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Chapter 1

Introduction

Little more than a decade ago, mobility and communication were two completely separate as-
pects of life. With the emergence of cellular phones and wireless computer networks, these two
aspects began to converge. Nowadays, both mobility and communication are an integral part of
daily life for millions of people. The people want to communicate whenever they feel like it,
and wherever they are. This revolution of mobile communication started with the widespread
adoption of cellular phones. In 2002, mobile phones outnumbered fixed-line phones for the first
time, counted worldwide. These days, the percentage of the worlds population that commu-
nicates with a mobile phone is approaching 50%. It is likely to assume that the demand for
wireless Internet will grow in similar dimensions, although probably at a slower rate. With the
introduction of new communication technologies such as WLAN, UMTS or EDGE, high-speed
internet access for mobile devices becomes a reality.

The mobile phone and the mobile internet device are merging into one unit, which becomes
smaller and more portable with every year. The ever increasing number of mobile communica-
tion devices in operation offers an opportunity to deploy new methods of communication. Since
its beginning, wireless communication has been handled by means of a fixed infrastructure. In
the case of wireless networking, stationary units called base-stations are used as relays that allow
mobile devices to communicate with each other. The limitations of this mechanism are obvious.
It depends on a fixed infrastructure that possibly is expensive to set up, and the area that can be
covered is limited. To allow a larger coverage, multiple base stations need to be connected via
a wired network. It is apparent that with the increasing number of mobile units, these devices
should communicate directly with each other, and be used to relay traffic between two distant
devices. This eliminates the necessity of base stations unless connectivity to another network is
required. The field of Mobile Ad-Hoc Networks (MANETs) embraces this concept.

The primary challenge in MANETs is how to establish a route between two distant devices.
Early approaches were modelled after existing routing algorithms, where designated devices,
the routers, build routing tables based on the topology of the network. All non-routing devices
send their traffic via the routers. Since the topology remains mostly stable in fixed networks, the
routing tables need to be updated only infrequently. This is different for mobile networks, where
devices are moving around and thus often enter or leave the communication range. If traditional
routing algorithms are used in mobile networks, frequent updates of routing information to ac-
count for topology changes are the result, together with often outdated routing tables. To make
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routing more efficient in mobile ad-hoc networks, position information can be used instead of
topology data. Routing algorithms that make use of position data are called position-based or
geographic. The Beacon-Less Routing algorithm (BLR) falls into this category.

The Beacon-Less Routing Algorithm[1, 2] uses a stateless approach, where no knowledge
about the position of nearby nodes is needed to make routing decisions. BLR showed very
promising results in network simulations[3]. The intention of this thesis is to produce a prototype
implementation of the Beacon-Less Routing algorithm, and to try to verify the results achieved
in the network simulator as much as possible. It was chosen to do the implementation in the C
programming language, as this promises a highly portable solution.

Chapter 2 discusses other implementations of position-based routing protocols suitable for
real-world measurements. Chapter 3 describes the BLR algorithm briefly, and chapter 4 dis-
cusses the details of the implementation. This is followed by the measurements presented in
chapter 5, which make up the largest part of this work. Finally, a few suggestions for improve-
ments are made in chapter 6, where the work is also concluded.
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Chapter 2

Related Work

Many position-based mobile ad-hoc routing protocols have been proposed over the past few
years. An overview over them is given in [4]. Among the more prominent ones are GPSR[5],
Terminode Routing[6] and GOAFR+[7]. The most commonly used approach to evaluate and
study proposed algorithms is to carry out computer simulations. For BLR, this step has been
taken in [3]. However, as often stated[8, 9], it is extremely difficult to model the physical layer
of wireless networks realistically during computer simulations. As shown in [10], the radio
model, which is responsible for simulating signal propagation and interference during a com-
puter simulation, highly affects the significance of results obtained from network simulations.
Thus, the logical next step after computer simulations is to create an implementation that can be
used to conduct real-world tests, both indoor and outdoor, and to conduct measurements under
realistic conditions. In [11], first results of real-world tests with BLR have been published, and
this thesis describes the work done in more detail.

Implementations suited for carrying out real-world tests exist for most protocols, for example
one for GPSR can be found in [12]. In [13], indoor tests with the AODV[14] protocol have been
conducted, although the results were rather disappointing. The poor performance obtained in the
experiments have been attributed to problems with the wireless network cards. In [15], a small
test network of six statically positioned nodes has been used to evaluate an implementation of
ODMRP[16].

The objective of other related projects was to create testbeds for evaluating wireless ad-hoc
networks, and to compare different protocols to each other. The evaluated protocols are either
existing implementations, slight adaptations thereof, or entirely new implementations. In [17], a
general overview over the requirements of testbeds for mobile ad-hoc networks is given and the
difficulties encountered during deployment of one are outlined.

In [18], experiences in building a testbed are described. The problems with evaluating wire-
less ad-hoc protocols denoted in this work are as follows: The wireless signal propagation is
highly unpredictable, as factors such as weather, terrain or random interfering signals make
it very difficult to achieve reproducible measurements when doing real-world, outdoor experi-
ments. Obtaining packet routes over multiple, different hops requires a deployment of dozens
of nodes over a large area. This inevitably results in difficulties in managing the coordination of
the individual nodes during the experiment, as well as in controlling their movement. Transmis-
sion ranges are greatly influenced by external factors and bidirectional links cannot be taken for
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granted. Furthermore, non-scientific problems are also discussed, such as the difficulty to find
the large number of people required to conduct an experiment as well as explaining to casual
bystanders (and possibly the authorities) what is going on.

In [9], a testbed was developed with the purpose of providing the possibility to directly
compare wireless ad-hoc networks with a minimum of administrative overhead. The testbed has
been set up indoors inside a single room. Virtual separation of the nodes, in order to achieve
that some nodes are not in the transmission range of others, is achieved with RF attenuators.
A facility to easily control the attenuation and to switch between different virtual topologies
has been built. Mobility is simulated in software, and only allows for discrete movement of
the nodes, i.e. for jumps between different positions. The advantage of this approach is that it
greatly simplifies protocol development and experiments, as only one person is needed to carry
out an experiment. The obvious disadvantage is that the previously mentioned influences from
an outdoor environment are not accounted for during measurements.

In [19], a complex wireless network testbed for outdoor tests has been constructed. It is
built in an area of 7 km2 and consists of static, vehicular and airborne nodes, as well as manage-
ment stations with internet connectivity. Preliminary tests with the DSR[20] protocol have been
conducted in this testbed.

Yet another, very promising approach to solve the problem of precise modelling of real-
world conditions with the purpose of evaluating wireless ad-hoc network protocols is taken
in [10]. Instead of first implementing a protocol in a general purpose network simulator, fol-
lowed by an implementation for real-world devices, an existing real-world implementation is
run via so-called Direct Execution inside a newly developed simulator. The advantage is that
the same codebase can be used for both real-world tests and simulations, which increases the
significance of comparisons between results from the simulation and results from outdoor ex-
periments. When porting a protocol to be directly executable, only a small number of system
calls, those responsible for receiving and sending packets and for accessing the real-time clock,
have to be adapted for the implementation to work in the simulator. The measured overhead in
CPU performance was minimal, while the overhead in memory usage was larger, although not
so high as to render the approach unfeasible. After a real-world experiment has been performed,
the simulator can be fed with mobility and connectivity traces, to exactly recreate the outdoor
environment. Another advantage of the direct execution approach is that the CPU work-model is
implicitly given, and does not have to be emulated by the simulator. Existing simulators usually
do not consider delays caused by the scheduling mechanism of the operating system, on which
the routing algorithm is executed. The main conclusion drawn in [10] is that a simple stochastic
radio propagation model with parameters typical to an outdoor environment can produce ac-
ceptable results in a standard simulator. The results can be greatly improved with the help of
connectivity traces, however. The free-space and the two-ray radio propagation models largely
exaggerate the radio transmission range, and thus misinterpret network conditions, which can
have false conclusions as a result.

Another work[21], which is very similar to the presented one, deserves to be mentioned. It
consists of a protocol proposition for a position-based routing algorithm, which is to be used in
vehicular networks. However, its focus lies on protocol design and implementation, and mea-
surements are only used to demonstrate the correctness of the implementation. Two experiments
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with four nodes and fixed positions have been carried out.
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Chapter 3

The BLR Protocol

This section describes the BLR[1, 2, 3, 11, 22] algorithm in a formal way, as well as delivering
the necessary background information needed to understand the specification.

3.1 Assumptions

Each node is aware of its own geographical position. This can be achieved through the Global
Positioning System (GPS), Galileo, or other positioning services[23]. Levels of altitude, as de-
livered by GPS or Galileo, are not considered in this specification for reasons of simplicity. As
with all position-based routing protocols, the source of a transmission must have a possibility to
detect the geographical position of the destination. Several schemes for this so-called localisa-
tion have already been proposed, [24] gives an overview.

There are two system-wide constants, called MAX DELAY and TRANSMISSION RANGE,
which are known by all nodes. The former indicates the maximum time that a packet is in-
tentionally delayed per hop, as described in the next section. The latter denotes the theoretical
maximum transmission radius of a node. The algorithm assumes the unit disk graph model,
where two nodes can communicate with each other if their intermediate distance is no more
than TRANSMISSION RANGE. As a consequence, all links are assumed to be bidirectional and
antennas are omnidirectional.

3.2 Greedy Mode

When BLR operates in dense networks, it forwards packets in greedy mode. It allows to forward
packets in a completely stateless and distributed manner. The advantage of BLR over other
position-based routing protocols is that no information about neighbouring nodes is needed to
make routing decisions, which eliminates the need for a periodical transmission of beacons.
This has advantages such as preservation of battery power and avoiding both interferences with
normal data transmissions and problems caused by outdated routing tables.

If a source node has a packet to send, it first determines the geographic position of the
destination node. It stores this information in the packet header, along with its own position.
The packet is then broadcast and received by all nodes in transmission range. With the position
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of the source node, the previous node and the destination node, nodes receiving a packet have all
the information needed to calculate whether they are inside a specific area, called the Forwarding
Area. Nodes outside this area drop the packet, while those inside prepare for relaying it. The
forwarding area is located between the sending node and the destination node and its diameter is
restricted by the TRANSMISSION RANGE constant. It is chosen so that all nodes located inside
this area are in each others transmission range. An infinite number of areas with these properties
exists, and [22] shows that a forwarding area in the shape of a circle is suited best for BLR.
Figure 3.1 illustrates the forwarding area.

S D
B

p
A

Figure 3.1: The transmission area is denoted by the solid circle, the forwarding area by the dotted circle.

The source node S is always located on the border of the circle that surrounds the forwarding
area. The forwarding area is divided in half by the straight connection between the source node
and the destination node. Nodes A and B are both located inside the forwarding area in the
above example.

Nodes that receive a packet and are located inside the forwarding area use the concept of
the Dynamic Forwarding Delay (DFD) to assure that only one node forwards the packet. This
means that before actually relaying the packet, each node waits for a specified amount of time,
called Add delay. This amount is dependent on the position of the node in respect to the previous
hop and the constant MAX DELAY. It is calculated by the following formula, where r stands for
the TRANSMISSION RANGE and p stands for the progress:

Add delay = MAX DELAY ·

(

r − p

r

)

The progress p of node A is defined as the projection of the distance between node S and node
A on the line from S to the final destination D. The DFD function shown above ensures that
the node that introduces the most progress forwards the packet first, which is node B in figure
3.1. All other nodes attempting to forward the same packet cancel their scheduled transmis-
sion, as soon as they overhear the relaying by another node. The source node also overhears
the transmission of the packet, and thus receives an acknowledgement that the packet has been
successfully relayed, which is called passive acknowledgement. The only change that a forward-
ing node performs on a packet it relays is substituting the position of the previous hop with its
own position. The packet is forwarded in this manner until the final destination is reached. The
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destination is the only node that has to actively send an acknowledgement packet, since it not
relays the received packet any further.

3.3 Backup mode

When a sending node does not receive a passive acknowledgement in a certain amount of time
after sending a packet, it assumes that no other node is located inside its forwarding area. It
then enters backup mode and tries to discover an alternate path to the destination. It does this by
broadcasting a short request for beacons, and all nodes within transmission range reply with a
packet indicating their position. In this scenario, nodes that are located closer to the destination
than the sending node are said to introduce forward progress. If such a node exists, it is chosen
as the next hop. If not, the sending node extracts a planar sub-graph, e.g. a Gabriel Graph, for its
neighbourhood and forwards the packet via unicast according to the right-hand rule. A Gabriel
graph contains the edge between vertices vi and vj , if no other vertex vk is within the circle with
diameter [vivj]. The extraction of the planar sub-graph is necessary in order to prevent packets
to enter a loop. The distance between the node where greedy mode failed and the destination is
stored in the packet header. As soon as the packet arrives at a node with a smaller distance to
the destination, the packet is forwarded in greedy mode again.

3.4 Unicast Optimisation

After a node has detected the relaying of one of its packets through a passive acknowledgement,
it knows which node is optimally placed on the route towards that specific destination. It now
can send subsequent packets to the same destination directly to that optimally placed hop via
unicast. Forwarding nodes that know the optimal next hop can relay by unicast and without
applying DFD, which can reduce end-to-end delay significantly. After a certain amount of time,
a packet is broadcast again, so that it is possible for the algorithm to react to topology changes
that may have happened in the mean time.
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Chapter 4

Protocol Implementation

4.1 Development Environment

The target platform of the implementation is GNU/Linux. The Gentoo Linux[25] distribu-
tion was used for development, although any modern GNU/Linux distribution that is based on
the Linux Kernel 2.6 will work with the implementation. The Linux kernel needs to be com-
piled with the following configuration options enabled: CONFIG TUN, CONFIG PACKET and
CONFIG IP NF IPTABLES. The option CONFIG TUN is needed to create the virtual tunnel
interface, CONFIG PACKET is needed to create the raw socket used for sending and receiving
packets and CONFIG IP NF IPTABLES is needed to block incoming unicast packets from not
triggering error messages. This will be explained later in more detail. Additionally, the appro-
priate drivers for wireless cards and serial drivers for the GPS devices are needed. During the
implementation, the following tools were used: The GNU C compiler version 3.3.3 [26], the
GNU debugger [27] and the Subversion revision control system [28].

4.2 Portability

Keeping the code portable to other unix systems was not a requirement. However, the code
is written in ANSI C and only two GNU/Linux-specific constructs have been used. These are
the usage of the select() systemcall and the pf packet facility. The System V variant of select()
typically sets a timeout value before exit, but the BSD variant does not. Since this timeout value
is used in the BLR application, the behaviour of the GNU/Linux variant of select() has to be
simulated when considering a port to non-Linux systems. This can be easily done. Pf packet
does only exist on GNU/Linux, and for a port to a non-Linux operating system, the packet
reception and sending code will have to be rewritten. Both the tuntap driver and the MAC-layer
filter do not pose portability problems, as the BPF filter used for MAC layer filtering originated
in BSD, and the tuntap device has already been ported to most unix variants.
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4.3 Design Decisions

Even though an implementation in the simulator existed already[3], it was necessary to make
certain design decisions for cases where the implementation in the simulator could not be fol-
lowed exactly. Aside from the overall architecture of the application, the main questions were
what packet format to use and how to integrate the application into the network stack.

4.3.1 Tunnelling or Stack Integration

When implementing a routing protocol prototype, two options are available: the use of tun-
nelling or an integration of the protocol directly into the network stack. With tunnelling, a
BLR-specific packet header is wrapped around the payload, and the resulting BLR packet is
encapsulated inside a UDP packet, which is then transmitted via IP. Applications that want to
send BLR packets typically do this with the help of an API that the BLR implementation has
to provide. The GPSR implementation[29] is an example of an implementation that takes this
approach. With a direct integration into the network stack, an outgoing packet is intercepted at
some point in the network stack, and the BLR header is inserted between the existing packet
headers. This involves adapting the existing headers (Ethernet or IP header, depending on where
the BLR header is inserted), to accommodate for the change of the packet. When such a manip-
ulated packet is received by a destination node, the BLR application removes the BLR header
and reverses the changes done to the other headers, before delivering the original packet. Inter-
mediate hops simply update all the necessary headers and forward the packet.

The advantage of tunnelling is that it is simpler to implement and manage, since a standalone
application can be developed, which is only loosely coupled with the network stack. On the other
hand, direct integration into the network stack offers several advantages over tunnelling:

• Application compatibility: With tunnelling, each application has to use an API to send
network traffic, whereas with a direct integration, network access is transparent for all
applications. This means that existing applications such as browsers or email clients can
use a BLR network without having to be changed.

• Accuracy: The behaviour of the algorithm can be matched closely by the implementation
without having to take the underlying protocol of the tunnel into account. This makes
modelling the algorithm easier and the resulting application is a more accurate implemen-
tation of the algorithm.

• Performance: The overhead introduced with tunnelling is larger than with a direct integra-
tion, both in terms of processing time and packet size. With a direct integration, the size
overhead per packet is only the size of the BLR header that is added. With tunnelling, a
UDP header is needed in addition to the BLR header. Furthermore, when tunnelling inside
IP/UDP, ARP messages are needed for relaying packets by unicast. The ARP mechanism
is not needed with a direct integration, since packets can be sent directly to the next hop,
because the Ethernet destination address can be set by the BLR application. When a tun-
nelled packet is received, the surrounding headers are usually stripped completely before
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the packet is read, and then built again when the packet is forwarded. With a direct inte-
gration, the existing IP header is reused, as it does not need to be changed when a packet
is forwarded.

One of the requirements for this thesis was to stay as consistent as possible with the implemen-
tation done in the simulator. This was also an important reason to favour a direct integration
over the tunnelling approach.

4.3.2 Placement in the Network Stack

Due to time constraints and the prototype nature of the implementation, only an implementation
in user space was feasible. This means that instead of modifying packets directly in the kernel,
the BLR application has to somehow intercept packets sent by user space applications such as
browsers or email clients. It can then add the BLR header to the intercepted packet, decide
whether to use greedy mode, unicast optimisation or backup mode, and then pass the packet to
the network adaptor. To remain consistent with the simulator implementation, the BLR header
will be placed between the IP header and the IP payload. Details about how the BLR application
is hooked into the network stack are given in the next sections of this chapter.

4.4 Architecture Overview

Figure 4.1 shows how the BLR application is hooked into the network stack and gives an
overview over the operation of the application. The dashed arrows signify incoming traffic,
the continuous arrows outgoing traffic. The diagram is divided into a user space section and a
kernel section.

user space

TCP/UDP

IP

Application

pf_packet

802.11b

BLR

tun0

kernel

Figure 4.1: Architecture overview
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The BLR application interacts with the network stack at two points: the tun0 interface[30] and
the pf packet socket[31]. Communication between a local application and the BLR application
happens via tun0, and communication with the wireless network adaptor happens via pf packet.
Outgoing packets are handled as follows. A routing entry is set in the system routing table that
sends all traffic with an endpoint in the BLR test network to the tun0 interface. The tun0 interface
provides the BLR application with raw IP packets coming from local user space applications.
All traffic with an endpoint not in the BLR test network is subject to normal routing decisions
made by the kernel, and is thus not sent to the BLR application. Once the BLR application has
read a packet from tun0, it inserts the BLR header and updates the IP header to accommodate
for the changes caused by the insertion of the BLR header. It then sends the manipulated packet
to the wireless network adaptor via the pf packet socket, which allows to send and receive raw
Ethernet frames or IP packets directly to and from the network adaptor.

Incoming packets, which the BLR application reads from the pf packet socket, are either
forwarded to the next hop or passed to localhost, depending on the destination address in the
IP header. When a packet is to be forwarded, the BLR application updates the BLR header
of the packet and additionally delays it by the newly calculated Add Delay, before it is passed
via pf packet to the wireless network adaptor. When this host is the final destination for the
packet, the BLR header is stripped off, and the modifications made to the IP header by the BLR
application that is running on the original sender node are reversed. The resulting IP packet is
then sent to the tun0 interface, from where it goes through the system routing table before it
reaches the application layer.

A problem occurs because pf packet actually creates a copy of all incoming packets. The
copy is passed to the BLR application, the original packet takes the normal way through the
kernel, as shown by the crossed out line in figure 4.1. Why this is a problem and how it has been
solved is described in section 4.8.

4.5 The BLR Application in Detail

The architectural overview given in the previous section showed how the BLR application is
integrated into the network stack. This section describes the parts that the BLR application
consists of. It is split into three separate processes which communicate with each other via
pipes.

• The GPS process is connected to an external GPS device which it polls for changes in ge-
ographic location. It parses the GPS data and passes position updates to the main process.

• The sendqueue process receives outgoing packets together with the packet-specific value
Add Delay from the main process. It sends packets after they were delayed for the speci-
fied amount of time.

• The main process does everything else. Specifically, this is packet reception from both
the localhost and the wireless network adaptor, packet header transformation and updat-
ing, Add Delay calculation, and managing packet timeouts, unicast routes and a list of
duplicate packet IDs.
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Figure 4.2 gives an overview over the different processes. The blue boxes symbolise separate
processes. Everything inside the dashed line is part of the BLR application. The arrows going
in and coming out of the dashed box symbolise connections between the BLR application and
the rest of the system, these connections are provided by the kernel.

WAN

WAN

localhost
main

position

BLR packets / delay

tun0
tun0

pf_packet

GPS receiver
serial pf_packetsendqueue

localhost

gps

Figure 4.2: Architecture details.

4.5.1 GPS Handling

To find out its current position, each node can be connected to a GPS [32] device, or, alterna-
tively, read fixed coordinates from a file. The connection to a GPS device is made through an
RS232 interface over which the NMEA protocol[33] is used for communication. Most commer-
cial GPS devices offer support for this protocol. However, in order to also receive a precise time
synchronisation signal, the device must provide a PPS[34] signal, which is not provided by all
devices. The precision of the position data is greatly influenced by the GPS signal quality, which
depends mostly on the number of satellites that are in sight.

4.5.2 Sendqueue

The sendqueue process is responsible for queueing packets according to their individual Add delay.
It receives packet/delay tuples from the main process and maintains an ordered queue of all pack-
ets that are waiting to be sent. Whenever the Add delay for a packet has expired, the packet will
be sent. The queue is implemented in a separate process in order to separate packet delay han-
dling from packet handling and processing done in the main process. Another task handled by
the sendqueue process is the deletion of packets from the queue, whenever the main process
detects that another node has already forwarded a pending packet.

4.5.3 The Main Process

The main process does most of the packet handling. It consists of various subsystems:

• The main routine handles process initialisation and is responsible for receiving packets
from tun0 and pf packet.
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• It maintains the current position which it receives from the GPS process.

• The host table stores information about peers, namely their most recent position and the
next hop to reach them while using the unicast optimisation.

• The packet list maintains packets that were sent and not yet acknowledged, together with
a timeout value for each packet. Retransmissions in case of a timeout are also handled by
the packet list.

• The recently received table (RRT) contains all packet IDs that have been processed re-
cently and should be ignored when encountered again.

• The backup queue contains outgoing packets that wait to be sent until the backup mode
setup is completed and a decision about the next hop has been reached.

• Localisation, i.e. the acquisition of the geographical position of the destination, is done
by the main process. It is described in more detail in the next chapter.

4.5.4 The BLR Header

A diagram of the BLR header is shown in figure 4.3. It is inserted between IP header and IP
payload and contains information necessary to route BLR packets. The fields are: packet type (1
byte), original protocol (1 byte), sequence number (2 bytes), backup distance (4 bytes), source
position (8 bytes), destination position (8 bytes), previous position (8 bytes). The overall size is
32 bytes.

backup distance

source position destination pos. previous position

4 8 8 81 1 2

proto
sequencetype

Figure 4.3: The BLR header.

In the simulator implementation different headers are used for different packet types. For in-
stance the headers added to packets sent in greedy mode are different than the headers of data
packets used in backup mode, since not all information needed during backup mode is also
needed during greedy mode. For simplification, this subdivision is not made in the real-world
implementation. However, the header size in the real-world implementation is already 2 bytes
smaller than the header size used for greedy mode packets in the simulator implementation, so
for the majority of packets, the real-world implementation uses smaller headers. The fields are
used as follows: The type field indicates the type of the BLR packet, for example greedy mode
packet, location request and so on. The protocol field stores the protocol number of the encap-
sulated protocol (TCP or UDP in most cases). This field is necessary since its counterpart in the
IP header is overwritten with the protocol number for BLR, when a BLR packet is created. The
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sequence field is used together with the source IP address of the IP header to uniquely identify
each packet. The backup distance stores the distance between the point where greedy mode
failed and the destination node. It is only used during backup mode. The position fields in the
header consist of two 32 bit integers that store latitude and longitude. These are computed into
Cartesian coordinates where necessary.

4.5.5 Internal Structure

The following section gives an overview of the composition of the BLR application. It lists con-
figuration values, packet types, operation modes, source files and the main functions. In the next
section, the various modes BLR can send packets in are explained with the help of examples.

The following configuration parameters are tunable at compile time:

• TRANSMISSION RANGE: the theoretical transmission range

• MAX DELAY: the upper boundary for Add Delay

• FWAREA: what forwarding area to use

• TIMEOUT: the time to wait before a packet is retransmitted

• DISCOVERY TIMEOUT: the time until discovery replies are processed

• REFRESH INTERVAL: the invalidation interval

The invalidation interval defines an interval after which the application switches back to greedy
mode, in case it previously was in backup or unicast mode. Additionally, the cache of the geo-
graphic positions of other nodes can be purged, but this functionality has not been used during
the measurements.

The following packet types exist:

• DATA: All packets that contain only payload and are not used to exchange protocol control
messages have this type.

• LOCATION REQUEST: This type of packet is sent when a node has a packet to send
but does not know the geographic position of the destination. It contains piggybacked
payload.

• LOCATION REPLY: A node sends a packet of this type after receiving a location request.
If two-way traffic is assumed, location replies are not sent.

• ACK: An explicit acknowledgement packet is sent either when a node is the final destina-
tion and receives a packet it has to acknowledge, or when a node receives a duplicate, in
order to prevent further retransmissions of the same packet.

• DISCOVERY REQUEST: This type of packet is used during the setup phase of backup
mode, to discover what nodes are located in transmission range.
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• DISCOVERY REPLY: A discovery reply is sent in response to a discovery request, it can
be seen as a sort of position beacon, which is only sent on request.

LOCATION REPLY, although implemented, was not used during measurements for various rea-
sons explained in the next chapter.

A packet can be sent in one of three modes, in accordance with the specification of the BLR
algorithm:

• GREEDY (also sometimes called BROADCAST)

• UNICAST

• BACKUP

Unicast packet transmission will be treated as an independent mode and not as a simple optimi-
sation, thus the terms unicast optimisation and unicast mode are used interchangeably. From an
architectural point of view it makes sense to separate unicast sending from the greedy mode.

During packet creation, several fields in the IP header need to be adjusted, to accommodate for
the insertion of the BLR header into the packet. All these changes will be reversed before the
final destination passes a packet to tun0.

• Source address: Packets the BLR application receives from the tun0 interface have their
source IP address in the IP header set to the address of the tun0 interface. This needs to
be changed to the IP address of the wireless network interface, since this is the interface
where the packets leave the host.

• Packet length: The length needs to be increased by the size of the BLR header that has
been added.

• Protocol field: This field needs to be changed to BLR (the protocol number 254 is used,
which is reserved for testing purposes). The original protocol number is saved in the BLR
header.

• Header checksum: After changing any of the header fields, the checksum of the IP header
needs to be recalculated.

The BLR application is split into several source and header files. The various files and their tasks
are the following:

• maindriver.c: Initialisation and packet reception

• config.h: Contains protocol and application tunables

• filter.h: Defines MAC filters used during indoor tests

• blr.c, blr.h: BLR protocol handling
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• gps.c, gps.h: The GPS process

• sendqueue.c, sendqueue.h: The sendqueue process

• hosttable.c, hosttable.h: The host table

• packet list.c, packet list.h: The packet list

• backup queue.c, backup queue.h: The backup queue

• rrt.c, rrt.h: The Recently Received Table

• tunnel.c, tunnel.h: Creates the virtual interface tun0 and sets an entry in the system routing
table that directs all traffic destined to the BLR test network to this interface.

The following core functions are referenced in the coming sections:

• blr create(): creates a new BLR packet by adding the BLR header and adjusting the IP
header. Created packets are either passed to the sendqueue or stored in the backup queue.

• blr forward(): Handles incoming packets with an IP address that does not match the local
address. Depending on the packet type and the current mode, Add Delay is calculated and
the packet/delay tuple is passed to the sendqueue for forwarding.

• blr assemble(): Handles packets destined for localhost. The BLR header is stripped and
the IP header updated, then the resulting IP packet is written to the tun0 interface. When
a LOCATION REQUEST packet is received, the position of the requesting node is stored
and the piggybacked DATA packet is extracted and sent to localhost via tun0. This is
explained in more detail in the next chapter.

Both blr forward() and blr assemble() also handle ACK packets, DISCOVERY REQUESTS and
DISCOVERY REPLIES.

4.6 BLR Modes

This section illustrates the route a packet takes through the system and the BLR application, as
it is sent from the source node over the wireless network, forwarded by intermediate hops and
finally received by the destination node. To simplify the explanation, the three modes are treated
separately.

4.6.1 Greedy Mode

Figure 4.4 shows an example scenario with the nodes involved in a transmission. S and D denote
the endpoints of a transmission, A and B denote possible intermediate hops. The dotted cycle
represents the forwarding area and the continuous circle represents the transmission range of
node A.
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Figure 4.4: Greedy packet sending.

A local application at node S is sending a TCP packet to node D, which is an endpoint in
the BLR test network. Because a route in the system routing table sends all traffic with such
endpoints to interface tun0, the main process of the BLR application on node S can read the
packet from there. The packet already comes encapsulated in IP/TCP. The packet is then passed
to the function blr create(). First, this function checks the host table whether the position of
node D is known. This example assumes that the position of node D is already known to node S.
Next, the BLR header is added between IP header and IP payload. The fields in the BLR header
are set to contain the following values: The type is DATA, the protocol is TCP, the sequence is
set to the current value of a sequence counter internal to the BLR application and the backup
distance is set to zero, since the packet is being sent in greedy mode. The source position field is
set to contain the current position of node S, the destination position will contain the position of
node D, and the field containing the previous position is set to zero, because the packet is newly
created and not received from another node. Then, the IP header is updated to accommodate for
the insertion of the BLR header, as already described in previous sections. The packet is then
passed to the sendqueue process, along with values for Add delay and with the Ethernet address
of where to send the packet. For newly created packets, Add delay is always zero, and in greedy
mode, the target Ethernet address is always the broadcast address. The sendqueue process then
immediately sends the packet via pf packet, and stores a copy of the packet in the packet list, in
case it needs to be retransmitted.

Both node A and B receive and process the packet, since it is broadcast on the MAC layer.
The main processes of both nodes pass the packet to their blr forward functions, since the des-
tination address in the IP header is set to that of node D, and thus neither node A nor B is the
endpoint for the packet. Both nodes first check if they are in the forwarding area. If so, they cal-
culate a new value for Add delay, which is slightly higher for node A than it is for node B. They
pass the packet together with the calculated delay and the target Ethernet address (always the
broadcast address during greedy mode) to the sendqueue process, which waits for the amount of
time specified by Add delay. Node B sends the packet first. Node A overhears this transmission,
and the sendqueue process deletes the pending packet instead of sending it. By overhearing the
forwarding of the packet from node B, node S knows that node B will handle the packet from
now on, and it deletes the copy of the packet it has previously stored in the packet list. This
mechanism is called passive acknowledgement, or in short: passive ACK.

Once node D receives the packet, it is passed to the blr assemble() function, since the des-
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tination address in the IP header matches the IP address of node D. A packet with type ACK,
called a final ACK, is broadcast to indicate that the packet has reached its final destination and
will not be forwarded anymore. Then, the position of node S is extracted from the BLR header
and saved in the host table, before the BLR header is stripped off. The IP header of the resulting
packet is updated, in order to reverse the changes done by the blr create() function of node S.
Finally, the packet is written to tun0, where it is received by the kernel and passed to the local
application running on node D.

If node S does not know the position of node D when attempting to send the packet, trans-
mission works as follows. The host table check in the blr create() function fails, and the packet
type field in the BLR header is set to LOCATION REQUEST instead of DATA. The packet is for-
warded by both node A and node B, since its type is set to LOCATION REQUEST, and packets
of that type are sent through a simple flooding mechanism instead of via BLR. See section 4.7.2
for more details. When node D receives the packet, it is passed to the blr assemble() function,
where the position of node S is extracted from the BLR header and stored in the host table.
Then, the packet type field in the BLR header is changed from LOCATION REQUEST to DATA
and the packet is run through the blr assemble() function again, where it is then processed like a
normal DATA packet. Please note that the localisation mechanism, although integrated into the
BLR application, is not part of the BLR algorithm as such, and is only used to provide a working
real-world implementation.

4.6.2 Unicast Optimisation

The differences between unicast optimisation and greedy mode will be explained with the sce-
nario from figure 4.4. Once node S receives the passive ACK, it knows that for packets destined
to node D, the next hop will be node B. The MAC address of node B is thus stored in the host
table. The same happens when node B receives the final ACK from node D. The next packet is
sent from node A to node B and from node B to node D directly via unicast. After a specified
amount of time, called the invalidation interval, each host purges its host table entries, and the
application goes from unicast mode back to greedy mode when the next packet arrives.

4.6.3 Backup Mode

Backup mode is entered when a packet sent in greedy mode has not been acknowledged after the
time defined by the TIMEOUT constant. See figure 4.5 for an example scenario. In this scenario,
node S first tries to send a packet in greedy mode, with the destination being node D. Upon
sending, node S stores a copy of the packet in the packet list. After the packet timed out due to
no other node forwarding it, the packet is removed from the packet list and put into the backup
queue, and the algorithm switches to backup mode. The backup mode setup, during which the
next hop on the route to node D will be searched, begins. Until the search is completed, packets
from tun0 with destination D are not sent but stored in the backup queue. At the beginning of
the backup mode setup, node S prepares a DISCOVERY REQUEST packet: It is a BLR packet
without payload, encapsulated in an IP packet. The position of the destination is put into the
BLR header and the backup distance field in the header is set to zero. This indicates that the
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DISCOVERY REQUEST emerged from the node where greedy mode failed and backup mode
started. The destination address in the IP header is set to the IP address of node D.

D

A

S

C
B

Figure 4.5: Packet sending in backup mode. Dashed lines indicate unicast traffic, continuous lines
indicate broadcast traffic. Only the path of the DATA packets is depicted, the packets sent during backup
mode setup are not shown.

Node A and B both receive the DISCOVERY REQUEST packet and reply to node S by sending
a DISCOVERY REPLY packet. They store the distance between their current position and the
position of node D in the BLR header. In order to make it possible for node S to distinguish
between discovery replies meant for other destinations than D, the IP address of the destination,
D in this case, is stored as packet payload. After sending the discovery request, node S waits
for the amount of time specified in the constant DISCOVERY TIMEOUT, and stores all replies
it receives. After the timeout, the replies are processed. Since node A and node B both have a
negative forward progress, node S applies the right-hand rule, which yields node A as the next
hop. Node S can then send all the packets it has stored in the backup queue, after setting the
distance between itself and node D in the backup distance field of the BLR header of every
packet. When node A receives the packet it first checks whether the backup distance in the BLR
header of the received packet equals zero. Since it does not, the packet must be forwarded by
applying the right-hand rule. The packet is stored in backup queue and then node A conducts the
backup setup procedure. It receives discovery replies from nodes S and B. After applying the
right-hand-rule, it takes the packet from the backup queue and sends it to node B. The backup
distance in the BLR header of the transmitted packet is still set to the distance between node S
and node D. Node B repeats the same procedure. However, the DISCOVERY REPLY packet it
receives from node C indicates that node C has forward progress (i.e. is closer to node D than
node S is). Node B sets the backup distance to zero and sends the packet to node C. Once node
C receives the packet in backup mode, but with the BLR header field backup distance set to zero,
it changes from backup mode to greedy mode and forwards the packet by broadcast.

4.7 Differences to the Implementation in the Simulator

Because of the inherently different nature of the simulator and a GNU/Linux system, differences
between the implementation in the simulator and on the GNU/Linux system are manifold. This
section lists the most important differences.
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4.7.1 Header structure

Only one header is used instead of different headers for different packet types. The rationale is
less complexity. The header used in the real-world implementation is already 2 bytes smaller
than the header for DATA packets used in the simulation implementation. And since it is assumed
that BLR operates in greedy mode most of the time, there is not much benefit in introducing
different headers for different packet types.

4.7.2 Localisation

In the simulator, localisation information is provided by the simulator. Thus, when making
the step from simulations to a real-world implementation, some sort of localisation service is
needed. While localisation is a research aspect of its own and several solutions have already
been proposed [24], it was not something central for this thesis, and so a simple solution for
finding the geographical position of the destination node had to be found. Considering the small
number of nodes in the test network, it is feasible to use a flooding mechanism, where the
source node sends out a LOCATION REQUEST packet which is then forwarded exactly once
by each node that receives it. When the destination node receives the packet, it replies with a
LOCATION REPLY packet that contains its current position. This method is very simple, yet
when using it, there are a few points that need to be considered.

How long should position data stay valid? This is of course largely dependent on the mo-
bility behaviour of the nodes. While [2] suggests methods to judge position data by additional
information about node movement, these techniques have not been used in the current imple-
mentation, for reasons of simplicity. Instead, position data is invalidated periodically, and the
source is forced to send out a new location query. This method can be further simplified when
two-way communication is assumed: In case of TCP for example, invalidation can be skipped,
as a changing position of the destination can simply be extracted from packets returning from
the destination. This method was eventually deployed, since during all measurements, two-way
traffic was used. A further advantage of this method is that location requests do not interfere
with measurement results, since it is not necessary anymore to periodically transmit location
request packets.

A further optimisation of this method is possible: The first DATA packet sent by the source
node can be piggybacked onto the LOCATION REQUEST packet, thus avoiding the need for
an extra packet. Since the destination node can extract the position of the source node from
the LOCATION REQUEST packet, it can immediately send the next data packet, and LOCA-
TION REPLY packets are not needed anymore (still assuming two-way traffic). So the only ad-
ditional traffic that is generated by localisation are the additionally forwarded packets by nodes
not in the direct path between source and the destination.

It is questionable whether the applied method of an integrated, optimised localisation service
is the right way to go. With a separate localisation service, with which the BLR application only
interacts by asking it for position data, the BLR application would be much more flexible. In
the current implementation, flexibility is traded for performance. With an external localisation
service, it would also be possible to separate the communication medium used by BLR from
the medium used by the localisation service. This allows to separate the measurement results
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from the localisation overhead and decreases the complexity of the BLR application. To conduct
outdoor tests however, a simple, working localisation service is needed, which can use the same
communication medium as BLR, since this is the only medium available.

A problem that has not been specifically addressed arises when the source node sends packets
out faster than the packets carrying location data from the destination can arrive. The possibility
of this happening increases with higher sending rates as well as increasing number of nodes
(which increases the average distance between source and destination). Since in the current case
the test network is small and data is sent at relatively low rates, this did not affect measurements.

The conclusion is that the described method for localisation is sufficient for the scope of this
thesis, but would have to be refined for larger or more complex scenarios.

4.7.3 MAC-layer Control

When broadcasting, a packet is acknowledged through a passive ACK, i.e. by the detection
of the relaying of the packet through another node. During unicast, this is not possible, as
demonstrated by figure 4.6.

BA C

Figure 4.6: Unicast relaying. Transmission ranges of A and C are denoted by the continuous circles,
transmission range of B is denoted by the dashed circle.

Node A sends a packet and waits for the relaying of this packet by another node. If node B
relays the packet as broadcast, node A can overhear this transmission and will interpret it as a
successful relaying. But if node B forwards the packet to C by unicast, node A will node hear
this transmission and assume that the packet timed out. However, in 802.11b unicast packets are
explicitly acknowledged on the MAC-layer. If the MAC-layer does not receive such an acknowl-
edge in time, it may retransmit the packet up to 7 times before giving up. In the simulator, the
MAC-layer can signal successful relaying or a timeout to the upper layer, and the simulator im-
plementation makes use of this: the BLR part of the simulator implementation is noticed when
a packet has been successfully transmitted or when it timed out. In the real-world BLR imple-
mentation however, this is not easily possible. The MAC-protocol is largely implemented in the
firmware of the 802.11b card, which makes accessing the said functions virtually impossible.
Acknowledging every unicast packet explicitly with a short ACK packet would nearly double
the number of packets sent during unicast transmissions, and thus render the unicast optimisa-
tion pointless. Another method to detect the relaying of unicast packets had to be found. The
solution is to put the outbound interface into promiscuous mode, so that unicast packets to other
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nodes can be received and processed by the BLR application. The drawback of promiscuous
mode is obvious: since much more traffic has to be processed, power consumption increases.
This is discussed in more detail in section 6.3.3.

Care has to be taken not to make packet timeouts too small: If the BLR timeout is chosen too
close to the overall MAC-layer timeout (including all possible retransmission attempts), it may
be possible that the BLR implementation detects a timeout and starts a retransmission, while the
MAC-layer is still trying to resend the same packet. The same packet will then be resent twice,
once by unicast through the MAC layer, and once as broadcast by the BLR application, (since
the BLR applications falls back to greedy mode after an unsuccessful unicast transmission).

4.8 Challenges during Implementation

This section describes different challenges encountered during the implementation of the BLR
algorithm. Some are not specific to a real-world implementation and might also happen in
the simulator, depending on the amount of details that the simulator considers. However, the
likelihood of their appearance under real-world conditions is probably higher than in simulated
environments. Others challenges encountered are specific to the presented real-world implemen-
tation on the GNU/Linux platform, and can be avoided entirely in a simulated environment.

Problems that can affect the outdoor operation of an ad-hoc networking protocol are usually
caused by four factors:

• Positional inaccuracies due to imprecise GPS data

• Terrain characteristics such as obstacles that block or reflect signals

• Mobility-induced changes of topology

• Timing problems caused by clock skew, inconsistent hardware quality or inaccurate clock
synchronisation methods

As these factors are omnipresent in the field of MANETs, it is interesting to see how the BLR
implementation is affected by them and what solutions exist for minimising their impact. Except
for mobility-induced changes, these factors are usually not modelled in simulations.

4.8.1 Collisions

The lab testbed consists of five nodes, lined up on a desk. Since they are all located in the
same room, they are inside each others transmission range. For measurements that require some
nodes to be outside of the transmission range of other nodes, a virtual topology was simulated.
This may lead to an artificial increase of collisions, since packets that virtually cannot collide
may do so in reality because all nodes are inside the same collision domain. For the same
reason however, the hidden terminal problem[35] is avoided during lab tests, while it may cause
collisions during the outdoor tests. It is thus not clear whether the chance of collisions is higher
in the lab environment with a simulated topology than it is with an outdoor setup, where the
nodes are spaced several hundred meters apart.
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Collisions are especially disruptive during backup mode, since backup mode relies on the
exchange of control packets. Collisions may happen during the setup phase of backup mode as
well, not only during the actual packet transmission. Instead of simple packet loss, which can be
handled by upper network layers, collisions during backup mode setup can cause existing paths
to fail or to be altered. For example, if two nodes send discovery replies which collide, routing
may fail, even though a path exists. See section 6.2.1 for a possible solution to these problems.

4.8.2 Unicast Anomalies

Since it sometimes happens that multiple nodes in the forwarding area forward the same packet
(as described in the next section), the sender may receive two ACKs for the same packet. For
reasons of simplicity, in the current implementation only the first ACK is taken into account.
This may lead to the situation where a suboptimal node is chosen as the next hop for unicast for-
warding. While this causes some loss of progress, its impact is limited temporally to the length
of the invalidation interval.
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(a) Unicast transmission
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Figure 4.7: Unicast forwarding.

The scenario described in figure 4.7 however results in a permanent selection of a suboptimal
node, at least until topology changes require a reselection. Figure (a) shows the initial situation
where unicast traffic is transmitted from node S to D via A. This continues until invalidation
happens at node S. The next packet is then broadcast as seen in figure (b). Since node A did not
yet invalidate, it can forward the packet immediately by unicast, while node B applies Add Delay
before attempting to broadcast the packet. As seen in figure (d), S chooses node A as the next
unicast hop towards D, since node A forwarded the packet faster than node B.
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The solution to this is to allow unicast forwarding of a packet only when the packet was
already received by unicast. Node A in the above scenario would then not be allowed to forward
the packet faster than node B since it has to broadcast and thus is forced to take Add Delay into
account.

4.8.3 Duplicate Packets

Under ideal conditions, duplicate packets do not occur. Because of the four reasons mentioned at
the beginning of this XXX chapter however, they do happen in practise. This section describes a
few example scenarios where duplicate packets occur. Figure 4.8 shows the most common cause
for duplicates experienced during the measurements. The relaying of a packet is not detected
fast enough. Node S sends a packet towards node D. Both node A and B attempt to forward
it. Node B will introduce the smaller Add Delay and send first. Because of an anomaly node
A does not overhear the relaying and sends the same packet again. Node D receives this as a
duplicate.

DS
B

A

Figure 4.8: Relaying of a packet is not detected fast enough.

One reason for this is outlined in section 4.8.7, another reason could be an obstacle between A
and B, that makes it impossible for A to overheard the relaying by B. In figure 4.9, the formation
of a duplicate caused by mobility is shown. Source S sends a packet, node A which is currently
moving receives it. At the time of reception, node A is located at position A1, close to the
border of the transmission range of node S. At the time node A actually forwards the packet, it
has moved to position A2 which is outside the transmission range of node S. Since S now cannot
detect the relaying of its packet, it will resend it, causing a duplicate.

To reduce the impact of duplicates, a filtering mechanism was implemented. At various points
during packet procession, the packet is matched against a table containing the recently received
packets, called the RRT. However, packet IDs may only be added to the RRT if they were
received while the receiving node was inside of the forwarding area of the sending node. Oth-
erwise, the receiving node may add a packet that he should relay at a later point in time, for
instance when greedy mode fails and the sending node resends the packet in backup mode.
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Figure 4.9: A duplicate caused by mobility.

4.8.4 IP Fragmentation

IP fragmentation occurs when a network interface receives a packet that is too large for it to
handle. Depending on the value of the DF (Do not Fragment) bit in the IP header of the packet,
the IP stack either fragments the packet into smaller fragments and forward them, or it sends
back an ICMP error packet, indicating that it would like to fragment but cannot due to the DF
bit being set. Problems with packet fragmentation could have been avoided entirely by placing
the BLR header between the Ethernet header and the IP header. This way, each IP fragment
would have had the complete BLR header prepended and would contain all data necessary to
find its destination. But with the current implementation, where the BLR header is part of the
IP payload, only the first IP fragment contains the BLR header and thus the information needed
to find a path to the destination. Subsequent fragments will not contain any BLR information.
Therefore, IP fragmentation has to be avoided in the current implementation. To achieve this, the
MTU of the virtual tunnel interface is decreased by the size of the BLR header, which makes sure
that the maximum packet size is not larger than the standard MTU of 1500 bytes. Otherwise,
packets with the size of 1500 bytes would exceed the maximum packet size, due to the addition
of the BLR header, and would have to be fragmented. Furthermore, the DF bit is set for all
outgoing packets and PMTU[36] discovery is used to handle links for which the packets are too
large. This offloads the responsibility of fragmentation to the TCP stack.

4.8.5 Cloned Packets

Pf packet works by creating a copy of an incoming packet and delivering this copy to the BLR
application. The original packet is passed to the kernel for normal processing. Since only the
packet passed to the BLR application is desired, the original packet has to be blocked somehow.
This is achieved by deploying an IPtables [37] packet filter right after the pf packet facility. This
filter blocks all incoming traffic that has the protocol number of BLR set in the IP header. For
broadcast traffic alone, this filter would not be necessary, since the kernel simply drops broadcast
traffic with a protocol number for which there is no open socket. It does not reply with an error
message, since with broadcast traffic, this would not make sense. However, when the kernel
receives unicast traffic with an unhandled protocol number, it does send an ICMP error message
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to the sender. Without the packet filter, every packet sent by unicast would trigger such an error
message. For outgoing packets, no filter is necessary, since all packets destined to the BLR
network take the defined route through the virtual interface tun0.

4.8.6 Short-range Testbed in Indoor Scenarios

To allow testing of topologies where certain nodes are outside the transmission range of oth-
ers, connectivity between nodes has to be restricted somehow. Since during indoor tests and
implementation, all nodes were located in the same room and therefore inside each others trans-
mission range, the problem was to artificially remove connectivity between some nodes. The
most elegant solution was to implement a MAC-layer filter. This filter operates directly on the
pf packet socket, which results in the BLR application never seeing packets that it should not see
due to the simulated topology. This approach saves processing work on the side of the BLR ap-
plication, since the kernel does all the necessary filtering. The implementation of the MAC-filter
is done by means of the Berkeley Packet Filter [38] language. The GNU/Linux implementation
is called LSF, short for Linux Socket Filter, and is compatible with the BPF language.

4.8.7 Interrupt Granularity

In the network simulator, MAX DELAY values as low as 2 milliseconds could be achieved.
The meaning of MAX DELAY is briefly repeated here to make the following explanation more
understandable: When in broadcast mode, a forwarding node introduces Add Delay in the
range [0,MAX DELAY ] milliseconds before it forwards a packet. The actual value used
for Add Delay depends on the position of the node: the better it is located, the lower Add Delay
will be. When it was tried to put this into practise in the real-world implementation, a system-
wide limit was encountered: The granularity of the timer interrupt. This granularity is defined
by a compile-time kernel constant called HZ. On Linux kernels older than 2.5, this constant is
set to 100, which means that timer events hit at a frequency of 100 Hertz, or once every 10
milliseconds. On newer kernels, the value has been increased tenfold, resulting in timer events
every 1 millisecond.

In practise, this means that the select() system call, which is used extensively in network
programming, will return at 1 millisecond intervals only. This largely impacts scenarios where
multiple nodes are located relatively close together and all attempt to forward the same packet.
Values for Add Delay in the range [0, 1000] microseconds all result in select() sleeping around
1000 microseconds, values for Add Delay in the range [1001, 2000] microseconds result in an
actual delay of about 2000 microseconds and so on. Therefore, nodes with similar distances
from the sender will forward a packet at the same time, rendering the method for selecting the
optimal forwarder by position useless.

To limit the impact on the measurements, affected scenarios have been tested with a larger
MAX DELAY and nodes were spaced out more widely, so that each node gets an effectively
unique Add Delay.

While theoretically possible, a further increase of the HZ value is not yet completely sup-
ported by the Linux kernel. The drawbacks of raising the HZ value, however, is also raising
overall timer overhead. With switching from a value of 100 for HZ to a value of 1000, ten times
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more timer interrupts are generated, so the overall overhead for timer interrupts increases ac-
cordingly. For a personal computer, these overheads are negligible, for a small mobile device,
they might not be.

4.9 Lessons Learnt

If the step from a prototype to a commercial application will be taken, it would make sense to
implement a few things differently. The insights that have been gained during the course of this
work will be discussed in this section. On the implementation side, the following improvements
would be interesting to investigate: The use of separate processes that communicate via pipes
can be improved upon in two levels. First, instead of using pipes for communication, shared
memory could be used. While more complicate to implement, using shared memory offers a
performance benefit over using pipes. Even more performance improvements could be achieved
with a multi-threaded design. This would be a necessary step if high traffic networks with
multiple sources and destinations should be handled. To improve the time-critical sections that
handle packets that require an Add Delay, these parts need to be moved from user space into the
kernel.

On the architectural side, the integration of the BLR header between IP header and IP pay-
load is disputable. On the one hand, the encapsulation inside IP worked well, and was efficiently
implemented. On the other hand, BLR has characteristics of a routing protocol as well as char-
acteristics of a link layer protocol. For instance, it is responsible for finding a route to the target,
but also for packet retransmissions. In the simulator implementation, BLR is tightly coupled
with the MAC layer, by hooking into the timeout and retransmission mechanism of 802.11b.
This tight coupling is not possible in a real-world implementation, since access to the MAC
layer is very limited for consumer-grade 802.11b equipment. An implementation of BLR as
MAC protocol would thus make sense from an architectural point of view, as well as from an
implementation point of view.
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Chapter 5

Measurements

5.1 Test Scenario and Parameters

Measurements have been conducted to verify the correctness and robustness of the implementa-
tion, as well as to get insight into how BLR performs under real-world circumstances, as opposed
to simulated environments. The first part of the measurements were done indoors. Indoor mea-
surements allow for a wider range of parameters and topologies to be tested, since testing can be
conducted by a single person, and is generally less time-consuming than outdoor testing. Also
it is possible to minimise the influence of external factors such as weather, interference through
obstacles or position inaccuracies caused by variations in GPS signal reception. Outdoor mea-
surements, while restricted in their significance because of these external factors, are still very
valuable, as they test the robustness and correctness of the algorithm even better than indoor
measurements. Another advantage of outdoor measurements is that they can be conducted un-
der the same conditions that would apply when the algorithm would be used in a real device,
something which is not possible with indoor tests.

The measurements are carried out with a set of five laptops, of different brands and models.
All laptops are equipped with an 802.11b network card set to transmit with 2Mbit/s in ad-hoc
mode. RTS/CTS has been disabled on all cards. The power-save mode of the cards is turned off
and no encryption is used. The tests run on Gentoo Linux [25] with the Linux kernel 2.6.8.

One big problem was to synchronise the time between the nodes. While GPS would allow
for a very precise setting of the time[34], the use of GPS device on every node as a source for
time is impossible indoors, since GPS receivers need a clear view to the sky in order to function.
Trials to synchronise the nodes via the NTP protocol[39] failed, due to the reason that the laptops
were of different brands and the drift of their internal clocks varied greatly. Even after hours of
synchronisation with NTP via Ethernet, time drifted quickly enough to not allow for precise
measurements. It was thus decided to send two-way traffic and measuring time only on one
node and thereby eliminating the necessity for synchronisation.

Traffic sending is always initiated from one node only. The traffic is sent by the unix ping
utility, which produces ICMP traffic. As packet size, the default of 56 bytes was chosen, together
with the ICMP header this adds up to 64 bytes of payload. Unless stated otherwise, 2000 ICMP
echo requests were sent, together with the echo replies, this results in a total of 4000 data packets
per measurement. Echo requests are sent out with a rate of 10 packets per second unless stated
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otherwise.
The parameters that can be varied between measurements are limited. The maximum num-

ber of nodes is fixed and mobility is very limited, or even nonexistent in the case of indoor tests.
As [3] has shown, the forwarding areas circle and ruleaux perform identically well in simula-
tions with low node density. Therefore, the circle has been chosen as forwarding area for all
measurements. The lower boundary of MAX DELAY has been evaluated during the implemen-
tation already: Below 5 ms, the implementation will not perform correctly due to the problems
mentioned in 4.8.7. This leaves the topology, the upper boundary of MAX DELAY and the time-
out parameters TIMEOUT and DISCOVERY TIMEOUT for variation between measurements.
In addition, the different BLR modes (greedy, unicast optimisation and backup mode) can be
compared. Of course, general aspects such as delivery time and packet loss have been examined
as well.

5.2 Indoor Tests

The indoor tests were all conducted inside an office, with the five laptops lined up on a desk.
Since GPS devices are not usable inside buildings, the positions of the nodes have been evalu-
ated before each measurement and were then been hard-coded. The sending node is always set
up with latitude and longitude both zero. This simplifies the determination of the positions of
the other nodes. The Chain topology, for example, can then be created by spacing out all nodes
east of the sending node on the equator, all with a latitude of zero and with a constant increase
of longitude. To have more complex topologies implemented, latitude and longitude were deter-
mined by trial and error, and then fine-tuned with a separately implemented utility. This utility
periodically sends out position beacons and displays all nodes in range and their distance to each
other. The maximum transmission range, with is a fixed constant in the BLR protocol, has been
set to 250 meters during all tests.

Once all nodes were positioned, a virtual topology was ready. It is called virtual, because
the actual topology still had to be enforced through the MAC filters. If this would not have been
done, the destination node would be able to directly receive packets from the source node, since
those nodes are both located in the same room. This MAC filter is also hard-coded, as it is only
used for indoor experiments, and not really part of the BLR algorithm. During outdoor tests, no
MAC filter is necessary, since the nodes are spaced out so far that that only neighbouring nodes
can overhear each other.

After the positions have been determined and measurement parameters were configured,
the BLR application was launched and the ping utility was used to send ICMP traffic. Finally,
another custom script was used to gather output from all nodes, parse the output and create
statistical data of the measurement.

5.2.1 Topologies

For indoor tests, six different topologies have been chosen. A variety of different test cases is
possible with these topologies. For easy referral, they were given short names that should reflect
their structure. The following topologies have been used:
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• Chain: All five nodes are lined up on a straight line, with equal distances between all
neighbours. The distance is the maximally possible distance so that neighbouring nodes
can still overhear each other. This means that source and destination node each have one
direct neighbour, the other nodes each have two. Figure 5.1 illustrates the Chain topology.

• Pairs: The nodes also lie on a straight line, but they build pairs. The distance between
paired nodes is 20 meters, the distance between nodes that are not pairs is the maximum
distance of 249 meters. The number of neighbours for each node is the same as with the
Chain topology. See figure 5.2 for a visualisation.

• Contention1: Source node and destination node are spaced out twice the maximum dis-
tance, and the forwarding area of the source contains the other three nodes, as indicated
in figure 5.3. Only one node from within the forwarding area is in range of the destination
node.

• Contention2: The difference to Contention1 is that the destination node is in range of all
other nodes except the source node, as shown in figure 5.4.

• Uninvolved: This is the same as Contention1 except that only one node is located in the
forwarding area of the source. The other two nodes are outside of the forwarding area and
thus uninvolved in the direct transmission. See figure 5.5.

• Backup: With only five nodes, not many interesting topologies for backup-mode evalu-
ation are possible. The one tested looks as show in figure 5.6. The forwarding area of
the source node is empty, and the first and second node after the source have no forward
progress. The first node to introduce forward progress is the third hop.

The following two pages show all topologies. Unless noted otherwise, dots signify nodes, the
source is the leftmost node, the destination is the rightmost node, circles signify the transmission
range and line style or fill patterns are only used to enhance visibility.
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249 m

Figure 5.1: The Chain topology

20 m

249 m
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Figure 5.2: The Pairs topology

249 m249 m

Figure 5.3: The Contention1 topology. The dashed circle denotes the forwarding area of the source node.
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Figure 5.4: The Contention2 topology

249 m249 m

Figure 5.5: The Uninvolved topology

Figure 5.6: The Backup topology. The dashed circle denotes the forwarding area of the source node.
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5.2.2 Performance Overview

The first few measurements were conducted to get an impression of how well the BLR imple-
mentation can perform in an optimal scenario. The goal was to find out how much overhead
the BLR protocol and implementation adds, and how much additional delay per hop can be
expected.

All tests have been carried out in the Chain topology and with a MAX DELAY of 5 ms. In
this section, all results denote the end-to-end delay between source node and destination node,
whereas in all following sections, the results represent the round-trip-time, i.e. the time it takes
from the moment the source node sends an ICMP echo request until it receives the correspond-
ing ICMP echo reply. The reason that this section uses a different metric than all following
sections is that network performance measurements are usually expressed in end-to-end delays.
For symmetrical topologies such as the Chain, it is possible to approximate the end-to-end delay
by halving the round-trip-time. However for non-symmetric topologies, this approximation does
not work, since the path from the source node to the destination node might be more expensive
in terms of delay as the path from destination to source. Since many comparisons between sym-
metric and non-symmetric topologies will be made in the next sections, it is more appropriate to
use the round-trip-time in results for the other sections of this chapter.

Fig 5.7 shows the end-to-end delay in the Chain topology with five nodes. The average end-
to-end delay was 8.74 ms for four links. The delay that one BLR hop induces is therefore about
2.19 ms.
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Figure 5.7: Chain topology, five nodes

To illustrate the amount of overhead the BLR protocol and implementation causes, the next
measurements were made with only two nodes. The test data has been transmitted once without
BLR (i.e. a normal 802.11b transmission between two nodes in ad-hoc mode) and once with
BLR in greedy mode. Figure 5.8 shows that the two end nodes in a BLR transmission induce an
overhead of about 0.25 ms each. Please note that this value cannot be directly compared to the
2.19 ms achieved in the previous measurement. The 2.19 ms include the time required for the
complete data transmission, whereas the 0.25 ms achieved in this experiment only denote the
overhead that the BLR protocol induces.

It can also be seen that the values in the BLR scenario are much more scattered. The probable
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Figure 5.8: Two nodes, without BLR (left) and with BLR in greedy mode (right)

reason for this is that BLR is implemented in user space, which may cause unpredictable delays
because of the context switches between kernel and user space. This high deviation has been
observed in all measurements with BLR, although in is sometimes not clearly visible in the
graphs due to the class distribution of the histograms.

Since in the above scenario no actual forwarding takes place, the next interesting question
is how much overhead BLR adds when forwarding. To approximate this, a comparison is made
between the Chain topology with five nodes (as seen in figure 5.7) and a Chain topology with
only four nodes (as seen in figure 5.9). The difference in end-to-end delay between these mea-
surements approximately indicates the additional delay that one more BLR node induces in the
Chain topology. Thus, one additional BLR node that is optimally positioned (as in the Chain
topology) will add a delay of about 1.5 ms.
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Figure 5.9: Chain topology, four nodes

When this value is compared to the previously calculated delay of 2.19 ms per hop, the conclu-
sion can be drawn that the endpoints of a transmission induce a higher delay than the forwarding
nodes. This is not unexpected, as endpoints have to add (or remove) the BLR headers, recalcu-
late the IP checksums and read (or pass) the packet from (or to) the tun0 interface. The time a
packet takes between the tun0 interface and the ping utility, where time is measured, also needs
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to be taken into account when comparing values.
In all the previous measurements, data was sent at a rate of 10 packets per second. What

happens if the rate is changed? As more packets means more possible collisions, it is to be
expected that the end-to-end delay increases with an increase of the sending rate, because more
retransmissions are necessary. Since the application is not multi-threaded, an increase of the
sending rate can result in a slowdown as well, in case incoming packets can not be processed
immediately. This is very well illustrated in figure 5.10. The deviation of the end-to-end delays
in the scenario with the higher sending rate is much higher than the deviation in the scenario
with the lower rate. This indicates that more packets need to be retransmitted when the sending
rate is increased. The average end-to-end delay also increases with higher sending rates.
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Figure 5.10: Chain topology, different packet sending rate

5.2.3 Profiling

A simple attempt at profiling the BLR implementation has been made, in order to find out where
the in code the implementation spends the most time. Since a number of context switches
between user space and kernel space as well as context switches between BLR processes are
involved, it is difficult to calculate a meaningful number for BLR-induced overhead. At four
positions in the application code, timestamps were taken. This was at the reception of a packet
through tun0 or pf packet, before the main process writes a packet to the pipe connected to the
sendqueue process, when the sendqueue process reads from the pipe, and when the sendqueue
sends the packet.

The time between packet reception and writing to the queue, where no process switch is in-
volved, typically takes between 100 microseconds and 400 microseconds. The time that elapses
between writing a packet to the pipe in the main process and read it in the sendqueue process lies
in the same range. The time between reading and sending a packet inside the sendqueue process
takes anywhere between 100 and 1000 microseconds. Thus, as mentioned in the previous chap-
ter, the select() system call inside the sendqueue process, where the application waits for the
time specified in Add Delay before a packet is sent, is where the implementation spends most of
the time. The time not accounted for when comparing these values against the 2.19 ms achieved
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in the previous section is the time a packet spends outside of the BLR application. Since the
actual time spend in this section varies greatly, the implementation would benefit from moving
that part into kernel space to reduce this variance.

5.2.4 Influence of MAX DELAY

In this section, the influence of the BLR parameter MAX DELAY is examined, and the mea-
surement results are used to verify the correctness of the implementation to some extent. From
now on, all measurement results are specified as the round-trip-time of the ICMP packets being
sent. Figure 5.11 combines the results of two measurements in the Chain topology with five
nodes. The first measurement was conducted with a MAX DELAY of 5 ms, the second with a
MAX DELAY of 25 ms. In the Chain topology, all forwarding nodes are located close to the
border of the forwarding area of their predecessor, therefore they provide maximal possible
progress. This means that they introduce a minimal delay, as can be seen in the formula used to
calculate Add Delay:

Add delay = MAX DELAY ·

(

r − p

r

)

Since in the Chain topology the progress p is almost equal to the transmission range r, it is
obvious that the value of MAX DELAY has little influence over the Add Delay in this topology. So
the expected result is that the value of MAX DELAY does not influence the round-trip-time, and
this can be confirmed when looking at figure 5.11. The average round-trip-times are 17.49 ms
for a MAX DELAY of 5 ms and 17.46 ms for a MAX DELAY of 25 ms. Both averages are inside
each others confidence interval which confirms that the measured values are statistically equal.
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Figure 5.11: Chain topology, different values for MAX DELAY.

On different topologies however, the value of MAX DELAY should have an effect on the round-
trip-time. To illustrate this, a measurement with the Pairs topology has been made. The results
are shown in figure 5.12. As expected, the increase of MAX DELAY has a significant effect
in the Pairs topology, since on the way between source node and destination node, two of the
three forwarding nodes are located close to their predecessor and therefore introduce a high
Add Delay. For the returning packets (ICMP echo replies), one of the three forwarding nodes
introduces a high Add Delay.
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These measurements show that the implementation works as expected with changes of the
value of MAX DELAY.

 0

 200

 400

 600

 800

 1000

26.0-26.9

28.0-28.9

30.0-30.9

32.0-32.9

34.0-34.9

36.0-36.9

N
um

be
r o

f p
ac

ke
ts

Round-trip-time [ms]

5 ms
mean = 29.64

 0

 200

 400

 600

 800

 1000

80.0-80.9

82.0-82.9

84.0-84.9

86.0-86.9

88.0-88.9

90.0-90.9

N
um

be
r o

f p
ac

ke
ts

Round-trip-time [ms]

25 ms
mean = 83.61

Figure 5.12: Round-trip-times in the Pairs topology, with different values for MAX DELAY. Please note
the different scale on the x-axis.

5.2.5 Influence of Additional Nodes

As already mentioned in section 4.8.7, when the forwarding area contains multiple nodes, the
implementation does not behave as intended in the specification of the algorithm. Nodes cannot
detect fast enough when another node already forwarded a packet that they are also to forward.
This results in packets forwarded by multiple nodes whenever more than one node is located
in the forwarding area. In the topologies Contention1 and Contention2, this was immediately
noticeable in tests made with a MAX DELAY of 5 ms. To increase the chance of the algorithm
performing as expected with those topologies, the measurements in this section have all been
conducted with a value of 25 ms for the parameter MAX DELAY. Figure 5.13 shows the results
from measurements with topology Contention1, and 5.14 shows Contention2.
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Figure 5.13: Contention1 topology, sent with a MAX DELAY of 25 ms

Both topologies show very similar results. The algorithm performs slightly better for Con-
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tention1 than for Contention2. This is not unexpected as the path for the ICMP echo reply
packets is not the same in both topologies. The forwarding node for returning packets in Con-
tention2 introduces a slightly higher Add Delay than the forwarding node in Contention1, since
it is located a bit closer to its predecessor. This is not clearly visible in figures 5.3 and 5.4.
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Figure 5.14: Contention2 topology, sent with a MAX DELAY of 25 ms

The algorithm went to backup-mode a bit more often in the Contention1 topology than it did in
the Contention2 topology (still only about 10 times per 2000 packets, this is discussed in more
detail in section 5.2.10). This is also not surprising. In the Contention1 topology, only one node
can directly relay packets between the source node and the destination node. In the Contention2
topology, all forwarding nodes are reachable by both source and destination. This increases the
chances for successful delivery in the Contention2 topology. And since backup mode packets
are filtered in the displayed results of the measurements, this observation does not contradict the
better performance of the Contention1 topology mentioned in the previous paragraph.

In both contention topologies, the amount of packets forwarded by sub-optimally positioned
nodes was only around 0.1%. This shows that with a high enough MAX DELAY, the interrupt
granularity problems described in section 4.8.7 are less severe. The topology called Uninvolved
performed as expected with zero packets forwarded by nodes positioned outside the forwarding
area.

5.2.6 The Unicast Optimisation

In this section, the behaviour of the unicast optimisation and the performance improvements that
result from it are examined. In theory, the various topologies benefit differently from enabling
the unicast optimisation. For example only a minimal Add Delay per hop is introduced in the
Chain topology, because all forwarding nodes are already optimally placed at the border of
their predecessors forwarding area. Surprisingly, enabling the unicast optimisation in the Chain
topology results in a notable performance improvement, as figure 5.15 shows. Apart from the
difference in the round-trip-time, the two measurements showed similar characteristics.

The performance difference between the two measurements can be explained as follows.
As described in 4.8.7, even a minimal Add Delay may result in an actual delay of up to 1 mil-
lisecond. When sending with the unicast optimisation, packets are sent directly without an
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Figure 5.15: Chain topology, unicast compared to broadcast. The unicast optimisation offers a benefit
over greedy mode, even though the forwarding nodes are already optimally positioned

additional Add Delay. In the Chain topology, packets are forwarded six times, which means that
greedy mode suffers from an additional delay of six added random delays between zero and 1
millisecond, when compared to the unicast optimisation. The measured difference of about 2
milliseconds seems to fit into this hypothesis, although the vague assumptions concerning the
actual delay do not allow for a more precise reasoning. Furthermore, since BLR in the current
implementation operates in promiscuous mode, both broadcast and unicast packets have to be
examined by the BLR code. If the implementation would operate in non-promiscuous mode,
sending by unicast would have an additional advantage: Nodes that are not directly involved in
a transmission could discard those packets that are not destined for them already at the MAC
layer. The packets would not have to be inspected by the BLR code, which would save additional
processing time.

In other topologies than the Chain, the performance gained through the unicast optimisation
is even more noticeable. Figure 5.16 shows various histograms with round-trip-times for the
Pairs topology.

Several conclusions can be drawn from these measurements. Besides the substantial im-
provement in performance that the unicast optimisation delivers, one can see that sending in
unicast mode makes the value of MAX DELAY virtually irrelevant: Both measurements that had
unicast optimisation enabled resulted in a similar average round-trip-time. The conclusion that
can be drawn is that the higher the value for MAX DELAY is, the more improvement unicast op-
timisation provides. The average round-trip-time for the Chain topology is exactly the same as
for the Pairs topology when the unicast optimisation is enabled, since except for the distance be-
tween nodes, both topologies are equal. Interestingly, when sending in unicast, the performance
for a MAX DELAY of 25 milliseconds (15.43 ms average) was a bit better than for 5 milliseconds
(15.37 ms). Since the averages lie slightly outside the 95% confidence interval of each other,
this is more than a statistical deviation. The values stayed the same with repeated tests, and no
apparent reason for this phenomenon could be found.

In the contention topologies, the improvement in round-trip-time that is achieved by the uni-
cast optimisation is of course smaller than with other topologies, since the contention topologies
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Figure 5.16: Pairs topology, unicast optimisation compared to greedy mode, with different values values
for MAX DELAY

have only one hop between source node and destination node. Figure 5.17 shows the results
of the measurements in the contention topologies. In addition to these small performance im-
provements, there were no notable differences between greedy mode and unicast optimisation.
There is also not much difference between the Contention1 and Contention2 topologies. Again
the Uninvolved topology behaved virtually the same as its counterpart, Contention1.

One thing specific to all unicast measurements has been detected. About 2% of duplicated
packets were sent. These were data packets and the additional ACKs that these duplicated data
packets caused. All those packets were sent by node number two, the first hop after the source
node in the Chain topology. This node number two did not receive 2% of all final ACKs sent
by node number one. Node number two thus dropped to broadcast mode and resent the packets
it did not get ACKs for. Since the source node already received the first packet sent by node
number two, it sent an additional ACK to stop node number two from retransmitting the packets.
Switching the position of node number two showed that the problem was specific for this node
and did not have to do with the algorithm or the implementation. The hardware of node number
two seems to be defective. In the measurements, this defect had no effect on the round-trip-
times, because the source received and recorded the packets in question already the first time it
received them, and detected the retransmissions as duplicates. This shows the importance of a
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well-implemented detection of duplicates.
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(a) Contention1 with unicast
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(b) Contention1 without unicast

 0

 200

 400

 600

 800

 1000

6.25-6.74

7.25-7.74

8.25-8.74

9.25-9.74

10.25-10.74

11.25-11.74

N
um

be
r o

f p
ac

ke
ts

Round-trip-time [ms]

25 ms unicast
mean = 7.95

(c) Contention2 with unicast
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(d) Contention2 without unicast

Figure 5.17: Contention topologies, unicast optimisation compared to greedy mode with MAX DELAY
set to 25 ms in all measurements

5.2.7 Influence of the Invalidation Interval

Most measurements with unicast optimisation have been made with different invalidation inter-
vals (i.e. the interval after which the algorithm goes back to greedy mode to discover a change in
topology). The values tries were one second, five seconds and ten seconds. However, no notable
difference between measurements with different intervals could be detected. Since the optimal
invalidation interval is strongly dependent on the mobility model and node density, this aspect
has not been further evaluated.

5.2.8 Backup Mode

Backup mode is dependent on a few additional parameters. These had been evaluated in a few
test runs, before the actual measurements were conducted. A value for MAX DELAY of 25 ms
does not work, because the location information does not arrive fast enough. The problem are
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not the location requests, as those are not being transmitted via BLR, but flooded, as described
in section 4.7.2 . The forwarding of packets during flooding is independent from MAX DELAY,
flooded packets are forwarded immediately. The location replies however are sent via BLR, and
are thus subject to the delays induced by backup mode (which in turn depend on MAX DELAY).
The value of MAX DELAY has therefore been set to 5 ms for all measurements with the Backup
topology.

The other two parameters that influence the behaviour of the backup mode are TIMEOUT
(the time after which a packet is resent) and DISCOVERY TIMEOUT (the time to wait for
discovery replies). Both timeouts have been set to fixed values. On the one hand, these timeouts
may not be chosen too high, or the algorithm will not work. On the other hand, performance is
increased if these timeouts are chosen as small as possible. For TIMEOUT, 3.5 · MAX DELAY
seems to work well. While the theoretical minimum for this value is MAX DELAY, this is to
low in practise, since processing time at the receiving node must be taken into account. For
DISCOVERY TIMEOUT, a value of 7.5 milliseconds was chosen. Higher values resulted in too
much delay, and lower values resulted in missed discovery replies.

In figure 5.6, the topology used for backup mode was shown. Packets will be sent in the
following manner: After the source node has sent the initial location request, it sends the first
packet in greedy mode. Since the forwarding area of the source node is empty, backup mode
will be entered after the TIMEOUT. After the completion of the neighbour discovery, the packet
will then be sent to the leftmost node (in the figure), obeying the right-hand rule. The leftmost
node will then do neighbour discovery again and continue with the right-hand rule, since no
node in range can introduce forward progress. It sends the packet to the next node (the node in
the upper left corner), where neighbour discovery takes place again. Since now the next node
introduces forward progress, the right-hand-rule does not apply anymore and the packet is sent
directly to the node with forward progress (the upper right node). This node goes back to greedy
mode and the destination receives the packet by broadcast. On the way back, only two nodes are
forwarding, both of which can introduce forward progress. However, both of these forwarding
nodes will first try to send the packet in greedy mode, before resolving to backup mode, because
no nodes are located in their forwarding area. That means that on the way between destination
and source, packets suffer from a TIMEOUT twice.

This description shows that it is a bit difficult to make statements about the performance
penalties that incur when the algorithm switches to backup mode. The increase in round-trip-
time that backup mode causes is highly dependent on the topology layout. But as figures 5.18
and 5.19 illustrate, this increase also depends on the rate at which packets are sent.

In the first measurement, shown by figure 5.18, data was sent at the usual rate of 10 packets
per second. Unlike with all other measurements, the round-trip times are split into two distinct
groups. The cause for this is the following. When packets are sent at a high rate, it may happen
that an outgoing packet is received by the BLR application at the time when the discovery of
the neighbour is still in progress. In such a case, the packet is stored in the backup queue until
the next neighbour has been determined. Only then all packets in the backup queue are sent.
Therefore, packets that go directly into the backup queue have a lower round-trip-time than
those packets that are the initiators of the neighbour discovery procedure.

Figure 5.19 shows the results for the same setup, but with a packet sending rate of only one
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Figure 5.18: Backup topology, packets are sent at a rate of 10 packets per second and a MAX DELAY of
5 ms

packet per second. There is now only one distinct group, because all packets suffer from the
delay that neighbour discovery causes.
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Figure 5.19: Backup topology, packets are sent at a rate of 1 packet per second and a MAX DELAY of
5 ms

At a sending rate of 1 packet per second, the backup mode is about three times slower than
the unicast optimisation for the Chain and Pairs topologies, and about 1.5 times slower than the
Pairs topology in greedy mode. However, these values have a rather low significance for reasons
previously discussed. Other than that, the backup mode behaved similar to the other modes. The
amount of duplicates was the same for the Backup topology and packet loss was equally low
than with other setups (see section 5.2.10 for more details).

5.2.9 Simulated Mobility

To test the behaviour of the implementation under mobility, two measurements with simulated
mobility have been conducted. In these tests, the movement of one node was simulated by
changing its coordinates at a specific moment after the start of the experiment. This result-
ing movement is discrete, that is the node is jumping to its next position rather than moving
smoothly. Only nodes already at the border of the forwarding area are moved in this manner,
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with the result that a small change in position already results in a topology change, which causes
different routing decisions to be made by the nodes. Where necessary, the MAC filters have to
be adjusted along with the node positions to reflect the change in topology.

The first measurement illustrates the switch from greedy mode to backup mode and back to
greedy mode. The node positions are shown in figure 5.20.

5b1 5a

Figure 5.20: Mobility with the Backup topology

The topology starts out with a situation similar to the Backup topology. However, node number 5
will start at position 5a, which lies inside the forwarding area of node number 1. In this situation,
packets can be sent directly from node number 1 to node number 5 in greedy mode. After the
experiment has been started, the nodes hold their positions for about 50 seconds, then node
number 5 moves out of the forwarding area of node number 1 to position 5b. In that situation,
node number 5 can only be reached via backup mode. This topology is the same as the Backup
topology already used in previous measurements. After another 100 seconds, node number 5
moves back to its initial position 5a, so that greedy mode is possible again.

The results do not show any unexpected behaviour, as seen in figure 5.21. The histogram
shows that about half of the packets are sent in greedy mode, and half are sent in backup mode.
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Figure 5.21: Backup topology with mobility, sent at a rate of 1 packet per second.

In the distribution of the round-trip-times over time, the two position changes of node number
five, and thus the change from greedy to backup mode and vice versa, can be seen very well. As
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packets are always tried to be sent in greedy mode,
The topology used in the second measurement is also based on the Backup topology, as

shown in 5.22. At the start of the measurement, the topology is equal to the Backup topology

4a

1 5
4b

Figure 5.22: Mobility with the backup topology.

defined in section 5.2.1. Node number 4 is located at the position 4a. About 100 seconds after
the experiment has started, node number 4 jumps into the forwarding area of node number 1,
to position 4b. It stays at this position for the rest of the experiment. It can be seen that the
round-trip-time during backup mode is about the same as in the previous measurement. The
round-trip-time during greedy mode is higher in the second experiment, since the packets are
forwarded via node number 4, and not sent directly from node number 1 to node number 5, as
in the previous experiment.
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Figure 5.23: Backup topology with mobility, sent at a rate of 1 packet per second.

5.2.10 Reliability

During all measurements with the Chain, Pairs and Contention topologies, delivery rate was
100%. During backup mode measurements, a packet loss of 0.5% has been experienced. About
1% of packets got duplicated during transmission, however they were always detected and de-
stroyed at the next node by the BLR implementation so that the duplicates never reached the
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application level. Sometimes, the algorithm switched to backup mode because of a packet time-
out. This happened between once and twice per 2000 packets. A possible explanation for this
is the increased chance of collisions as explained in 4.8.1. In the measurements, this switch
to backup mode caused some outliers, which have been filtered from the data presented in the
graphs.

5.3 Outdoor Tests

To get insight into how the BLR algorithm and implementation operates under realistic con-
ditions, a range of outdoor measurements has been conducted. The idea behind these outdoor
tests was to set up the nodes in the same topologies and with the same parameters that were
used in the indoor tests, to see if the implementation works correctly and to compare the mea-
surement results of indoor and outdoor tests. The outdoor measurements differ from the indoor
measurements as follows: Firstly, the positions are gathered from GPS devices instead of being
computed before the experiment. And secondly, the MAC filters were removed and the nodes
set up with intermediate distances between them great enough to really separate them. The pa-
rameter TRANSMISSION RANGE was adjusted from the 250 meters used in the lab to the real
transmission range of the wireless transmitters.

5.3.1 Difficulties Encountered

The outdoor measurements proved to be rather difficult to conduct, for a variety of reasons,
which will be explained in the following.

The GPS devices do only work reliably with a clear view of the sky. If buildings or trees
narrow this view, accuracy drops. During the measurements, the accuracies received in an open
field was about 8 meters, with buildings or trees blocking part of the sky view, this dropped to
between 20 and 30 meters. Since signal reception depends on the number of satellites in view,
this means that reception is not only influenced by obstacles such as trees or buildings, but also
by the current time and the position of the satellites. While the DGPS[40] mechanism allows to
compensate these inaccuracies, using DGPS was not possible in the scope of this work.

During test setup, another problem was encountered. The assumption of bidirectional links
made in the specification of the BLR algorithm did not hold very well in the outdoors. Often,
even in the open space, of two laptops, only one node was receiving signals transmitted by the
other node. Since different models and brands of laptops and network cards were used during
the course of this work, it is difficult to say whether the reason for these asymmetric links could
have been avoided if homogeneous material would have been used. As stated in [18], wireless
signal reception is not only highly dependent on the wireless card and antenna used, but also
on many external factors such as weather, obstacles and signal-reflecting surfaces. This high
dependency on external factors has the result that even a small shift in position or a rotation of
the wireless transmitter can result in a drastic change of signal reception.

The maximum transmission range of the wireless cards used was measured at 330 meters,
with one specific pair of laptops and cards. With a Chain topology containing five nodes, this
would result in a distance of 1.32 kilometres between source and destination. As it is difficult to
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find an area of that size, that has a clear view of the sky and allows for people conducting exper-
iments, a compromise had to be made. Topologies were only approximated, taking the available
terrain into account. The Chain topology for instance was set up along a longer, curved prome-
nade. The curves, trees and other obstacles reduced the signal reception, which in turn reduced
the distance between source node and destination node in a natural way without changing the
underlying topology.

Furthermore, all measurements had to be conducted on days without rain, for obvious rea-
sons, and during evening hours. One attempt to conduct the measurements in the afternoon had
to be cancelled, because it was impossible to read the laptop screens in broad daylight.

5.3.2 Test Setup

To help laying out the nodes according to a topology, a utility was implemented that periodically
announces the current position of a node, and displays the distance to other nodes in range. It can
read the current position either from a GPS device or from a file containing coordinates. With
the help of this tool, the individual positions of the nodes in a topology have been determined.
To remove the effect of GPS inaccuracies, instead of live GPS data, these previously determined,
fixed coordinates have been used during the measurements. It was noticed that organic material
such as grass, ground, trees and human bodies strongly block wireless signals. This had the
effect that a laptop standing on the ground had a highly reduced transmission range, since the
signal only propagates in a hemisphere around the antenna. And since in the open space the
signal is not reflected by anything, this has the effect that if the surface between two laptops
standing on the ground is not perfectly flat or contains an obstacle, the two laptops can overhear
each other only at very short distances. Figure 5.24 illustrates this.

BA

Figure 5.24: Two nodes A and B. While node B would be inside the transmission range of node A, signal
reception is blocked by the ground line.

By putting all laptops onto chairs during the experiment it was possible to compensate the signal
blocking effect of bumps in the ground. After the nodes have been positioned, their position was
saved and the GPS device removed. To have the nodes operate with a fixed distance during the
measurements helped to reduce the impact of GPS inaccuracies.

To minimise the impact of the difference in transmission strength of the various nodes, it was
necessary to set the parameter TRANSMISSION RANGE for each measurement separately. As it
will be explained with the help of figure 5.25, the parameter TRANSMISSION RANGE must be
set equal to the lowest actual transmission range of all nodes. For example, if it would be set to
r, packets sent from A to C would be received by C directly, which works. But sending packets
from C to A does not work: When C sends a packet, it is received by both A and B. Since A
will forward the packet faster than B, B will cancel its pending transmission of the packet, as it
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overhears that A has already forwarded the packet. But C does not overhear the forwarding by A
and will resend the packet. If TRANSMISSION RANGE is set to s instead, the algorithm works:
A will receive the packet sent by C, but will drop it since it is located outside of the forwarding
area. B forwards the packet, A receives it again and can now forward it further, while C is seeing
this relaying by B as passive acknowledgement.

By carefully laying out the node topology and setting the parameter TRANSMISSION RANGE
correctly, asymmetrical links did not cause problems. Laying out a single topology took between
twenty minutes and an hour.

The tests for the Chain and Pairs topology were carried out alongside a promenade running
through an accommodation located in Bolligen, a suburb of Bern. The promenade was curved
and flanked by trees and buildings on both sides. The tests for the Contention topology were
conducted on a grass field in Ostermundigen, Bern, called “Kleine Allmend”.

s

r

A CB

Figure 5.25: Node A with a large transmission range of r, and node C with a smaller transmission range
of s.

5.3.3 Measurements Based on the Chain Topology

The Chain topology was set up as illustrated by the map shown in figure 5.26. Buildings and
trees blocked the clear line of sight between the nodes, allowing to reduce the mean distance
between two nodes to below 100 meters. The parameter TRANSMISSION RANGE was set to
65 meters. Setting up the nodes with an intermediate distance close to the transmission range
did not work out, the actual transmission ranges of the devices varied too greatly, partly due to
the different hardware, but also due to the terrain and due to obstacles.

The results of the measurements can be seen in figure 5.27. The average round-trip-times
achieved in the outdoor experiments were only marginally higher than those achieved in indoor
measurements. In greedy mode, the average RTT outdoors was 17.76 milliseconds, whereas
indoors, it was 17.48 milliseconds. See figure 5.15 for reference. With the unicast optimisa-
tion enabled, the average RTT was 15.75 milliseconds outdoors compared to 15.43 milliseconds
indoors. A packet loss of about 1% was experienced in the outdoor measurement, while compa-
rable lab experiments showed a 100% delivery rate. The performance benefit that unicast mode
offers over greedy mode does not change when going outdoors.
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Figure 5.26: Node placement for the Chain measurements
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Figure 5.27: Chain topology, measured outdoors.

5.3.4 Measurements Based on the Pairs Topology

The Pairs topology was set up along the same path as the Chain topology, using the Chain
topology as starting point. Nodes two to five were all moved approximately the same distance
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closer to node number one. Then node number four and five were moved the same distance
again closer to node number three. The node positions were then slightly corrected, to better
match the actual Pairs topology. Both nodes two and four are located significantly closer to their
predecessor than the other nodes, yet again, a perfect setup was not possible. Figure 5.28 shows
the node positions indicated on a map.

Figure 5.28: Node placement for the Pairs measurements

The results of the measurements are shown in figure 5.29. The performance during measure-
ments with the unicast optimisation turned on showed similarities to the measurement with the
Chain topology. The parameter MAX DELAY has virtually no influence during unicast mode.
With a MAX DELAY of 5 ms, an average round-trip time of 15.78 ms was measured outdoors,
and 15.73 ms was measured with a MAX DELAY of 25 ms. In comparison, the indoor measure-
ments yielded 15.43 ms and 15.37 ms respectively, see figure 5.16 for a reference. Thus, the
small decrease in performance for outdoor experiments that has been seen in the Chain topology
can also be seen in the Pairs topology.

The outdoor measurements with greedy mode show a significantly better performance than
those achieved the lab: Indoors, 29.64 ms was measured for a MAX DELAY of 5 ms, and 83.61 ms
for a MAX DELAY of 25 ms. In the outdoor experiments, 24.61 ms for 5 ms and 70.06 ms for
25 ms was measured. A reason for these unexpected results could not be found, which empha-
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sises again that it is not always meaningful to directly compare lab experiments with outdoor
experiments, as too many external factors such as weather, obstacles and signal-reflecting sur-
faces can influence the outcome of outdoor experiments in an unpredictable manner.
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Figure 5.29: Pairs topology measured outdoors, unicast optimisation compared to greedy mode, with
different values values for MAX DELAY

5.3.5 Measurements Based on the Contention Topology

This measurement was conducted at a different place than the last two experiments. The setup
was a bit simpler, since only three nodes had to be positioned at a maximal distance, and the
remaining two nodes could be positioned almost arbitrarily somewhere inside the forwarding
area of the source. The performance does not differ much from the lab measurement, the outdoor
measurement shows only a marginally slower round-trip-time. The results can be seen in figure
5.31.
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Figure 5.30: Node placement for the Contention measurements
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Figure 5.31: Outdoor measurement with the Contention1 topology
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

The measurement results have shown that developing a real-world implementation of the Beacon-
less Routing Algorithm is possible and that the resulting application is performing reasonably
well in the lab. The relevance of the results of the outdoor tests should not be overestimated,
however. Carrying out real-world outdoor experiments is very complicated and due to many
external factors, reproducibility of the results is difficult to achieve.

Both in indoor and outdoor measurements, the BLR implementation performs correctly,
reliably and packet delivery is fast. The outdoor measurements were rather difficult to conduct,
and showed a performance similar to that of the indoor measurements, with one exception, where
the outdoor setup outperformed a similar indoor setup. A definitive reason for this phenomenon
could not be found.

Depending on the field of application, many optimisations to the algorithm and the imple-
mentation are possible. Some are necessary to achieve optimal performance. BLR, like every
other mobile ad-hoc routing algorithm, is not suited for every scenario equally well.

The main weakness of the algorithm are the strong assumptions made about the radio model.
The outdoor experiments showed that it is unrealistic to assume a transmission range which is
the same in every environment and for every node. Choosing a small value for the transmission
range parameter prior to conducting an experiment worked when using only five nodes. Exper-
iments with more nodes are needed to evaluate whether using a short transmission range works
equally well in larger networks. The unit disk graph model also proved too strong an assump-
tion to work well in real-world outdoor conditions. However, the Cross-Link Detection Protocol
(CLDP)[29] could remedy this problem at least for backup mode. CLDP, given an arbitrary
connected graph, produces a sub-graph on which face traversal cannot cause routing failures,
regardless of radio irregularities and localisation errors.

6.2 Proposed Optimisations

During implementation and testing, various ideas have been developed about improving the
algorithm and implementation, and about future measurements which could be of interest. Parts
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of these ideas stem from literature, and parts are based on personal experiences gathered during
the course of this work.

6.2.1 Backup Mode TTL

During backup mode, collisions are especially disruptive, since backup mode relies on exchange
of control packets. Instead of simple packet loss, which can be handled by the upper network
layers, collisions during backup mode setup can cause existing paths to fail or to be altered, as it
has been described in section 4.8.1. To reduce the negative effect this can have, a sort of Backup
Mode Time-To-Live field could be added to the packet header. If a packet sent during backup
mode arrives back at the point where backup mode initially failed, it may be resent in backup
mode again, if the TTL allows it. The topology may have changed since initial sending for two
reasons: mobility of the nodes may have caused a real change in topology, or collisions of data
packets may have happened during the first tour of the packet and may have caused the topology
to look different than it actually is. Before reporting failure to the upper layers, backup mode
could be tried again in that case. Future experiments will have to show whether collisions or
mobility-induced changes in topology happen often enough to present a major problem and to
warrant the introduction of a backup mode TTL.

6.2.2 Data Caching

At various points in the algorithm, it is possible to cache information to improve performance.
For example, position data of next hops during unicast and of the destination node during regular
transmissions is already cached for a certain amount of time. During backup mode, it would be
possible to cache neighbour information as well. Since the current implementation operates in
promiscuous mode, it would be possible for nodes that overhear a unicast transmission in which
they are not directly involved, to cache next hop information if suitable for their current position.
Another, more complex idea that involves caching is that nodes could extract positions from all
packets they overhear. A sort of quality tag could be added to cached position information,
which is based on speed and direction of nodes. Position data of slow-moving nodes or nodes
moving towards the caching node would be tagged with higher quality, since it is less likely that
this information gets outdated quickly.

Of course, caching is always a trade-off between complexity of the implementation and
performance. Outdated information can quickly lead to degraded performance, or the processing
overhead of acquiring information could be too large. Extensive evaluations have to show if and
to what amount caching of data is of benefit. After all, the simplicity of the stateless manner of
greedy mode is an important advantage of BLR over other position-based routing algorithms.

6.2.3 Adaptive Retransmission Timeouts

Timeouts should generally be as small as possible to reduce delays during mode transitions.
In the current implementation, timeout values are constants, which have been chosen based on
experiments. An adaptive algorithm could be developed, so that timeout values start with a
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small value, and are gradually increased whenever timeouts occur. In [18], adaptive retrans-
mission timers are deemed a necessity when the retransmission algorithm is situated above the
link-layer. In BLR, this is inevitably the case for transmissions in greedy mode, since no re-
transmission scheme is available in the 802.11b MAC-layer for broadcast packets. For unicast
and backup modes, retransmissions can theoretically be handled by the MAC layer, however
this is not possible in the current implementation for reasons already stated. Therefore, adaptive
retransmission timers might make sense if implemented in the context of the current implemen-
tation. Again, the benefit of such an enhancement would need to be evaluated with experiments.

6.2.4 Preemptive Unicast mode

Since it is possible to extract signal strength values from passive acknowledgements, the next
hop during a unicast transmission could be chosen not only depending on its position, but also
on signal strength. Nodes with low signal strength or nodes travelling towards the border of
the transmission range could be ignored when making the decision for a next hop during unicast
mode. Also, unicast mode could be exited prematurely if the hop used shows signs of decreasing
signal strength.

6.3 Future Tasks

BLR showed to be a very promising routing protocol for mobile ad-hoc networks. Yet, some
things need to be improved to reach a production-quality application.

6.3.1 MAC-layer Integration

For an ideal operation of BLR, the implementation would have to be moved into the MAC layer,
since timeout and retransmission handling is an integral part of the BLR algorithm: Retrans-
mission is handled by switching from unicast mode to greedy mode or from greedy mode to
backup mode, and the switching is triggered by packet timeouts. The current implementation
is suboptimal in that respect, since it has to do timeout management and retransmission initi-
ation independent from the MAC-layer (as explained in section 4.7.3). Implementing BLR in
the MAC layer and giving this implementation complete control over timeout and retransmis-
sion handling would thus be beneficial. Another advantage of this approach is that promiscuous
mode could be avoided, since BLR can now send acknowledgements during unicast mode in
the same way that the 801.11b MAC-layer does. The increased control over the medium that an
implementation in the MAC-layer gives could be leveraged further, for example by use of power
control and directional antennas, as described in [41] and [42].

6.3.2 Kernel Implementation of Critical Parts

As described in section 4.8.7, the current implementation is suboptimal when used in scenarios
with high node density. In is thus imperative that the timing behaviour of the implementation is
improved. This could be achieved by moving the time-critical parts of the program from user
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space to the kernel. The use of a kernel with real-time properties could also be examined, as this
would possibly benefit the overall behaviour of the algorithm.

6.3.3 Power Measurements

Examination of power consumption has been left out completely in this thesis. For environments
where low power operation is required, many optimisations of the current algorithm are possi-
ble. The factors power consumption, performance and code complexity have to be evaluated
against each other. In static sensor networks for example, backup mode could be eliminated,
if the sensors are positioned intelligently. Also, removing the unicast optimisation would re-
duce complexity and have a positive effect on power consumption, since promiscuous mode
could be avoided. On the other hand, with adaptive sending power and a delay function that
favours closely located nodes over distant ones, sending in unicast could mean an improvement
in power consumption. Thus, measurements of the power consumption behaviour in various
situations should be performed, to gain an understanding on where in the algorithm the most
power is used.

6.3.4 Extensive Measurements and Simulations

To gain more insight into how the protocol behaves under real-world conditions, additional
experiments with more nodes are necessary. As reproducibility of the experiments is desired,
the approach of direct execution, as described in [10], might be worth to be considered for future
experiments. This has the additional benefit that it makes comparing real-world measurements
with results obtained through simulation easier.
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