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Abstract

The availability of means for wireless communication is taken for granted today. With the
proliferation of high-speed mobile phone infrastructure and wireless networks, more and more
areas become accessible for audio and increasingly also for video transmissions. Yet even in
densely populated areas there remain some locations where the signal strength for cell phones
and wireless networks is too weak and thus the available bandwidth is very limited. This affects
remote rural areas as well as locations in modern buildings at urban sites.

In many situations, a proverbial picture is worth more than a thousand words. The original
problem we were faced with was to illustrate a challenging technical situation at a location
without network coverage to a qualified off-site engineer. Only a very limited understanding
of wireless technologies can be expected from the person on site. We therefore propose OViS,
a platform that brings wireless networking into buildings and other remote sites where a wired
Internet connection is available somewhere nearby. We extend the range of that connection by
using a Wireless Mesh Network (WMN) that can easily be deployed by a non-technical user
guided by a graphical user interface. Furthermore, we provide an implementation that integrates
this deployment process with a means of communicating with the outside world by audio and/or
video conferencing.

We implemented a prototype of OViS consisting of the following components: the cus-
tom Linux distribution that powers our mesh nodes and our modifications to it, the topology
of the WMN, the deployment process and the various user-facing applications that were writ-
ten to guide the inexperienced user through the deployment of our network. We present a so-
lution that relies on open standards and free software for the network in combination with a
platform-independent graphical user interface that integrates a well-known proprietary video-
conferencing system. We also show the flexibility of OViS with the help of a second client
application that works on the Android mobile platform. It replaces the video-conferencing ap-
plication with a mechanism to quickly take pictures and send them to the off-site user while at
the same time using an established voice-over-IP standard for audio communication.





Chapter 1

Introduction

Nowadays, wireless network connectivity is omnipresent: mobile phones and laptop computers
connect to cellular broadband networks and Wireless Local Area Networks (WLANs) to not only
enable voice and video calls but to deliver all kinds of multimedia content to their users. Gaps in
the network coverage can be very disruptive; the user is left without access to crucial informa-
tion and, more importantly, without the possibility of communicating with others in important
situations.

We are going to show a real-life situation where the ability to communicate at remote sites
is important but often impossible with current technology and, later in this thesis, present our
solution to that problem.

1.1 Motivation

The motivation for our work is a simple situation often found in real life: a worker on a con-
struction site needs to install a complicated piece of equipment (such as an electrical switch
board) and requires outside help to do so. Unfortunately, this equipment is often located in un-
favourable parts of the building (e.g., the basement) where cell phone signals cannot penetrate
the thick walls. This situation is illustrated by Figure 1.1. The worker has to go outside, call the
qualified engineer, explain the problem over the phone and then go back and try to fix it with
the hints received on the phone – a process that is prone to misunderstandings on both sides. If
the worker fails to fix the problem, another call has to be made, possibly even more until the
qualified remote engineer decides to travel to the construction site to have a look at the problem.
All things considered, this is a highly disruptive and costly exercise caused by a simple lack of
network coverage.

1.2 Wireless Mesh Networks

A Wireless Mesh Network (WMN) is a wireless network that consists of a number of mesh routers
and clients. Those nodes communicate among each other without the need of any centralized or
preexisting infrastructure. In particular, WMNs feature mechanisms for routing: any node on a
mesh network can talk to any other node on that network without any manual routing configura-
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Figure 1.1: The problem.

tion. The routing protocols used in Wireless Mesh Networks usually also allow nodes that have
Internet connectivity to let other nodes connect to the outside world through that connection. A
WMN can thus be connected to the Internet through one or more gateway nodes and share the
connection not only with all other devices within the WMN, but also with devices that are not
themselves part of the WMN but merely connected to it through one of the participating nodes.

Internet

Figure 1.2: A wireless mesh network.

Figure 1.2 shows a typical WMN. Several nodes are connected to each other, one of them
has a connection to the Internet. The client machine can connect to the gateway node through
the mesh network and access the Internet that way.

1.3 Our Solution

Our solution to the problem described in Section 1.1 is a temporary WMN. The idea is to guide
the worker at the construction site through the process of deploying a mesh network that covers
the area between the closest Internet connection point (usually construction sites have an office
with Internet access these days) and the troublesome equipment. After deploying the network,
the user proceeds to initiate a video call to the qualified off-site engineer. Figure 1.3 shows this
setup: the worker in the basement can now use the WMN and its gateway node to talk to the
remote engineer over the Internet.

With this solution, the user never has to leave the installation site and can even show the
faulty equipment to the engineer through the video camera, thereby saving considerable amounts
of time, money and effort for everyone involved.
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Figure 1.3: The solution: a wireless mesh network.

1.4 Document Structure

This thesis is structured as follows: Chapter 2 explains several technologies, mechanisms and
applications that are related to our work. In particular, we talk about the underlying Linux
distribution used on the mesh nodes and its wireless networking subsystem. Then, in Chapter 3,
the architecture and design of the WMN and the network deployment process are explained and
several alternative design ideas are discussed. Afterwards, Chapter 4 focuses on the mesh nodes:
we explain the operating system that is running on the nodes, what the deployment process looks
like from a node’s perspective and the additional software that was written and added to support
the deployment process. The last part of the implementation details are explained in Chapter 5,
which talks about the client application (or, to be more precise, the various client applications)
and how they interact with the rest of the system to guide the user in his task of deploying the
OViS network and start communicating over it. Finally, in Chapter 6, we evaluate OViS by
measuring the network throughput and comparing it to a manually deployed network and we
then continue to present our conclusions and some suggestions for future work in Chapter 7.
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Chapter 2

Related Work

A lot of time and effort was put into OViS and the software components it comprises. Those
programs will be presented and explained in great detail in Chapters 3, 4 and 5.

Our components do, however, rely on many third-party tools and applications – from the
Linux distribution to the video client and on various levels in between. Before we discuss OViS,
we would first like to present some of the related projects that we consider particularly relevant
for OViS.

2.1 Networking Technologies

A core aspect of OViS is the underlying network. The following technologies in particular play
a vital role in how our network works or present viable alternatives to the technologies used for
this project.

2.1.1 Automatic Network Configuration

Manually assigning Internet Protocol (IP) addresses to network hosts can be a tedious process,
especially in large networks and in situations where hosts may join or leave the network at any
time such as WMNs. To make life easier for network administrators, several protocols have been
created to automatically configure the hosts on a network.

DHCP

In IPv4 networks, the Dynamic Host Configuration Protocol (DHCP) [1] is normally used to
automatically configure hosts. DHCP requires a designated server responsible for dynamically
assigning addresses from a configured address pool. The server listens for requests sent by
machines that need an IP address (DHCP discovery packets) and sends back DHCP offers that
contain the IP address the machine should use and some other information such as the default
router, DNS servers and the lease duration, i.e., how long the address can be used. The DHCP
server needs to keep track of all the addresses that have been assigned on the network and the
client has to renew its address whenever the lease expires.

7



IPv6 Stateless Address Autoconfiguration

In IPv6 networks, stateless address autoconfiguration can be used instead of DHCP. As the
name implies, this mechanism does not require any saved state concerning the assigned IP ad-
dresses anywhere in the network. Instead, a server periodically broadcasts router advertisement
messages that contain the IPv6 address of the router and an IPv6 network prefix (the “first half”
of an IPv6 address). A host that gets connected to this network can then automatically generate
the “second half”, usually based on the interface’s Medium Access Control (MAC) address, op-
tionally using privacy extensions [2] to prevent unique identification of the machine by changing
the address over time. IP address collisions are virtually impossible thanks to the vast address
space available in each IPv6 network and such conflicts can be detected by the host, therefore
the role of a centralized guardian over the list of assigned IP addresses is no longer necessary.

In a decentralized mesh network, DHCP is obviously not an option. IPv6 autoconfiguration
could make sense; however, the Linux IPv6 Router Advertisement Daemon (radvd [3]) refuses
to operate on interfaces that are themselves auto-configured.

2.1.2 Routing

Routing in WMNs differs significantly from routing in wired networks and wireless infrastruc-
ture networks: the topology is highly dynamic (nodes may join or leave the network at any
time), no dedicated preconfigured infrastructure exists and manual intervention is often impossi-
ble. Multiple specialized routing protocols have been designed and implemented to address the
issues specific to WMNs, often based on pre-existing protocols for wired networks.

OLSR

The Optimized Link State Routing protocol (OLSR) [4] is a widely-used routing protocol for
WMNs. As the name implies, OLSR is a link-state routing protocol, a proactive routing protocol
where each node keeps state and topology information about the network regardless of the data
traffic generated, as opposed to reactive routing protocols such as AODV [5] which only discover
routes through the network when they are needed.

Compared to classical link-state routing, OLSR brings several improvements specifically de-
signed for wireless networks. Figure 2.1 shows one of these improvements: the use of Multipoint
Relays (MPRs), special nodes that are responsible for forwarding broadcast packets. MPRs are
chosen by each node from among its one-hop neighbours in a way that makes sure that each
two-hop neighbour can be reached over at least one of the MPRs while keeping the number of
relays as small as possible. This way, messages sent over the MPRs will eventually reach every
node on the network. OLSR nodes have a policy of only forwarding a packet if they are an
MPR of the sending node and only if they have not already resent the packet. This mechanism
guarantees that all nodes on the network receive control traffic that is flooded to the network
while keeping the number of retransmits at a minimum.

Nodes on an OLSR network exchange state information through so-called HELLO messages.
Those messages are crucial for OLSR in order to find neighbours (i.e., nodes in communication
range), to detect the link quality to those nodes and to announce information about the selected
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Figure 2.1: Multipoint relays in OLSR.

MPRs. HELLO messages are periodically broadcast to the whole network where they will be
overheard by other nodes and used to create / update the model of the network topology held by
each node. OLSR can therefore work without any centralized infrastructure whatsoever.

Another interesting feature of OLSR is the ability to inject additional routes into the OLSR
network through the use of Host and Network Association (HNA) messages. HNA messages
contain information about any additional networks that are connected to the originating node
and are flooded to the network similar to MPR messages. In this thesis, this allows us to not only
announce the routing information about the gateway node to the network but also the connection
between the last node and the hand-held device. This is explained in more detail in Section 3.3.

Thanks to the efficient and completely decentralized nature of OLSR, it was chosen as the
routing protocol for OViS. More precisely, OViS uses the OLSR implementation from olsr.org
[6]. This implementation was chosen due to its portability, its widespread use and because of
the successful use for other projects at our institute [7]. The version employed for our project is
0.5.6-r8.

While our setup utilizes OLSR as its routing protocol, OViS itself (including all the software
written for this project) is completely unaware of the underlying routing protocol. Once the
ADAM embedded Linux distribution (see below) supports other routing protocols, it should be
possible to use any other ad-hoc routing protocol with OViS.
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IEEE 802.11s Mesh Networking

IEEE 802.11s is a work-in-progress wireless mesh standard. It differs from most other wireless
routing protocols (including OLSR) in a fundamental way: while other projects are layer-3
(i.e., IP) [8] routing protocols, IEEE 802.11s is part of the IEEE 802.11 standard for wireless
networking [9], implemented directly as part of the MAC layer. The mesh network is therefore
transparent to IP routing mechanisms and, as a direct consequence, handles IPv4 and IPv6 at the
same time.

IP layerMAC layer

gateway node 0 node n-1 node n handheld

uplink

1

gateway node n handheld

uplink

2

gateway handheld

uplink

3

mesh network

Figure 2.2: IEEE 802.11s mesh networking compared to OLSR.

Figure 2.2 shows the effect of using layer-2 mesh networking on the network topology. With
classical IP-level mesh routing protocols (1), nodes are addressed by their IP addresses and rout-
ing happens according to these addresses. This introduces additional overhead as each packet
has to pass through the IP stack on every node. For OViS, a setup where the hand-held device
is not part of the actual mesh network (2) was considered in order to retain interoperability with
legacy operating systems and other devices that do not support IEEE 802.11s mesh networking.
Once 802.11s is supported by all major platforms, the hand-held device can become part of the
mesh network itself (3). Such a setup would not only reduce the overhead for IP packet process-
ing but also abolish the need for IPv4 configuration on the intermediate nodes altogether – from
an IP layer perspective, those nodes are nonexistent.

IEEE 802.11s mesh networking was evaluated by using the implementation found in Linux
2.6.35. Initial tests looked promising, i.e. the mesh network seemed to work when we used a
single wireless interface on each node. For our multi-channel setup described in Section 3.4.1,
we did, however, need to use multiple interfaces on each node. Since the IEEE 802.11s im-
plementation we used does not support multiple interfaces and attempts at simply bridging the
wireless cards failed [10], it was finally decided to use OLSR instead.
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2.1.3 Automatic Rate Control

IEEE 802.11 wireless networks can operate at various data rates [9]. In 802.11a/g networks,
data rates of 6, 9, 12, 18, 24, 36, 48 and 54 Mbit/s are supported. If the data rate of a wireless
interface is not manually specified, the interface will communicate at the highest speed which is
supported by all members of the network.

If a wireless node is configured to use automatic rate control, it will dynamically adjust
its data rate depending on the measured packet loss. I.e., an interface that suffers from bad
connectivity will be reconfigured to transmit at a lower data rate in order to achieve a slower but
more reliable connection.

2.2 General OViS Concepts

In this section, we would like to present some general concepts and ideas that were helpful in
designing various aspects of the OViS architecture.

2.2.1 State Pattern

The state pattern is a well-known behavioural design pattern in software engineering [11]. It de-
scribes a mechanism to encapsulate state information in objects. Operations are delegated to the
corresponding state object. That object can then decide on what action to take as a consequence
of the requested operation.

Node

- state: State

+expire()

self.state = self.state.expire()

State

+expire()

OnlineNode

+expire()

ExpiredNode

+expire()

return ExpiredNode() return self

Figure 2.3: The state pattern.

Figure 2.3 shows a simple example of this pattern: Node objects have an expire method.
Any calls to this method will be forwarded to the object’s state, an object of a class that
implements the State interface. If the previous state was OnlineNode, it is changed to
ExpiredNode. Otherwise, the state remains unchanged. While this example is highly un-
spectacular, it shows the general idea of delegating the decision on which action to take as a
result of a particular message to an object’s state instead of relying on a chain of if .. else
statements.
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2.2.2 Adjacent Channel Interference

One major disadvantage of wireless communications on the 2.4 GHz band according to the IEEE
802.11b standard is that there is significant overlapping of the communication channels [12].
Figure 2.4 shows how the frequencies overlap – neighbouring channels suffer from significant
interference. In a multi-channel ad-hoc network, channels have to be carefully selected not
to interfere with each other since otherwise a node’s outgoing traffic would collide with the
incoming packets.

1 2 3 4 5 6 7 8 9 10 11 12 13

channels

22 MHz

Figure 2.4: Overlapping frequencies in IEEE 802.11b.

Fortunately, the channels on the 5 GHz band specified in the IEEE 802.11a standard were
chosen without overlapping frequencies. However, in [13], [14], [15] and [16], previous research
has shown that, while the channels should not overlap in theory, actual implementations differ
from that. In practice, traffic on a channel in the 5 GHz band still causes interferences with
neighbouring channels. It is therefore advisable not to choose consecutive channels for a node’s
wireless interfaces.

2.3 Third-Party Software

While multiple programs and scripts were written specifically for OViS, we also rely heavily
on third-party software: our Linux distribution, the video client application and several other
important parts of OViS have been written by other people. On the following pages you will find
a selected choice of those applications.

2.3.1 ADAM

As part of the Administration and Deployment of Adhoc Mesh networks (ADAM) [17] project,
a Linux distribution specialized in embedded wireless networking platforms was created at our
institute. The ADAM distribution is cross-compiled entirely from source for a particular type
of hardware. The distribution comprises about 90 software packages, written as simple build-
scripts. The packages are hand-picked (and patched) to be optimized for embedded systems, i.e.,
to keep a low memory footprint and to preserve CPU cycles by not running any software that is
not strictly required.

The ADAM distribution proved to be very well suited for OViS as it already contains a lot
of software related to the detailed configuration of wireless networking, including for instance
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OLSR. Thanks to the good documentation and the clean design, only minimal effort was needed
to add our custom software to the distribution (see Section 4.3), thereby creating a system that
is highly efficient and optimized for our hard- and software needs.

2.3.2 Skype

Skype is a well-known application for voice and video communication over the Internet. The
Skype client application is available for several different operating systems such as Windows,
Mac OS X, Linux and several mobile platforms.

The Skype client offers remote-control abilities (“Skype API” [18]) that allow other pro-
grams to query the Skype application’s state and initiate various activities, e.g. start a call. On
Linux, the Skype application uses the Qt widget toolkit [19].

Also, Skype has a reputation for working through most firewalls thanks to UDP hole punch-
ing [20], a technique to allow bidirectional communications through firewalls.

2.3.3 Central Regulatory Domain Agent

The regulations regarding the wireless spectrum (i.e., the allowed channels for wireless network-
ing and the maximum allowed power on those frequencies) vary greatly from country to country.
Modern wireless drivers on Linux rely on the Central Regulatory Domain Agent (CRDA) [21] to
determine the limits that are imposed upon them according to the country they are operated in.

CRDA uses a cryptographically signed regulatory database that contains information on
those restrictions. Figure 2.5 shows how CRDA is used. When an application wants to change
the regulatory domain (i.e., configure the network card to obey a specific country’s regulations
regarding wireless networking), it sends a message to the kernel via netlink [22] (1). The kernel
then generates a uevent [23] to announce that change (2). This message will be picked up by a
user space daemon (in our case hotplug2, see Section 2.3.4) which in turn spawns CRDA (3).
CRDA then checks its database for the country-specific regulatory parameters (4) and applies
them through another netlink message (5).

Thanks to the signed database file that is part of CRDA, the user can be sure not to violate
country-specific regulations without the need of manually tweaking the wireless card’s trans-
mission power settings or explicitly avoiding forbidden frequencies.

2.3.4 hotplug2

Hotplug2 [24] is a very small replacement for udev [23], an application that processes events
from the Linux kernel and thereby makes them available to user space applications. Hotplug2
can be used to handle changes to the regulatory settings in combination with CRDA (see Sec-
tion 2.3.3). It is significantly smaller than udev and provides all the features needed for CRDA
to work. It is therefore an ideal replacement for embedded systems where disk space is crucial.
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Figure 2.5: CRDA and hotplug2.

2.3.5 wxPython

wxPython [25] is a wrapper for the Python programming language around wxWidgets [26], a
cross-platform library for writing Graphical User Interfaces (GUIs) that integrate smoothly into
the operating system’s native look and feel. wxPython facilitates the development of Python
programs that resemble native applications on any operating system without requiring platform-
specific code.

2.3.6 TkInter

TkInter [27] is a Python binding to Tk [28], a cross-platform toolkit for writing graphical appli-
cations, originally developed for the Tcl scripting language. TkInter brings that cross-platform
compatibility to Python similar to wxPython (see above). TkInter is older than wxPython and
has proven its strengths over the decades.

2.3.7 Android Platform

Android [29] is an open-source operating system for smartphones based on the Linux kernel,
a collection of software libraries and an application framework centred around Dalvik [30], a
custom Java virtual machine. Android applications are sandboxed, i.e. they run in containers
that prevent access to other running applications and to low-level system functions. Figure 2.6
shows an overview of Android’s architecture. Applications can typically only use functionality
provided by the application framework and the included programming libraries. Direct access
to the Linux kernel and other low-level system functionality is usually not possible.
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Linux Kernel
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Android Application

Figure 2.6: Android architecture.

Android is available in several versions for a large range of smartphones and tablet PCs. The
Android applications for OViS were developed on/for an HTC desire [31] smartphone running
a modified version of the Android 2.2 operating system. At the time of writing, Android 2.3 has
been released to the public but is not yet available for the HTC desire. Some of our work (i.e.
the support for ad-hoc networking described in Section 5.3.2) is specific to this hand-held device
and might not work on other devices or other versions of Android. Porting should be relatively
easy, though.

Android Native Development Kit

In some cases, Android applications need to get access to the Linux user-space that goes beyond
what can be done through the application framework. For these situations, the Android Native
Development Kit (NDK) has been made available to developers. With the NDK, parts of an
application can be written in the C or C++ programming language and compiled natively for
the underlying Linux platform (specifically, the programs will be cross-compiled for the ARM
architecture on which current Android devices are based). Through the use of natively-compiled
code, Android applications can run system-level commands with limited user permissions, i.e.
the code that is compiled with the NDK still runs with the same limited privileges as the rest of
the application.
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Superuser Access

An Android application typically runs with limited permissions. Each application runs as a
different system user and is thereby prevented from accessing files and memory that belong to a
different application / user. More importantly, applications cannot run any operation that requires
superuser permissions, such as loading kernel modules and setting networking parameters that
are not supported by Android’s API.

Figure 2.7 shows how these restrictions can be circumvented. A small C program runs as a
native application on the phone, the application calls the program’s functions through the NDK.
These functions may then call the su system command which can be used to run a command
with superuser privileges. In order for this to work, the phone has to be rooted, i.e. a modified
version of the Android operating system must be installed.

Libraries

Linux Kernel

Application framework

desire-adhoc Application

Android NDK

C code

Limited user

insmod /system/lib/modules/bcm4329.ko
iwconfig eth0 mode ad-hoc
iwconfig eth0 channel 11
...

su

Superuser

Figure 2.7: Root access through the Android NDK.
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(a) OViS: single line of nodes.

(b) Rapidly-Deployable Mesh Network Testbed: full mesh.

Figure 2.8: OViS mesh topology as compared to the Rapidly-Deployable Mesh Network Testbed.

2.4 Competing Approach: Rapidly-Deployable Mesh Network
Testbed

A while ago, a different approach to the problem of limited wireless coverage was presented
[32]. The paper proposes an implementation where the user carries a mesh node that constantly
monitors the signal strength to the network and instructs the user to deploy the node whenever
the signal becomes too weak.

With this approach, the mesh network can be extended at any time. The user walks through
the area that needs to be covered and deploys additional mesh nodes whenever / wherever they
are needed. This allows multiple people to use the network at the same time and even lets some
users extend the network while others are already using it to communicate. The deployment
process is not necessarily an explicit, self-contained activity but can be paused and resumed as
the user progresses through the area.

While the project shares some ideas with OViS (for instance it also uses OLSR), one major
difference is that the network uses a single frequency for all links. The advantage of such a
design is that it results in a full mesh topology with multiple paths through the network. Nodes
can compensate for temporarily bad links and even for node failures by switching to a different
path – the OViS network consists of a simple chain which breaks when a single node fails. Since
the authors specifically address situations where emergency response personnel needs to cover
a potentially large area, such a proper mesh topology makes a lot of sense.

In OViS, the scenario is slightly different: instead of covering a potentially large area for
several people, the goal is to cover a potentially large distance for a single person. The use of
multi-channel communications reduces interference in this scenario at the cost of some flexibil-
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ity: end-user devices can only connect to the network at the very last node since the intermediate
nodes use frequencies which might not be supported by general-purpose hardware.

Figure 2.8 shows the different resulting topologies: in an OViS network (a), end user devices
will typically only connect to the last node, intermediate nodes are only used to forward traffic.
While in theory nothing would prevent a device from connecting to any of those nodes, they
communicate with each other on various channels in the 5 GHz band which is not generally
supported by consumer-grade devices. Also, since each link uses a different frequency (see
Section 3.4.1), a device cannot connect to multiple nodes at the same time. In the Rapidly-
Deployable Mesh Network Testbed (b) on the other hand, the entire network communicates on
the same frequency. End user devices can therefore connect to any number of randomly chosen
nodes at the same time and use which ever link works best for them.

While the Rapidly-Deployable Mesh Network Testbed approach could be used for an OViS
scenario, the absence of multi-channel communication and, as a result, the limitation to the 2.4
GHz band would probably increase the interference from other devices (e.g., wireless networks).
On the other hand, due to the network topology used in OViS, our proposal would not be suitable
for the scenario for which the Rapidly-Deployable Mesh Network Testbed was designed.

2.5 Related Publications

OViS has been published in [33], [34] and [35]. An iPhone/iPad client for OViS has been imple-
mented by another student at our institute [36].
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Chapter 3

OViS Architecture and Design

The core philosophy of OViS is to keep things as simple as possible. Emphasis was placed
on re-using existing technologies and integrating them into a user-friendly application, adding
simple custom-written software only where it is inevitable.

This chapter describes the network topology and the corresponding deployment process, two
areas where the philosophy described above is particularly evident. Furthermore, we discuss
some design alternatives that were previously used as well as the reasons for their dismissal.

3.1 Requirements

First, some high-level requirements to our system need to be formulated as a list of goals to serve
for orientation purposes during OViS’ development. Our requirements were:

• Develop a system that allows an inexperienced user to communicate visually at locations
that are not currently covered by a communication network.

• The client software for that system has to be available for all major operating systems.

• Any networked consumer-grade device must be able to serve as a hand-held client, OViS
cannot rely on uncommon, specialized hardware.

• Multi-channel communication should be used in order to reduce interference.

These requirements put some constraints on the technical side as well as the user-facing
applications. Having such explicit requirements was helpful during the process of designing the
general architecture for OViS.

3.2 Overview

Figure 3.1 shows a general overview of the OViS deployment process. The user arrives on site
with the OViS system packed away (1). The first node is then connected to the local router (2)
and additional nodes are added while the user walks towards the position where the conversation
is supposed to take place (“switching unit” in the Figure) (3). When the destination has been
reached, the video conference with the qualified off-site engineer is started (4).
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Figure 3.1: OViS deployment.

3.3 Logical Network Topology

The network topology describes the design of the underlying network that OViS is built on.
OViS is designed to be network-agnostic, i.e., the client does not require any special features
from the network other than the ability to send IP traffic over it. In addition, the requirements
specified in Section 3.1 were taken into account.

Specifically, the first requirement means that we cannot assume any prior knowledge about
wireless networking in general or ad-hoc networks in particular from the user. Also, the local
situation will be different at each site. The topology has therefore been designed with flexibility
in mind – the network is supposed to work regardless of local obstacles.

Since the hand-held device does not generally have any information on its absolute position,
mechanisms like GPS cannot be used to acquire detailed positioning information and possibly
display it or utilize it to calculate ideal positions for the nodes.

Lastly, multi-channel communication simplifies the task of predefining a network topology:
nodes can only communicate with each other if they use the same frequencies, therefore the
available links on the network can be defined by setting the frequencies accordingly.

On the following pages, we are going to present several design ideas for the OViS network
topology and discuss their advantages and drawbacks.
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IPv6 Topology

The topology shown in Figure 3.2 creates a “pure” IPv6 network between the mesh nodes – none
of their wireless interfaces have an IPv4 address configured except for the very last node that
communicates with the hand-held device. Preliminary tests showed that this works quite well
thanks to the excellent IPv6 support in olsrd (see Section 2.1.2).

To stay compatible with IPv4 user space applications and the IPv4 Internet, the hand-held
device is connected to the last node through a private IPv4 network and an IPv4-in-IPv6 [37]
tunnel through the OLSR network bridges that private network with the IPv4 network managed
by the local router.

handheld

private IPv4
DHCP

Internet
public IPv4

gateway
mesh node

private IPv4-in-IPv6 tunnel
10.241.91.0/30

private IPv4
10.241.91.4/30

destination

IPv4

on-site router

OLSR
unique local IPv6

fc00:6680::/16

mesh node

mesh node

mesh node

Figure 3.2: Network topology with an IPv4-in-IPv6 tunnel.

An IPv6 topology would have the benefit of integrating seamlessly into the Internet once
IPv6 becomes more widely used. In particular, the need for Network Address Translation (NAT)
[38] would fall away and the hand-held device would be properly addressable and fully reachable
from any other host connected to the Internet. This would make it significantly easier to establish
connections for services such as video conferencing.

On the other hand, the obvious drawback of this topology is the complexity due to the IP
tunnel, in particular the network’s reduced Maximum Transmission Unit (MTU) as a result of the
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extra headers that are required for tunnelled packets. The tunnel has an MTU that is smaller than
the one generally used in the wireless network. Therefore, the hand-held device needs to have
its MTU reduced manually. Otherwise the additional packet fragmentation might significantly
lower the network’s throughput.

Full OLSR Topology

Figure 3.3 shows another design idea: extend the OLSR network to include the hand-held device
instead of having a private network between it and the last node.

private IPv4
DHCP

Internet
public IPv4

gateway
mesh node

handheld

destination

IPv4

on-site router

mesh node

mesh node

mesh node

OLSR
private IPv4

10.241.120.0/23

Figure 3.3: Network topology with OLSR.

This approach significantly simplifies the routing setup for our network. OLSR automati-
cally takes care of all the routes, no additional configuration is needed on the hand-held device.
Furthermore, this topology is easy to port to IPv6 since only the OLSR configuration has to be
updated and node discovery can be done simply by looking at OLSR’s neighbour list.

Running OLSR on the hand-held device might not seem like a big problem. However, when
mobile phones enter the picture, the situation becomes a whole lot more complicated. While
ports of olsrd for various mobile platforms such as Android and the iPhone exist [39], that
software requires superuser privileges to work. Such privileges are not normally available to the
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user and would require modifications to the phones’ operating system. It was therefore decided
not to pursue this approach any further.

IPv4 Topology

A plain IPv4 topology is shown in Figure 3.4. The OLSR network between the nodes uses a
private IPv4 subnet, another private subnet is used for communications between the hand-held
device and the last node. The second private subnet is announced through the OLSR network by
using the HNA mechanism (see Section 2.1.2) in order to make it visible (and routable) for the
other nodes and in particular for the gateway node.

private IPv4
DHCP

internet
public IPv4

gateway
mesh node

handheld

private IPv4
10.241.91.0/29

destination

IPv4

on-site router

OLSR
private IPv4

10.241.120.0/23

mesh node

mesh node

mesh node

Figure 3.4: IPv4 Network topology.

The advantage of this topology is its simplicity: the hand-held device can use IPv4 without
the need for any special configuration or, even worse, superuser permissions. All that is required
is the ability to change the IP configuration – a feature that is offered by all platforms considered.

The plain IPv4 topology requires special configuration on the last mesh node in order for
the HNA mechanism to work. Additionally, it means that traffic from the hand-held device to
the Internet will in most cases have to pass through two hosts that do NAT: once on the last
mesh node and once more on the on-site router. This effectively destroys any chance for the

23



node to ever be addressable directly by other machines on the Internet and means that no direct
communication with the node is possible.

The Final Topology

After careful evaluation, it was decided that OViS use the IPv4 topology shown in Figure 3.4 and
only use IPv6 during the deployment process (see Section 3.4.2). The requirement for OLSR
on the hand-held device makes the OLSR topology hard to realize and the additional tunnel
required for an IPv6 network needs too much tweaking that would be hard to do on a mobile
phone. All communications between the hand-held device and the mesh nodes during the initial
configuration of the network happen via IPv6 though, since these messages do not need to be
routed through the Internet and the general availability of IPv6 is therefore irrelevant in this case.

The mesh nodes are deployed in a single line where each node can only communicate with
exactly one other node per network interface. This topology allows us to cope with each of the
requirements mentioned in Section 3.1:

• By requiring nothing but a single line of nodes, the user can be instructed to walk from the
Internet access point to his destination, dropping nodes at convenient locations in between.
The user does not have to worry about details concerning a mesh network or about which
nodes can communicate with each other due to the different network channels involved.

• No absolute positional data is needed for this setup. The ideal position of a node can be
computed solely as a result of the signal strength to the previous node.

• Communication frequencies can be configured on a per-link basis without affecting the
rest of the network.

• This topology is entirely transparent to the client host and looks like any other IP-based
network.

As for the IP layer, the OViS network consists of two private IPv4 networks. One
(10.241.120.0/23) between the mesh nodes managed by OLSR (see Section 2.1.2) and the
other one (10.241.91.0/29) between the last node and the hand-held device. Each node’s
first wireless networking interface is configured to be in the 10.241.120.0/24 network, the
second interface receives the corresponding address in the 10.241.121.0/24 network. The
local network that the gateway node connects to is assumed to also be a private IPv4 network
with a properly configured DHCP server (see Section 2.1.1).

During the deployment process (see Section 3.4), the last node’s secondary interface is re-
configured to an address in the 10.241.91.0/29 network in order not to be affected by
OLSR’s routing mechanism. As mentioned above, the additional subnet is then announced to
the other nodes through OLSR’s HNA mechanism to have appropriate routes created on every
node on the OLSR network.

This leads to a fully operational network consisting of two different subnets that are routed
through the last mesh node and connected to the Internet through the gateway node, thereby
creating the foundation on which the OViS application described in Chapter 5 can be built.
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3.4 Network Deployment

The OViS network as described above is a mesh network consisting of numerous nodes. We
are now going to explain the process of configuring these nodes after bootup and having them
placed at the right position to get the OViS network up and running.

3.4.1 Multi-channel Communication

node n

chan X

node n+1

chan 1 chan 11

node n node n+1

node n node n+1

chan Y

handheld

1 handheld

chan 11

handheld

x

2

3

chan X chan X

chan X chan X

chan 11 chan 11

chan 11

Figure 3.5: Deploying node n+ 1.

As discussed in Section 3.3, one of the requirements for the OViS network is to support
multi-channel communication. The reason behind this requirement is the idea to prevent the
traffic on a network link from interfering with the signal on other links. The links between the
nodes use the 5 GHz band because the 2.4 GHz band is already being used by countless other
devices such as Bluetooth devices and other IEEE 802.11 wireless networks to name a few.

Figure 3.5 explains the basic mechanisms used to connect a node to the multi-channel net-
work. It is assumed that at this point the network already contains n nodes and that it will at the
end comprise at least n + 2 nodes. That is, the node being connected is neither the first nor the
last node in the network; the process differs slightly for those nodes as explained below.

The hand-held device keeps a list of all available channels and the order in which to use
them. Whenever a channel is assigned to an interface, the corresponding frequency is removed
from the top of the list and re-added at the end. This way, the first list element always indicates
the frequency for the next link and the last element can be used to determine the frequency that
was used for the previous link.

When the new node n + 1 boots up, its first wireless interface is set to channel 1 (2.412
GHz) and its second interface is communicating on channel 11 (2.462 GHz), the same channel
that is used by the hand-held device’s wireless interface (1). It is worth mentioning here that the
channel on the hand-held device is never changed as a) this would require superuser permissions

25



and b) the hardware we use does not support wireless networking in the 5 GHz range anyway. At
this stage, the new node can only communicate with the hand-held device and is not connected
to the rest of the mesh network.

The first interface is then reconfigured to the same frequency that the previous node uses
on its second interface (2), a frequency in the 5 GHz band (called chan X in the figure). As
mentioned above, the client application can find out which frequency to use by looking at the
end of its frequency list. The node is now connected to the mesh network as well as to the hand-
held device. At this point, the user will be instructed to find the appropriate location for the node
as described in Section 5.2.3.

Finally, when the user chooses to deploy the node, the second interface is reconfigured to
use the next unused channel (chan Y) in the 5 GHz range (3), causing the connection to the
hand-held device to be lost. Due to this connection loss, the client cannot verify whether this
action actually succeeds or not. The entire process is explained in detail in Section 3.4.2.

As mentioned above, minor modifications are required for the first and last nodes. On the
first node, step (2) is skipped, the first network interface remains on channel 1. Since we are
deploying a chain of nodes, this interface will never be used and by leaving it on channel 1 we
make sure that no other node will ever talk to it. Similarly, on the last node we omit step (3),
thereby allowing the node to keep communicating with the hand-held device over its second
interface. In theory, it would be possible to also use a frequency in the 5 GHz band for commu-
nications between the last node and the hand-held device. In reality, however, consumer-grade
network devices are often limited to the 2.4 GHz range. Thus, in order to be compatible with a
large range of devices (such as mobile phones), channel 11 seemed like a good choice.

36 40 44 48 52 56 60 64 100 104 108 112 116 120 124 128 132 136 140

Figure 3.6: IEEE 802.11a channel allocation in OViS.

Section 2.2.2 explains that it is not advisable to use consecutive channels on the 5 GHz band
for both interfaces of a node since data traffic on one channel may cause interference on its
neighbouring channels. OViS, therefore, allocates channels as shown in Figure 3.6. Figure 3.7
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illustrates how to interpret the allocation mechanism: the first link uses channel 36, the second
link channel 104, the third link channel 140, etc. – this allocation scheme allows us to spread
our data traffic over the entire range of available frequencies while minimizing the interference
from neighbouring channels.

36 104 140 40

Figure 3.7: Example of OViS channel allocation.

3.4.2 Deployment Process

A general overview of the deployment process has been shown in Figure 3.1. We are now going
to explain the mechanism used to connect a node to the network, i.e., what happens from the
moment the node first talks to the network until it is fully configured.

Please note that the ideas discussed here lack the mechanisms required for multi-channel
communications discussed in Section 3.4.1 since adding them to the figures would only clutter
them needlessly.

Deployment with DHCP

Figure 3.8 shows the first design idea:

• The nodes boot up without any preexisting IP configuration and are configured using
DHCP (1) with the hand-held device acting as a DHCP server.

• The hand-held device can discover new nodes by looking at the DHCP leases and then
get additional details about the nodes (such as the host name and whether the node is a
gateway connected to a local network) through an HTTP API (2), possibly encoded using
JSON [40] or YAML [41].

• When the user / the client application reaches the stage where details about the node are
needed (3), those details are available thanks to the previously made HTTP request.

• The user is then directed to find the right position for the node (4).

• Finally, the node is deployed through the GUI running on the hand-held device (5).

The design was ultimately dismissed as the application is supposed to be platform-
independent, that is run at least on the Linux, MacOS and Windows operating systems. This
would have required us to either find and configure a cross-platform DHCP server or write one
of our own – neither of which seemed like a good and/or feasible idea at the time.

This decision was later proven correct when the idea came up to use smartphones as the
hand-held device. A DHCP server process needs to open a socket on port 67 and this operation
can only be done with superuser privileges [42]. Running software with such permissions on
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Figure 3.8: Network deployment with DHCP (dismissed).

smartphones is, however, tedious at best and requires significant modifications (“rooting”) to the
phone’s operating system.

Deployment with IPv6 Auto-configuration

Our second approach shown in Figure 3.9 involves IPv6 auto-configuration and was designed
with the IPv6 topology described in Section 3.3 in mind.

• After startup, the IP addresses are configured automatically using the IPv6 auto-
configuration mechanism described in Section 2.1.1.

• The nodes then start sending ICMPv6 [43] Echo Request (“ping”) packets to the hand-held
device (1).

• Details about the node are again fetched via HTTP (2).

28



Mesh node OViS Client User

ICMPv6 ping

Need node

Get details (HTTP)

(hostname, isgw)

1

2

3

Find position4

Deploy
5

Stop ping (SSH)
6

ICMPv6 ping

ICMPv6 ping

Figure 3.9: Network deployment with IPv6 auto-configuration (dismissed).

• The user interaction (3-5) remains the same as described in the DHCP deployment sce-
nario.

• After deploying the node, the ping process is terminated through an Secure Shell (SSH)
session (6).

However, this design also has several drawbacks. First of all, in order to receive ICMP
packets, a “raw” socket has to be opened. This operation is again restricted to superusers [44].
Also, initial tests have shown that while this works just fine on Linux, the application does not
seem to receive any data on Mac OS (this was not investigated any further). Moreover, in a
mesh network, this would mean that every node has to run the Linux IPv6 Router Advertisement
Daemon (radvd, see Section 2.1.1) and auto-configure itself using another node’s advertisement
messages, thereby introducing a bootstrap problem on the first node. Those tests also made us
realize that radvd cannot be run on network interfaces that are themselves auto-configured.
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Deployment with a UDP Pinger

Mesh node OViS Client User
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Need node
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Figure 3.10: Network deployment with UDP pinger (accepted).

A third idea for the deployment process is shown in Figure 3.10. For this scenario the nodes
need preconfigured IPv4 and IPv6 addresses.

• In order to indicate its presence on the network, a node starts a custom-written program
(pinger) after bootup that will broadcast some information about the node over UDP on an
unprivileged port (1) (see Section 4.3.1). This information contains the node’s host name
as well as a flag indicating whether the node is a gateway node or not. All the information
needed in step (2) is thus broadcast by the pinger.

• The user interaction (2-4) remains as described in the previous two approaches

• The ping process is left alive “forever” (5) – this was deemed less problematic than starting
SSH sessions in the background.
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The downside of this approach is the need for an additional piece of custom-written software
to announce the nodes’ presence to the network.

The final deployment process

While all the designs proposed in this chapter share a philosophy of interconnecting simple,
lightweight mechanisms to deploy the OViS network in a reliable and efficient way, only the last
one can be implemented with limited user permissions on the hand-held device. This advantage
outweighs the slight drawback of using a custom-written software for announcing new nodes
to the network, therefore that design was chosen as a basis for the OViS network deployment
process.

Figure 3.11 shows the process augmented by the mechanisms needed for multi-channel com-
munication as described in Section 3.4.1.

Mesh node OViS Client User

(hostname, isgw)

Need node

1

2

3

Deploy
5

(hostname, isgw)

6

Connect wlan0

Connect wlan1

(hostname, isgw)

4 Find position

Figure 3.11: Final network deployment process, including mechanisms for multi-channel networking.

For the sake of completeness, let us recapitulate:

• After bootup, the nodes start broadcasting some information about themselves. That in-
formation contains the node’s host name and a flag that indicates whether the node is a
gateway, i.e., whether it has a link on its Ethernet interface. This data is sent via UDP to
the link-local multicast address, ff02::1 (1).
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• When a new node is requested by the user / client application (2), it gets connected to the
previous node as described in Section 3.4.1 (3): namely the first interface’s frequency is
changed to a channel in the 5 GHz band via an HTTPS configuration interface (see Section
4.3.1 for details).

• The user is then guided into finding the optimal position for the new node (4).

• Once the system (OViS) is satisfied with the node’s position, the user chooses to deploy
the node (5).

• The second interface is then also configured to switch to the 5 GHz range (6).

Note that the UDP “ping” packets as well as any other messages between the node and the
hand-held device during the deployment process are sent via IPv6. Since ADAM already uses
IPv6 for management tasks, it makes sense to also employ the new version of the IP protocol for
OViS-specific management operations.

As explained in Section 3.4.1, things are slightly different for the first and last node. The
steps in Figure 3.11 that are left out are (3) on the first node and (6) on the last one.

This process yields a simple multi-channel topology while only requiring minimal inter-
action with the user. All operations on the hand-held device can be done with limited user
permissions and the number of network connections is reduced to the bare minimum.
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Chapter 4

OViS Mesh Nodes

The OViS mesh nodes are running the Linux distribution created for the Administration and
Deployment of Adhoc Mesh networks (ADAM) project described in Section 2.3.1. In this chapter,
we are going to explain the modifications that were done to the standard ADAM distribution and
why they are required in order for OViS to work.

We will also explain the deployment process as seen from the mesh node’s perspective, that
is what happens on the node from the moment it boots up until it is a fully deployed part of the
OViS mesh network.

4.1 Hardware

The mesh nodes are based on the “ALIX” embedded computer platform from PC Engines [45]
with a 500 MHz AMD Geode CPU, 256 MB RAM, an Ethernet interface and two wireless cards
with Atheros AR5213A chips. Figure 4.1 shows such a node.

While in general OViS does not care too much about the hardware it runs on, it was relevant
in this case since the ADAM embedded Linux distribution (see Section 2.3.1) recently substi-
tuted the old madwifi driver for ath5k, a new driver that is part of the official Linux kernel
and that uses the new Linux wireless subsystem [46]. To use this new driver with OViS, some
additional software was added to ADAM (see Section 4.3.2).

A side-project of the OViS development was to add batteries to the mesh nodes. The bat-
teries are contained in a chassis identical to the one normally used for the node. These chassis-
contained batteries are then bolted to individual nodes, creating what looks like a “double node”
as shown on Figure 4.2.

With the additional batteries, we have a powerful, open and transportable platform the can
be used for the OViS mesh network.

4.2 Deployment Process

Section 3.4 explains the deployment process from the client’s perspective. We are now going to
show what happens “behind the scene”, on a mesh node, as the network is being deployed.
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Figure 4.1: An OViS mesh node.

When a node is started, its first wireless network interface communicates on channel 1. As
discussed in Section 3.4.1, the second interface uses channel 11 by default. This channel is used
by the hand-held device to communicate with the node, i.e. to reconfigure the network interfaces
and to read the signal strength of the connection to the previous node.

At the end of the bootup process, the node starts announcing its presence via the User Data-
gram Protocol (UDP) to ff02::1, the link-local IPv6 multicast address (see Section 4.3.1 for
details). As described in Section 3.4.2, these messages are then received by the hand-held de-
vice where the OViS application (see Section 5.2) uses them to detect the node. The messages
contain the node’s host name and some information about its (wired) network connectivity that
is used by the OViS application to determine whether the node can be used as a gateway. Section
4.3.1 describes this in more detail.

The node then continues to send presence announcements and waits for the OViS client
to take initiative. The client is expected to configure the node through an HTTPS Common
Gateway Interface (CGI) [47]. Section 4.3.1 explains the remote network configuration API in
more detail.

Table 4.1 shows a typical sequence of commands used to deploy a node, Figure 4.3 illustrates
this in more detail. On the first (the gateway) node, the deployment process starts by enabling
IP masquerading (a special kind of NAT [38]) on the wired interface (1). Afterwards, the second
wireless card is set to a frequency in the 5 GHz range and its ESSID is changed (2) – the gateway
is now ready.

The process is a little more complex on intermediate nodes (non-last, non-gateway nodes):
first, the frequency and ESSID are changed on the first interface in order to connect the node to
the previous one (3). Afterwards, the client application queries the node about the connection
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Figure 4.2: A battery-powered OViS mesh node.

Node type Commands
Gateway masq iface=eth0

iface=wlan1, freq=5180, essid=fdca:140b:acdf
Intermediate node iface=wlan0, freq=5180, essid=fdca:140b:acdf

iface=wlan1, freq=5200, essid=fdca:140b:acdf
Last node iface=wlan0, freq=5200, essid=fdca:140b:acdf

iface=wlan0, mask=23
iface=wlan1, ip=10.241.91.1, mask=29

Table 4.1: Typical sequences of network configuration commands.

strength to its previously deployed neighbour. Once the user chooses to deploy the node, the
second interface is reconfigured to use the next unused frequency (4).

Finally, when the last node is deployed, there are again some particularities. The first in-
terface is configured just as it happens on any other non-gateway node (5). However, in order
to make sure that OLSR routes all traffic to any of the other nodes through the first interface,
its network mask is reduced to /23 (6) – this way, the interface covers both /24 networks that
are normally spread over the two wireless interfaces. The second card’s IP configuration is then
modified to use an entirely different private IPv4 network to communicate with the hand-held
device (7).

4.3 OViS Mesh Node Implementation

The OViS mesh nodes run a modified version of the ADAM Linux distribution (see Section
2.3.1). This distribution was selected because of its simple yet flexible architecture and due to
its proven reliability on our hardware in similar projects.

The standard ADAM Linux distribution already includes a lot of software related to (wire-
less) networking. For OViS, we added a few extra tools: some of them are custom-written
software required by the OViS deployment process, others are third-party software that is of use
to other projects based on ADAM as well.
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3

iface=wlan1, freq=5200, essid=[..]
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iface=wlan0, freq=5200, essid=[..]
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iface=wlan0, mask=23
6

iface=wlan1, ip=10.241.91.1, mask=29
7

(read signal strength)

Figure 4.3: Typical sequences of network configuration commands.

In this section, we are going to explain the most important programs that were added to
ADAM. We discuss why they are needed and how they work – the latter is explained in detail
for our custom software, the third-party tools mentioned are well-known open-source software
that come with good documentation and are only explained briefly.

4.3.1 OViS Mesh Node Utilities

The deployment process as explained in Section 3.4 imposes some specific requirements on the
mesh nodes that are part of the OViS network:

• The nodes are required to announce their presence using UDP broadcast messages.

• Remote network reconfiguration is done over HTTPS/CGI, must therefore be possible for
unprivileged users.
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To fulfill these requirements, several additional programs were added to the ADAM build
system and installed on the nodes. Emphasis was put on keeping the programs small, simple and
robust.

Figure 4.4 depicts the role of two programs that were written specifically for OViS and how
they interact: the CGI script netcfg.sh that receives and processes the configuration commands
and the OViS network watcher, a daemon that applies the changes made through the CGI script
to the running system.

CGI

netcfg.sh network.conf

network
watcher

inotify_watch inotify_event

rc.networking
restart

mesh node

HTTPS
web server

Figure 4.4: OViS remote network configuration.

Theoretically, those two programs could be combined into a single application that receives
the configuration requests and directly applies them. The decision to split the tasks into two
separate tools was made for several reasons:

• To prevent random observers from running network configuration commands on our
nodes, some authentication mechanism is needed. Therefore, the pass parameter in ta-
ble 4.2 is required to run any configuration commands. By using a CGI interface we can
utilize the web server’s Secure Sockets Layer (SSL) functionality to encrypt the commands
and thereby hide the password from curious observers.

• The downside of using a CGI script is that it is executed with the limited privileges of the
user that the web server is running as. This user does not have permission to reconfigure
the network. Running the web server with increased security clearance (i.e., as the root
user) would have solved this, but it would also open the system to attacks if/when security
holes in the web server are found.

• By implementing the (comparatively) complex task of parsing and applying the config-
uration options in a shell script, we can use ADAM’s integrated features to manage the
network configuration file while limiting the part that requires superuser permissions to
the task of detecting changes in the configuration file and restarting the network when
needed.

In the following, the OViS utilities for remote and local network configuration are explained
in detail. These utilities implement the requirements described above.
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Parameter Description Example
pass Authentication token required for configuration s3kr1t
iface The interface to configure wlan1
freq The frequency to set the interface to 5180
essid The ESSID for the interface ovismesh
ip The IPv4 address for the interface 192.168.1.19
mask Network mask for the interface 24
tun6ip6local Local IPv6 address for the tunnel fc00:6680::3:1
tun6ip6remote Remote IPv6 address for the tunnel fc00:6680::3:2
tun6ip4local Local IPv4 address for the tunnel 192.168.2.1
tun6ip4localmask Network mask for the tunnel 24
tun6ip4remote Remote IPv4 address for the tunnel 192.168.2.2
tun6destnet IPv4 network behind the tunnel 192.168.3.0
tun6destmask Network mask for the network behind the tunnel 24
tun6route Set the default route via the tunnel yes
ipfwd Enable IP forwarding yes
masq iface Outgoing interface for IP masquerading eth0

Table 4.2: OViS remote network configuration commands.

Remote Network Configuration: CGI script

The remote network configuration is handled by a CGI shell script. Table 4.2 shows a list of all
the commands that are supported by the script and explains what they do.

As shown in Figure 4.4, the CGI script does not actually modify the network set-
tings. Instead, it writes the changed values to the node’s network configuration file
(/etc/conf.d/network.conf) and relies on the network watcher (see below) to notice
and apply those changes.

For this to work, a minor modification to the standard ADAM image was required: the
permissions for the network configuration file were modified to grant write access to the web
server.

By implementing this as a CGI script, we can use the web server’s encryption and socket
management features and focus on the actual task of modifying the network configuration file,
thereby eliminating a lot of redundant code. Since this task is mostly about parsing arguments
and writing files, a shell scripting language seemed like the natural choice rather than a more
complex programming language such as C.

Local Network Configuration: OViS Network Watcher

The second part of the network configuration is handled by the OViS network watcher (onw), a
small program that runs as a system daemon (i.e., a background process). This daemon observes
the network configuration file and reconfigures the network whenever modifications to that file
are detected. The program is started during the bootup process.

To detect modifications to the configuration file, onw uses inotify [48], a mechanism to
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monitor file system events that was added to the Linux kernel with version 2.6.13 [49]. Figure
4.5 describes the use of inotify within the OViS network watcher. First, onw registers itself with
the kernel (1). It then proceeds to registering its interest in the network configuration file by
calling inotify add watch (2). This call has two relevant arguments: the path of the file to
be monitored (in our case, the network configuration file) and the operations we are interested
in; for onw that is IN CLOSE WRITE, the event that occurs when a file that has previously been
opened for writing gets closed. Afterwards, whenever a call to the CGI script (or, theoretically,
any other operation) results in changes to the network configuration file (3), onw receives an
inotify event (4) and will, as a result, restart the node’s network.

OViS network watcher Linux Kernel Network configuration
(/etc/conf.d/network.conf)

inotify_init()
1

2

3

restart network

4

CGI script
(netcfg.sh)

inotify_add_watch(..) (watch)

write
inotify_event (write)

Figure 4.5: OViS remote network configuration.

onw is implemented in the C programming language as it needs to communicate directly
with the Linux kernel. Restarting the network is done by calling the corresponding init script
through C’s system command.

We follow a strictly modular approach. The system-specific commands used by onw are
cleanly separated from the OViS-specific network configuration mechanism. If at any point
inotify becomes obsolete or OViS is ported to a platform that does not support it, only onw needs
to be changed; the CGI script that parses and applies the configuration commands can remain
unchanged. On the other hand, this makes onw re-usable for other projects based on ADAM that
might require a mechanism to automatically restart the network when its configuration changes.

OViS UDP Pinger

The OViS UDP pinger (henceforth called pinger) is a small program that runs on the OViS
mesh nodes in order to announce the node’s presence and state to the hand-held device. During
the deployment process described in Section 3.4.2, the OViS client application listens for those
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Name Value Meaning
IF PHY UP 1 Physical link detected (cable plugged-in)
IF IP UP 2 IPv4 address configured

Table 4.3: Node status flags in OViS presence announcements.

announcements to detect new nodes. The pinger is started as a background daemon during the
node’s bootup process and is never stopped.

The message payload is a simple string containing the host name of the node and some flags
that indicate its network connectivity, separated by a colon. Table 4.3 shows the valid flags and
their meaning. The flags are combined by a logical OR operation. A typical message might look
like meshnode19:3 where meshnode19 is the host name and 3 is the combination of the
IF PHY UP and IF IP UP flags. Figure 4.6 depicts such a packet as captured by the Wireshark
network protocol analyser [50].

Figure 4.6: OViS node presence announcement.

OViS presence announcements are addressed to ff02::1, the IPv6 link-local multicast
address, and sent to UDP port 4379.

It is worth mentioning that for each packet sent, the pinger refreshes its knowledge about the
network connectivity and redetermines the best source address to use for the packet. In situations
where the user mistakenly turns on the gateway node without its network cable plugged in and
only remembers to connect the cable after bootup, constantly re-checking the connectivity allows
the pinger to gracefully detect the newly established connection and immediately announce it
to the network. The client application on the hand-held device can then react to this change by
promoting the node to a gateway (see Figure 5.1).

During the course of our implementation, we realized that, if not specified otherwise, the
packets sent by the pinger would have their source address set to the node’s link-local IPv6
address. In order to communicate with such a link-local address, the sender needs to specify
the network interface to be used since there is no way for the network stack to know who the
address belongs to, i.e., on which interface the address can be reached. However, the OViS
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client application uses the source address of the presence announcements to communicate with
the node. As this would require the application to be aware of the hand-held device’s various
network interfaces, the pinger was modified to bind the socket over which the packet is sent
to the network interface’s non-link-local (i.e., site-local or global) IPv6 address [51]. Since
this operation is done independently for each packet, the pinger will react immediately to any
changes done to the node’s IPv6 configuration.

While the pinger application described above was written specifically for OViS, its simplicity
and the fact that it does not actually do anything specific to OViS might make it useful for other
similar projects.

4.3.2 Third-party Software

The ADAM embedded Linux distribution received several enhancements during our work. Most
of them were updates for components that had already been part of ADAM, such as the user
space tools to manage wireless network interfaces and the Linux kernel, others were added
specifically for OViS.

For the change from the old madwifi driver to its new replacement ath5k that was already
mentioned in Section 4.1, one program in particular had to be added: CRDA, a piece of software
that manages the country-specific regulations regarding the wireless spectrum. This is explained
in more detail in Section 2.3.3.

Along with CRDA, several libraries and the hotplug2 package were added to ADAM. Hot-
plug2 (see Section 2.3.4) is a light-weight program that handles and processes events from the
Linux kernel – in our case, the events that occur as a result of setting the regulatory domain for
the network interfaces to comply with Swiss regulations.

Since our network cards came without any regulatory settings predefined, the kernel would
fall back to the default (most restrictive) settings and refuse to communicate on many of the
frequencies that are permitted in Switzerland. We therefore patched the kernel to completely
ignore the regulatory settings stored in the card’s EEPROM [52] and instead accept the list of
allowed frequencies provided by CRDA and chosen during the node’s network configuration.

During the development of OViS, we frequently encountered situations where the node im-
age would fail to compile on systems where it had not been compiled before. This would typi-
cally be caused by errors during the initialization of the build environment and would, therefore,
not occur on machines where the system had been compiled before. Thus, an auto-build system
was created that would compile the OViS branch of ADAM once every night. This allows us to
be informed whenever a modification causes build-time errors. It also allows other projects that
use OViS to pick precompiled system images directly from the server instead of installing the
build environment on their machine and compiling everything from source.

Most of the modifications that were done to the ADAM distribution during the development
of OViS have since been merged into the ADAM source code repository and are thus available
to all other projects that are based on ADAM.
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Chapter 5

OViS Client Application

The OViS client application is the user-facing part of OViS. The client comprises a “wizard” to
guide the user through the deployment process (see Section 3.4) and a second part that estab-
lishes a video conference with some other person.

The deployment process was designed to hide the technical details from the user since the
idea was to make OViS operable by people without any specific technical background or training.
In this chapter, we present the various client applications that were implemented and talk about
the differences between those applications, specifically regarding the platforms that they run on
and the different communication technologies used.

5.1 Software Architecture

One of the challenges was to keep the application’s architecture from becoming exceedingly
complex despite the many different states that a node might be in and the various operations that
can or cannot be applied to a node in any given state. In order to achieve this, we relied on the
state pattern as described in Section 2.2.1.

Figure 5.1 shows a graphical representation of the states and their transformations found
in the OViS client. Note that in the interest of clarity, only those events that modify the state
are shown in the figure. Any other transitions are considered illegal and are routed back to the
originating state, i.e., no state change occurs.

The first time a discovery packet (see Section 4.3.1) from a new node is detected, the node
enters the system in the online node state. Afterwards, the following transitions can happen,
provided that the node is in an appropriate state (e.g., an expired node cannot be deployed):

• Whenever an additional discovery packet is received, the node gets poked.

• If no discovery packets are received from a particular node for a predefined interval (e.g.,
3 seconds), the node expires.

• As soon as the node gets picked by the application as the next node to be deployed, it is
connected.
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Figure 5.1: Node states as modelled in the OViS application.

• If a discovery packet indicates that the originating node is a gateway (i.e., connected to a
wired network), make gateway gets called.

• Finally, when the user chooses to do so in the GUI, the node is deployed.

5.2 Desktop Client

The PC client is the main client application for OViS. The goal was for it to be platform inde-
pendent, i.e., to run at least on the Linux, Mac and Windows operating systems. The client is
meant to be used by an end-user without any special training and without prior knowledge about
mesh networks or networking in general.

It is worth mentioning that the client application is one of the very few elements of OViS
that do not serve one and only one very specific task: the application is responsible to guide the
user through the node deployment process as well as to initiate the conversation with the off-
site expert. This combination of two basically unrelated tasks was chosen in order to make the
system easier to use by non-technical people. In our opinion, the benefits of having an integrated
application that comprises those activities outweigh the negative impact on maintainability that
is caused by arbitrarily combining seemingly unrelated tasks.
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(a) Mac OS X.

(b) Linux / GTK+.

(c) Windows.

Figure 5.2: The wxPython OViS client on different operating systems.
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5.2.1 Prototype in wxPython

A first version of the PC client was implemented in wxPython (described in Section 2.3.5).
Figure 5.2 shows what the wxPython OViS client looks like in different operating system envi-
ronments.

Preliminary tests with the wxPython-based client implementation did, however, reveal seri-
ous usability issues. Namely, the standard widgets were too small to hit reliably on our UMPC’s
touch screen (see Section 5.2.4). Significant modifications to the layout would have been nec-
essary to work around this issue, thereby destroying the operating system’s native appearance
and with it wxPython’s major advantage. The client was hence scrapped and future development
went into a completely different direction.

5.2.2 Python CLI Client

Figure 5.3: OViS command-line client.

At this point, some fine-tuning of the deployment process described in 3.4 was required.
A Command-Line Interface (CLI) was considered more useful for that job, since repeatedly
clicking the same GUI elements is much more tiresome than repeatedly typing the same keys.
Thus, the OViS CLI client shown in Figure 5.3 came to life. While this client itself lacks the
video-conferencing part, it is still worth mentioning as it shares a great deal of code with the
final GUI client.

Figure 5.4 shows the class hierarchy of the common model. The top-left box represents
the class of which the UI needs to instantiate an object to get a reference to the model, the
DiscoveryDaemon. As the name implies, this is a daemon that works in the background. It
listens for UDP datagrams on port 4379 (IPv6) as sent by the OViS pinger (see Section 4.3.1).
Whenever a new node is found via this mechanism, it is added to the daemon’s list of known
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Figure 5.4: OViS CLI / GUI model.

hosts. The application can then perform operations on those nodes through the HostList object,
which is in turn available as an attribute of the discovery daemon.

Operations to the nodes such as connect and deploy are performed as a function of the
node’s state (see Section 5.1) and the Topology object in use. The state objects encap-
sulate the higher-level logic (“what to do”) while the topology objects contain the lower-level
instructions (“how to do it”). This allows the coexistence of multiple different network topology
implementations (see Section 3.3) without significant modifications to the higher-level logic.

As an example, the initGateway method gets called if a node in the OnlineGateway
state is told to connect to the network. This is considered a high-level operation that is inde-
pendent from the actual implementation, i.e., it is safe to assume that in any network topology
a gateway node might have to be initialized in a specific way – even if that specific way is to
do nothing at all. In the case of a PlainIPv4Topology, the detailed instructions are indeed
rather simple: enable NAT on the node. In a TunneledTopology, this step also needs to
configure the IPv4-in-IPv6 tunnel (see 3.3). The same mechanisms are also used to determine
what steps to take for any of the other operations required for the node deployment.

This level of abstraction offers a mechanism to test different network topologies during the
development process and, by encapsulating most of the behaviour in topology and node-state
objects, helps to keep our code clean and reusable.
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5.2.3 The TkInter Client

As a result of our attempts at using the operating systems’ native widgets and the ultimate dis-
missal of that idea, we decided to write the whole GUI ourselves as a full-screen kiosk applica-
tion, i.e., an application that does not look and feel like a “normal” PC program but more like
an integrated appliance. This would also allow us to design the widgets in a way that they are
useful regardless of our hardware limitations.

We decided in favour of TkInter, a cross-platform Python toolkit described in Section 2.3.6.
By implementing the GUI in the Python programming language, we can reuse the back-end code
presented in Section 5.2.2 for a platform independent graphical application. The GUI client’s
model is therefore identical to the one described above and shown in Figure 5.4.

The Application

The application was designed for two basic purposes: guide the user through the process of de-
ploying the ad-hoc network and initiate a video call afterwards. Figure 5.5 outlines the workflow
from the moment the application is started until the video call to the qualified off-site engineer
is initiated.

Take the
first node

Connect it to
the local router

via Ethernet

Turn on the node

Start

Take the
next node

Turn on the node

Move around to
find the optimal

position

Deploy
Reached
target?

Start VC All done

No

Yes

Figure 5.5: Application workflow.

First, the user is instructed to take a node, connect it to the local Internet router and turn it on.
This node will be used as the ad-hoc network’s gateway node. Afterwards, an iterative process
starts where the user takes the next node, turns it on and walks towards the destination. The
application now guides the user to find the right spot for the node through visual and acoustic
feedback (see below for details). When the user decides to deploy a node, the application asks
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(a) Much too strong (b) Too strong (c) Good

(d) Too weak (e) Much too weak

Figure 5.6: Instructions to the user as a function of signal strength.

whether the destination has been reached and, if not, repeats the last steps in order to deploy an
additional node. Once the destination has been reached, the video call is initiated.

Finding the Right Location

Finding a way to instruct the user to deploy the node at the right position was one of the trickier
tasks. The following aspects had to be considered:

• If the distance between the nodes is too short, the number of nodes required to cover the
distance from the router to the destination might exceed the number of available nodes.
Also, the deployment process would be exhausting since each node takes around 30 sec-
onds to boot.

• If the distance between the nodes is too long, the connectivity might suffer to an extent
where the bandwidth is reduced below the minimum required for a decent video call.

• Obstacles and safety concerns on the construction site might prevent the user from placing
the node at the exact position indicated by the application.

As a consequence of these considerations, the application was designed to classify the node’s
position into five categories as shown by Figure 5.6: much too strong, too strong, good, too weak
and much too weak.

• If the received signal power from the previous node is at around -60dBm (±10dBm), two
green arrows are presented to the user as an indication to place the node at (or near) the
current location (see Figure 5.6c). These values were chosen as a result of bandwidth
tests with several different signal qualities (see Section 6.1). The additional margin grants
some flexibility regarding the node placement.
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• If the signal strength is outside those boundaries but within ±20dBm of the ideal value,
yellow arrows as shown on Figure 5.6b (too strong) and Figure 5.6d (too weak), accom-
panied by slow audible beeps instruct the user to move further away from / closer to the
previous node.

• In situations where the signal strength deviates further from the ideal value, the red arrows
seen in Figure 5.6a (much too strong) and Figure 5.6e (much too weak), combined with
fast beeps encourage the user to move towards the right spot.

• The audio feedback’s pitch depends on whether the user is too close (low pitch) or too far
away (high pitch) from the previous node.

By adding acoustic feedback to the visual indications, the application allows the user to pay
attention to his surroundings instead of focusing on the computer screen – when the beeping
stops, the destination has been reached.

Skype Integration

The video communication part of OViS has been implemented using Skype (see Section 2.3.2).
Skype was selected for several reasons:

• Thanks to the large number of platforms supported by Skype, the OViS client can com-
municate with the vast majority of systems that the qualified off-site engineer might be
using.

• As explained in Section 2.3.2, Skype can work around most firewalls to allow bidirectional
video (i.e., UDP) streams. Since we cannot modify the on-site router’s configuration and
we have to be prepared for highly restrictive firewall settings, this feature will allow OViS
to work in situations where other technologies might fail to establish a connection.

• The free competitors we looked at (such as Pidgin [53] and Empathy [54]) were still in
heavy development and lacked the necessary reliability.

• Implementing a custom video conferencing application would have gone beyond the scope
of this thesis.

Thanks to the “Skype API”, OViS can use the Skype client without forcing the user to
interact with its tiny control buttons on our hardware’s mediocrely-precise touch-screen, thereby
creating the illusion of an integrated video-call feature in our client. Observing users will still
notice that the look&feel of the Skype client’s user interface differs from the OViS client, though.

5.2.4 UMPC

The OViS client application was developed on an Asus R2H Ultra-Mobile Personal Computer
(UMPC), a mobile computer featuring a 900 MHz Intel Celeron CPU, 1.2 GB RAM, a wireless
network interface and a touch screen. The screenshots shown in Section 5.2.3 were taken on
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that device. While the UMPC might be considered to be a special, limited hand-held device by
the end user, software-wise it is a fully-fledged computer, running a “normal” desktop OS (see
below). Hence, it runs the same client application that could also be used on a more traditional
laptop computer.

Yet, the UMPC imposed some hardware-specific requirements on the client application and
on the network topology:

• The device’s touch screen is not very precise. Therefore, the client application needs to
have big control elements that can be reliably activated even on a moderately-precise touch
screen.

• The UMPC’s screen operates at a native resolution of 800x480. The application had to be
designed to fit all the required information on that limited amount of space.

• The built-in ZyDAS ZD1211 wireless controller does not support communications on the
5 GHz band and is limited to channels 1-11 in the 2.4 GHz range. Since this is a fairly
common limitation of consumer-grade hardware, the link between the last node and the
hand-held device uses channel 11.

The hand-held device runs Debian GNU/Linux 6.0 [55] with the Xfce Desktop Environment.
Special themes (customized UI presets) were made for the grub boot loader, the GNOME Dis-
play Manager (gdm) and the GIMP Toolkit (GTK+). The idea was to create a common look&feel
for everything the user sees from the moment the boot loader starts until the video conference is
over. In addition, the system was configured to automatically login a specific user after booting
and to immediately start the OViS application afterwards. The user is not supposed to think of
OViS as a complex piece of software running on a “normal” PC but instead see the system as a
highly integrated appliance.

Thanks to the open nature of the underlying Debian operating system, the user interface
could be customized in a way to make such an impression. While modifications to the source
code of the client’s operating system would also have been possible, no such modifications were
necessary.

5.3 OViS Android Client

Android is a Linux-based open-source operating system for hand-held devices and mobile
phones. Section 2.3.7 describes the Android platform in more detail. In the light of the shortcom-
ings of our hand-held device described in Section 5.2.4, the OViS client was ported to Android.
Unfortunately, the current version of Android has some limitations that needlessly increased
the complexity of our application. We used Android 2.2 for our project, the problems are still
present in the current version (3.1) though. The next section explains these limitations in detail.

5.3.1 Challenges

As mentioned above, Android is based on the Linux kernel. While this should make Android
an ideal platform to use for networking-related projects like OViS, we were faced with several
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challenges that required special attention and caused significant differences between the client
described in Section 5.2 and the Android client application:

• The first – and probably most challenging – issue was Android’s lack of support for ad-hoc
networking. An Android device can neither connect to an ad-hoc network [56] nor create
one. It was therefore required to manually take control of the underlying Linux system in
order to circumvent that restriction as described in Section 5.3.2.

• As a consequence of the missing support for ad-hoc networks, the wireless interface can-
not be configured using the mechanisms provided by the Android platform. The need
to change network settings came up, because a DNS request is made for every HTTPS
connection to a mesh-node. Since the DNS servers cannot be reached during the deploy-
ment process, the OViS application would become unresponsive while waiting for those
requests to time out. To fix this, the application has to disable all DNS lookups at startup
and re-enable them once the network has been deployed, which can only be done directly
on the system level. We therefore need superuser privileges. Section 2.3.7 explains how
this is done.

• The HTC desire smartphone that was used does not have a user-facing camera. Video-
conferencing as used in the OViS PC client could be cumbersome.

While these limitations proved to be rather tedious, a solution was found for all of them. In
the case of the communication method it even has some advantages over the approach chosen
for the PC client.

5.3.2 Ad-hoc Networking Support for Android: The desire-adhoc Application

The toughest problem was the aforementioned lack of support for ad-hoc networking (see Sec-
tion 5.3.1). Thanks to Android’s Linux foundations, it was possible to overcome this limitation
by manually configuring the network using Linux tools. The iwconfig program from the Wireless
Tools for Linux package [57] was therefore added to the phone. Afterwards, the interface can
be put into ad-hoc mode by reloading the wireless device driver and then configuring the ad-hoc
mode using the appropriate sequences of iwconfig commands. Finally, the interface can be con-
nected to the OViS network through the use of standard Linux IP configuration commands. This
process has been described in detail and published on the web [58], since the great number of
responses in the bug report about Android’s missing support for ad-hoc networking indicates a
public interest in the topic.

The steps described above cannot normally be done on an Android device since the user
does not have the permissions required to reload kernel modules or run low-level system com-
mands. Section 2.3.7 explains the process used to acquire the needed privileges and the required
modifications to our Android device. In particular, a modified version of the Android operating
system was installed [59] since the default firmware does not allow superuser access.

In the interest of being able to test our Android client in the field, where manually entering
the commands required to configure ad-hoc networking would be tedious, those commands were
wrapped into an additional program called desire-adhoc [60]. Figure 5.7 shows a screenshot of
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this application, which has since been released to the general public under the terms of the GNU
General Public License (GPL) [61].

Figure 5.7: The desire-adhoc application.

The workaround described above and the resulting application allows us to reliably connect
the smartphone to the OViS network and illustrate the advantages of using a fully-fledged, free
operating system such as Linux on mobile phones – working around similar restrictions would
have been significantly harder (or impossible) on a proprietary operating system.

Unfortunately, the modifications required to the phone’s operating system make OViS un-
suitable for general purpose use at the moment since this process will void the phone’s warranty.
Once Android starts natively supporting ad-hoc networking, this will no longer be an issue.

5.3.3 OViS Application for Android

The smartphone used during the development of OViS is significantly different from the hand-
held device described in Section 5.2.4. Particularly, it lacks a user-facing camera; the built-
in lens is located on the phone’s backside. Thus, we decided to try a different approach at
communication for the Android OViS client while copying the deployment process from the PC
client.

Figure 5.8 shows the node placement process as presented by the Android application: first,
the user is told to grab a node and turn it on. The client then waits for the node to announce its
presence. Once the node is found, the client configures the first interface. Afterwards, the user is
guided towards the right position for the node, supported by a coloured indicator (and acoustic
feedback), similar to what the PC client does (see Section 5.2.3). The user can then decide to
accept the current location, at which point the node’s second interface will be configured.

The communication method is a combination of voice-chat and photographs instead of a
video link. The on-site user can talk to the qualified engineer in a fashion similar to a “normal”
phone call and, at the same time, take photographs of the local installation and send them to the

53



Figure 5.8: Node deployment with the OViS Android application.

remote expert to further illustrate the issue at hand.
The voice communication is done using voice-over-IP (VoIP) through the Session Initiation

Protocol (SIP) [62]. During the development of OViS, version 2.3 of the Android operating
system was released that includes native SIP support [63]. An updated version of the operating
system is, however, not currently available for the HTC desire; therefore, we use sipdroid [64],
an open-source third-party SIP client.

Figure 5.9 shows an overview of the communication process. After deploying the network,
the on-site user and the off-site expert communicate via SIP (1). The on-site user can then take
a picture and send it via HTTP POST (2) to a custom written application based on the django
web framework [65] that runs on a remote server (3). Figure 5.10 shows a screenshot of the
upload process. When the upload is completed, the server sends a message to the off-site expert
that contains a hyperlink to the uploaded picture (4). This message is sent using the Extensible
Messaging and Presence Protocol (XMPP) [66], an instant messaging protocol formerly known
as “Jabber”. Finally, the off-site expert can open that link and fetch the uploaded image via
HTTP GET (e.g., with a web-browser).

The Android application shows an important aspect of OViS: thanks to the clean separation
of the network deployment process and the actual communication mechanism it is relatively
easy to completely replace one of them – in this case the video chat – with an entirely different
system. This modularity should also make a system like OViS independent enough from im-
plementation details to be cleanly portable to entirely new software ecosystems, whether it is a
different network topology, a new operating system such as Apple’s iOS or a new approach at
communication.
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Figure 5.9: Communications using the OViS Android application.

Figure 5.10: Uploading a picture from the Android client.
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Chapter 6

Evaluation

OViS was evaluated in various ways: first, a qualitative evaluation was done to find the re-
quired signal quality for a link between neighbouring nodes at which video communication is
still possible without a disturbing degradation of the audio / video signal. The results from these
measurements were then used to calibrate the desired signal strength in the OViS client appli-
cation. The determined signal quality thresholds are used to generate the instructions for node
placement (see Section 6.1).

Afterwards, a quantitative evaluation compares the throughput of non-guided deployments,
an OViS network and a manually optimized topology as it could be deployed by an experienced
user. These results are described in Section 6.2 along with details about the testbed setup and
the software that was used. Additional measurements to test various aspects of the network such
as the benefits from using a multi-channel setup and the effect of using automatic rate control
vs. a predefined bitrate are presented in the subsequent sections.

Finally, we revisit the requirements from Section 3.1 that were asked from the system to
determine which ones have been fulfilled by our implementation and where additional work
might be required.

6.1 Signal Quality

The targeted signal quality for a link between two mesh nodes is a trade-off between maximiz-
ing the covered distance (or minimizing the number of required mesh nodes) and maintaining
enough bandwidth for the network. Tests were made with a simple network consisting of three
mesh nodes to see how low the link quality can go before the Skype application loses connec-
tivity or the video signal gets degraded to an extent that makes it unsuitable for practical use.
The tests showed that the signal becomes severely distorted when the link quality between two
nodes falls below -75 dBm and the connection is terminated at around -80 dBm.

Figure 6.1 shows how the bandwidth over a single hop is affected by the signal strength. This
was evaluated using the Network Protocol Independent Performance Evaluator (NetPIPE [67])
with a packet size of 512 kB (TCP). As the signal decays beyond approximately -60 dBm, the
available bandwidth starts decreasing. Once the -80 dBm threshold is crossed, the connection is
at risk of being terminated. The lowest signal strength at which we were still somewhat able to
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Figure 6.1: Network throughput against link quality.

communicate over the network was around -85 dBm – the connection would be highly unstable
at that point, though.

The same tests were then repeated with the network interfaces configured to operate at a fixed
bitrate of 54 Mbps instead of using automatic rate control (see Section 2.1.3). Figure 6.1 also
contains the results from these measurements. The outcome was very similar for good links,
i.e., the bandwidth was virtually identical for links with -60 dBm or better. At -70 dBm, the
fixed bitrate shows better throughput than what was achieved with the automatic bitrate settings.
However, once the signal becomes weaker than -70 dBm, the connection becomes too unstable
and is terminated. This is consistent with the expected behaviour in an IEEE 802.11 wireless
network where the bitrate will be reduced as the signal strength becomes worse. By using a
fixed bitrate, this mechanism can no longer take effect and the connection is simply terminated
instead.

As a result of these measurements, we chose a target link quality of -60 dBm for our network
with a tolerance range of ±10 dBm in order to have enough bandwidth to sustain video commu-
nication with decent image and audio quality while also covering a relatively large distance with
few nodes. For the client application, this meant that the position indicator would be green for
signal qualities of -60±10 dBm, yellow at -60±20 dBm and red otherwise. By not exhausting
the measured range for decent link quality we allow for some temporary fluctuations and some
flexibility for the user to choose a more practical location for the node than what the system
indicates. Choosing a lower target quality would increase the risk of losing the network link due
to short-term interferences. It was also decided to use automatic rate control instead of a fixed
bitrate since the benefit of having some additional bandwidth for links between -60 dBm and
-70 dBm is outweighed by maintaining a stable network even with poor signal strength.
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6.2 Network Bandwidth

To determine the quality of a network deployed through the OViS client, such a network was
tested inside a building. We used NetPIPE to measure the bandwidth of a three-hop network
consisting of four mesh nodes (as described in Section 4.1) and an IBM ThinkPad X41 Laptop
with an Intel PRO/Wireless 2915ABG network controller.

NetPIPE measures the bandwidth by sending Transmission Control Protocol (TCP) traffic
with incrementing message sizes to another host on the network. We therefore connected a
second laptop, an Apple MacBook Air, to the same Ethernet switch that the gateway node was
connected to and measured the bandwidth between the two laptops. The ThinkPad was using a
wireless link on the 2.4 GHz band to the last mesh node. Figure 6.2 shows this setup in more
detail.

The first node was placed in a room on the building’s top floor along with the MacBook.
The OViS client was then used on the ThinkPad to deploy the additional nodes throughout the
building. The target link quality for the deployed network was -60 dBm (±10 dBm) as described
in Section 6.1. The second node was placed on the same floor near the stairway entrance, and
the next two nodes covered the stairway and parts of the lowest floor. The other laptop was then
placed approximately three meters from the last node where it stayed during the performance
evaluation.

Laptop Switch Node01

Node02

Node03

Node04 Laptop

Figure 6.2: OViS testbed setup.

Both laptops were running Debian GNU/Linux 6.0 with the shipped version 2.6.32 of the
Linux kernel. The operating system was installed natively on the ThinkPad and in a VirtualBox
environment on the MacBook. We used NetPIPE version 3.7.1.

Figure 6.3 compares the bandwidth measured on two networks (A, B) that were deployed
according to the instructions from the OViS client with other deployment methods.

To evaluate the results, the network links from the first OViS deployment (A) were then
optimized manually: by properly aligning the antennas and moving the nodes a few centimetres,
we tried to improve the signal strength of the individual links while covering the same distance
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Figure 6.3: OViS network bandwidth.

between the first and the last node. Figure 6.4 shows the result of these manual improvements.
The signal was measured on the receiving node of each link (e.g., “Node02” for the first link)
through the iw command-line tool. Each value represents the average and standard deviation
for ten measurements done at 1 s intervals.
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Figure 6.4: Manually improved link quality on OViS network (A).

The manual adjustments resulted in a difference of roughly 10 dBm on each link. As can be
seen, this increase is larger on the second and third links – the links where vertical distance was
covered. We attribute this particular improvement to the antenna adjustments. On the first link,
the improvement was mostly achieved by avoiding some of the larger objects between the nodes.
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It is worth mentioning that the link between the last node and the laptop became slightly weaker
because the node was moved a couple of centimetres away from the computer to improve the
signal strength to its other neighbour and ended up on the other side of a metal door frame.

After these improvements, the same bandwidth tests were run again. The results of these
tests are shown in Figure 6.3 as the “Optimized” values. Compared to the guided OViS deploy-
ment, the optimized network offers roughly twice the throughput.

A third series of measurements was then made to compare a manually deployed network to
the topology that is created by the OViS deployment process. To evaluate this, an attempt was
made to cover the same distance spanned by the previous tests with one, two and three mesh
nodes. The nodes were naı̈vely placed at convenient locations between the gateway node and
the ThinkPad, spread at even distances. The resulting network throughput can also be seen in
Figure 6.3.

With one node, no communication was possible, OViS was right to insist on additional
nodes. Interestingly, with only two nodes, the network throughput was already comparable to
the result measured over the OViS network, while adding an additional node turned out to have
a highly negative impact on the overall performance. These phenomena are, however, easily
explained by having another look at Figure 6.2: with only two nodes, the second node was
placed near the location of “Node03” in the Figure, a position with both, some horizontal and
a slight vertical offset. The node was therefore capable of reaching its two neighbours over a
reasonably good link. With three nodes, the situation looks different: the intermediate nodes
were placed near the original locations of “Node02” and “Node04”, thereby creating a large
vertical gap between the nodes. Since the type of antenna we used has a high horizontal gain but
is quite inefficient vertically, this caused a very weak link between these two nodes.

The results show that while OViS might not be able to create an ideal network, it is fully ca-
pable of guiding an inexperienced user through the deployment of a mesh network that performs
reasonably well. By measuring the link quality between mesh nodes during the deployment pro-
cess, OViS can implicitly compensate for misconceptions on the user’s part, such as obstacles or
(in our case) poor connectivity over vertical distances.

Specific knowledge about how wireless networks operate, which kinds of objects to avoid
and how the orientation of an antenna can affect the signal quality will of course result in a more
efficient network topology. Yet the unoptimized network deployed according to the instructions
from the OViS client is still good enough to provide reliable bandwidth for video conferencing
and will cause additional nodes to be deployed where the inexperienced user would otherwise
introduce poor links into the network. With OViS it is possible to deploy a stable, reliable net-
work by blindly following the instructions from the client application and OViS should therefore
be usable by anybody without any particular knowledge or special training.

6.3 Impact of Multihop Communication

The previously presented results do, however, require some clarification: Figure 6.1 shows a
maximum throughput of around 22 Mbps over a single hop, yet even the optimized network
shown in Figure 6.3 only achieves a maximum throughput of a little more than 6 Mbps. We
therefore examined the influence of increased hop count on the network’s bandwidth.
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Figure 6.5: Bandwidth over multiple hops.

Figure 6.5 shows the results of those measurements. As before, we tested the network by
using NetPIPE with 512 kB TCP packets. At the beginning, two nodes were each connected to a
Laptop / PC via their Ethernet ports and to each other through a wireless link. Additional nodes
were then added to this setup, connected only through their wireless interfaces. By choosing
appropriate frequencies for the interfaces we made sure that the nodes would form a single line
and the network traffic would flow through all the nodes. As the figure shows, a single link
can carry over 22 Mbps. When an additional node is added to the network, the bandwidth will,
however, decrease drastically to around 6 Mbps. Adding further nodes does not have a similar
effect, the additional bandwidth reduction is comparatively small.

To investigate this further, the experiment was repeated using a fixed bitrate of 54 Mbps
instead of the automatic rate control (see Section 2.1.3) that was used the first time. As can
be seen in Figure 6.5, this leads to significantly better performance on a two-hop (three nodes)
network, the effect does, however, diminish when a fourth node is added.

These measurements also explain why the final network’s bandwidth as shown in Figure 6.3
is much lower than what was measured over a single hop and we conclude that, aside from the
negative effects on bad links shown in Section 6.1, even a network with decent links would not
benefit from using a fixed bitrate.

6.4 Impact of Multi-Channel Communications

Since considerable effort was put into designing the OViS deployment process to use multi-
channel communications as explained in Section 3.4.1, the benefits of using multiple channels
instead of a single-channel network were also evaluated. For this, a network over two hops with
each wireless interface set to a fixed bitrate of 54 Mbps was created. The nodes were placed
to have a signal quality of >-50 dBm on both links to make sure they were operating at ideal
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bandwidth and that short-term fluctuations in signal strength would not affect the measurements.
Both, the single-channel and the multi-channel topology used frequencies in the 5 GHz band.
The bandwidth was again measured with the NetPIPE software as described in Section 6.2.
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Figure 6.6: Multi-channel bandwidth.

Figure 6.6 shows the result. Our two-hop network gained an additional 1 Mbps of bandwidth
when multiple frequencies were used. We attribute this improvement to the reduced interference
between the two links. Since this effect will become even more pronounced as the number
of nodes grows, we are confident that the decision to use multi-channel communications was
beneficial for the overall performance of the OViS network and the time invested for designing
and implementing an appropriate deployment process was well spent.

6.5 Requirements Evaluation

Finally, an evaluation of the system requirements as specified in Section 3.1 was done to deter-
mine whether the project’s goals have been met. Our evaluation yielded the following results:

• The deployment process described in Section 3.4.2 does not require any prior knowledge
about wireless networks or networking in general. An inexperienced user should be able to
deploy our system by following the on-screen instructions. The resulting network cannot
compete with a topology that has been optimized by a highly trained expert, but it offers
stable connectivity with a reasonable number of mesh nodes and it is much less prone
to user misconceptions than a manually deployed network. The result could be further
enhanced by adding a second antenna for each wireless interface to better cover vertical
distances.

• Chapter 5 shows that client applications for OViS are available for Linux, Mac OS and
Windows as well as for the Android platform. OViS does not only provide a cross-
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platform application but also an architecture that should allow for additional client soft-
ware to be written for any operating system that supports wireless networking according
to the IEEE 802.11b/g standard and basic IPv4 and IPv6 connectivity.

• By using a link on the 2.4 GHz band between the last node and the hand-held device and by
not relying on positional data, we designed a system that is compatible with any end-user
device that features wireless networking hardware compatible with the IEEE 802.11b/g
standard. The combination of IPv4 for data payload and IPv6 during the deployment
process requires a reasonably modern operating system on the client device.

• In Section 3.4.1 we explain how OViS uses multi-channel communication in the 5 GHz
band between the mesh nodes while keeping the connectivity to the hand-held device in
the widely-used 2.4 GHz band for improved compatibility with end-user devices. This
approach combines the advantage of reduced interference with the required compatibility
described above.

We are therefore confident to state that, while further improvements to OViS could be made,
all the functional requirements concerning the system have been fulfilled. We have shown that
OViS is a modular, highly flexible system that provides stable bandwidth to sustain audio and
video conferencing at remote locations where wireless communication would be impossible
otherwise.
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Chapter 7

Conclusion and Future Work

After describing OViS and its various components in details and presenting an evaluation of
the system, we would like to give our conclusions from the evaluation results as well as some
possible directions for future work.

7.1 Conclusion

The OViS platform has been shown to be very flexible not only with regards to the client appli-
cation but also concerning the communication method. This was achieved by cleanly separating
the deployment logic from the network payload. The different client applications presented in
Chapter 5 show that the system can be deployed by and used with any number of operating
systems, including (but not limited to) Linux, Mac OS and Windows. Client applications have
been written in the Python and Java programming languages, showing that the OViS API was
designed well enough not to depend on any particular language. The Android application pre-
sented in Section 5.3.3 uses an entirely different communication mechanism than the standard
OViS client and thereby shows that our network serves as a general-purpose network rather than
being specialized and limited to video conferencing.

Concerning the mesh nodes, OViS was designed to work with a standard Linux environment
and should therefore be portable to any kind of node that supports Linux with only minor effort.
By using cleanly designed standard interfaces to the kernel (such as netlink), we prevent lim-
itations concerning the supported hardware. The only concern is that with the current design,
any node that is used in an OViS network needs to have at least two wireless interfaces that are
properly supported by modern Linux drivers.

The evaluation results presented in Section 6.2 have shown that OViS’ user-friendliness
comes at a price, namely a reduced efficiency of the resulting network. With some knowl-
edge about wireless networks, the link quality can be significantly increased and the number
of required nodes can be reduced. The improvements have been particularly significant where
nodes were placed above / below each other. However, such optimizations take a lot of time,
even for experienced users. Also, by not reaching the maximum distance between two nodes,
OViS provides a buffer against temporary fluctuations in the network connectivity.

The guided deployment process might be improved by adding additional antennas to the

65



mesh nodes: the antennas that were used have a high horizontal gain but are very limited verti-
cally. This could be compensated by adding extra antennas at a 90 degree angle for increased
vertical performance.

However, OViS does not prevent a user with some additional knowledge from applying their
experience during the deployment process. Therefore, we believe that despite the suboptimal
result of a network deployed by strictly following the client instructions, OViS does a good job
at helping non-experts to deploy stable and reliable networks.

As a result of those considerations, we conclude that OViS is a flexible platform which, while
favouring simplicity over efficiency, allows end-users to deploy stable network connectivity in
previously uncovered areas. By focusing on simplicity, OViS makes mesh networks accessible
to users who would otherwise not be able to profit from this technology.

7.2 Future Work

While OViS works quite well in general, further improvements can of course always be made
not only to our system and code but also to some of the related third-party projects.

One area that comes to mind is Android and its lack of proper ad-hoc networking. A future
project could try to modify the Android platform to natively connect to ad-hoc networks and
possibly create a customized version of Android built around and focused on the task of running
OViS. Such a platform would ideally use Android 2.3 (or newer) as a basis due to its native
support for SIP voice communication and replace the stock Android launcher with a menu spe-
cific to OViS and appropriate branding to achieve the appliance experience that was attempted
to create on the hand-held device.

Another part that could benefit greatly from future work is the integration of the video chat
program. A future project could try to use SkypeKit [68], an SDK that should allow for proper
integration of Skype into the OViS client. For now, SkypeKit is only available to select develop-
ers in a closed beta program and was therefore not an option for OViS. Once it becomes available
to the public, this will change. Alternatively, open-source video conferencing programs should
keep improving and, due to their source code being publicly available, would probably be rea-
sonably easy to include in the OViS client once they start working reliably. Future work could
focus on those tools instead of the proprietary Skype application.

Further efforts should also be put into the IEEE 802.11s mesh networking protocol. The
technology looks promising and highly interesting. The benefits of moving the mesh network-
ing logic to a lower layer and having it not only included in the standard Linux kernel but, since
it will hopefully become a widely adopted IEEE standard, probably in other operating systems
too, could greatly simplify the deployment and management of ad-hoc mesh networks. A fu-
ture project could try and resolve the current limitations related to the use of multiple network
interfaces.

Lastly, OViS is IPv6 ready, i.e., once it becomes more widely adapted, OViS can easily be
modified to use IPv6 for its mesh network. This would make the hand-held device properly
addressable over the Internet and thereby resolve any issues with free video conferencing im-
plementations that are related to network address translation and the use of private, non-routed
IPv4 addresses.
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MPR Multipoint Relay
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