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vorgelegt von

Ruy de Oliveira

von Brasilien

Leiter der Arbeit:

Prof. Dr. T. Braun

Institut für Informatik und angewandte Mathematik





Addressing the Challenges for TCP over
Multihop Wireless Networks

Inauguraldissertation

der Philosophisch-naturwissenschaftlichen Fakultät

der Universiẗat Bern
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theCentro Federal de Educação Tecnoĺogica de Mato Grosso(CEFET-MT). I thank all

my colleagues in Brazil who helped to obtain this leave of absence.

I wish to thank my family for having supported me throughout my studies. My parents

Antonio and Adolfina always encouraged me to achieve high education. My siblings were

also always supportive of my decisions and helped whenever they could.

I wish to reiterate my debt of gratitude to the most encouraging person for this doc-

toral degree, my wife Cristiane. She showed strength when I was not sure if I should

pursue a PhD abroad. She was always motivating me and immensely patient throughout

this work, which gave me balance. She really supported me a lot. Finally, the youngest

lady I want to thank here is my daughter Rebeca. She was certainly a source of joy for the

moments I just needed it. Although she is now only five-year-old, she could understand

my usual lack of time. Only Cristiane and Rebeca know exactly how much effort I put

into this work, and so I dedicate this thesis to them.

iv



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Contributions of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . .3
1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5

2 Transmission Control Protocol 7
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 TCP/IP Protocol Suite . . . . . . . . . . . . . . . . . . . . . . . . . . . .7

2.2.1 Protocol Stack . . . . . . . . . . . . . . . . . . . . . . . . . . .8
2.2.2 Packet Encapsulation . . . . . . . . . . . . . . . . . . . . . . . .9
2.2.3 End-to-end Network Elements . . . . . . . . . . . . . . . . . . .9
2.2.4 Structure of TCP Header . . . . . . . . . . . . . . . . . . . . . .10

2.3 TCP Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
2.3.1 Connection Setup . . . . . . . . . . . . . . . . . . . . . . . . . .12
2.3.2 Flow and Congestion Control . . . . . . . . . . . . . . . . . . .13
2.3.3 Retransmissions . . . . . . . . . . . . . . . . . . . . . . . . . .14
2.3.4 Timeout Interval Computation . . . . . . . . . . . . . . . . . . .14
2.3.5 Exponential Backoff Mechanism . . . . . . . . . . . . . . . . . .15

2.4 Congestion Control Mechanisms . . . . . . . . . . . . . . . . . . . . . .16
2.4.1 Slow Start and Congestion Avoidance . . . . . . . . . . . . . . .16
2.4.2 AIMD Congestion Control . . . . . . . . . . . . . . . . . . . . .18
2.4.3 Equation-based Congestion Control . . . . . . . . . . . . . . . .18

2.5 TCP Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
2.5.1 TCP Tahoe . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
2.5.2 TCP Reno . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
2.5.3 TCP NewReno . . . . . . . . . . . . . . . . . . . . . . . . . . .22
2.5.4 TCP Sack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
2.5.5 TCP Vegas . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26

2.6 TCP Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
2.6.1 Delayed Acknowledgments (DA) . . . . . . . . . . . . . . . . .27
2.6.2 Explicit Congestion Notification (ECN) . . . . . . . . . . . . . .28
2.6.3 Limited Transmit . . . . . . . . . . . . . . . . . . . . . . . . . .30

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31

v



vi CONTENTS

3 Multihop Wireless Networks 33
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
3.2 Wireless Data Communications . . . . . . . . . . . . . . . . . . . . . . .33
3.3 Ad Hoc Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34

3.3.1 IEEE 802.11 MAC Protocol . . . . . . . . . . . . . . . . . . . .35
MAC Frame Formats . . . . . . . . . . . . . . . . . . . . . . . .36
Distribute vs. Point Coordination Function Access Methods . . .38
Distributed Coordination Function (DCF) . . . . . . . . . . . . .38
Carrier Sense Mechanism . . . . . . . . . . . . . . . . . . . . .39
Interframe Spacing . . . . . . . . . . . . . . . . . . . . . . . . .40
Backoff Procedure . . . . . . . . . . . . . . . . . . . . . . . . .40
Basic Access Method . . . . . . . . . . . . . . . . . . . . . . . .41
RTS/CTS Access Method . . . . . . . . . . . . . . . . . . . . .42
Hidden Node and Exposed Node Problems in multihop networks .44

3.3.2 Routing Protocols . . . . . . . . . . . . . . . . . . . . . . . . .46
On-demand Distributed Vector (AODV) . . . . . . . . . . . . .46
Dynamic Source Routing (DSR) . . . . . . . . . . . . . . . . . .47

3.4 Sensor Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52

4 Fuzzy Logic 53
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
4.2 Fuzzy Logic Principles . . . . . . . . . . . . . . . . . . . . . . . . . . .53
4.3 Fuzzy Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
4.4 Universe of Discourse . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
4.5 Membership Function . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
4.6 Singleton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
4.7 Linguistic Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
4.8 Fuzzy Set Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
4.9 Inference Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
4.10 Defuzzification Methods . . . . . . . . . . . . . . . . . . . . . . . . . .61
4.11 Fuzzy Logic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
4.12 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64

5 TCP over Multihop Wireless Networks 65
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65
5.2 Impact of Wireless Transmission Medium on TCP . . . . . . . . . . . . .65
5.3 Interaction between TCP and MAC Protocols . . . . . . . . . . . . . . .66

5.3.1 Impact of Hidden Node and Exposed Node Problems . . . . . . .66
5.3.2 Capture Effect . . . . . . . . . . . . . . . . . . . . . . . . . . .68
5.3.3 Transmission Interference in Multihop Wireless Networks . . . .69

5.4 Disturbance of Routing Protocol Strategy on TCP . . . . . . . . . . . . .70
5.5 TCP Dedicated Response to Wireless Constraints . . . . . . . . . . . . .72
5.6 Traffic Redundancy Avoidance in TCP over Multihop Paths . . . . . . . .75



CONTENTS vii

5.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76
5.7.1 Reduced Traffic and Medium Access Requests . . . . . . . . . .76
5.7.2 Packet Loss Discrimination . . . . . . . . . . . . . . . . . . . .79
5.7.3 MAC and TCP adjustments . . . . . . . . . . . . . . . . . . . .83
5.7.4 TCP Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . .86

5.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88

6 Packet Loss Discrimination Using Fuzzy Logic 89
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89
6.2 Packet Loss Discrimination . . . . . . . . . . . . . . . . . . . . . . . . .89
6.3 Round-Trip Time Patterns . . . . . . . . . . . . . . . . . . . . . . . . .90

6.3.1 Simulation Environment . . . . . . . . . . . . . . . . . . . . . .91
6.3.2 RTT Measurements under Heterogeneous Conditions . . . . . . .91
6.3.3 RTT Measurements under the Critical Overlap . . . . . . . . . .94
6.3.4 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94

6.4 Fuzzy-based Error Detection . . . . . . . . . . . . . . . . . . . . . . . .95
6.5 A Fuzzy Logic Engine for Loss Discrimination . . . . . . . . . . . . . .99

6.5.1 Fuzzy Engine Input . . . . . . . . . . . . . . . . . . . . . . . . .100
6.5.2 Fuzzy Engine Output . . . . . . . . . . . . . . . . . . . . . . . .101

6.6 Performance Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . .102
6.6.1 Fuzzy Engine Parameters Configuration . . . . . . . . . . . . . .102
6.6.2 Fuzzy Engine Correctness . . . . . . . . . . . . . . . . . . . . .103
6.6.3 Detection of Abrupt RTT Changes . . . . . . . . . . . . . . . . .104
6.6.4 Avoiding TCP Slowdown for Medium Losses . . . . . . . . . . .105
6.6.5 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106

6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107

7 A Smart TCP Acknowledgment Strategy 109
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109
7.2 Design Decision Rationale . . . . . . . . . . . . . . . . . . . . . . . . .110

7.2.1 Optimal Limit for TCP Congestion Window . . . . . . . . . . . .110
7.2.2 The Actual Cost of Using TCP Acknowledgments . . . . . . . .110

7.3 Dynamic Adaptive Acknowledgment . . . . . . . . . . . . . . . . . . . .111
7.3.1 Algorithm Overview . . . . . . . . . . . . . . . . . . . . . . . .113
7.3.2 Requirements at the Sender . . . . . . . . . . . . . . . . . . . .114
7.3.3 Delaying Window . . . . . . . . . . . . . . . . . . . . . . . . .115
7.3.4 Timeout Interval Calculation . . . . . . . . . . . . . . . . . . . .116
7.3.5 Packet Loss Handling . . . . . . . . . . . . . . . . . . . . . . .118
7.3.6 An Alternative Delaying Window Strategy . . . . . . . . . . . .120

7.4 Performance Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . .122
7.4.1 Simulation Scenario . . . . . . . . . . . . . . . . . . . . . . . .123
7.4.2 Throughput in the Chain Topology . . . . . . . . . . . . . . . . .123
7.4.3 Throughput in the Grid Topology . . . . . . . . . . . . . . . . .126
7.4.4 Retransmissions . . . . . . . . . . . . . . . . . . . . . . . . . .127



viii CONTENTS

7.4.5 Energy Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . .127
7.4.6 Short-lived Flows . . . . . . . . . . . . . . . . . . . . . . . . . .128
7.4.7 Optimization:TCP-DAAp . . . . . . . . . . . . . . . . . . . . .133
7.4.8 TCP Friendliness . . . . . . . . . . . . . . . . . . . . . . . . . .135
7.4.9 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137

7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139

8 Conclusions and Outlook 141

List of Figures 148

List of Tables 149

List of Abbreviations and Acronyms 151

Bibliography 153



Chapter 1

Introduction

Wireless networks are becoming increasingly popular among corporate and home users
worldwide. Users are looking forward to new technologies that allow them to communi-
cate anytime, anywhere, and using any communication device. Toward this end, wireless
communications are foreseen to play a key role in future communication systems. The
primary advantages of wireless networks in comparison with their wired counterparts in-
clude flexible mobility management, faster and cheaper deployment, and ultimately easier
maintenance and upgrade procedures.

The phenomenal growth of wireless communications today is largely driven by the
popularity of the so-called Wi-Fi (Wireless Fidelity) networks. These are wireless net-
works based on the IEEE 802.11 standard. The name Wi-Fi is assigned to the standard in
its various forms (i.e., including all different versions) and is used to allow interoperability
among different manufacturers. Wi-Fi networks are gaining momentum toward the dom-
inant data communication technology at home and corporate buildings worldwide. Their
commercial use is already expressive in hot spots such as Internet cafes, airports, hotels,
convention centers, etc. At home, more and more users are adopting Wi-Fi networks as
a simple, flexible, low cost, highly convenient solution for interconnecting their various
network devices. These applications generally communicate through a single wireless
hop since the distance between communicating nodes or between a node and an access
point (medium access coordinator) are relatively short. As a result, the 802.11 infrastruc-
ture mode is typically used in such communications. This requires a central entity (base
station) coordinating the medium access requests.

In addition to the infrastructure mode, users are also starting to enjoy the ad hoc mode
of 802.11 in which multiple wireless hops are used to connect two distant nodes. In ad
hoc mode, nodes can communicate directly to each other (without a central coordinator)
and should relay data to each other in a self-organizing fashion. This configuration is
commonly referred to as multihop wireless ad hoc networks or simplymultihop wire-
less networks. Thus, 802.11 is also capable of providing communication for connections
spanning several wireless hops. This is a remarkable property of 802.11 that can enable
effective communication among a community of nodes vulnerable to topology changes
as well as fading channels.
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2 CHAPTER 1. INTRODUCTION

Multihop wireless networks are emerging as a natural extension of the global Inter-
net for scenarios where wired connections are unfeasible, impossible, or undesired. In
these networks, nodes cooperate among themselves by relaying data to each other and
generally can move at random. The topology of these networks can change rapidly and
unpredictably as the mobile nodes change position or the wireless channel condition fluc-
tuates. Such features require robust, adaptive communication protocols that can handle
the unique challenges of these multihop networks smoothly. This chapter details the key
challenges for the widely used Transport Control Protocol (TCP) in multihop networks
and outlines the proposed approaches to solve the involved problems.

1.1 Motivation

TCP/IP is the natural choice for multihop wireless networks because most of today’s ap-
plications such as HTTP, FTP, SMTP, and Telnet are developed to this protocol suite. Be-
sides, the use of TCP/IP facilitates interoperation with the Internet. However, the unique
features of 802.11, addressed in detail below, call for adjustments in the upper layer pro-
tocols used in the Internet today. In particular, the reliable data delivery provided by the
predominant Internet transport protocol TCP is severed compromised in such networks.
The larger the network the higher the degradation. To adjust TCP to these networks is
therefore vital, as bandwidth is generally a very scarce resource in wireless networks.

TCP degradation in multihop networks is mostly caused by the mismatch between
TCP and the MAC protocol. Even though the IEEE 802.11 standard has capability to
work on ad hoc mode allowing the setup of a completely infrastructureless network, it is
not optimized for scenarios with large number of hops. In fact, the standard specifies short
RTS/CTS control frames to ensure that scenarios relaying on at most three hops are not
impacted by the well-known hidden node problem. For more than three hops, contention
collisions may arise degrading the channel quality. In general, the overhead of RTS/CTS
combined with the lossy nature of the wireless channel as well as mobility can lead a TCP
connection to experience very low performance. The reason is that TCP was originally
designed for wired networks where such constraints do not exist. We summarize next the
key challenges for TCP over multihop wireless networks.

High Channel Impairments:Unlike wired environments where a dropped packet is al-
ways associated to congestion, wireless networks face loss due to the lossy nature of its
medium and may also experience loss caused by link interruption when nodes move. This
may cause problems to conventional TCP because it always reduces its transmission rate
when a drop is perceived irrespective of the loss nature. What is needed here is a mech-
anism at the sender that can discriminate the actual cause of a packet drop so the sender
is able to react properly to each of the factors inducing losses. Past work addressing this
problem have serious limitations such as high processing overhead and complete depen-
dence on network explicit signaling, which justifies further investigations on this issue.
Our proposal for packet loss discrimination using a lightweight fuzzy logic engine for
these networks is synopsized in section 1.2.
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High MAC Contention and Collisions:In order to ensure reliability, TCP relies on ac-
knowledgment packets from receiver to sender establishing a bidirectional flow of data
and ACKs. This is a very costly strategy in multihop wireless networks. First because
of the significant MAC overhead associated to an ACK transmission despite the much
smaller ACK size relative to a data packet. This happens because of both the RTS/CTS
control frames exchanged before any packet transmission and the random backoff pro-
cedure that follows any unsuccessful transmission attempt. Yet, data and ACK flow-
ing in opposite directions are highly susceptible to collide inside the network. Hence,
TCP should avoid sending redundant ACKs under favorable conditions toward optimal
bandwidth utilization. Traditional approaches addressing this problem have proposed to
reduce the number of ACKs injected into the network in a static fashion. This is not fea-
sible because the network condition changes and redundant ACKs may be crucial to the
end-to-end performance under certain conditions. We summarize in section 1.2 our smart
acknowledgment strategy at the receiver to optimize bandwidth utilization in a completely
dynamic and adaptive manner.

Low Energy Resources:Multihop wireless networks are composed of mobile nodes that
are presumably battery powered. Thus, it is important that the involved protocols find
a well balanced compromise between performance and energy consumption. The main
source of energy wastage in a TCP implementation over multihop networks is the self-
induced retransmissions due to the poor interaction between TCP and 802.11. While
various energy saving techniques for link and network layers are emerging, not much
have been investigated on the transport layer. This thesis does not design techniques to
exclusively reduce energy consumption, but the concepts involved in the contributions of
this thesis certainly do not consume more energy than traditional approaches. In particu-
lar, the proposed smart acknowledgment strategy summarized below is very much energy
efficient by reducing contentions and collisions in the wireless medium.

1.2 Contributions of the Thesis

The proposed solutions in this thesis address the challenges above pursuing better in-
teraction between TCP and the 802.11 protocol to effectively enhance end-to-end per-
formance. From the observations above, it is intuitive that many distinct solutions are
possible, and in general no single mechanism can solve all the problems but a set of
mechanisms. Specifically, this thesis proposes two mechanisms that can be implemented
complementarily, as explained below.

Principles

It is important to understand a few design principles followed by this thesis. The first prin-
ciple concerns the feasibility of the proposals. The 802.11 protocol is a reality today, so
the concepts introduced in this thesis attempt to get the most out of it rather than propose
a new MAC protocol. This implies that currently only short-range multihop networks are
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feasible, since 802.11 cannot sustain acceptable performance for long networks regarding
the number of hops end-to-end.

The second principle refers to the deployment complexity. To change every node
in the network is not always a good practice, so end-to-end solutions are appealing for
concentrating the changes at the end nodes. Another important principle is related to the
possibility of incremental deployment. An enhanced protocol should be able to interoper-
ate with the regular protocols already in place. The fourth principle has to do with energy
efficiency. That is, solutions to improve TCP in multihop networks should not be costly
in terms of energy consumption, but should be as energy efficient as possible because the
nodes in place are presumably battery powered. Therefore, the contributions of this thesis
are built up on the following observations:

• Only short-range multihop wireless networks are feasible today.

• End-to-end solutions minimize implementation complexity.

• Incremental deployment is a clear advantage.

• Energy efficiency is a key issue.

Strategies

Having the concepts above in mind, two different strategies were investigated in this the-
sis. The first one addresses the problem of discriminating the nature of dropped packets
to enhance TCP sender reaction to packet loss. The second strategy improves TCP per-
formance by mitigating the problems created by the bidirectional flow established in a
TCP connection. These strategies work as follows.

Improved Error Detection: This framework relies on fuzzy logic to identify the internal
network state in order to enhance TCP performance when losses are caused by reasons
other than congestion. It is tailored to multihop wireless networks based on the IEEE
802.11 standard and requires changes at the end nodes only. Specifically, this is an end-
to-end scheme that monitors Round-Trip Time (RTT) measurements to infer the network
condition without requiring any explicit feedback from the intermediate nodes. This ap-
proach exploits the fact in these type of communication channel the delay experienced
by the transmitted packets follow patterns that can be associated to specific constraints in
the channel. These patterns are, however, not straightforward to be accurately recognized
because of the imprecision and uncertainties typical in such delay measurements. This
motivated us to pursue an intelligent algorithm that could perform pattern recognition on
these measurements in an effective manner. Fuzzy logic was then chosen as an viable so-
lution for this problem. Using fuzzy logic, the continuous and imprecise behavior of the
processed information can be handled without the necessity of arbitrary rigid boundaries.
Hence, our proposal relies on a fuzzy engine that matches RTT mean and variance val-
ues to the network conditions in order to distinguish losses induced by the medium from
losses due to congestion. This approach is especially efficient in steady state conditions
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where single packet drops can degrade performance substantially. Key advantages of this
scheme include simplicity, ease of deployment, low processing power requirements, and
no traffic overhead at all. Evaluations show that our approach can provide good results if
the input data are properly sampled.

Dynamic Adaptive Acknowledgment Strategy: This approach adds functionalities to the
TCP receiver so it can adjust its ACK transmission rate on the basis of the network con-
dition. The key idea here is to mimic the congestion control strategy at the sender in
that the algorithm should be adaptive to the wireless channel fluctuations toward better
performance. Using this strategy, the receiver reduces the number of ACKs transmitted
when the channel is in good condition and increases it otherwise. This reduces the overall
medium collisions abruptly. This approach takes advantage of the cumulative acknowl-
edgment strategy used by TCP to reduce redundant ACKs in the shared medium. This
TCP strategy permits that the receiver does not transmit an ACK for each data packet it
receives, since later ACKs confirm the receipt of early ACKs. However, to reduce the
amount of ACKs has to managed carefully because redundant ACKs can play a funda-
mental role in the protocol performance when network conditions deteriorate. Our tech-
nique addresses this issue by continually monitoring the channel state at the receiver in
order to fit the network needs. In particular, it keeps track of the data packet inter-arrival
intervals, so that it can take action promptly when the channel deteriorates to prevent the
sender from unnecessarily retransmitting. Another important aspect considered in this
approach has to do with the optimization of the spatial reuse property in these networks.
The TCP sender limits its congestion window to a proper small size to avoid overloading
the network as that has counterproductive effects on the end-to-end performance. The
designed technique not only improves bandwidth utilization but also reduces energy con-
sumption by (re)transmitting much less than a traditional TCP does. Additional features
of this approach include proactive behavior by reducing collisions instead of only react-
ing to their effects, easy of deployment by being also end-to-end, no signaling traffic, and
possibility of incremental deployment. Simulation evaluations show that our technique
outperforms traditional TCP and existing approaches in a variety of scenarios.

In summary, the contributions of this thesis include a qualitative and quantitative anal-
ysis of the main problems faced by TCP over multihop wireless networks, an intelligent
mechanism to assist TCP in discriminating the actual reason of packet losses, and a dy-
namic adaptive strategy for optimizing bandwidth utilization proactively by reducing un-
necessary traffic.

1.3 Thesis outline

This thesis is structured into the following chapters:

Chapter 2: Although TCP has been around for over two decades, there are some of its
basic mechanisms that are not straightforward to understand. Additionally, new mecha-
nisms have been added to the protocol since its first version. This chapter briefly explains
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TCP role in the Internet protocol suite, details TCP main features including its evolution
over the years, and introduces the main TCP extensions relevant to this work.

Chapter 3: Multihop wireless networks are introduced in this chapter. The fundamen-
tals of these networks are explained emphasizing the key differences between wired and
wireless networks. Important features of MAC and routing protocols in ad hoc networks
are discussed, and a very brief introduction to sensor networks is given.

Chapter 4:This is a background chapter on Fuzzy Logic theory for supporting the dis-
cussions in chapter 6 where our proposed fuzzy logic based approach is presented and
evaluated.

Chapter 5:In this chapter, the main concerns about TCP over multihop wireless networks
are addressed. To substantiate some discussions, basic simulations results performed in
the framework of this thesis are included. This chapter also discusses the main existing
work on TCP over multihop wireless networks. The drawbacks of each approach are
identified and when possible its features are compared with our own proposals.

Chapter 6 :This chapter introduces the proposed technique for packet loss discrimination
using fuzzy logic. RTT patterns under congestion and medium induced error are evaluated
and the parameter settings for the fuzzy engine are then identified. The chapter also
introduces the general architecture for an improved error detection mechanism using the
designed fuzzy engine, and presents some relevant evaluations.

Chapter 7:The second main contribution of the thesis is introduced in this chapter. This
is the dynamic adaptive strategy for minimizing the number of ACKs in transit and miti-
gating spurious retransmissions. The design decisions are explained and extensive simu-
lation evaluations are presented. The basic mechanism for moderate loss rates, as well as
its enhanced version for more noisy conditions are addressed.

Chapter 8:This chapter concludes the thesis outlining the main lessons learned and point-
ing out potential future work.



Chapter 2

Transmission Control Protocol

2.1 Introduction

Congestion control algorithms are fundamental for distributed systems like the global
Internet. These algorithms prevent such systems from collapsing by excessive traffic
and may save resources by avoiding useless processing. In particular, congestion control
mechanisms in the end nodes are appealing as they control the traffic source directly rather
than its effects inside the network . The Transport Control Protocol (TCP) was designed
to adaptively fit the network capacity on an end-to-end basis and has become a universal
transport protocol. This chapter introduces TCP and discusses the main concepts and
mechanisms associated with this widely used protocol. The chapter starts addressing
TCP’s role in the global Internet by describing the key network elements needed for an
end-to-end communication over the Internet. The complexity behind TCP congestion
control is explained as clearly as possible, establishing necessary background for the
remainder of this thesis. As TCP is continuously evolving, this chapter also addresses the
major existing TCP versions, showing how significantly the protocol has evolved over the
years.

2.2 TCP/IP Protocol Suite

To better understand the TCP’s role in the Internet, we first review briefly the Internet
structure by describing the Internet Protocol Suite. In fact, TCP/IP is synonymous with
Internet, and so, it is equivalent to say Internet protocol suite or simply TCP/IP protocol
suite. The reason is that the two most important and defined protocols for the Internet
specified in RFC 791 [Pos81] were exactly TCP and IP, the Transport Control Protocol
and the Internet Protocol, respectively. The TCP/IP protocol suite represents the set of
protocols that together define the protocol stack over which the Internet runs.

The Internet protocol suite provides full interoperability among the Internet users.
This means that no matter the kind of computer or operating system the millions of users
may be using, they are still able to communicate with each other. Moreover, TCP/IP
is an entirelyopen systemin that many of the implementations are publicly available.

7
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All these features suggest that TCP/IP protocol will certainly remain the dominant set of
networking protocol in the years to come.

2.2.1 Protocol Stack

The TCP/IP protocol stack is composed of four layers of protocols, in which each layer
is responsible for a specific purpose. This modularization facilitates not only interoper-
ability among manufacturing companies but also maintenance as proposed by the generic
OSI reference model that comprises seven layers.

Fig. 2.1 depicts the structure of the Internet protocol stack. The application layer
is responsible for originating and removing the user data that go through the layer stack
and is transferred across the network. In this layer run the most common programs such
as HTTP (web), FTP (file transfer), and SMTP (email) among others. The transport
layer copes with the end-to-end transmission of the data created by the application layer.
The most widely used transport protocols are the User Datagram Protocol (UDP) and
the Transport Control Protocol (TCP). UDP provides a non-reliable data delivery over
IP while TCP guarantees data delivery for the packets transported by the network layer.
Generally, every application is associated with a particular port number in the transport
protocols. This association permits multiple applications to share the same transport pro-
tocol between two hosts, which is known asmultiplexing.

Network

1

3

4

(TCP, UDP)

(IP)

Application
(HTTP, FTP, ...)

Transport

2

Link

Figure 2.1: TCP/IP stack

The network layer is in charge of routing the sent packets across the network toward
the receiving node, on a hop-by-hop basis. For this purpose, every node in the global
Internet is assumed to have a unique IP address. The link layer (also called data-link
layer or network interface layer) specifies how the packets of the network layer are trans-
ported over the physical medium connecting two nodes. This layer deals with all physical
transmission details such as frame size, synchronization, frequency, etc.

The link layer makes the actual data delivery transparent to the upper layers. In this
way, different physical media as well as alternative communication protocols may be
deployed without relevant problems. This allows distinct communication technologies to
coexist smoothly. The most popular link layer protocol for Local Area Networks (LANs)
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is the well-known “Ethernet” that is standardized by the IEEE as the 802.3 standard.
Currently, the IEEE 802.11 standard [IEE99] is becoming more and more deployed in
Wireless Local Area Networks (WLANs) as the link layer protocol.

2.2.2 Packet Encapsulation

In order to accommodate the control fields (headers) associated to each layer into a single
packet to be sent through the network, the content of each layer is encapsulated in cascade
as shown in Fig. 2.2. The size of the control fields in each layer is fixed, i.e., TCP and IP
header size is 20 bytes each and the link header and trailer are 14 and 4, respectively. For
a detailed description about the content of every header field, refer to [Ste94]. Section
2.2.4 describes the TCP header structure.

The data field size coming from the application layer may vary, but the total size
should not exceed 1500 bytes to avoid packet fragmentation in the network layer. The
final encapsulation results in a link layer’s frame containing header and frame for syn-
chronization purposes, as shown in Fig. 2.2. The frame size illustrated represents the
Ethernet protocol, and may certainly change for other link layer protocols.

14 20 20 4

46-1500 bytes

size in bytes -->

IP header TCP header Application data

Frame header Frame trailerIP header TCP header

Application data

TCP header Application data

Application data

Figure 2.2: Protocols encapsulation resulting in an Ethernet frame

2.2.3 End-to-end Network Elements

Fig. 2.3 illustrates a typical end-to-end communication setup. The end nodes are iden-
tical except for the MAC layer given the fact that both use distinct channel media. The
communication goes through an intermediate node that is an ordinary router. Since the
purpose of the router is simply to forward the incoming data correctly, it does not com-
prise neither transport nor application layers, but only link and network layers. Hence,
the transport layer is the first layer from bottom to top in the protocol stack that exists on
an end-to-end basis. As previously mentioned, the network layer works on a hop by-hop
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basis. Yet, various routers can be in place, and each one of them forward the incoming
data to the next router until the data reach the destination.

(TCP, UDP)

Application
(HTTP, FTP, ...)

Transport
(TCP, UDP)

Application
(HTTP, FTP, ...)

Transport

1

2

3

4

ethernet wireless medium

 Network Network
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(HTTP, FTP, ...)

Transport

1

 Network

(ethernet
interface) interface)
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Link Link
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(IP) (IP)
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HOSTHOST

Figure 2.3: TCP/IP end-to-end communication

2.2.4 Structure of TCP Header

Before addressing the key mechanisms comprising TCP, we describe here the format of
TCP header for easing understanding of the next sections. The smallest TCP header is
composed of 20 bytes, but if options are used then its size may be as large as 60 bytes.
TCP options are used to allow a TCP connection to carry different control fields without
changing the structure of the basic header. These options are defined at the beginning of
the connection between sender and receiver. Fig. 2.4 depicts the TCP header format. The
fields inside TCP header are essential for managing the connection, and their purposes
are as follows.

Source
Port

Dest.
Port Number

Seq.
Number

ACK Header
Length Reserved

Urgent
Pointer Options DataFlags Window Checksum

URG PSH SYN FINACK RST

3216 variable1616166643216 variableBits:

Figure 2.4: TCP header

• Source PortandSource Port: These fields identify the sending and receiving ap-
plications. This allows different TCP applications such as FTP, HTTP, and DNS to
establish parallel connections between two particular hosts. These two port values
combined with the source and destination fields in the IP header, uniquely identify
each connection.

• Seq. Number: Each sent segment includes a sequence number which is increases
monotonically as a function of the number of bytes transmitted. This permits se-
quential data delivery, which is needed for managing retransmissions.
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• ACK Number: Contains the expected sequence number the sending host is asking
for from the receiver host.

• Header Length: Indicates the length of the header. This is necessary because the
length of the Options field is variable. By having 4 bits, this field limits the header
size to 60 bytes. A TCP without any option, has a header size of 20 bytes.

• Reserved:Reserved and always set to zero.

• Flags: There are six flags defining the nature of the header, as follows:

URG: This specifies that the Urgent Pointer in this header is valid.

ACK: The acknowledgment number in this header is valid.

PSH: Requires receiver to pass this data to the application as soon as possible.

RST: Resets the connection.

SYN: Synchronizes data and ACK sequence numbers to initiate a connection.

FIN: Indicates that the sender is finished transmitting data.

• Window: This field contains thereceiver window, which defines the number of
bytes the TCP receiver is willing to accept from the sender. This provides a con-
nection flow control governed by the receiver side, as explained in section 2.3.2.

• Checksum: It is calculated by the sender considering not only the header but also
the data field. The receiver may check the data integrity by checking this field.

• Urgent Pointer: It is valid only if the URG flag is set. This field specifies a part of
the data that must be sent quickly to the receiver.

• Options: This field carries possible options such as themaximum segment size
(MSS),timestamps, Window Scale Option, etc.

2.3 TCP Mechanisms

In this section, we describe the main mechanisms used by the basic TCP algorithm. The
explanations that follow are not intended to be exhaustive but only informative enough
for better understanding of the next discussions. The unit of information passed by TCP
to IP is calledsegment, but since asegment ends up generating an IP packet, for each
segment there is a corresponding packet. As a result, authors in general use both terms
segment and packet interchangeably for referring to a TCP information unit. The term
packet is adopted in this thesis.
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2.3.1 Connection Setup

TCP is a connection-oriented protocol, requiring connection establishment between sender
and receiver for providing a reliable data transfer. Unlike a circuit-switched network that
establishes circuits in the whole path between the end nodes, a TCP connection is entirely
managed in the end nodes. In other words, only sender and receiver keep the connection
state through the respective variables in each side. Hence, TCP defines avirtual connec-
tion between both hosts using the handshake process described below.

To establish the connection, either end nodes (hosts) may start the procedure by send-
ing a request packet to the opposed side. The full procedure is commonly referred to as
“three-way handshake” because it involves the exchange of three packets in total. The
end node starting the connection establishment is called client host and the other side
is the server host. The three-way handshake makes use of the SYN flag (1 bit) in the
TCP header to mark the packet used exclusively for connection setup reasons. Fig. 2.5
illustrates the three-way handshake’s exchanges [Dar81].

Server hostClient host

SYN

ACK

SYN,ACK

Time

Ack=0

Seq=X+1

Seq=X

Seq=Y ACK=X+1

Ack=Y+1

Figure 2.5: TCP three-way handshake

The client host first sends a special packet to the server host requesting a connection
setup. This packet is generally named a SYN packet and contains no data but only the
header with the flag SYN set to one and the desired initial sequence number (ISN)X.
Provided that the server host is able to accept the connection, it allocates the TCP buffers
and variables to the connection and sends back an acknowledgment to the client host.
This acknowledgment also does not contain any data.

Similarly to the received packet by the server, this replied packet has the SYN flag set
to one and the server host’s desired ISNY. Additionally, this packet has the acknowledg-
ment field in the TCP header set to sequence number received plus one, i.e., its sequence
number isX+1. This informs the client host that the request has been received and ac-
cepted, and that the receiver expects to receive the next data packet with sequence number
X+1. This packet is generally called SYN,ACK.

Upon receipt of the acknowledgment of the server host, the client host also allocates
buffers and variables to the connection, and transmits another acknowledgment to the
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server host. This last packet has its SYN flag set to zero and may contain data. Its se-
quence number is the requested one,X, and its acknowledgment field is also incremented
by one relative to the received sequence number, i.e.,Y+1. After these packet exchanges,
the SYN flag is permanently set to zero and the regular data transmission begins.

The connection termination takes place in an analogous manner, in which any of the
two end nodes may initiate the procedure. Another specific flag in the TCP header is used
for closing a connection, the FYN flag (1 bit). After the connection termination, both end
nodes have their resources freed.

2.3.2 Flow and Congestion Control

TCP is a window-based flow and congestion control protocol that uses a sliding window
mechanism to manage its data transmission. The purpose of this scheme is to guarantee
that the sender adjusts its transmission rate to meet both sender and receiver needs. Thus,
the TCP sender contains a variable denotedwindow determining the amount of packets
it can send into the network before receiving an ACK. This variable changes dynamically
over time to properly limit the connection’s sending rate.

The sending rate of a TCP connection is regulated by two distinct mechanisms, the
flow control and thecongestion control. Although these mechanisms are similar, in the
sense that both attempt to prevent the connection from sending at an excessive rate, they
have specific purposes. This is sometimes confusing as many authors use both terms
interchangeably.

Flow control is implemented to avoid that a TCP sender overflows the receiver’s
buffer. Thus, the receiver advertises in every ACK transmitted a window limit to the
sender. This window is named receiver advertised window (rwin) and changes over time
depending on both the traffic conditions and the application speed in reading the receiver’s
buffer. Therefore, the sender may not increase itswindow at any time beyond the value
specified inrwin.

In contrast to flow control, congestion control is concerned with the traffic inside the
network. Its purpose is to prevent collapse inside the network when the traffic source
(sender) is faster than the network in forwarding data. To this end, the TCP sender also
uses a limiting window called congestion window (cwnd). Assuming that the receiver
is not limiting the sender,cwnd defines the amount of data the sender may send into the
network before an ACK is received.

Considering both flow control and congestion control, the sender faces two limiting
factors for itswindow size, namely therwin and thecwnd. To conform with both control
schemes, the TCP sender adjusts itswindow to the minimum betweenrwin andcwnd.
In general, however,cwnd is considered the limiting factor of a TCP sender because the
receiver’s buffer is mostly large enough not to constrain the sender’s transmission rate.

TCP congestion control has been evolving over the years to detect congestion inside
the network and promptly react to that by properly slowing down. Section 2.4 describes
the congestion control mechanisms in more detail.
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2.3.3 Retransmissions

To ensure reliability, TCP actively conducts retransmission of lost packets. Two mech-
anisms are used for retransmission, namely a retransmission timer and a sequence of
generally three duplicate acknowledgments. A retransmission triggered by the retrans-
mission timer is typically referred to asretransmit timeout , andfast retransmit is the
name given to the mechanism that triggers retransmissions by the duplicate ACKs. As
TCP is an ACK-clocked protocol in the sense that it only sends new data when an ACK
is received, it needs a manner to detect complete absence of ACK from the receiver. The
retransmission timer is the solution for that. During the connection’s lifetime, there is
always a timer running when packets are in transit. The timer is started when a given
packet is sent and turned off when the ACK for that packet is received, and then turned
on again when the next packet is sent. In this way, whenever a packet is transmitted but
no ACK is received back, the timer expires and the packet is retransmitted.

A Retransmission by timeout is considered as the last resort for the TCP sender since
it may lead the connection to unnecessary idle intervals. The fast retransmit mechanism
was designed to accelerate the error detection procedure. This mechanism permits the
TCP sender to detect a lost packet when three duplicate ACKs are received in sequence.

The duplicate ACKs are generated by the TCP receiver whenever it receives an out-
of-order packet. By receiving such packets, the receiver infers that the expected (in se-
quence) packet has been dropped and then repeats the sequence number of the last in-
order packet received. In short, the fast retransmit mechanism saves the time the sender
would waste by waiting for the retransmission timer expiration. A retransmission by both
mechanisms, retransmit timeout and fast retransmit, cause the congestion window to be
reduced, lowering the transmission rate to an appropriate level. Section 2.4 explains the
actions the protocol takes after a retransmission occurs.

The procedure of detecting a dropped packet by either the retransmit timeout mecha-
nism or the fast retransmit mechanism is generally callederror detection. Yet, the packet
retransmission along with thecwndreduction is termederror recovery [TM02].

2.3.4 Timeout Interval Computation

TCP uses the retransmission timer to ensure data delivery when no feedback from the
receiver reaches the sender. The duration of this timer is referred to as RTO (retrans-
mission timeout). RFC 2988 [PA00] is the most up-to-date specification for computing
RTO. This RFC is a refinement of the algorithm proposed by Jacobson in [Jac88]. The
algorithm specified in RFC 2988 is describe below.

A TCP sender maintains two state variables for computing RTO, the smoothed round-
trip time (SRTT ) and the round-trip time variation (RTTVAR). Additionally, a clock
granularity ofG seconds is assumed in the computation. As described in RFC 2988, the
rules governing the computation ofSRTT , RTTVAR andRTO are as follows.

1. Until an RTT measurement has been made for a packet sent between sender and
receiver, the sender should set RTO to three seconds.
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2. When the first RTT measurement R is made, the sender must set:

SRTT = R

RTTVAR = R/2

RTO = SRTT + max(G, K · RTTVAR), whereK = 4.

3. When a subsequent RTT measurement R’ is made, the sender must update the
variables as follows:

RTTVAR = (1 − β) · RTTVAR + β · |SRTT − R′|
SRTT = (1 − α) · SRTT + α · R′

α andβ are normally set to 1/8 and 1/4, respectively

After the computation, theRTO must be updated:

RTO = SRTT + max(G, K · RTTVAR)

4. The minimum value of RTO should be one second, and the maximum one may be
any value above sixty seconds.

When not using timestamps option [JBB92], RTT samples must not be taken for pack-
ets that were retransmitted, as specified in the Karn’s algorithm [KP87]. Additionally, the
RTT measurements are usually taken once per RTT. The recommendations of RFC 2988
for managing the retransmission timer are:

1. Every time a packet containing data is sent (including retransmission), if the timer
is not running, start it running so it will expire after RTO seconds.

2. When all outstanding data have been acknowledged, turn off the retransmission
timer.

3. When an ACK is received acknowledging new data, restart the retransmission timer
so that it will expire after RTO seconds.

When the retransmission timer expires, do the following:

4. Retransmit the earliest packet that has not been acknowledged by the TCP receiver.

5. The sender must double the RTO up to the limit discussed above. This procedure
backs off the timer.

6. Start the retransmission timer, such that it expires after the current RTO.

2.3.5 Exponential Backoff Mechanism

A retransmission by timeout represents very likely a heavily impaired channel. Because
of that, the retransmission mechanism used by TCP handles timeout occurrences in a per-
sistent but careful way. The mechanism needs to be persistent given the high probability
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that the retransmitted packet is also going to be dropped. If this occurs, the retransmis-
sions are performed insistently at every expiration of the retransmission timer. This pro-
cess continues until either the packet is successfully retransmitted or the limit of attempts
is reached. Assuming that the channel is already facing congestion, the retransmission at-
tempts should not be too aggressive since this may induce more losses inside the network.
To meet this requirement, theExponential Backoff mechanism is implemented.

By the exponential backoff mechanism, at every unsuccessful retransmission attempt
the RTO is doubled. This means that the retransmission scheme becomes more and more
tolerant as the attempts follows. As mentioned above, the RTO limit may be any value
above one minute, and it is generally set to 64 seconds. However, If the sender backs off
this far without success, the next step is to abort the connection.

2.4 Congestion Control Mechanisms

2.4.1 Slow Start and Congestion Avoidance

In the basic TCP congestion control algorithm, whenever a dropped packet is detected
by either the fast retransmit mechanism or timeout, the sender resets thecwnd to one.
This leads the protocol to slow down, and afterward itscwnd increase is first governed
by slow start and thencongestion avoidance. Slow start causes the congestion window
to be increased faster than in congestion avoidance. In slow start, for each ACK received
the sender increases itscwnd by one and so transmits two new data packets. When the
ACKs corresponding to the two sent data arrive, thecwnd is increased twice and four new
data are transmitted. This is an exponential enlargement ofcwnd. The process continues
until the congestion avoidance is invoked or a dropped packet is detected. The idea of
slow start is to make the connection rate to start slowly and then rapidly rises toward the
communication channel capacity.

After reaching a certain rate, thecwnd increasing rate should no longer be too aggres-
sive, since that may adversely induce losses. Hence, the slow start threshold (ssthresh)
is used to switch thecwnd growth control from slow start to congestion avoidance. In
contrast to slow start, congestion avoidance imposes a linear increase tocwnd. At the
beginning of the connection and whenever the retransmission timer expires, slow start is
invoked and depending on thessthresh, the switching to congestion avoidance is started
sooner or later.

Using packets instead of bytes to denote the congestion window size, the growth
experienced by this window during slow start and congestion avoidance is generally per-
formed as follows.

cwnd =

{
cwnd + 1, if cwnd < ssthresh (slow start)
cwnd + 1

cwnd , if cwnd ≥ ssthresh (congestion avoidance)
(2.1)

Fig. 2.6 illustrates how the congestion window varies over time. The initial value
of cwnd is two packets, and two drops are observed in the neighborhood of 0.2 and 0.8
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seconds. Fig. 2.6 shows that both thecwnd limit and the initialssthresh are higher than
16. For the sake of clarity, throughout this thesis, it is assumed that the receiver advertised
window is sufficiently large so it is not a constraint for the sender.
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Figure 2.6: TCP congestion window evolution

The ssthresh is typically initiated to its maximum value (65535). This high value
ensures that thecwnd increase begins with the slow start and, if no drop is experienced,
thecwnd is led to its limit using slow start only. This procedure provides better perfor-
mance because thecwnd increase in slow start is faster than in congestion avoidance,
as shown in (2.1). The rationale here is that the TCP sender should probe the network
resources quickly, and slow down in case it perceives lost packets.

Hence, thecwnd growth in Fig. 2.6 begins in the slow start by increasing at the rate
of one packet per ACK received until a dropped packet by the fast retransmit mechanism
is detected. This happens when thecwnd size is 16. At this point,ssthresh is set to one
half the current value ofcwnd (ssthresh = 16/2 = 8) and thecwnd itself is reset to
one. Note that a retransmission by timeout would cause the same changes in bothcwnd
andssthresh. The delay in the sender reaction would be higher, though.

After its first reduction,cwnd resumes its enlargement in slow start until its value
reaches thessthresh that is set to 8. Then the congestion avoidance begins and thecwnd
increasing rate is lowered. For the next drop, the actions are repeated with a smaller
ssthresh of 5, due to the smaller ongoingcwnd of 10 at the instant the second drop takes
place.

These mechanisms provide a very conservative behavior by abruptly slowing down
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the sender’s transmission rate in the event of dropped packets. Further enhancements
have been developed to address this issue, as it will be explained in section 2.5.

2.4.2 AIMD Congestion Control

The TCP algorithm used in current implementations is commonly referred to asAdditive
Increase Multiplicative Decrease(AIMD) congestion control. This algorithm was first
proposed in [CJ89] as a general congestion control model to ensure network efficiency
and fairness in a stable manner. Jacobson [Jac88] adapted the general model in [CJ89]
to the basic TCP congestion control algorithm above by introducing thefast recovery
mechanism. This modification originated the TCP version called TCP Reno, as described
in section 2.5.2.

Fast recovery works in conjunction with the fast retransmit mechanism by specifying
that under packet loss detection by fast retransmit, thecwndshould be reduced in half
instead of set to one. Moreover, the algorithm should go directly to congestion avoidance
rather than slow start. In short, AIMD is the same congestion control mechanism describe
above except for the fast recovery mechanism, and was first implemented in TCP Reno
version described below.

The name AIMD comes from the behavior of the mechanism when increasing and
decreasing the congestion window. When expanding itscwnd in congestion avoidance,
the TCP sender additively and cumulatively increments it by1cwnd , as shown by (2.1) in
section 2.3.2. This continues until either a dropped packet is perceived or thecwnd limit
is reached. Using this incremental rate renders thecwnd to be increased by one packet
per window of data acknowledged.

When detecting a lost packet by the fast retransmit mechanismcwnd is halved, which
means a multiplicative decrease by two. Hence, assuming no retransmission by timeout,
cwnd increase/decrease in congestion avoidance occurs as illustrated in (2.2).

cwnd =

{
↑ cwnd + 1

cwnd , (Additive Increase)
↓ cwnd

2 , (Multiplicative Decrease)
(2.2)

AIMD has been fundamental in the Internet so far by providing the required stability
for which it was developed. Nonetheless, it is too conservative for applications such
as streaming multimedia or IP telephony. These kinds of applications demand stringent
delay guarantees as well as low throughput variation on an end-to-end basis, which is
hard to satisfy using thecwnd reduction by two. So alternative mechanisms such as
equation-based congestion control have been investigated in the research community, as
shown below.

2.4.3 Equation-based Congestion Control

Equation-based congestion control has been proposed in the literature for two purposes.
The first reason regards TCP optimization by proper modeling its algorithm. Having an
accurate model for TCP is important for understanding TCP interaction with the network
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in terms of throughput optimization. This may render TCP viable for demanding appli-
cations such as streaming multimedia.

The second reason is concerned with fairness among TCP and non-TCP flows com-
peting in a communication channel. In such cases, the non-TCP flows should be able to
satisfy requirements of the demanding application, but should not be unfair to the com-
peting TCP flows. So, such non-TCP flows should use a control equation to govern their
sending rate friendly from the TCP flows perspective.

One equation that has been largely used to model TCP throughput is (2.3) [PFTK98,
HFPW03]. Wherer is the transmit rate in bytes/second;s is the packet size in bytes;R
is the round-trip time in seconds;p is the loss event rate, with0 ≤ p ≤ 1, of the loss
events as a fraction of the number of packets transmitted;tRTO is the TCP retransmission
timeout value in seconds; andb is the number of packets acknowledged by a single TCP
acknowledgment.

r =
s

R ∗
√

2 ∗ b ∗ p
3 + (tRTO ∗ (3

√
3 ∗ b ∗ p

8) ∗ p ∗ (1 + 32 ∗ p2))
(2.3)

Unlike AIMD that slows down in response to a single dropped packet, equation-
based congestion control uses an equation defining the maximum transmission rate for
the connection. The equation relies on the loss event rate (p) that is generally computed
at the receiver and sent to the sender. The accuracy of the equation is fundamental for
this alternative congestion control concept. However, given the complexity of such a
modeling, a complete model appears still to be too far way from being conceived.

Actually, it is not yet clear whether TCP should be extended to handle applications
such as multimedia streaming or a new protocol should be developed for that. This
subject represents indeed a very wide open research area [MSM+97, MSK02, HFPW03,
WKST04]. For instance, [MSK02] conducts a modeling-based investigation on TCP for
multimedia streaming and found that it is possible to adjust TCP toward that end as long
as a few seconds of startup delay is tolerable. On the other hand, [HFPW03] specifies a
completely new protocol, TFRC, to replace TCP for the stringent applications mentioned
above. Only future investigations will be able to clarify which way is the best or at least
more feasible.

2.5 TCP Variants

In this section, we present the main TCP variants (also termed: TCP versions or flavors)
that have been investigated in the literature. Each variant has its own features tailored to
a specific problem faced by TCP congestion control, and in most cases each new variant
represents an evolution of the previous one.

We limit our discussion to the implementations that have been incorporated into the
ns2 simulator, namely the ns version 2.1b9a that complies with the descriptions in [FF96].
Slight refinements to these implementation have been described in the RFCs 2581, 2582,
and 3782 [APS99,FH99,FHAG04], but the general concepts remain unchanged.
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2.5.1 TCP Tahoe

Tahoe represents the basic TCP version that was specified by Jacobson in [Jac88]. It
was the first TCP designed to solve the congestion collapse then affecting the Internet.
Modern TCP implementations still use most of the mechanisms developed for Tahoe, as
it will be shown below.

In addition to the retransmit timeout mechanism introduced in section 2.3.3, which
was already implemented in early TCP-like transport protocols, TCP Tahoe counts on
the three key mechanisms already explained:fast retransmit, slow start, andcongestion
avoidance. Thus, Tahoe works exactly as explained in section 2.4.1 and illustrated in Fig.
2.6. Although Tahoe solved the congestion collapse problem mentioned above, it rapidly
proved to be too conservative by always reseting itscwnd to one upon a lost packet.

2.5.2 TCP Reno

TCP Reno [Jac90, FF96, Ste97] conserved the three essential mechanisms of the basic
TCP Tahoe [Jac88], namely slow start, congestion avoidance and fast retransmit. As
explained in section 2.4.2, the novelty introduced into TCP Reno is the fast recovery
mechanism. This new mechanism allows for better recover strategy after a lost packet is
retransmitted by the fast retransmit mechanism. Specifically, the fast recovery mechanism
prevents the communication channel from going empty during the interval the sender is
waiting for the ACK of the retransmitted packet. This procedure makes it possible for
a single packet loss to be recovered without invoking the slow start mechanism, thereby
avoiding unnecessarily abrupt slowdown in the ongoing transmission rate.

Fast recovery is generally invoked when a TCP sender receives three duplicate ACKs,
just after the fast retransmit mechanism. By receiving three duplicate ACKs, the sender
retransmits the packet that seems to have been dropped and reduces its congestion window
(cwnd) by one half. Unlike TCP Tahoe, TCP Reno does not invoke slow start, but uses
the additional incoming duplicate ACKs to clock out subsequent data packets.

During fast recovery, theusable window of TCP Reno is defined as min(rwin,
cwnd + ndup), whererwin refers to the receiver’s advertised window andndup tracks
the number of duplicate ACKs. By using thendup variable, the sender may estimate the
amount of packets in flight. After receiving about half a window of duplicate ACKs, the
sender may transmit new data packets since the received duplicate ACKs indicate that
the receiver has received and acknowledged the involved data packets, and so the channel
is somewhat good. Upon receipt of an ACK for a new data packet, which is called a
“recovery ACK”, the sender exits fast recovery settingndup to zero.

TCP Reno provides efficient loss recovery in conditions in which a single packet is
dropped from a window of data. In such cases, the TCP sender can retransmit at most
one dropped packet per Round-trip Time (RTT). TCP Reno is more efficient than its pre-
decessor (Tahoe) but does not work so well when more than one packet is dropped from
a window of data. The problem is that TCP Reno may reduce thecwnd multiple times
for recovering the lost packets, leading the connection to experience poor performance.

Fig. 2.7 illustrates an example showing how the TCP Reno algorithm works. In this
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scenario, the packets with sequence number 25 and 28 are intentionally dropped. The
mechanism works as follows:

1. The first 24 packets are transmitted and acknowledged properly.

2. Packets 25 and 28 are dropped.

3. The duplicate acknowledgments generated by packets 26, 27 and 29 for packet 24
trigger the fast retransmit/fast recover mechanisms at the sender. These duplicate
ACKs causendup, initially set to zero, to be increased by three.

4. The sender sets thessthresh andcwnd to one half the currentcwnd (fast recover),
in this case ten packets, and retransmits packet 25 (fast retransmit).

5. Theusable window is set tocwnd + ndup = 5 + 3 = 8, i.e., theusable window
is “inflated” by three.

6. At this point, the sender is not allowed to send any new packet as itsusable window
is less than the amount of outstanding packets, which corresponds to twelve packets
(packets 25-36).

7. By receiving the next four duplicate ACKs for packet 24, generated by packets
29-32,ndup is incremented by four and so theusable window reaches the size of
twelve. The next three duplicate ACKs for packet 24, generated by packets 33-35,
make theusable window greater than twelve, allowing the three new packets to be
sent (packets 37-39).

8. A new ACK for packet 27, generated by packet 36, is received, taking the sender out
of the fast recovery. Note that the reception of packet 25 triggered the transmission
of the ACK for packet 27 because packets 26 and 27 were already in the receiver’s
buffer.

9. The usable window is “deflated” by havingndup reset to zero, and thecwnd reas-
sumes the control of the sender’s effective window. So the sender cannot send any
new packet.

10. Upon receipt of the next four ACKs for packet 27, generate by packets 36-39, the
sender is in congestion avoidance phase. Itscwnd is slightly increased but it is not
large enough for allowing any new transmission.

11. When the third duplicate ACK for packet 27 arrives, the fast retransmit/fast recov-
ery mechanism are again invoked, as above.

12. Packet 25 is retransmitted and thecwnd is halved.

13. The receiver acknowledges all packets that were outstanding by sending an ACK
for packet 39. This resetsndup to zero and the fast recovery is finished.
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Figure 2.7: TCP Reno reaction to two dropped packets

14. After then, thecwnd will grow up to its specified limit (10 packets) and the equi-
librium will be reached.

Fig. 2.7 illustrates how TCP Reno works efficiently for conditions in which a single
packet is dropped from a window of data. It avoids abrupt slowdown in thecwnd by
implementing the fast retransmit/fast recovery mechanism. This improves performance
over a Tahoe implementation which would invoke slow start in such cases. However, if
multiple packets are dropped from a window of data, then Reno may suffer performance
degradation by reducing itscwnd in sequence. In Fig. 2.7, thecwnd was reduced twice
causing the connection to experience performance degradation.

2.5.3 TCP NewReno

NewReno [FF96, APS99, FHAG04] improves the Reno implementation with regard to
the fast recovery mechanism. The objective of TCP NewReno is to prevent a TCP sender
from reducing its congestion window multiple times in case several packets are dropped
from a single window of data. NewReno can also avoid retransmission by timeout in sce-
narios where the involved congestion window is small preventing enough ACK packets
from reaching the sender.

In TCP Reno, when the sender receives apartial ACK packet it exits fast recovery.
The termpartial ACKs refers to ACK packets that acknowledges some but not all of the
data packets that were outstanding when the fast recovery was started. Upon receipt of a
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partial ACK, the Reno sender brings theusable window back to the congestion window
size, and so exits fast recovery. If there are sufficient outstanding packets, the sender may
receive enough duplicate ACKs to retransmit the next lost packet (or packets) until all
dropped packets are retransmitted by the fast recovery mechanism. At every invocation
of the fast recovery,cwnd is halved. If there are not enough packets outstanding due to
a low window size, then the sender needs to wait for the expiration of the retransmission
timer. In this case thecwnd is reset to one, inducing bandwidth wastage.

Differently from Reno that exits fast recovery by receivingpartial ACKs, the NewReno
algorithm remains in fast recovery until all of the data outstanding by the time the fast
recovery was initiated have been acknowledged. NewReno can retransmit one lost packet
per RTT until all the lost packets from a particular window of data have been retransmit-
ted. In this way, TCP NewReno avoids multiple reductions in thecwnd or unnecessary
retransmit timeout with slow start invocation, thereby improving the connection’s end-to-
end performance.

Fig. 2.8 illustrates how the algorithm of TCP NewReno works. In this scenario, the
packets with sequence number 25 and 28 are also intentionally dropped. The mechanism
works as follows:

1. NewReno works exactly like Reno until the first ACK for packet 27 arrives at the
receiver. Thus, the steps 1-7 occur as described above for TCP Reno.

8. The first ACK for packet 27 is a partial ACK since it does not acknowledge all
packet outstanding. Hence, packet 28 is retransmitted immediately and the fast
recovery is not ended.

9. The ndup is reset to zero and later increased by the number of duplicate ACKs
corresponding to the partial ACKs, and thecwnd is kept unchanged.

10. When receiving the next three duplicate ACKs for packet 27, the sender may not
send any new packet because itsusable window is not large enough. These ACKs
bring theusable window to eight (cwnd+ndup=5+3=8), but there are twelve out-
standing packets (i.e., packets 28-39).

11. Upon receipt of the retransmitted packet 28, the sender acknowledges packet 39,
because packets 29-39 are already in its buffer.

12. ACK 39 acknowledges all outstanding packets, and so the sender exits fast recovery
with a cwnd of five and continues in congestion avoidance. In addition,ndup is
reset to zero.

13. After then, thecwnd will grow up to its specified limit (10 packets) and the equi-
librium will be reached.

NewReno prevents thecwnd from being dropped multiple times when more than one
packet is dropped from a window of data, as shown above. Nevertheless, like Reno, it is
able to recover only one packet per round-trip time.
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Figure 2.8: TCP NewReno reaction to two dropped packets

2.5.4 TCP Sack

TCP Sack (Selective Acknowledgment) [FF96,MMR96] preserves the basic principles of
tcp Reno, namely the robustness in dealing with out-of-order packets and the retransmit
timeout as the last resort of lost recovery. In fact, Sack uses of the same algorithms of
Reno for increasing and decreasing its congestion window.

The novelty in TCP Sack lies in its behavior when multiple packets are dropped from
one window of data [FF96], similarly to TCP NewReno. In Sack, the receiver uses the
option fields of TCP header (Sack option) for notifying the sender of up to usually three
blocks of non-contiguous set of data received and queued by the receiver. The first block
reports the most recent packet received at the receiver, and the next blocks repeat the
most recently reported Sack blocks. The sender keeps a data structure calledscoreboard
to keep track of the Sack options (blocks) received so far. In this way, the sender can
infer whether there are missing packets at the receiver. If so, and its congestion window
permits, the sender retransmits the next packet from its list of missing packets. In case
there are no such packets at the receiver and the congestion window allows, the sender
simply transmits a new packet.

Like TCP Reno, the Sack implementation also enters fast recovery upon receipt of
generally three duplicate acknowledgments. Then, its sender retransmits a packet and
halves the congestion window. During fast recovery, Sack monitors the estimated number
of packets outstanding in the path (transmitted but not yet acknowledged) by maintaining
a variable calledpipe. This variable determines if the sender may send a new packet
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or retransmit an old one, in that the sender may only transmit ifpipe is smaller than the
congestion window. At every transmission or retransmission,pipe is incremented by one,
and it is decremented by one when the sender receives a duplicate ACK packet containing
a Sack option informing it that a new data packet has been received by the receiver.

The fast recovery is over when the sender receives an ACK acknowledging all data
that were outstanding when fast recovery was entered. If the sender receives a partial
ACK, i.e., an ACK that acknowledges some but not all outstanding data, it does not exit
fast recovery. For partial ACKs, the sender reducespipe by two packets instead of one,
which guarantees that a Sack sender never recovers more slowly than it would do if a
slow start had been invoked.

If it happens that a retransmitted packet is dropped, the Sack implementation reacts
exactly as the Reno implementation. In such cases, the sender times out, retransmits and
enters slow start. Fig. 2.9 illustrates how the algorithm of TCP Sack works. Like before,
the packets with sequence number 25 and 28 were intentionally dropped. The mechanism
works as follows:

1. The first 24 packets are transmitted and acknowledged properly.

2. Packets 25 and 28 are dropped.

3. The duplicate acknowledgments generated by packets 26, 27 and 29 for packet 24
trigger the fast retransmit/fast recovery at the sender.

4. The sender sets thessthresh andcwnd to one half the currentcwnd (fast recov-
ery), in this case ten packets, andpipe is set to seven (pipe = cwnd − ndup =
10 − 3 = 7).

5. The sender retransmits packet 25 (fast retransmit), and incrementspipe by one
(pipe = 8).

6. The next four duplicate ACKs for packet 24 leadpipe to be reduced by four.

7. When the fifth duplicate ACK for packet 24 is received, the sender is allowed to
retransmit a new packet sincepipe = 4 is less than thecwnd = 5. pipe continues
set to four because one ACK was received but one packet was sent. The same
occurs with the last two duplicate ACKs for packet 24.

8. The ACK for packet 28 arrives. As this is a partial ACK,pipe is decreased by two.
Thus, the sender may send two new packets (packets 39, 40), andpipe remains set
to four.

9. Sender gets the ACK for packet 31, which is not a partial ACK given that it ac-
knowledges all packets that were outstanding when fast recovery started. This ACK
drives the sender out of the fast recovery.

10. After then, thecwnd will grow up to its specified limit (10 packets) and the equi-
librium will be reached.
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Figure 2.9: TCP Sack reaction to two dropped packets

Sack incorporates all the advantages found in NewReno and may recover multiple
lost packets in a window of data in just one single RTT. A Sack implementation requires
changes at both sender and receiver, though.

2.5.5 TCP Vegas

Differently from the four TCP versions above, TCP Vegas [BMP94, HBG00] is not an
ACK-clocked congestion control. That is, TCP vegas does not need increase its conges-
tion as a function of the number of ACKs received. Yet, while the previous TCP variants
detect network congestion by lost packets, TCP Vegas does so by monitoring the changes
in the RTTs associated to the packets that it has sent previously through the connection.

If the observed RTTs increase, the Vegas sender infers incipient network congestion
and so it reduces the congestion windowcwnd by one. Otherwise, if the observed RTTs
decrease, the sender interprets that as an indication that the network is free of congestion,
and so it rises thecwnd by one. There is a RTT range in which thecwnd remains
unchanged. The extension of this range is determined by two parameters:α andβ. The
dynamics of thecwnd in TCP Vegas is illustrated in (2.4) [HMM99a]

In (2.4), rtt means the measured RTT,base rtt is the smallest value of observed
RTTs so far andα andβ are the minimum and maximum thresholds respectively, for the
permitted range on RTT variation without changes incwnd.

Provided that the monitored RTTs (divided bybase rtt) are betweenα andβ, TCP
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Vegas infers that its sending rate is matching the network capacity. Under such circum-
stances,cwnd is kept unchanged in order to prevent losses inside the network. The key
idea here is to use the actually available network bandwidth without causing excessive
traffic within the network.

cwnd =


cwnd + 1, if Diff < α

base rtt ;
cwnd − 1, if Diff > β

base rtt ;
Unchanged, if α

base rtt < Diff < β
base rtt ;

(2.4)

With,

Diff =
cwnd

base rtt
− cwnd

rtt

TCP Vegas was first introduced in the early 1990s, but no significant work on it toward
commercial implementations has been carried out. It seems to be a robust protocol as it
optimizes bandwidth utilization without incurring in any cost to the network concerning
overhead. The main problem to be overcome by the Vegas algorithm has to do with the
unfairness that arises when multiple connections are sharing the same communication
channel [HMM99b, HMM99a, OG01]. The investigation in [HMM99b] concluded that
TCP Vegas can be quite unfair when the competing connections face different RTTs.
This occurs because of the Vegas high dependence on RTT measurements as confirmed
in [OG01].

2.6 TCP Extensions

2.6.1 Delayed Acknowledgments (DA)

As stated in RFC 813 [Cla82], the acknowledgment mechanism is at the heart of TCP.
When data arrives at the receiver, the protocol requires that the receiver sends back an ac-
knowledgment of that for reliability reasons. The data packets are sequentially numbered
so the receiver can acknowledge data by sending to the sender the sequence number of
the highest data packet it has in its buffer. The acknowledgment scheme is cumulative,
which means that by receiving the highest sequence number the sender infer that all prior
data were successful received. Thus, a TCP receiver does not necessarily have to transmit
an acknowledgment for every incoming data packet.

RFC 813 introduced the basic concepts for optimizing transmission efficiency by re-
ducing the number of acknowledgments generated by a TCP receiver. This RFC shows
that reducing the number of ACKs provides two benefits: lower processing overhead at
the sender and robustness against the well-known Silly Window Syndrome (SWS). Mea-
surements of TCP implementations, in particular on large operating systems, suggest that
most of the overhead involved in a packet handling is not in the TCP or IP layer process-
ing. In fact, the most significant processing occurs in the scheduling of the handler that
must deal with the packet at the sender [Cla82].

The Silly Window Syndrome can arise during large data transfers if the receiver does
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not enlarge enough itsrwin to allow the sender to send data in large packets. This may
happen because of lack of buffer space in the receiver, which leads to high packet frag-
mentation into small packets, impacting the transfer efficiency seriously. Delaying the
transmission of small packets results in the buffers being freed and consequently higher
rwin being advertised by the receiver. This in turn leads the sender to transmit large
packet sizes and so higher throughput is achieved.

To delay ACKs at the receiver is therefore recommended if the network is in good
state, since it prevents unnecessary ACKs from being transmitted. However, if the net-
work is facing constraints, additional mechanisms are needed to make sure that the re-
ceiver does not lead the sender to miss ACKs. Hence, RFC 813 recommends the use of
a timer at the receiver to trigger ACK transmissions for data packets that do not arrive at
the receiver in due time. This timer should be reset at every new income data packet and
its duration could be either a fixed interval on the basis of the channel characteristics such
as typical RTT or be adaptive to the channel conditions.

Although RFC 813 establishes the foundation for the delayed ACK mechanism, it
does not specify clearly the actions to be taken by the receiver under a constrained chan-
nel. For instance, it does not specify any action to out-of-order data packets or how many
packets may be delayed in sequence. The standard Delayed Acknowledgment (DA) strat-
egy was first defined in RFC 1122 [Bra89] and refined in RFC 2581 [APS99]. The former
specifies that a TCP receiver should acknowledge every other data packet but should not
delay more than 500 ms. In addition, RFC 1122 clearly states that delayed ACKs can
substantially reduce protocol overhead by diminishing the overall number of packets to
be processed. However, delaying ACKs excessively can disturb the Round-Trip Time
estimation as well as the packet “clocking” algorithm in the sender. The term packet
“clocking” refers to the sender’s dependence on ACKs to transmit new data packets, i.e.,
every ACKs trigger a new transmission at the sender.

RFC 2581 further specifies the concept of delayed acknowledgments by including
responses of the receiver for out-of-order packets. In order to speed up the loss recovery
at the sender, a TCP receiver should immediately acknowledge data packets that are either
out-of-order or filling in a gap in the receiver’s buffer. Out-of-order packets are most
likely the result of dropped data packets and so it is reasonable to acknowledge them
promptly in order to accelerate the sender reaction and avoid timeout. Data packets that
are filling in a gap in the receiver’s buffer are retransmitted packets for a missing data
at the receiver. These data packets must also be retransmitted immediately to mitigate
disturbances for the sender. The standard DA proposed in RFC 2581 is appropriate to
improve performance in multihop wireless networks as it is shown in chapter 7.

2.6.2 Explicit Congestion Notification (ECN)

The ECN scheme specified in RFC 3168 [RFB01] proposes to use network feedback to
assist a TCP connection in reacting to congestion effects. By using this mechanism, TCP
does not need to await a dropped packet due to buffer overflow to detect congestion and
properly slow down. Rather, it is informed by the intermediate nodes (routers) when
incipient congestion starts. ECN can prevent time wastage at the sender that, without
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ECN, always has to wait for either three duplicate acknowledgments or a timeout timer
expiration.

The implementation of ECN requires specific flags in both IP and TCP headers. Two
bits are used in each header for proper signaling among sender, routers and receiver, as
depicted in Fig. 2.10. The active queue management (AQM) [BCC+98, RFB01] inside
the routers marks packets when congestion reaches a given threshold. The receiver sim-
ply echos back the congestion indication into the ACKs to the sender which reduces its
sending rate to prevent severe congestion.

Router

ECN echo (ECE flag)

DATA

ACK

ECN (CE flag)
Sender Receiver

Figure 2.10: ECN bit

The new flags guarantee a smooth interaction among the involved network entities
concerning ECN use. This is needed to ensure that non-complaint devices may coexist
with ECN-capable devices efficiently. The two bits, ECT and CE, within IP header define
four flags, as illustrated in table .

Table 2.1: ECN bits within IP header
ECT CE Meaning
0 0 Not-ECT
0 1 ECT(1)
1 0 ECT(0)
1 1 CE

The end nodes and routers set these flags as follows. If no device changes any of these
bits, then the flag not-ECT is always active indicating that the corresponding packets are
generated by a data sender that is not ECN compatible . The flags ECT(0) and ECT(1) are
equivalent and set by the data sender to indicate that the end nodes are ECN-capable. The
CE flag is set by a router to inform the end nodes that the network is facing congestion.

The TCP flags are limited to the end-to-end signaling between the end nodes. The
two last bits in the reserved field of the TCP header are defined as follows [RFB01].

• ECN-Echo (ECE).

• Congestion Window Reduced (CWR).

The ECN-Echo flag is used by the data receiver to inform the data sender that a CE
packet (packet with the CE flag set) has been received. Similarly, the data sender uses the
CWR flag to announce to the data receiver that its congestion window has been reduced.
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In the TCP connection setup phase, the source and destination TCPs exchange data
to define their willingness to use ECN. The ECT flag in the IP header is used by a TCP
sender to indicate to the network that it is capable of processing ECN tasks for the packet
being transmitted. If the ECT flag is turned off, the routers infer that the sender is not
ECN-capable. This allows for coexistence of devices that are ECN-capable and not ECN-
capable.

ECN is appealing to be used in the Internet since it does not render any overhead
regarding the current IP flows. Its drawback lies in the fact that to be effective, it requires
changes to every network element . Additionally, the complexity involved when IPSec
tunnels are in place appears to be a great challenge to be overcome. This happens because
the intermediate nodes (routers) running IPSec are prevented from accessing the TCP
header.

2.6.3 Limited Transmit

RFC 3042 [ABF01] specifies the “Limited Transmit” as an enhancement for TCP loss
recovery when a connection’s congestion window is small, or when a large number of
packets are lost in a single transmission window. Without limited transmit, when a packet
is dropped the sender starts receiving duplicate ACKs from the receiver and only retrans-
mits the lost packet when it gets the third duplicate ACK. The sender does not transmit
any data packet when it receives the first and the second duplicate ACKs. The problem is
that if the receiver works with smallcwnd, it might happen that it will not receive suffi-
cient (three) duplicate ACKs since there are just a few data packets in transit in such cases.
If that happens, the sender can only react to the dropped packet when its retransmission
timer expires.

Using the limited transmit, a TCP sender should send a new data packet for each of
the first two duplicate acknowledgments received at the sender. Provided that these two
new data packets get at the receiver, they trigger two extra ACKs to be received by the
sender. This procedure aims at increasing the probability that TCP can recover from a
single lost packet using the fast retransmit/fast recovery algorithms instead of using a
costly retransmit timeout.

Specifically, the limited transmit algorithm imposes that a TCP sender only sends new
data packets in response to incoming duplicate ACKs if the following conditions are met:

• The receiver’s advertised window allows the transmission of the new packet.

• The amount of outstanding data would remain less than or equal to thecwnd plus
2 packets, i.e., the sender can only send two packets beyond thecwnd size.

Furthermore, the algorithm specifies that thecwnd must not be changed when these new
data packets are transmitted. This increases the probability that the sender infers loss us-
ing the standard fast retransmit threshold of three duplicate ACKs. RFC 3042 reports that
limited transmit could have reduced up to 25% of the RTO-based retransmissions in mea-
surements on a busy web sever performed in [BPS+97]. Limited transmit is implemented
as a default mechanism in the ns2 simulator.
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2.7 Summary

This chapter described the main features of TCP that is a fundamental protocol widely
deployment in today’s Internet. TCP provides reliable end-to-end data transmission and
a robust congestion control for easing network overload. Although TCP is a connection-
oriented protocol, it does not need any support from the intermediate nodes to set up its
connection. In fact, TCP relies on IP routing to transport its data and acknowledgment
packets. IP does not guarantee data delivery but TCP does by requiring acknowledgments
from the data receiver and carrying out retransmissions.

TCP implements both flow control and congestion control. The former prevents the
TCP receiver’s buffer from being overflowed while the second avoids congestion col-
lapse within the network. The congestion control continuously probes the network for re-
sources. Modern TCP implementations use the additive increase multiplicative decrease
algorithm (AIMD), which aims to speed up loss recovery and ensure network stability.
An alternative algorithm to AIMD is the Equation-based congestion control. The latter
attempts to reproduce TCP behavior analytically, but an accurate modeling is too hard to
achieve. This is a subject of great interest in the research community nowadays.

TCP has evolved over the years, and so various variants of the basic TCP Tahoe
mechanism have been developed. TCP Reno adds the fast recovery mechanism to the
basic Tahoe. This mechanism avoids the congestion window from resuming from the
minimum size of one packet after a dropped packet detection. It also allows packets to
be sent while the sender waits for the retransmitted packet, thereby improving through-
put. TCP NewReno improves the Reno performance when multiple packets are dropped
from a window of data, and so does TCP Sack. TCP NewReno can recover only a packet
per RTT, while TCP Sack does not have this limitation. Nevertheless, while NewReno
refinements are limited to the sender side, Sack requires changes at both end nodes. Fi-
nally, TCP Vegas relies on RTT variations only to adjust its sending rate as opposed to
the ack-clocked algorithm used in the other TCP variants.

Some important TCP extensions are: Delayed Acknowledgments (DA), Explicit Con-
gestion Notification (ECN) and Limited Transmit. DA proposes to minimize the amount
of ACKs by having the receiver acknowledging every other data packet only. ECN pro-
poses to use feedback from the intermediate nodes to assist a TCP sender to detect con-
gestion before a packet is actually dropped. Limited Transmit proposes to permit the
sender to send new data packets while it waits for the third duplicate ACK, in order to
improve performance in scenarios were thecwnd is small or the amount of drops is high.
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Chapter 3

Multihop Wireless Networks

3.1 Introduction

Multihop wireless networks are emerging as a promising framework for future wireless
communications in a broad sense. These networks are foreseen as an essential exten-
sion of today’s wired Internet and substantial investments are being applied to leverage
the development of such networks. Scenarios for multihop wireless networks range from
short-range wireless links, common in home building communications for example, to
complex mesh of wireless links to connect moving users at changing speeds. These com-
munications arise many difficulties to the involved protocols, which has been the focus of
considerable researches over the past few years. This chapter introduces multihop wire-
less networks and discusses important issues concerning the design of such networks.

3.2 Wireless Data Communications

Wireless networks have been pursued since the beginning of the computer networks his-
tory. In the early 1970s, the first experimental radio packet network, called ALOHANET,
was set up at the University of Hawaii [Abr85, JT87]. In the mid-1980s, TCP/IP-based
wireless networks were introduced, and ever since these networks have been increasingly
evolving. Wireless technology is being deployed in many communication systems to ei-
ther replace or extend wired-based infrastructures. Advantages of wireless networks over
wired networks include mobility, simpler setup, easier maintenance, etc.

Wireless networks are, however, much more susceptible to performance degradations
than their wired predecessor. As specified in [IEE99], wireless networks have fundamen-
tal characteristics that make them significantly different from traditional wired networks.
The physical media used in wireless networks pose unique challenges to the design of
these networks due to the following features.

• The wireless physical medium used does not have well defined boundaries for spec-
ifying precise communication ranges.

• The medium is unprotected from outside signals.

33
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• The communication takes place over a medium significantly less reliable than a
typical wired medium.

• The network topology may change dynamically due to either propagation con-
straints or nodes mobility.

• These networks lack full connectivity, since some nodes may be temporarily hidden
from each other.

• Wireless networks also have time-varying and asymmetric propagations properties.

Today’s wireless networks can handle these challenges relatively smoothly for scenar-
ios having a singe wireless link. This is enough for two network devices to communicate
directly in very short networks that span a few meters. On the other hand, sustainable
communications over reasonable distances is still a challenge. Under such distances,
there is no feasible technology today that can offer deployable end-to-end connectivity
over a single wireless link.

To achieve end-to-end wireless communication extending to distances of several sin-
gle link capacity,multihop wireless networkscome into play. The term multihop means
that the end-to-end connection may span multiple wireless links (also called hops). The
key idea of such networks is to have the intermediate nodes, between sender and receiver,
relaying data to the end nodes.

In recent years, multihop wireless networks have been emerging as a viable solution
for many applications inad hoc networksandsensor networks. There are substantial
ongoing researches addressing the challenges facing these networks, which indeed sug-
gests a promising future for this new wireless technology. This chapter focuses on ad hoc
networks since these are the primary target of this thesis. A very brief introduction on
sensor networks is given for completeness only.

3.3 Ad Hoc Networks

Ad hoc networks [CM99, MPC01, Haa02] are self-organizing wireless networks as they
do not require any fixed infrastructure to communicate. These networks are appropriate
for scenarios in which wired networks are not possible or not desirable such as disaster
recovery, battlefield, short-lived networks as in conference spots, etc. The absence of a
centralized entity for controlling the communication among the nodes poses crucial re-
quirements on the protocols in ad hoc networks. Such protocols need to be distributed
and to provide smooth coordination among the communicating nodes. As the communi-
cation range of the nodes is usually limited, and the communication channels are spatially
reused, mutual interference among concurrent transmissions is hard to avoid.

The nodes in ad hoc network work as both hosts and routers, and so each node is able
to forward data for its neighbors. This model design is needed because each node counts
on a limited transmission range to reach its intended destination node. Hence, when a
given node sends data to another node that is not in its transmission range, one of its
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neighbors forwards the data toward the destination. This process may involve multiple
intermediate nodes, thereby establishing a multihop connection as depicted in Fig. 3.1.

Specific routing protocols coordinate the route discovery and maintenance for con-
necting senders and receivers of the flows to be transmitted. The route maintenance in ad
hoc networks is a difficulty task, because the wireless links taking part in the end-to-end
route can be interrupted by either wireless medium induced losses or lack of connec-
tivity due to nodes mobility. As a result, various routing protocol proposals for ad hoc
networks have emerged over the last few years [PBRD03, JMH04, PB94, PC97, HPS02,
CJ03,OTL04]. AODV and DSR are two fundamental routing protocols discussed in detail
below.

Another important aspect of ad hoc networks is the medium access control. Since
the medium is assumed to be highly error-prone and the nodes in place may move unpre-
dictably, the medium access control protocol must be not only highly adaptive but also
tolerant to transmission failures. The IEEE 802.11 [IEE99] standard was designed to
meet some of such requirements, but many problems remain to be addressed, as shown
next.

Source

Destination

Figure 3.1: Ad hoc networks

3.3.1 IEEE 802.11 MAC Protocol

The IEEE 802.11 “Distributed Foundation Wireless Medium Access Control” (DFW-
MAC) [CWKS97, IEE99, CGL00] is the standard Medium Access Control (MAC) layer
protocol adopted for ad hoc networks. The IEEE 802.11 standard specifies both the wire-
less LAN MAC and physical layer mechanisms for an efficient shared broadcast channel
through which the involved mobile nodes can communicate.

The communicating nodes within a wireless LAN (WLAN) are termed stations, and
the IEEE 802.11 standard is mostly termed simply 802.11 or 802.11 MAC protocol. The
unit of information used for the MAC messages is frame. These nomenclature are used
throughout this section for compliance with the standard description.

In 801.11, priority may be given to stations but in general all stations receive equal
right to access the medium. Collisions are prevented instead of detected after they happen,
and multiple hops communication is allowed. Moreover, power management functional-
ities are also included in the standard. The main novelties of 802.11 include: 1) use of
acknowledgment for data frames (link layer’s ACKs), 2) possibility of using RTS/CTS



36 CHAPTER 3. MULTIHOP WIRELESS NETWORKS

(request-to-send/clear-to-send) control frames, 3) a virtual carrier sensing mechanism.
These mechanisms aim at mitigating medium collisions and obtaining efficient bandwidth
utilization, as explained below.

MAC Frame Formats

Before addressing the MAC mechanisms in detail, it is important to understand what is
carried inside each MAC frame exchanged among the WLAN stations. There exist three
types of frames: control, data and management. Control frames are used for tasks such
as medium reservation, power saving, etc. Data frames are the ones which actually carry
useful data from the user’s application perspective. Management frames are needed for
authentication, deauthentication, association, and disassociation, in a managed WLAN
which is not addressed in this thesis.

Fig. 3.2 illustrates the general MAC frame format. Among the frame categories
mentioned above, only some of them contain the fields Address 2, Address 3, Sequence
Control, Address 4, and Frame body. The MAC frames consist of the following basic
parts:

• A MAC headerthat is composed of frame control, duration, address, and sequence
control information.

• A frame bodycontaining information specific to the frame type

• A frame check sequence(FCS) comprising an IEEE 32-bit cyclic redundancy code
(CRC)

The fields in the general MAC frame have the following purposes:

• Frame Control: This field contains basic information that are needed in every
frame for smooth cooperation among the stations. Its specific subfields are ex-
plained below.

• Duration/ID: This field has two purposes: to indicate the duration the medium
is going to be used for transmitting the frame under consideration; and only for
Power-Save Poll messages, to indicate the ID of the station transmitting the frame.

• Address1,2,3,4:These fields are used to identify a certain station. These addresses
define for example which station is transmitting, receiving, generating the data or
being the final receiver of the frame.

• Sequence Control: This field carries information needed for transmitting frag-
mented frames and identifying frame duplicates. It is divided into two subfields:
Fragment Number and Sequence Number. The latter is assigned to every frame
transmitted by a station and the former identifies the fragmented part that is being
sent. Both fields are kept unchanged under retransmissions.
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• Frame Body: In this variable length field is conveyed the upper layer payload.
This field is not used for control and management frames.

• FCS: This is theFrame Check Sequencesfield which contains a 32-bit Cyclic Re-
dundancy Check (CRC) for checking the received frames’ integrity

protocol
Version

Type Subtype To
DS DS

From More
Frag

Retry Pwr
Mgt Data

More WEP Order

Bits: 2 2 4 1 1 1 1 1 1 1 1

Bytes: 2 2 6 6 6 2 6 0-2312 4

MAC Header

Frag Number Seq Number

Bits: 4 12

Frame 
Control

Duration/
ID

Address 1 Address 2 Address 3 Sequence
Control

Address 4 FCSFrame
Body

Figure 3.2: MAC frame format

Likewise, theFrame Control field is subdivided into eleven subfields as depicted in
Fig. 3.2. The role of each of these subfields are as follows:

• Protocol Version: This field indicates the protocol version in use. It is currently
set to zero, and may be changed to indicate possible future versions.

• Type and Subtype:These fields combined define the function of the frame. This
is necessary because there are several specific frames within the general classes of
control, data, and management frames.

• To DS and From DS: These fields indicate if a frame is destined to or from a
distributed system (DS), respectively. Both fields are relevant to infrastructure net-
works only, for ad hoc networks they are set to zero.

• More Frag: This field is set to one when more segments associated to the current
frame is to follow this one. It is set to zero in all other frames.

• Retry: This bit is set to one in retransmitted frames, and set to zero otherwise.
Using this information, a receiving station is able to eliminate duplicate frames.

• Pwr Mgt: Indicates if the transmitting station will be in power-save mode or active
mode after the current transmission.
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• More Data: In infrastructure networks, the Access Point (AP) may buffer frames
destined to certain stations toward power saving. This bit is set to one when the AP
has data buffered to the receiving station.

• WEP: When set to one indicates that the frame is encrypted by the WEP algorithm.

• Order: When set to one indicates that the frames and fragments are sent in order.
This field is used for some specific protocols that might need such a service.

Distribute vs. Point Coordination Function Access Methods

The IEEE 802.11 standard provides functionalities for both managed WLANs and self-
organizing WLANs. The former is generally referred to as an infrastructure network
while the latter is termed ad hoc networks. In particular, The IEEE 802.11 standard
specifies two MAC access methods: Distributed Coordination Function (DCF) and Point
Coordination Function (PCF). DCF specifies functionalities for both ad hoc networks and
infrastructure networks. It is a contention-based access method in which every station
contents concurrently for the medium. PCF is designed for infrastructure networks and
uses the DCF rules as the basic ones for coexistence of DCF and PCF when there is an
overlapping area involving an infrastructure network and an ad hoc network. In CFP, an
Access Point (AP) is normally the Point Coordinator (PC) which controls the medium
access, providing a contention-free access method.

When operating concurrently, PCF has access priority over DCF, and both access
methods operate alternatively. In this way, a contention-free (CF) period is followed by
a contention-period (CP). CFP is not further explained here as the target environment of
this thesis is ad hoc networks where neither PC nor AP are in place. DCF is thus assumed
to be the access method used throughout this thesis. The details of DCF are discussed
below.

Distributed Coordination Function (DCF)

DCF implements acarrier sense multiple access with collision avoidance(CSMA/CA)
protocol for controlling the shared medium access among the competing stations. The
CSMA/CA distributed algorithm includes a random backoff procedure to minimize the
probability of collisions by simultaneous transmission attempts just after the medium has
been sensed idle. Actually, the CSMA/CA imposes that a minimal idle interval exist
between contiguous frame sequences. Hence, every station must wait for a specific Inter-
frame Space (IFS) after the medium is determined idle, and then delay a random backoff
interval before transmitting. This reduces collision probability considerably.

In addition to the CSMA/CA protocol, the access method of DCF usespositive ac-
knowledgmentsin that the receiving stations respond to a frame reception with an ac-
knowledgment frame (ACK frame). The transmitting stations are able to retransmit
frames that are dropped or have their respective ACK frame dropped. The DCF retrans-
mission mechanism is persistent in the sense that it attempts for several times to recover
locally an unsuccessful transmission.
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The features explained above render DCF a robust protocol for the challenging wire-
less networks. It mitigates problems such as the classical hidden node as well as typical
performance degradation by the high bit error rate inherent in wireless communications.
The DCF mechanisms are addressed below, where the need of each mechanism will be-
come clear.

Carrier Sense Mechanism

Similarly to the traditional Ethernet (802.3) based LANs, WLANs relying on 802.11 DCF
access method also implements acarrier sense multiple accessmechanism for detecting
transmission in the shared medium. Nonetheless, while the 802.3 performs congestion
detection (CD), 802.11 DCF carries out congestion avoidance (CA). Hence, the carrier
sense mechanism used by 802.11 DCF is termed CSMA/CA in contrast to the mecha-
nism used by 802.3 that is called CSMA/CD. The DCF access method of 802.11 cannot
implement CD because in a radio network a station is not able to hear the medium while
transmitting.

The CSMA/CA is referred to as aphysical carrier sensingmechanism since it is
associated to the instantaneous physical medium condition. In other words, CSMA/CA
detects whether there is or not an actual transmission going on when a station intends
to transmit by analyzing, for instance, the signal strength of other stations. CSMA/CA
is, nonetheless, not the only carrier sensing mechanism included in 802.11. There exist
a virtual carrier sensingmechanism as well. The latter is concerned with maintaining
stations silent for a certain estimated period that should be sufficient for the ongoing
transmission to end.

Thevirtual carrier sensingis referred to as theNetwork Allocation Vector(NAV). The
principle of NAV is to include information into the frame headers so that a transmitting
station may inform the other stations for how long the medium is going to be busy with
the current transmission. For that, a field is reserved in the frames header as shown in Fig.
3.2. Whenever a station transmits into the medium, except for the PS-Poll control frame,
it sets theDuration/ID field to the estimated time (in microseconds) the medium is going
to be busy. The other stations overhearing this transmission, set their respective NAVs to
this announced time value. In this way, all stations will refrain from transmitting for at
least NAV interval.

In fact, 802.11 in DCF takes into consideration both the physical and the virtual carrier
sensing mechanisms to conclusively decide whether the medium is busy or idle. If either
of the mechanisms perceive a busy medium, then the station must assume that the medium
is indeed busy. Otherwise, the medium is assumed to be idle. The frame exchanges
involving carrier sensing mechanisms are explained below.

After sensing the medium idle, a station may still await a random backoff time before
being allowed to transmit. This is the congestion avoidance (CA) part of CSMA/CA.
The CA is necessary to reduce the probability of having various stations transmitting at
the same time, which would lead the medium to experience collision. The details of the
random backoff procedure are discussed below.
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Interframe Spacing

The IEEE 802.11 standard allows for medium access priority levels by specifying differ-
ent time intervals for accessing the wireless medium after a station perceiving it as idle.
These time intervals are called interframe spacing (IFS), and three of them are relevant
for the DCF access method.

• SIFS (Short IFS): The shortest of all interframe spaces, used for high priority
traffic such as ACK frame and clear to send (CTS) control frames.

• DIFS (DCF IFS): Longer than SIFS and defines the time duration the medium
must be idle before a station may transmit or decrease its backoff timer.

• EIFS (Extended IFS):The largest interframe space, used by a station that received
a corrupted frame. EIFS prevents this station from colliding with other stations
since the unfortunate station could not update its NAV information (received frame
was corrupted).

The IFS intervals above promote smooth access to the medium even under multirate-
capable physical layers. The interframe space should thus be independent of the station
data rate and fixed for a specific physical medium. Different IFS periods may also be
used for providing levels of priority for distinct flows. This feature is very appealing for
QoS approaches [LAS01].

Backoff Procedure

In order to avoid collisions among concurrent stations when the medium becomes idle,
after the mandatory waiting period SIFS, the stations have to further delay their transmis-
sion in a random fashion. The backoff time procedure is designed for this purpose. If the
transmission attempt fails, then the sending station retransmits the corresponding frame
in sequential attempts up to a certain number of times. At every attempt, the range of
randomness is enlarged as explained below.

The backoff procedure used by 802.11 computes increasingly random interval ranges
as the station continues trying to retransmit the dropped frame. To accomplish that, the
backoff interval is computed by (3.1), wherei is the number of retransmission attempt,
random() is a uniform variable in (0,1) and int(x) represents the non-fractional part of x.

Backofftime= int((2i−1 − 1) ∗ random()) ∗ slot time (3.1)

The equation above shows that the backoff time is an integer value corresponding to
the number of time slots. The term (2i+1 − 1) is denoted Contention Window (CW) and
is limited to a maximum value CWmax. CW represents the range from where the random
backoff time is computed. Hence, for successive attempts, CW assumes the following
values:7, 15, 31, 63, 127, 255, 255, etc. If CWmax is reached, the subsequent attempts
use the same value for CW set to CWmax. It is important to note that by increasing CW
the probability of having a larger backoff interval is higher. Nevertheless, the effective
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value is chosen randomly fromrandom() for keeping statistical independence of the
computed numbers among the competing stations.

Once a backoff time has been chosen, the station keeps track of the medium trans-
missions for updating its backoff timer that it set to the backoff time value just computed.
Whenever the medium is idle for DIFS interval, the backoff timer is decremented by one,
and when the medium is busy the backoff timer is frozen. This process continues until the
backoff timer reaches zero, which then allows the station to transmit. If the transmission
is unsuccessful, a new random backoff time within the next larger range is computed.
The station decrements its backoff timer like before and attempts transmission when the
backoff timer comes to zero. When the transmission or retransmission occur successfully,
the CW is reset to its initial value. As a consequence, the next random backoff time will
be computed in the range 0-7. To summarize the ideas behind the backoff procedure, the
following remarks may be useful:

• Contention Window (CW): A counter that specifies the range from which a ran-
dom backoff time is computed. It increases exponentially (2i+1 − 1) at every un-
successful retransmission attempti, and is reset to its initial value upon successful
transmission.

• Random backoff time: A random interval computed within a range defined by the
CW.

• Backoff timer: A timer that is initialized to the random backoff time and decre-
ments under idle medium until zero to allow transmission by the station.

Basic Access Method

As mentioned above, transmissions in 802.11 are accomplished using positive acknowl-
edgment from the receiving stations. For every received data frame, an ACK frame is
returned. This increases robustness in error-prone environments by allowing any peer of
communicating stations to exchange messages to make sure that the sent frame has been
indeed received at the receiving station. Positive acknowledgment provides functionali-
ties necessary for MAC layer retransmissions as well.

In the basic DCF access method, without PCF, a station determines whether it may
transmit by monitoring the medium through the CSMA mechanism described above. If
the medium is sensed idle for DIFS period, the station may transmit immediately. On the
other hand, if the medium is sensed busy, the station has to defer transmission for DIFS
period followed by a random backoff period as described above.

Fig. 3.3 illustrates the basic access method. The medium is assumed to be initially
idle for DIFS period, and so the sending station is allowed to transmit its data frame.
Upon successful reception, the receiving station awaits a SIFS interval and then sends
back an acknowledgment frame (ACK frame) to the sending station. As a SIFS period
is shorter than any other IFS, the ACK frame is transmitted with highest priority over
any other frame. This assures that under normal circumstances, data and corresponding
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acknowledgment frames are transmitted in subsequent time slots for transmission com-
pleteness.

The other stations overhearing the ongoing data transmission defer their transmission
until the medium becomes idle for DIFS interval. Every station that overhears the ongoing
transmission update their respective virtual carrier sensing mechanism through the NAV
field. Recall that the frame header carry a duration field announcing to the other stations
the estimated time the medium is going to be busy for the current transmission. The value
to update NAV includes the SIFS period as well as the ACK duration, as shown in Fig.
3.3. Once the medium is sensed idle for DIFS interval, the other stations invoke their
backoff procedure and transmit when their respective backoff timer reach zero.

Sending station

Receiving station

DIFS

ACK

DATA

DIFS

NAV

Other stations
CW

Backoff after deferDefer access

SIFS

Figure 3.3: Basic access method in 802.11

RTS/CTS Access Method

The basic access method described above may be inefficient for transmission of large
frame sizes. Since a station in a wireless network (radio network) may not listen to the
medium while transmitting, it has to wait long before detecting that its transmitted frame
collided with other stations’s transmission. A station has to wait for the estimated time for
both the data frame and corresponding ACK frame to be transmitted to take action toward
recovering the unsuccessful transmission. Hence, the larger the data frame the longer the
time to recover from a failed transmission, which incurs in waste of bandwidth.

To address the waste of bandwidth involved with corrupted frames, the 802.11 in DCF
access mode can use short control frames to reserve the wireless medium prior to actual
data transmission. There are two specific frames for that: Request-To-Send (RTS) and
Clear-To-Send (CTS). These frames are exchanged by every peer stations involved in a
transmission before the data frame may be sent. In case of frame corruption, the waste
of bandwidth is much less substantial because both RTS (20 bytes) and CTS (14 bytes)
sizes are significantly smaller than the maximum date frame size (2346 bytes).

Fig. 3.4 illustrates the RTS/CTS access method. Analogously to the basic access
method, the sending station may transmit upon detection of idle medium for DIFS inter-
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val. In this case, however, the station transmits first an RTS frame and waits for the CTS
frame from the receiving station. For the same purpose mentioned in the explanation of
the basic access method, immediately after the reception of the RTS frame the receiving
station waits only a SIFS period to transmit the CTS. By receiving this reply, the sending
station infers that the medium is reserved for it and so it transmits the data frame and
waits for the ACK frame. Note that all the intermediate interframe spaces involved in the
transmission of a complete data frame are SIFS. This procedure leads the medium to be
reserved for the whole frame exchanges associated to a successful data transmission.

RTS

Sending station

NAV (RTS)
Other stations

DIFS SIFS

SIFS

Receiving station

NAV (CTS)

ACKCTS

SIFS

NAV (DATA)

DATA

Backoff beginsDefer access

Figure 3.4: IEEE 802.11 Timing diagram

The technique explained above is calledfour-way Handshakebecause every data
frame transmission requires that a sequence of RTS-CTS-DATA-ACK be exchanged be-
tween sending and receiving stations. Fig. 3.4 also shows that the other stations update
their waiting time by setting their NAV values in accordance with the duration value an-
nounced in the header of the frames exchanged between the two communicating stations.
Thus, the other stations remain silent until the end of thefour-way Handshakeplus DIFS
period. Afterwards, the backoff procedure is invoked and eventually these stations may
transmit.

The use of the short RTS/CTS control frames is also appropriate for mitigating the
well-known hidden node problem [CGL00]. This problem occurs when two hidden nodes
from each other wish to communicate simultaneously with a third common node, which
would result inevitably in collision. As shown in [WPL+02, GK04], RTS/CTS prevents
neighboring nodes that can hear either the sending station or the receiving station from
transmitting. As illustrated in Fig. 3.5, the RTS frame silences the stations reached by the
sending station’s transmission, while the CTS frame does so for the stations hearing the
receiving station’s transmission.

The main drawback of using RTS/CTS is that the overhead associated to them ren-
ders these control frames inefficient in transmission with relatively small packet sizes.
Furthermore, the RTS/CTS control frames do not fully solve the hidden node problem for
scenarios where long chain of nodes are in place as not every node can hear each other’s
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Figure 3.5: CTS/RTS to prevent hidden node problem

transmission. This problem is discussed in detail below, and section 5.3.1 addresses it
further from a TCP perspective.

Hidden Node and Exposed Node Problems in multihop networks

Fig. 3.6 illustrates a chain of nodes topology (also called a string topology). In this
scenario, each node can only communicate with its adjacent neighbors and only a single
connection exists. Suppose node 1 starts transmitting to node 5, as shown in Fig. 3.6(a).
After a while, there might be a condition in which node 2 wishes to communicate with
node 3 whereas node 4 is transmitting to node 5. As node 2 cannot hear node 4 transmis-
sion, it senses the medium idle (both physically and virtually from NAV) and so attempts
its transmission by sending an RTS toward node 3.

Nevertheless, since node 3 is within the interference range of node 3 (i.e., the trans-
mission of node 4 affects node 3 reception) it cannot receive any data because the data
are are dropped by collisions. This is a typical hidden node problem, where node 4 is the
hidden node (in relation to node 2).

Figure 3.6(b) depicts a particular condition of the exposed node problem, where node
3 has a data frame (related to a TCP ACK) to send to node 2. As node 4, which is within
the sensing range of node 3 (i.e., node 4 transmission affects node 3 transmission ability),
is transmitting to node 5, node 3 must wait for the end of current transmission and then
contend for the medium. In this case, node 4 is the exposed node relative to node 3.
Interestingly collisions occurs only at the receiver, and so node 2 could receive the frame
from node 3 correctly despite the simultaneous conversation of node 4 with node 5 since
at first node 4 does not interfere with node 2.

The explanation above is a very simplified way of describing the hidden node and
exposed node problems. The actual propagation model of 802.11 counts on two commu-
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Figure 3.6: 802.11 shortcoming in multihop networks (simplified model: only transmis-
sion range)

nication ranges: thetransmission rangeand theinterference range. The former defines
the range within which a certain node can successfully communicate with all nodes in-
side the area limited by this range. The interference range is bigger than the transmission
range and defines the area within which nodes can hear the sender transmission but cannot
establish an effective communication. Yet, the interference range is typically slight larger
than twice the transmission range. Section 5.3.3 shows how important these concepts are
for optimized performance in multihop networks.
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3.3.2 Routing Protocols

Development of routing protocols for ad hoc networks has been one of the hottest topics
within this area in recent years. These protocols face tough challenges in these con-
strained environments where a proper tradeoff between responsiveness and accuracy in
finding routes connecting source and destination is needed. Various protocol proposals
have emerged recently [PBRD03,JMH04,PB94,PC97,HPS02,CJ03,OTL04]. However,
just a few of them appear to be promising approaches for future ad hoc networks.

In particular, two proposals have been evaluated extensively in the literature and are
under process of standardization in the Internet community. These proposals are the Ad
hoc On-demand Distributed Vector Routing (ADOV) [PR99] and the Dynamic Source
Routing (DSR) [JM96] protocol. [CJ03] and [OTL04] are also expected to be considered
in future ad hoc networks as they have recently received the status of RFCs. However,
we do not address these protocols here since our goal is to provide only an overview on
routing protocol principles rather than an complete review on them. AODV and DSR
routing protocols are described below as an insightful introduction to this broad subject.

Both AODV and DSR are reactive routing protocols in that they work on an on-
demand basis. In this concept, routes are only established when necessary by the source
nodes. As a result, minimal state variables are required since these variables are related
to the active routes only. Whenever a node first needs a route to a destination it starts a
route discovery procedure which eventually finds a route between source and destination
provided that such a route exists. The established route may be kept until it is either not
valid or not desired any longer.

On-demand Distributed Vector (AODV)

AODV [PR99, PBRD03] extends the principles adopted by the Destination Sequenced
Distance Vector (DSDV) [PB94] routing protocol which is a table-driven algorithm based
on the classical Bellman-ford routing mechanism. The key idea of AODV is to reduce the
elevated number of required broadcasts typical of DSDV for keeping up-to-date routing
tables. By updating routes on an on-demand basis, AODV provides a optimized routing
strategy for large ad hoc networks. In fact, AODV is denoteda pure on-demand route
acquisition systembecause it only involves nodes in a selected path to discover and keep
the related routing information. The other nodes are completely unaware of such routes
existence.

The routing procedure in AODV involves two phases: route discover and route main-
tenance. Whenever a node needs to find a route to a destination to which it has no table
entry, it begins the route discover algorithm. Once the route has been established, the
route maintenance algorithm takes care of the route’s state variables until the route is not
needed anymore.

A node starts route discovery by broadcasting a route request (RREQ) packet to its
neighbors. The receiving neighbors forward the RREQ to their neighbors and so on, until
the message reaches either the destination itself or an intermediate node that contains a
fresh enough table entry pointing to the destination. Every node under AODV keeps two
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counters: a node sequence number and a broadcast ID. These counters are incremented
whenever a new RREQ is generated. The RREQ message includes five identifiers:source
IP address, source sequence number, broadcast ID, destination IP address, destination
sequence number. The source IP addresswith the broadcast IDuniquely identify an
RREQ. Thesource sequence numberis needed to guarantee loop-free routes and to main-
tain freshness information about the reverse route to the source, as explained below. The
destination sequence numberis checked by the intermediate nodes to determine whether
one of its routes to the destination is fresh enough to be used.

In its way to the destination, the RREQ message may be received by various interme-
diate nodes. If an intermediate node does not contain any “fresh enough” table entry to
the destination, it simply forwards the RREQ. Otherwise, the intermediate node replies
to the source node with a request reply packet (RREP). The term “fresh enough” refers to
the table entries that both have routes to the destination and whosedestination sequence
numberis larger than or equal to the one inside the RREQ. Fig. 3.7(a) illustrates the
RREQ propagation across the networks when a broadcast is initiated.

The intermediate nodes prevent route loop by discarding RREQ containing the se-
quence unique identifier, namely the samesource IP addressand broadcast ID. Such
redundant RREQs are also not broadcasted for obvious reasons. Moreover, the interme-
diate nodes establish a reverse path to the source by saving in their respective route tables
the address of the nodes from which they first received the RREQ. In this way, either
the destination or an intermediate node with a fresh enough route to the destination may
unicast an RREP back to the source via the reverse established path. This feature renders
AODV a routing protocol that supports symmetric links only, since forward and backward
paths are fixed during the route’s lifetime. When forwarding the RREP back to the source
as shown in Fig. 3.7(b), the intermediate nodes also update those forward route entries in
their route tables pointing to the nodes from where the RREP was received.

The route maintenance in AODV deals with the effects of node movements and link
failures due to the medium. When a source node moves, it can initiate the route discovery
procedure to establish a new route to the destination. A route failure may be triggered
by either a movement of a node along the route or a link failure. In both cases, the
nodes located upstream the point of failure detects the problem and propagates a link
failure notice message (an RREP with infinite metric) to each of its upstream neighbors.
The process repeats until the link failure notification reaches the source node. A route
discovery to that destination may be initiated by the source node if the failed route is still
needed. AODV contains a timer associated to each of its route so that the routes not used
for a certain period can be purged.Hello messages may also be optionally used in AODV
to allow every node to inform its neighbors that it is active.

Dynamic Source Routing (DSR)

DSR was designed for small scale networks of up to about 200 nodes [JM96, JMB01,
JMH04]. It employs the concept of source routing instead of hop-by-hop routing. This
means that every packet carries in its header the complete, ordered list of nodes through
which the packet must pass. This feature releases the intermediate nodes from the task of
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Figure 3.7: AODV route discovery

keeping route tables to forward packets because the packets themselves already contain
such information. Thus, DSR does not need any period message exchanges common in
many other routing protocols for maintaining accurate route tables. In DSR, every node
contains a cache of source routes it has learned or overheard in order to speed up route
discovery when a route breaks.

As in AODV, DSR also consists of two phases: route discovery and route mainte-
nance. Nodes initiate route discovery when they need a route that is not found in their
respective route caches. Broken routes are detected by proper route maintenance mecha-
nisms.

Analogously to AODV, a source node initiates route discovery by broadcasting aroute
requestmessage. This message contains: source node’s IP address, destination node’s IP
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address, and a unique identifier. Every node receiving thisroute requestmessage first
verifies whether it has, in its route cache, a route to the destination. If it does, then aroute
reply message is sent back to the source node. Otherwise, the node adds its IP address to
the list of nodes through which the packet has already passed and forwards the message.
Before forwarding theroute requestmessage, however, the node first checks if neither its
IP address is already in the ordered list nor the message has already been received by the
node. In either case, the node does not forward the redundant message in order to avoid
network overload.

As the packet carrying theroute requestmessage propagates through the network,
it builds the route through which the message has passed as shown in Fig. 3.8(a). The
route replymessage may be generated by either the destination node or an intermediate
node containing a valid route to the destination. If the destination node is the genera-
tor, it includes the source route received in theroute requestmessage in theroute reply
message to be transmitted to the source node. In case theroute replyis generated by an
intermediate node, the message is formed by appending the node’s cached route to the
ordered list just received. Fig. 3.8(b) depicts the route reply transmission carrying the
associated sequence of hops defined by the route request. Theroute replymessage can be
transmitted to the source node either by the reverse route defined by theroute requestor
piggyback on a new route request from destination to source. The term piggyback refers
to procedure in which a secondary data is transmitted combined with the main data in
order to save network resources.

Route maintenance in DSR is performed by means of failure signaling mechanisms
and transmission acknowledgments. If a given route is broken, the affected nodes remove
the corresponding parts from their cached routes and sent aroute errormessage to their
neighbors which repeat the process until all impacted routes in cache have been updated.
The transmission acknowledgments may be performed at the link layer as it is the case in
802.11 which uses a positive acknowledgment scheme as described above. Alternatively,
passive acknowledgments in which the sending node overhears the forwarding of the next
hop node may be used. In either way, if no acknowledgment is perceived at the sending
node aroute errormessage is generated.

By the descriptions above, it is not difficult to see that there are various similarities
between ADOV and DSR. The key advantages of DSR over DSR include the possibility
of asymmetric paths and faster route recovery by keeping several source routes to the
same destination without any timer defining their lifetime. The disadvantages seem to be
the high overhead for carrying the full path inside the packet headers, the limitation of
being specific to small scale networks, and the lack of multicast support.

3.4 Sensor Networks

Wireless sensor networks represent another promising scenario for multihop networks
[EGHK99, KKP00, SGAP00, PK00, ASSC02, AWSC02, TAGH02, CK03]. Even though
these networks are not explicitly evaluated in this thesis, they are briefly discussed here
for completeness. Sensor networks are also self-organizing networks intended largely
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for monitoring systems used in application scenarios such as environment monitoring in
inaccessible terrains, operations in hostile fields, patient monitoring in hospitals, traffic
surveillance, and so on. As in ad hoc networks, the nodes comprising a sensor network
must be able to forward data for their corresponding neighbors and may move unpre-
dictably. However, despite the similarities between ad hoc and sensor networks, the latter
have particular features making them a very special environment.

Sensor networks rely on nodes with very limited computational capability, low battery
autonomy, and short transmission range. To compensate these limitations, the sensor
nodes are in general densely deployed. This procedure not only increases the probability
of end-to-end connectivity but also saves energy expenditure in every node. Because of
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such features, protocols for sensor networks are more focused on extending the lifetime
of the communicating nodes (by efficient use of the nodes capabilities) than on highly
efficient throughput achievements.

In conformity to the description in [AWSC02], a wireless sensor network is typically
composed of the following elements: the sensor nodes scattered in the field, a data pro-
cessing center for handling the data generated by the sensor nodes (and if needed issuing
commands to the sensor nodes), a sink node for collecting data from the sensor nodes
and forwarding commands from the data processing center, and a conventional network
to connect the sink node to the data processing center for data delivery. In this general
architecture, packets may be transfered not only from the sensor nodes to the processing
center, through the sink node, but also in the reverse path. This depends on the network
purpose. It is important to note that only the sink node communicates with the processing
center, which implies that this node is more powerful than the regular sensor nodes with
regarding data processing and transmission range. The conventional network can be any
network technology available such as the Internet, a satellite network, a cellular network,
etc.

Data processing 

Existing network

Sensors environment

Sink

Sensor node

Figure 3.9: Typical sensor network architecture

As mentioned above, the protocols for sensor networks have to meet some strin-
gent requirements inherent in these networks. Specifically, the MAC layer protocols
should not waste neither energy nor bandwidth in overhearing the medium for long idle
periods or transmitting with high power, because the nodes are usually close to each
other [SGAP00]. Regarding the routing protocols, their design should take into consid-
eration the low mobility pattern associated to typical sensor networks. As a result, table-
driven schemes are more appropriate for sensor networks since they avoid the substan-
tial energy expenditure involved in the routing discovery and maintenance of on-demand
routing protocols such as AODV and DSR. Various routing protocols to meet such re-
quirements have been proposed in recent years [HKB99,SGAP00,HCB00,PB01].

Concerning transport protocols for sensor networks, reliability (as that provide by
TCP) is not necessarily needed in many of existing scenarios. In simple scenarios such as
temperature and wind speed monitoring, it is tolerable to have some lost data. However, in
some circumstances it may be crucial to assure data delivery by using a reliable protocol.
A typical example is the one in which the sensor nodes can be reconfigured by receiving
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commands from the processing center. Then the configuration data must be reliably deliv-
ered. In general, the transfer of control and management data require reliability. The key
challenges for transport protocols in these environments include the need of both small
code due to the limited processing/memory capabilities of the sensor nodes, and tailored
retransmission strategy for energy efficiency [WATC02,SH03,SAA03,DVRA04].

The explanation above indicates the need of new schemes tailored for sensor net-
works, but effective solutions are still to come. Actually, it is not yet sure if future sensor
networks will make use of the TCP/IP protocol suite for the sake of the interoperability
with the global Internet. There have been some researches showing that TCP/IP may be
viable for sensor networks [DVRA04]. Nevertheless, further developments are needed to
define the adoption of protocols for future sensor networks. Development of protocols
for sensor networks represents certainly a wide open research area.

3.5 Summary

This chapter introduced multihop wireless networks. These networks are necessary for
establishing long-range wireless communications in networks such as ad hoc and sensor
networks. In particular, ad hoc networks mechanisms were addressed in greater detail
because these are the primary target environments of this thesis.

The most known routing protocols for ad hoc networks are AODV and DSR. Both
are on-demand protocols, and the former minimizes broadcast messages typical of table-
driven routing protocols but supports only symmetric paths. The latter works on a hop-
by-hop basis and does not need conventional route tables because the end-to-end route is
carried in every packet header. This may incurs in prohibitive traffic overhead. DSR also
supports non symmetric paths and allows nodes to have several alternative paths to the
same destination.

The IEEE 802.11 standard specifies the MAC protocol for ad hoc networks. In
802.11, nodes may share the wireless medium smoothly due to the CSMA/CA mecha-
nism in place. The design of 802.11 also includes functionalities for avoiding typical
hidden node problems by the use of the RTS/CTS control frames. The efficiency of
802.11 is, however, to be improved for multihop scenarios relaying on several end-to-end
hops. The problems that arise under such scenarios are discussed in chapter 5 from a TCP
perspective. The next chapter introduces fuzzy logic as a background to chapter 6 that
proposes a fuzzy logic based approach.



Chapter 4

Fuzzy Logic

4.1 Introduction

A perceptible number of applications based on fuzzy logic have emerged in recent years.
Typical applications include pattern recognition in a broad range of fields such as voice,
image, and handwriting; electronic system controls as in a process temperature controller
or in an regulated electric power distribution; decision making processes such as routing
decisions in a complex, large computer network; and many more. These applications rely
on data that are commonly characterized by imprecision and uncertainties. Fuzzy logic is
appropriate to handle these data by performing reasoning in a more human-like way than
traditional systems. We introduce in this chapter the details comprising fuzzy logic as a
background to the fuzzy logic based approach presented in chapter 6.

4.2 Fuzzy Logic Principles

Fuzzy logic may be seen as a superset of conventional logic (Boolean) that has been
extended to handle the concept of partial truth. It was first introduced by Lotfi Zadeh
in the 1960s [Zad65] as a means to model the uncertainties of natural language, and
has been widely used for supporting intelligent systems [Jan01, Kul01, Mat02]. Fuzzy
logic efficiency in dealing with uncertainties existing in physical systems makes it very
attractive for decision making systems [Jan93, Cox94, Zad96, DLJL00, CSH+01, CM01,
OB04c,OB04a].

Zadeh observed that conventional system modeling becomes increasingly difficult as
the system complexity increases, leading to a situation in which a precise modeling is
too costly (or even impossible) and not really relevant. The concepts involved in fuzzy
logic theory combine a formal mathematic theory with a representative system description
based on observable reality. In fuzzy logic, realistic transitions among the various states
that may characterize a system are considered. This allows smooth decision making
processes that work similarly to the way human beings do. As a consequence, fuzzy
logic based modeling are generally simple, tractable, and efficient. Yet, fuzzy logic is
an evolving theory and so many concepts in it are sometimes open to allow alternative

53
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methods by the research community.

4.3 Fuzzy Sets

Fuzzy sets are seen as an extension of the mathematical concept of set. A set is a col-
lection of objects called elements of the set. In the conventional set theory, an item from
a given universe is either a member or non-member of a given set. This concept allows
practically any collection of elements in real life to be associated to a mathematical defi-
nition of set. To further illustrate these definitions, every of the examples below are well
defined collections of elements that may be called sets:

• The set of positive integers less than 5. This is a finite set containing 5 elements:
0,1,2,3,4.

• The set of 200-year old men. This set has surely no member, and so it is anempty
set.

• The set of sampled temperatures higher than 40 Celsius. Despite being an infinite
set, it is always possible to determine whether a given sample is a member or not.

Therefore, a set is fully characterized by its elements. A finite set is generally rep-
resented by a list of elements such as A={0,1,2,3,4} which has clearly 5 elements. An
infinite set cannot be represented by a list though, and thus a property (or properties)
characterizing the elements in the set has to be employed. In the last example above, for
example, the elements of the infinite set is completely specified using apredicatesuch as
x > 40. So, there are two manners to describe a set: a list of elements of the set or using
a predicate.

By the definition above, there are only two possibilities for an element relative to a set:
either member or non-member of the set. Zadeh’s motivation for a more general definition
arose based on the fact that many sets have more than a simpleeither-or criterion for
membership. For instance, in the set ofyoung people, a baby is clearly a member (true),
a 70-year old man is certainly not a member (false), but people aged 30-40 are not easily
associated to either membership groups. Another typical example is the people height.
In this case, it is unrealistic to say that two individuals who differ in height by less than
a millimeter belong to different sets such as short and tall sets. With these problems in
mind, Zadeh proposed the concept ofdegree of membership. By this concept, the degree
of membership is changed gradually fromfalseto true rather than abruptly.

4.4 Universe of Discourse

Theuniverse of discourseor simplyuniversecontains the elements that may be consid-
ered for membership of a given set. The purpose of this definition is to prevent undesir-
able measurements from being taken as a set element. For instance, a negative value in
a system measuring water level. Typical examples ofuniverse of discoursein fuzzy sets
include:
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• The sets > 10 could count on all positive measurements as itsuniverse of dis-
course.

• The set of young people could have all human beings in the globe as itsuniverse of
discourse. Alternatively, the set could have the numbers in the range [0,100] as the
ages of theuniverse of discourse.

4.5 Membership Function

The mapping of every element in the universe of discourse into the fuzzy set space is
accomplished through the use ofmembership functions. These functions follow a pre-
determined curve shape which should reflect closely the event they represent. For every
element mapped into amembership functionthere is a corresponding degree of member-
ship in the range [0,1]. If the degree of membership is different from zero, the element is
said to belong to a set calledsupportof the fuzzy set. Fig.4.1 depicts a membership func-
tion which could represent theyoung peopleexample mentioned above with thex-axis
representing the people ages. Themembership functionis usually represented asµ(x)
and may be chosen from a number of shapes depending on the system purpose.

There are a number of curve shapes that have been used in the research community,
but the most important ones are: the s-shaped (also called a s-curve), the reverse s-curve
(called z-curve), the bell-shaped (may obtained by either aπ-curve or Gauss-curve), tri-
angular, and trapezoidal. The choice of the most appropriate curve shape is subject of
discussions, but the beauty of these open possibilities is that tailored solutions may be
achieved by using customized shapes for the membership function. The non-linear and
exponential membership functions above are mostly generate using the formulas below.

s-curve: It is obtained using three parameters: its zero membership value (α), the com-
plete membership value (γ), and the third piece of information called inflection or crossover
point (β). The inflection is the point in which the degree of membership is 50% true. The
value of the curve for an elementx is computed as:

s(x, α, β, γ) =


0 , x < α
2((x − α)/(γ − α))2 , α ≥ x ≤ α
1 − 2((x − γ)/(γ − α))2 , β ≥ x ≤ γ
1 , x ≥ γ

 (4.1)

The characteristic of the s-curve is shown in Fig. 4.1. The inflection point is normally
chosen by an analyst to represent a desired distribution of interest. The curve moves from
no membership at its extreme left side to full membership at its extreme right side. In
fact, the membership function is pivoted around its 50% degree of membership which is
exactly the point of inflection. The reverse s-curve, called z-curve, may be easily obtained
from 4.1. The z-curve is illustrated in Fig. 4.2.

bell-shaped-curve:The pi-curve is one the most used membership function of the family
of bell-shaped curves. However, its computation is slightly more demanding than the one
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requested by the Gaussian membership function. Both curve shapes provide a smooth
descent gradient from the central value to a zero membership degree along the universe
of discourse. The Gaussian or exponential curve is defined by two parameters: a constant
k from the universe of discourse defining the center of the curve, and another single value
γ specifying the width of the curve. The value of the Gaussian curve in the universe of
discoursex is given by (4.2), and its shape is shown in Fig. 4.3. Note that the inflection
point in this case is automatically determined.

s(x, k, δ) = e
−(x−k)2

2δ2 (4.2)

Apart from the membership function curves above which are termedcontinuousmem-
bership functions, there existdiscretememberships as well. The latter is built from a list
of points (vector) and may be more efficient in terms of processing, but requires more
storage space. Discrete membership functions are not further addressed in this thesis.
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4.6 Singleton

A fuzzy set may be described as a collection of elements in the universe of discourse with
their corresponding degree of membership given by the membership function. Thus, it is
correct to say that a fuzzy set A is a collection of ordered pairs, as follows.

A = {(x, µ(x))} (4.3)
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In the equation above, itemx is part of the universe of discourse andµ(x) is its degree
of membership in A. The single pair(x, µ(x)) is denoted a fuzzysingleton. There are
situations in which a fuzzy singleton is more appropriate to represent a discrete fuzzy
output. Having defined a fuzzy singleton, the complete set A can be seen as the union
of its constituent singletons. In such cases, it is convenient to specify a set A as vector
a as shown in (4.4), in which each positioni (1,2,...,n) corresponds to an element in the
universe ofn points.

a = (µ(x1), µ(x2), ..., µ(xn)) (4.4)

4.7 Linguistic Variables

While an algebraic variable takes numbers as values, alinguistic variabletakes word or
sentences as values.Term setis the name given to the set composed of the values that a
linguistic variable may contain. Using linguistic variables, a variable called height would
assume values such as “short” with degree of membership 0.1, “tall” with a degree of 0.7,
and “very tall” with a degree of 0.9. This concept was introduced by Zadeh to abstract the
inference process, so the fuzzy logic computation may be as simplified but representative
as possible. As a further example, letx be a linguistic variable called temperature. The
term setT of such a linguistic variable might be the one below. Words likevery, a bit, not
so, etc, are called linguisticmodifiers. They are operators on fuzzy sets that change the
meaning of the term to emphasize its tendency.
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T = {“very cold”, “cold”, “not so cold”, “not cold at all” ,

“warm”, “a bit hot”, “hot”, “very hot” }

4.8 Fuzzy Set Operators

Just like conventional sets, fuzzy sets also count on a specific number of operators for
combining and modifying their membership functions in an appropriate manner. A fuzzy
set operation constructs a new set from one or more input sets. For instance, Fig. 4.4
shows that the intersection of sets A and B is a new fuzzy set having its own membership
function. Following the conventional fuzzy logic operations initially defined by Zadeh,
three basic operations fulfill the needs of most typical fuzzy logic based systems. Let A
and B be fuzzy sets on a mutual universe of discourse with membership functionsµA(y)
andµB(y) respectively.

Intersection: theminoperator represents the intersection of A and B. The elements of A
and B are operated one-by-one and the minimum of them is taken as the output.

A
⋃

B = min(µA(x), (µB(y))
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Union: themaxoperator represents the union of A and B. The elements of A and B are
operated one-by-one and the maximum of them is taken as the output.

A
⋂

B = max(µA(x), (µB(y))

Complement: a fuzzy set complement is obtained by subtracting from 1 each element
comprising the set.

A = 1 − µA(x)

The fuzzy set X, resulting from an operation of two or more sets, is said to be a subset
of a set Y if its membership function is less than or equal to the membership function of
Y. This association is represented mathematically asX ⊆ Y. In Fig. 4.4, for example,
(A

⋂
B) ⊆ (A

⋃
B).
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4.9 Inference Process

In order to reason about the data under consideration and produce appropriate outcome,
the inference process relies on animplication methodand arule base. Themodus ponens
inference technique used in classical logic is also employed in fuzzy logic to infer the
existence of a consequent state given an antecedent or premise state, as shown below.
Various implication technique have been propose in the literature, but the most widely
used one is the min-max inference method which is addressed in detail below.

Fuzzy rules: a fuzzy system contains generally a certain number of rules specifying the
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system behavior against the input variables. This defines arulebaseover which the infer-
ence process produces outputs. Each of the rules in the rulebase may havep antecedent
clauses that define conditions and oneconsequentclause defining the corresponding ac-
tion. Typically, a complete rule consisting ofq consequents may be decomposed intoq
rules, each having identical antecedents and one distinct consequent. The general form of
the nth fuzzy rule in the rulebase is:

Rn: if {(x1 is Fn
1 ) and (x2 is Fn

2 ) and . . . (xp is Fn
p )}︸ ︷︷ ︸ then (y is Gn)︸ ︷︷ ︸ (4.5)

antecedents consequent

In (4.5), Fn
1 andGn are fuzzy sets associated to the input and output variablesxK

andy, respectively, withk = 1, 2, ..., p. These rules are referred to asif-then rules. As
an example of (4.5) we could have:if (temperatureis warm)and (humidityis high)then
(room is hot). A fuzzy system is said to be parallel because it performs reasoning on every
rule in this rulebase toward a final inference. However, the operations performed on these
rules are really simple, which is advantageous regarding computational processing.

Implication: The operation of applying the result of the antecedent to the consequent
in the if-then rule is the implication. The most well-known implication method is called
Mamdani implication. This method composes themin-maxinference method explained
in the following.

Min-max inference method: This is by far the most employed and investigated infer-
ence method. The min-max inference method consists of two parts: the implication and
the aggregation. As mentioned above,Mandani implicationis used in it. This implica-
tion method shapes the consequent (the output fuzzy set) on the basis of the antecedent as
follows. Every rule is executed in sequence and the corresponding consequents receives
the minimum of all antecedents. At the end of this process, there are a certain amount of
fuzzy sets (output fuzzy sets) containing the result of the implication process. TheMan-
dani implicationis formally defined as shown in (4.6), whereµant is the the minimum
among all antecedents andµconseq is the current value of the consequent that is going to
change ifµant < µconseq.

µconseq(xi) = min(µant, µconseq(xi)) (4.6)

Once the output fuzzy sets have been obtained, the next step is theaggregationof
these fuzzy sets toward a single final fuzzy set. Thus, the aggregation unifies the out-
puts of all the rules. The inputs for the aggregation are either truncated or changed out-
put fuzzy sets that are generated by the implication process. In the min-max inference
method, the aggregation process results in a fuzzy set containing the maximum value
among those generated by the implication process. This aggregation method is formally
obtained as shown in (4.7), whereµaggr is the current value in the aggregation fuzzy set
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andµconseq(xi) is the elementi obtained in the implication process.

µaggr(xi) = max(µaggr, µconseq(xi)) (4.7)

Since the output of the aggregation is a fuzzy set, it is needed a defuzzification process
to generate a crisp (discrete) value. The defuzzification process then receives the fuzzy
set created by the aggregation and produces a discrete value as the final inference process
output. The most commonly employed defuzzification method is the centroid which is
discussed below.

Fig. 4.5 illustrates the method considering two inputs and two rules only. There are
two fuzzy sets labeled ”low” and ”medium” (linguistic variables) for both the input (x1,
x2) and output (y) membership functions. The crisp input values are mapped into the
membership functions (fuzzification) and assessed according to the rules in place.

Each rule (see Fig. 4.5) is applied to the involved membership functions in x1 and
x2 and the minimum (min) of them is mapped into the associated output membership
function in y (low or medium). The output of each rule is aggregated (max) into the
deffuzifier which gives the final crisp value that will indicate in this case whether the
outcome is to be assigned to ”low” or ”medium”. Several schemes for defuzzification
exist, and for this simplified sort of output membership function (single value in y), the
centroid (also called gravity-of-mass or center of gravity) method gives the weighted
average over all output values in y.

4.10 Defuzzification Methods

Defuzzification is the last step of the fuzzy reasoning process. It converts the fuzzy rea-
soning output, which is a fuzzy set, into a proper crisp value that should accurately rep-
resent the whole inference process outcome. Hence, the defuzzification process receives
a fuzzy set produced in the aggregation procedure and gives as output a single number.
There are various techniques for defuzzification purposes, and the most known is the cen-
troid method. Alternative methods include the height, the maximum, and the means of
maxima, among many others. The four methods work as follows:

Centroid: this method finds the “balance point” of the solution fuzzy region by calcu-
lating the weighted mean of the fuzzy region [Cox94]. In fact, the method determines
the center of gravity (centroid)y of a setB to be the output of the fuzzy logic system.
Considering a continuous aggregate fuzzy set, the centroid is arithmetically given by:

y =

∫
s

yiµB(y)dy∫
s

µB(y)dy
(4.8)

Where S is the support ofµB(y). If discrete variables are used, then the equation above
may be simplified by replacing the integrals with summation, as follows:
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    final value
(weighted average)

Figure 4.5: An example of the min-max inference method

y =

n∑
i=1

yiµB(yi)

n∑
i=1

µB(yi)
(4.9)

Centroid defuzzification is the most widely used method because it has exhibits ef-
fective properties including: 1) the defuzzified values tend to move smoothly around the
output fuzzy region, 2) it is relatively easy to compute, 3) it can be used for both singleton
and nonsingleton fuzzy sets.

Height: This method evaluates first theµBi(y) at y1 and then computes the final crisp
value, wherey1 denotes the gravity center of fuzzy setsBi. The outputyth is thus given
by:

y =

m∑
i=1

yiµB(yi)

m∑
i=1

µB(yi)
(4.10)
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Wherem denotes the amount of output fuzzy sets obtained from theimplicationand
yi is the centroid of fuzzy regioni. This method is easy to use since the center of gravity
in commonly used membership functions are know in advance.

Maximum: This method scans the aggregate fuzzy set and takes the outputy for which
µB(y) is the maximum. The maximum method is applicable in only a few classes of
problems. Its output value is sensitive to a single rule that has most influence on the fuzzy
rule set.

Center of maxima: This method finds in a multimode region, the highest plateau and
then the next highest plateau. The midpoint between the centers of such plateaus is then
selected as the output crisp value.

4.11 Fuzzy Logic Systems

Having introduced the concepts forming the fuzzy logic theory, the purpose of this sec-
tion is to describe how a typical fuzzy logic based systems works. Fig 4.6 [CSH+01]
illustrates the main elements of a system based on fuzzy logic. In principle, a fuzzy logic
system may be seen as composed of four stages:

• Fuzzification.

• Inference or reasoning.

• Aggregation.

• Defuzzification.

Rule Base Membership

Fuzzify
Fuzzy
decision
process

Defuzzify

Fuzzy
inputs

Fuzzy
outputs

Input
data

Decision

Premise
evaluation

Aggregation

Figure 4.6: A fuzzy logic system

The fuzzification is the process by which the crisp input values are mapped into the
membership values, thereby assuming values in the range [0-1]. Once the input data
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is already in the form of fuzzy set, the implication process modifies the output fuzzy
sets (consequents) based on the antecedents of the predefinedrulebase. Afterwards, the
aggregation is performed over the implication outcome aiming to unit all the fuzzy rule
outputs into a single fuzzy set. At last, the defuzzification process converts the aggregate
fuzzy set to a single discrete value which is the result of all processing in the fuzzy system.

The process in Fig 4.6 works as follows. The system first receives crisp data, pro-
cesses it and returns a crisp value pointing out its reasoning decision. The fuzzy decision
process depends naturally on the contents of the rulebase as well as on the shape of the
membership functions. A controller system based on fuzzy logic receives normally a
feedback from the output so it may work on closed loop manner to maintain output sta-
bility.

4.12 Summary

The chapter briefly reviewed Fuzzy Logic theory. The basic concepts toward understand-
ing fuzzification, inference, aggregation, and defuzzification were introduced. These el-
ements make up a fuzzy logic based system. The concepts of this chapter will be used
in chapter 6 where our proposal for packet loss discrimination using fuzzy logic is intro-
duced. Before introducing our fuzzy logic based approach for enhancing TCP in multihop
networks, we address in the next chapter the main problems faced by TCP over these net-
works.



Chapter 5

TCP over Multihop Wireless
Networks: Problems & Evaluations

5.1 Introduction

It is estimated that TCP flows still account for about 90% of the total Internet traffic
today [TMW97]. In the near future, more and more TCP flows are expected to be trans-
mitted over wireless networks. The problem is that a regular TCP implementation cannot
properly handle the medium related constraints inherent in multihop wireless networks.
Even though TCP [Ste94,Dar81,Bra89,Ste97,APS99] has evolved significantly over the
years toward a robust reliable service protocol, the focus has been primarily on wired
networks. As shown in chapter 3, wireless networks are susceptible to high bit error rates
and rely on very limited bandwidth when compared with their wired counterparts. Thus,
traditional protocols like TCP must be adjusted to fit such new environments. This in-
cludes smooth coordination among the mechanisms in the Internet protocol stack layers,
as well as efficient loss recovery strategies. This chapter introduces TCP over multihop
networks, details the main related problems to be addressed by TCP, and discusses the
major related work.

5.2 Impact of Wireless Transmission Medium on TCP

Wireless media are characterized by high, variable bit error rates (BERs), ranging typ-
ically from much less than 1% to over 20%. Compared with wired networks, wireless
networks are susceptible to loss rates that are about two orders of magnitude higher.
Wireless induced losses are caused primarily by fading, interferences from other equip-
ments, and diverse environmental obstructions. Any of these factors may induce either
single or bursty packet losses.

As opposed to wireless media, wired media have negligible BERs. In wired networks,
any packet loss may be safely associated to congestion in the network. For this reason,
regular TCP always handles packet losses as if they were caused by congestion. There are
situations, however, in which TCP should not simply fully reduce its transmission rate in
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the face of a lost packet. Rather, it should determine whether this is indeed the best action
to be taken on the basis of the actual reason causing the lost packet [CRVP98, HV99a,
LS01]. Furthermore, the very scarce bandwidth in wireless channels requires that upper
layer protocols like TCP avoid unnecessary, redundant transmissions into the medium
toward high bandwidth utilization. These issues are discussed further below.

5.3 Interaction between TCP and Medium Access Control

The interaction between TCP and the IEEE 802.11 medium access control protocol is
one of the most crucial problems to be addressed in multihop wireless networks. The fact
is that 802.11 relies on the assumption that every node can reach each other or at least
sense any transmission into the medium, which is not always true in a multihop scenario.
Consequently, in some conditions the hidden node and exposed node problems can arise
inducing capture effects [CGL00,TG99], which can impair not only TCP throughput but
also the fairness among simultaneous TCP connections. We explain next, by means of
particular examples, how these problems can take place.

5.3.1 Impact of Hidden Node and Exposed Node Problems

As described in section 3.3.1, the 802.11 MAC protocol uses the short RTS/CTS control
frames to prevent the hidden node problem and consequently the exposed node problem.
While this strategy works efficiently for scenarios where a maximum of three hops can
be established, it does not scale for larger scenarios. We discuss here how these problems
can impair a TCP connection.

For simplicity, we consider here the same simplified model introduced in section
3.3.1 in which only the transmission range is considered. To include the interference
range here complicates the explanation and does not contribute much to the discussion.
Fig. 5.1 illustrates the same chain topology discussed in section 3.3.1, where each node
can only communicate with its adjacent neighbors. Yet, only a single connection exists
in Figs. 5.1(a) and 5.1(b). In this scenario, node 4 is the hidden node as it interferes with
node 3 preventing it from receiving the RTS originated by node 2, as shown in Fig. 5.1(a).
Likewise, Fig. 5.1(b) illustrates a situation in which node 4 is the exposed node by not
allowing node 3 to transmit the RTS to node 2.

Both problems above can affect TCP throughput as follows. In a hidden node condi-
tion, as illustrated in Fig. 5.1(a), the MAC layer of node 2 invokes its exponential backoff
mechanism which attempts for a maximum number of times (typically 7 times) to re-
transmit (locally) the lost frame. In case it does not succeed, due to high traffic between
nodes 4-5 or persistent disruption, node 2 drops the packet and sends back a route failure
message to node 1. Then the routing protocol in node 1 attempts to find a new route to
the destination, which by itself delays the forwarding and in the worst case leads the TCP
sender to time out, further delaying the retransmission. Under the exposed node condi-
tion depicted in Fig. 5.1(b), a similar problem occurs. That is, if the traffic between nodes
4-5 is relatively large, the pending TCP ACK can be delayed more than the TCP timeout
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Figure 5.1: MAC layer problems affecting TCP performance: a) hidden node, b) exposed
node, c) capture effect

interval. As a result, the TCP sender at node 1 also backs off by timeout.
In short, hidden node and exposed node problems may cause a lack of ACKs at the

TCP sender, leading it to retransmit by timeout. A TCP sender should only invoke the
timeout procedure as the last resort, since this implies in restarting the transmission rate
from the lowest level. Retransmissions by the fast retransmit mechanism are less harmful
to the end-to-end throughput. In the event of a packet loss, this mechanism just halves
thecwnd instead of resetting it to one. However, the fast retransmit mechanism may be
prevented from being invoked if a single packet is dropped just before one of the two
problems above begins. In other words, the fast retransmit mechanism may not receive 3
duplicate ACKs because of either hidden node or exposed node problems, which degrades
performance as a retransmission by timeout is needed in such cases.

The problems above get worse as the number of hops increase. As a consequence,
TCP end-to-end throughput decreases significantly as the number of hops grow as de-
picted in Fig. 5.2. This graphic was obtained by our simulation using the ns2 simula-
tor [EFF+00,EHH+00]. TCP NewReno is the version simulated with the settings shown
in table 7.2. One can see that the throughput decrease is pronounced for short number
of hops (up to 4 hops), and then becomes less aggressive. This happens because the
first nodes (from source to destination) in the chain interfere among themselves just as
explained in the example of Fig. 5.1(a). As a result, the subsequent nodes do not get
enough packets to substantially contribute to the hidden and expected nodes problems, as
we explained in [OB05].
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Figure 5.2: TCP throughput decreases as the number of hops increase

By using appropriatecwnd size for TCP, as explained in section 5.3.3, the effects
of such problems may be mitigated [XS01c, XS01a, CXN03, FZL+03, OB05]. The key
point to understand the interaction between TCP and the MAC layer protocol is to take
into consideration the fact that both hidden node and exposed node problems impose a
limited spatial reuse property [OB04b] for multihop networks. Section 5.3.3 addresses
these features in more detail. For simplicity, and if not strictly needed otherwise, we will
hereafter refer to both problems simply as hidden node problem. This is commonly used
in the literature because both disruptions cause the same undesirable effect in the network
performance.

5.3.2 Capture Effect

The IEEE 802.11 standard has serious problems of unfairness. Its binary exponential
backoff mechanism is not efficient for multihop networks because it suffers from the
capture effect phenomenon. A capture effect refers to the situation in which a node mo-
nopolizes the medium at the cost of the other nodes. This problem may be caused by
either hidden node or exposed node problems [XS01a,FZL+03].

Fig. 5.1(c) illustrates a capture effect situation due to the hidden node problem. There
are two independent TCP connections, one between nodes 2-3 (connection 2-3) and an-
other between nodes 4-5 (connection 4-5). Assuming that connection 2-3 experiences
collisions due to the hidden node problem caused by the active connection 4-5, node 2
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backs off and retransmits the lost frame. As explained earlier in section 3.3.1, at every re-
transmission the binary exponential backoff mechanism tends to impose an increasingly
(although random) backoff interval, reducing the possibility of success for the connection
2-3.

Besides, if the MAC retransmission scheme fail at all, TCP eventually times out and
also invokes its exponential backoff mechanism, further increasing the delay for the next
attempt. As a consequence, the connection 2-3 hardly obtains access to the medium, while
the another connection captures the medium. The MAC protocol is designed in such a
way that if the connection between nodes 4-5 has a large data to transfer, it fragments and
transmits it in smaller data frames with higher priority over all the other nodes. This is
done by using a short IFS between the transfer of each fragment. Clearly, this procedure
also contributes to the unfairness behavior described here.

Fairness problems due to capture conditions have been investigated in various re-
searches including [GTB99, TG99, TCG01]. These proposed solutions attempt to adjust
the length of the interframe space of the MAC protocol. Better fairness is achieved at
the cost of bandwidth, though. It appears that no effective solution is viable by simply
configuring either TCP or MAC parameters. Rather, hidden and exposed node problems
have to be deeply addressed toward a robust approach that would provide not only a fairer
but also throughput effective MAC protocol.

5.3.3 Transmission Interference in Multihop Wireless Networks

In addition to the transmission range in the 802.11 propagation model, there is also a in-
terference range that is typically slightly higher than twice the transmission range. This
means that a given node can only communicate with nodes placed at a maximum distance
defined by its transmission range but can interfere with other nodes located as distant as
its interference range. As a consequence, the IEEE 802.11 standard establishes a spatial
reuse property defining the maximum end-to-end capacity that can be achieved in mul-
tihop networks. Note that for simplicity, interference range was not considered in the
discussions above.

Taking the spatial reuse property into consideration, the design of upper layer proto-
cols can be optimized to mitigate the effects of the hidden node problem for scenarios with
more than three hops end-to-end. This subject has been investigated in detail in [LBC+01]
and revisited in [FZL+03,CXN03,OB05] from a TCP perspective. In short, a TCP sender
should limit its congestion window based on the number of hops end-to-end in order to
improve performance, as explained next.

Fig. 5.3 [LBC+01] depicts a chain topology of 6 nodes. The transmission range is
represented by the full line and the interference range by the dashed line. According to
the explanation above, each node in Fig. 5.3 can only transmit to its immediate neighbors
within its transmission range but can prevent transmission of the other nodes placed up
to 2 hops away from it. From Fig. 5.3, it is clear that the transmission of nodes 2 and
3 will prevent node 1 from transmitting since node 1 is within their transmission and
interference ranges, respectively.
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Figure 5.3: Spatial reuse in multihop networks

Furthermore, the transmission of node 4 will prevent node 2 from sending a response
(CTS) to node 1, thereby impacting node 1 transmission as well. Thus, node 1 will only
succeed in its transmission when node 4 is done with its transmission to node 5. Hence, in
a group of 4 subsequent hops, only one can be active at a time, which imposes a maximum
channel utilization of 1/4 relative to the 1-hop capacity.

This analysis considers an ideal MAC protocol that can schedule the nodes transmis-
sion evenly. Nevertheless, 802.11 does not work so smoothly, and because of that if the
sender at the beginning of the chain is not able to pace its transmission rate to match
the channel capacity, the channel utilization drops. In fact, the factor of 1/4 can only
be achieved if the sender is able to inject into the network the exact amount of data the
channel can forward [LBC+01,OB05].

The explanation above indicates that a TCP sender should limit the size of its con-
gestion window (cwnd) in order to achieve better performance. As described in section
2.3.2,cwnd defines the maximum number of data packets a TCP sender may inject into
the network at once without waiting for an ACK from the receiver. Thus, a limit ofh/4
for cwnd is presumably an optimal setting, whereh is the number of hops in the chain
topology. This means that long chains of nodes with many groups of consecutive 4 hops
have higher limit forcwnd than short chains. Interestingly, a 4-hop chain has an ideal
limit of 1 packet for the TCP’scwnd. We evaluate in 7.2.1, through simulation, the opti-
mal value forcwnd in short multihop networks. The results are in line with the findings
described here.

5.4 Disturbance of Routing Protocol Strategy on TCP

Routing protocols play a key role on TCP performance in environments in which the
network topology changes rapidly. In the event of such changes, the routing protocol
is responsible for discovering a new route connecting sender and receiver. Moreover,
whenever a link interruption takes place, the route discovery has to be performed in a
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quick fashion to prevent the ongoing TCP connection from being disrupted [OB02]. Even
if the topology is static, the routing protocol strategy may impact TCP performance as
explained below.

As mentioned in chapter 3, DSR [JMH04] and AODV [PBRD03] have been consid-
ered the most prominent routing protocols for ad hoc networks so far. Both protocols
work on an on-demand basis in order to minimize broadcasts messages in the bandwidth
constrained medium. These protocols may affect TCP performance as follows.

In DSR routing, every node keeps a cache of routes it has learned or overheard in
order to minimize the transmission overhead involved in periodic route advertisements.
The problem with this approach is the high probability of stale routes in this environment
where mobility as well as medium constraints are normally present. That can happen, for
instance, when a route reply message is in its way back to the sender but the replied route
is no longer valid due to either an involved node that has moved away or a link that has
somehow been interrupted. The problem is exacerbated by the fact that other nodes can
overhear the invalid route reply and populate their buffers with stale route information.
So, unless the stale route can be detected and recovered in a fast manner, TCP can be led
to backoff state, which deteriorates its performance critically.

The DSR problem above was studied in [HV99a, HV99b] where the authors showed
that it can be mitigated by either manipulating TCP to tolerate such a delay or making the
delay shorter so that TCP can deal with it smoothly. These studies showed that disabling
route replies from caches can improve route accuracy at the expense of the routing perfor-
mance in terms of transmission overhead, since every new route discover implies in a new
broadcast to be sent. On the other hand, such an additional overhead is, in general, out-
weighed by the accuracy in the route determination, mainly for high mobility conditions,
resulting in enhanced TCP throughput.

Concerning AODV, Although it is an on-demand routing protocol, it maintains a timer
associate to each route for updating purposes. In environments where the sending node
has regular intervals without any data to send, the overhead caused by routing updates
may be prohibitive. Hence, the main drawback of AODV seems to be the transmission
overhead it imposes for keeping the routes fresh, primary in highly loaded conditions
[BMJ+98].

In summary, the primary difference between both routing protocols is the route cache
scheme used only in DSR and the maintenance scheme with time expiration used only
in AODV. Yet, the characteristics of DSR and AODV above suggest that the routing effi-
ciency and consequently the TCP performance depend not only on the network load but
also on the mobility pattern in place. AODV is expected to perform better under moderate
network load and high mobility since it updates routes periodically. On the other hand,
DSR is likely to outperform AODV in scenarios facing high load and low mobility due to
its route cache scheme.

The discussions here so far focused on mobile scenarios. We discuss now the perfor-
mance of AODV and DSR in static scenarios since this may be significant from a TCP
standpoint. As explained in chapter 3, DSR messages carry in the packet header the full
route information from source to destination. As a result, the more hops the higher the
traffic overhead. This may render DSR inefficient in scenarios where nodes are static
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and the network load is moderate, because its cache of routes plays no significant role
in such scenarios where practically no link interruptions occurs. To further clarify this
issue, we conducted some simulations for comparing AODV and DSR in a static chain
topology. Fig.5.4 illustrates the outcome in which throughput against number of hops is
presented. These simulations were conducted using the ns2 simulation with the general
settings depicted in table 7.2.
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Figure 5.4: Comparison between AODV and DSR

The results in Fig. 5.4 confirm the predictions above in that DSR overhead may
impact TCP performance to a great degree in such conditions. In this particular scenario
where only one flow is present, AODV performs much better than DSR. Hence, from a
TCP perspective, it is indeed difficult to say which protocol is the best. In fact, there are
tradeoffs that must be taken into consideration to meet the application needs. We do not
address this issue further in this thesis, and use only AODV in all subsequent evaluations.

5.5 TCP Dedicated Response to Wireless Constraints

TCP mechanisms are fine tuned not to cause collapse in the network over which it is
running [Dar81]. As discussed in chapter 2, TCP was first designed to work in wired
networks, where packet loss may be safely associated to congestion. This assumption has
been the basis for TCP developments over the past two decades. As described in chapter
2, The main mechanisms aimed at avoiding aggressiveness toward the networks are:
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• Slow start and congestion avoidance.

• Fast retransmit and fast recovery.

• Exponential backoff mechanism.

These mechanisms lead a TCP sender to slow down in the event of a packet loss and
then to increase the transmission rate gradually. The drawback with such approach arises
when TCP is working in a wireless network. In such networks, packet losses are not only
caused by congestion but also by the lossy nature of the wireless medium, as mentioned
in section 5.2.

As a result, TCP performance may be impaired in scenarios where single packet drops
induced by the medium occur often. By too conservatively slowing down at every single
drop, TCP may waste bandwidth since the communication channel is not really facing
congestion. This problem can be avoided if the TCP sender is informed about the na-
ture of any dropped packet. In other words, a TCP sender should be able to discriminate
between congestion and wireless medium induced losses. Long link interruptions also
have to be identified for the sake of good performance. Having these information allows
a sender to take proper decisions when reacting to losses. This subject has been investi-
gated by many researchers as outlined in section 5.7. Packet loss discrimination is also a
contribution of this thesis being addressed in chapter 6.

Another problem originated by the highly conservative behavior of TCP is the use of
the exponential backoff mechanism. This mechanism may induce the protocol to very
long intervals of unnecessary backoff after a relatively long link interruption, as follows.

Fig. 5.5 depicts an example of a long link interruption triggering the TCP exponential
backoff mechanism. The purpose of this figure is sole to aid our explanation rather than
take into account all the details actually involved. More details can be found in [Ste94].
Besides, for the sake of simplicity, we use the term packet instead of segment as explained
in section 2.3. With that in mind, Fig. 5.5 shows how the delayed answer of the exponen-
tial backoff mechanism can lead the TCP sender to a long idle period subsequently to the
link restoration. We call this idle period ”dead time” because it is a real waste of time.

The example in Fig. 5.5 shows that both packet 3 (P3) and the acknowledgment of
packet 2 (ACK3) are dropped due to a link failure (left vertical bar). As the sender does
not receive the confirmation of packet 2 (P2) receipt, it retransmits P2 by timeout after
6 seconds (6 seconds is the typical initial RTO value which changes over time accord-
ing to measured RTTs), and doubles its retransmission timeout (RTO) value. Whenever
the timeout period expires, TCP sender retransmits P2 and doubles the RTO up to the
limit of usually 64 seconds which is the maximum timeout allowed. After generally 12
unsuccessful attempts TCP gives up.

This example shows that shortly after triggering its timer for 64 seconds the link is
recovered, but it is too late for TCP and it will stay over 1 minute frozen, which is indeed
a dead time for the assumed starving connection. In terms of percentage, roughly 61%
(100s/163s) of the interruption is due to link failure and the remaining 39% (63s/163s) is
completely caused by TCP, which is certainly too much wastage.
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Figure 5.5: Drawback of TCP exponential backoff mechanism in multihop networks
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5.6 Traffic Redundancy Avoidance in TCP over Multihop Paths

The reliability provided by TCP is particularly costly in multihop wireless networks
where bandwidth is a very scarce resource. The access to the shared medium is indeed
complicated due to the hidden node problem explained above. Because of that, the ACK
packets used by TCP, to guarantee reliability, render a considerable burden to the wire-
less channel, thereby wasting precious bandwidth. In fact, the overhead caused by ACK
packets is not negligible because the receiver must content for the medium using the RT-
S/CTS control frames exactly as the sender does. In additional, any transmission into the
medium is subject to the random backoff mechanism.

Fig. 5.6 exhibits typical delays experienced by TCP data and ACK packets in a chain
of nodes composed of three hops. This is the result of a simulation run we conducted
using the ns simulator with the general settings illustrated in table 7.2. The figure empha-
sizes how substantial the impact of ACK packets may be. One can see that data and ACK
delays are in the same order of magnitude. In this particular example, the ACK average
delay accounts for over 40% of the total transmission time [OB05]. Thus, less than 60%
is reserved for the useful data packets. We elaborate further on this in chapter 7.
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These observations suggest that minimizing the number of redundant ACKs may re-
sult in better performance for TCP. In addition, the processing overhead largely at the
receiver may be reduced substantially by using delayed acknowledgments, as mentioned
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in section 2.6.1. Note that the cumulative acknowledgment strategy used by TCP permits
that the receiver does not transmit an ACK for each data packet it receives since later
ACKs confirm the receipt of early ACKs.

The practice of reducing ACK transmissions must, however, be very well designed
to prevent adverse effects since essential ACKs are always needed to guarantee effective
TCP performance. A number of delayed acknowledgment strategies have been proposed
in the literature to address this issue, which are presented in section 5.7. This is also a
topic addressed by this thesis in chapter 7, where the advantages of our dynamic adaptive
acknowledgment strategy are explained and evaluations are conducted.

5.7 Related Work

TCP performance in wireless environments has been investigated in several studies such
as [BB95,BSAK95,BS97,TB00,ZT01,MCGW01]. Most of them are meant for cellular
networks where only the last hop communicates through a wireless link. In this section,
we focus on multihop networks in which long chains of wireless links may exist. How-
ever, we also discuss a few related work on cellular and wired networks that are relevant to
our research described here. For the sake of clarity, we roughly classify the main related
work into four classes as follows.

In section 5.7.1, we describe the techniques to improve bandwidth utilization by de-
creasing the number of medium access requests since that is costly in a shared medium. In
section 5.7.2 we gather the proposals that deal with packet loss discrimination in wireless
environments as a means to prevent TCP performance degradation in the face of wire-
less induced losses. In section 5.7.3, we address the schemes that either propose changes
to the MAC layer or simply propose to adjust TCP parameters pursuing better TCP and
MAC interaction. Yet, in section 5.7.4 we describe some important investigations on the
performance of TCP over multihop networks.

5.7.1 Reduced Traffic and Medium Access Requests

TCP DATA and ACK Combination

This work [YYS+04] proposed a technique to combine TCP data and ACK packets into
a single packet in the intermediate nodes that have data and ACK to transmit in opposite
directions. The rationale of this approach is that ACK packets should not use the same
full time slot as data packets since the former is much smaller than the latter by containing
only packet header. When using the same time slot as data packets, ACK packets induce
considerable bandwidth wastage.

Thus, the proposed technique specifies two queues for the intermediate nodes, one for
data packets and another for ACK packets. Whenever an intermediate node has a packet in
both queues, it combines both into a single packet and transmits. Each receiving neighbor
checks the combined packet and handles the packet if it is addressed to itself. Otherwise,
the packet is simply discarded. In case an intermediate node does not have data and ACK
in each queue, the node performs the regular transmission. A specific time slot sequence
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is needed to permit the sending node (intermediate) to overhear the transmission of the
neighbors forwarding the combined packet that has been transmitted.

Simulation results report gains of up to 60% over multihop networks scenarios, but
the simulated scenarios were quite restricted. It is also important to mention that this
approach requires changes in every node in the network, which is a drawback as far
as deployment is concerned. Nonetheless, the idea of reducing the amount of medium
access requests in multihop wireless networks is very important for alleviating collisions.
In chapter 7, we present a proposal to reduce such requests by adaptively adjusting the
receiver to bring down the number of redundant ACKs it transmits.

Large Delayed Acknowledgment

The investigation in this work assessed through simulations the impact of delaying several
ACKs on TCP performance in multihop wireless networks. We call this approach Large
Delayed Acknowledgment (LDA) [EA03] because it proposes to enlarge the amount of
delayed ACKs proposed in the standard delayed acknowledgment (DA). The purposed of
this proposal is to reduce the number of ACKs transmitted by a TCP receiver in order to
mitigate collisions between data packets and ACKs.

The changes proposed here relative to the standard DA specified in RFC 1122 consist
of two procedures. The first one is to combine more ACKs than the two specified in the
standard DA. The second procedure is associated to the session startup. During startup,
the receiver starts not delaying any ACK and then as the incoming data packets arrive the
receiver gradually begins delaying ACKs. First it delays one packet only, then two ACKs
and so on until a maximum of four merged ACKs into a single ACK. The increase in
the number of ACKs to be delayed is triggered by the sequence number of the incoming
data packets. After reaching its maximum, this number is kept fixed. The rationale for
the gradual ACK delay is that at the beginning of the session, there is no data packets in
flight to request ACKs from the receiver. So, it makes no sense to delay the first ACKs in
groups of four at startup but only in steady state condition.

The receiver uses a fixed timeout interval of 100 ms and does not react to packets that
are out-of-order or filling in a gap in the receiver’s buffer, as opposed to the recommen-
dation of RFC 2581. Note that RFC 2581 refines the standard DA by adding response to
out-of-order packets. To prevent the sender from missing ACKs when losses occur, the
sender congestion window is roughly twice higher than the amount of ACKs that can be
delayed at the receiver. The sender limits itscwnd to ten packets.

The main limitation in this approach is the fact that it does not adapt to the wireless
channel. Since it does not react to our-of-order packets, it always has to wait for its timer
to expire before transmitting the buffered ACK. This may be quite inefficient in scenarios
facing moderate to high loss rates. Another problem is the fixed timeout interval in the
receiver. This interval should be based on the gap between the data packets arriving at
the receiver. However, this gap changes not only with traffic conditions but also with the
channel data rate.

With regards to the simulation results, improvements of as much as 50% over the stan-
dard TCP were reported. However, only a single flow were considered in all evaluations,
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which somewhat limits the relevance of the results. Our proposed technique introduced in
chapter 7 addresses this issues by being adaptive to the channel and providing enhance-
ments in a variety of relevant scenarios.

Extended Delayed Acknowledgment Intervals

This work [Joh95] investigated the impact of using extended delayed acknowledgments
intervals on TCP performance in wired networks. It has performed various experiments
in a testbed implemented on a SunOS 4.1.2 workstation. In the experiments, the kernel’s
TCP algorithm was changed to allow different number of combined ACKs by the receiver
instead of only two as proposed in the specification of RFC 1122. The sender was adjusted
to delay higher number of ACKs, ranging from 1 to 20 ACKs.

The main outcome is that delaying ACKs in large numbers is always beneficial in
short-range networks but may be inappropriate for long distance networks, especially if
congestion is occurring. This is a consequence of the high interference of the delayed
ACKs on RTT estimation at the sender. The longer the end-to-end connection the longer
the time for the TCP sender to detected lost packets, which may jeopardize the gains ob-
tained by delaying more ACKs. Since the evaluations were restricted to wired networks,
the results cannot be directly applied to multihop wireless networks. Nevertheless, the
investigations in this work suggest that it may be efficient to reduce redundant ACKs in
multihop wireless networks. We confirm this hypothesis in our approach in chapter 7.

Generation and Use of TCP Acknowledgments

This work [All98] conducted an extensive simulation evaluation on Delayed Acknowl-
edgment (DA) strategies in wired networks. This work showed that TCP performance
may be hurt by delayed ACKs especially during the slow start phase. One reason is that
the exponential growth of TCPcwnd in that phase produces burst of data in the network
inducing packet drops in the routers’ buffers. Another problem lies in the ACK-clocked
strategy of TCP, in which the sender only increases itscwnd by one upon each received
ACK. This limits the sender data rate in scenarios where slow start is often invoked.

The author proposes two mechanisms to handle the side effects of delayed ACKs:
delayed ACK after Slow Startandbyte counting. The former requires signaling between
sender and receiver to keep the receiver informed about whether slow start is active or not
at the sender, so the receiver only delays ACKs when slow start is over. This speeds up
data rate recovery during slow start.Byte countingallows the sender to increase itscwnd
on the basis of the number of bytes acknowledged by each ACK rather than on the amount
of ACK themselves. This procedure can lead to prohibitive bursty traffic conditions, and
so the author also suggested to limit the number of packets sent in response to each
incoming ACK to two packets.

The simulation results showed that both mechanisms above can improve performance
for implementations using delayed ACKs, but the main concern is the potential increase
in packet drops that may happen. Even though this work was only simulated in wired
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scenarios, we believe its findings may be useful for wireless environments as well. We
have not investigated that in depth, though.

5.7.2 Packet Loss Discrimination

TCP-Feedback

TCP-F [CRVP98] is a feedback based scheme in which the TCP sender can distinguish
between route failure and network congestion by receiving Route Failure Notification
(RFN) from the intermediate nodes. The idea is to push the TCP into a snooze state
when such messages are received. In this state the TCP sender stops sending packets and
freezes all its variables such as timers andcwnd size, which makes sense since there is
no available route to the destination. Upon receipt of a Route Re-establishment Notifi-
cation (RRN), via routing protocol, indicating that there is again an available path to the
destination, the sender leaves the frozen state and resumes transmission using the same
variables values prior to the interruption.

In addition, a route failure timer is used to prevent infinite wait for RRN messages.
The timer is triggered whenever an RFN is received, and in case it expires the frozen
timers are reset allowing the TCP congestion control to be invoked normally. Results
from this approach showed gains over standard TCP in conditions where the route re-
establishment delay is high. This is a result of the low retransmissions involved in the
protocol. Its performance was superior for scenarios with high rates as well. Neverthe-
less, the simulation scenario was quite simplified and so the results might not be much
representative. For example, the RFN and RRN messages should be carried by the rout-
ing protocol, but no such a protocol was considered in the evaluation. Therefore, it is
necessary more analysis toward this goal. Our two contributions in this thesis avoid such
problems by being entirely end-to-end.

ELFN-based approach

In this approach [HV99a], TCP also interacts with the routing protocol in order to detect
route failure and take appropriate actions when that is detected. This is done via Explicit
Link Failure Notification (ELFN) messages that are sent back to the sender from the node
detecting the failure. Such messages are carried by the routing protocol that needs to be
adapted for this purpose. In fact, the DSR route failure message was modified to carry a
payload similar to the host unreachable ICMP message.

Basically, the ELFN messages contain sender and receiver addresses and ports, as
well as the TCP sequence number. In this way, the modified TCP is able to distinguish
losses caused by congestion from the ones due to mobility. When the TCP sender receives
an ELFN message it enters a stand-by mode, which implies that its timers are disable
and probes packets are sent regularly towards the destination in order to detect the route
restoration. Upon receiving an ACK packet, the sender leaves the stand-by mode and
resume transmission using its previous timer values normally.

This scheme was only evaluated for the DSR routing protocol where the stale route
problem was found to be crucial for the performance of this modified TCP. Additionally,
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the length of the interval between probes packets and the choice of which sort of packet
to send as a probe were also evaluated. Only the former showed to be really relevant. It
suggests that a varying interval based on RTTs values could perform better than the fixed
probe interval used in this algorithm.

Another interesting investigation performed by this study was the impact of the ARP
protocol on TCP efficiency, which call for improvements. In general this approach pro-
vided meaningful enhancements over standard TCP, as shown in the mentioned reference,
but further evaluations are still needed. For instance, different routing protocols and un-
der congestion conditions should be considered. Yet, more appropriated values for the
probe interval should be determined. As mentioned above, we take a different approach
to tackle this problems from an end-to-end perspective, as discussed in chapters 6 and 7.

ATCP Protocol

Differently from the previously approaches discussed above in this section, ATCP [LS01]
does not impose changes to the standard TCP itself. Rather, it implements an intermediate
layer between network and transport layers in order to improve TCP performance and still
maintain interoperability with non-ATCP machines. This principle is similar to the that
developed in [BSAK95] for cellular networks. ATCP relies on the ICMP protocol and
ECN scheme to detect network partition and congestion, respectively. In this way, the
intermediate layer keeps track of the packets flowing to and from the transport layer so
the TCP congestion control is not invoked when it is not really needed. ATCP works as
follows.

When three duplicate ACKs are detected, indicating a lossy channel, ATCP puts TCP
into persist mode and quickly retransmits the lost packet from the TCP buffer. After
receiving the next ACK, the normal state is resumed. In case an ICMP Destination Un-
reachable message arrives, pointing out a network partition, ATCP also puts TCP in per-
sist mode which only ends when the connection is reestablished. At last, when network
congestion is detected by the receipt of an ECN message, ATCP does nothing but for-
wards the packet to TCP so that it can invoke its congestion control normally.

This scheme was implemented in a testbed and evaluated under different constraints
such as congestion, lossy scenario, partition, and packet reordering. In all cases the trans-
fer time of a given file by ATCP yielded better performance relative to an unmodified
TCP. However, the evaluation scenario was somewhat special, since neither wireless links
nor ad hoc routing protocols were considered. In fact, the experiments were conducted
in a wired network where the actual noisy pattern of wireless channels could not be re-
produced. Moreover, some assumptions such as ECN-capable nodes as well as sender
node being always reachable might be somehow hard to be met. Lack of connectivity
can prevent an ICMP message from getting at the sender, leading it to retransmit contin-
uously instead of entering persist mode. This is a typical problem of network oriented
approaches. As already mentioned, we avoid these sort of problems by using end-to-end
signaling only.
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Packet Loss Discrimination Using Inter-Arrival Times at the Receiver

The key idea of this approach [BV98] comes from the observation that the receiver is bet-
ter suited to detect losses than the sender due to the cumulative acknowledgment scheme
used by TCP. If the receiver monitors the packet inter-arrival interval of the incoming data
packets, it can perceive differences for dropped packets due to the wireless medium from
the ones caused by congestion.

The receiver keeps track of the time interval between the consecutive data packets re-
ceived and performs discrimination decisions as follows. First, it keeps a variable for the
minimum inter-arrival interval (Tmin) measured so far. By checking the sequence num-
ber of the incoming packets, the receiver can infer whether a given out-of-order packet
arrived in the estimated time, too early, or too late. The estimated time here refers to
the number ofTmin that should have been elapsed since the last in-order packet was
received.

Assuming that the sender always has data to send, whenever its buffer overflows
by congestion it drops a packet or a number of packets. This does not introduce any
significant delay in the data stream being transmitted. Thus, the delay between the last
in-sequence packet and the subsequent out-of-order packet received at the receiver should
be much smaller than the expected by the receiver. In other words, this packet arrived too
early indicating a loss due to congestion. Likewise, if the received out-of-order packet
arrives too late, that is associated to loss by congestion.

On the other side, if the sender transmits the packet correctly but it is dropped by the
medium, then the received out-of-order packet arrives around the estimated time. So, the
receiver infers a loss by the medium.

The main advantage of this approach is its simplicity by requiring changes at the
receiver only. Nevertheless, it only applies to scenarios where there is a wired link asso-
ciated to a wireless link that is the bottleneck of the end-to-end connection. Moreover,
this work has considered only one flow in its evaluations, which can hide the fluctuations
in the inter-arrival intervals that may occur for various concurrent flows. We believe that
smoothing the inter-arrival intervals is always needed to ensure robustness and accuracy.
In our proposal in chapter 6, we use smoothed inter-arrival intervals because from our
experience we learned that the measured samples are too noisy to be used directly.

Packet Loss Discrimination using Multiple Metrics

This investigation [FGML02] assessed TCP improvements by using multiple end-to-end
metrics instead of a singe metric. The authors claim that a single metric may not provide
accurate results in all conditions. They used four metrics: a) Inter-packet delay difference
(IDD) at the receiver, b) Short-term Throughput (STT), c) Packet out-of-order delivery
ratio (POR), and d) Packet Loss Ratio (PLR).

IDD is calculated by subtracting the gap between two consecutive packets received
at the receiver from the same gap at the sender. IDD increases with congestion but not
with random channel error or packet sending behaviors. STT is also intended for network
congestion identification, and is less sensitive to short term out-of-order packets than IDD.
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So, STT is assumed to be more robust to transient route changes. To use STT alone is,
however, not recommended due to measurement noise introduced by bursty channel error,
network disconnections, or changing TCP source rates. So, IDD and STT are combined
to jointly identify network congestion.

POR is intended to indicate a route change event. During a route switching time,
packets from the old path may arrive out-of-order at the receiver. POR is increased when-
ever a packet arrives out-of-order. PLR is computed at regular intervals to determine the
number of missing packets in the current receiving window at the receiver.

To specify the values of IDD and STT to be used in associating them to congestion
conditions, the sampled values were classified in high and low if they were within the top
of bottom 30% of all samples. From the measured values, it was observed that congestion
can be safely identified if both IDD is high and STT is low. For a non-congested channel,
a route change or channel error may be the cause of a packet loss. A burst of high POR
sample values is classified as a good indication of a route change, and a high PLR as
a good indication of a high rate of channel error. Finally, a link disconnection can be
identified by the sender if the current network state estimation is non-congestion when a
retransmission by timeout occurs.

Considering the implementation of this approach, the receiver always computes the
network state based on the metrics above for every received ACK. It sends the network
state to the sender in every ACK transmitted. This information is only needed when
a packet drop is detected. If the sender perceives a network disconnection, a probing
procedure is initiated until connectivity is reestablished. Backward compatibility for in-
teraction with traditional TCP is possible.

This scheme has been evaluated in simulation using the ns2 simulator and also via
implementation in linux kernel. The results are positive but focused on mobility condi-
tions. The interaction between TCP and the MAC layer were not investigated in detail.
Our proposal in chapter 7 shows that techniques that simply detects the reason of dropped
packets may not be effective in such scenarios due to the very low maximum bandwidth
utilization that can be achieved using the basic strategy of conventional TCPs.

Packet Loss Discrimination using HMM

In this approach two techniques are used to discriminate packet loss in a wired/Wireless
environment: packet loss pairs (PLP) and Hidden Markov Modeling (HMM). A PLP is
characterized as a pair of packets sent end-to-end where one of them is lost and the other
carries the network condition experienced by both packets until the instant the drop oc-
curs. Using PLP, the distinguishable RTT distributions regarding congestion and medium
error can be determined. In fact, the mean and standard deviation of the distribution
formed by RTT measurements are associated to the state of the network during the time
of a packet loss. An HMM is then trained using only RTT of interest, i.e., those observed
in the neighborhood of the dropped packet.

The HMM design uses a 4-state model trained with 10000 loss pair RTT measure-
ments that are collected from a simulation using the ns2 simulator. The RTT distribution
for three conditions are simulated: congestion, medium error, and both. Afterward, the
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HMM is trained taking the RTT measurements obtained when both constraints are in
place. The RTT distribution clearly exhibits a distinguishable pattern for network con-
gestion. That is, under congestion, the RTT of congestion loss pairs are very concentrate
around the RTT value corresponding to buffer overflow. On the other hand, the RTTs of
wireless loss pairs are wide spread.

Comparing the RTT distributions with the Gaussian models for each state of the
trained HMM, a close match between one of the states and congestion is established.
A labeling technique is then proposed to assign each of the HMM states to either conges-
tion or medium error constraints. The evaluations showed that the proposed technique can
provide high labeling accuracy in most practical network configurations. In particular, if
buffer are not always overloaded, it can very accurately attribute congestion to congestion
while simultaneously provide high accuracy on labeling wireless induced losses.

This proposal is interesting for not requiring any specific support from the network
and also for using only passive measurements via RTTs. In addition, its results are su-
perior to the Vegas predictor that has been proposed in the literature. The main concern
with this approach seems to be the processing overhead at the sender since HMM are
well-known as heavy algorithms as far as computation are concerned. Our technique in
chapter 6 is greatly influenced by this work in that we also observe that RTT measure-
ments can be useful to discriminate losses in ad hoc networks. However, instead of using
HMM, we make use of fuzzy logic to alleviate computational processing at the sending
node.

5.7.3 MAC and TCP adjustments

Setting TCP Congestion Window Limit on Multihop Networks

The key idea of this proposal [CXN03] lies in the observation that a TCP sender should
limit its congestion window in order to avoid collisions and further degradation in the
wireless channel. In fact, a TCP sender should limit itscwnd to the bandwidth-delay
product of the wireless channel. Such a limitation is dependent on the number of hops
in place, namely the round-trip hop count (RTHP). Thus, this work proposes to set the
congestion window limit (CWL) on the basis of the RTHP dynamically.

Irrespective of the MAC layer strategy in place, the upper bound for CWL is given by
k·RTHP, with1/8 < k < 1/4. In the case of 802.11,k = 1/5 is found by simulation to
be the best value. The conditions in which these specifications were established validate
the conclusions of this work for a chain topology only. Further investigations are indeed
needed to determine whether these results can be extended to more complex scenarios.
We show in chapter 7 that this approach plays not significant role for short-range multihop
networks of up to approximately ten hops since a fixed CWL of three packets is enough
for providing acceptable performance in such cases.

The Link RED and Adaptive Pacing to Improve TCP in Multihop Networks

This work [FZL+03] first investigates optimal settings for TCP over 802.11 with regards
to TCP congestion window limit in order to improve bandwidth utilization. It then pro-
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poses two techniques to improve TCP performance in multihop networks: the link RED
(LRED) and the adaptive pacing. The former seeks to react quickly to link overload, while
the latter seeks to improve spatial reuse. The combination of both techniques improved
TCP throughput as much as 30%.

By simulation and evaluation, this work shows that in multihop wireless networks
TCP should not use a largecwndsize as in wired networks for getting high end-to-end
throughput. Largecwndsize render degradation in spatial reuse and consequently in TCP
throughput. It is observed that there is an optimalcwndwith which TCP achieves best
throughput. For a chain topologycwndshould be set to approximatelyh/4, whereh is the
number of hops in the chain topology. This setting ensures best spatial reuse property. In
addition, this work investigated the packet drop behavior in multihop wireless networks.
It found that most of drops in such networks is due to the link layer contentions rather
than congestion.

The LRED algorithm aims at improving wireless link’s drop probability by monitor-
ing the link drops of the 802.11 MAC protocol at each node. In the conventional RED
algorithm, if the queue size exceeds a minimal threshold the drop curve grows linearly as
more data arrive. LRED does not use the queue size for specifying its minimal thresh-
old but the average number of recent retransmission attempts by the node. Thus, if this
number exceeds a minimal threshold a dropping/marking probability is calculated. In this
calculation, the minimal threshold as well as the number of recent retransmission attempts
are taken into account and the result is limited to a maximum value. This mechanism is
claimed to be proper to improve TCP throughput, to provide a fast network overload
signaling to TCP, and also to improve fairness among the competing flows.

The adaptive pacing algorithm is also implemented at the link layer. Its purpose is
to enhance spatial reuse by balancing traffic distribution in the network and reinforcing
better coordination on forwarding nodes along the data path. In fact, this mechanism
aims to prevent the exposed node problem addressed in section 5.3.1. The motivation for
this mechanism comes from the observation that in 802.11 a node defers its transmission
only to prevent collision with its immediate downstream node, but that is not enough to
avoid that nodes two hops away from the sender induce collisions. Then adaptive pacing
imposes, if needed, a additional delay for the nodes transmission.

The adaptive pacing mechanism works combined with the LRED algorithm as fol-
lows. If LRED first determines that its minimal threshold above has not been reached;
it sets its drop probability to zero, computes its backoff period as usual, and starts the
adaptive pacing. In the next invocations under the same condition, the backoff time is
increased by the pacing mechanism. The additional delay to the backoff time is equiv-
alent to the transmission time of the previous data packet. This is shown to provide a
better coordination among the involved nodes because the higher deferral time mitigates
collisions.

The evaluation results showed that the combined LRED+pacing can boost TCP through-
put as much as 30% in a chain topology. In addition, this changes seem to lead TCP to
stabilize at a window size near the optimal value. The longer the chain the better the im-
provements due to the better spatial reuse provided by these changes. In grid topologies,
less improvements are observed but good fairness are obtained. Results from simulations
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match experimental evaluations.
This is certainly an interesting proposal but it requires changes at each node in the

network. Furthermore, in the evaluations the routing algorithms were disabled for sim-
plicity. From our experience, we believe that routing protocols can play an important
role even in static topologies. This occurs because whenever a link retransmission fails
completely, the routing strategy is invoked to generally start a route discovery. The time
involved in such route discovery depends on the features of the routing strategy in place
and may disrupt TCP performance significantly. In all our evaluations in this thesis we
consider routing protocols enabled for ensuring a more realistic simulation setup.

TCP DOOR

This approach [WZ02] imposes changes to TCP code but does not require intermediate
nodes cooperation. It focuses on the idea that out-of-order (OOO) packets can happen
frequently in ad hoc networks as a result of nodes mobility, and it might be enough to
indicate link failure inside the network. In this way, TCP OOO detects OOO events and
responds accordingly as explained below.

Based on the fact that not only data packets but also ACK packets can experience
OOO deliveries, this algorithm implements a precise detection of such deliveries at both
entities: sender and receiver. For this, additional ordering information is used in both
kinds of packets, which are conveyed as TCP options being one-byte option for ACKs
and two-byte option for data packets. So, for every packet sent the sender increments
its own stream sequence number inside the two-byte option regardless whether it is a re-
transmission or not (standard TCP does not increment sequence number of retransmitted
packets).

This allows the receiver to precisely detect OOO data packets and notify the sender
via a specific bit into ACK packet. Additionally, because all ACKs associated with a
given missing data packet have identical contents, the receiver increments its own ack
stream sequence number inside the one-byte option for every retransmitted ACK, so that
the sender can distinguish the exact order of every (retransmitted or not) sent packet.
Therefore, the explained mechanisms provide the sender with reliable information about
the order of the packet stream in both directions, allowing TCP sender to act accordingly.

After detecting OOO events, TCP sender can respond with two mechanisms: tem-
porarily disabling congestion control, and instant recovery during congestion avoidance.
In the former, TCP sender keeps its state variables constant for a while (T1) after the
OOO detection. The rationale here is that such condition might be short (route change)
not justifying the invocation of the congestion avoidance mechanism. In the latter, when
an OOO condition is detected TCP sender checks if the congestion control mechanism
has been invoked in the recent past (T2). If so, the connection state prior to the conges-
tion control invocation is restored, since such an invocation may have been caused by
temporarily disruption instead of by congestion itself.

In terms of evaluation, different scenarios combining all the mechanisms above men-
tioned were simulated. Also, the effects of the route cache property of DSR routing
protocol on TCP DOOR performance were considered. The main results showed that
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only sender detection mechanism (ACK OOO detection) should be enough for good per-
formance. Both response mechanisms showed to be important, but the instant recovery
during congestion avoidance performed better than temporarily disabling congestion con-
trol. The DSR route cache impaired the results.

In general TCP DOOR improved TCP performance significantly, 50% on average.
Therefore, the overall published results were positive. Nevertheless, the assumption that
OOO packets are exclusive results of route disturbance deserves much more careful anal-
ysis. As stated by the authors themselves, multipath routing algorithms (like TORA)
can also induce OOO packets that are not necessarily related to route failures. Besides,
diverse other factors can cause path asymmetry inducing OOO events as well.

Fixed RTO

This scheme [DB01] relies on the idea that routing failure recovery should be accom-
plished in a fast fashion by the routing algorithm. As a result, any disconnection should
be treated as a transitory period which does not justify the regular exponential backoff
mechanism being invoked, as this can cause unnecessarily long recovery delay. So, it
disables such a mechanism when two successive retransmissions due to timeout happen,
assuming it indicates route failure. By doing so, it allows the TCP sender to retransmit at
regular intervals instead of at increasingly exponential ones.

In fact, the TCP sender doubles the RTO once and if the missing packet does not arrive
before the second RTO expires, the packet is retransmitted again and again but the RTO
is no longer increased. It remains fixed until the route is recovered and the retransmit-
ted packet is acknowledged. In [DB01] the authors evaluated this proposal considering
different routing protocols as well as the TCP selective and delayed acknowledgments
options. They report that significant enhancement were achieved using fixed-RTO with
on-demand algorithms, and only marginal improvements were noticed regarding the TCP
options mentioned. Nevertheless, as stated by the authors themselves, this proposal is
limited to wireless networks only, which makes it somewhat discouraging as interopera-
tion with wired networks seems to be really necessary in future implementations.

5.7.4 TCP Evaluations

Estimating the Ad Hoc Horizon for TCP over IEEE 802.11 Networks

This work [TO04] has conducted an extensive simulation evaluation to determine the
feasibility of TCP over ad hoc networks. It shows that TCP over the IEEE 802.11 standard
faces a limit of 2 to 3 hops or 15 nodes to provide useful performance. This limit is
termed the “ad hoc horizon”. Beyond this limit TCP performance is shown to degrade to
unacceptable levels.

This work challenges some past work that have evaluated scenarios containing either
very large number of nodes or very long networks in terms of hops. In contrast to these
previous investigations, [TO04] considered worst cased scenarios results to show that an
unlucky user may face substantial performance problems in his/her TCP connection.



5.7. RELATED WORK 87

Several topologies called “Beam star” were evaluated in such a way that the number of
both hops and nodes could easily be adjusted and their effect evaluated. The evaluations
showed that TCP connections may experience up to 30% stall-ratio when using AODV
routing protocol. By disabling link layer feedback for AODV the stall-ratio rised to 60%.
These degradation occurred for scenarios exceeding the ad hoc horizon. TCP fairness was
another metric evaluated. These results showed that after two hops, TCP becomes quite
unfair concerning the bandwidth distribution among the competing TCP connections.

A proactive routing protocol was also considered, and the results showed that it de-
graded TCP ever more. Short HTTP flows competing with a large FTP flow were also
simulated to provide a more realistic evaluation. Similarly to the case where only FTP
flows were in place, the results exhibited high degradation after 2 to 3 hops for the HTTP
flows. The evaluations above did consider mobility. To assess the fluctuations of mobil-
ity, a packet drop rate of 2% was introduced in the scenario where FTP and HTTP flows
shared the medium. The results for a 3-hop scenario was even worse to the HTTP flows.

The main outcome of these results is that the ad hoc horizon is really low, being in the
2 to 3 hops range and extends to a dozen nodes. Cross layer coordination could improve,
but most likely not more twofold. So, routing protocols should be optimized to their
small-scale features rather than large-scale ones.

The contributions in this thesis are in line with this work in that we also argue that
only short-range ad hoc networks are feasible today. The ad hoc horizon is limited by the
hidden node problem discussed in section 5.3.1. In addition, we confirm that TCP can be
fined tuned to interact more smoothly with the IEEE 802.11 standard. In chapter 7 we
introduce our smart acknowledgment strategy to mitigate such problem by minimizing
collisions.

Investigating the Performance of TCP in Mobile Ad Hoc Networks

The evaluations in this work [PH02] first investigated the effect of path length on TCP
throughput, the fairness among concurrent TCP flows, and the impact of two on-demand
routing protocols (AODV and DSR) on end-to-end TCP throughput. Then a quantitative
analysis on the effects and interactions of mobility and routing on TCP throughput was
performed. In particular, the following factors were evaluated: routing, node speed, and
node pause time. The purpose of this quantitative analysis is to highlight that it is impor-
tant to know not only which factors impact the network performance but which one has
the greatest impact. In addition, it is also helpful to know how much of influence a given
factor suffers from the others. This can assist protocol design and performance tradeoffs.
All evaluations were carried out by simulation using the Glomosim network simulator.

The evaluation results show that: a) TCP throughput decreases significantly as the
path length increases, b) the fairness of the network is very poor among concurrent TCP
flows, c) the routing protocol DSR performed better than AODV. The low performance
for both long paths and concurrent flows is assigned to the inefficiency of the MAC layer.
Yet, The overhead associated to AODV is suggested as the reason for its low performance.
The quantitative analysis finds that among the three factors evaluated, routing protocol
has the greatest impact on TCP performance. In addition, there is a strong interaction
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between node speed with pause-time and routing protocol because both node speed and
pause-time determine the number of topology changes over a time interval.

This is an insightful work toward better understanding TCP in mobile ad hoc net-
works, and so it has certainly its merit. Nevertheless, the conclusions are based on simu-
lations conducted for single chain topologies only. Different scenarios need to be included
in these evaluations to render the results more general. In this chapter and in chapter 7
we elaborate on the problems of TCP in such networks, and in general our findings are in
accordance with the results of this work.

5.8 Summary

This chapter discussed and evaluated key problems faced by TCP over multihop wireless
networks, and presented the main related work. TCP is expected to be deployed in ad
hoc networks and possibly also in sensor networks due to interoperability reasons. This
chapter focused on multihop ad hoc networks as these are the primary target of this thesis.

Ad hoc networks rely on the IEEE 802.11 standard to control the wireless medium
access. This standard is, however, not very efficient in relatively long-range multihop net-
works largely because of the hidden and exposed node problems, as well as the capture
effect. The longer the network the more degradation is experienced by the end-to-end
connection. Concerning Routing protocols for ad hoc networks, AODV and DSR propos-
als seem to be the most promising ones to be deployed in future ad hoc networks. These
schemes impact TCP performance in distinct ways. The choice of a routing protocols
appears to depend on tradeoffs between delay and transmission/traffic overhead.

TCP performance is affected by the inappropriateness of the original TCP mecha-
nisms for wireless networks. By associating any packet loss to congestion, TCP may
slow down too often and waste precious bandwidth when those losses are a result of
channel errors. The next chapter addresses this issue further, presenting our fuzzy logic
based mechanism for packet loss discrimination in multihop networks.

This chapter also showed that using largecwnd may be undesirable for tcp as this
may induce higher losses because of the limited spatial reuse imposed by the MAC’s
hidden node problem. Having an ACK for each sent packet leads to bandwidth wastage
as well. Chapter 7 presents our dynamic acknowledgment strategy as a smart mechanism
to manage TCP ACK generation in multihop networks.

Finally, the related work presented in this chapter made it clear that many issues
remain to be addressed in this challenging networks. In general, the proposed solutions
are very much focussed to solve a single problem, while the big picture is mostly not
addressed.



Chapter 6

Packet Loss Discrimination Using
Fuzzy Logic

6.1 Introduction

The problems faced by a regular TCP over multihop wireless networks requires adjust-
ments in the fundamental principles of the protocol. As explained in chapter 3, multihop
networks are prone to much higher bit error rates than their wired counterparts. As a
consequence, the TCP congestion control mechanisms lack robustness in these lossy en-
vironments. To address this problem, we propose a technique for assisting the TCP error
detection mechanism to distinguish between congestion and medium induced errors. Ac-
curate information about the actual cause of a dropped packet might be useful for a TCP
sender to avoid waste of bandwidth and not to induce congestion collapse. Our proposal
relies on Round-Trip Time (RTT) measurements to estimate the internal network state
through a fuzzy logic inference system. This chapter investigates RTT patterns in the
related environments, introduces our fuzzy logic based mechanism, and shows the evalu-
ation results.

6.2 Packet Loss Discrimination

TCP has been successful in the global Internet in preventing network collapse since the
early 1980s. The key point for this success lies in its adaptive congestion control that
works on an end-to-end basis, being independent of underlying protocols in the network.
As described in section 2.3.3, a TCP sender detects dropped packets by either the re-
transmit timeout or the fast retransmit mechanisms. This detection procedure is generally
callederror detection. After perceiving an error, i.e., a dropped packet, the congestion
control is said to enter anerror recoveryprocedure. The error recovery consists of two ac-
tions: retransmission of the lost packet and reduction of the congestion window [TM02].

In summary, TCP reacts to perceived losses by reducing the sender transmission rate
because the error is assumed to be a congestion result. To associate congestion to dropped
packet is efficient in wired networks where the typical bit error rate due to the medium is

89
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negligible. Thus, to slow down upon a packet drop is the correct action in wired networks
because that alleviates congestion within the network.

In ad hoc networks, however, packet loss can be caused not only by congestion but
also by the lossy medium as well as by mobility induced link interruptions. So, the
basic assumption upon which TCP was designed is not always satisfied in these multihop
environments. Because of that, the TCP error detection mechanism may arise deficiencies
when required to work in such complex environments. The problem is that TCP should
not necessarily reduce its congestion window in half when reacting to a dropped packet.
Rather, the TCP error recovery mechanism should be informed by the error detection
strategy about the actual cause of any packet loss so the recovery mechanism can take the
most appropriate action.

The explanations above suggest that a robust TCP sender should have dedicate ac-
tions for each of the constraints found in ad hoc networks, namely congestion, channel
error, and link interruption. Considering end-to-end approaches, link interruptions will
always be detected by the retransmission timer. The exact protocol response will depend
on the current condition inside the network. This means that the sender has to be per-
manently aware of what is going on within the network so that it can take proper action
upon loss detection. Hence, the TCP error detection mechanism should distinguish be-
tween congestion and medium induced losses. This task is generally termed packet loss
discrimination, and various investigations on this subject have been carried out in recent
years, as discussed in section 5.7.2.

The novelty of our proposal presented in this chapter regards the fact that it infers the
internal network state on an end-to-end basis using an intelligent algorithm based on fuzzy
logic [OB04a,OB04c]. This is challenging to design but easy to deploy as the changes are
restricted to the end nodes. The designed fuzzy logic engine receives RTT measurements
over predefined intervals and make inference on the measurements to decide whether the
network is facing congestion or channel error effects.

RTT mean and variance are shown to have distinct behavior whether the network
is under congestion or medium error constraints. However, the noisy nature of the RTT
measurements requires an elaborate algorithm for efficient discrimination. By using fuzzy
logic, the continuous and imprecise behavior of the information can be handled without
the necessity of arbitrary rigid boundaries. Besides, it is computationally inexpensive.
These features render fuzzy logic quite suitable for making inference on RTT measure-
ments where imprecision and uncertainties are effectively present and the processing re-
quirements (at the end nodes) must be as low as possible.

6.3 Round-Trip Time Patterns

This section investigates RTT behavior in typical ad hoc networks. The purpose of this in-
vestigation is to determine how RTT measurements may be useful to packet loss discrimi-
nation in these networks. In ad hoc networks, RTT values reflect the impact of the follow-
ing distinct factors: congestion, wireless channel induced errors, changes in the number
of hops crossed by the connection between sender and receiver, packet size, and lower
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layer protocol mechanisms such as MAC layer retransmission strategy [XS01b,OB02].
We assume in this work that the packet size of the connection and the lower layer

protocols are fixed. Both assumptions should, however, not be too restrictive for future
ad hoc networks. Fixed packet size can achieved through proper coordination between
application and the transport protocol, and so their use should not be costly. Regarding
the lower layer protocols, the IEEE 802.11 MAC protocol [CWKS97, IEE99, CGL00] is
already standardized and both AODV [PR99,PBRD03] and DSR [JM96,JMH04] routing
protocols are the most prominent frameworks to be standardized in the near future. So,
it is reasonable to consider that these two routing protocols will be effectively present
in future ad hoc networks. This is important because both AODV and DSR can ensure
symmetric links, which is also a requirement of our initial approach proposed here.

Therefore, taking the two assumptions above into consideration (fixed packet size
and conventional lower layer protocols such as 802.11 and AODV), RTT values might be
really useful for distinguishing the effect of the other two factors, namely congestion and
bit error.

We have shown in [OB03] that both the growth in the number of hops between sender
and receiver and congestion conditions may impose similar behaviors to RTT measure-
ments. Thus, sender and receiver should exchange information to detect the exact number
of hops in place. We do not address this issue further here, although it can be easily im-
plemented using the Time To Live field in the IP header [Ste94]. Actually, we focus here
on the discrimination of packet losses by congestion from packet losses by channel error,
having a fixed number of hops end-to-end.

6.3.1 Simulation Environment

Fig. 6.2 shows the result of two simulation runs using the ns-2 simulator [EHH+00,
EFF+00] for a chain of nodes topology, as in Fig. 6.1. AODV and IEEE 802.11 are the
routing and MAC layer protocols in place, respectively. The packet size is set to 1000
bytes, and both the main flow and the background flow are generated by FTP applications
over TCP Reno version. A uniform distribution function is used as wireless channel
error pattern for generating the different levels of BERs, and the wireless bandwidth is
actually 1 Mbps. We use hereafter Packet Error Rate (PER) instead of BER to represent
the intensity of channel error constraint because PER is the metric in fact simulated.

Receiver
hop 1 hop 3hop 2

Sender

Figure 6.1: Chain topology with 3 hops (3-hop scenario)

6.3.2 RTT Measurements under Heterogeneous Conditions

Fig. 6.2(a) depicts RTT and SRTT (Smoothed or average RTT) measurements on a typ-
ical 2-hop ad hoc network under varying levels of congestion and distinct packet error
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Figure 6.2: RTT characteristic under congestion and wireless losses
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rates, starting at 100 seconds. Between 100 and 400 seconds there are three stages of
congestion, i.e., 1 to 3 competing flows. Between 400 and 600 seconds, there is no con-
gestion, but only two levels of packet error rate, i.e., 5% and 10%. At last, between 600
and 800 seconds there is only one competing flow with a packet error rate of 5%. In the
last 100 seconds, the channel is free of any constraint again. Fig. 6.2 illustrates the same
conditions but for a 3-hop scenario.

Fig. 6.2 shows clearly that under operative congestion conditions (having at least
a minimum flow of ACKs) and without mobility, RTT mean values (roughly given by
SRTT) should suffice to indicate congestion inside the network. The channel error con-
straint increases RTT as well, but at a far lower degree. The only possibility of mistake,
although rare, would be a very high level of packet error rate being misdetected as con-
gestion, since high PERs could increase the RTTs considerably. We call this possibility
critical overlapfor easing reference to it below.

We observe that the possibility above is quite low because at such a high level of
PERs practically no packet gets through. Besides, typical wireless environments do not
have so lossy channels in steady state conditions. If a certain scenario does face such
level of losses, then the best action to take appears to be a reduction of the transmission
rate. Thus, in such cases a misdetection would not cause relevant problems.

Nonetheless, to make the distinction of congestion from wireless induced losses even
more robust, RTT variance can be used to address the remote possibility mentioned above,
as indicated in table 6.1. The values in this table are computed over each interval using
(6.1) and (6.2) presented in section 6.5.1. Table 6.1 shows how much the RTT variance
increases under channel error conditions. It is worth to compare the case in which there
is just one competing flow (100-200) with the instant of the highest PER (500-600). One
can notice here that for both scenarios (2-hop and 3-hop) the channel error constraint
induces higher RTT variance, namely 215 and 537 against 97 and 135 for both scenar-
ios, respectively. For lower congestion level, which could be achieved with other forms
of competing traffic, the discrimination would be even better since the variance under
congestion would be smaller.

Table 6.1: RTT Mean and Variance
2-hop 3-hop

Interval mean variance mean variance
0-100 (1 flow) 22 7 32 25
100-200 (2 flows) 82 97 99 135
200-300 (3 flows) 136 304 162 246
300-400 (4 flows) 128 820 189 980
400-500 (5% PER) 32 176 47 646
500-600 (10% PER) 47 215 60 537
600-800 (2 flows + 5% PER) 115 840 136 863

In the last part of the simulation under constraint (600-800) depicted in Figs. 6.2(a)
and 6.2(b), there is only one competing flow combined with a packet error rate of 5%. It
can be seen that both the RTT mean (roughly given by SRTT) and variance grow (higher
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magnitude of the oscillations). Table 6.1 supports this observation as well. The key
point here is to note that the congestion detection has priority over the channel error
detection, as a TCP sender has to slow down anyway under congestion regardless of
simultaneous channel error losses. In other words, if congestion is perceived, then the
detection algorithm can ignore the channel error detection.

6.3.3 RTT Measurements under the Critical Overlap

In order to identify thecritical overlapmentioned above, we conducted further simula-
tions focusing on the conditions of interest. We considered only the 3-hop scenario since
the procedure is the same for all other cases. As discussed in the prior section, it might
happen that a low congestion condition is misdetected as a lossy channel. Because of that,
we took the case in which the main connection is facing only one competing flow and the
one in which only a PER of 10% constraints the medium. By doing so, we can compare
the lowest RTT mean for congestion against the highest RTT mean for the medium in-
duced errors. We also ran longer runs of 500 seconds in each condition for better pattern
definition.

For the sake of clarity, the simulation results, after applying (6.1) and (6.2), are de-
picted as histograms in Figs. 6.3 and 6.4. From Fig. 6.3, one can observe that even though
the level of PER is relatively high, it is still possible to distinguish both conditions (error
and congestion) by simply comparing their RTT mean values. Fig. 6.3(a) shows that the
experienced RTT mean values for the high PER are concentrated around 50 ms. Like-
wise, Fig. 6.3(b) shows that RTT variance values for the low congestion level is centered
around 100 ms.

In Fig. 6.4, we have the variance distribution for a channel without any constraint,
a channel facing congestion, and a channel facing channel error. Comparing Fig. 6.4(b)
with 6.4(c), one can see that in this measurements the channel error constraint imposes
indeed higher spread to the RTT variance. Nevertheless, there is an overlapping area
roughly in the range (50,200), which has to be taken into consideration in the evaluation
of these measurements. Section 6.6.1 shows how the fuzzy logic engine can be set in such
cases.

6.3.4 Discussions

The evaluations above make it clear that we need a sort of pattern recognition algorithm
for monitoring the RTT values and making decisions about the internal state of the net-
work. This is not a trivial task though, given the uncertainties inherent in such measure-
ments. Additionally, the decisions have to be made in a quick fashion if improved end-to-
end performance is to achieved. Hence, we explain in the sections below how fuzzy logic
concepts may be used for distinguishing between congestion and channel induced losses,
taking RTT mean and variance values as input variables.
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Figure 6.3: Distribution of RTT mean in a 3-hop multihop network

6.4 Fuzzy-based Error Detection

This section outlines the main features of our proposal for an improved error detection
strategy based on fuzzy logic. The proposed Fuzzy-based Error Detection Mechanism
(FEDM) only relies on fuzzy logic for discriminating losses due to congestion from losses
by channel errors. Losses by link interruptions are identified differently, as shown in
[OB03], since no ACK is received in such conditions. In fact, losses by link interruptions
lead the retransmission timer at the sender to time out.
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Figure 6.4: Distribution of RTT variance in a 3-hop multihop network
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After timing out, the sender reduces its transmission rate to a minimum, which is
not completely inefficient in these cases. That is, in these situations the link has been
presumably interrupted for some time, and so the time the sender takes to recover its
transmission rate has relatively low relevance.

The designed fuzzy engine has to be adjusted in accordance with the number of hops
traversed by the connection, because the RTT measurements are obviously dependent on
the number of hops being used. Because of that, the FEDM needs an additional mecha-
nism to monitor permanently the number of hops end-to-end.

Fig. 6.5 depicts the general architecture of our approach. The NH (Number of Hops)
and RR (RTT increase Rate) blocks are needed to detect the number of hops in the end-
to-end connection and steep increases in the RTT measurements, respectively. C, U and
B represent the signaling flags Congestion, Uncertain, and Bit error, respectively. The
purpose of each of these elements are explained below.

The NH block keeps track of the number of hops in the TCP session so that the Im-
proved Error Detector (IED) can set the Fuzzy engine parameters properly. This is needed
because such parameters change according to the number of hops in the end-to-end con-
nection, i.e., the more hops the higher the range of the delays. This is a weakness of
the model that requires the parameters for the fuzzy engine to be determined in advance.
Thus, the parameters for every number of hops have to be determined in advance by
simulation or experiment.

Having distinct settings for every connection length, in terms of hops, solves the prob-
lem that arises by the similarity of RTT behaviors (steep increase) when either congestion
starts or the number of hops between the end nodes increase [OB03]. A sort of learning,
adaptive mechanism could be used here to adjust the fuzzy logic settings more appropri-
ately. We do not investigate further this issue because our goal here is focused on the
evaluation of the fuzzy logic concept suitability for packet loss discrimination rather than
on designing an optimized system. This is left for future work.

IED

Fuzzy
engine

Error
recovery

mechanism

Timers
RTT rate

Changes
in hops

ACK
C

U

B

NH RR

Output flags

Figure 6.5: Fuzzy-based error detection mechanism

We propose to use the Time To Live (TTL) field within the IP header for identifying
the mentioned number of hops, mainly because it is standard in current implementations.
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This demands a simple interoperation between transport and network layer protocols and
the use of either an IP or TCP option inside the packet header. Upon packet receipts,
the NH block may use compute the exact number of hops crossed by the connection by
comparing the current TTL with the TTL sent.

The RR block monitors the rate at which the RTT changes. The idea here is to set
a threshold for triggering detections of persistently high rate increase in the RTTs faster
than the fuzzy engine might do, thereby avoiding network collapse. Specifically, this
mechanism detects a predefined numbern of subsequent increases in RTT, in which every
increment is larger than a given degreeα relative to the RTT value at the beginning of the
congestion.

Fig. 6.6 illustrates a typical RTT pattern when a congestion-free channel starts be-
coming congested, exactly as shown in the simulation results in Fig. 6.2. From simu-
lations we noticed that when congestion starts, RTT rapidly and persistently increases.
Hence, monitoring the accumulated increaseα in RTT in a regular basis can be efficient
in detecting congestion very quickly.

Based on our simulation evaluations, as shown in Fig. 6.2, n = 2 andα = 20% perform
well with an RTT granularity of 100 ms (minimum interval between successive RTT
samples). When triggered, this mechanism notifies the IED which can set the congestion
flag (C) if no extra hop is detected simultaneously. NH and RR blocks work together as
the RTT persistently high rate growth has to be detected only when no increase in hops is
identified.

Time

RTT Received ACKs

α

Congestion begins

1 2 3 ... n

Accumulated increase

Number of RTT increased

Figure 6.6: Detection of steep increase in RTT

The three blocks around the IED provide it with enough information about the state
of the wireless channel, so that it may take decisions more accurately. The outcome of the
decision is set in the output flags. The flag Uncertain (U) refers to the undefined output of
the fuzzy engine which may not always provide a conclusive output, as discussed below.

Losses by link interruptions will be detected by the timeout timer along with the state
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flags. Timeout with Congestion (C) call for retransmission and slowdown, while time-
out combined with bit error (B) ask for retransmission only. Timeout with uncertain (U)
should also call for retransmission and slowdown considering a conservative approach.
Observe that the fast retransmit mechanism is also in place for speeding up retransmis-
sions before timeouts may occur. The exact actions to be taken depend on the error
recovery mechanism strategy in use. In any case, whenever an action is taken under the
uncertain (U) condition, the current TCP state variables such as congestion window and
slow start threshold should be saved for possible recovery upon effective condition detec-
tion. In addition, there is always a low risk that the fuzzy engine provides a wrong result.
Section 6.6.5 discusses the cost of a misdetection.

The pseudo code of the IED is depicted in table 6.2. Whenever an ACK is received,
the NH variable receives information about the number of hops crossed by the packet. If
it has changed since the last evaluation, the fuzzy engine parameters are updated. These
parameters will be addressed in section 6.5 below. The output of the fuzzy engine is as-
signed to the FR variable, and the RR block output is saved into the RR variable. The IED
then checks the variables and set the flags accordingly. This is a very general description
of our proposal for an improved error detection mechanism. As mentioned above, The
crucial element of this concept is the packet loss discrimination, and that is the focus of
this chapter in the sections below.

Table 6.2: IED pseudo code
#Upon an incoming ACK the following actions take place

NH ← get(NH_report); # true: number of hops remained constant, false:otherwise

if (NH == false) {
update(fuzzy_engine); # fuzzy parameters depend on nr. of hops

}
FR ← get(fuzzy_engine_report); # possible values: Congestion, Uncertain and Error

RR ← get(RR_report); # true: abrupt increase in RTT value, false:otherwise

if (FR == Congestion or (RR == true and NH == true)) {
C ← 1; # channel is facing congestion

U ← 0;
B ← 0;

} elsif (FR == Uncertain) {
C ← 0;
U ← 1; # the fuzzy engine could not determine a decisive output

B ← 0;
} else {

C ← 0;
U ← 0;
B ← 1; # channel is facing errors

}

6.5 A Fuzzy Logic Engine for Loss Discrimination

The behavior of the RTT measurements presented in section 6.3 suggests that an intelli-
gent mechanism may be able to distinguish congestion from channel error induced losses
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inside the network. In particular, such a mechanism should be simple and flexible in
terms of easy adaptation to this highly dynamic scenario, and also computationally inex-
pensive. Thus, a fuzzy logic engine has been designed for handling RTT measurements
toward effective packet loss discrimination. The fuzzy engine design is similar to the
work presented in [CM01] where packet delay behavior is used for detecting wireless
links.

6.5.1 Fuzzy Engine Input

Section 6.3 showed that RTT mean and variance values can be useful to distinguish losses
by the medium from congestion induced losses. So, the input variables of the fuzzy
engine are defined as the RTT meant in (6.1) and the RTT varianceδt in (6.2), with
i = 1, 2, ..., n (n = maxSamples). The termn = maxSamples refers to the maximum
number of RTT samples used in the computations shown in (6.1) and (6.2). The universe
of discourse of the input variables (RTT) is specified as[0, Tmax]. We limit RTTs to a
certainTmax value because in normal operation the maximum value assumed by RTTs
is always limited by either the timeout timer or the fast retransmit mechanism. Hence, it
is reasonable to assume that RTTs are limited to[0, Tmax] without loosing generality.

The computations in (6.1) and (6.2) imply that the universe of discourse of the fuzzy
input variablest andδt should be[0, Tmax] for the reasons mentioned above. As de-
scribed in section 4.9, a fuzzifier has to map crisp values into membership functions in
the fuzzy space. Thus, the crisp values RTT mean and variance,t and δt, have to be
mapped into membership functions.

t =
1
n

n∑
i=1

ti (6.1)

δt =
1
n

n∑
i=1

(ti − t)2 (6.2)

For computing simplicity and better control of the spread of the curves, as stressed in
[CM01], we use in this thesis Gaussian membership functions for the input memberships
(Fig. 4.3). As described in section 4.5, a Gaussian curve is specified by two parameters,
a constantk from the universe of discourse defining the center of the curve, and another
single valueγ specifying the width of the curve.

The values ofk andγ are set on the basis of the measurements to be evaluated, as
explained below. The universe of the fuzzy input variablest andδt are divided into three
fuzzy sets as shown in Fig. 6.7(a). In Matlab [Mat02], which is the tool used for the
engine evaluation, both the s-curve and the z-curve may be generated with approximation
by using the Gaussian curve.

Observe that here we have one more fuzzy set than in the example of Fig. 4.5. The
fuzzy linguistic variables used are S (Small), M (Medium) and L (Large). Hence, the
input values have to be mapped to these fuzzy sets, as illustrated in the example of Fig.
4.5. Note that the more fuzzy sets, the more accurate may be the input discrimination.
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The number of fuzzy rules and complexity increase, though.

6.5.2 Fuzzy Engine Output

The output of each fuzzy rule in our fuzzy engine is assigned to a corresponding output
fuzzy set. The output of the fuzzy engine might take several distinct forms. For instance,
there might be two fuzzy output sets, one for bit error detection and another for congestion
detection. Another possibility should be to have both detections in just a single fuzzy
output. The universe of the fuzzy output has to be set accordingly. In this thesis, we use
just a single fuzzy outputφ, as illustrated in Fig. 6.7(b).

Membership

S M

t or

1

Tmax

δ t

L

(a) Input.

Membership

CO UC BE

1

φ(CO+BE)

(b) Output.

Figure 6.7: Fuzzy membership functions.

Hence, the output of the fuzzy engine is set as the discrimination of congestion from
bit error effects, and the universe of the fuzzy output variable is split into three singleton
(single value) fuzzy sets as depicted in Fig. 6.7(b). This means that each rule output will
be placed at either 0 or 0.5 or 1 in the universe of the single outputφ.

The corresponding fuzzy linguistic variables are CO (Congestion), UC (Uncertain)
and BE (Bit Error). As congestion has priority over bit error, the CO variable covers also
conditions of simultaneous congestion and bit error constraints. The specific fuzzy rules
are shown in table 6.3.

Table 6.3 shows, for instance, that small (S) ”RTT mean” and large (L) ”RTT vari-
ance” indicate clearly that the measured flow is facing bit error constraint (BE). Likewise,
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large (L) ”RTT mean” suggest congestion (CO), regardless of the RTT variance value.
The other rules are similarly set up according to the RTT evaluation discussed in section
6.3. The fuzzy reasoning is done on the basis of the min-max method explained in section
4.9, and the centroid is the deffuzifier in place, computed as shown in section 4.9.

Table 6.3: Fuzzy Rules Output (φ)

var. \ mean S M L
S BE CO CO
M BE UN CO
L BE BE CO

6.6 Performance Evaluations

This section presents evaluations on three aspects of the proposed FEDM: The ability
of the fuzzy engine to perform accurate discrimination, the speed of the FEDM to detect
abrupt changes in the network condition, and the effectiveness of not slowing down a TCP
when losses are caused by the lossy medium instead of by congestion. All evaluations
here are based on a 3-hop scenario only since the procedure is similar to the other cases.

6.6.1 Fuzzy Engine Parameters Configuration

The fuzzy engine parameters are set to met the requirements of the critical overlap men-
tioned in section 6.3.3. Since Fig. 6.3(a) shows that the experienced RTT mean values for
the high PER (10%) are concentrated around 50 ms, the Gaussian membership function
associated to the fuzzy linguistics variable M in Fig. 6.7(a) should have its center at 50.
Because of that, we set thek parameter of the Gaussian curves for the linguistics variables
S, M, and L in Fig. 6.7(a) to 10, 50, and 90, respectively. Yet, the widthγ of each curve
is set to 20.

Fig. 6.4 exhibits an overlapping area roughly in the range (50,200), which has to be
taken into account for setting the fuzzy membership functions associated with the RTT
variance. In reality, the range of this overlapping area would not be too wide if we had
a more precise comparison by simulating a lower level of congestion. The smaller the
congestion level, the closer the histogram of Fig. 6.4(c) from the one in Fig. 6.4(a).
The Gaussian curves for RTT variance are set analogously to the way done above for the
membership functions relative the RTT mean. We set thek parameter of the Gaussian
curves for the linguistics variables S, M, and L in Fig. 6.7(a) (for RTT variance) to 40,
100, and 160, respectively. Yet, the widthγ of each curve is set to 50.

The universe of discourse of both input variables, RTT mean and variance, are set
to 500 ms because no significant number of RTT greater than 500 ms is found in our
measurements.
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The ranges assigned to the output parameters CO, UC and BE (Fig. 6.7(b)) are set to
[0,0.3), [0.3,0.7], and (0.7,1], respectively. These values are strategically established to
reflect the neighborhood of 0.0, 0.5, and 1.0 in Fig. 6.7(b). Recall that the fuzzy engine
will provide an output value in the range [0,1], and the ranges above will define if such a
value represents congestion, uncertain, or bit error.

6.6.2 Fuzzy Engine Correctness

For this evaluation, we first conducted simulations using the ns2 simulator for collecting
representative data on which our fuzzy engine performed inference. The simulation setup
is the same described in section 6.3 for the 3-hop scenario. We ran similar conditions
presented in section 6.3 except that we considered only two extra FTP flows for disturbing
the wireless channel instead of three. The rationale here is that three flows generate so
many losses that it becomes difficult to have representative results with the short runs
performed here. Each interval under constraint (bit error or congestion) simulated lasts
100 seconds.

The evaluation of the proposed engine was then conducted by providing it with RTT
mean and variance values obtained under the simulations conditions above. The engine
output was then compared to the actual reason of the detected packet loss.

Fig. 6.9 shows the fuzzy engine performance concerning the number of correct de-
tections over three distinct conditions, namely under congestion, bit errors (10% of PER)
and the combination of both (5% of PER + 1 competing flow). For each of the three
conditions we ran three different RTT sampling rates, namely 20, 40 and 60 RTTs per
sample. Here a clarification is necessary. The mentioned sampling rates correspond to
the number of RTT samples considered in the calculation of mean and variance and not
the number of new incoming RTTs. Fig. 6.8 illustrates this procedure.

Computing
Window

Incoming
ACKs ACK  1 ACK  2 ACK n

RTT  1 RTT  2 RTT  3 RTT n

window 1

· · ·

window 2

· · ·

Figure 6.8: Window evaluation and updating

As depicted in Fig. 6.8, we define here a buffer calledcomputing window. This
buffer is fixed in size (window) and updated continuously as new ACKs arrive. In these
evaluations we enabled the TCP timestamp option, so that each incoming ACK carried its
experienced RTT. Upon ACK receipt, the oldest RTT value (RTT1) is discarded and the
newest one is inserted into the buffer in a FILO (First In Last Out) manner. This scheme is
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Figure 6.9: Correctness of the fuzzy engine

needed because the RTT mean and variance calculated by (6.1) and (6.2) cannot provide
accuracy if the number of samples is too small. In addition, to sample all ACKs in real-
time incurs in too high detection delay.

The purpose here is to determine not only the accuracy itself but also the tradeoff
between accuracy and detection delay. The results show that for any of the three RTT
sampling rates, congestion is detected over 98% in all cases, while bit error constraints
detection decreases considerably for lower number of sampled ACKs. The results could
certainly be fine tuned by using more elaborate membership functions and different set-
tings. Besides, more accuracy from the input values could be achieved by including more
fuzzy sets into the fuzzy engine.

6.6.3 Detection of Abrupt RTT Changes

The results depicted in Fig. 6.9 make it clear that the fuzzy engine may provide accurate
results as long as a reasonable number of RTTs is taken in each sampling for computing
the mean and variance from (6.1) and (6.2), respectively. This is effective for detections
in steady state conditions. Nevertheless, abrupt changes toward congestion might lead
the network to collapse if the engine does not detect that in advance. Because of that we
have proposed the RR block in Fig. 6.5 to make sure that, in such cases, congestion will
always be detected before the first packet loss is perceived by the TCP sender.

Hence, we simulated conditions in which the channel was initially facing some level
of PER (1, 3 and 5%) and suddenly a heavy congestion started. Then andα parameters
of the RR block were set to 2 and 20%, respectively. The results are depicted in Fig.
6.10 where the delays are normalized to the time the regular TCP Reno takes to detect
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Figure 6.10: FEDM (Fig. 6.5) under abrupt congestion

the first lost packet. The main outcome is that even without the RR block, the Fuzzy-
based Error Detection Mechanism (FEDM) in Fig. 6.5 is still able to detect incipient
congestion quicker than the regular TCP. The improvements from the RR block are not
so very significant and the detections under higher PERs are faster than the ones for lower
PERs.

6.6.4 Avoiding TCP Slowdown for Medium Losses

To substantiate our discussions, we extended the simulator code so it did not slow down
in the event of packet loss due to medium error. We simulated a condition in which the
only constraint in the wireless channel was 10% of PER, and the run lasted 1000 seconds.
The sequence numbers of the successfully transmitted packets are shown in Fig. 6.11,
in which the modified TCP outperforms the TCP Reno by getting more transmissions
over the same interval. The results in Fig. 6.11 were obtained in two runs, one for the
unchanged TCP and another for the changed one. This evaluation simply shows that by
not slowing down in response to medium error may improve performance of a single
connection. However, if not carefully managed this modified sender may certainly cause
degradation on the other concurrent flows. This is an error recovery issue which is not
further investigated in this thesis.

In fact, the optimal TCP response to packet loss in multihop environments is subject of
intense research work nowadays. Initial proposals on this subject [CRVP98,HV99a,LS01,
FGML02] have proposed the aggressive error recovery strategy that we simulated above
and is depicted in Fig. 6.11. These investigations claim that the sender should not slow
down when reacting to losses caused by the medium in order to improve performance.
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However, to the best of our knowledge, there has been no comprehensive work on these
kinds of response addressing important issues such as optimal improvement bound and
fairness. Our work here addresses only packet loss discrimination, leaving the proper
sender reaction to medium induced losses for future work.

6.6.5 Discussions

The evaluation results show that the fuzzy engine may indeed distinguish congestion
from channel error conditions with low misdetection rate. However, there is always a
possibility of misdetection, which has to be considered in the error recover strategy. For
instance, if congestion is misdetected as medium error and the sender simply retransmits
the lost packet without slowing down, further congestion is injected into the network. In
the worst case, the sender would induce more losses and should soon detect those losses
correctly. The opposite case is less harmful to the network since the sender always slows
down when it perceives congestion.

If corrected adjusted, the fuzzy engine should provide very high correctness rates.
As the model used here for the fuzzy engine design is quite simplified, improvements
are certainly possible. For instance, independent fuzzy outputs for each of the evaluated
conditions (congestion and medium error) could provide more flexibility in adjusting the
engine. The membership functions can be optimized by using advanced learning/train-
ing techniques such as ANFIS [Jan93]. Finally, adaptive setting models can render our
approach very robust.
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6.7 Summary

This chapter introduced and evaluated our proposal for an enhanced TCP error detection
mechanism based on fuzzy logic. RTT patterns in short ad hoc networks were investigated
and associations to the network conditions were established. The fuzzy engine performs
inference on RTT mean and variance values and detects either congestion or medium error
or provides a non conclusive output if the measured values are on extremely boundary
areas.

The evaluations show that efficiency can be obtained provided that the input data are
taken precisely enough to reflect the actual changes inside the network. This implies that a
minimum number of ACKs is needed to ensure efficiency in the results, which may render
this algorithm a bit slow for detecting transitions between distinct channel states. On the
other hand, the proposed mechanism will be quite robust in dealing with steady state
scenarios, where abrupt changes are not too frequent. We proposed supporting schemes
for accelerating our mechanism, which may boost the performance of our model as a
whole.

Packet loss discrimination is certainly valuable to a TCP error recovery mechanism
by providing it with updated information about the conditions inside the network. Such
information may be useful to preventcongestion collapseif the recovery mechanism is
tailored to do so.

The main contribution of our investigation presented here is to disseminate the idea
that it is possible to use a reasoning mechanism to infer the internal state of the network on
an end-to-end basis. We are fully aware that our fuzzy engine design is very basic and so
much remain to be improved. Different scenarios and more elaborate inference models
have to be checked to render our proposal even more generic. Its integration with the
error recovery mechanism is also an issue for future work. The RTT measurements used
in our inference process represent only a simple manner to collect useful data related to
the network condition. These measurements tend to be unfeasible as the number of hops
in the end-to-end connection increase. Alternative measurements are indeed necessary to
render the proposed engine feasible for a broad range of scenarios.

In the next chapter, we introduce another mechanism to assist TCP in multihop net-
works. It is also an end-to-end mechanism which aims at minimizing collisions in these
environments. While the approach proposed in this chapter attempts to improve response
to dropped packets, the contribution in the next chapter pursues to mitigate losses before
they actually occur.
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Chapter 7

A Smart TCP Acknowledgment
Strategy for Multihop Wireless
Networks

7.1 Introduction

Considering the background provided in the previous chapters, it is proper to affirm that
only small-scale multihop wireless ad hoc networks are feasible today. These networks
rely on the IEEE 802.11 MAC protocol which minimizes the well-known hidden node
problem but does not eliminate it completely. Proper cooperation among the various
protocols running in these networks may improve performance, but as the number of
hops between sender and receiver increase the end-to-end throughput inevitably degrades
toward very low levels. In this chapter we introduce and evaluate our proposal to improve
TCP performance in short, feasible ad hoc networks.

TCP connections experience poor performance in these environments because of the
mutual interference between the retransmission mechanisms of transport and MAC lay-
ers. This may trigger spurious retransmissions at the TCP sender causing waste of re-
source. In addition, the short RTS/CTS control frames required to each transmission
attempt into the shared medium, associated with the backoff mechanism render ACKs
transmission quite costly in these networks. The problem is that despite being much
smaller, an ACK transmission causes similar medium access overhead as a data packet
transmission. Contention between data and ACK is therefore considerable in multihop
networks, which suggests that TCP acknowledgments should be carefully managed.

Our proposal to address these problems is an dynamic adaptive strategy for mini-
mizing ACK induced overhead and consequently collisions. This enhances bandwidth
utilization and mitigates spurious retransmissions at the sender. Using this strategy, the
receiver adjusts itself to the wireless channel condition by delaying more ACK pack-
ets when the channel is in good condition and less otherwise. Our technique not only
improves bandwidth utilization but also reduces power consumption by retransmitting
much less than a regular TCP.

109
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7.2 Design Decision Rationale

Before describing our mechanisms in detail, we present in this section some important
evaluations to support our design decisions. Specifically, we show here that TCP should
really work with small size for its congestion window limit in order to improve the spatial
reuse in multihop wireless networks. In addition, the actual impact of ACK transmissions
in the end-to-end performance in such networks is also shown as a relevant factor, thereby
justifying reduction in the number of redundant ACKs.

7.2.1 Optimal Limit for TCP Congestion Window

The spatial reuse property discussed in section 5.3.3 suggests that a TCP sender should
limit the size of its congestion window (cwnd) in order to achieve better performance.
According to the discussion in that section, a limit ofh/4 for cwnd is presumably an
optimal setting in a chain topology, whereh is the number of hops between sender and
receiver.

To confirm the conclusions above, we conducted a number of simulations in a typical
chain topology in which distinctcwnd sizes and number of hops were evaluated. Fig.
7.1 depicts the results which are quite similar to the ones found in previous related work.
These simulations were conducted using the ns2 simulator with default settings apart
from the packet size and the channel data rate that were set to 1460 bytes and 2 Mbps,
respectively.

Fig. 7.1 allows us to draw very important conclusions. First, for short chains of nodes
having at most 3 hops, even a very smallcwnd of 1 or 2 packets is sufficient to guarantee
maximum throughput. For scenarios containing up to 10 hops, which might cover many
feasible scenarios, acwnd limit of 3 packets is sufficient. In contrast to some related
work, such results indicate that, at least for short chains of nodes, it is does not help much
to avoid decrease incwnd. The problem is thatcwnd should be set to very small sizes
anyway, and in such cases the difference in throughput for different limits ofcwnd is not
that much, as shown in Fig. 7.1.

7.2.2 The Actual Cost of Using TCP Acknowledgments

In this section, we assess the impact of TCP ACKs transmission in wireless multihop
networks. While acknowledgment packets are essential in a reliable transmission, their
excessive use may be too costly in these challenging multihop networks, as shown in sec-
tion 5.6. In that section, the standard delayed acknowledgment (DA) was shown to reduce
ACKs induced overhead considerably in scenarios without the hidden node problem. We
show here that such an observation is valid for scenarios facing hidden node problems
as well. Moreover, we show that DA is not optimized for multihop wireless networks as
much as our scheme is.

Before describing our mechanism thoroughly in the next section, we highlight here
how much of improvement it may provide against both a regular TCP and a TCP using
the standard DA. We consider then two simulation scenarios using a string of nodes topol-
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Figure 7.1: The optimal limit for the sender congestion window

ogy: no hidden node problem (3-hop) and with hidden node problem (5-hop). Table 7.1
illustrates how significant an ACK transmission might be in such environments. These
results are the outcome of simulations for a single flow crossing the chain topology, and
each run lasts 50 seconds.

The values in table 7.1 represent the total time the medium is busy transmitting ei-
ther an ACK or a data packet. From this table, it is evident that techniques for delaying
ACKs can be indeed efficient in multihop environments facing or not the hidden node
problem. The last column of the table, which exhibits the ACK/DATA ratio in percent-
age, shows that the standard delayed acknowledgment (DA) provides significant enhance-
ments. Likewise, table 7.1 highlights the remarkable performance of TCP-DAA by bring-
ing the ACK overhead, relative to data packets, to about 3% in both scenarios. We show
below that our mechanism sustains such a high improvement in a variety of scenarios.

7.3 Dynamic Adaptive Acknowledgment

This section introduces our proposeddynamic adaptive acknowledgment(DAA) strat-
egy that we callTCP-DAA . As mentioned above, TCP-DAA targets feasible scenarios
where the IEEE 802.11 standard may provide acceptable performance. TCP-DAA was
first introduced in Infocom 2005 [OB05] as an efficient mechanism to improve TCP per-
formance in short ad hoc networks facing moderate level of bit error rates. Recent inves-
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Table 7.1: Data and ACKs transmission delay (in seconds)
DATA ACK ACK/DATA

3-hop
No delayed ACK 90.1 59.6 0.66
Standard DA 97.6 13.7 0.14
TCP-DAA 127.5 3.9 0.03

5-hop
No delayed ACK 96.5 52.5 0.54
Standard DA 89.5 17.2 0.19
TCP-DAA 123.6 4.0 0.03

tigations on 802.11 have shown that this MAC protocol is effective in recovering most
of the wireless induced losses in typical scenarios, but it does not scale as the number
of wireless hops increase due to the hidden node problem discussed in detail in the prior
chapters. There are, however, a number of important applications and scenarios in which
the number of hops involved will be far below 10 hops, and the number of nodes will nor-
mally not exceed 100 nodes. Typical examples include ad hoc networks in classrooms,
meeting and workshop spots, small working offices, Wi-Fi in home buildings, and many
others.

TCP-DAA relies on the fact that the 802.11 protocol schedules the contending trans-
mission requests in such a way that normally every node cannot transmit more than one
frame at a time, but must contend for the medium again in order to prevent a node from
monopolizing the medium. This feature allows a TCP source to send more data at once
without receiving ACKs, because the MAC layer scheduling prevents potential bursts.

The procedure of delaying acknowledgments at the receiver may be counterproduc-
tive if the receiver does not adjust itself on a regular basis to fit the channel changing
conditions. We claim that the standard DA as well as the work in [EA03], which pro-
poses a similar strategy to ours, do not react appropriately to the channel disruptions. We
call the latter LDA (Large Delayed Acknowledgment) to facilitate its identification in the
comparisons that follow. LDA improves performance over the standard DA, but does not
react to out-of-order packets as the former does. Besides, both mechanisms rely on a fixed
timeout interval of typically 100 ms. This is not efficient because the packet inter-arrival
interval at the receiver changes not only with the channel data rate, but also with the inten-
sity of traffic going through the network. Another important aspect concerning delayed
ACKs is the amount of ACKs to be delayed. That is, the number of ACKs merged by the
receiver must also fit the network conditions adaptively in order not to adversely impact
the connection performance when the medium is heavily constrained.

TCP-DAA combines the idea of higher number of delayed ACKs with the dynamic
reaction proposed in RFC 2581, i.e, reaction to packets that are either out-of-order or
filling in a gap in the receiver’s buffer. Furthermore, our protocol adjusts itself to the
channel conditions, in that it adaptively computes the timeout interval for the receiver on
the basis of the data packet inter-arrival time. In this way, the receiver delays just enough
to avoid spurious retransmissions at the sender, as elaborated in section 7.3.2, and is able
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to adapt itself to different levels of delays imposed by the wireless channel. This strategy
renders the mechanism independent of both channel data rate and number of concurrent
flows crossing the network. As we will shown in section 7.4, TCP-DAA outperforms the
two schemes above (standard DA and LDA) in several scenarios.

7.3.1 Algorithm Overview

Before addressing the algorithm in detail, this section provides an overview on the fun-
damentals of the proposed approach. The key concept of our scheme is to provide the
TCP receiver with an adaptive control mechanism capable of using the channel capacity
efficiently and dynamically as done at the sender side. As discussed in sections 2.6.1
and 5.7.1, the standard delayed acknowledgment (DA) can enhance TCP performance
in multihop networks by reducing the number of ACKs in transit and so contentions in
the shared medium. This minimizes collisions and consequently increases end-to-end
throughput.

Nevertheless, the wireless medium condition changes over time by diverse factors
such as congestion level, fading, interference, mobility, etc. Hence, the receiver should
bring down the amount of ACKs it injects into the network whenever the channel is in
good shape, and the receiver should not delay crucial ACKs, or delay just a bit, if the
channel is constrained. This is to some extent the same principle followed by the sender
congestion control mechanism that probes the network for resource availability.

Furthermore, the sender should also avoid excessive load in the network by limiting
its congestion window to an appropriate value. Section 5.7.1 discusses some past work
that have shown the importance of limitingcwndon the basis of the number of hops in
place. As presented in section 7.2.1, TCP sender should indeed work with a relatively
very smallcwnd to improve performance. Therefore, our mechanism limits the sender
congestion window to four in order to conform to the evaluation results in section 7.2.1.
Fig. 7.2 depicts the general behavior of our proposal.

The receiver contains a delaying window (dwin) defining the amount of ACKs to be
merged into a single ACK. This window varies from two to four to fit the wireless channel
condition. Whenever the channel is in good shape,dwin is maintained at its maximum
size of four and when losses occur it is reduced to two in order to follow the standard DA
behavior closely. by receiving timely, in-order data packets the receiver increasesdwin
by steps of one until four.

Similar to the sender congestion window, the receiver delaying window allows a dy-
namic adaptation to the channel conditions. The receiver also keeps a timeout timer to
ensure that ACKs are not delayed excessively because that would trigger spurious re-
transmission at the sender. The timeout interval is adaptive in that it is calculated on the
the basis of the data packet inter-arrival at the receiver. In fact, the receiver reacts im-
mediately to either out-of-order packets or timeout in order to be fully responsive to the
network needs. The sections below present the design details of our mechanism.
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7.3.2 Requirements at the Sender

By delaying the acknowledgment notification to the sender, the receiver may trigger a
retransmission by timeout at the sender if the receiver delays excessively. Thus, the re-
ceiver has to be well adjusted in order to avoid such spurious retransmissions. Moreover,
the fewer amount of ACKs for the sender might lead TCP to low performance in typical
wired scenarios where the congestion window (cwnd) limit is usually high. This might
happen because a TCP sender may only enlarge itscwnd, toward the limit, upon receipt
of ACKs. This problem is not so critical in our technique, however, as thecwnd limit in
place (4 packets) is rather low. This means that after a reduction ofcwnd due to a lost
packet, it will quickly reach the limit again upon receiving a few ACKs, as explained in
section 7.3.6.

The current development of TCP-DAA is focused on the receiver side, while a com-
prehensive investigation on the sender side is still to be done. In short, delayed ACKs can
affect the sender side with respect to response to losses and timeout interval computation.
In addition to settingcwndto four, the technique we used for minimizing unnecessary re-
transmissions by timeout consists of two adjustments: 1) the number of duplicate ACKs
for triggering a retransmission by the fast retransmit mechanism is decreased from 3 to
2 packets, which is in line with the limit transmit discussed in section 2.6.3 in the sense
that we work with a smallcwnd limit; 2) the regular retransmission timeout interval is
increased fivefold for compensating the maximum of four combined ACKs. These are
the only two changes performed on the regular TCP sender, which proved to be effective
in most of our evaluations.
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7.3.3 Delaying Window

The dynamic behavior of TCP-DAA depicted in Fig. 7.2 implies that after startup and
having no losses, the receiver always delays the maximum amount of ACKs. This means
that for each four data packets received (Pi, Pi+1, Pi+2, Pi+3), the receiver replies with
an ACK. The delay management is performed through a delaying window calleddwin
which limits the maximum number of ACKs to be delayed. Fig. 7.3 illustrates the behav-
ior of dwin.

P i P i+1 P i+2 P i+3
4

2

3

4

packet drop

time

dwin

ack_count

Figure 7.3: Receiver dynamic window for delaying packets

Under normal conditions, the delaying window starts set to one and increases grad-
ually upon timely, in-order data packets receipt until it reaches four. The limit of four is
imposed by the sendercwnd limit that is also set to four. Higherdwin would not work
because the sender would not have enough data packets to transmit to meet thedwin
value, which would lead the sender permanently to timeout. The receiver also uses an-
other variable calledack countto indicate how many data packets are being combined by
the receiver. Its purpose is explained in section 7.3.4 below.

As long as the wireless channel is unconstrained, it is advantageous to keepdwin = 4
for the reasons mentioned above. When facing losses, however,dwin should be reduced
in order to avoid further performance degradation at the sender. This occurs due to the fact
that during such periods the channel has less packets in flight to trigger the fast retransmit
mechanism at the sender. As a result, if the receiver does not transmit an ACK quickly,
the sender may time out.

As earlier mentioned, the receiver keeps a timer that is reset whenever a data packet
whose ACK is to be delayed arrives. This is needed to detect highly constrained channel
conditions. Additionally, the receiver keeps track of the sequence number of the incoming
data packets so it may detect a poor channel when receiving out-of-order packets.

Thus, whenever the receiver gets a packet that is either out-of-order or filling in a
gap in the receiver’s buffer, or when its timer expires, it sends immediately an ACK
to the sender and reducesdwin to the size of two packets. We chose to resumedwin
growth from two instead of one because we aimed, in such situations, to go back to
a behavior similar to that of the standard DA. The rationale here is that the standard
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DA performs satisfactorily in these environments, as described above. To reducedwin
to one is more conservative and may be proper for highly noisy environments where
considerable improvements are hard to achieve. Fig. 7.3 illustrates a situation in which
dropped a packet is detected. Note thatdwin is decreased to two, then increased to three
and subsequently to four as new data packets arrive.

After a reduction indwin, subsequent timely data packets triggerdwin growth to-
ward the maximum size again. Timely data packets here refer to the incoming data pack-
ets that are neither out-of-order nor filling a gap in the receiver’s buffer. Using this dy-
namic behavior, associated to the timer-based monitoring, the receiver prevents the sender
from missing ACKs when packet losses occur. As mentioned in section 5.7.1, the LDA
proposal [EA03] works with a fixeddwin’s size of four packets (except at startup), and
uses a largecwnd limit at the sender to keep the channel full of data packets in flight.
While this procedure may prevent a lack of ACKs at the sender, it may also induce exces-
sive number of retransmissions at the sender.

Thedwin growth is governed by (7.1) which shows that such an increase may be fixed
at one (packet) or determined by the startup speed factorµ, with 0 < µ < 1. The reason
for this factor is that during the startup phase (initial of the session), the sender starts with
a window size of two packets and then increases it by one at every ACK received.

Although dwin is initialized to one, if it starts from startup being increased at the
rate of one packet per data packet received, it grows too quickly. This causes a deadlock
because the receiver does not receive enough data packets to transmit an ACK, which
ends up triggering a timeout at either the receiver or the sender or both.

Thus, the thresholdmaxdwin is used to define the instant the startup phase is over,
which occurs whenmaxdwin first reaches its maximum value and becomestrue. From
our evaluations, we noticed that by properly setting theµ parameter, our algorithm achieved
better performance for short-term transmissions, as shown in section 7.4.6.

dwin =

{
dwin + µ, if maxdwin = false
dwin + 1, otherwise

(7.1)

7.3.4 Timeout Interval Calculation

Fig. 7.4 illustrates in more detail how the receiver keeps track of the packet inter-arrival
interval and handles the ACKs delay. Under normal conditions, i.e., after startup and
without any loss, for every four data packets received, the receiver replies with an ACK.
Whenever a given ACKi,i+1,i+2... is to be delayed, an associated timer is started (ti),
or restarted (ti+1, ti+2) if there is one already running. The receiver also measures the
data packet inter-arrival gap between the packets for which the ACK is to be delayed
(δi,i+1,i+2...).

The receiver keeps track of the number of ACKs delayed by maintaining theack count
variable which increases from one to the current value of its delaying window (dwin), as
shown in Fig. 7.3. By checking the value ofack count, the receiver is able to determine
whether the received packet is the first one from the group that is going to have their ac-
knowledgment delayed. This is possible becauseack count is reset whenever it reaches
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Figure 7.4: TCP-DAA receiver mechanisms

thedwin value.
In case the received packet is the first one, the inter-arrival interval between the last

received packet and the current one is not taken. This is needed to avoid that unnecessary
intervals such as the one betweenδi+3 andδi+4 in Fig. 7.4 are improperly considered
for the timeout interval computation. By using this strategy, we assure that in normal
conditions, the inter-arrival measurements will reflect very closely the gap between the
received data packets triggering delayed ACKs. Note that under packet loss, the receiver
will not need such measurements as it will not delay out-of-order packets. Rather, it will
await until it receives in-order packets again.

Similarly to the TCP sender, the receiver uses a low-pass filter to smooth the packet
inter-arrival intervals. Upon arrival of a given data packetpi+1, it calculates the smoothed
packet inter-arrival as indicated in (7.2), whereδi refers to the last calculated value,δi+1

is the packet inter-arrival sampled, andα is the inter-arrival smoothing factor, with0 <
α < 1.

δi+1 = α ∗ δi + (1 − α) ∗ δi+1 (7.2)

The value computed from (7.2) is used to set the timeout interval at the receiver. In
our design, we established that after the receipt of a data packet that causes an ACK to be
delayed, it is reasonable to wait for at least the time the second next packet is expected.
The rationale for this is that the delay variations are relatively high in such environments
and in case of a single dropped packet, the next data packet will arrive out-of-order, which
will trigger immediate transmission of an ACK, as recommended in RFC 2581. However,
if it was only a delay variation, and the data packet arrives before the expected time for
the subsequent packet, no timeout is triggered and the receiver avoids sending an extra
and unnecessary ACK into the network.

Hence, we use a timeout intervalTi as shown in (7.3). Note that the factor 2 in (7.3)
refers to the estimated time for the second expected data packet to arrive. This equation
also includes a timeout tolerance factorκ, with κ > 0, defining how tolerant the receiver
may be in deferring its transmission beyond the second expected data packet. In short,
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the effective timeout intervalTi is at least twice the the smoothed valueδi and may be
higher depending on the value ofκ.

Ti = (2 + κ) ∗ δi (7.3)

7.3.5 Packet Loss Handling

In order to better understand the concepts explained above, we show here a typical re-
sponse of our mechanism when reacting to lost packets. We include the response of the
LDA scheme to highlight the difference of our proposal to that one. Fig. 7.5 exhibits
a part of a simulation run in which both strategies faced a dropped packed in a chain
topology of 5 hops.

Let packetn be the data packet of sequence number (n). Fig. 7.5(a) shows that the
sender transmits four packets (320-323) at time 12.6 seconds. In this run,packet322
andpacket323 are dropped. The receiver times out and acknowledges only two packets
(320, 321) instead of four. The receiver also updates itsdwin size to two. Upon receipt
of the ACK for packet321, the sender sends two new packets (324, 325) because two
packets were acknowledged. At this moment there are only 2 packets in flight (324, 325).
Sincepacket324 andpacket325 are detected by the receiver as out-of-order packets, they
trigger immediate acknowledgments at the receiver. By receiving the first duplicate ACK,
the sender transmits a new packet (326) which will also be out-of-order.

When the sender receives the second duplicate ACK at instant 12.9 seconds, it retrans-
mits the first lost packet (322), and halves itscwnd size to two packets (fast retransmit/fast
recovery). Thecwnd will be expanded gradually after the sender exits the fast recovery
phase. When the sender receives the third duplicate ACK, at time 12.96 seconds, it does
nothing because it is in the fast recovery phase. At the instant 12.97 seconds, the sender
gets the acknowledgment forpacket323, retransmits this packet and then exits the fast
recovery procedure.Packet323 fills in the gap at the receiver’s buffer, which triggers the
ACK of packet326 due to the cumulative property of TCP acknowledgment strategy.

At instant 13.01 seconds, the sender receives the acknowledgment forpacket326, and
so transmits two new packets (327, 328). These two packets cause the receiver to send
one ACK only as itsdwin is set to two packets at this point. After that,dwin increases
and, as a consequence, the number of delayed ACKs increase toward 4. Fig. 7.5(a) shows
two spurious retransmissions by timeout at the receiver.Packet339 andpacket338 are
unnecessarily acknowledged at the instants 13.62 s and 13.79 s, respectively. This means
that the timeout interval computation may still be improved, but that is left for future
work.

Fig. 7.5(b) shows the response of LDA to a packet loss. In this simulation run,
packet241 is lost at about 10.55 seconds. Differently from our technique in which the
amount of packets in flight are limited to four packets, the proposed LDA works with a
large limit for thecwnd (10 packets), so it has more packets in flight than TCP-DAA.
One can notice in Fig. 7.5(b) that although only one packet has been dropped, various
acknowledgments triggered the transmission of less than the optimal four packets by the
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120 CHAPTER 7. A SMART TCP ACKNOWLEDGMENT STRATEGY

receiver. This shows that the retransmission timer expired in several situations unneces-
sarily.

Additionally, the sender waits for the default three duplicate ACKs for retransmitting
the dropped packet, which incurs in a longer time for it to take action. By comparing
Fig. 7.5(a) with Fig. 7.5(b), one can clearly see that TCP-DAA provides more stabil-
ity regarding the number of delayed ACKs. As a result, less packet delay variation is
perceived by the sender, which in turn tends to minimize the inaccuracy in the timeout
interval computation at the sender.

7.3.6 An Alternative Delaying Window Strategy

The basic delaying window strategy in 7.3.3 may be inefficient in scenarios facing con-
siderable loss rates. In this section, we investigate improvements to such scenarios. We
first observe that if the channel is facing constant losses, then it seems to be more ap-
propriate to reduce the delaying window (dwin) to one in order to avoid timeout at the
receiver. Additionally, thedwin should be enlarged by less than one for every data packet
received. This is more conservative than the initial strategy above, which is needed to en-
sure robustness for the mentioned scenarios. Hence, we propose to adjust the receiver
side as illustrated in Fig. 7.6.

P i P i+1 P i+2 P i+3

packet drop

dwin

ack_count

4

3

2

1

4

time

Figure 7.6: An alternative delaying window strategy for robustness against losses

Upon loss detection by either timeout or out-of-order packets, the receiver transmits
an acknowledgment immediately and shrinksdwin to one. By receiving new, in-order
packets the receiver gradually expandsdwin by steps smaller than one. The operatorbxc
represents the mathematical floor function which is defined as follows: for a real number
x, bxc results in the largest integer less than or equal to x. In other words,bdwinc
represents the integral part ofdwin.

Fig. 7.6 illustrates that only the integral part ofdwin is needed in the comparison with
ack count. This establishes three ranges in whichdwin increases without causing any
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impact on the amount of packets to be delayed. These ranges are between the successive
bdwinc values in Fig. 7.6, i.e., between 1-2, 2-3, and 3-4. It is obvious that the smaller the
steps by whichdwin increases the more points in each of these ranges, and consequently
the longer the interval todwin fully enlarge until four.

It is not simple to determine the exact amount by whichdwin should be increased
when an ACK is transmitted as many factors influencedwin growth. For example, when
the wireless channel is unconstrained,dwin should increase as fast as possible, and under
high loss rates it should grow more carefully. We estimate here the worst case scenario as
an upper bound only rather than a rigorous specification.

A TCP receiver should provide enough ACKs to its corresponding sender in order to
prevent timeout at the sender and also to trigger the sendercwnd growth properly until
its limit. Assume that the sender has just timed out while in steady state. Itscwnd is reset
to one and the slow start thresholdssthresh is set to one half the currentcwnd = 4, i.e.,
ssthresh is set to two. In this case the sender increases itscwnd by one when the next
ACK arrives because it is in slow start phase (cwnd < ssthresh), and then it enters the
congestion avoidance phase. As presented in section 2.4, thecwnd increase (in packets)
for theith received ACK during congestion avoidance is given by (7.4), wherecwndi−1

refers to the previous value ofcwnd.

cwndi = cwndi−1 +
1

cwndi−1
(7.4)

Although cwnd grows exponentially in slow start and linearly in congestion avoid-
ance, we can use the equation above for both phases because of our small window limit
of four packets. In fact, sincessthresh is set to two upon loss detection, only one ACK
is enough to lead the sender to congestion avoidance. Moreover, replacingcwndi−1 in
(7.4) with one (the reset value) the left-hand results in two, which is exactly the same
that is obtained with slow start. Hence, assuming thatcwnd increases continuously from
one to four governed by (7.4), the accumulated window increase is given by (7.5), where
cwnd0 is the value to whichcwnd is set just after a slowdown andcwndi is the value
of cwnd at theith increase step, which ranges from one ton and is given by (7.4). If a
loss is detected by timeout,cwnd0 is reset to one. A loss detected by the fast retransmit
mechanism causescwnd0 to be reset to a value between 1 and 2, depending on the current
cwnd value. For simplicity we assumecwnd0 = 1 in the modeling below.

W = cwnd0 +
n∑

i=1

(
1

cwndi

)
(7.5)

Solving (7.5) forW = 4, thecwnd limit in our mechanism, results inn = 7. This
means that the window expansion process takes seven steps to reach the maximum size
of four packets. Therefore, the receiver should take into consideration this value when
enlarging itsdwin. Recall that this variable defines the number of ACKs to be delayed.
Fig. 7.7 illustrates how many steps thedwin should follow to satisfy the sender demand
for ACKs. Whiledwin is less than two (first range), each data packet received triggers the
transmission of one ACK anddwin increases by1/m. So the receiver transmitsm ACKs
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in response tom data packets received. Whendwin is between 2-3 (second range), every
other data packet generates an ACK, which results in approximatelym/2 ACKs being
transmitted in this range. Likewise, fordwin between 3-4 (third range) an ACK is sent
for every 3 data packets and so aboutm/3 ACKs are transmitted in this range.

To meet the sender needs in terms of acknowledgments, the number of ACKs should
be equal to the amount of expectedcwnd increasesn necessary to expand this window
to the limit, i.e., seven ACKs. Thus, the summation of the ACKs generated in each range
of Fig. 7.7 should result in seven. In other words,m + m

2 + m
3 = 7, which specifies a

m = 3.8 as the number of increases for eachack count range shown in Fig. 7.7. The
inverse ofm gives us theµ′ = 0.26 parameter which determines how muchdwin should
increase per correct data packet received. Thus, the equation governingdwin growth is
changed from (7.1) above to (7.6).

dwin =

{
dwin + µ, if maxdwin = false
dwin + µ′, otherwise

(7.6)

Section 7.4.7 shows the performance evaluation of this improved algorithm which we
call TCP-DAAp (TCP-DAA plus). As addressed in that section, with TCP-DAAp the
algorithm at the sender side should react more promptly to losses. The reason is that
the number of retransmissions by timeout are assumed to be significantly higher in such
cases. Hence, TCP-DAAp uses a regular RTO increased twofold instead of fivefold.

3 41 2 dwin

m m/2 m/3

ACKs per dwin range

Figure 7.7: Optimal amount of ACKs for high loss rates

7.4 Performance Evaluations

Here we evaluate and compare the performance of TCP-DAA (including TCP-DAAp)
with the other TCP flavors and with the LDA proposal presented in [EA03]. We com-
pare our work with LDA because it also investigates a delayed acknowledgments strategy
similar to ours for improving TCP performance in multihop networks. We also compare
our results with other TCP flavors in their theoretical best conditions, so as to make sure
that our proposal is indeed efficient among a wide range of options. Hence, we simulate
the other TCP flavors including two potential improvements: the standard delayed ac-
knowledgment (DA), and a low limit for theircwnd (3 packets), for the sake of efficient
bandwidth utilization, as explained in section 5.3.3.
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7.4.1 Simulation Scenario

We used the ns2 [EFF+00, EHH+00] simulator in our evaluations of the two scenarios
depicted in Fig. 7.8 in which we have a single chain topology and a grid topology with 9
(maximum) and 25 nodes, respectively. In both topologies, each node is 200 meters away
from its closest neighbors. When applicable, the throughputr is calculated asr = seq∗8

stime ,
whereseq is the maximum sequence number (in bytes) transmitted and acknowledged
andstime is the simulated time. Unless otherwise stated, the other parameter settings are
the ones shown in table 7.2.

Table 7.2: General simulation parameters
Parameter Value
Channel bandwidth 2 Mbps
Transmission range 250 meters
Interference range 550 meters
Packet size 1460 bytes
Window limit (WL) 3 packets
Regular TCP NewReno
Routing protocol AODV
MAC protocol IEEE 802.11
Traffic type FTP
TCP-DAA α 0.75
TCP-DAA κ 0.2
TCP-DAA µ 0.3
Confidence interval 95%
Number of runs averaged 5
Initial TCP-DAA rec. timeout 200 ms
Simulation time 300 seconds

7.4.2 Throughput in the Chain Topology

In this section, we investigate the bandwidth utilization over a wide range of situations.
While most related work present results over either a single flow or a fixed number of
hops, we present here our evaluation not only for different number of hops but also for
different number of concurrent flows in the chain topology of Fig. 7.8(a). In addition,
we compare our results with the main existing TCP flavors. It would be reasonable only
to compare our algorithm with the other flavors, including the regular TCP, with DA
enabled. However, as the vast majority of related work present results over the regular
TCP without DA, we also evaluate this configuration here to allow better comparison with
related work.

Fig. 7.9 exhibits a remarkable achievement of TCP-DAA. These results are obtained
by taking the average of 5 runs, as shown in table 7.2. TCP-DAA outperforms all the
other algorithms in most situations. Only TCP Vegas and regular TCP, both with optimal
setting (DA+WL), outperform slightly our mechanism in the scenario with 7 hops and 2
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Figure 7.8: Simulated scenarios

concurrent flows. Nevertheless, as the number of flows increase, the performance of both
strategies degrades significantly, while it is not the case in our scheme. We believe that
TCP-DAA will be further improved if the default sender’s RTO calculation is fine tuned
to its strategy.

It is interesting to note that, in general, the more flows the better the improvement of
our algorithm over the other protocols. One reason for that is the high level of transmis-
sion delays due to the higher number of flows in the network. Under such high delays,
the packet delay variance becomes less significant in the RTO calculation, and so less
interference of the delayed ACKs is perceived by the sender. Another reason lies in the
sender’s high tolerance to invoke the timeout procedure, which renders the TCP-DAA
sender less aggressive than a regular sender. As shown in section 7.4.4, this behavior is
advantageous with regard to spurious retransmissions, resulting in more bandwidth to the
concurrent flows. In case there is no concurrent flow to use the left bandwidth, while the
sender is waiting for the timeout, then that bandwidth is simply wasted.

Overall, the observed improvements are up to about 50% over regular TCP, and over
LDA improvements of up to 30% are obtained. We also performed simulations for 1,
2, 4 and 6-hop scenarios and the results are similar, in some cases less improvement are
observed, but in most cases our algorithm performs significantly better than all the others.
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Figure 7.9: Aggregate throughput in the chain topology
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7.4.3 Throughput in the Grid Topology

Here we describe the investigations carried out in a more complex scenario, the grid
topology illustrated in Fig. 7.8(b). In these evaluations, we have first only 3 flows crossing
the topology horizontally (flows 1, 2 and 3 in Fig. 7.8(b)). In the next step, 6 flows (3
horizontal and 3 vertical) are injected into the network concurrently. The averaged results
are depicted in Fig. 7.10.

This is a critical scenario, given the various interactions among the nodes in place.
The level of dropped packets is high, and so is the degradation of our mechanism. As
the scheduling strategy of 802.11 is inherently unfair, it may happen that in some cir-
cumstances TCP-DAA outperforms the other implementations [OB04b], but its overall
performance is expected to be similar to that of a regular TCP, as illustrated in Fig. 7.10.

In these simulations, our mechanism performs roughly the same as the other imple-
mentations for the run with only horizontal flows (3 flows). Its efficiency deteriorates
for the 6 flows case, going down to the level of the regular TCP with DA. Note that
the window limit (4 packets) of TCP-DAA is slightly higher than the one of the regular
TCP (3 packets), which may explain why TCP-DAA does not reach the performance of
the TCP+DA+WL configuration. We have not used the same window limit in both al-
gorithms because the limit of 3 packets was expected to perform better for the regular
TCP, as shown in section 7.2.1. TCP SACK and Vegas perform best in these evaluations.
Our algorithm would most likely follow SACK and Vegas’s performance closely if it had
been implemented over these flavors, but it was implemented over TCP NewReno which
performs well in a variety of scenarios. We believe that a more robust MAC protocol,
concerning fairness, may favor our mechanism in such environments.
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7.4.4 Retransmissions

Since TCP-DAA is more tolerant to packet delay variations by having the regular RTO
(retransmission timeout) at the sender multiplied by a factor of 5 and a dynamic acknowl-
edgment strategy at the receiver, it is expected that it minimizes spurious retransmissions
by timeout.

Fig. 7.11 shows the result of a simulation run in which 10 flows share the medium in
the chain topology of Fig. 7.8(a), under different number of hops. The figure exhibits the
aggregate number of retransmissions including retransmissions by both timeout and the
fast retransmit mechanism.
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Figure 7.11: Aggregate number of retransmissions

It can be seen that for the 2-hop scenario, our protocol does not retransmit any packet
at all, while the regular TCP retransmits over 400 times. For 4, 6 and 8 hops, our mech-
anism provides significant enhancement by retransmitting much less than the other al-
gorithms. This is the result of less collisions between data and ACK packets, given the
fewer amount of ACKs generated by our mechanism. The conservative mechanism for
the retransmissions by timeout in the TCP-DAA sender contributes to such achievements
as well. In these evaluations, TCP-DAA retransmits 72 to 100% less than the regular
TCP and 65 to 70% less than the LDA scheme. This outcome is doubtlessly expressive
in terms of energy consumption benefits, as shown in the next section.

7.4.5 Energy Efficiency

TCP-DAA is expected to be energy saving as it minimizes spurious retransmissions. In
this section we evaluate the performance benefits of TCP-DAA in terms of energy con-
sumption, as depicted in Fig. 7.12. We used the simple energy model implemented in the
ns-2 simulator that has been presented in [XHE00]. By this model, a node starts with an
initial energy level that is reduced whenever the node transmits, receives or overhears a
packet. Thus, the total amount of energy, E(ni), consumed at a given nodeni is given by
(7.7).
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E(ni) = Etx(ni) + Erx(ni) + (N − 1) ∗ E0(ni) (7.7)

WhereEtx, Erx, andE0 denote the amount of energy expenditure by transmission,
reception, and overhearing of a packet, respectively.N represents the average number of
neighbors nodes affected by a transmission from nodeni [KGLAO+02].

In order to account only for the reception and transmission expenditure, we have
discarded the energy spent by overhearing (E0). This is appropriate to highlight the
energy due to TCP transmissions and receptions. Fig. 7.12(a) shows the result of a
simulation run in which 10 flows share the medium in the chain topology of Fig. 7.8(a)
for different number of hops. The figure exhibits the energy consumption per bit at the
TCP sender. This is computed ase = pkt∗pkt size∗8

e spent , wheree is the energy/bit ratio,pkt
is the amount of packet transmitted by the sender,pkt size is the packet size in bytes and
e spent is the energy in Joule spent by the sending node.

One can see in Fig. 7.12(a) that TCP-DAA provides the best result over all situa-
tions. The performance enhancement is more noticeable at large number of hops, where
the probability of collisions is higher. This happens because our algorithm minimizes the
number of packets in transit. As a result, less collisions occur leading to fewer retransmis-
sions and consequently higher energy saving. In these simulations, TCP-DAA provided
an improvement of up to 18% over the regular TCP. Alternatively, one can say that the
regular TCP spent about 26% more energy than our scheme.

We also evaluated the impact of the packet size on TCP energy consumption as shown
in Fig. 7.12(b). In this simulation, four different packet sizes are evaluated, namely pack-
ets of 256, 512, 1000, and 1460 bytes long. Sender and receiver are connected through
4 hops. The results show that the smaller the packet the higher the energy consumption.
This is intuitive because with small packets TCP needs to process more packets to trans-
mit the same amount of data than it does when using larger packet sizes. Fig. 7.12(b) also
shows that in most cases, but for packet size of 256 bytes, TCP-DAA spent less energy
than all the other configurations. The difference was not very significant though. Thus,
in this scenario packet size does not seem to impact energy consumption significantly.

7.4.6 Short-lived Flows

An important aspect of approaches that defer acknowledgments at the receiver is their
response to short-lived flows. The duration of such flows are usually not sufficient to lead
the congestion control mechanism rapidly to an equilibrium. The problem is that TCP
is an ACK-clocked mechanism as its sender needs ACKs to clock out data. TCP-DAA
addresses this issue by using the startup speed factorµ which defines how aggressive
the sender may be during its startup. In this section, we evaluate the performance of our
mechanism for short-lived flows.

For the sake of clarity, we consider a scenario without the hidden node problem. Fig.
7.13 illustrates the bandwidth achieved for a run over the chain topology of Fig. 7.8(a).
In this run, sender and receiver communicate over 3 hops, and different values ofµ are
simulated for a duration of 40 seconds. The curves plotted in the figure represent the
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Figure 7.12: Energy consumption at the TCP sender
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bandwidth achieved by a single flow. The graphs are computed with a granularity of 0.3
seconds, and accumulated over the whole simulated interval, i.e., gradually accumulated
from 0 to 40 seconds by steps of 0.3 seconds.

The results point out that smaller values ofµ render better performance at startup than
large values. As the session duration gets longer, the difference among the distinct values
of µ become negligible, as shown clearly in Fig. 7.13(a). The same convergence would be
noticed in Fig. 7.13(b), where 10 flows share the medium, if a longer simulation duration
had been performed. The main outcome here is that short-lived connections should use
low values forµ toward faster transfers.

In order to guarantee that the receiver does not lead the sender to miss ACKs at
startup, the value ofµ should then be in the range (0,0.5), i.e.,0 < µ < 0.5. Having
µ=0.5 causes the receiver to increase itsdwin too quickly as follows. The sender first
transmits two data packets (sender’s initial window is set to 2). The receiver defers the
acknowledgment of the first data packet because itsdwin (initialized with 1) is first in-
creased by 0.5 (µ value) and so becomes 1.5 which is greater than the currentack count
that is equal to 1. By receiving the next data packet,dwin reaches size 2, and so does
ack count. Asack count is then as large asdwin, the receiver acknowledges the second
data packet. When the sender gets such an ACK, it expands itscwnd to 3, and transmits
three new packets. These packets are going to be delayed at the receiver, but they are not
enough to makeack count as large asdwin. The three packets driveack count to 3,
anddwin to 3.5.

As a result, the receiver has to wait for its timer expiration before sending the buffered
ACK, and reducingdwin to 2. We use a conservative initial timeout interval of 200 ms
for avoiding spurious timeout during startup, primarily for congested scenarios. Hence, if
TCP-DAA increases itsdwin too fast, it may not wait long enough for the transmission
channel to be full of packets for delaying the ACKs. This may, in the worst case, trigger
a retransmission by timeout at the sender. Fig. 7.13(a) illustrates how the curve forµ=0.5
performs much poorly than the others at the initial instants of the simulation time. Higher
values ofµ experience the same problem.

Since theµ value is not very significant for long-lived flows, we simply used a value of
0.3 in the previous evaluations for providing some tolerance in case of dropped packets at
the very beginning of the simulation. Smaller values may not be appropriate for scenarios
with many concurrent flows, because the smaller theµ the more packet exchanges, which
may induce excessive drops during startup.

To further illustrate the performance of our algorithm for short-lived flows, we con-
ducted simulations in which only short files are transferred over the chain topology. The
results are depicted in Fig. 7.14. In the evaluation shown in Fig. 7.14(b), a single flow
crosses seven hops, the file size ranges from 10 to 500 Kbytes, and the startup speed
factor µ is set to 0.1. Fig. 7.14(a) highlights that except for the regular TCP (with or
without DA) and the LDA scheme, all the other implementations perform roughly the
same. Short-lived flows indeed do not seem to benefit from our proposed mechanism.
If the scenario is too much congested by many parallel flows, TCP-DAA may experi-
ence worst performance than the other flavors, given the lack of time it faces to reach
equilibrium. This is shown in Fig. 7.14(b) for five concurrent flows.
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Figure 7.13: Accumulated throughput of 1 flow for short-lived flows
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The results confirm that by being too conservative, TCP-DAA does not perform well
for very short file sizes as it does not speed up their transfer time. Such a time, in Fig.
7.14(b), refers to the time needed to fully transfer the slowest flow among the five con-
current ones. In these simulations, TCP-DAA does not provide any measurable benefit
for file sizes of 10, 50 and 100 Kbytes. In fact, it performs slightly worse than the other
flavors for the very short file size of 10 Kbytes. On the other side, for file of size bigger
than 100 Kbytes, it may provide some benefit. The enhancements are not very signifi-
cant, though. In short, to be optimal for short-lived flows, our mechanism needs a more
aggressive strategy at the sender. However, there will be always a tradeoff between short
and long-lived flows optimizations.

7.4.7 Optimization:TCP-DAAp

We investigate in this section the optimization proposed in section 7.3.6 (TCP-DAAp)
in which thedwin strategy of the sender is supposed to be more robust to environments
facing non negligible losses. Upon losses the receiver reducesdwin to one and slowly
increases it again to prevent the receiver timer from expiring by lack of data packets. The
analytical evaluation in section 7.3.6 showed that following a very conservative proce-
dure,dwin should increase by about 0.28 for each in-order data packet received. The
simulation results illustrated in Fig. 7.15 conforms closely to the analytical prediction.
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These evaluations were conducted over the chain topology and each run lasted one
thousand seconds. Each curve indicates the throughput of a single flow out of twenty
competing flows in a 5-hop scenario. Since the scenario is quite constrained in this case,
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the sender retransmission timeout (RTO) must not be too tolerant as in the previous case.
Hence, its tolerance was decreased from fivefold to twofold to conform with the concept
in section 7.3.6. Various values for theµ′ parameter were simulated. Despite the varying
behavior of the curves, one can see thatµ′ = 0.2 andµ′ = 0.3 tend to provide optimal
performance.

It is expected that TCP-DAAp does not provide the same improvements shown in
Fig. 7.9. This happens because of two reasons: TCP-DAAp transmits more ACKs than
the basic version, and its sender is more aggressive concerning retransmissions. Fig. 7.16
exhibits the comparisons between the two TCP versions for the same conditions in section
7.4.2. The figure shows that the robustness to losses comes at the cost of throughput under
moderate conditions. Nevertheless, the changed algorithm performs as effective as the
regular TCP in Fig. 7.9(a).
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The justification for the TCP-DAAp strategy is to render our strategy as robust as
the regular TCP mechanism under heavily constrained environments. TCP-DAA is not
optimized to such environments, and because of that it degrades substantially under high
loss rates. Fig. 7.17 highlights the importance of TCP-DAAp in a scenario where just a
single flow crosses a 5-hop chain of nodes under varying packet error rates. This is a very
noisy scenario where not only losses due to MAC collisions are in place but also losses
induced by a permanent external disturbance. The error model used follows a uniform
distribution function. The results in Fig. 7.17 shows that indeed our strategy can handle
losses in an effective way since it performs as effective as the TCP+DA+WL version.
Although it is not shown here, we affirm that these results are even better over the regular
TCP without any further adjustment.
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The discussions in the two paragraphs above suggest that it is helpful to have an
additional monitoring mechanism at the receiver to adjust TCP-DAA strategy on the basis
of the channel condition. This procedure along with an improved TCP sender, regarding
the RTO computation, can surely render our proposal very robust in a wide range of
scenarios. Using such a mechanism, TCP-DAA would be invoked under moderate loss
rate and TCP-DAAp would take over when the channel condition deteriorated. This is
left for potential future work.
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Figure 7.17: TCP-DAAp provides robustness for highly noisy scenarios

7.4.8 TCP Friendliness

Gradual deployment requires acceptable friendliness behavior when TCP-DAA is shar-
ing the medium with other flows. This means that our mechanism should not suppress
regular flows but allow them to achieve at least the same throughput they would obtain
without any improved flow in parallel. We show here how friendly TCP-DAA can be
when competing with regular flows in a multihop channel facing moderate loss rate.

Fig. 7.18 depicts the result of a simulation run in which two flows of distinct versions
share the medium. Namely, a TCP-DAA flow competes with a regular TCP that uses DA
and window limit (WL). It is clear that our mechanism outperforms the adjusted regular
TCP in the span of 8 hops. The difference between both protocols is noticeable for 1
to 3 hops, where the hidden node problem does not happen. After that, more collisions
take place and both mechanisms performs quite the same. One can say that TCP-DAA
performs very aggressively against the optimal regular flow for the cases of 1, 2 and 3
hops, being upmost for the 1-hop case.
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To measure the degradation imposed by our mechanism over the other flow, we in-
clude the “Reference” curve in Fig. 7.18. This curve refers to the adjusted regular flow
(TCP+DA+WL) performance when no modified flow is in place. In other words, this ref-
erence curve is obtained when a regular flow is sharing the medium with another regular
flow. Let this be the reference curve hereafter. The throughput of the regular flow for the
1-hop run in Fig. 7.18 is 469 Kbps. The corresponding throughput for the reference curve
is 681 Kbps. This shows an unfairness of our mechanism for this scenario, which leads
the regular flow to a decrease in throughput of up to 31%.

Another experiment is shown in Fig. 7.19 where the number of hops are fixed at three
and distinct amount of flows are simulated. Since this is a scenario without the hidden
node problem, the number of collisions are not very high. Note that as the number of flows
rise our mechanism degrades performance leaving more bandwidth to the regular flow.
Like the previous case, TCP-DAA induces performance degradation to the regular flow.
In this case, the regular flow would achieve about 223 Kbps of throughput if only regular
flows were being transmitted, but it obtains only 175 Kbps. This means a reduction in
throughput of approximately 23%.

The results above suggest that TCP-DAA needs a sort of pacing for controlling its
sending rate in mixed scenarios involving non-TCP-DAA flows. A possible mechanism
for that is proposed in [All98] in which the authors propose to limit the amount of packets
sent at once by the sender to two packets. This comes at the cost of the end-to-end
bandwidth utilization, though.
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To extend the discussion above to a more lossy scenario facing the hidden node prob-
lem effects, we conducted simulations for a 5-hop chain topology. The results are de-
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picted in Fig. 7.20. The results in Fig. 7.20(a) are obtained with the optimization de-
scribed in section 7.3.6 for the receiver side only. The sender side was kept as in the
basic mechanism where the timeout interval RTO is increased fivefold. The purpose of
this experiment is to highlight that although the receiver is optimized to deal with losses
more effectively, if the sender is too tolerant to invoke its retransmission mechanism its
performance degrades. Fig. 7.20(a) shows that the degradation increases as a function of
the number of hops.

A more aggressive response by the sender is thus fundamental as shown in Fig.
7.20(b). Here both sender and receiver are optimized to deal with frequent packet losses.
The sender uses an RTO limit increased by twofold only and the receiver increases its
dwin in a slower pace. As a result, TCP-DAAp may compete more efficiently with the
regular flow. In this case, our mechanism achieves higher performance than the regular
flow. A more balanced bandwidth distribution can surely be achieved if the involved pa-
rameter are fined tuned. The key point here is that the degradation of the regular flow
is not very pronounced. So our mechanism can indeed be adjusted in such cases toward
friendly behavior.

7.4.9 Discussions

The general perception is that our mechanism is indeed valuable to multihop networks.
The results presented here support our claim that a dynamic and adaptive mechanisms
is effective in such complex environments. The results in section 7.4.7 indicate that the
mechanism can be refined to handle highly constrained conditions. Distinct parameter
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settings for moderate and elevated constraints are needed, though. The key remark here is
that our mechanism automatically uses available bandwidth and does not perform worse
than a regular TCP when traffic conditions deteriorate.

As far as friendly behavior is concerned, our basic mechanism is not very friendly in
scenarios without the hidden node problem. This is a weakness of our technique, which
calls for further investigation. At first, a rate limitation at the sender may mitigate such a
problem. On the other side, TCP-DAA parameters may be optimized under hidden node
problem effects to render the protocol friendly. This optimization includes the sender
side, which has not yet been fully investigated.

Short-lived flows seem not to benefit from our mechanism. These sort of flows last
too shortly, so TCP-DAA does not reach an equilibrium. Nevertheless, our changes do
not impair the performance of these flows. As we expected, by reducing unnecessary
retransmissions at the sender, our mechanism minimizes energy consumption as well.
Throughput improvements are very significant in the chain of nodes topology, but not
really effective in the grid topology. The grid topology considered experiences elevated
loss rate and so TCP-DAA benefits is not achieved. Using 802.11 as the MAC protocol,
we believe that it is very difficult to improve performance for such kind of scenarios where
many flows interact with each other. Changes at the MAC layer are indeed necessary.

7.5 Summary

This chapter introduced and evaluated our dynamic adaptive acknowledgment strategy
to improve TCP performance over short multihop wireless networks on an end-to-end
basis. Our technique mimics the sender congestion control in that it uses the available
channel bandwidth dynamically as soon as it becomes available. When the channel is in
good shape, our mechanism transmits minimal amount of ACKs for improving bandwidth
utilization. Under constraints, the proposed mechanism promptly reacts by transmitting
more acknowledgments in order to mitigate disruptions at the sender side.

The outcome of the performance evaluation is encouraging, especially for scenarios
facing moderate loss rates. Considerable gains in terms of throughput, retransmissions,
and energy consumption were observed in a variety of scenarios. Further improvements
seem to be possible by fine tuning the parameters of the presented algorithm, as well as
by enhancing the sender side to handle the effects of delayed ACKs smoothly.

We certainly do not claim that our technique is the optimal acknowledgment strat-
egy for a TCP implementation in multihop networks. Rather, we believe that various
improvements may be added to the mechanisms presented in this chapter. The most im-
portant ones, from our standpoint, are presented in the next chapter as proposal for future
work. The contributions included in this chapter are above all expected to be a sound
foundation for further developments on TCP implementations tailored to multihop wire-
less networks.



140 CHAPTER 7. A SMART TCP ACKNOWLEDGMENT STRATEGY



Chapter 8

Conclusions and Outlook

Wireless technologies are foreseen as the predominant means in future network commu-
nications. These wireless networks approximate the the user to an old mankind’s dream
of communication anywhere, anyhow, and at anytime. The success of wireless communi-
cations depends, however, on their ability to use the TCP/IP Suite protocol smoothly. This
is a very important research topic nowadays since many issues remain to be addressed.
This thesis has identified key TCP problems in multihop networks and proposed solu-
tions. This chapter summarizes the problems addressed in the thesis, revises the proposed
solutions, draws conclusions, and gives directions for future work.

Challenges and Solutions

Reliable data transfer over multihop wireless networks is one of the most difficult tasks to
be accomplished in this promising framework. Traditional transport protocols like TCP
face severe performance degradation over multihop networks given the noisy nature of
wireless media as well as unstable connectivity conditions in place. The research com-
munity has been seeking ways to improve TCP over such networks largely because of
the various applications that have been developed to this protocol over the years. Inter-
operability with the Internet is another aspect that motivates extending TCP to multihop
networks.

As discussed in chapter 5, TCP was initially designed to work in wired networks.
These networks rely on communication channels that experience generally very low bit
error rates, typically much less than 1%. The communicating nodes in a wired network
are normally fixed, i.e., these nodes do not change location often. Moreover, these tra-
ditional networks count on reasonable bandwidth resource to delivery data. In contrast,
wireless networks do not encompass any of these characteristics fully. As a consequence,
TCP experiences substantial performance degradations in multihop wireless networks.
This thesis proposes solutions to two key problems faced by TCP in such networks: as-
sociation of losses to congestion, and lack of a proper acknowledgment management.

TCP associates dropped packets to network congestion. As a result, whenever a lost
packet is perceived TCP reduces its transmission rate to alleviate the presumed congestion
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inside the network. This is effective in wired networks, which has rendered TCP thede
facto standard protocol for reliable data transport in the Internet. On the other hand,
congestion is not the only reason for packet loss in multihop networks. Rather, these
wireless networks are prone to much higher bit error rates due to the medium nature.
Hence, a conventional TCP may waste precious bandwidth by reducing its transmission
rate when reacting to a single drop caused by a random noise rather than by congestion.
This problem calls for a mechanism at the sending node to determine the actual reason
of a dropped packet. Being aware of the nature of the loss allows the sender to react
properly. This thesis has proposed a mechanism to perform packet loss discrimination at
the sender, which is addressed below.

The other aspect covered in this thesis is proactive instead of reactive as is the case
in the discussion above. The acknowledgment strategy used by TCP poses a high bur-
den on shared wireless media using the IEEE 802.11 standard, as shown in chapter 7.
In addition to the random backoff mechanism that imposes random backoff intervals to
sequentially unsuccessful transmission attempts, 802.11 uses the short RTS/CTS control
frames for any transmission request. This leads a TCP acknowledgment to cause simi-
lar MAC overhead of a data packet, despite the much smaller ACK size. Furthermore,
the data packets of a TCP connection have to contend with the returning ACKs from the
receiver, increasing the probability of collisions. As wireless media rely on very scarce
bandwidth, the amount of ACK injected into the network should be managed carefully.
Thank to the cumulative acknowledgment scheme used in TCP, it is possible to reduce
the amount of ACKs transmitted by a TCP connection. However, this has to be carried
out in an adaptive way because ACKs are fundamental to the correct operation of TCP.
Our proposed solution to this problem is a dynamic adaptive acknowledgment approach
that is presented below.

Packet Loss Discrimination

Chapter 6 has introduced and evaluated our proposed mechanism to distinguish between
packet loss caused by congestion and due to the medium. The general concepts of a
TCP error detection mechanism based on fuzzy logic has been introduced as well. Our
mechanism is tailored to short multihop networks, which is the only one feasible today
given the limitation of the IEEE 802.11 standard.

The proposed technique uses fuzzy logic to perform packet loss discrimination. The
designed fuzzy engine makes inference on RTT measurements to decide whether a given
loss is error or congestion induced. Fuzzy logic allows intelligent systems to be imple-
mented in a very lightweight fashion. As a result, low processing overhead at the sender is
possible, extending the lifetime of the battery powered devices. As only passive measure-
ments are needed for the inference process, it is a completely end-to-end solution. This is
advantageous to leverage deployment since no explicit intermediate node cooperation is
necessary.

Simulation evaluations show that the proposed fuzzy engine is promising in the target
scenarios. Provided that the input data, gathered from the measurements, follow a given
pattern the fuzzy engine can provide efficient discrimination. RTT mean and variance are
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useful to match the network condition to a well-defined pattern. In steady state scenarios,
where abrupt changes does not occur too often, the proposed engine is quite robust. This
makes this mechanism quite appropriate to scenarios facing consistent loss rates.

A Dynamic Adaptive Acknowledgment Strategy

In chapter 7, our proposed mechanism to reduce ACK induced overhead and consequently
collisions has been introduced and evaluated. The central idea behind this mechanism lies
in the observation that while the TCP sender actively interacts with the network to use its
changing bandwidth efficiently, the receiver is merely a responsive mechanism to the
sender transmissions. The receiver plays no significant role in the end-to-end connection
other than the straight acknowledgment of incoming data packets to the sender. Our
proposal adds functionalities to the TCP receiver, so it can also interact with the network
to alleviate losses and consequently improve the end-to-end performance adaptively.

Our dynamic adaptive acknowledgment approach minimizes the number of ACKs
transmitted by a TCP receiver by actively monitoring the channel condition and adapting
to it. The sender keeps track of the packet inter-arrival interval to adjust its timeout timer
properly on the basis of the ongoing network status. The packets sequence number are
also monitored to speed up loss detection dynamically. The receiver combines from one
to four ACKs into a single ACK saving precious bandwidth. Thus, the receiver delays
ACKs in a fully dynamic and adaptive fashion similarly to the sender congestion control.
A key feature of our scheme is to work independently of the channel data rate. This is
also an end-to-end solution that dispenses with changes in the intermediate nodes.

Simulation evaluations using the ns2 network simulation show very good results in a
variety of scenarios. The proposed mechanism improves not only bandwidth utilization
but also energy consumption. Less retransmissions at the sender and less overall ACK
processing are the reasons for energy saving at the sender. The basic mechanism of
our scheme targets scenarios facing moderate loss rates. Simulation results indicate that
improvements are needed for highly lossy environments. Because of that, an alternative
response to lossy channels were developed and the evaluations show that it is efficient.
The proposed mechanisms can be combined to make the changed receiver feasible in both
unconstrained and constrained situations.

Lessons Learned

This section summarizes a few general remarks that might be useful for future researches
in the field of this thesis.

The complexity involved in the modeling of protocols for today’s networks is ex-
tremely high. As a result, most work based on analytical analysis have to make strong
assumptions so that the modeling becomes possible. The problem is that this practice
generally renders the results unrealistic and so these approaches are mostly not deployed.
Heuristic approaches are easier to design and are usually based on intuition and observ-
able real life events. However, a pure heuristic approach is usually not optimized since it
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lacks full knowledge of the system which it represents. Hence, the most prominent so-
lutions combine heuristics with basic analytical models. The traditional TCP is a typical
example of such approaches. Some researchers have been trying to model this protocol
precisely, but no such modeling has yet been achieved or deployed.

Simulation reliability is another important subject that has been discussed in the re-
search community. Some researchers do not trust simulation evaluations. From our expe-
rience, we believe that simulation can be as useful as real testbeds. An important point to
be noticed here is that the simulators parameters have to be set realistically. This ensures
that simulation results represent real life systems’ behaviors very closely.

The last observation we want to comment on here concerns the degree of accuracy in
typical evaluation results. Many related work conduct experiments either by simulation or
real measurements and draw conclusions based on a single run. From our experience, we
indeed know that most measurements have to be averaged over several runs for reliability
purposes. Only a single run can really mask the results toward a completely wrong trend
compromising the conclusions.

Outlook

The proposals in this thesis improve performance of a traditional TCP in a variety of
scenarios. However, there are some limitations as well as pending evaluations that can be
pursued for future work. We outline next some obvious extensions of the present work.

Fine tuning the Fuzzy Engine: The fuzzy engine proposed in chapter 6 was designed with
a very simple set of membership functions. More accuracy appears to be possible if not
only more fuzzy sets are used but also other membership functions are taken. We used a
uniform distribution for the error pattern, which we believe ensures a worst case scenario.
However, different pattern distributions could be evaluated to determine to what extend
they may influence the engine efficiency. Moreover, since the amount of ACKs tends to
decrease substantially as the number of hops increase, it seems that a way to shrink the
computing window is needed in these cases.

Automatic Setting of the Fuzzy Engine: The fuzzy engine was evaluated for a fixed num-
ber of hops only. Different number of hops impose distinct RTT ranges, which implies in
specific parameters for each number of hops. In addition, the RTT characteristic varies
with error pattern. To accelerate deployment, the fuzzy engine settings have to be adap-
tive to the network conditions dynamically. A genetic algorithm can be used to monitor
the RTT parameters and adjust the engine parameters on the fly.

A Customized Sender for the Smart Acknowledgment: Our proposed dynamic adaptive
acknowledgment strategy is currently focused on the receiver side. It is well-known that
the sender relies on ACKs for computing its timeout interval and transmit new data pack-
ets. Since our mechanism at the receiver delays ACKs dynamically, it can disturb the
sender performance by inducing spurious retransmissions degrading the end-to-end per-
formance. In order to evaluate our changes at the receiver, we simply increased the sender
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RTO fivefold and decreased the threshold to trigger the fast retransmit mechanism from
three to two packets. This is appropriate for moderate loss rate but too conservative for
high loss rates. Therefore, a comprehensive investigation on the sender algorithm to deal
with the side effects of the dynamically delayed ACKs is needed.

Interoperability of the Smart Acknowledgment with the Internet: Our proposed strategy
is completely customized to multihop wireless networks. Users might find it useful to
participate in such networks and at the same time communicate with the Internet. In
such cases, it is important to a TCP implementation in multihop networks to be able to
establish connections to the Internet. A gateway between the two networks is necessary to
establish such interoperation. We believe that some TCP functionalities in these gateways
are needed to connect these two networks such as the such as the ones proposed in I-
TCP [BB95]. To investigate such functionalities, as well as the changes required in our
technique represent indeed an interesting extension of our work.

Combination of the Smart Acknowledgment with the Fuzzy Engine: The smart acknowl-
edgment improves performance by being proactive in minimizing collisions, while the
fuzzy engine is reactive because it detects loss. It seems to be promising the combination
of both mechanisms. This is, however, not a simple task since the changes in the num-
ber of acknowledgments generated by the receiver disturb the RTT patterns perceived by
the fuzzy engine. Hence, full investigation starting by detecting the resulting patterns is
suggested for future work.

Evaluation of the Dynamic Adaptive Acknowledgment in a Testbed: Even though we have
evaluated our proposal extensively through simulations, its implementation in a testbed
is surely of interest. To evaluate our mechanism with real traffic is definitely a good
contribution to be performed. We believe that the configuration parameters of our scheme
might be fine tuned by considering real traffic features.



146 CHAPTER 8. CONCLUSIONS AND OUTLOOK



List of Figures

2.1 TCP/IP stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
2.2 Protocols encapsulation resulting in an Ethernet frame . . . . . . . . . .9
2.3 TCP/IP end-to-end communication . . . . . . . . . . . . . . . . . . . . .10
2.4 TCP header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
2.5 TCP three-way handshake . . . . . . . . . . . . . . . . . . . . . . . . .12
2.6 TCP congestion window evolution . . . . . . . . . . . . . . . . . . . . .17
2.7 TCP Reno reaction to two dropped packets . . . . . . . . . . . . . . . .22
2.8 TCP NewReno reaction to two dropped packets . . . . . . . . . . . . . .24
2.9 TCP Sack reaction to two dropped packets . . . . . . . . . . . . . . . . .26
2.10 ECN bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29

3.1 Ad hoc networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
3.2 MAC frame format . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
3.3 Basic access method in 802.11 . . . . . . . . . . . . . . . . . . . . . . .42
3.4 IEEE 802.11 Timing diagram . . . . . . . . . . . . . . . . . . . . . . . .43
3.5 CTS/RTS to prevent hidden node problem . . . . . . . . . . . . . . . . .44
3.6 802.11 shortcoming in multihop networks (simplified model: only trans-

mission range) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
3.7 AODV route discovery . . . . . . . . . . . . . . . . . . . . . . . . . . .48
3.8 DSR route discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . .50
3.9 Typical sensor network architecture . . . . . . . . . . . . . . . . . . . .51

4.1 Typical membership function shape (S-curve) . . . . . . . . . . . . . . .56
4.2 Typical membership function shape (Z-curve) . . . . . . . . . . . . . . .57
4.3 Typical membership function shape (bell-shaped curve) . . . . . . . . . .58
4.4 Basic fuzzy set operations (1:A

⋃
B, 2:A

⋂
B, 3:A

⋃
B) . . . . . . . . . 59

4.5 An example of the min-max inference method . . . . . . . . . . . . . . .62
4.6 A fuzzy logic system . . . . . . . . . . . . . . . . . . . . . . . . . . . .63

5.1 MAC layer problems affecting TCP performance: a) hidden node, b) ex-
posed node, c) capture effect . . . . . . . . . . . . . . . . . . . . . . . .67

5.2 TCP throughput decreases as the number of hops increase . . . . . . . . .68
5.3 Spatial reuse in multihop networks . . . . . . . . . . . . . . . . . . . . .70
5.4 Comparison between AODV and DSR . . . . . . . . . . . . . . . . . . .72

147



148 LIST OF FIGURES

5.5 Drawback of TCP exponential backoff mechanism in multihop networks .74
5.6 DATA and ACK delay in a typical wireless channel . . . . . . . . . . . .75

6.1 Chain topology with 3 hops (3-hop scenario) . . . . . . . . . . . . . . . .91
6.2 RTT characteristic under congestion and wireless losses . . . . . . . . . .92
6.3 Distribution of RTT mean in a 3-hop multihop network . . . . . . . . . .95
6.4 Distribution of RTT variance in a 3-hop multihop network . . . . . . . .96
6.5 Fuzzy-based error detection mechanism . . . . . . . . . . . . . . . . . .97
6.6 Detection of steep increase in RTT . . . . . . . . . . . . . . . . . . . . .98
6.7 Fuzzy membership functions. . . . . . . . . . . . . . . . . . . . . . . . .101
6.8 Window evaluation and updating . . . . . . . . . . . . . . . . . . . . . .103
6.9 Correctness of the fuzzy engine . . . . . . . . . . . . . . . . . . . . . . .104
6.10 FEDM (Fig. 6.5) under abrupt congestion . . . . . . . . . . . . . . . . .105
6.11 Modified TCP performance, 10% of PER . . . . . . . . . . . . . . . . .106

7.1 The optimal limit for the sender congestion window . . . . . . . . . . . .111
7.2 TCP-DAA approach . . . . . . . . . . . . . . . . . . . . . . . . . . . .114
7.3 Receiver dynamic window for delaying packets . . . . . . . . . . . . . .115
7.4 TCP-DAA receiver mechanisms . . . . . . . . . . . . . . . . . . . . . .117
7.5 Delayed acknowledgment strategies . . . . . . . . . . . . . . . . . . . .119
7.6 An alternative delaying window strategy for robustness against losses . .120
7.7 Optimal amount of ACKs for high loss rates . . . . . . . . . . . . . . . .122
7.8 Simulated scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124
7.9 Aggregate throughput in the chain topology . . . . . . . . . . . . . . . .125
7.10 Aggregate throughput in the grid topology with cross traffic . . . . . . . .126
7.11 Aggregate number of retransmissions . . . . . . . . . . . . . . . . . . .127
7.12 Energy consumption at the TCP sender . . . . . . . . . . . . . . . . . . .129
7.13 Accumulated throughput of 1 flow for short-lived flows . . . . . . . . . .131
7.14 Transfer time for short-lived flows . . . . . . . . . . . . . . . . . . . . .132
7.15 Optimalµ′ parameter for TCP-DAAp . . . . . . . . . . . . . . . . . . .133
7.16 Comparison between the two TCP-DAA versions under moderate loss rate134
7.17 TCP-DAAp provides robustness for highly noisy scenarios . . . . . . . .135
7.18 TCP-DAA friendliness . . . . . . . . . . . . . . . . . . . . . . . . . . .136
7.19 Aggregate throughput for two distinct versions in parallel . . . . . . . . .137
7.20 Aggregate throughput for two distinct versions in parallel . . . . . . . . .138



List of Tables

2.1 ECN bits within IP header . . . . . . . . . . . . . . . . . . . . . . . . .29

6.1 RTT Mean and Variance . . . . . . . . . . . . . . . . . . . . . . . . . .93
6.2 IED pseudo code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99
6.3 Fuzzy Rules Output (φ) . . . . . . . . . . . . . . . . . . . . . . . . . . .102

7.1 Data and ACKs transmission delay (in seconds) . . . . . . . . . . . . . .112
7.2 General simulation parameters . . . . . . . . . . . . . . . . . . . . . . .123

149



150 LIST OF TABLES



List of Abbreviations and Acronyms

AP Access Point
ACK Acknowledgment
AODV Ad-hoc On-demand Distributed Vector
AQM Active Queue Management
ATCP Ad hoc TCP
BER Bit Error Rate
CF Contention-Free
CFP Contention-Free Period
CP Contention Period
CRC Cyclic Redundancy Check
CSMA/CA Carrier Sense Multiple Access with Collision Avoidance
CTS Clear to Send
CW Contention Window
CWR Congestion Window Reduced (CWR)
cwnd Congestion Window
DAA Dynamic Adaptive Acknowledgment
DAAp Dynamic Adaptive Acknowledgment plus
DCF Distributed Coordination Function
DNS Domain Name Server
DS Distributed System
DSR Dynamic Source Routing
ECN Explicit Congestion Notification
ELFN Explicit Link Failure Notification
FCS Frame Check Sequences
FEDM Fuzzy-based Error Detection Mechanism
FILO First In Last Out
FTP File Transfer Protocol
HMM Hidden Markov Model
HTTP HyperText Transfer Protocol
ICMP Internet Control Message Protocol
IDD Inter-packet Delay Difference
IED Improved Error Detection
IEEE Institute of Electrical and Electronics Engineers

151



152 LIST OF ABBREVIATIONS AND ACRONYMS

IETF Internet Engineering Task Force
IFS Interframe Space
IP Internet Protocol
ISN Initial Sequence Number
LAN Local Area Network
LDA Large Delayed Acknowledgment
LRED Link RED
MAC Medium Access Control
MSS Maximum Segment Size
ndup Number of duplicate ACKs (threshold)
NH Number of Hops
OSI Open Systems Interconnect
PC Point Coordinator
PCF Point Coordination Function
PER Packet Error Rate
PLR Packet Loss Rate
POR Packet Out-of-order delivery Ratio
RED Random Early Detection
RFN Route Failure Notification
RR RTT increase Rate
RRN Route Re-establishment Notification
RREP Route Reply
RREQ Route Request
RTO Retransmit Timeout
RTS Request to Send
RTT Round Trip Time
RTTVAR Round Trip Time Variation
rwin Receiver Window
rx Reception
SMTP Mail Transfer Protocol
SRTT Smoothed Round Trip Time
STT Short Term Throughput
SWS Silly Window Syndrome
TCP Transport Control Protocol
TTL Time to Live
tx Transmission
Wi-Fi Wireless Fidelity
WLAN Wireless Local Area Network
WWW World Wide Web



Bibliography

[ABF01] M. Allman, H. Balakrishman, and S. Floyd. Enhancing TCP’s Loss Re-
covery Using Limited Transmit. RFC 3042, IETF Network Working
Group, January 2001.

[Abr85] N. Abramso. Development of the ALOHANET.IEEE Transactions on
Information Theory, IT-31:pages 119–123, March 1985.

[All98] M. Allman. On the generation and use of TCP acknowledgements.ACM
Computer Communication Review, 28:pages 1114–1118, 1998.

[APS99] M. Allman, V. Paxson, and W. Stevens. Transmission Control Protocol.
RFC 2581, IETF Network Working Group, April 1999.

[ASSC02] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. A Survey on
Senser Networks.IEEE Communications Magazine, 40:pages 102–114,
August 2002.

[AWSC02] I. F. Akyildiz, Y. S. W. Su, and E. Cyirci. Wireless Sensor Networks:
A Survey. Computer Networks (Elsevier), 38(4):pages 393–422, March
2002.

[BB95] A. Bakre and B. Badrinath. I-TCP: Indirect TCP for Mobile Hosts. InPro-
ceedings of IEEE ICDCS’95, pages 136–143. Vancouver, Canada, May
1995.

[BCC+98] B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin,
S. Floyd, V. Jacobson, G. Minshall, G. Minshal, C. Partridge, L. Peterson,
K. Ramakrishnan, S. Shenker, J. Wroclawski, and L. Z. and. Recommen-
dations on Queue Management and Congestion Avoidance in the Internet.
RFC 2209, IETF Network Working Group, April 1998.

[BMJ+98] J. Broch, D. Maltz, D. Johnson, Y.-C. Hu, and J. Jetcheva. A perfor-
mance comparison of multi-hop wireless ad hoc network routing proto-
cols. In Proceedings of Fourth Annual ACM/IEEE International Con-
ference on Mobile Computing and Networking (Mobicom ’98). Dallas,
October 1998.

153



154 BIBLIOGRAPHY

[BMP94] L. S. Brakmo, S. W. O. Malley, and L. Peterson. New Techniques for Con-
gestion Detection and Avoidance. InProceedings of ACM SIGCOMM,
pages 24–35. London, UK, October 1994.

[BPS+97] H. Balakrishnan, V. Padmanabhan, S. Seshan, M. Stemm, and R. Katz.
TCP Behavior of a Busy Web Server: Analysis and Improvements. Tech-
nical report, UCB/CSD-97-966, August 1997.

[Bra89] R. Braden. Requirements for Internet Hosts – Communication Layers.
RFC 1122, IETF Network Working Group, October 1989.

[BS97] K. Brown and S. Singh. M-TCP: TCP for Mobile cellular Networks.ACM
Computer Communications Review, 27:pages 19–43, 1997.

[BSAK95] H. Balakrishnan, S. Seshan, E. Amir, and R. Katz. Improving TCP/IP Per-
formance over Wireless Networks. InProceedings of 1st ACM Mobicom.
Vancouver, Canada, November 1995.

[BV98] S. Biaz and N. H. Vaidya. Distinguishing Congestion Losses from Wire-
less Transmission Losses:A Negative Result. InProceedings of IEEE 7th
Int. Conf. on Computer Communications and Networks. New Orleans,
LA, USA, October 1998.

[CGL00] A. Chandra, V. Gummalla, and J. Limb. Wireless Medium Access Control
Protocols. IEEE Communications Surveys, 39(1):pages 02–15, Second
Quarter 2000.

[CJ89] D. Chiu and R. Jain. Analysis of the increase and decrease algorithms
for congestion avoidance in computer networks.Computer Networks and
ISDN Systems, 17(1):pages 1–14, June 1989.

[CJ03] T. Clausen and P. Jacquet. ptimized Link State Routing Protocol (OLSR).
RFC 3626, IETF Network Working Group, October 2003.

[CK03] C. Chong and S. Kumar. Sensor Networks: Evolution, Opportunities, and
Challenges.IEEE, 91(8):pages 1247–1256, August 2003.

[Cla82] J. P. Clark. Window and Acknowledgment Strategy in TCP. RFC 813,
IETF Network Working Group, july 1982.

[CM99] S. Corson and J. Macker. Mobile Ad hoc Networking (MANET): Routing
Protocol Performance Issues and Evaluation Considerations. RFC 2501,
IETF Network Working Group, January 1999.

[CM01] L. Cheng and I. Marsic. Fuzzy Reasoning for Wireless Awareness.In-
ternational Journal of Wireless Information Networks, 8(1):pages 15–26,
January 2001.



BIBLIOGRAPHY 155

[Cox94] E. Cox. The Fuzzy Systems Handbook: A Practitioner’s Guide to Build-
ing, Using, and Maintaining Fuzzy Systems. Academic Press, 1994.

[CRVP98] K. Chandran, S. Raghunathan, S. Venkatesan, and R. Prakash. A Feed-
back Based Scheme For Improving TCP Performance In Ad-Hoc Wire-
less Networks. InProceedings of International Conference on Dis-
tributed Computing Systems (ICDCS’98). Amsterdam, The Netherlands,
June 1998.

[CSH+01] P. M. Chan, R. Sheriff, Y. F. Hu, P. Confort, and A. Spazio. Mobility
Management Incorporating Fuzzy Logic for a Heterogeneous IP Environ-
ment. IEEE Communications Magazine, 39(12):pages 42–51, December
2001.

[CWKS97] B. Crown, I. Widjaja, J. Kim, and P. Sakai. IEEE 802.11 Wireless Lo-
cal Networks. IEEE Communications Magazine, 39(1):pages 116–126,
September 1997.

[CXN03] K. Chen, Y. Xue, and K. Nahrstedt. On Setting TCP’s Congestion Win-
dow Limit in Mobile Ad Hoc Networks. InProceedings of IEEE Interna-
tional Conference on Communications (ICC 2003). Anchorage, Alaska,
May 2003.

[Dar81] Darpa. Transmission Control Protocol. RFC 793, IETF Network Working
Group, April 1981.

[DB01] T. D. Dyer and R. Boppana. A Comparison of TCP Performance over
Three Routing Protocols for Mobile Ad Hoc Networks. InACM Sym-
posium on Mobile Ad Hoc Networking and Computing - Mobihoc. Long
Beach, USA, October 2001.

[DLJL00] D. Dumitrescu, B. Lazzerini, L. C. Jain, and B. Lazzerini.Fuzzy Sets and
their Application to Clustering and Training. CRC Press, 2000.

[DVRA04] A. Dunkels, T. Voigt, H. Ritter, and J. Alonso. Distributed TCP Caching
for Wireless Sensor Networks. InProceedings of The Third Annual
Mediterranean Ad Hoc Networking Workshop (MedHocNet04). Bodrum,
Turkey, June 2004.

[EA03] T. J. E. Altman. Novel delayed ACK techniques for improving TCP per-
formance in multihop wireless networks. InPersonal Wireless Communi-
cations (PWC’03). Venice, Italy, September 2003.

[EFF+00] D. Estrin, K. Fall, S. Floyd, J. Heidemann, A. Helmy, P. Huang, S. Mc-
Canne, K. Varadhan, Y. Ya, and H. Yu. Advances in Network Simulation.
Computer, 33(5):pages 59–67, May 2000.



156 BIBLIOGRAPHY

[EGHK99] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar. Next Century Chal-
lenges: Scalable Coordination in Sensor Networks. InProceedings of 5th
ACM/IEEE Mobicom Conference (MobiCom), pages 263–270. Seattle,
USA, August 1999.

[EHH+00] D. Estrin, M. Handley, J. Heidemann, S. S. McCanne, X. Ya, and H. Yu.
Network Visualization with Nam, the VINT Network Animator.Com-
puter, 33(11):pages 63–68, November 2000.

[FF96] K. Fall and S. Floyd. Simulation-based Comparisons of Tahoe, Reno, and
SACK TCP.Computer Communication Review, 26(3), July 1996.

[FGML02] Z. Fu, B. Greenstein, X. Meng, and S. Lu. Design and Implementation
of a TCP-Friendly Transport Protocol for Ad Hoc Wireless Networks. In
Proceedings of 10th IEEE International Conference on Network Proto-
cosls (ICNP’02). November 2002.

[FH99] S. Floyd and T. Henderson. The NewReno Modification to TCP’s Fast
Recovery Algorithm. RFC 3782, IETF Network Working Group, April
1999.

[FHAG04] S. Floyd, T. Henderson, and E. A. Gurtov. The NewReno Modification
to TCP’s Fast Recovery Algorithm. RFC 3782, IETF Network Working
Group, April 2004.

[FZL+03] Z. Fu, P. Zerfos, H. Luo, S. Lu, L. Zhang, and M. Gerla. The Impact of
Multihop Wireless Channel on TCP Throughput and Loss. InProceedings
of Infocom’03. San Francisco, USA, April 2003.

[GK04] N. Gupta and P. R. Kumar. A Performance Analysis of the 802.11 Wire-
less Lan Medium Access Control.Communications in Information and
Systems, 3(4):pages 279–304, September 2004.

[GTB99] M. Gerla, K. Tang, and R. Bagrodia. Evaluation for TCP with Delayed
ACK Option in Wireless multi-hop Networks. InProceedings of IEEE
Workshop on Mobile Computing Systems and Applications (WMCSA).
New Orleans, Louisiana, USA, February 1999.

[Haa02] Z. J. Haas. Wireless Ad Hoc Networks. In J. Proakis, editor,Encyclopedia
of Telecommunications. John Wiley, 2002.

[HBG00] U. Hengartner, J. Bolliger, and T. Gross. TCP Vegas Revisited. InPro-
ceedings of IEEE INFOCOM 2000. Tel Aviv, Israel, March 2000.

[HCB00] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy Efficient
Routing Protocols for Wireless Microsensor Networks. InProceedings
of 33rd Hawaii International Conference on System Sciences (HICSS).
Hawaii, January 2000.



BIBLIOGRAPHY 157

[HFPW03] M. Handley, S. Floyd, J. Padhye, and J. Widmer. TCP Friendly Rate Con-
trol (TFRC): Protocol Specification. RFC 3448, IETF Network Working
Group, January 2003.

[HKB99] W. Heinzelman, J. Kulik, and H. Balakrishnan. Adaptive Protocols for In-
formation Dissemination in Wireless Sensor Networks. InProceedings of
5th ACM/IEEE Mobicom Conference (MobiCom). Seattle, USA, August
1999.

[HMM99a] G. Hasegawa, M. Murata, and H. Miyahara. Fairness and Stability of
Congestion Control Mechanisms of TCP. InProceedings of IEEE INFO-
COM, pages 1329–1336. New York, March 1999.

[HMM99b] G. Hasegawa, M. Murata, and H. Miyahara. Fairness and Stability of
the congestion control mechanism of TCP. Inin Proceedings of IEEE
INFOCOM’99. New York, USA, March 1999.

[HPS02] Z. J. Haas, M. R. Pearlman, and P. Samar. The Zone Routing Proto-
col (ZRP) for Ad Hoc Networks. Internet-draft, IETF MANET Working
Group, July 2002. Draft-ietf-manet-zone-zrp-04.txt.

[HV99a] G. Holland and N. Vaidya. Analysis of tcp performance over mobile ad
hoc networks. InProceedings of ACM/IEEE International Conference on
Mobile Computing and Networking (MobiCom’99). Seattle, USA, August
1999.

[HV99b] G. Holland and N. Vaidya. Impact of Routing and Link Layers on TCP
Performance in Mobile AD Hoc Networks. InProceedings of ACM/IEEE
Wireless Communication Networks Conference (IEEE WCNC 1999). New
Orleans, USA, September 1999.

[IEE99] IEEE. Standard 802.11-1999, Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Specifications. InThe Institute
of Electrical and Electronics Engineers. 1999.

[Jac88] V. Jacobson. Congestion Avoidance and Control. InProceedings of ACM
SIGCOMM, pages 314–329. Stanford, CA,, August 1988.

[Jac90] V. Jacobson. Modified TCP Congestion Avoidance Algorithm, 1990.

[Jan93] J. Jang. ANFIS: Adaptive-Network-based Fuzzy Inference Systems.
IEEE Transactions on Systems, Man, and Cybernetics, 23(3):pages 665–
685, May 1993.

[Jan01] J. Jantzen. Tutorial On Fuzzy Logic. Technical report, Technical Univer-
sity of Denmark, August 2001.

[JBB92] V. Jacobson, R. Braden, and D. Borman. TCP Extensions for High Per-
formance. RFC 1323, IETF Network Working Group, May 1992.



158 BIBLIOGRAPHY

[JM96] D. Johnson and D. Maltz. Dynamic source routing in ad hoc wireless net-
works. In T. Imielinski and H. Korth, editors,Mobile Computing, chap-
ter 5, pages 153–181. Kluwer Academic, 1996.

[JMB01] D. Johnson, D. Maltz, and J. Broch. DSR The Dynamic Source Routing
Protocol for Multihop Wireless Ad Hoc Networks. In C. Perkins, editor,
Ad Hoc Networking, chapter 5, pages 139–172. Addison-Wesley, 2001.

[JMH04] D. B. Johnson, D. A. Maltz, and Y. Hu. The Dynamic Source Routing Pro-
tocol for Mobile Ad Hoc Networks (DSR). Internet-draft, IETF MANET
Working Group, July 2004. Draft-ietf-manet-dsr-10.txt.

[Joh95] S. R. Johnson.Increasing TCP Throughput by Using an Extended Ac-
knowledgment Interval. Master’s thesis, Ohio University, USA, June
1995.

[JT87] J. Jubin and J. Tornow. The DARPA Packet Radio Network Protocols.
Proceedings of IEEE, 75:pages 21–32, January 1987.

[KGLAO+02] D. Kim, J. Garcia-Luna-Aceves, K. Obraczka, J. Cano, and P. Manzoni.
Power-Aware Routing Based on The Energy Drain Rate for Mobile Ad
Hoc Networks. InIEEE International Conference on Computer Commu-
nication and Networks(ICCCN2002). Miami, USA, October 2002.

[KKP00] J. M. Kahn, R. H. Katz, and K. S. J. Pister. Emerging Challenges: Mobile
Networking for Smart Dust.Journal of Communications and Networks,
2(3):pages 188–196, September 2000.

[KP87] P. Karn and C. Partridge. Improving Round-Trip Time Estimates in Reli-
able Transport Protocols.Computer Communication Review, 17(5):pages
2–7, August 1987.

[Kul01] A. Kulkarni. Computer Vision and Fuzzy-Neural Systems. Prentice Hall
PTR, May 2001.

[LAS01] A. Lindgren, A. Almquist, and O. Schelén. Quality of Service Schemes
for IEEE 802.11 - A Simulation Study. InProceedings of Ninth Inter-
national Workshop on Quality of Service (IWQoS 2001). Karksruhe, Ger-
many, June 2001.

[LBC+01] J. Li, C. Blake, D. S. J. D. Couto, H. I. Lee, and R. Morris. Capacity
of Ad Hoc Wireless Network. InProceedings of ACM MOBICOM’01.
Rome, Italy, July 2001.

[LS01] J. Liu and S. Singh. ATCP: TCP for Mobile Ad Hoc Networks.IEEE
Journal on Selected Areas in Communications, 19(7):pages 1300–1315,
july 2001.



BIBLIOGRAPHY 159

[Mat02] MathWorks. Fuzzy Logic Toolbox User’s Guide, July 2002.

[MCGW01] S. Mascolo, C. Casetti, M. Gerla, and M. S. andR. Wang. TCP Westwood:
End-to-End Bandwidth Estimation for Efficient Transport over Wired and
Wireless Networks. InProceedings of MobiCom. Rome, Italy, July 2001.

[MMR96] M. Mathi, J. Mahdavi, and S. F. A. Romanow. TCP Selective Acknowl-
edgement Options. RFC 2018, IETF Network Working Group, October
1996.

[MPC01] J. P. Macher, V. D. Park, and S. Corson. Putting the Pieces Together.IEEE
Communication Magazine, 39(6):pages 148–155, June 2001.

[MSK02] J. Merwe, S. Sen, and C. Kalmanek. Streaming Video Traffic: Characteri-
zation and Network Impact. InProceedings of Seventh International Web
Content Caching and Distribution Workshop. Boulder, CO, USA, August
2002.

[MSM+97] M. Mathis, J. Semke, J. Mahdavi, , and T. Ott. The macroscopic behavior
of the TCP congestion avoidance algorithm.ACM Computer Communi-
cation Review, 27(3):pages 67–82, July 1997.

[OB02] R. Oliveira and T. Braun. TCP in Wireless Mobile Ad Hoc Networks,.
Technical report, TR-002-003, University of Bern, July 2002.

[OB03] R. Oliveira and T. Braun. An Edge-based Approach for Improving TCP in
Wireless Mobile Ad Hoc Networks. InProceedings of Design, Analysis
and Simulation of Distributed Systems 2003 (DASD03), Part of the 2003
Advanced Simulation Technologies Conference (ASTC 2003). Orlando,
USA, March 2003.

[OB04a] R. Oliveira and T. Braun. A Delay-based Approach Using Fuzzy Logic
to Improve TCP Error Detection in Ad Hoc Networks. InProceedings of
IEEE Wireless Communications and Networking Conference (WCNC04).
Atlanta, USA, March 2004.

[OB04b] R. Oliveira and T. Braun. A Dynamic Adaptive Acknowledgment Strat-
egy for TCP over Multihop Wireless Networks. Technical report, TR-
004-005, University of Bern, July 2004.

[OB04c] R. Oliveira and T. Braun. A Fuzzy Logic Engine to Assist TCP Er-
ror Detection in Wireless Mobile Ad Hoc Networks. InProceedings
of Next Generation Teletraffic and Wired/Wireless Advanced Networking
(NEW2AN’04). St.Petersburg, Russia, February 2004.

[OB05] R. Oliveira and T. Braun. A Dynamic Adaptive Acknowledgment Strat-
egy for TCP over Multihop Wireless Networks. InProceedings of IEEE
INFOCOM 2005. Miami, USA, March 2005.



160 BIBLIOGRAPHY

[OG01] R. Oliveira and P. Guardieiro. A comparative Study of TCP Reno and
TCP Vegas in a Differentiated Services Network. InProceedings of 3rd
Conference on Telecommunication (Conftele2001). Figueira da Foz, Por-
tugal, April 2001.

[OTL04] R. Ogier, F. Templi, and M. Lewis. Topology Dissemination Based on
Reverse-Path Forwarding (TBRPF). RFC 3684, IETF Network Working
Group, February 2004.

[PA00] V. Praxon and M. Allman. Computing TCP’s Retransmission Timer. RFC
2988, IETF Network Working Group, November 2000.

[PB94] C. Perkins and P. Bhagwat. A highly adaptive distributed routing algo-
rithm for mobile wireless networks. InProceedings of ACM SIGCOMM
Conference on Communications Architectures, Protocols and Applica-
tions, pages 234–244. August 1994.

[PB01] C. Perkins and P. Bhagwat. A highly adaptive distributed routing algo-
rithm for mobile wireless networks. InProceedings of IEEE Interna-
tional Conference on Communications (ICC), pages 278–283. Helsinki,
Finland, June 2001.

[PBRD03] C. Perkins, E. Belding-Royer, and S. Das. Ad hoc On-Demand Distance
Vector (AODV) Routing. RFC 3561, IETF Network Working Group,
December 2003.

[PC97] V. D. Park and M. S. Corson. A highly adaptive distributed routing algo-
rithm for mobile wireless networks. InProceedings of IEEE INFOCOM.
April 1997.

[PFTK98] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. A simple Model and its
Empirical Validation. InProceedings of ACM SIGCOMM’98. Vancouver,
Canada, September 1998.

[PH02] D. Perkins and H. Hughes. Investigating the performance of TCP in Mo-
bile Ad Hoc Networks.International Journal of Computer Communica-
tions, 25(11-22):pages 1132–1139, July 2002.

[PK00] G. Pottie and W. Kaiser. Wireless Integrated Network Sensors.Commu-
nications of the ACM, 43(5):pages 51–58, MAY 2000.

[Pos81] J. Postel. Internet Protocol. RFC 791, IETF Network Working Group,
September 1981.

[PR99] C. Perkins and E. Royer. Ad-hoc On-Demand Distance Vector routing.
In Proceedings of IEEE Workshop on Mobile Computing Systems and
Applications. New Orleans, USA, February 1999.



BIBLIOGRAPHY 161

[RFB01] K. Ramakrisgnan, S. Floyd, and D. Balck. The addition of Explicit Con-
gestion Notification (ECN) to IP. RFC 3168, IETF Network Working
Group, September 2001.

[SAA03] Y. Sankarasubramaniam, O. B. Akan, and I. F. Akyildiz. ESRT: Event-to-
Sink Reliable Transport in Wireless Sensor Networks. InProceedings of
ACM MobiHoc03. Maryland, USA, June 2003.

[SGAP00] K. Sohrabi, J. Gao, V. Ailawadhi, and G. Pottie. Protocols for Self-
organization of a Wireless Sensor Network.IEEE Personal Communi-
cations, 7(5):pages 16–27, October 2000.

[SH03] F. Stann and J. Heidemann. RMST: Reliable Data Transport in Sensor
Networks. InProceedings of 1st IEEE International Workshop on Sensor
Net Protocols and Applications (SNPA). Alaska, USA, May 2003.

[Ste94] W. R. Stevens.TCP/IP Illustrated Volume 1. Addison Wesley, 1994.

[Ste97] W. Stevens. TCP Slow Start, Congestion Avoidance, Fast Retransmit, and
Fast Recovery Algorithms. RFC 2001, IETF Network Working Group,
January 1997.

[TAGH02] S. Tilak, N. Abu-Ghazaleh, and W. Heinzelman. A Taxonomy of Wireless
Micro-Sensor Network Models.ACM SIGMOBILE Mobile Computing
and Communications Review, 6(2):pages 28–36, April 2002.

[TB00] V. Tsaoussidis and H. Badr. TCP-Probing: Towards an Error Control
Schema with Energy and Throughput Performance Gains. InProceedings
of 8th IEEE Conference on Network Protocols. Japan, November 2000.

[TCG01] K. Tang, M. Correa, and M. Gerla. Effects of Ad Hoc MAC Layer
Medium Access Mechanisms Under TCP.ACM/Bal MONET, 6(4):pages
317–329, 2001.

[TG99] K. Tang and M. Gerla. Fair sharing of MAC under TCP in wireless ad hoc
networks. InProceedings of IEEE Multiaccess, Mobility and Teletrac for
Personal Communications (MMT’99). Venice, Italy, October 1999.

[TM02] V. Tsaoussidis and I. Matta. Open issues on TCP for Mobile Comput-
ing”. The Journal of Wireless Communications and Mobile Computing,
2(1):pages 1–14, February 2002.

[TMW97] K. Thompson, G. Miller, and R. Wilder. Wide-Area Internet Traffic Pat-
terns and Characteristics.IEEE Network, 11(6):pages 10–23, November
1997.

[TO04] C. Tschudin and E. Osipov. Estimating the Ad Hoc Horizon for TCP over
IEEE 802.11 Networks. In3rd Annual Mediterranean Ad Hoc Network-
ing Workshop (Med-Hoc-Net 2004). Bodrum, Turkey, June 2004.



162 BIBLIOGRAPHY

[WATC02] C. Wan and L. K. A. T. Campbell. PSFQ: A Reliable Transport Protocol
For Wireless Sensor Networks. InProceedings of First ACM Interna-
tional Workshop on Wireless Sensor Networks and Applications (WSNA
2002). Atlanta, USA, September 2002.

[WKST04] B. Wang, J. Kurose, P. Shenoy, and D. Towsley. Multimedia streaming via
TCP: An analytic performance study. InProceedings of ACM Multimedia.
October 2004.

[WPL+02] H. Wu, Y. Peng, K. Long, S. Cheng, and J. Ma. Performance of Reli-
able Transport Protocol over IEEE 802.11 Wireless LAN: Analysis and
Enhancement. InProceedings of INFOCOM 02. New York, USA, June
2002.

[WZ02] F. Wang and Y. Zhang. Improving TCP Performance over Mobile Ad-Hoc
Networks with Out-of-Order Detection and Response. InACM Mobihoc.
Lausanne, Switzerland, June 2002.

[XHE00] Y. Xu, J. Heidemann, and D. Estrin. Adaptive EnergyConserving Routing
for Multihop Ad Hoc Networks. InUSC/Information Sciences Institute.
Research Report 527, October 2000.

[XS01a] S. Xu and T. Saadawi. Does the IEEE 802.11 MAC protocol work well
in multihop wireless ad hoc networks?IEEE Communications Magazine,
39(6):pages 130–137, june 2001.

[XS01b] S. Xu and T. Saadawi. Does the IEEE 802.11 MAC protocol work well
in multihop wireless ad hoc networks?IEEE Communications Magazine,
39:pages 130–137, june 2001.

[XS01c] S. Xu and T. Saadawi. Evaluation for TCP with Delayed ACK Option
in Wireless multi-hop Networks. InProceedings of IEEE MILCOM2001.
Vienna, Virginia, USA, October 2001.

[YYS+04] T. Yuki, T. Yamamoto, M. Sugano, M. Murata, H. Miyahara, and
T. Hatauchi. Performance Improvement of TCP over an Ad Hoc Network
by Combining of Data and ACK packets.to apper in IEICE Transactions
on Communications, 2004.

[Zad65] L. Zadeh. Fuzzy Sets.Journal of Information and Control, 8:pages 338–
353, 1965.

[Zad96] L. Zadeh. Fuzzy Logic = Computing with Words.IEEE Transactions on
Fuzzy Systems, 4(2):pages 103–111, May 1996.

[ZT01] C. Zhang and V. Tsaoussidis. TCP-Probing: Towards an Error Control
Schema with Energy and Throughput Performance Gains. InProceedings
of 11th IEEE/ACM NOSSDAV. New York, June 2001.



Curriculum Vitae

1967 Born on May 14, in Cuiabá-MT, Brazil
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