

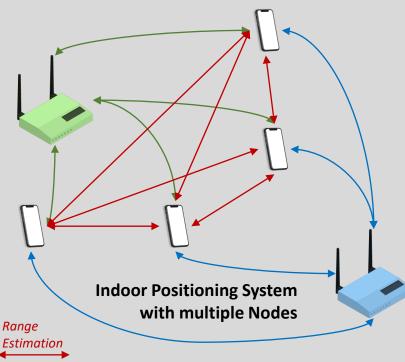
Anchor-free Ranging-Likelihood-based Cooperative Localization

ARLCL

Dimitris Xenakis

15/08/2021, BENEFRI Summer School 2021

Outline



- Introduction (Recap since last year)
 - Background, Motivation & Current Solution

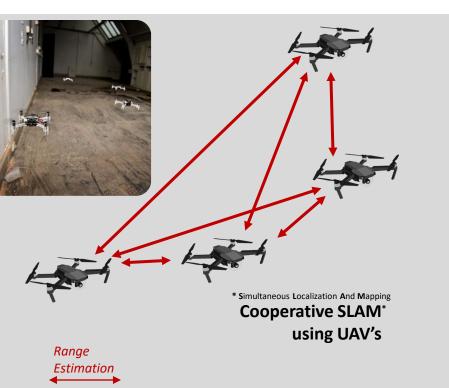
Proposed Methodology

- Creating the required Ranging-Likelihood model
- How to perform positioning using ARLCL
- Assessing ARLCL
- Results

Introduction Motivation

^b UNIVERSITÄT BERN

- The more signals, the better
- Yet, no effective node cooperation
- Recent advances and opportunities



(Samsung Ad for Galaxy S21 Ultra)

Anchor-free Ranging-Likelihood-based Cooperative Localization

Introduction Various applications

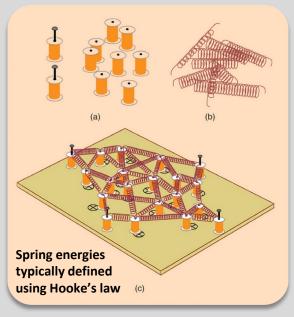
More information available
 Higher positioning accuracy

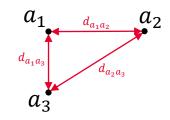
→ Facilitates limited to No-Infrastructure positioning
 → Anchor Free localization

(where position estimations have arbitrary origin)

UNIVERSITÄT

BERN


• Covid Tracking



Introduction

Anchor-free Ranging-based Cooperative Localization (ARLCL) today

Mass-Spring Localization

- Unknown position of agent a_i at Pos(x_i, y_i)
- Distance estimation $d_{a_i a_j}$ based on noisy measurements
 - ightarrow Non-Linear Optimization problem

UNIVERSITÄT

BERN

Minimize the energy to reach equilibrium

But.. are all measurements equally important?

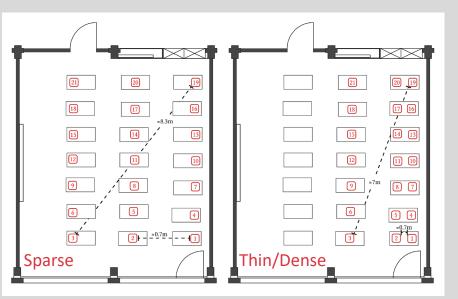
Estimations of far distances \rightarrow more uncertainty

- We need to model this uncertainty.

Ranging likelihood as a requirement for ARLCL A function to describe P(Distance; Measurement)

• Method is technology-agnostic

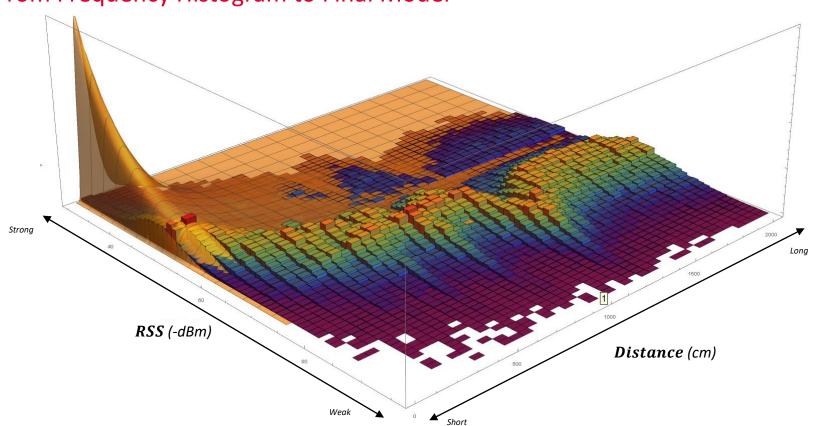
(WiFi ranging, Ultrasonic ranging, BLE ranging, etc..)


.. Given that Node-A received from Node-B this measurement, how likely is that Node-B is 5m far?

UNIVERSITÄT

Modelling the ranging likelihood Sampling process

Collect Received Signal Strength (RSS) measurements between all pairs of 21 BLE-Enabled Raspberries (RPi's)

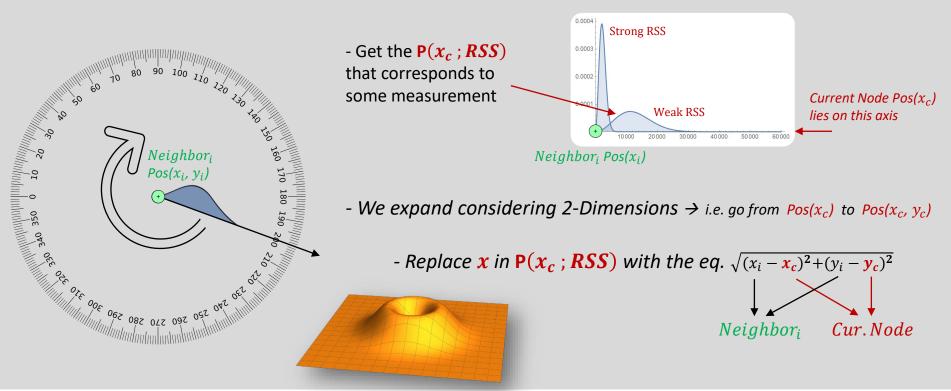


- True Positions recorded with LiDAR Scanner (Leica BLK360)
- x2 deployment shapes (Sparse & Thin/Dense)
- x10 times (@random RPi's orientations)
- x 5mins

Modelling the ranging likelihood From Frequency Histogram to Final Model

UNIVERSITÄT BERN Anchor-free Ranging-Likelihood-based Cooperative Localization

Performing swarm positioning with ARLCL The methodology outline



- Place the Nodes (i.e. the Swarm) randomly on space
- Cycle
 Select the 1st Node (according to some selection order) to correct his position
 - Select all Neighbor Nodes that have effective measurements towards that Node
 - Get each measurement's PDF and rotate it (according to the modelled DoF)
 - Find the global max of the product of these PDFs and move the 1st Node to that position
 - Proceed with the 2nd Node and continue until the last one. >> Repeat cycle until we converge..

UNIVERSITÄT

Anchor-free Ranging-Likelihood-based Cooperative Localization

Performing swarm positioning with ARLCL Rotating the Position's PDF

UNIVERSITÄT BERN

Assessing ARLCL

Compare against Mass Spring Method

- Using our developed Ranging Model and True positions of the 21 RPi's..
- Get a noisy RSS measurement between each pair

Evaluated variables

- Swarm shape x2 (Sparse, Thin/Dense)

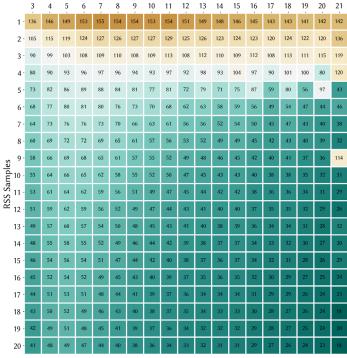
x100

x200

- Swarm size x19 (3..21)
- Noise level x20 (1..20) (PDF resamplings to get an average RSS)

Repetition parameters

- Position initialization
- Node Combinations


(1..100) (Random initial node placement)

= ~14m Evaluated cases

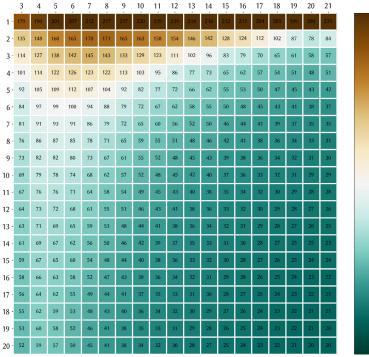
Results Positioning Error of ARLCL at 75th Percentile

Thin Deployment

b

UNIVERSITÄT BERN

175

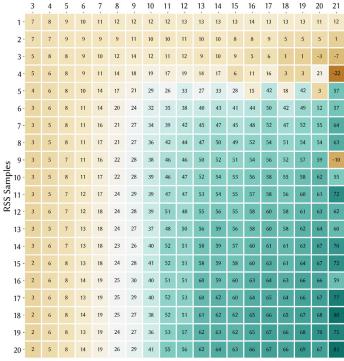

150

Positioning Error (cm)

- 50

- 25

b

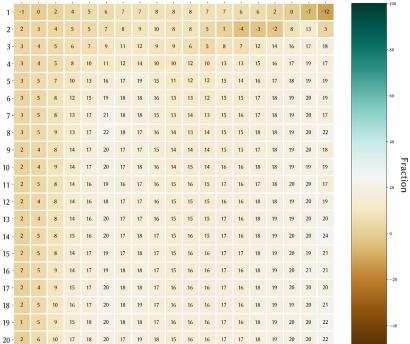

Swarm Size

Swarm Size

Results

% Reduction of Error at 75th Percentile

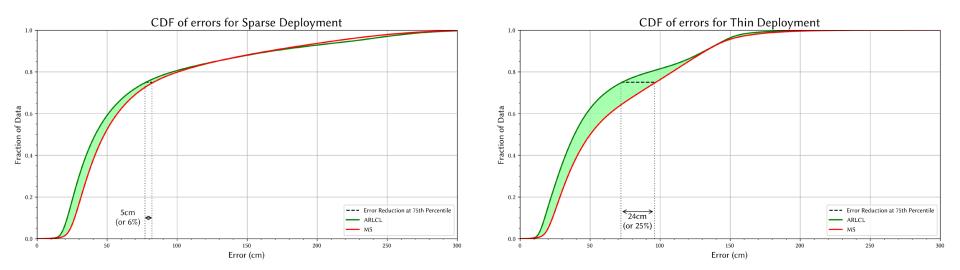
Thin Deployment


Swarm Size

(EMS-EARLCL)/EMS x100

12 13 14 15

UNIVERSITÄT BERN



Swarm Size

Results

Cumulative distribution function of the positioning errors

UNIVERSITÄT

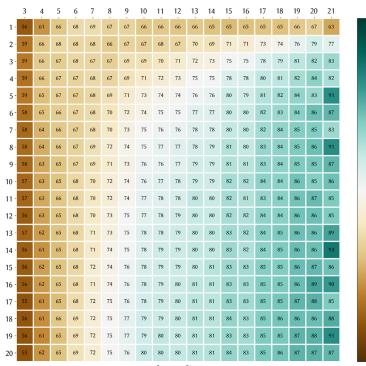
BERN

Results Fraction of improved cases

Thin Deployment

Sparse Deployment

UNIVERSITÄT BERN


- 90

- 80

- 70

60

Fraction

Swarm Size

Results

Estimation residuals and trajectories (best ARLCL win for Size:21)

Deployment type: Sparse, Swarm Size: 21, Opt. Iter: 95, RSS-Samples: 18 ARLCL-RMSE: 16.96cm MS-RMSE: 281.24cm RMSE-Change: -264.28cm 6 9 • 12 (5) • 16 True Position ARLCL Residual MS Residual

^b Universität Bern

Results Conclusions

- Positioning error for both **ARLCL** and **MS** is correlated to both **Swarm Size** and **Sample Size**
- Sparse deployments are more prone to signal noise
- Bellow **85th percentile**, **ARLCL** introduces an overall **improvement** (same performance above that)
- ARLCL's gain is also correlated to both Swarm Size and Sample Size
- **ARLCL's** gain depends also on the Swarm Shape (more gain at **Thin/Dense** scenarios)

Anchor-free Ranging-Likelihood-based Cooperative Localization

Results Future work

- Assess more swarm deployment scenarios (of different densities/shapes/with in-between obstacles/etc.)
- Assess common ranging models under different environments
- Assess other ranging technologies (UWB/WiFi)
- Fuse other types of signals into the localization process (Inertial data)
- Take it from offline to online positioning

Thank you for your time!

^b UNIVERSITÄT BERN

 \boldsymbol{u}^{\prime}

Dimitris Xenakis

dimitrios.xenakis@inf.unibe.ch

