-end delay measurements
can in fact indicate whether two nodes are close to each other in the network

5.4. IDENTIFYING REMOTE CLUSTERS 77

d2

d1

s

Time

Time

Time

Time

Time

Influences of path segments Resulting measurements

Figure 5.3: Impact of common path segments on end-to-end measurements

topology. This can be used to detect the routing tree between a measuring node
and a group of peer nodes [19]. The basic idea is illustrated in Fig. 5.3. The
three boxes on the left show the evolution of a given link property (e.g. queuing
delay) over time. The two boxes on the right show the impact on the end-to-end
measurements. Note that the influence of the common link (the two negative
peaks) is observed by both peers, whereas the influence of the other links can
only be observed by one peer each. Such similarities can be used to estimate
the length of the common path segment. The closer the peers, the more similar-
ities can be observed. In the following we define a measurement-based cluster
identification method that uses a different approach than network tomography
but is based on the same properties of end-to-end distance measurements.

Time series methods require uniform intervals between observations. How-
ever, measurements often come in irregular intervals. They can be described
as tuples (t, v, p) of a value v observed at time t for peer p. We define a com-
mon base time Tmin and a time step ∆t. The step size is given by the mini-
mum time interval between two consecutive observations of the same peer, i.e.
∆t = minp∈P

(
mini(tp,i+1 − tp,i)

)
where P is the set of all peers. Then, we

compute the normalized time series by linear interpolation of the input series
at the instants Tmin + i ·∆t.

Measurements we have performed on the Internet indicate that the standard
deviation of available bandwidth grows approximately linear with the mean.
We transform this multiplicative relationship between deviation and underlying
trend into an additive one by applying the natural logarithm to every element
of the normalized time series. Note that this only applies to measurements of
available bandwidth.

5.4.2 Distance Difference Calculation

In order to detect whether two measurement targets are neighbors (i.e. belong to
the same cluster) we compute distance differences between their respective time
series. Distance difference values close to 0 indicate a neighborship. We combine
two separate distance difference functions to make the cluster identification
process more robust. These distance difference functions are applied to both,
time series of round-trip time and available bandwidth, although with different
parameters to account for the different characteristics.

If two remote endpoints belong to the same cluster, the distance measured
to one endpoint should be a good estimate for the distance to the other. Ac-

78 CHAPTER 5. PEER-TO-PEER DISTANCE PREDICTION SERVICE

cordingly, the first distance difference function identifies pairs of time series x,
y where this is the case. We consider yt to be a good estimate of xt if yt lies
within an n-percent band around xt. We detect violations of this rule using the
following function

ob(xt, yt) =
{

0, (1− b)xt ≤ yt ≤ xt/(1− b)
1, otherwise

(5.3)

Parameter b denotes the size of the band. E.g., b = 0.02 denotes a 2% band.
We chose the definition of ob from (5.3) to ensure that ob(xt, yt) = ob(yt, xt).
Based on ob we define the distance difference function Ob, which calculates the
ratio of pairs xt, yt outside a band of size b of each other.

Ob(x, y) =
∑N−1

t=0 ob(xt, yt)
N

(5.4)

where N is the length of the times series. A value of Ob(x, y) = 0 means that
100% of both time series are inside each others band. Unfortunately, Ob is
sensitive to outliers. In order to make the approach more robust to outliers we
introduce a threshold parameter tO ∈ [0, 1]. The criterion for neighbor detection
thus becomes Ob(x, y) ≤ tO.

The Ob distance difference function in (5.4) detects similar measurement
values, but it does not detect systematic differences between time series. Ac-
cordingly, we define a second function to check if the time series are unbiased
estimators of each other. The relative bias between two time series x and y with
mean values x and y is calculated with

B(x, y) =
{

1− x/y, x ≤ y
1− y/x, x > y

(5.5)

Again, we have chosen the definition such that B(x, y) = B(y, x). Using the
threshold parameter tB the second criterion becomes B(x, y) ≤ tB . This defi-
nition of B is closely related to the parameter b of Ob in (5.4): If Ob(x, y) = 0
for time series x and y, it follows that B(x, y) ≤ b. Accordingly, values for
threshold tB should be chosen in the range [0, tO].

We combine both criteria for cluster identification. Two endpoints are con-
sidered neighbors if they satisfy Ob(x, y) ≤ tO ∧B(x, y) ≤ tB . The algorithm
therefore depends on the three parameters b, tO, and tB . We will investigate
the influence of both functions in Section 5.7.2.

We cannot give definite values for the parameters because we do not have any
a priori knowledge about the statistical error in the input time series. However,
the parameters can be approximated by applying cluster identification to a
set of known reference clusters. The parameters should be chosen such as to
maximize the number of detected neighborships while keeping the number of
false positives close to zero. In the following section we investigate the properties
of the approach further using a simple statistical model.

5.4.3 The Clustering Algorithm

Based on the distance difference functions from above we can now construct
clusters of remote hosts. We use the well-known hierarchical clustering method

5.4. IDENTIFYING REMOTE CLUSTERS 79

[57] for this task. This algorithm requires a measure of distance between two
clusters. In our case we use the following clustering factor for clusters C =
{x1, . . . , xn} and D = {y1, . . . , yn}:

G(C,D) =
1

C ·D

n∑
i=1

m∑
j=1

Ghost(xi, yj) (5.6)

where

Ghost(x, y) =
{

Ob(x, y), Ob(x, y) ≤ tO ∧B(x, y) ≤ tB
∞, otherwise.

(5.7)

In other words, the clustering factor between two clusters is the mean out-of-
band ratio between its members, or infinity if there is at least one combination
of hosts xi and yi that cannot be neighbors (i.e., that cannot belong to the same
cluster according to the neighbor detection algorithm).

The algorithm works as follows: We start with a set of hosts h1, . . . , hn. For
each we create a cluster {hi}. Then, we find the two clusters C,D with the
smallest clustering factor and combine them to a new cluster E, which replaces
C and D. We repeat this until either the minimum clustering factor of the set
is infinity or there is only one cluster left.

5.4.4 Analysis

The above neighbor identification approach leaves two important points open:
The choice of thresholds tO and tB , and the number of measurements it takes
to reliable accept or reject a possible neighborship. Although the experiments
in Section 5.7.2 yield some answers, an analytical model of the approach would
help understanding the factors that influence the performance of the approach.
In this section we present an analysis of the method based on a simple network
model.

Statistical Model

In order to formalize the approach we consider the rather simple statistical
model of a measurement scenario shown in Figure 5.4. Consider an observer
node and two peer nodes that are possibly neighbors. The paths from the
observer to each of the peers share k common links which we call the trunk.
Then, the paths split into two independent branches. We assume that the
distance imposed by each link follows a normal distribution and is independent
of other links. The notation X ∼ N(µ, σ2) indicates that the random variate X
follows a normal distribution with mean µ and variance σ2. This scenario is a
slight oversimplification of reality but it allows for considerably easier modeling
of the scenario.

Because of the normality and independence of the single links we can combine
the links of the trunk and both branches into three macro-links T , B1, and B2

(see Figure 5.5). Just like the single links they follow a normal distribution and
are independent of each other.

The time series used for neighbor detection consist of pairs of measurements
made simultaneously to both peers. Consequently, the trunk T has no influence
on the difference between the measurements. We define D = B2 − B1 and

80 CHAPTER 5. PEER-TO-PEER DISTANCE PREDICTION SERVICE

Observer

~N(µ1 , σ1)
2

~N(µk , σk)
2

~N(µl , σl)
2 ~N(µm , σm)

2

~N(µk+1 , σk+1)
2 ~N(µl+1 , σl+1)

2

Peer 1 Peer 2

Figure 5.4: Detailed statistical
model

Observer

T ~ N(µT , σT)
2

B2 ~ N(µB2 , σB2)
2B1 ~ N(µB1 , σB1)

2

Peer 1 Peer 2

Figure 5.5: Simplified statistical
model

note that D ∼ N(µB2 − µB1 , σ
2
B2

+ σ2
B1

). We also define the random variate
X = T +B1 for the distance between the observer and first peer, and Y = X+D
for the distance between the observer and second peer.

Analysis of the Out-of-band DDF

Choice of tO We apply the above model to Equation 5.3, which gives the
following rule for in-band measurements

(1− b)(T + B1) ≤ T + B1 + D
∧ T + B1 + D ≤ (1− b)−1(T + B1)

(5.8)

The two parts of the expression describe the lower and upper bounds of the
test’s relative band, respectively. With some transformation we can write the
two parts as

D + b(T + B1) ≥ 0
(b− 1)D + b(T + B1) ≥ 0 (5.9)

Note that the left parts of the transformed expressions also follow a normal
distribution. Since these expressions are derived from the test for in-band mea-
surements, the probability of an out-of-band measurement is the same as the
probability that either of these expressions is violated. We can thus compute
the theoretical ratio of out-of-band measurements with

Ob =P
(
D + b(T + B1) < 0

)
+

P
(
(b− 1)D + b(T + B1) < 0

) (5.10)

These probabilities are equal to the CDF of the corresponding normal distri-
butions at 0. The means and variances of these distributions are given below.

5.4. IDENTIFYING REMOTE CLUSTERS 81

For readability we write U for the term D + b(T + B1) and V for the term
(b− 1)D + b(T + B1).

µU = µD + b(µT + µB1)
σ2
U = σ2

D + b2(σ2
T + σ2

B1
)

µV = (b− 1)µD + b(µT + µB1)
σ2
V = (b− 1)2σ2

D + b2(σ2
T + σ2

B1
)

(5.11)

Equation (5.10) thus becomes Ob = P (U < 0) + P (V < 0) with U ∼ N(µU , µ2
U)

and V ∼ N(µV , µ2
V).

Using this model we can compute a good choice of threshold tO for a given
scenario: We choose a borderline scenario and a bandwidth b and simply let
tO be the resulting out-of-band ratio Ob. Alternatively, if we wish to use a
predefined threshold tO, we can also determine an adequate bandwidth b given
a fixed tO using numerical approximation.

Required Sample Size A single out-of-band test is not enough to determine
a possible neighborship of two nodes. We need several measurements to reliably
answer this question. The question is, how many?

The original algorithm detects neighbors if the ratio of out-of-band measure-
ments is smaller or equal than the pre-determined threshold. Given n measure-
ment pairs, the maximum number of out-of-band events is bn · tOc. Because
the out-of-band test is a Bernoulli experiment (i.e., a yes/no experiment) the
number of out-of-bound events is binomially distributed. We consider the bor-
derline case where the probability of an out-of-bound event is equal to tO. The
probability of detection with n samples is given by

bn·tOc∑
k=0

k ·
(

n

k

)
tkO (1− tO)n−k (5.12)

Given a threshold tO and a desired probability of detection we can thus find a
suitable number of measurements n.

Analysis of the Relative Bias DDF

Like in the out-of-band case we would like to have a more formal representation
of the relative bias test from Equation 5.5. Using the empirical means X and
Y of the random variates X and Y (defined in Section 5.4.4) we can write the
DDF as

B(X,Y) =
{

1−X/Y D ≥ 0
1− Y /X D < 0

(5.13)

For analysis we distinguish the cases D ≥ 0 and D < 0. In the case D ≥ 0 we
derive the following rules

tB ≥ 1−X/(X + D)

tB(X + D) ≥ D

tBX − (1− tB)D ≥ 0

82 CHAPTER 5. PEER-TO-PEER DISTANCE PREDICTION SERVICE

The left part of the last inequation follows a normal distribution with

µ
(
tBX − (1− tB)D

)
= tBµX − (1− tB)µD

σ2
(
tBX − (1− tB)D

)
= t2B

σ2
X

n
− (1− tB)2

σ2
D

n

where n is again the sample size.
For the case D < 0 we obtain similar results

tB ≥ 1− (X + D)/X

tBX ≥ D

tBX −D ≥ 0

Again, the left part of the last inequation is normal, with parameters

µ
(
tBX −D

)
= tBµX − µD

σ2
(
tBX −D

)
= t2B

σ2
X

n
− σ2

D

n

Consequently, the relative bias test fails if with probability

P (D ≥ 0) · P (tB(T + B1)− (1− tB)D < 0)
+ P (D < 0) · P (tBX −D < 0)

(5.14)

which can be computed with commonplace numerical tools.

Numerical Examples

Based on this network model we study the behavior of the out-of-band test and
the bias test. We consider a trunk length of 95 links and two branches of 5 links
each. The links have a mean distance of 1 unit (for example 1 millisecond), with
varying standard deviation per link.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Ex
pe

ct
ed

 o
ut

-o
f-b

an
d

ra
tio

Standard deviation of the branches

1% band
2% band
3% band
4% band
5% band

Figure 5.6: Expected out-of-band ratio for several band sizes

Figure 5.6 shows the expected out-of-band ratio for bands of 1–5% and
a standard deviation of the branches between 0 and 5 distance units. In this

5.4. IDENTIFYING REMOTE CLUSTERS 83

example, the distance caused by the trunk is zero. We observe that the expected
out-of-band ratio never reaches zero unless the standard deviation is zero as well.
This means that we must expect to see out-of-band measurements in virtually
all situations and should choose the threshold accordingly. A test assuming
zero out-of-band ratio will in many cases not detect a neighborship even if the
distances to both targets is very similar. Since in a real network there is always
the chance of an outlier we have to choose tO > 0 in order to reliably detect
neighbors.

In a second example we study the probability to detect a neighborship de-
pending on the number of measurements. Here, each link has a standard devi-
ation of 10% of its mean distance. If we use a 1% band the test should reject a
possible neighborship of the targets. With a 2% band it should detect a neigh-
borship. Figure 5.7 shows the probability to detect a neighborship for 1–100
measurements.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 10 20 30 40 50 60 70 80 90 100

Pr
ob

ab
ilit

y
of

 a
cc

ep
ta

nc
e

Number of measurements

1% band, no outliers allowed
1% band, up to 5% outliers

1% band=2%, up to 5% outliers, at multiples of 20

(a) 1% band

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

Pr
ob

ab
ilit

y
of

 a
cc

ep
ta

nc
e

Number of measurements

2% band, no outliers allowed
2% band, up to 5% outliers

2% band=2%, up to 5% outliers, at multiples of 20

(b) 2% band

Figure 5.7: Acceptance probability of the out-of-band test with 10% standard
deviation

Figure 5.7(a) shows the case of a 1% band. If we choose tO = 0, 18 mea-
surements are enough to reject the neighborship with 95% probability. With
tO = 5% however, we observe “steps” in the probability graph. These are due
to the nature of the test. If we observe an outlier in 19 measurements we reject
the neighborship because the percentage is greater than 5%. However, if we
observe and outlier in 20 measurements, it is within these 5%. Accordingly,
when we use a threshold tO > 0 we have to choose the number of measurements
accordingly. With tO = 5% we use multiples of 20 measurements. The third
graph in Figure 5.7(a) shows that in this case 40 measurements are necessary
to reject a neighborship with more than 95% probability.

As mentioned above, threshold tO should never be zero. Figure 5.7(b) illus-
trates this. With zero threshold the probability to detect a neighborship declines
with a rising number of measurements due to the rising probability of at least
on outlier. Conversely, with a 5% threshold 20 measurements are enough to
detect the neighborship with 99% probability.

A weakness of the out-of-band test is that it cannot detect a small but
systematic difference between two targets if there is very little variance in the
distance measurements. The bias test compensates for this weakness. In the
following example the trunk still consists of 95 links, but the branches now

84 CHAPTER 5. PEER-TO-PEER DISTANCE PREDICTION SERVICE

have 4 and 6 links, respectively. This should be detected by the bias test when
checking for a 1% relative bias or greater. The standard deviation on each link
in this example varies between 0 and 75% of the link’s length.

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 10 20 30 40 50 60 70 80 90 100

Pr
ob

ab
ilit

y
of

 b
ia

s
de

te
ct

io
n

Number of measurements

SD = 5% of link length
SD = 10% of link length
SD = 20% of link length
SD = 50% of link length
SD = 75% of link length

Figure 5.8: Probability to detect a 1% bias for varying standard deviation

From Figure 5.8 we see that the bias can be reliably detected with very few
measurements if the standard deviation is small. For very large standard devi-
ation, the number of necessary measurements becomes much greater. Nonethe-
less, this is not a problem since the bias test is aimed at compensating errors in
low variance scenarios.

5.5 The Peer-to-Peer Prediction Architecture

The architecture of our end-to-end distance prediction service is based on a
peer-to-peer approach where nodes that are close together in the underlying
topology join the same groups to exchange and coordinate measurements. We
use a two-layer architecture. On the loosely connected global layer, inter-group
communication takes place. On the local layer, the members of each group
are integrated into separate, structured peer-to-peer networks that serve for
efficient, distributed storage of measurement data and prediction models (see
Figure 5.9).

Group 1

Group 2

Group 3

Group
4

Global layer
Group leader

Figure 5.9: The two-layer structure of the service

5.5. THE PEER-TO-PEER PREDICTION ARCHITECTURE 85

Groups are largely independent of each other and can function without in-
teraction to other groups, with the exception of the group localization procedure
new nodes go through to find a suitable group to join. Each member of a group
provides an API to client processes on its end system. Clients can request mea-
surements and predictions through this API. In order to take advantage of the
implicit measurements done by normal traffic, applications can also send such
measurements back to the service. For example, when a web server has sent a
large file to a client it can submit the achieved TCP throughput value to the
service. A network traffic monitor would also use the same API to submit mea-
surements. The group maintains a repository of measurements and prediction
models distributed among the peers. In order to reduce the number of remote
endpoints that the repository has to keep track of, we use clustering. Remote
nodes that are not members of the distance prediction service (so-called non-
member nodes) are handled independently. Remote nodes that belong to the
same remote group are treated as a single unit. Both, remote groups and non-
member nodes, are further clustered using the algorithm from Section 5.4 (when
we use the term cluster in the following we generally refer to these). Figure 5.10
illustrate these levels of clustering.

Independent
non-member hosts

Remote groups Clusters of remote groups
and non-member hosts

Figure 5.10: The three levels of clustering used in the repository

Even with clustering, the repository would hardly be able to store informa-
tion about every possible host on the Internet. The approach we take with our
distance prediction service is related to the concept of proxy servers. The ser-
vice’s peer-to-peer groups normally correspond to the local networks of single
organizations such as enterprises or universities. Since the users of an organiza-
tion share common interests, their requests concentrate on a relatively small set
of popular IP addresses. Therefore, if the service only stores information about
the most popular clusters it can still give predictions for the majority of re-
quests. Moreover, since our service relies heavily on measurements gained from
monitoring application traffic, popular clusters tend to have more measurements
available than unpopular ones, which in turn leads to better predictions.

Based on these observations we manage the size of the repository using a
least-recently-used strategy. Each group member defines an upper limit for the
amount of data it stores in its local storage (e.g. its harddisk). When this limit is
exceeded it removes the least popular clusters from its part of the repository until
enough storage space has been freed. The popularity of a cluster is measured
by the time elapsed since the last request for it has been received.

5.5.1 The Global Layer

The global layer is an unstructured collection of independent groups without
any fixed topology. Both group leaders and normal group members may freely

86 CHAPTER 5. PEER-TO-PEER DISTANCE PREDICTION SERVICE

communicate with each other. However, since there is no topology and no
directory of members, communication can only take place if two peers have
learned about each other during the normal operation of the network.

The global layer’s main purpose is the bootstrapping of new nodes. In order
to support bootstrapping, the group leader of each group runs a Meridian [139]
process. When a new node joins the peer-to-peer network it uses the Meridian
closest node search to locate its nearest group. As soon as it finds the group
it uses the neighbor table of the group leader’s Meridian process to check the
grouping criterion. If the check is successful the joining node contacts the group
leader to join the group. Otherwise, it creates its own group, declares itself
leader, and starts a Meridian process to allow other nodes to find the new group.
A more detailed description of this procedure can be found in Section 5.3.

The second purpose of the global layer is the identification of remote groups.
When a node receives a request referring to an IP address that is not known in
its local repository, it will try to send a message to that address on a well-known
port, asking for the ID of the remote node’s group. If the destination node is a
member of the system it will answer, allowing us to look for existing information
about that group ID in the local repository. If the remote node is a non-member
the message will time out after a short delay, and the request fails.

5.5.2 The Local Layer

On the local layer nodes are organized into groups, each of which is made up of
a Pastry [109] ring. Using its Pastry ring, each group maintains a distributed
repository of identified clusters, measurement data, and prediction models. The
members of a group are controlled by its group leader. When a new node joins
the group it communicates with the leader to become part of the ring. This
is done by computing a Pastry ID that uniquely identifies the new node, and
which determines the node’s position in the ring. IDs are computed using an
MD5 hash on a string containing the node’s IP address. A given IP address
always results in the same ID. There are four types of IDs:

Node IDs designate a specific member node of the local group and deter-
mine the portion of the group’s repository the node is responsi-
ble for.

Cluster IDs designate identified clusters of non-member hosts and remote
groups.

Group IDs designate known remote groups and are used to look up infor-
mation about them.

Host IDs designate known remote hosts including both, non-member
nodes and nodes belonging to a remote group. The IDs are
unique for a given IP address.

Node, cluster, and host ID need only be unique within the repository. Group
IDs however are globally unique since they are used for identifying different
groups on the global layer.

Information in the repository is always stored by cluster ID. The Pastry
node with the numerically closest node ID is responsible for storing the data.

5.5. THE PEER-TO-PEER PREDICTION ARCHITECTURE 87

If the group learns of a new remote host or group that cannot be assigned to
a cluster, a new cluster is created that contains only this host or group. Later,
when enough measurement data is available to run the clustering algorithm the
new cluster may be merged with another.

The Pastry ring maps each host and group ID to its assigned cluster ID.
Accordingly, a lookup for a given ID first resolves the assigned cluster ID and
then locates the Pastry node responsible for storing the relevant data. When a
node wants to retrieve the latest measurement data for a given IP address, it
computes the host ID of that address and performs a lookup on the Pastry ring.
If the ID is known it receives the ID of the host’s cluster. The requesting node
then sends a message to the node responsible for that cluster ID to retrieve
the desired data. Finally, once the message reaches the responsible node, it
returns the data (or an error message if the data is not available) directly to the
requester. Figure 5.11 illustrates this procedure.

Requesting
node

lookup(hostID) request(dataType, clusterID)

Responsible
for host ID

1. Resolve host ID to cluster ID

Cluster ID

Host ID
Requesting

node

Responsible
for cluster ID

2. Request data for cluster ID

Cluster ID

Data
 / E

rro
r

Figure 5.11: A node retrieves information about a known IP address

If the local repository has no information about the remote host the initial
lookup fails. However, if the remote host is a member of the distance prediction
service the repository might contain information about the remote host’s group.
Accordingly, the requesting node will send a message to the remote host on
a well-known port, hoping for an answer. If successful, the requesting node
receives the (globally unique) ID of the remote host’s group. Using this group
ID we can then perform a second lookup similar to the one for the host ID. In
case the group ID is known it will resolve to a cluster ID, which can then be
used as normal. Otherwise, the system returns an error message to the client.

Client applications will quite frequently send queries about unknown host
IDs to the local group. Consequently, we have to add a new entry to the
repository. We distinguish three cases:

1. The repository contains no information about the host ID, and we were
not able to obtain a group ID from the remote host.

2. The repository contains no information about the host ID. The remote
host returned the globally unique ID of its group, which is not known
either.

3. The repository contains information about remote host’s group, but not
about the remote host itself.

The first case we have to insert a record for a non-member node into the reposi-
tory. We start by inserting a “busy” entry for this host ID into the Pastry ring.

88 CHAPTER 5. PEER-TO-PEER DISTANCE PREDICTION SERVICE

This is to eliminate possible conflicts when another group member attempts
the same operation simultaneously. Since the new host cannot be assigned to
any existing cluster we generate a new cluster ID and tell the group member
responsible for that ID to create a new cluster data structure containing only
the new host. Then, we change the host’s Pastry entry from “busy” to the new
cluster ID. Such small clusters are inefficient, so we consequently try to merge
it with another cluster as soon as possible. Accordingly, we schedule a series of
round-trip time measurements to the remote host in order to obtain the data
necessary to run the clustering algorithm.

In the second case we have to create an entry for a new group in the reposi-
tory. The procedure is analogous to the first case. We create a new cluster and
insert an entry resolving the group ID to its cluster ID into the Pastry ring.
Then, we schedule measurements to the new host since it is the only known
member of the new group. However, in contrast to the first case we also insert
an entry for the new host ID into the Pastry ring. This entry resolves directly
to the new cluster ID rather than to the group ID.

The third case is the most simple since the new host’s group is already known
in the repository. Accordingly, we can simply add a Pastry entry that links the
new host ID to the same cluster as the group ID resolves to.

5.5.3 Repository Maintenance

Every group member stores and manages all clusters with IDs that are in its
ID range on the Pastry ring. This includes storing measurements made to hosts
in these clusters, computing distance prediction models, and realigning clusters
where necessary.

Measurements for a cluster are stored in a special directory on the node’s
local storage (e.g. its harddisk). There are subdirectories for each cluster and
every host or group contained in these clusters. Subdirectories for hosts and
groups contain the measurements specific to them. Additionally, the measure-
ments of all hosts and groups of a cluster are combined and stored in the cluster’s
subdirectory. The node keeps track of the amount of data for each entity and
the time the measurements were made. To save space, old data may be dis-
carded. If a node does not receive any requests for a cluster it may also entirely
remove it from the system. The reason for keeping the data of hosts and groups
in separate directories is that clusters may be merged and split. In this case the
combined data of the old cluster is obsolete and must be recalculated for the
new clusters. The data is also needed as input for the clustering algorithm used
in merge and split operations.

Once there is enough measurement data of a given type for a cluster, the
node creates a prediction model for it and stores it in its local storage along
with the data. Prediction models are updated regularly when the node receives
new measurements in order to improve them and fit them to recent data. Sec-
tion 5.5.5 describes the prediction method we use.

The clustering of hosts and groups may be flawed when based on too little or
inaccurate measurements. Bad clustering may also be due to routing changes
in the network in the case they affect the distances from the local group to
the cluster’s remote hosts and groups. Accordingly, the repository may realign
clusters if it detects the need to do so. This operation, called cluster splitting,
may also be done on a regular basis. The process takes place on the node

5.5. THE PEER-TO-PEER PREDICTION ARCHITECTURE 89

responsible for the cluster. It constructs time series for each of the cluster’s
hosts and groups from the measurements in their respective subdirectories and
applies the clustering algorithm from Section 5.4. If the algorithm only identifies
a single cluster the node continues as before. If it identifies two or more clusters,
the node retains the biggest one and creates so-called cluster packages for the
others, which it sends to other members of the group according the the clusters’
IDs. There, the new clusters will be stored locally.

Cluster merging, the converse operation from cluster splitting, becomes nec-
essary when there are too many small clusters in the repository. Unlike cluster
splitting, merging often concerns clusters stored on separate group members.
Accordingly, the peers have to detect possibilities to merge clusters and coordi-
nate the merge operations.

From time to time each group member creates short time series describing
the most recent round-trip time data for all of its clusters and sends them to
all other group members using a Pastry broadcast message. In addition to the
time series these messages also contain the sizes of the respective clusters. The
receivers try to match these time series with the clusters they store, using the
neighborship criteria from Section 5.4. If a receiver detects a possible match
it will contact the sender to initiate cluster merging. The merging algorithm
is always executed on the member storing the bigger cluster (in terms of the
number of nodes and groups contained in the cluster). Accordingly, the receiver
uses the push or pull variant of cluster merging depending on the sizes of both
clusters. The actual merging is done by running the clustering algorithm on the
combined set of members of both clusters. This operation may result in multiple
clusters, which are handled the same as in cluster splitting. The largest cluster
remains on the node and the others are sent to other group members according
to their cluster ID.

A problem with this broadcasting of time series is that the more clusters
are stored in the repository, the more bandwidth is used for the broadcasts.
We solve this problem using two mechanisms. On the one hand, the rate at
which information about a cluster gets broadcasted is made smaller the longer
the cluster remains in the repository. Thus, new clusters quickly find existing
clusters to merge with and old ones do not use bandwidth unnecessarily. As a
result, the amount of traffic does not depend on the total number of clusters
in the system but rather on the number of number of newly created clusters.
On the other hand, the broadcast rate for each cluster is reduced when the
number of group members grows. This keeps the bandwidth per node used for
this task constant. Since a group’s size is restricted by the network topology,
the resulting rate of cluster information broadcasts never reaches zero.

Our distance prediction service is based on the assumption that a large part
of the measurements comes from monitoring application traffic. Nevertheless,
group members may be configured to schedule active measurements for clusters
that do not receive a sufficient amount of data from client applications. In this
case they run timers for each cluster, counting the time since the last measure-
ment for that cluster has been received. When a timer exceeds a threshold,
the node randomly chooses a target IP address from the cluster and schedules
a round-trip time measurement (other measurements may be too costly to be
scheduled automatically). This ensures a minimal amount of measurements
necessary for the realignment of clusters.

90 CHAPTER 5. PEER-TO-PEER DISTANCE PREDICTION SERVICE

5.5.4 Resilience to Node Failures

An important factor for a peer-to-peer architecture is its resilience to node
failure. A group members may fail for various reasons such as faulty software,
loss of network connectivity, or simple because a computer has been turned off.
If the system does not take any precautions, the data stored on the node is
lost. Pastry addresses this problem by replicating the keys managed by a node
on nearby nodes on the ring. Thus, when a node fails its data can in most
cases be recovered. We exploit this feature of Pastry to distribute backups of
the clusters stored by a node. Each node creates backup copies of its clusters
and stores them on nearby nodes according to Pastry’s key replication strategy.
When a node receives a request for a cluster it is not responsible for but of
which it has a backup, it assumes that the original responsible for that cluster
must have failed. Accordingly, it extracts the data from the backup file and
assumes responsibility for the cluster. Since backups are only made once in a
while we will probably lose the most recent measurements and computations
made for the cluster. However, given that node failures are relatively rare, the
error resulting from this small loss of data should be small.

A special case occurs if the group leader fails. Since it is only needed to help
new nodes find their place in the overlay network, a failed group leader does not
interrupt the normal operation of the group. Nevertheless, new nodes could no
longer find and join the group. In order to recover from leader failures we use
the scheme proposed for mOverlay groups in [145]. The group leader regularly
replicates its state to one or more backup leaders. The backup leaders have a
fixed sequence. If the first backup leader does not receive any message from
the group leader for a certain time it activates the stored backup state, starts
a new Meridian process to enable new nodes to find the group, and declares
itself leader. It also assigns a new backup leader to replace itself. If both the
group leader and its first backup leader fail simultaneously, the second backup
leader takes over, et cetera. Hence, we can adjust the group’s resilience to leader
failures by choosing the number of backup leaders.

5.5.5 Predictions

Once there is sufficient measurement data of a specific type for a cluster, a
statistical prediction model for this type will be computed. The computation
takes place on the node responsible for the cluster, and the model is stored in the
same location. Later, when a client requests a prediction for the cluster, the node
retrieves the model from the harddisk together with the latest measurement
data and returns both in a predictor object. The reason for not just returning
a simple predicted value is that the client might be interested in other aspects
of the prediction, such as the estimated error.

We use auto regressive (AR) models (described in [13]) for predicting all
available kinds of measurements. There are other models that are better suited
for specific kinds of measurements. However, AR models are relatively cheap
to compute and provide acceptable predictions regardless of the type of mea-
surement. Nevertheless, more elaborate models could be integrated into the
architecture.

5.6. SIMULATIONS 91

An AR model considers a given time series of measurements as generated
by a random process

xt = φ1xt−1 + . . . + φpxt−p + εt . (5.15)

i.e. the current value xt is a linear combination of the preceding p values, plus
a normal error term. The time step between xt and xt+1 is chosen depending
on the type of measurement. We call p the order of the model. The above
formulation also assumes that the mean x of the series is zero, which can be
easily achieved by subtracting the estimated mean x̂ from the values. An AR
model can thus be described by its parameters φ1...p and the mean x of the
series. We can fit an AR model to a series of measurements using the Yule-
Walker equations [143], which reduce the problem to solving a linear system
of equations based on the autocorrelation function of the measurement series
(a brief explanation of the equations is given in Appendix A.2). Given an AR
model, we can then calculate a prediction simply by replacing the xt−i in (5.15)
with the appropriate values from the measurement series, and assuming that
εt = 0.

A predictor object for an AR model only contains 2 ·p+2 values: p parame-
ters, the p latest values from the measurement series, the estimated mean value
x̂ of the series, and the estimated error of prediction. Using an AR predictor
object a client can calculate predictions for one or more time steps into the
future, each step with an estimated error of prediction.

Models are normally updated on a regular basis using a pre-configured order
p. However, if a cluster has only recently been created we probably do not have
sufficient measurement data to compute an AR model of order p. Depending
on the available amount of data the node will therefore select a lower order q.
In this case the node also reduces the normal updating interval for the model
in order to quickly adjust the model when new measurement data arrives. The
accelerated updating interval is given by ∆t · α−(p−q), where ∆t is the normal
updating interval and α is an acceleration factor.

5.6 Simulations

In this section we evaluate the algorithms for identifying groups and clusters.
The evaluation of the algorithms was based on publicly available measurement
data also from PlanetLab [130].

5.6.1 Identification of Local Groups

Simulation Approach

In order to compare the performance of mOverlay’s locating algorithm to our
alternative algorithm we have implemented simulators for the two approaches.
Both simulators are based on a black box network model given by a matrix of
the end-to-end latencies between each pair of endpoints in the simulation. For
our experiments we use a matrix derived from all-sites ping data measured on
PlanetLab [130]. In both simulators the nodes join the overlay network one
after the other, in pseudo-random order (given by the seed value). For each
node we record the time that expires until it joins a group or creates its own

92 CHAPTER 5. PEER-TO-PEER DISTANCE PREDICTION SERVICE

group. When the simulation ends we examine the resulting groups according to
several criteria, which we discuss in Section 5.6.1.

mOverlay We simulate mOverlay with a simple message-based approach
where each message fits into a single packet and the message processing at
a node does not take any time. Thus, a request-response message exchange
takes exactly one round-trip time to complete, which is a lower bound for any
real implementation of the framework. Furthermore, we skip mOverlay’s initial
request to the rendezvous point because the performance of this step depends
heavily on the implementation of the mechanism (e.g. a well-known address, a
DNS-based approach, etc.) and possibly on the placement of the the rendezvous
point.

In the simulator, the locating processes of a joining node run in parallel
and stop when one of them finds a group that meets the grouping criterion. A
locating process also stops if its next hop would be a group it has already visited.
If none of the locating processes are successful, the joining node gives up and
creates a new group. Locating processes keep a list of visited groups. When a
new group is created its neighbors are selected from the lists of all its locating
processes. The first two joining nodes are special cases. They automatically
create new groups because the grouping criterion cannot be evaluated without
further nodes. As mentioned in Section 5.3, mOverlay does not define how
to test if two distances are the same. However, we need to test this to check
the grouping criterion. We have used test (5.2) from Section 5.3 also for the
mOverlay simulation because it is a natural choice.

Meridian In contrast to the mOverlay simulator, where we implemented all
necessary messages, we did not implement the Meridian approach ourselves.
Instead, we have used the Meridian C++ implementation available at [138].
We have written wrapper code to redirect any messages to a simulation back-
end instead of the network, and we have changed Meridian’s time-keeping code
to use the simulation time instead of the system clock. Each Meridian node is
now a C++ object in the simulator rather than a physical node on the network.
When it sends a packet the simulator determines the appropriate transmission
latency using the underlying network model and schedules the packet arrival
at the destination node accordingly. The wrapper objects also evaluate the
grouping criterion at the end of a joining procedure and create a new group if
necessary.

The simulation back-end is event-based. There are three kinds of events:
one for inserting a new node into the scenario, one for triggering Meridian’s
periodic gossip protocol, and one for packet arrivals at a Meridian node. We
start the simulation by scheduling node join events every seven seconds (which
corresponds to Meridian’s default gossip interval). When a node joins it starts by
sending a closest node query to a Meridian node. This search is handled entirely
by the original code. When the query returns, the joining node contacts the
identified closest node to retrieve a list of verification nodes, which the wrapper
code extracts from the Meridian object’s latency cache. In the simulator we use
a maximum of five verification nodes.

5.6. SIMULATIONS 93

Simulation Results

Simulation Scenario For the simulations we have used a matrix of round-trip
times between 77 PlanetLab nodes, based on all-sites ping data from PlanetLab
[130]. The simulator estimates the one-way delay between two endpoints by
dividing the appropriate round-trip time by two. At the time of writing, 694
machines hosted by 335 sites were part of PlanetLab. This means that each
site hosts only slightly more than two machines on average. Consequently,
we can expect to find relatively small groups in our scenario, especially since
the 77 nodes in the network model were randomly selected from the available
PlanetLab nodes. For each node pair we have also acquired a time series of
round-trip times, which we use for evaluation. The time series contain round-
trip time measurements every 15 minutes during one day. Simulations have
been run with different values for various parameters. Furthermore, each set
of parameters was simulated using 100 different seeds, which we obtained from
from random.org [102].

Evaluation Criteria We get the joining delays for every node, and the iden-
tified groups from a simulator run. While the comparison of the joining delays is
straightforward, quantifying the quality of the identified groups is not. Group-
ing can exhibit two kinds of errors, false positives and false negatives. A node
joining a group when it should not is considered a false positive and increases
the error of grouping. A false negative occurs when a node erroneously does not
join a group and creates a new one instead. This results in too many groups and
impairs the efficiency and scalability of the overlay network. Unfortunately, due
to the black box nature of our network model, we cannot say a priori whether
a node should join a group or not. Nevertheless, we can define three criteria for
the quality of the identified groups.

• First, the members of a group should be close to each other. Accord-
ingly, we compute the mean round-trip time between members of the
same group. Groups with only one node are ignored in this case.

• Second, bigger groups are preferable because they reduce the complexity
of the overlay network. We use the average number of nodes per group as
the second criterion.

• The third criterion stems from the use of the identified groups as a basis
for a distance estimation service. One important assumption in mOverlay
is that if two nodes A and B are in the same group, the distances AC and
BC to a node C outside the group are virtually the same. This property
must also hold over time. Otherwise, we would have to reorganize the
groups constantly. We define the third criterion accordingly: If A and B
are in the same group, ACt should be a good prediction for BCt, where
t is the time of measurement. We verify this using the out-of-band test
from Section 5.4 applied to the time series of round-trip times between
the two nodes. Two measurements ACt and BCt are out-of-band of each
other if

ACt ≥ BCt ∧ (1− b) ·ACt > BCt

∨ ACt < BCt ∧ (1− b) ·BCt > ACt
(5.16)

94 CHAPTER 5. PEER-TO-PEER DISTANCE PREDICTION SERVICE

 0.1

 1

 10

 100

0.01 0.02 0.05 0.1 0.2 0.5

M
ea

n
in

tr
a-

gr
ou

p
R

T
T

 (
m

se
c)

Grouping threshold

Meridian-based (5 verification nodes)
mOverlay (8 neighbors, 5 processes)

Figure 5.12: Mean intra group dis-
tance for several grouping thresh-
olds

 1

 10

0.01 0.02 0.05 0.1 0.2 0.5

G
ro

up
 s

iz
e

(n
od

es
)

Grouping threshold

Meridian-based (5 verification nodes)
mOverlay (8 neighbors, 5 processes)

Figure 5.13: Avg. nodes per iden-
tified group for several grouping
thresholds

0%

10%

20%

30%

40%

50%

60%

70%

80%

0.01 0.02 0.05 0.1 0.2 0.5

M
ea

n
ou

t-
of

-b
an

d
ra

tio

Grouping threshold

Meridian-based (5 verification nodes)
mOverlay (8 neighbors, 5 processes)

Figure 5.14: Mean out-of-band ratio
using a 10% band, for several grouping
thresholds

for a relative bandwidth b ∈ [0, 1). The out-of-band ratio between two
nodes is the ratio of out-of-band measurements in the respective time
series. In this section we use a bandwidth of 10% (b = 0.1).

The graphs in the remainder of this section use a dot-and-whisker format
showing the mean with a 95% confidence interval, obtained by running the
simulation with 100 different seeds. We have also slightly staggered the graphs
along the horizontal axis to improve readability.

Quality of the Groups As a first comparison we look at the quality of the
groups identified by mOverlay and our alternative approach. For both we use
parameters that we have found to produce near optimal results. We set the
maximum number of neighbors for mOverlay groups to eight and the number
of parallel locating processes to five. For the Meridian-based approach we set
the maximum number of verification nodes to five.

Figure 5.12 shows the mean round-trip times between group members for
the grouping thresholds 1%, 2%, 5%, 10%, 20%, and 50% (using a logarithmic
scale for better readability). For both approaches a lower threshold also leads to
smaller distances between group members. The effect is much bigger for mOver-
lay because the grouping threshold affects every iteration of the locating process,

5.6. SIMULATIONS 95

while the Meridian-based locating algorithm only uses the grouping threshold
for its final step. Nevertheless, the round-trip times between group members of
mOverlay are always bigger on the average than those of the Meridian-based
approach. Moreover, the confidence intervals for mOverlay are bigger. We con-
clude that the Meridian-based approach performs better than mOverlay with
respect to the first criterion.

The second aspect we examine is the average number of nodes per group.
Figure 5.13 shows the group size for the same grouping thresholds as Figure 5.12.
The groups identified by the alternate approach are bigger for grouping thresh-
olds up to 10%. In contrast, mOverlay identifies much bigger groups with
grouping thresholds above 10%, but this comes at the price of much greater
round-trip times between group members. As expected, group sizes are rather
small because of the wide distribution of the nodes.

If the identified groups shall be used as a basis for a distance estimation
service they must also have a low out-of-band ratio. We look at this aspect
using again the same parameters for grouping threshold and a 10% band for the
out-of-band test. The results can be seen in Figure 5.14. The Meridian-based
approach has shows a smaller out-of-band ratio than mOverlay for all grouping
thresholds, and it shows less variance. Again, mOverlay shows high sensitivity
towards the grouping threshold while the out-of-band ratio of the Meridian-
based approach only increases slightly with growing grouping threshold.

Joining Delay In addition to a good quality of the identified groups it is also
desirable to find the groups in the shortest time possible. We compare the two
approaches using the same parameters as in Section 5.6.1. Figure 5.15 shows the
joining delay per node for several grouping thresholds. Again, mOverlay proves
to be much more sensitive towards the grouping threshold than the Meridian-
based approach. Moreover, unless the grouping threshold is extremely high the
alternate algorithm finds the local group much faster than mOverlay.

The joining delay of mOverlay nodes is not only sensitive to the choice of
grouping threshold. Figure 5.16 shows the influence of the maximum number
of neighbors per group and the number of parallel locating processes. Here
we used a grouping threshold of 5% and a maximum of 2–10 neighbors per
group. Furthermore, the three graphs show the effect of using 1, 5, or 10 parallel
locating processes. We observe that a lower maximum of neighbors per group
and fewer locating processes running in parallel cause a significant reduction
in joining delay. Furthermore, the increase in joining delay appears to become
smaller the more parallel locating processes we employ. However, regardless of
the parameters the confidence interval is always rather large.

It appears that mOverlay can match the speed of the alternate approach if
we reduce the number of parallel locating processes and the maximum number
of neighbors per group. Nevertheless, the effect on the quality of the groups
is severe as Figure 5.17 shows. Less than ca. 6 neighbors per group cause a
significant increase in the out-of-band ratio. Using only one locating process
also has a noticeable negative effect. On the other hand, the benefit from
using more locating processes rapidly declines. The difference between five and
ten parallel locating processes is mainly the size of the respective confidence
intervals.

96 CHAPTER 5. PEER-TO-PEER DISTANCE PREDICTION SERVICE

 0

 500

 1000

 1500

 2000

 2500

0.01 0.02 0.05 0.1 0.2 0.5

M
ea

n
jo

in
 ti

m
e

(m
se

c)

Grouping threshold

Meridian-based (5 verification nodes)
mOverlay (8 neighbors, 5 processes)

Figure 5.15: Mean joining delay per
node for several grouping thresholds

 0

 500

 1000

 1500

 2000

 2500

 2 3 4 5 6 7 8 9 10

M
ea

n
jo

in
 ti

m
e

(m
se

c)

Maximum number of neighbors per group

mOverlay, 1 locating process
mOverlay, 5 locating processes
mOverlay, 10 locating processes

Figure 5.16: Mean joining delay in
mOverlay for various parameters

0%

10%

20%

30%

40%

50%

60%

 2 3 4 5 6 7 8 9 10

M
ea

n
ou

t-
of

-b
an

d
ra

tio
 (

10
%

 b
an

d)

Maximum number of neighbors per group

mOverlay, 1 locating process
mOverlay, 5 locating processes

mOverlay, 10 locating processes

Figure 5.17: Mean out-of-band ratio
in mOverlay for various parameters

Figure 5.17 also justifies our choice of parameters for mOverlay. The im-
provement for more than a maximum of eight neighbors per group and five
locating processes is small while the increase in joining delay is still noticeable.

From the simulation results we conclude that the Meridian-based locating
algorithm is faster in most cases. It also identifies larger groups, and the nodes
inside the groups are closer together than the nodes in mOverlay groups. More-
over, the groups identified with the alternate algorithm also have a smaller
out-of-band ratio, which indicates better suitability for a distance estimation
service.

5.6.2 Remote Cluster Identification

The remote neighbor identification procedure described in Section 5.4 is impor-
tant for the scalability of our architecture. The neighbor identification proce-
dure was evaluated in three separate experiments. In the first experiment we
investigate the impact of the three parameters b, tO, and tB based on a large
set of averaged round-trip time measurements, and we show that the approach
is able to reliably identify clusters. The second experiment demonstrates that
the approach also works with non-averaged round-trip time measurements. In
the third experiment we use measurements of available bandwidth to identify
clusters.

5.6. SIMULATIONS 97

Cluster Identification with Averaged Round-Trip Times

In the first experiment we have used data from PlanetLab [130] consisting of
time series of round-trip time measured every 15 minutes during three days.
Each value in the time series represents the mean of 10 RTT probes. The
measurements were done between 77 PlanetLab nodes (these were the same
nodes used Section 5.6.1). Every endpoint measured the round-trip time to each
of the other 76 endpoints, resulting in 77 · 76 = 5852 time series of round-trip
time. The original data from PlanetLab included measurements from more than
77 endpoints, however with gaps. Therefore, we have used the maximum subset
of endpoints that provided a full mesh of complete measurements. Cluster
identification was done using the measurements from the first 1.5 days. The
measurements from the second 1.5 days were used to verify the results.

Since measurements were available from each of the 77 endpoints to all
other endpoints we have performed 77 cluster identification procedures, one for
each endpoint as an observation point. Each time, we computed the distance
difference functions for every pair of the 76 other endpoints. Depending on
the thresholds tO and tB we then decided whether a given pair of endpoints
are neighbors (belong to the same cluster). These computations were repeated
with several different values for parameters b, tO, and tB . In order to examine
the influence of bias detection we have also performed this experiment without
using the distance difference function B.

Two criteria were used to verify the results of the experiment. First, if two
given endpoints were identified as neighbors from a given observation point,
then the second 1.5 days of the measurements should confirm this. The second
halves x′, y′ of the respective time series should still be good estimates of each
other and thus satisfy Ob(x′, y′) ≤ tO for suitable values of b and tO. Second,
the average round-trip time between neighbors should be small compared to
the average round-trip times between other pairs in the data set. The full-mesh
structure of the available measurement data allowed us to verify this easily. We
discuss the results of applying both criteria in the following two sections.

Verification Using the Second Half of the Measurements For every
pair of endpoints identified as neighbors we verified whether the second halves
of the respective time series show similar behavior. We considered the detec-
tion confirmed if the time series’ values were within a 5% band of each other
95% of the time. Using the Ob function from (5.4) we can formulate this as
O5%(x′, y′) ≤ 5%.

We have compared the number of confirmed neighbor detections with the
number of total detections for several parameter sets. Fig. 5.18 shows the results
for several values of b (the size of the relative band in Ob) and of tO (the
maximum ratio of values outside the band). The bias detection parameter tB
was constantly 0.1%. We can see from Fig. 5.18 that 100% of the neighbor
detections were confirmed for small values of tO and b. This shows that the
approach is able to correctly determine whether two given endpoints belong
to the same cluster. Values of b greater than 3 resulted in smaller ratios of
confirmed detections. The choice of parameter tO also significantly influences
the quality of the detections. The greater tO, the lower the ratio of confirmed
detections. Nonetheless, only tO = 5% and values of b greater than 3 resulted
in less than 90% confirmed detections.

98 CHAPTER 5. PEER-TO-PEER DISTANCE PREDICTION SERVICE

100%

90%

80%

70%
5%4%3%2%1%

Ra
tio

 o
f c

or
re

ct
 n

ei
gh

bo
r d

et
ec

tio
ns

Value of parameter b

tO=0%, tB=0.1%
tO=1%, tB=0.1%
tO=2%, tB=0.1%
tO=5%, tB=0.1%

Figure 5.18: Ratio of confirmed
neighbor detections with tB = 0.1%

100%

90%

80%

70%
5%4%3%2%1%

Ra
tio

 o
f c

or
re

ct
 n

ei
gh

bo
r d

et
ec

tio
ns

Value of parameter b

tO=0%, no bias detection
tO=1%, no bias detection
tO=2%, no bias detection
tO=5%, no bias detection

Figure 5.19: Ratio of confirmed
neighbor detections without bias de-
tection

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

5%4%3%2%1%

Av
g.

 n
um

be
r o

f c
or

re
ct

 d
et

ec
tio

ns

Value of parameter b

tO=0%, tB=0.1%
tO=1%, tB=0.1%
tO=2%, tB=0.1%
tO=5%, tB=0.1%

Figure 5.20: Number of confirmed
neighbor detections per observation
point

In order to evaluate the contribution of bias detection to the cluster iden-
tification method we have performed the same experiment using only the out-
of-band criterion from (5.4). If bias detection really has a positive influence we
should observe a significantly smaller ratio of confirmed neighbor detections.
Fig. 5.19 shows the results of this experiment. While the ratio of confirmed
neighbor detections only slightly decreases for small values of tO and b, the
effect is significant for greater values. For example, the ratio of confirmed de-
tections with tO = 5% and b = 5% decreases by 7.5%, from 84% with bias
detection (Fig. 5.18) to 76.5% without bias detection (Fig. 5.19).

For all parameters, small values lead to better ratios of confirmed neighbor
detections. However, there is always a trade-off between the number of con-
firmed neighbor detections and the number of false negatives, i.e. the number
of endpoint pairs that would be confirmed as neighbors but are not detected
as such. Fig. 5.20 illustrates this. The average number of confirmed neighbor
detections per observation point is very small for b = 1% and rises considerably
with higher values of b. This trade-off must be considered when choosing param-
eters for cluster identification. The criteria should not be more restrictive than
necessary for a given application. Note that the number of identified neighbor
pairs per observation point is rather small because PlanetLab [95] nodes are
widely dispersed throughout the Internet, with only a few nodes per site. At

5.6. SIMULATIONS 99

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

Pe
rc

en
tile

s
of

 R
TT

s
be

tw
ee

n
ne

ig
hb

or
s

Percentiles of RTTs between all endpoint pairs

tO=0%, b=1%, tB=0.1%
tO=0%, b=5%, tB=0.1%

tO=0%, b=1%, no bias detection
tO=0%, b=5%, no bias detection

Figure 5.21: Percentile-percentile plot of round-trip times between identified
neighbors versus the round-trip times between all endpoint pairs

the time of writing, PlanetLab consisted of 606 nodes distributed over 286 sites.
Other measurement scenarios may lead to much higher numbers of identified
neighbor pairs.

Verification Using Average End-to-end Round-Trip Time A second
way of verifying the results of cluster identification is to compare the aver-
age round-trip times between identified neighbors to the average round-trip
times between other endpoint pairs. We have used the set of average round-trip
times between each pair of endpoints as a reference. If the cluster identification
method performs well the round-trip time between identified neighbors should
be among the smallest in the reference set. We verify this using a percentile-
percentile plot of the set of average round-trip times between identified neighbors
and the reference set (Fig. 5.21).

We can clearly see that the round-trip times between identified neighbors are
very small compared to the round-trip times between other pairs of endpoints.
For tO = 0%, b = 1%, and tB = 0.1%, 94% of the round-trip times between
identified neighbors are smaller than the first percentile of the reference set.
100% are smaller than the second percentile. Even with b = 5%, 88% of the
identified neighbors have average round-trip times smaller than the second per-
centile of the reference set. For comparison, we have also included the plots for
cluster identification without bias detection. The parameters were otherwise the
same. Again we can see a positive impact of the bias detection function B on
cluster identification. In the case b = 5%, only 40% of the identified neighbors
had average round-trip times smaller than the second percentile of the refer-
ence set, as compared to 88% with bias detection. Nevertheless, the results for
b = 1% without bias detection are still rather good. 100% of the round-trip
times between identified neighbors were smaller than the fifth percentile of the
reference set.

Cluster Identification with Non-averaged Round-Trip Times

The results from Section 5.6.2 show that the presented method is able to identify
clusters based on end-to-end round-trip time measurements performed from
a single point of observation. However, the measurement values in the data

100 CHAPTER 5. PEER-TO-PEER DISTANCE PREDICTION SERVICE

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%
5%4.5%4%3.5%3%

Ra
tio

 o
f c

or
re

ct
 n

ei
gh

bo
r d

et
ec

tio
ns

Value of parameter b

tO=3%, tB=0.2%
tO=5%, tB=0.2%

tO=3%, no bias detection
tO=5%, no bias detection

Figure 5.22: Ratio of confirmed neighbor detections for different parameter sets,
non-averaged RTT values

represent the mean of ten measurements each, which significantly reduces their
variance. Consequently, we have also evaluated the approach with non-averaged
measurements.

We have gathered 25 two-day time series of round-trip time, measured using
ping. The first halves of the time series were again used for cluster identification
while the second halves were used for verification. We have selected 25 distinct
endpoints from the sites of five universities as measurement peers. The round-
trip times were measured every five seconds for 48 hours from a single endpoint
at the University of Bern.

As in Section 5.6.2 we have applied the cluster identification procedure sev-
eral times with different parameter sets. Verification was also done similarly.
For each detected neighbor pair we have compared the second halves of the time
series. If the values were within a 5% band of each other 95% of the time we
would consider the detection confirmed. The results are shown in Fig. 5.22.

We observe that the ratio of confirmed neighbor detections also reaches 100%
with non-averaged round-trip time values. However, the algorithm becomes
more sensitive to changes in all three parameters. Fig. 5.22 shows that the
ratio of confirmed neighbor detections rapidly decreases with rising values of
b and tO. On the other hand, the algorithm rejects all endpoint pairs with
b < 3%. Since outliers are much more frequent with non-averaged values, we
also had to choose tO greater than 0%. The increased variance of non-averaged
measurement values thus effectively reduces the range of useful choices of pa-
rameters. The same effect can be observed for bias detection. Fig. 5.22 shows
that cluster identification without bias detection results in significantly more er-
rors. However, compared to the experiment with averaged round-trip values, the
difference between both cases is much bigger. We conclude that the presented
cluster identification approach is also useful for non-averaged measurements of
round-trip time.

Cluster Identification with Available Bandwidth In Sections 5.6.2
and 5.6.2 we have evaluated the presented cluster identification method us-
ing measurements of round-trip time. Nevertheless, the method should also be
able to detect clusters based on measurements of available bandwidth. We in-
vestigate this using a similar experiment as in Section 5.6.2. We have gathered
sixteen 24-hour time series of available bandwidth between a single observation

5.7. PROTOTYPE IMPLEMENTATION AND TESTS 101

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%
5%4.5%4%3.5%3%2.5%2%1.5%

Ra
tio

 o
f c

or
re

ct
 n

ei
gh

bo
r d

et
ec

tio
ns

Value of parameter b

tO=5%, tB=0.2%
tO=4%, tB=0.5%
tO=5%, tB=0.5%

tO=4%, no bias detection
tO=5%, no bias detection

Figure 5.23: Ratio of confirmed neighbor detections with available bandwidth

point at the University of Bern and various endpoints in other universities’ sites.
The available bandwidth was estimated by downloading a sufficiently large file
via HTTP, which was repeated every five minutes during 24 hours. We have
used TCP throughput as an estimate for available bandwidth since it does not
require any special software on the measurement peers. The results presented
in [53] show that TCP throughput is a usable estimate of available bandwidth.

As in the previous experiments we have used the first halves of the time
series for cluster identification and the second halves for verification of the re-
sults. However, we have used different parameter values than with round-trip
time measurements for the verification because of the high variance of the mea-
surements. We have reduced the threshold for outliers to 2% but have increased
the band b to 10%. Note that cluster detection used transformed values as de-
scribed in Section 5.4.1 while the verification was done using the original values.

Fig. 5.23 shows the results of the experiment. Again, the method is able to
reach a 100% ratio of confirmed neighbor detections. However, the parameter
tB (bias threshold) has much more impact than with round-trip times. With
tB = 0.2% the ratio of confirmed detections was constantly 100%. Increasing it
to tB = 0.5% resulted in a 25% smaller ratio for b > 3.5%. Without any bias
detection the ratio of confirmed neighbor detections even dropped below 50%
in some cases. Another difference to the previous experiments is the effect of
parameter b, which decreases for values greater than 3%. With round-trip times
it grew with higher values. The choice of parameter tO has an influence similar
to the one for non-averaged measurements of round-trip time.

5.7 Prototype Implementation and Tests

For the purpose of testing and evaluating the architecture described in this
Chapter we have implemented a prototype. The implementation was mainly
done using the Java 1.4.2 programming language and framework [55]. Further-
more, we have included the Java-based FreePastry implementation available
from [34] for its DHT functionality, and the Java Matrix Package (JAMA) [48]
for its linear equation solver used in the computation of prediction models.
XMLRPC communication is based on the Apache implementation [141]. Group
leaders also use the C++ implementation of Meridian available from [138].

102 CHAPTER 5. PEER-TO-PEER DISTANCE PREDICTION SERVICE

5.7.1 Prototype Design

For most tasks the implementation relies on a single Java application whose
design is a layered set of packages as shown in Figure 5.24. A package may
only access the interfaces of other packages if they belong to a layer lower than
its own. As long as they follow this rule packages may also call functions of
packages more than one layer below their own. The packages on the interface
layer provide the APIs to client processes, other group members, and for inter-
group communication. The driver layer provides the intelligence behind the
interface layer. It contains a “driver” for every role a node may have to fill.
On the model layer we find the packages concerned with keeping track of the
structure of the local group and of the network. Finally, functionality that is of
general use can be found on the utility layer. We will discuss each layer in turn,
starting at the top layer.

Group InterfaceUser Interface World Interface

Leader DriverBackup Leader
DriverMember DriverLookup Driver

Network Model Leader State

Communications Measurement UtilStatistics Storage

In
te

rf
ac

e
La

ye
r

D
riv

er
 L

ay
er

M
od

el
 L

ay
er

U
til

ity
 L

ay
er

Figure 5.24: The four layers of the prototype design

Interface Layer

Every member node of the distance prediction service has three separate external
interfaces, each implemented in a package.

The user interface provides functions through an XMLRPC interface for
client processes running on the same host as the service. Using the measure
function, a client process can schedule a measurement to a given target host.
A measurement specification object describes the measurement target, type,
and duration as well as the desired frequency of the measurement. The func-
tion blocks until the measurement has been made and then returns a vector of
results. Errors are signaled by returning a single negative value. This is be-
cause we assume that distance measurements always yield positive values. If a
client process has made measurements on its own, for example by monitoring its

5.7. PROTOTYPE IMPLEMENTATION AND TESTS 103

own traffic, it can submit these measurements with a call to addMeasurement,
specifying the target IP address, the time of observation, and the type of the
measurements. The main functionality of the service is covered by predict.
Similar to measure, this function expects an object describing the desired tar-
get, type, and time prediction interval, called a prediction specification. Both
measurement specification and prediction specification objects are defined in
the Network Model package.

Messages internal to a group are exchanged via the group interface. This
includes functions for retrieving predictor objects to answer client requests, or
storing new measurement data on the corresponding responsible node. These
functions are called through Pastry’s message passing mechanism, which routes
a message object according to a cluster ID. When the message reaches the node
responsible for the ID, it will be delivered to the appropriate function in the
group interface. Further functions in this package are those concerned with
group leadership. They accept keep-alive messages and leader state backups
from the group leader. Finally, another set of functions receives backup data
and messages for the migration or realignment of clusters.

XMLRPC messages from outside the group are handled in the world inter-
face package. There are only two cases where this interface is used. New nodes
can contact the group leader through this interface to check the grouping cri-
terion and possibly join the group. Additionally, when a remote host needs to
determine the group ID of the local group it can send a request to this interface.

It should be noted that the actual communication does not take place on the
interface layer. Instead, the user, group, and world packages simply register their
available interface functions with the communications package on the utility
layer, which takes care of any further details of communication.

Driver Layer

The packages on the driver layer implement the different roles a node can fill.
After joining a group, every node utilizes the lookup driver for processing pre-
diction and measurement requests, and the member driver for managing its
membership in the Pastry ring. Group leaders and backup leader also use the
leader driver and backup leader driver packages, respectively.

As the name implies, the main task of the lookup driver is to answer lookup
messages coming from the Pastry ring. As such it serves as a front end to
the network model package on the model layer. However, it also maintains the
integrity of the local node’s part of the repository. From time to time it initiates
a cluster realignment in the network model through the maybeSplitCluster
function. Furthermore, it regularly creates cluster info objects from the clusters
stored on the local node and broadcasts them to other group members. The
lookup drivers on the receiving end compare these objects to their own clusters
and initiate a merge operation if necessary. The cluster migration required
during merging and splitting, as well as the transmission of cluster backups, is
also part of the lookup driver’s responsibilities.

The member driver’s function is simple. It returns the local group’s ID when
queried through the world interface, and it implements the group locating proce-
dure executed when the node joins the distance prediction service network.Once

104 CHAPTER 5. PEER-TO-PEER DISTANCE PREDICTION SERVICE

the node finds a group, the driver contacts the group leader to join the Pas-
try ring. After joining, the FreePastry implementation takes care of the ring
management itself.

The leader driver implements the group leader’s part of the joining proce-
dure. When queried it returns a list of neighbors enabling the joining node to
check the grouping criterion. If the node decides to join the group it provides it
with the information necessary to connect to the Pastry ring. The leader driver
package also controls the Meridian process running on group leader nodes. Be-
cause the leader of a group might fail it regularly sends replica of its current
state to the backup leaders. Additionally, it broadcasts keep-alive messages to
the group to signal that it did not fail yet. On the backup leaders, the backup
leader driver takes care of storing the state replica and keeping track of the
keep-alive messages. If a backup leader driver does not receive any keep-alive
messages for a certain amount of time (which varies depending on the node’s
position in the backup leader chain) it promotes its node to leader, restores the
latest leader state, and starts a Meridian process.

Model Layer

The model layer is where information about known hosts, groups, and clusters
is handled. The state object used by the leader driver and backup leader driver
is also defined here.

The network model package offers a large unified interface for all operations
concerning hosts, groups, and clusters (in cases where we do not make a distinc-
tion between hosts, groups, and clusters we refer to them as network entities).
Its functionality can be divided into four categories. The first category provides
functions that can be called to find out the current state of the local node’s
part of the repository. Packages from upper layers can inquire about the known
cluster, group, and host IDs, or directly ask whether a given network entity is
stored at this node.

The second category is concerned with the performing and storing of mea-
surements as well as the computation of prediction models and retrieval of dis-
tance predictors. We concentrate these functions in the network model interface
because requests pertaining to measurements and predictions generally influence
the state of the network model. The frequency of requests regarding a cluster
indicate its popularity and therefore the likelihood of it being deleted when run
short of storage space. Moreover, adding new measurements to a cluster may
trigger a re-computation of its prediction model or the deletion of old data.
Finally, when the package registers frequent prediction requests coinciding with
a lack of new measurements it may decide to schedule automatic measurements
to fill the gap.

The third category includes all functionality for creating, destroy-
ing, and migrating clusters. A new cluster can be created either by
createClusterFromHost or createClusterFromGroup, depending on the type
of the cluster’s initial member. Removing a cluster can be done with the
removeNetworkEntity function, which can also be used to remove hosts and
groups from their respective clusters. For cluster migration and backups, the
network model package can create cluster packages containing the current state
of a cluster, its host and group IDs, and all measurement data andmodels re-

5.7. PROTOTYPE IMPLEMENTATION AND TESTS 105

lated to it. The package includes enough information to restore the cluster data
structure on another node. It is thus suitable for both, backups and cluster
migration.

Functions for merging and splitting of clusters are compiled in the fourth
category. When a clusters are merged or split, the network model package
blocks all further calls for the duration of the operation and then computes a
new clustering for the concerned hosts and groups. After this, it rearranges the
clusters in the local repository and returns a list of all affected cluster IDs to
the caller. The caller (i.e. the lookup driver) will then select the clusters with
an ID in other nodes’ areas of responsibility and migrate them to these nodes.
Finally, it will update the entries in the Pastry ring to reflect the changes.

The network model package does not implement any of the algorithms needed
for the above operations but rather relies on the tools from the measurement,
statistics, and storage packages on the utility layer. However, since these pack-
ages cannot interact, the network model package coordinates the data and al-
gorithms provided by each.

Utility Layer

Algorithms and tools used in higher layers of the architecture are located in
various packages on the utility layer.

The communications package contains the objects for sending and receiving
messages using either XMLRPC or Pastry. Each interface on the top layer cor-
responds to a communicator object in this package. Communicator objects do
not provide any external API by themselves. Instead, the interface packages
register their functions with the communications package using an identifica-
tion string and a callback object. The strings are then used to advertise the
interface functions to other processes and nodes. When a message arrives at
the communications package it will be parsed and mapped to one of the inter-
face functions and subsequently sent to the corresponding package through the
registered callback object.

Measurement tools of arbitrary types are implemented in the measurement
package. Each type of measurement is represented by a type of meter object.
Depending on the their type, meter objects may either implement a measure-
ment technique themselves, or they may delegate the actual measurement to
an external process such as ping, in which case they only parse the output of
the process. Meters are in turn controlled by measurement gatherer objects
whose task it is to collect the meter’s measurements and forward them to the
network model package, where they will be delivered to the requesting client or
stored in the repository. Measurement gatherers also detect erroneous meters
and terminate them accordingly.

Algorithms for neighbor detection and clustering as well as the computation
of prediction models are compiled in the statistics package. It also contains the
time series class used as input to the algorithms. However, since this package
has no access to the storage it relies on the network model package to provide
the necessary data. The algorithms themselves are described in 5.4 and A.2.

The storage package manages the files on the node’s harddisk and provides
functions for creating, deleting, and changing them. It serializes measurement
data and models using different file formats, wrapped by series file and model
file objects, respectively. To improve the performance of file system access the

106 CHAPTER 5. PEER-TO-PEER DISTANCE PREDICTION SERVICE

package implements a transparent caching mechanism based on a write-through
strategy. When we read from a file the storage package also keeps a cached copy
of the data. However, write operations are always carried out without caching.
The storage package also aims to keep the number of open files to a minimum in
order not to exceed the operating system’s open file limit. Files always appear
open to a client. However, the storage package detects when a file goes out
of use and automatically closes it. When it receives a read or write request it
transparently reopens the file.

The util package finally is a collection of helpful classes used in many places
throughout the prototype implementation. Examples are exception classes for
error notification, read/write locks for synchronizing file access, and timer mech-
anisms to defer the execution of a function to a later time.

5.7.2 Tests

In this section we present the results of a test deployment of the distance pre-
diction service’s prototype implementation. The tests were performed on Plan-
etLab [95].

Test Setup

We have deployed the distance prediction service on eleven PlanetLab nodes
at the University of California at Berkeley. All eleven nodes formed a single
peer-to-peer group that received prediction requests generated by a controlling
node. Each node had a Pentium 4 CPU running with 3 GHz.

Since our distance prediction service relies heavily on user requests and ob-
serving user traffic, a fundamental problem for testing a system like this is to
generate realistic user requests and traffic. We believe that the request pattern
observed by a real deployment of our service would resemble the request pattern
observed by a web proxy, because we expect that a large part of the requests
pertain to a very small set of popular destination addresses. Nevertheless, the
number of requests to a proxy should be higher since loading a web page nor-
mally involves several requests sent shortly after each other. In contrast, a client
would request a distance prediction only once for a given network connection.

Accordingly, we have based our tests on a 24-hour log from the web proxy
server of the University of Bern. Since the use of this proxy is mandatory, the
log shows the web requests of all end systems within the University of Bern
during 24 hours. The log records the time and destination of each web request
on a single line in a text file. We have determined the distribution of destination
IP addresses separately for each hour of the log and have used it to generate
distance prediction requests. During each hour of the test, the controlling node
generated distance prediction requests according to the distribution of the corre-
sponding hour of the web proxy’s log. Thus, popular destinations have a higher
chance of being requested.

Unfortunately, the log entries do not contain any usable information about
the observed round-trip time or throughput. Therefore, we were unable to
emulate the monitoring of existing user traffic that would be done in a real world
deployment. We have thus restricted the test to the prediction of round-trip
times. In order to replace the missing passive measurements we have made active

5.7. PROTOTYPE IMPLEMENTATION AND TESTS 107

ping measurements to the requested destination IP addresses. We scheduled
such measurements once every 30 seconds for destinations that were lacking
recent measurement data.

In the tests, each group member received a prediction request once every
20 seconds. Each successful distance prediction also triggered an additional
round-trip time measurement to determine the error of prediction. Cluster
information was broadcasted by each group member every 60 seconds to detect
possibilites to merge clusters (the prototype did not include the rate adaption
methods described in Section 5.5.3). Group members sent backup data to their
neighbors every 5 minutes. We have run two tests. In the first test we have
focused on the predictions and clustering made by the 11 nodes. In the second
test we have monitored the network traffic and CPU loads of 3 nodes. Both ran
for 4 hours, using the daytime hours 8–12 from the proxy log. Measurement
data in the repository was stored for 2 hours before discarding it.

Test Results

The first test focused on the predictions and clustering made by the system.
Naturally, one of the most important aspects of a distance prediction service is
the error of prediction. Two widely used figures for this error are the relative
error and the directional relative error, both of which are defined in [82]. The rel-
ative error of prediction is defined as |x̂−x|/ min(x̂, x) (where x̂ is the predicted
value), and the directional error of prediction is defined as (x̂ − x)/ min(x̂, x).
Furthermore, we look at the absolute error of prediction x̂− x.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

-0.2 -0.1 0 0.1 0.2 0.3

Cu
m

ul
at

ive
 d

ist
rib

ut
io

n
fu

nc
tio

n

Relative error

Relative error CDF
Relative directional

error CDF

(a) Relative error and directional relative error

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

-20 -10 0 10 20 30

Cu
m

ul
at

ive
 d

ist
rib

ut
io

n
fu

nc
tio

n

Absolute error (msec)

Absolute error CDF

(b) Absolute error

Figure 5.25: CDFs of relative and absolute error of prediction

Figures 5.25(a) and 5.25(b) show the corresponding cumulative distribution
functions. The observed results are very encouraging. Only very few predic-
tions significantly over- or underestimate the measured round-trip time. More-
over, there is no noticeable bias. The results are significantly better than those
achieved with GNP or IDMaps in [82]. Unfortunately, they are not fully compa-
rable since the scenarios differ and our service only provides distance predictions
if it has recent measurement data available. If there is insufficient data in the
repository, the service is forced to actively measure the distance. Nevertheless,
if data is available the predictions are very good.

Using only the data available in the repository, the group members were
able to make predictions in 55.08% of the cases, which is a rather small ratio.

108 CHAPTER 5. PEER-TO-PEER DISTANCE PREDICTION SERVICE

The main reason for this is the relatively low rate of requests used in the test.
Analysis of the web proxy logs we used shows that the ratio of successful pre-
dictions increases with the rate of requests. Figure 5.26 shows the results of this
analysis. Each graph in this Figure shows the theoretically achievable percent-
age of successful predictions for a certain rate of requests. The six graphs show
the results for the cases where information about a destination is kept in the
repository for time interval between 15 minutes and 24 hours. As the Figure
shows we can already achieve a success ratio of ca. 80% with request rate of 2
requests per second. Success ratios of over 90% can be reached with a request
rate of 10 requests per second. Considering our test setup where each node
receives a request every 20 seconds, this corresponds to groups of 40 and 200
members, respectively.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0.01 0.1 1 10 100

%
 o

f s
uc

ce
ss

fu
l p

re
di

ct
io

n
re

qu
es

ts

Requests per second

24h interval
4h interval
2h interval
1h interval

30min interval
15min interval

Figure 5.26: Ratio of successful predictions versus the rate of requests

Nevertheless, the ratio of successful predictions in our test is still signifi-
cantly lower than the expected value of 66.34%. This is because many of the
requested destinations did not reply to round-trip time measurements and had
to be removed from the test. Since this problem mainly occurred with pop-
ular destinations the test had a more widespread distribution of destination
addresses than the original web proxy log, resulting in a lower success ratio.
Fortunately, this problem would not occur in a real deployment of the service
since there, measurement data can be gathered from existing traffic and only
rarely needs to be actively done.

A further result of interest is the number and the size of clusters the system
has been able to identify during the test. Figure 5.27 shows the number of
hosts assigned to clusters of various sizes. We can see that even though the
majority of hosts are assigned to small clusters, clusters containing more than
80 hosts have been identified. In comparison to storing data for each destination
independently, this clustering resulted in 62.06% fewer repository entries. This
demonstrates that clustering may in fact significantly reduce the number of
repository entries.

In order to be able to run the distance prediction service in the background
on normal end systems such as workstations, the CPU, network, and storage
space requirements of the service should be very moderate. The observed aver-
age storage space per node was 7.66 MBytes, which is an amount that should
not pose any problems to modern computers. Since the service discards old

5.7. PROTOTYPE IMPLEMENTATION AND TESTS 109

0

500

1000

1500

2000

2500

3000

1-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-90

Cluster sizes

H
o
s
ts

 p
e
r

c
lu

s
te

r
s
iz

e

Figure 5.27: The number of nodes assigned to clusters of a given size

data after a certain time (3 hours in the test) we can assume that this number
will remain approximately constant if the system runs longer. We have moni-
tored the CPU usage and network traffic during a second test, by recording top
(batch mode) and tcpdump output, respectively. The observed average CPU
usage during this test was 4.00%, and the generated bandwidth per node was
30.18 kbps. Especially the second value is rather high. However, we believe
that these values are mainly due to the short intervals at which clustering was
updated and backup data was sent to other group members (1 and 5 minutes,
respectively). By making these intervals larger and by implementing the adap-
tation rules for the cluster update rates described in Section 5.5.3 we should be
able to significantly reduce the CPU and bandwidth requirements of the system
without noticeably impairing the quality of the results.

110 CHAPTER 5. PEER-TO-PEER DISTANCE PREDICTION SERVICE

Chapter 6

Conclusions

In this work we have studied two aspects of the prediction of Internet charac-
teristics for distributed applications in the face of the Internet’s considerable
size and complexity. The first aspect concerns the prediction of the behavior of
distributed applications that use a static deployment using scalable simulation
techniques. Traditional tools for this purpose, such as sequential packet-based
simulation, fail due to the complexity of Internet scenarios. We have investigated
existing options for making simulation more scalable, and we have presented a
novel hybrid simulator for inter-domain scenarios. The second aspect concerns
the adaptivity of more dynamic applications, such as peer-to-peer networks, to
the changing end-to-end characteristics of the network. We have studied numer-
ous mechanisms and services helping applications detect and react to changing
conditions. On the basis of our observations we have developed an end-to-end
distance prediction service with several unique features.

The size of the Internet and the amount of traffic it carries poses a fundamen-
tal challenge to simulations of Internet scenarios. Researchers have approached
this scalability problem either by making simulators more powerful through
parallelization, or by using more abstract network models to make simulation
more efficient but less accurate. In Chapter 2 we have presented existing work
from both areas of research. Both, parallelization and abstraction, perform sig-
nificantly better than conventional simulation methods when applied to large
scenarios. However, the computational complexity is not the only problem we
face when simulating Internet scenarios. Obtaining detailed information about
Internet topology and traffic patterns tends to be challenging since the Internet
consists of a vast number of independent administrative domains, which makes
sufficiently detailed and accurate Internet scenarios hard to come by. In many
cases we have to resort to coarse-grained scenarios inferred by measurement
tools such as topology detectors and traffic meters. While this may be a severe
problem for parallel simulation, we are often able to create meaningful simula-
tion scenarios using abstract network models even if the available information
is coarse-grained. Unfortunately, abstract models are normally tailored to spe-
cific aspects of the network or to special kinds of topologies, and the resulting
simulations have a very limited scope.

In our hybrid simulator, described in Chapter 4, we combine detailed packet-
based simulation with arbitrary network models through a plug-in mechanism.
Thus, we can simulate different parts of the same scenario using different net-

111

112 CHAPTER 6. CONCLUSIONS

work abstractions, taking advantage of the strong points of each. This is espe-
cially useful for combining detailed simulation of a distributed application with
a coarse-grained model of the network. The hybrid simulator was implemented
by extending the packet-based ns-2 network simulator. We have combined ns-2’s
packet-based models with an abstract network model for the scalable simula-
tion of inter-domain networks. It is based on the observation that the internal
networks of Internet service providers (domains) are often free of congestion
while queuing delay and packet losses are caused by the inter-domain links be-
tween them. The model combines methods from analytical queuing theory and
time stepped fluid simulation. The hybrid simulator has been integrated into
a large architecture for the monitoring, modeling, simulation, and visualization
of inter-domain networks. The architecture allows for constructing simulation
scenarios based on measurements coming from the monitoring tools. Users can
then add further changes before starting the simulator. The communication
between the architecture and the simulator relies on XML messages that con-
tain the necessary network topology and traffic traces. Auxiliary tools translate
these messages into simulation scripts, run the simulator, convert the results to
a standard format, and then return them.

In a second part of the work we have focused on predicting end-to-end In-
ternet characteristics in order to help distributed applications like peer-to-peer
networks adapt to the properties of the underlying physical network. We have
identified shortcomings of the various existing approaches presented in Chap-
ter 3, and we have described a novel distance prediction service in Chapter 5,
which addresses these shortcomings. Existing approaches often rely on addi-
tional infrastructure in the network, or they require a rather large number of
participants at distributed locations in the network in order to be able to pro-
vide useful distance estimates. Both properties are hurdles for the deployment
of these approaches. Many approaches are also restricted to estimating only
the average round-trip time between member nodes of the service, making them
impractical for many application scenarios. Furthermore, most distance estima-
tion services ignore the variability of Internet characteristics and the multitude
of possible end-to-end distance measures.

In contrast to the majority of the existing distance estimation schemes, our
approach considers series of distance measurements instead of single, averaged
values. This allows for identifying trends and variances of the observed dis-
tances and therefore makes it possible to provide more sophisticated distance
predictions. The necessary measurements are mainly obtained by monitoring
application traffic. This is practical since we can assume that client applica-
tions request predictions for the same Internet hosts that they communicate
with. Thus, rather than restricting the service to predict distances between
member nodes only, we predict distances to the Internet hosts that the clients
are actually interested in. Since users from the same network location tend to be
interested in the same resources on the network, our distance prediction service
was based on creating groups of nodes from the same network locations. Inside
the groups the nodes exchange end-to-end measurements and predictions and
distribute the workload of computing predictions through a local peer-to-peer
network. Measurement data and prediction models are stored in a distributed
local repository. We have given special focus to making the storage of measure-
ment data in the repository efficient. Measurements to remote hosts are often
very similar if the measurement targets are located close to each other. In such

113

cases, we can consider the remote hosts a single unit, called a cluster. Since
the number of clusters is much smaller than the number of hosts this scheme
can significantly reduce the workload on the repository. In Chapter 5 we have
described an algorithm for cluster identification based on detecting similarities
between measurement series to different remote hosts. Furthermore, we have
developed an algorithm for the automatic organization of nodes into groups
that does not require any prior knowledge of the nodes’ network locality. It
uses the nearest neighbor search provided by the existing Meridian framework.
In another part of Chapter 5 we have described the architecture of the distance
prediction service and the design of a prototype implementation. The algo-
rithms for the identification of remote clusters and the creation of peer-to-peer
groups have been evaluated using simulations based on measurement data from
PlanetLab, a large testbed of computers distributed throughout the Internet.
PlanetLab was also used to test the prototype implementation and evaluate its
performance.

Our distance prediction service has several advantages. It does not require
any additional infrastructure in the network due to its peer-to-peer design. The
necessary software can be installed on conventional personal computers con-
nected to the Internet. Because of its focus on groups of nodes from a single
network location it can be deployed at a single site while still being able to
provide distance predictions to hosts anywhere in the Internet. Moreover, the
distance predictions it computes are more sophisticated than the simple esti-
mates of existing approaches, and they can be applied to a multitude of different
distance measures such as available bandwidth and delay jitter.

114 CHAPTER 6. CONCLUSIONS

Appendix A

Mathematical Notes

A.1 Proof of the Impossibility to Embed an “Y”
Topology in Euclidean Space

In Section 3.4.3 we have stated that it is impossible to embed a “Y” topology
into Euclidean space without error, if all links in the topology have positive
length. The proof is based on the Cayley-Menger determinant [127], which
calculates the squared volume of a d-simplex based on the distances between its
points. It is defined as

V 2 =
(−1)d+1

2d(d!)2
·

0 1 1 1
1 0 d(p1, p2)2 d(p1, p3)2 · · ·
1 d(p2, p1)2 0 d(p2, p3)2

1 d(p3, p1)2 d(p3, p2)2 0
...

. . .

 (A.1)

where d(pi, pj) is the distance between points pi and pj . If the squared volume
V 2 is negative for a given set of distances, they cannot be used to construct a
simplex and thus they cannot be embedded without error.

For our case of the “Y” topology shown in Figure 3.7(a) we have to consider a
3-simplex (a tetrahedron). We let a = AB > 0 , b = BC > 0, and c = BD > 0.
The distances over two hops add up, and we get AC = a + b, AD = a + c, and
CD = b + c. The determinant of interest for this case is thus

V 2 =
(−1)3+1

2 · 3 · (3!)2
· det

0 1 1 1 1
1 0 a2 (a + b)2 (a + c)2

1 a2 0 b2 c2

1 (a + b)2 b2 0 (b + c)2

1 (a + c)2 c2 (b + c)2 0

 (A.2)

We find that det(·) = −32 · a2 · b2 · c2, which is always negative. Furthermore,
(−1)3+1/2 · 3 · (3!)2 is positive. It follows that V 2 is negative, and thus that the
distances of the “Y” topology cannot be embedded if a, b, c > 0.

115

116 APPENDIX A. MATHEMATICAL NOTES

A.2 AR Models and Yule-Walker Equations

The Yule-Walker equations are a method for estimating the parameters φ1...p

of an auto regressive (AR) model using a linear system of equations. An AR
model of order p has the following form

xt+1 = φ1xt + . . . + φpxt−p+1 + εt

where xi are the values of the modeled time series, and εt is a random “shock”
at time t. εt follows a normal distribution with mean 0.

To find the Yule-Walker equations we multiply the above equation with
xt−k+1 (where k is the lag) and get

xt−k+1xt+1 = φ1xt−k+1xt + . . . + φpxt−k+1xt−p+1 + xt−k+1εt

By taking expectancies we arrive at

γk = φ1γ1−k + . . . + φpγp−k

where γi is the auto-covariance function of the time series with lag i. Note
that since E(εt) = 0 the last term is also 0 and can be eliminated. We repeat
this for k = 1, . . . , p to get the system of linear equations (i.e. the Yule-Walker
equations) γ1

...
γp

 =

 γ0 · · · γp−1

...
. . .

...
γp−1 · · · γ0

 φ1

...
φp

 (A.3)

This system is easily solvable using standard methods.

Bibliography

[1] Jong-Suk Ahn and Peter B. Danzig. Speedup vs. simulation granularity.
IEEE/ACM Transactions on Networking, 4(5):743–757, October 1996.

[2] David Andersen, Hari Balakrishnan, Frans Kaashoek, and Robert Morris.
Resilient overlay networks. In 18th ACM Symposium on Operating System
Principles (SOSP), Banff, Canada, October 2001.

[3] Sigrún Andradóttir and Teunis J. Ott. Time-segmentation parallel simu-
lation of networks of queues with loss or communication blocking. ACM
Transactions on Modeling and Computer Simulation, 5(4):269–305, Octo-
ber 1995.

[4] D. Anick, D. Mitra, and M. M. Sondhi. Stochastic theory of a data-
handling system with multiple sources. The Bell System Technical Jour-
nal, 61(8):1871–1894, October 1982.

[5] Rajive Bagrodia, Richard Meyer, Mineo Takai, Yu an Chen, Xiang Zeng,
Jay Martin, and Ha Yoon Song. Parsec: A parallel simulation environment
for complex systems. IEEE Computer, 31(10):77–85, October 1998. ISSN
0018-9162.

[6] Rajive L. Bagrodia. Iterative design of efficient simulations using maisie.
In Barry L. Nelson, W. David Kelton, and Gordon M. Clark, editors,
Proceedings of the 1991 Winter Simulation Conference, pages 243–247,
1991.

[7] Paul Barford and Mark Crovella. An architecture for a www workload
generator. In Proceedings of the ACM SIGMETRICS, 1998.

[8] Maurizio Bartoli, Florian Baumgartner, Christof Brandauer, Torsten
Braun, Sandor Kardos, Fabrizio Orlandi, Matthias Scheidegger, and Jörn
Seger. The intermon simulation framework. In International Workshop on
Inter-Domain Performance and Simulations (IPS2004), Budapest, Hun-
gary, pages 130–138, March 2004.

[9] Florian Baumgartner, Matthias Scheidegger, and Torsten Braun. En-
hancing discrete event network simulators with analytical network cloud
models. In International Workshop on Inter-domain Performance and
Simulation (IPS), Salzburg, Austria, pages 21–30, February 2003.

[10] Florian Baumgartner, Matthias Scheidegger, and Torsten Braun. Simu-
lating router- and domain characteristics. In International Workshop on

117

118 BIBLIOGRAPHY

Inter-Domain Performance and Simulations (IPS2004), Budapest, Hun-
gary, pages 139–145, March 2004.

[11] Stephan Bohacek, João P. Hespanha, Junsoo Lee, and Katia Obraczka.
A hybrid systems modeling framework for fast and accurate simulation
of data communication networks. In Proceedings of the ACM SIGMET-
RICS’03, San Diego, USA, pages 58–69, June 2003.

[12] Lee Breslau, Deborah Estrin, Kevin Fall, Sally Floyd, John Heidemann,
Ahmed Helmy, Polly Huang, Steven McCanne, Kannan Varadhan, Ya Xu,
and Haobo Yu. Advances in network simulation. IEEE Computer,
33(5):59–67, May 2000.

[13] Peter J. Brockwell and Richard A. Davis. Introduction to Time Series and
Forecasting, 2nd Edition. Springer, March 2003. ISBN 0-38795-351-5.

[14] Randy Brown. Calendar queues: A fast O(1) priority queue implementa-
tion for the simulation event set problem. Communications of the ACM,
31(10):1220–1227, October 1988.

[15] Miguel Castro, Peter Druschel, Anne-Marie Mermarrec, Animesh Nandi,
Antony Rowstron, and Atul Singh. SplitStream: High-bandwidth mul-
ticast in cooperative environments. In ACM Symposium on Operating
System Principles (SOSP), New York, USA, October 2003.

[16] K. M. Chandy and R. Sherman. Space-time and simulation. In Proceedings
of the 1989 SCS Multiconference on Distributed Simulation, pages 53–57,
March 1989.

[17] Xinjie Chang. Network simulations with OPNET. In P. A. Farrington,
H. B. Nembhard, D. T. Sturrock, and G. W Evans, editors, Proceedings
of the 1999 Winter Simulation Conference, 1999.

[18] Ian Clarke, Theodore W. Hong, Scott G. Miller, Oskar Sandberg, and
Brandon Wiley. Protecting free expression online with Freenet. IEEE
Internet Computing, 6(1):40–49, 2002.

[19] M. Coates, R. Castro, R. Nowak, and Y. Tsang. Maximum likelihood
network topology identification from edge-based unicast measurements.
ACM SIGMETRICS Performance Evaluation Review, 30(1):11–20, June
2002.

[20] M. J. Coates, A. Hero, R. Nowak, and B. Yu. Internet tomography. IEEE
Signal Processing Magazine, May 2002.

[21] J. W. Cooley and J. W. Tukey. An algorithm for machine calculation of
complex Fourier series. Math. Comput., 19:297–301, 1965.

[22] Manuel Costa, Miguel Castro, Antony Rowstron, and Peter Key. PIC:
Practical internet coordinates for distance estimation. In 24th Inter-
national Conference on Distributed Computing Systems (ICDCS 2004),
Tokyo, Japan, 2004.

[23] James H. Cowie, David M. Nicol, and Andy T. Ogielski. Modeling the
global internet. Computing in Science & Engineering, 1(1):42–50, 1999.

BIBLIOGRAPHY 119

[24] Mark E. Crovela and Azer Bestavros. Self-similarity in world wide web
traffic; evidence and possible causes. IEEE/ACM Transactions on Net-
working, 5(6):835–846, 1997.

[25] Carlos R. Cunha, Azer Bestavros, and Mark E. Crovella. Characteris-
tics of WWW client-based traces. Technical report, Computer Science
Department, Boston University, July 1995. BU-CS-95-010.

[26] Frank Dabek, Russ Cox, Frans Kasshoek, and Robert Morris. Vivaldi: A
decentralized network coordinate system. In ACM SIGCOMM’04, Port-
land, USA, August 2004.

[27] Peter B. Danzig, Sugih Jamin, Ramón Cáceres, Danny J. Mitzel, and Deb-
orah Estrin. An empirical workload model for driving wide-area TCP/IP
network simulations. Internetworking: Research and Experience, 3:1–26,
1992.

[28] N. G. Duffield and F. L. Presti. Network tomography from measured
end-to-end delay covariance. IEEE/ACM Transactions on Networking,
12(6):978–992, December 2004.

[29] Daniel R. Figueiredo, Benyuan Liu, Yang Guo, Jim Kurose, and Don
Towsley. On the efficiency of fluid simulation of networks. Computer
Networks, 50(12):1974–1994, August 2006. ISSN 1389-1286.

[30] Sally Floyd and Van Jacobson. Random early detection gateways for
congestion avoidance. IEEE/ACM Transactions on Networking, 1993.

[31] Sally Floyd and Vern Paxson. Difficulties in simulating the internet.
IEEE/ACM Transactions on Networking, 9(4):392–403, August 2001.
ISSN 1063-6692.

[32] P. Francis. A call for an internet-wide host proximity service (HOPS).
White paper, March 1997.

[33] Paul Francis, Sugih Jamin, Cheng Jin, Yixin Jin, Danny Raz, Yuval
Shavitt, and Lixia Zhang. IDMaps: A global internet host distance esti-
mation service. IEEE/ACM Transactions on Networking, 9(5):525–540,
October 2001.

[34] Freepastry. http://freepastry.com.

[35] R. Fujimoto, C. Cooper, and I. Nikolaidis. Parallel simulation of statistical
multiplexers. In 32nd IEEE Conference on Decision and Control, 1994.

[36] Luis Garcés-Erice, Ernst W. Biersack, and Pascal A. Felber. MULTI+:
Building topology-aware overlay multicast trees. In Fifth International
Workshop on Quality of Future Internet Services (QofIS), September
2004.

[37] Michael R. Garrey and David S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New
York, USA, 1979. ISBN 0-71671-044-7.

120 BIBLIOGRAPHY

[38] T. J. Giuli and Mary Baker. Narses: A scalable flow-based network sim-
ulator. Technical Report arXiv:cs.PF/0211024 v1, Standford University,
USA, November 2002.

[39] The annotated Gnutella protocol specification. http://rfc-gnutella.
sourceforge.net/developer/stable/index.html.

[40] A. G. Greenberg, I. Mitrani, and B. Lubachevsky. Unbounded parallel
simulations via recurrence relations. In Proceedings of the 1990 ACM
SIGMETRICS Conference on Measurement and Modeling of Computer
Systems. ACM, New York, 1990.

[41] Albert G. Greenberg, Boris D. Lubachevsky, and David M. Nicol. Effi-
cient massively parallel simulation of dynamic channel assignment schemes
for wireless cellular communications. In Proceedings of the Eighth Work-
shop on Parallel and Distributed Simulation, Edinburgh, Scotland, United
Kingdom, pages 187–197, 1994. ISSN 0163-6103.

[42] Yang Guo, Weibo Gong, and Don Towsley. Time-stepped hybrid simula-
tion (tshs) for large scale networks. In Proceedings of the IEEE Infocom,
2000.

[43] Pedro A. Aranda Gutiérrez and Ilka Miloucheva. Integrating inter-domain
routing analysis in novel management strategies for large scale ip networks.
In Next Generation Teletraffic and Wired/Wireless Advanced Networking
(NEW2AN’04), St.Petersburg, Russia, February 2004.

[44] Fang Hao and Pramod Koppol. An internet scale simulation setup for
BGP. ACM SIGCOMM Computer Communications Review, 33(3), July
2003.

[45] Fang Hao, Ioanis Nikolaidis, and Ellen W. Zegura. Efficient simulation of
ATM networks with accurate end-to-end delay statistics. In International
Conference on Communications, pages 1799–1804, 1998.

[46] Fang Hao, Karen Wilson, Richard Fujimoto, and Ellen W. Zegura. Logical
process size in parallel simulations. In Winter Simulation Conference,
pages 645–652, 1996.

[47] P. Heidelberger and H. S. Stone. Parallel trace-driven cache simulation by
time partitioning. Technical Report RC-15500, IBM Research Division,
T. J. Watson Research Center, Yorktown Heights, New York, 1990.

[48] Joe Hicklin, Cleve Moler, Peter Webb, Ronald F. Boisvert, Bruce Miller,
Roldan Pozo, and Karin Remington. JAMA: A Java matrix package.
http://math.nist.gov/javanumerics/jama.

[49] S. M. Hotz. Routing Information Organization to Suport Scalable In-
terdomain Routing with Heterogeneous Path Requirements. PhD thesis,
University of Southern California, 1994. Draft.

[50] Yang hua Chu, S. G. Rao, S. Seshan, and Hui Zhang. A case for end
system multicast. IEEE Journal on Selected Areas in Communications,
20(8):1456–1471, October 2002. ISSN 0733-8716.

BIBLIOGRAPHY 121

[51] Polly Huang, Deborah Estrin, and John Heidemann. Enabling large-scale
simulations: Selective abstraction approach to the study of multicast pro-
tocols. In Sixth International Symposium on Modeling, Analysis and Sim-
ulation of Computer and Telecommunication Systems (MASCOTS’98),
pages 241–248, 1998.

[52] IST Intermon homepage. http://www.ist-intermon.org.

[53] M. Jain and C. Dovrolis. End-to-end available bandwidth: Measurement
methodology, dynamics, and relation with TCP throughput. IEEE/ACM
Transactions on Networking, 11(4):537–549, August 2003.

[54] John Jannotti, David K. Gifford, and Kirk L. Johnson. Overcast: Reli-
able multicasting with an overlay network. In Proceedings of the Fourth
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 2000), October 2000.

[55] Sun developer network. http://java.sun.com.

[56] David R. Jefferson. Virtual time. ACM Transactions on Programming
Languages and Systems, 7(3):404–425, July 1985.

[57] S. C. Johnson. Hierarchical clustering schemes. Psychometrika, 2:241–254,
1967.

[58] Kevin G. Jones and Samir R. Das. Time-parallel algorithms for simulation
of multiple access protocols. In 9th International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems,
2001.

[59] B. Kantor and P. Lapsley. RFC 977: Network news transfer protocol: A
proposed standard for the stream-based transmission of news, February
1986. Status: PROPOSED STANDARD.

[60] G. Kesidis, A. Singh, D. Cheung, and W. W. Kwok. Feasibility of fluid
event-driven simulation for ATM networks. In Proceedings of the IEEE
Globecom, November 1996.

[61] Hwangnam Kim. Integrating network-calculus-based simulation with
packet-level simulation for TCP operated networks. Computer Networks,
50(12):1995–2012, August 2006.

[62] Alexander Klemm, Christoph Lindemann, and Marco Lohmann. Mod-
eling IP traffic using the batch Markovian arrival process. Performance
Evaluation, 52:149–173, 2003.

[63] J. Klensin, N. Freed, M. Rose, E. Stefferud, and D. Crocker. RFC 1651:
SMTP service extensions, July 1994. Obsoleted by RFC1869, STD0010
[64, 100]. Obsoletes RFC1425 [65]. Status: DRAFT STANDARD.

[64] J. Klensin, N. Freed, M. Rose, E. Stefferud, and D. Crocker. RFC 1869:
SMTP service extensions, November 1995. See also STD0010 [100]. Ob-
soletes RFC1651 [63]. Status: STANDARD.

122 BIBLIOGRAPHY

[65] J. Klensin, WG Chair, N. Freed, M. Rose, E. Stefferud, and D. Crocker.
RFC 1425: SMTP service extensions, February 1993. Obsoleted by
RFC1651 [63]. Status: PROPOSED STANDARD.

[66] Andreas Kock, Matthias Scheidegger, and et al. Integration report. In-
termon Deliverable 16, October 2003.

[67] Krishnan Kumaran and Debasis Mitra. Performance and fluid simula-
tions of a novel shared buffer management system. ACM Transactions on
Modeling and Computer Simulation, 11(1):43–75, January 2001.

[68] Jonathan Ledlie, Peter Pietzuch, and Margo Seltzer. Stable and accu-
rate network coordinates. In 26th International Conference on Distributed
Computing Systems, Lisboa, Portugal, July 2006.

[69] Will E. Leland, Murad S. Taqqu, Walter Willinger, and Daniel V. Wilson.
On the self-similar nature of ethernet traffic. In ACM SIGCOMM, San
Francisco, pages 183–193, 1993.

[70] Hyuk Lim, Jennifer C. Hou, and Chong-Ho Choi. Constructing internet
coordinate system based on delay measurement. In Internet Measurement
Conference 2003, Miami, USA, October 2003.

[71] Yi-Bing Lin and Edward D. Lazowska. A time-driven algorithm for par-
allel simulation. ACM Transactions on Modeling and Computer Simula-
tions, 1(1):73–83, 1991.

[72] Benyuan Liu, Daniel R. Figueiredo, Yang Guo, Jim Kurose, and Don
Towsley. A study of networks simulation efficiency: Fluid simulation vs.
packet-level simulation. In Proceedings of the INFOCOM 2001, Anchor-
age, USA, volume 3, pages 1244–1253. IEEE, 2001. ISBN 0-7803-7016-3.

[73] Benyuan Liu, Yang Guo, Jim Kurose, Don Towsley, and Weibo Gong.
Fluid simulation of large scale networks: Issues and tradeoffs. In Proceed-
ings of the International Conference on Parallel and Distributed Process-
ing Techniques and Applications (PDPTA’99, 1999.

[74] Bruce A. Mah. An empirical model of HTTP network traffic. In Info-
com’97, pages 592–600, 1997. ISBN 0-8186-7780-5.

[75] Mohammad Malli, Chadi Barakat, and Walid Dabbous. CHESS: An
application-aware space for enhanced scalable services in overlay networks.
under submission.

[76] Friedemann Mattern. Efficient algorithms for distributed snapshots and
global virtual time approximations. Journal of Parallel and Distributed
Computing, 18(4), 1993.

[77] Petar Maymounkov and David Mazières . IPTPS 2002: 53-6. Kademlia:
A peer-to-peer information system based on the XOR metric. In Interna-
tional Workshop on Peer-to-Peer Systems (IPTPS), pages 53–65, 2002.

[78] Duncan C. Miller and Jack A. Thorpe. SIMNET: The advent of simulator
networking. Proceedings of the IEEE, 83(8), August 1995.

BIBLIOGRAPHY 123

[79] Jayadev Misra. Distributed discrete-event simulation. ACM Computing
Surveys, 18(1), March 1986.

[80] K. Moore. SONAR – a network proximity service. Internet-Draft, August
1998.

[81] J. A. Nelder and R. Mead. A simplex method for function minimization.
Computer Journal, 7:308–313, 1965.

[82] T. S. Eugene Ng and Hui Zhang. Predicting internet network distance
with coordinates-based approaches. In IEEE Infocom, 2002.

[83] T. S. Eugene Ng and Hui Zhang. A network positioning system for the
internet. In USENIX, Boston, USA, June 2004.

[84] David Nicol and Philip Heidelberger. Parallel execution for serial simula-
tors. ACM Transactions on Modeling and Computer Simulation, 6(3):210–
242, July 1996.

[85] J. Oikarinen and D. Reed. RFC 1459: Internet Relay Chat Protocol, May
1993. Status: EXPERIMENTAL.

[86] Rong Pan, Balaji Prabhakar, Konstantinos Psounis, and Damon Wischik.
SHRiNK: A method for scaleable performance prediction and efficient
network simulation. In IEEE Infocom, 2003.

[87] Craig Partridge. RFC 974: Mail routing and the domain system, January
1986. See also STD0014 [88]. Status: STANDARD.

[88] Craig Partridge. STD 14: Mail routing and the Domain system, January
1986. See also RFC0974 [87].

[89] Vern Paxson. Empirically derived analytic models of wide-area TCP con-
nections. IEEE/ACM Transactions on Networking, 2(4):316–336, August
1994.

[90] Vern Paxson and Sally Floyd. Wide-area traffic: The failure of poisson
modeling. IEEE/ACM Transactions on Networking, 3(3):226–244, June
1995.

[91] Kalyan S Perumalla, Richard Fujimoto, and Andrew Ogielski. TeD – a
language for modeling telecommunication networks. SIGMETRICS Per-
formance Evaluation Review, 25(4):4–11, 1998.

[92] Kalyan S. Perumalla, George F. Riley, Alfred Park, and Richard M. Fuji-
moto. Scalable RTI-based parallel simulation of networks. In Proceedings
of the 17th Workshop on Parallel and Distributed Simulation (PADS’03).
IEEE, 2003.

[93] C. D. Pham, H. Brunst, and S. Fdida. Conservative simulation of load-
balanced routing in a large ATM network model. In Proceedings of the
Twelfth Workshop on Parallel and Distributed Simulation (PADS 98),
Banff, Canada, pages 142–149, May 1998.

124 BIBLIOGRAPHY

[94] Marcelo Pias, Jon Crowcroft, Steve Wilbur, Tim Harris, and Saleem
Bhatti. Lighthouses for scalable distributed location. In Second Interna-
tional Workshop on Peer-to-Peer Systems (IPTPS 2003), Berkeley, USA,
February 2003.

[95] Planetlab home page. http://www.planet-lab.org.

[96] C. Greg Plaxton, Rajmohan Rajaraman, and Andréa W. Richa. Accessing
nearby copies of replicated objects in a distributed environment. In Pro-
ceedings of the ninth annual ACM Symposium on Parallel Algorithms and
Architectures, Newport, Rhode Island, USA, pages 311–320, 1997. ISBN
0-89791-890-8.

[97] Anna L. Poplawski and David M. Nicol. Nops: A conservative parallel
simulation engine for TeD. In Proceedings of the Twelfth Workshop on
Parallel and Distributed Simulation (PADS 98), Banff, Canada, pages
180–187, May 1998. ISBN 0-8186-8457-7.

[98] J. Postel. RFC 788: Simple mail transfer protocol, November 1981. Ob-
soleted by RFC0821 [99]. Obsoletes RFC0780 [126]. Status: UNKNOWN.
Not online.

[99] J. Postel. RFC 821: Simple mail transfer protocol, August 1982. See also
STD0010 [100]. Obsoletes RFC0788 [98]. Status: STANDARD.

[100] Jonathan B. Postel. STD 10: Simple mail transfer protocol, August 1982.
See also RFC0821, RFC1869. RFC974 [99, 64, 87]. Obsoleted by RFC2821.
Obsoletes RFC788, RFC780, RFC772 [98, 126, 125].

[101] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T.
Vetterling. Numerical Recipes in C, 2nd Edition. Cambridge University
Press, 1992. ISBN 0-52143-108-5.

[102] random.org – True random number service. http://www.random.org.

[103] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott
Shenker. A scalable content-addressable network. In SIGCOMM’01, pages
161–172, August 2001.

[104] Sylvia Ratnasamy, Mark Handley, Richard Karp, and Scott Shenker.
Topologically-aware overlay construction and server selection. In Infocom
02, 2002.

[105] Y. Rekhter and T. Li. RFC 1771: A Border Gateway Protocol 4 (BGP-4),
March 1995. Obsoletes RFC1654 [106]. Status: DRAFT STANDARD.

[106] Y. Rekhter and T. Lis. RFC 1654: A Border Gateway Protocol 4 (BGP-
4), July 1994. Obsoleted by RFC1771 [105]. Status: PROPOSED STAN-
DARD.

[107] George F. Riley. The georgia tech network simulator. In Proceedings of
the ACM SIGCOMM 2003 Workshops, pages 5–12, 2003.

BIBLIOGRAPHY 125

[108] George F. Riley, Richard M. Fujimoto, and Mostafa H. Ammar. A generic
framework for parallelization of network simulations. In Proceedings of
the 7th International Symposium on Modeling, Analysis and Simulation
of Computer and Telecommunication Systems, College Park, MD, USA,
pages 128–135, 1999. ISBN 0-7695-0381-0.

[109] Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized
object location and routing for large-scale peer-to-peer systems. In Pro-
ceedings of the 18th IFIP/ACM Internation Conference on Distributed
Systems Platforms (Middleware 2001), Heidelberg, Germany, November
2001.

[110] Dan Rubenstein, James F. Kurose, and Donald F. Towsley. Optimistic
parallel simulation of reliable multicast protocols. SIGMETRICS Perfor-
mance Evaluation Review, 25(4):22–29, 1998.

[111] Kevin Savetz, Neil Randall, and Yves Lepage. MBONE: Multicasting
Tomorrow’s Internet. John Wiley & Sons, March 1996. ISBN 1-56884-
723-8.

[112] Matthias Scheidegger, Florian Baumgartner, and Torsten Braun. Sim-
ulating large-scale networks with analytical models. In Analytical and
Stochastic Modelling Techniques and Applications (ASMTA2004), 18th
European Simulation Multiconference (ESM 2004), Magdeburg, Germany,
pages 13–16, June 2004.

[113] Matthias Scheidegger, Florian Baumgartner, and Torsten Braun. An
integrated simulator for inter-domain scenarios. In Kommunikation in
Verteilten Systemen 2005 (KiVS), Kaiserslautern, Germany, pages 295–
306, February 2005.

[114] Matthias Scheidegger, Florian Baumgartner, and Torsten Braun. Simu-
lating large-scale networks with analytical models. International Journal
of Simulation Systems, Science & Technology Special Issue on: Advances
In Analytical And Stochastic Modelling, 6(1-2), January 2005. Invited
journal version of the ASMTA paper.

[115] Matthias Scheidegger, Florian Baumgartner, and et al. Specification of
the modelling and simulation toolkit. InterMON Deliverable 6, December
2002.

[116] Matthias Scheidegger, Florian Baumgartner, and et al. Integration of the
inter-domain modelling and simulation toolkit. InterMON Deliverable 11,
June 2003.

[117] Matthias Scheidegger and Torsten Braun. Improved locality-aware group-
ing in overlay networks. In 15. ITG/GI-Fachtagung Kommunikation in
Verteilten Systemen (KiVS), Bern, Switzerland, 2007.

[118] Matthias Scheidegger, Torsten Braun, and Florian Baumgartner. End-
point cluster identification for end-to-end distance estimation. In Inter-
national Conference on Communications, Istanbul, Turkey. IEEE, June
2006. CD-ROM.

126 BIBLIOGRAPHY

[119] Matthias Scheidegger and et al. Evaluation of inter-domain QoS modeling,
simulation and optimization. InterMON Deliverable 19, April 2004.

[120] Carsten Schmoll, Elisa Boschi, Florian Baumgartner, Matthias Scheideg-
ger, and et al. Final architecture specification. Intermon Deliverable 15,
April 2004.

[121] Secure hash standard. U.S. Department Commerce/NIST, National Tech-
nical Information Service, Springfield, VA, April 1995. FIPS 180-1.

[122] Puneet Sharma, Zhichen Xu, Sujata Banerjee, and Sung-Ju Lee. Estimat-
ing network proximity and latency. ACM SIGCOMM Computer Commu-
nication Review, 36(3):41–50, July 2006.

[123] Yuval Shavitt, Xiaodong Sun, Avishai Wool, and Bülent Yener. Comput-
ing the unmeasured: An algebraic approach to internet mapping. IEEE
Journal on Selected Areas in Communications, 22(1):67–78, January 2004.

[124] Yuval Shavitt and Tomer Tankel. Big-bang simulation for embedding
network distances in Euclidean space. In IEEE Infocom 2003, 2003.

[125] S. Sluizer and J. Postel. RFC 772: Mail transfer protocol, September
1980. Obsoleted by RFC0780 [126]. Status: UNKNOWN. Not online.

[126] S. Sluizer and J. Postel. RFC 780: Mail transfer protocol, May 1981. Ob-
soleted by RFC0788 [98]. Obsoletes RFC0772 [125]. Status: UNKNOWN.
Not online.

[127] D. M. Y. Sommerville. An Introduction to the Geometry of n Dimensions.
Dover Publications, New York, 1958.

[128] Sridhar Srinivasan and Ellen Zegura. M-coop: A scalable infrastructure for
network measurement. In Third IEEE Workshop on Internet Applications
(WIAPP‘03), San Jose, USA, June 2003.

[129] Ion Stoica, Rober Morris, David Liben-Nowell, David R. Karger, M. Frans
Kasshoek, Frank Dabek, and Hari Balakrishnan. Chord: A scalable peer-
to-peer lookup protocol for internet applications. IEEE/ACM Transac-
tions on Networking, 11(1):17–32, February 2003.

[130] Jeremy Stribling. All-pairs-pings for Planetlab. http://pdos.csail.mit.edu/
∼strib/pl app.

[131] Boleslaw K. Szymanski, Adnan Saifee, Anand Sastry, Yu Liu, and Kiran
Madnani. Genesis: A system for large-scale parallel network simulation.
In 16th Workshop on Parallel and Distributed Simulations, Washington
D.C., USA. IEEE, May 2002.

[132] Wolfgang Theilmann and Kurt Rothermel. Dynamic distance maps of the
internet. In Infocom 2000, 2000.

[133] Duc A. Tran, Kien A. Hua, and Tai Do. ZIGZAG: An efficient peer-to-peer
scheme for media streaming. In Infocom 2003, 2003.

BIBLIOGRAPHY 127

[134] Brian W. Unger and Greg A. Lomow. A simulation environment for
telecommunications. In G. W. Evans, M. Mollaghasemi, E. C. Russell,
and W. E. Biles, editors, Proceedings of the 1993 Winter Simulation Con-
ference, pages 1152–1160, 1993.

[135] Anrdás Varga. OMNeT++ – portable simulation environment in C++. In
Annual Students’ Scientific Conference (TDK), Budapest, Hungary, 1992.
In Hungarian.

[136] George Varghese and Tony Lauck. Hashed and hierarchical timing wheels:
Data structures for the efficient implementation of a timer facility. ACM
SIGOPS Operating Systems Review, 21(5):25–38, November 1987. ISSN
0163-5980.

[137] Manuel Villén-Altamirano and José Villén-Altamirano. RESTART: A
straightforward method for fast simulation of rare events. In J. D. Tew,
S. Manivannan, D. A. Sadowski, and A. F. Seila, editors, Proceedings of
the 1994 Winter Simulation Conference, pages 282–289, 1994.

[138] Bernard Wong. Meridian c++ code. http://www.cs.cornell.edu/People/
egs/meridian/code.php.

[139] Bernard Wong, Aleksandrs Slivkins, and Emin Gün Sirer. Merid-
ian: A lightweight network location service without virtual coordinates.
ACM SIGCOMM Computer Communication Review, 35(4):85–96, Octo-
ber 2005. ISN 0146-4833.

[140] Hao Wu, Richard M. Fujimoto, and Mostafa Ammar. Time-parallel trace-
driven simulation of CSMA/CD. In Proceedings of the Seventeenth Work-
shop on Parallel and Distributed Simulation (PADS’03), 1993.

[141] Apache XML-RPC. http://ws.apache.org/xmlrpc/.

[142] Anlu Yan and Wei bo Gong. Time-driven fluid simulation for high-speed
networks. IEEE Transactions on Information Theory, 45(5):1588–1599,
July 1999.

[143] G. U. Yule. On a method of investigating periodicities in disturbed se-
ries with special reference to Wolfer’s sunspot numbers. Philosophical
Transactions Royal Society London Ser. A, 226:267–298, 1927.

[144] Xiang Zeng, Rajive Bagrodia, and Mario Gerla. GloMoSim: A library
for parallel simulation of large-scale wireless networks. In Proceedings of
the Twelfth Workshop on Parallel and Distributed Simulation (PADS 98),
Banff, Canada, pages 154–161, May 1998. ISBN 0-8186-8457-7.

[145] Xin Yan Zhang, Qian Zhang, Zhensheng Zhang, Gang Song, and Wenwu
Zhu. A construction of locality-aware overlay network: mOverlay and
its performance. IEEE Journal on Selected Areas in Communications,
22(1):18–28, January 2004.

[146] Ben Y. Zhao, Ling Huang, Jeremy Stribling, Sean C. Rhea, Anthony D.
Joseph, and John D. Kubiatowicz. Tapestry: A resilient global-scale over-
lay for service deployment. IEEE Journal on Selected Areas in Commu-
nications, 22(1):41–53, January 2004.

Acknowledgments

I would like to thank Fritz Bütikofer from the “Informatikdienste” of the Uni-
versity of Bern for providing the web proxy logs used in the evaluation of our
distance prediction service implementation. Also, thanks go to Bernard Wong
from Cornell University at Ithaca, USA, for advice about Meridian.

Curriculum Vitae

1974 Born on July 2, in Biel/Bienne, Switzerland

1981 – 1985 Elementary School Ipsach

1985 – 1990 Secondary School Nidau

1990 – 1995 Gymnasium Alpenstrasse Biel/Bienne, Typus E

1995 – 2001 University of Bern, Switzerland. Major in Computer Science
and Minors in Mathematics and Political Economics

2001 M.Sc. in Computer Science, University of Bern

2001 – 2007 Ph.D. Student and Research Assistant at the Institute for Com-
puter Science and Applied Mathematics, University of Bern

