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Abstract

Content Centric Networking (CCN) is a new approach to routing content, meant to correct
the pitfalls found in host based protocols. At its core is the idea that content should not be
bound by host location, but rather by the name of the content itself. CCN is implemented in
the open source CCNx, which allows for content retrieval as well as communication following
content-centric principles.

This thesis centered on the CCNx framework. The main goal was to develop a synchro-
nization protocol for wireless and mobile clients, as the current synchronization protocol is
geared towards wired clients. The new protocol makes it possible to synchronize content
between hosts that are not directly linked and introduces a functionality to stop the synchro-
nization upon transfer completion in order to preserve energy on mobile devices. The bulk of
these implementations is contained in the new synchomeclient and synchomeserver
applications. Minor modifications were made to preexisting CCNx code.

In a second part, the feasability of the implementation was evaluated in terms of runtime
and number of messages exchanged between client and server. The evaluation was performed
on the University of Berne Linux Cluster (UBELIX) using ns3 Direct Code Execution.
The synchome implementation was compared to the static synchronization protocol
ccnsyncslice. We found that, while the difference in synchronization time between the
applications is very small, ccnsyncslice generates up to 437% more messages when
synchronizing intermittently compared to synchome.
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Chapter 1

Introduction

1.1 Motivation

The Internet, as we know it today, is a gigantic mesh of interconnected networks. It functions
based on the paradigm that everything is a point-to-point conversation. Similar to telephone
conversations, establishing a conversation requires knowing the host locations. This, though,
does not apply to todays standards of use, where, instead of communication between shared
resources, content dissemination is the focal point of interest. Decreasing storage costs and ever
increasing transfer speeds have brought a paradigm change, one in which ”content is king” and
should be accessible without knowing its location.

In accordance with this, it is questionable whether host-based routing solutions still rep-
resent the best solution, as they have several problems in regard to content exchange, which
include:

• point-to-point conversation being inefficient for content dissemination

• limited mobility; client location tied to an IP address

• lack of multicast support

• no security of data

The project we focus on attempts to avoid these pitfalls. CCNx, the open source Content-
centric Network solution implemented by PARC, does not use IP addresses, instead making
content directly addressable and routable. Hosts within the network communicate based
on named data, which is retrieved via the exchange of content request messages (Interests)
and content return messages (Data). The named data is location independent and routing
decisions are made by the involved network elements. Additionally, instead of securing the
communication pipe between the end hosts, the data itself is signed and secured.

At its core, CCN works as follows: a consumer issues a request for content by sending
an Interest message containing the name of the content. The network routes the Interest based
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on the name using longest prefix matching. As it traverses the network, the Interest leaves states
behind. Once a match is found, content is sent back as a Data message using the left over states.

1.2 Task Formulation

CCNx routes packets based on name prefixes. Content is maintained in so called repositories,
which use the local file system for persistent storage of CCN Content Objects. In order to
make new content available, it has to be added to the hosts’ local repository. Various methods
for content retrieval exist, such as issuing a specific request for desired content and retrieving
it from the remote hosts repository, as well as methods for content synchronization, which
constantly exchange Interest messages to compare the content available in the requesting and
responding hosts’ repositories, and retrieve content based on changes in one of the repositories.

The main problem is that these methods were designed with wired networks in mind,
where hosts are constantly connected. In a wireless and mobile environment, where hosts may
sporadically lose network connectivity, continuing to issue Interest messages is inefficient.

Thus, the goals of this thesis are:

• Study the current CCNx repository and synchronization protocols

• Implement a Synchronization Protocol for mobile hosts that initiates synchronization only
when the host is connected to a network, and which consists of:

– a client application, which connects to the home repository, starts and stops synchro-
nization autonomously

– a server application, which runs a home repository - a central repository containing
content synchronized to it by participating hosts - and listens for requests to initialize
synchronization

• Evaluate the implementation

1.3 Outline

The remaining report has the following structure: Chapter 2 describes the basics of Content-
centric Networking. Chapter 3 gives the design and implementation details of our synchroniza-
tion protocol for mobile hosts. Evaluation methods and results are discussed in chapter 4. In
chapter 5 this work is concluded and future work is discussed.
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Chapter 2

Related Work

2.1 Content-Centric Networking

The concepts of Content-Centric Networking were introduced in a paper by Van Jacobson[1].
The open source implementation of the concepts, entitled CCNx[2], was developed at Jacobson’s
research group at the Palo Alto Research Center (PARC). In the following, we describe the CCN
concepts, as well as the CCNx synchronization protocol.

2.1.1 Packets

All communication in CCN is based upon the use of two packet types, Interest packets and
Data or Content-Object packets. The exchange of packets between nodes is balanced; for each
Interest packet, exactly one Data packet is returned. If an Interest packet is not answered by a
Data packet, it may be retransmitted or removed from the Pending Interest Table, which will be
explained in the Section 2.1.4 on Content Forwarding.

Figure 2.1: CCN packet types[1]

As seen in Figure 2.1, Interest packets consist of the content name, which can either be a
prefix or the full name of the Data object, as well as selectors concerning origin and matching of
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the Data packet. Data packets contain, next to the content name and data itself, a signature and
signed info.

2.1.2 Naming

Content names in CCN are hierarchically structured and composed of multiple components,
which may be encrypted for privacy. They are, like URIs, presented with / characters seperating
the components.

Figure 2.2: CCN naming scheme

An example of the naming scheme is presented in Figure 2.2. As can be seen, the user sup-
plied name is additionally extended by a version, as well as a segmentation number, as content
may be split into several segments. The version number, indexed by the v marker, is determined
by a timestamp, after which another / and the segmentation number follow. The segmentation
number is, likewise, indexed by the s marker, after which the zero-based number of the segment
is indicated.

2.1.3 Faces

Within CCN, a face is a kind of interface which allows for packets to be forwarded over hard-
ware network interfaces as well as exchanged with application processes within a machine. Per
default, hosts in a content-centric network forward Interest messages to their neighboring hosts
only, which in turn forward them to their neighbors. Adding a distant remote host IP address as
a face to a host makes it possible for the host to forward Interests to the remote host directly.

2.1.4 Content Forwarding

Content exchange is consumer driven: a node must transmit an Interest in order to retrieve data.
The Interest then passes three main data structures:

FIB - Forwarding Information Base
The FIB is used to forward Interest packets to potential sources of matching Data. It
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allows for a list of outgoing faces, which can be used to query multiple sources for data in
parallel, as an Interest can be sent out through all faces.

PIT - Pending Interest Table
The PIT keeps track of Interest messages forwarded upstream towards content sources.
Returned Data packets can be sent downstream to their requesters by backtracking the
PIT entries. This process is comparable to leaving breadcrumbs: as Interest messages are
propagated towards potential Data sources, they leave a trail of ’breadcrumbs’ on every
host as a PIT entry. Once a Data packet is found, it follows the ’breadcrumbs’ back to the
requester. On every host, the PIT entry for a given Interest is erased or consumed once a
matching Data packet passes it. PIT entries for Interests that are not answered eventually
time out.

CS - Content Store
The Content Store is the same as the buffer memory of an IP router, but with a different
replacement policy. CCN packets are self-identifying and self-authenticating, thus each
packet may be useful to many customers. This fact can be used to minimize upstream
bandwidth demand and downstream latency by remembering arriving Data packets as
long as possible, i.e. caching them.

Figure 2.3 depicts the schematics of content forwarding. The different data struc-
tures are accessed as follows: let us assume that the host issues an Interest packet named
/parc.com/videos/a video.mpg. The Interest is first matched against the hosts’ Content Store.
In this case, the CS contains only the Data packet /parc.com/videos/WidgetA.mpg/v3/s0,
which does not match the Interest packet. Next, the Interest packet is matched against the PIT
entries. As the PIT does not contain a match, a new entry is added. If the PIT does contain the
Interest, the new Interest and the PIT entry are consolidated, as the host is already waiting for
the given Content. In a last step, the Interest prefix, in this case /parc.com, is matched against
the FIB to find a face to forward it along. In this case, the face is found, but should it not exist,
the Interest is discarded, as no routes along which the Interest can be satisfied are found.

Incoming Interest packets follow the reverse path. The Interest prefix is first matched
against the host’s FIB. If it is found, the Interest is matched against the PIT. If the PIT contains
a matching entry, the CS is queried, otherwise, a PIT entry is added, and the Interest packet
propagated to the next neighbor.

It is important to note that, since every action in CCN is initiated by issuing an Interest
message, Interests can be routed to a remote host, or to the local host itself. A request to
add content to the host repository is, for example, started by sending a Start Write
command of the form ccnx:(/<component>)*/%C1.R.sw/<nonce> to the local CCN
application[3]. Here component represents the name prefix of the content to be stored, and the
nonce is a random binary value which ensures that the content name is unique. The repository,
which will be defined in the next section, responds with a Data packet that acknowledges that
the Start Write request was accepted and starts fetching and storing the content.
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Figure 2.3: Forwarding engine model

2.1.5 Data Storage

Two types of content storage are employed in CCNx. They consist of the persistent CCNx
repository, as well as the previously mentioned Content Store, which caches content.

The repository uses the local file system to persistently store content. Content to be
shared must first be inserted in the repository. The insertion is initiated by issuing an Interest to
the local CCN application. During the insertion process, the content is segmented, signed and
encoded.

2.2 CCNx Project

The concepts in this section, such as the CCN daemon and synchronization protocol, are CCNx
specific.

2.2.1 CCN Daemon

Within the CCNx implementation, all functionality is brought together and managed by the ccn
daemon, ccnd. ccnd is the software forwarder/router and is required for normal protocol
communication. Typically, one ccnd is run on each host. Applications running on a given
host will communicate through the local ccnd, which in turn communicates over the attached
networks.
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2.2.2 Synchronization protocol

Synchronization is a CCNx funcionality that automatically exchanges content added to one
hosts’ repository accross all participating hosts repositories. In order to synchronize content, a
slice, or subset of content sharing the same prefix, must be defined by participating hosts. As
long as a host defines a given slice, content added to another hosts’ repository, that the given
host does not have, will be synchronized to it. The removal of content is not supported in
CCNx and thus not synchronized. Synchronization is stopped by deleting or undefining the slice.

Each repository owns a synchronization agent that is responsible for keeping local col-
lections up to date by detecting and acquiring new content objects that were added to remote
hosts and are not contained in the local repository, as well as for responding to remote
synchronization agents’ inquiries about information concerning content in the local repository.

Collections are synchronized independently of each other. When a new collection is de-
tected, the synchronization agent builds a synchronization tree for the collection representing
its content and organization. As new content is added to a collection, the local synchronization
agent updates the relevant synchronization tree.

An example of a synchronization tree is depicted in Figure 2.4. To synchronize all videos, for
example, a user would declare the childnode videos as a slice. Once the slice is defined,
synchronization starts. Every node in the synchronization tree stores a hash calculated over all
its subnodes. The root nodes hash is called the roothash. When looking for new content, the
synchronization agents of the hosts declaring the same slice first exchange their roothashes.
If the hashes match, the synchronization trees are stable and there is nothing to synchronize.
If they do not match, the childnodes’ hashes are exchanged, until the childnode that contains
differing content is found.
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Figure 2.4: Example synchronization tree

For our exampe synchronization tree, the synchronization agents first exchange the
roothash. In this case, the roothash is the hash of the videos childnode. If the roothashes
do not match, the hashes of the childnodes are exchanged, in this case of a video.mpg and
WidgetA.mpg. If the hashes of a video.mpg match, the content is not synchronized. If the
hashes of WidgetA.mpg differ, the content is synchronized.

The exchange of hashes is handled by two types of Interest messages:

Root Advise Interest
The Root Advise Interest is used to determine if a remote collection contains names not
available in the local collection. The synchronization agent expresses a Root Advise In-
terest for each local synchronization tree. The Interest contains the local synchroniza-
tion trees root node hash. If a repository with a corresponding collection has the same
roothash, no response is necessary. If the hashes differ, the synchronization agent must
fetch the nodes of the remote synchronization tree that have differing hashes.

Node Fetch Interest
Node Fetch Interests are used to obtain a list of nodes of the remote synchronization tree
that have hashes that differ from the local trees hashes. Node Fetch Interests can retrieve
hashes from any part of the synchronization tree, while Root Advise Interests refer only
to the node at the root of the tree.

Figure 2.5 illustrates an example of how the synchronization protocol operates[4]. First, a
collection has to be defined, creating a slice. Once the slice has been established, the host’s
synchronization agent periodically sends out Root Advise Interests to ascertain that no new
content is available in identical remote slices. As long as no other host has the same slice
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defined, no replies are returned. If a remote host has defined the same collection, and its Root
Advice Interest reaches the first host’s synchronization agent, their synchronization trees are
compared and updated using Node Fetch Interests. After the synchronization trees have been
updated, content is exchanged until the synchronization trees are stable again. After this, the
transmission of Root Advice Interests begins again.

Figure 2.5: Illustration of the Synchronization Protocol[4]

The CCNx command used to create and delete slices is ccnsyncslice. The new mobile
synchronization protocol implemented in this work is based on this command.
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2.2.3 ccnsyncwatch

The ccnsyncwatch command is used for monitoring the operation of the synchronization
agent of a repository. In this sense, it monitors the exchange of Root Advice and Node Fetch
Interests between synchronization agents. Initially, we intended to use it to monitor whether a
synchronization process was still active or had been stopped. This proved to be infeasible, as the
exchange of Root Advice and Node Fetch Interests precedes the actual content transmission.
Instead, we implemented a new function to track the synchronization status. The function,
synchomewatch, is presented in the next chapter.
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Chapter 3

Design and Implementation of a
Synchronization Protocol for mobile hosts

3.1 Problem Description

The synchronization protocol’s ccnsyncslice command allows for keeping up to date of
collections defined accross multiple repositories. It faces a number of limitations, of which the
following are important to us:

1. Synchronization only works with direct neighbors - nodes must be reachable in one hop.
While this can be remedied by the user establishing a VPN tunnel, a solution integrated in
CCNx would be prefereable.

2. The order in which names and content are synchronized is arbitrary - it is impossible to
tell whether all segments have been synchronized or not.

3. Synchronization runs on infinitely - inefficient for mobile clients with network connectiv-
ity issues.

We propose a mobile synchronization protocol that allows for the synchronization of collec-
tions located on hosts without direct link. The protocol monitors the synchronization process
and exits once the collections have been fully synchronized.

3.2 Design of the Synchronization Protocol for mobile hosts

The new mobile synchronization protocol is based on the CCNx synchronization protocol de-
scribed in Section 2.2.2. As ccnsyncslice enables the synchronization of collections, we
extended it with functionalities for mobile clients. The functionalities are divided between a
client and a server application and consist of the following:

• Register the server’s IP address as a face with the client

• Send the client’s IP address to the server to be registered as a face
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• Send all information necessary for synchronization to the server

• Start synchronization on both client and server

• Stop synchronization if no more content is to be exchanged in Data packets between client
and server

To be able to detect whether the synchronization is still running between client and server,
a third application to watch the message exchange between the hosts was implemented. The
application exits when no more content is being exchanged in Data packets between client and
server. The client is then responsible for discovering whether the synchronization has stopped
because it finished, or if it was disrupted due to network connectivity problems. To do this, the
client sends an Interest to the server. If the server answers the Interest, the synchronization has
finished succesfully. If there is no answer, it is assumed that there is no link between client and
server. In this case, the client times out before reattempting to synchronize.

3.2.1 Interest Exchange

Figure 3.1: Interest exchange between client and server

The mobile synchronization protocol Interest exchange is depicted in Figure 3.1. The client
application starts the synchronization between client and server by sending the server an Initial
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Synchronization Interest, which contains the clients IP address and synchronization request
(see Section 3.2.2 on Initial Synchronization Interest composition). The Initial Synchronization
Interest can be sent even if client and server are not directly linked, as the client knows the
server’s IP address and can route its messages according to the FIB entry.

The server parses the Interest, defines the collections to synchronize and sends acknowl-
edgements to the client. After receiving the acknowledgment, the client defines the collection
and the synchronization protocol takes over by exchanging Root Advise Interests, Node Fetch
Interests and finally the content. If the synchronization stops, the client ascertains whether the
synchronization has been completed by sending an Interest message to the server. If the Interest
is not answered, and the client’s IP address has changed, the client attempts to send its new IP
address to the server to register in the server’s face list, after which synchronization is resumed.
This process is repeated every time the synchronization stops.

Once the synchronization stops and the server answers the client’s Interest, the synchro-
nization is presumed completed. The client sends a finished synchronization message to the
server and deletes its slices. The server deletes its own slices and acknowledges the client. At
this point, the synchronization trees are stable and the client application exits.

3.2.2 Initial Synchronization Interest

The Initial Synchronization Interest is used to establish a link between client and server and start
the synchronization of content. Its variables are listed in Table 3.1.

synchome client Interest variable variable description
IP address IP address of client
control bit sets create or destroy slice
topo topological prefix; generally ccnx:/
prefix named collection prefix

Table 3.1: Initial Synchronization Interest variables

IP address
In order to be able to exchange Interests, client and server have to register the others’ IP
address in their FIB. This is done by adding the IP addresses as faces using the ccndc
command. As the server functions as the home repository and is thus static, the user
enters the server IP address manually when starting the client application. The client
registers the entered IP address.

The client then retrieves its own IP address using a system call to the Linux com-
mand ifconfig, as the address may change with the client’s mobility. The address is
sent to the server in the Initial Synchronization Interest and registered in its FIB.
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Control bit
A control bit determining the clients request is sent to the server application. The control
bit may be set to create, delete, modify, or an integer between 100 and 999.

The create and delete options are passed onto the ccnsyncslice command,
which accordingly creates or deletes a slice. The modify bit indicates that the clients’
newly transmitted IP address should be registered as a face on the server. An integer
between 100 and 999 is sent if an acknowledgement is required. This is done as Interests
have a lifetime during which they are not resent.

Topological prefix
The topological prefix is used for routing Root Advise and Node Fetch Interests for the
collection. Its purpose is to limit the number of hosts to which these Interests are routed.
The prefix is registered in the hosts’ FIB. We mainly used the default prefix ccnx:/,
leaving the number of listening hosts unlimited.

Collection prefix
The prefix, or collection prefix, is the common prefix for all names in a collection. If
we wished to retrieve, for example, ccnx:/parc.com/music/oldies/abba
and ccnx:/parc.com/music/oldies/elvis, we would use
ccnx:/parc.com/music/oldies as the common prefix.

Note that multiple prefixes can be passed along in the Initial Synchronization Interest. The
composed Initial Synchronization Interest is of the form:

/ synchome /−<c o n t r o l b i t >−<c l i e n t I P a d d r e s s >−<t o p o l o g i c a l p r e f i x >−<s l i c e 1 >
−<s l i c e 2 >− . . .

The client application is responsible for finding the client’s IP address. All other variables
(control bit, topological prefix and collection prefix) are entered manually by the user.

3.2.3 Synchome

In this section we describe the mobile synchronization protocol applications - named
synchome applications for brevity - which consist of the client side synchomeclient and
the server side synchomeserver. Additionally, the synchomewatch application, which is
used to keep track of the synchronization, is described.

3.2.4 Synchome Client

The synchomeclient application flow is depicted in Figure 3.2. At startup, the client sends
an Initial Synchronization Interest to the server. If the Interest is not acknowledged, the client
resends the Interest after a timeout. If an acknowledgment is received, the client application
proceeds to the synchronization stage.

The synchronization is initialized and monitored by the synchomewatch application,
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which is called by synchomeclient after a succesfull initial Interest exchange. When the
synchomewatch application exits, synchomeclient analyzes whether the synchroniza-
tion has been completed by sending an Interest to the server application. If the server responds,
a termination Interest is sent to it. Otherwise, the Initial Synchronization Interest is resent after
a timeout.

This process repeats until the synchronization trees are stable.

Figure 3.2: Synchome Client Flow
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3.2.5 Synchome Server

On the server side, the synchomeserver application is continuously listening for new Syn-
chronization Interests from clients. Upon receiving and parsing incoming Interest messages, the
application proceeds according to the parsed control bit. Four actions may be taken, based on
the control bit:

create
The clients IP address is added to the servers FIB and a synchronization slice is created.

modify
The clients new IP address is added to the servers FIB.

delete
The server’s copy of the slice is deleted, the clients IP address is removed from the servers
FIB.

number in range between 100 and 999
The server sends a reply without taking additional actions.
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Figure 3.3: Synchome Server Flow

3.2.6 Synchome Watch

The synchomewatch application tracks the debug messages issued by the ccnd application
at debug level 4. At this level, debugging messages concerning content are logged. These
are mainly of the form content to and content from, with additional information
concerning the face the content has arrived from, and the content name.

As long as the client is actively synchronizing content, content to messages carrying
requested content or synchronization protocol Root Advise and Node Fetch answers are
exchanged. We track these messages in regular intervals as depicted in Figure 3.4. If no new
messages are generated within the given interval, the synchronization has stopped.
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Figure 3.4: Syncwatch Flow

3.3 Implementation

This section contains implementation details concerning the synchomeclient,
synchomeserver and synchomewatch applications. The CCNx project is implemented
in C and Java. We worked on extending the synchronization protocol, a C implementation. All
implementation details and code listings in this section concern the C implementation.

For the sake of brevity, only short excerpts of the implemented code are listed here.

3.3.1 Interest Message Handling

The Initial Synchronization Interest is composed on the client side by taking all variables and
fusing them together into a single string, using a delimiter. This was done in order to be able to
encode it into a single Interest message. The message is then sent to the server application.
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/ / s e t t o g e t h e r i n t e r e s t s t r i n g .
/ / c o n t r o l b i t can b e : CRE − c r e a t e s l i c e ; DEL − d e l e t e s l i c e ; REG − i p change

; 100−999 − no a c t i o n
s t a t i c c h a r
* c o n s t r u c t i n t e r e s t s t r i n g ( c h a r * c o n t r o l b i t , c h a r * i p s t r i n g , c h a r

* t o p o u r i , c h a r * s y n c u r i , s i z e t s y n c u r i l e n g t h ) {
i n t t o p o u r i l e n g t h = s t r l e n ( t o p o u r i ) ;

s i z e t i p l e n g t h = s t r l e n ( i p s t r i n g ) ;

/ / combine a l l a rgumen t s t o i n t e r e s t s t r i n g
c h a r * i n t e r e s t s t r i n g = c a l l o c ( ( t o p o u r i l e n g t h + s y n c u r i l e n g t h + 5) ,

s i z e o f ( c h a r ) + 1 ) ;

c h a r * r e p l a c e d s y n c u r i = r e p l a c e ( s y n c u r i , ’ / ’ , ”+” ) ;
s p r i n t f ( i n t e r e s t s t r i n g , ”%s%s%s ” , t o p o u r i , ” ˜ ” , r e p l a c e d s y n c u r i ) ;
f r e e ( r e p l a c e d s y n c u r i ) ;

/ / a l l o c a t e memory f o r i n t e r e s t message
c h a r *msg = ( c h a r * ) ma l l oc ( s i z e o f ( c h a r ) * ( i p l e n g t h + t o p o u r i l e n g t h +

s y n c u r i l e n g t h + s t r l e n ( PREFIX ) + 10) ) ;
i f ( msg == NULL)
{

f p r i n t f ( s t d e r r , ” Can n o t a l l o c a t e memory f o r URI\n ” ) ;
e x i t ( 1 ) ;

}
s p r i n t f ( msg, ”%s%s%s%s ” , PREFIX, c o n t r o l b i t , i p s t r i n g , i n t e r e s t s t r i n g )

;
f r e e ( i n t e r e s t s t r i n g ) ;
re turn msg ;

}

Listing 3.1: Client function construct interest string

Listing 3.1 shows the construct interest string function responsible for handling
the variables and parsing them together into an Interest message. As mentioned in Section 3.2.2,
all variables except for the IP address are entered manually by the user. The IP address is
retrieved using a system call as follows:

i f c o n f i g | g rep ’ i n e t addr ’ | awk −F: ’{ p r i n t $2 } ’ | awk ’{ p r i n t $1 } ’

The system call invokes the bash command ifconfig. The standard output of the
command is then parsed using awk to retrieve the column containing the IP address.

The Interest string constructed using the construct interest string method is
sent to the server using the express string method, which handles the transmission of
Interest packets, as well as the reception and extraction of the answer Interest packet.

On the server side, the message is parsed using the same delimiter as on the client side,
and the strings are stored in their respective variables, which are then used to start the
synchronization (refer to Listing 3.2 for the servers parsing function).
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s t a t i c s t r u c t p a r s e d i n t e r e s t m s g
p a r s e i n t e r e s t m s g ( c h a r * t emp , c h a r * d e l i m i t e r s ) {

c h a r * d i s c a r d = s t r t o k ( t emp , d e l i m i t e r s ) ;
c h a r * c o n t r o l b i t = s t r t o k ( NULL, d e l i m i t e r s ) ;

c h a r * i p = s t r t o k ( NULL, d e l i m i t e r s ) ;
c h a r * t o p o u r i = s t r t o k ( NULL, d e l i m i t e r s ) ;
c h a r * s y n c u r i = s t r t o k ( NULL, d e l i m i t e r s ) ;
c h a r * s y n c s l i c e s = r e p l a c e ( s y n c u r i , ’+ ’ , ” / ” ) ;

p a r s e d i n t e r e s t m s g p = { c o n t r o l b i t , i p , t o p o u r i , s y n c s l i c e s } ;
re turn p ;

}

Listing 3.2: Server function parse interest msg

The server application employs two methods for handling the transfer of Interests. The
extract interest payload method handles the receipt and extraction of incoming Inter-
ests, while construct interest response handles the sending of Interest packets.

3.3.2 Synchronization status

CCNx, as of yet, does not have a protocol that monitors whether a synchronization has finished,
nor is it possible to track the arrival of content to the repository, as the synchronized content is
exchanged in an arbitrary order. We determined tracking the ccnd debug output as the only fea-
sible method to determine the synchronization status (whether it is running or has been finished).

In order to activate the CCNx debug output during runtime, we use ccndlogging with
the co flag. ccndlogging calls a CCNx bash script that sets the environment variable
CCND DEBUG to the requested debug level, in this case ”co”, or debug level 4, at which
debug messages concerning content objects are logged. The debug output of ccnd is then
handled by the methods contained in ccnd msg.c, which include the handler for Interest
message debug, ccnd debug ccnb, as well as the handler for content message debug,
ccnd debug content.

We inserted the logic shown in Listing 3.3 in the ccnd debug content method to
gain access to content debug messages. Since CCNx handles requests by sending messages to
the local or external ccnd, we exclude the local ccnd messages by querying for content to
messages leaving on any face except face 6, the default local ccnd face.

i f ( s t r s t r ( c c n c h a r b u f a s s t r i n g ( c ) , ” c o n t e n t t o ” ) ! = NULL && s t r s t r (
c c n c h a r b u f a s s t r i n g ( c ) , ” 6 ccnx ” ) == NULL)

{
FILE *f = fopen ( ” / tmp / c h e c k f i n i s h e d ” , ” a ” ) ;
i f ( f == NULL)
{

p r i n t f ( ” E r r o r open ing f i l e !\ n ” ) ;
e x i t ( 1 ) ;

}
f p r i n t f ( f , ”%s\n ” , c c n c h a r b u f a s s t r i n g ( c ) ) ;
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f c l o s e ( f ) ;
}

Listing 3.3: Parse ccnd debug content

The relevant debug messages are then written to a text file located in the /tmp directory. The
text file is monitored by synchomewatch. In order to determine whether new content to
messages are being generated, the current size of the file is compared to the previously logged
size. If the file size has changed, the synchronization is still running. If not, it has stopped. This
comparison is done every 4 seconds.

Note that, since content to messages carry requested content as well as information
regarding Root Advise and Node Fetch messages, the time necessary to synchronize
content depends on the content transfer as well as the synchronization protocol information
retrieval time. Also, synchomewatch is invoked sequentially on each slice in order to avoid
interference, as all logged content to messages are saved in the same output file.

After the synchronization of all slices has completed, debug logging is deactivated using
ccndlogging none, and the text file is removed.

3.3.3 Issues of the proposed approach

3.3.3.1 Face entries and IP addresses

In the beginning stages we discovered that, even when registering an IP address with a node, it
was not always ensured that the registered node could also be reached. At current, we are aware
of two cases in which a node is not reachable and a global sync can not be maintained:

1. the requested node is behind a firewall

2. the requested node does not own a public IP address

The exception to both cases is when both nodes are located in the same private subnet.
Additionally, if only one node is registered in the other’s FIB, then information can flow only
in one direction, from the registered node to the node that has registered it. Otherwise, when
all participating nodes have registered with each other, Interest and Data packets are routed
bidirectionally.

Consider the following figure for simplification:
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Figure 3.5: Impact of IP face registration on sync operation

3.3.3.2 Synchomewatch and debugging messages

The use of debugging messages has the downside of slowing down CCNx overall. In order
to mitigate this, we activate debugging only during the actual synchronization. Otherwise,
debugging is deactivated.

Similarly, the use of a text file to store the debugging messages is not optimal. The choice was
made as the ccnd process variables had to be accessed during runtime by synchomewatch.
Other inter-process communication methods such as shared memory or message queuing would
have been preferable, but adding them to ccnd msg.c was problematic, mostly due to the fact
that allocated shared memory or message queues have to be destroyed when no longer required.
The software architecture of ccnd did not readily provide an adequate location to perform this
remove action.
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Chapter 4

Evaluation

In this chapter we evaluate the synchome application and compare it to the regular
ccnsyncslice application. In particular, we evaluate the processing and communication
overhead by analysing the impact on file transmissions and the exchanged CCN messages.

4.1 CCN messages

For clarity, we again define the CCN messages which will be mentioned in subsequent sections:

CCN messages
CCN employs two types of messages, Interest messages and Data messages. Interest
messages are used to query for content, while content is returned in a Data message.

Root Advise Interests
A Root Advise Interest is used by the synchronization protocol to determine if a remote
collection contains names that are not in the local collection. The Root Advise is expressed
as an Interest of the form:

c c n x : /< topo>/%C 1 . S . r a /< s l i c e h a s h >/< r o o t h a s h>

where <topo> is the topological prefix of the synchronization tree, %C1.S.ra is the
command marker for the Root Advise Interest, the <slicehash> is a hash code that
names the collection being synchronized and <roothash> is the combined hash of the
root node for the synchronization tree.

The response to the Root Advise Interest is sent as a Data message and is of the
form:

c c n x : /< topo>/%C 1 . S . r a /< s l i c e h a s h >/< r o o t h a s h >/< r e s p o n s e h a s h >/<
v e r s i o n >/<segment>

where the <responsehash> is the hash for the responders root and <version> and
<segment> refer to the version and segment number of the content being exchanged.
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Node fetch Interests
When Root Hashes differ, the synchronization agent fetches the nodes of the remote syn-
chronization tree that have hashes that differ from those in the local tree. To obtain these
nodes, the synchronization agent issues Node Fetch Interests of the form:

c c n x : /< topo>/%C 1 . S . n f /< s l i c e h a s h >/< r e s p o n s e h a s h>

The response to the Node Fetch Interest is returned in a Data message and has the form:

c c n x : /< topo>/%C 1 . S . n f /< s l i c e h a s h >/< r e s p o n s e h a s h >/<v e r s i o n >/<
segment>

The rest of the chapter is dedicated to the description of the scenarios, the hardware and
software used, the test setup, and finally the evaluation results.

4.2 Hardware and Software

The synchome implementation was evaluated on the UBELIX[5] cluster using the ns-3
DCE[6] framework. The ns-3 DCE framework makes it possible to evaluate communication
software by emulating it. This way, the communication software under evaluation can be run on
any network setup with multiple nodes. The communication is simulated using ns-3.

For the evaluations, DCE-1.4 running ns-3-21 was employed.

4.2.1 DCE limitations

DCE has a number of limitations concerning its network module implementations as well as
system and function calls. To circumvent these, changes had to be made to the mobile synchro-
nization application source code for the simulations. The following DCE limitations had to be
mitigated:

Call to system() not supported
The call to the system() command is not supported within DCE. We use system()
in our application to invoke ccnsyncslice, ccnsyncwatch and ccndc.

In order to be able to create synchronization slices during the evaluation, we incor-
porated a function named call syncslice in all synchome applications. The
function consists of the code found in ccnsyncslice, with some minor changes, such
as the removal of commandline argument input and assertion.

The same was done for synchomewatch. The code was incorporated in the
synchomeclient application as the function syncwatch.

The ccndc function, which handles routing by adding or removing faces for re-
mote hosts in the FIB, was not incorporated into the synchome application. Instead, we
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call ccndc within the ns-3-DCE simulation script before the synchronization starts, to
add the remote hosts’ face to the FIB, and after the synchronization ends, to remove the
remote hosts’ face from the FIB.

Call to popen() not supported
popen() is used by the synchomeclient to parse the output of ifconfig in order
to retrieve the client’s IP address. Like system(), it is not supported by ns3-DCE.
As there is no DHCP support in ns3-DCE, we chose to remove this method from the
application for the evaluations and instead enter the client’s IP address statically.

No DHCP
The DCE wireless module does not have DHCP support. Wireless handoff between access
points is only supported if the client keeps the same IP address.

4.3 Scenarios

We consider two scenarios:

Single synchronization
We synchronize one or multiple collections simultaneously. The scenario is comparable to
a user creating new content, adding it to the repository, synchronizing it and then putting
away the device with no synchronization applications left running.

Continuous synchronization
In this scenario, the user creates new content in intervals and pushes it to the repository
into the same collection. If the ccnsyncslice application is used to synchronize the
content, the collection is created once and the synchronization agent left to run until the
user decides to remove the collection. If the synchome application is used, the user has
to start it for every new content added, as synchomeclient shuts down after successful
content synchronization.

For both scenarios, we use a topology with a static client. Figure 4.1 shows the topology.
There is one client that connects via access point to a home repository. In our scenarios, the client
remains in connectivity range of the access point to perform the synchronization operation. The
client is connected to the access point using IEEE 802.1g. The access point is a bridged wireless
access point/CSMA node. The bridge is necessary to merge the wireless and CSMA subnets
into one network. The CSMA link between access point and home repository supports a data
rate of 1000Mbps and has a delay of 6560ns.
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Figure 4.1: Network topology with static client

4.4 Performance Evaluation

We will first discuss the test setup and then show the evaluation results.

4.4.1 Test setup

We run the simulations by executing the following steps in the ns3-DCE script:

1. Create the necessary folders and files on the client and home repository nodes, such as the
REPO folders, in which the repository is initiated, as well as the file to be pushed to the
repository, which is stored in the client’s \tmp directory and named bigone.

2. Start ccnd on client and server.

3. Initiate repository with ccnr on both the client and home repository.

4. Once the repository is running, the client pushes the generated bigone file to the repos-
itory by issuing the command ccnseqwriter as follows:

c c n s e q w r i t e r −r <ccnname> b i go ne

The command ccnseqwriter creates new ccn content by using stdin as the source
of data. The -r option generates a start-write request to the repository. Without it, the
content would not be saved to the repository. ccnname is the uri name of the content.

5. Next ccndc is invoked to register client and home repository with each other using the
static IP addresses allocated to the nodes.
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6. In this step, the actual synchronization is performed. For the evaluation of
ccnsyncslice, ccnsyncslice is called from the synchomewatch applica-
tion in the first scenario, as we need to monitor the synchronization completion time. In
the second scenario, ccnsyncslice itself is used to synchronize the content.

For the evaluation of synchome, in both scenarios synchomeserver is initi-
ated on the home repository and synchomeclient on the client.

7. Once the given scenario has completed, ccnd is stopped using ccndsmoketest
kill, and the simulation exits.

4.4.2 Single synchronization

In this scenario, the client performs one synchronization of one or multiple collections. The file
added to the collections is of size 1, 5 or 10MB. It is stored in 1, 2 or 3 collections containing 5
files. We used this scenario to evaluate the overhead of the synchome application compared to
ccnsyncslice.

Figure 4.2 shows the comparison of the synchome and ccnsyncslice applications
when synchronizing 2 collections containing 5 files sized 1, 5 or 10MB. The x-axis shows
the filesize of the content. The y-axis shows the runtime of the applications in seconds. We
used synchomewatch during the simulation to monitor ccnsyncslice. The runtime is
calculated by adding together the synchronization times for each collection as reported by
ns3-DCE.

Figure 4.2: Results of synchronizing collections containing 5 files of size 1MB

It can be observed that:

1. The mean runtimes of both synchome and ccnsyncslice are nearly equal for each
collection number. ccnsyncslice has a slightly better mean performance. This is due
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to synchomes’ additional overhead caused by registering the IP addresses, etc.

2. For both ccnsyncslice and synchome, there is an increase in variance between
maximum and minimum runtime as the filesize increases. This is due to the way the
synchronization protocol handles Root Advise, Node Fetch and content messages.

The synchronization protocol issues a Root Advise Interest every 20 seconds if no
new content is found. If new content is found and needs to be synchronized, the
frequency of Root Advise Interests increases to multiple Interests per second until the
synchronization finishes. Only a small part of all these Interests are answered. If a Root
Advise Interest is answered, and the root hash differs from the local synchronization trees
root hash, Node Fetch Interests are exchanged.

Since Node Fetch Interest replies are Data messages, the transfer of the content
Data messages is stalled until the synchronization protocol has finished exchanging
hashes. This may incur significant overhead, depending on how often Root Advise
Interests are successfully exchanged and Node Fetches initialized. The replies to Node
Fetch Interests are sized between 886 and 4133 bytes when exchanging files of 1MB;
for larger files, the range in Node Fetch reply size becomes broader. This means that the
number of Node Fetch replies exchanged is highly variable.

As larger and more content is transferred, the time during which Root Advise mes-
sages can be exchanged and start Node Fetch exchanges increases. The resulting variance
in the maximum and minimum runtime is caused by the high variability in the number of
exchanged Node Fetch Interests, since these stall content exchange.

3. The variance in runtime is more pronounced for ccnsyncslice for each filesize. We
explored this in the next experiment.

Figure 4.3 shows the resulting runtimes of multiple runs synchronizing 3 collections con-
taining files of size 10MB. The x-axis shows the experiment number, while the y-axis shows the
runtime in seconds. We observe that:

1. The minimal runtime for both applications is 100±2 seconds for all repetitions of the
scenario.

2. The mean runtimes for both applications range between 255 and 300 seconds. In run 1,
both applications have similar runtimes, while in run 2 ccnsyncslice has the better
mean runtime and in run 3 synchome has the better mean runtime.

This inconsistency in performance is due to the previously mentioned variability in
the number of successfully exchanged Root Advise messages and consequently initial-
ized Node Fetch exchanges. As previously stated, when more content is exchanged, Root
Advise Interests have a higher chance to be answered, and in this experiment 50MB are
transferred during each run.
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3. The maximum runtime of the ccnsyncslice application is slightly higher than the
maximum runtime of synchome for every repetition of the experiment. An analysis of
the log files showed that ccnsyncslice tends to exchange more Node Fetch Interests
than synchome. The only difference between the applications message exchange is
that synchome generates additional messages routed under the synchome prefix. It
seems that these messages have priority over Root Advise messages, thus cutting down
the number of Node Fetch exchanges.

Figure 4.3: Results of multiple runs synchronizing 3 collections 10MB

4.4.2.1 Conclusions

We anticipated that the synchome application would run slightly longer than
ccnsyncslice. Comparisons showed that which application had a better mean run-
time was variable. Through all runs, minimum runtimes were nearly the same for both
applications. ccnsyncslice had a slightly higher variance between maximum and minimum
runtime and often a higher maximum runtime.

The inconsistency in performance between the applications is caused by the exchange of
Node Fetch Interests, which are often exchanged even when the actual exchange of content
has concluded. The messages generated by synchome apparently have a slight influence on
how often Node Fetch Interests are exchanged thus minimizing the maximum runtime of the
synchome application when compared to ccnsyncslice.

4.4.3 Continuous synchronization

In the second scenario, we simulated a client generating new content periodically for 24 hours.
The generated content is one file of size 1 or 2MB added every 900, 1800 or 3600 seconds. This
is equal to 96, 48 or 24 files, respectively, being synchronized over the 24 hour period. When
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synchronizing the content using ccnsyncslice, one collection slice is created for the 24
hours duration. Since synchomeclient exits upon successful synchronization, it is called at
every interval to synchronize the new content.

We evaluated the effect of periods without active synchronization on the number of mes-
sages received and transmitted by the client. While messages received/transmitted by both
client and home repository were evaluated, we analyze only the clients’ messages. This is
because CCNx maintains flow balance between Interest and Data messages. A party must
transmit at most one content object in response to a single received Interest message. Thus, for
example, interest from messages received by the client map to content to messages
relayed to the home repository.

As ccnd generates a new face for every CCNx application call - be it ccndc, ccnr,
ccnseqwriter or synchomeclient - we parsed only the messages relayed between the
client and home repository ccnd, excluding internal faces. The following graphs display only
the messages transmitted to the home repository over the external face generated by ccndc
add ccnx:/ udp <home repository ip>.

Figure 4.4 shows the comparison of the interest to messages transmitted by synchome
and ccnsyncslice. The x-axis shows the interval between new content. The y-axis shows
the number of issued messages. These messages consist of Root Advise Interests issued by the
client.

Figure 4.4: Interest to messages generated by client

It can be observed that:

1. The ccnsyncslice application generates significantly more Root Advise Inter-
ests than synchome. The larger the interval between new content, the larger
the gap between generated messages becomes. When content is generated every
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900 seconds, ccnsyncslice generates 153% more interest to messages than
ccnsyncslice. At 3600 second intervals, the increase is 437% more messages. This is
due to the fact that ccnsyncslice exchanges Root Advise Interests every 20 seconds
while not synchronizing. synchome does not exchange any messages when not actively
synchronizing, as it removes the slices.

2. As the interval between new content generation decreases, the number of Interest mes-
sages converges. This behavior is expected, as synchome has to start the synchronization
process more often, thus also increasing the number of Root Advise Interests transmitted.

3. The variance between maximum and minimum value increases for decreasing intervals.
As mentioned in the previous section, Root Advise Interests are relayed every 20 seconds
when not synchronizing content and multiple times per second when synchronizing. As
the interval between new content additions decreases, the applications spend more time
synchronizing, thus increasing the number of exchanged Root Advise Interests.

The graph displayed in Figure 4.5 shows the difference in generated content to mes-
sages. The x-axis label shows the content generation interval, the y-axis the number of sent
content messages.

Figure 4.5: Content to messages generated by client

As it can be seen, the difference in the number of transmitted content messages is significant.
The ccnsyncslice application sends out around 50% more messages at every time interval
than the synchome application. Further probing showed that the content to messages are
not only composed of messages relaying requested content, but also of Data messages relaying
information for the synchronization protocol, such as Root Advise and Node Fetch Interest an-
swers. Extracting the the Root Advise and Node Fetch Interests resulted in the following graphs.

Figure 4.6 shows the Data messages carrying Root Advise Interest answers. The x-axis
label shows the content generation interval in seconds, the y-axis the number of sent Root
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Advise Interest answers.

We observe that:

Figure 4.6: Content to messages carrying Root Advise Interest replies

1. The number of sent Root Advise Interest answers shows nearly no variance from the mean
number of messages at each interval for ccnsyncslice. This is likely due to the fact
that the collection is being constantly synchronized, thus leaving the same window of
opportunity open for Root Advise Interests to be answered during each run.

2. synchome shows an increase in variation between maximum and minimum messages
sent as the content creation interval decreases. As the interval decreases, more content is
being synchronized, thus leaving more time for Root Advise Interests to be sent. Addi-
tionally, as more Root Advise Interests are answered, Node Fetch exchanges are initialized
more often, prolonging the synchronization time and again increasing the window of op-
portunity for new Root Advise Interests. As multiple Root Advise Interests are transmitted
every second during active synchronization, slight increases in synchronization time may
cause significant increases in the overall number of Root Advise replies

3. For both applications, the number of sent messages doubles as the interval decreases from
3600 seconds to 900 seconds.

The last graph, Figure 4.7, shows the number of Node Fetch answers transmitted at every
interval. The x-axis shows the content generation interval in seconds, the y-label the number of
content messages transmitted by the client carrying Node Fetch Interest answers.

We observe that:

1. The synchome application shows nearly no variance from the mean number of relayed
Node Fetch replies, while ccnsyncslice shows an increase of the variance between
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maximum and minimum messages sent as we decrease the intervals from 3600 seconds
to 900 seconds. Taking into consideration the results concerning the transmission of Root
Advise replies, this would indicate that synchome has a higher variance in the number
of sent Root Advise Interests because they are answered less often, which in turn causes
more Root Advise Interests to be sent.

Additionally, when ccnsyncslice is running constantly, Root Advise Interests
are occasionally answered multiple seconds after the synchronization has finished. As
synchome stops the synchronization within 4 seconds of the last content exchange, it
cuts off these additional Node Fetch exchanges.

2. ccnsyncslice shows a message increase of 192% at the 3600 second interval and
268% at the 900 second interval compared to synchome.

Figure 4.7: Content to messages carrying Node Fetch Interest replies

4.4.3.1 Conclusions

The results of the evaluation show, as expected, that synchome generates significantly less
CCN messages than ccnsyncslice. They also show that, as content is synchronized more
often, the number of Root Advise Interests transmitted converges for the two applications, while
the number of Node Fetch Interest replies diverges, although this divergence would dissapear if
there were no periods without active synchronization.

The convergence of the Root Advise messages is due to the fact that, as content is being
synchronized more often, the amount of time during which Root Advise messages can be
exchanged increases. If synchome would constantly synchronize content without pauses, it
would essentially be identical to ccnsyncslice in functionality, as it is built on top of it.
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The reason for the divergence is not as clear. An analysis of the log files indicates that
the Root Advise Interests sent by ccnsyncslice resolve more often in a Node Fetch
exchange than the ones sent by synchome. As mentioned in the discussion of the appli-
cation runtimes, the only difference concerning the message exchange of synchome and
ccnsyncslice is that synchome generates additional messages, which are routed under its
own prefix.
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Chapter 5

Conclusions

5.1 Summary

In this thesis, we developed a synchronization protocol for mobile clients. The protocol
extends the CCNx synchronization protocol by adding the capability to synchronize content
with any node, regardless of location, as well as being self-regulatory. The user needs to
only start the ccnd and the repository. The application takes care of registering the remote
nodes face to its own ccnd, as well as its own face to the remote node. Next, it synchro-
nizes the content, stops synchronization when completed, removes the registered faces and exits.

In addition to the synchronization protocol for mobile clients, we implemented an appli-
cation called synchomewatch to monitor whether the synchronization of content has
stopped. This was required since the current synchronization protocol could not differentiate
network interruptions from successfully completed synchronizations. In both cases, Root
Advise messages, which are monitored by the ccnsyncwatch application, would have
resulted in no response.

We evaluated the implemented mobile synchronization protocol and compared it to the
existing synchronization protocol. The evaluation was performed with ns3-DCE, which allowed
for the evaluation of the implemented code under the ns3 network simulator without the need to
change the application source code.

5.2 Conclusions of results

During the evaluation, we found that the differences in synchronization time between our
implementation and the synchronization protocol when running a single synchronization of
one or multiple collections was nearly negligible for small files, and converged for larger
files. We also found that, the larger the size of the content to be transferred is, the more
the synchronization time deviated from the mean, due to the exchange of synchronization
protocol messages and the implementation of our monitoring method, which also takes the
synchronization protocol messages into account.
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We also found that our mobile synchronization protocol lowered the number of generated
content and Interest messages carrying Root Advise and Node Fetch messages significantly
compared to the synchronization protocol when synchronizing content intermittently. During
the 24 hour synchronization evaluation with content generation every 3600 seconds, the home
repository transmitted 192% more Node Fetch replies and 437% more Root Advise messages
when running the synchronization protocol, compared to our protocol.

5.3 Future Work

Our synchomewatch application monitors the synchronization process by analyzing ccnd
debug messages stored in a text file. As the logic to query and store relevant debug messages is
stored within the ccnd code, all synchomewatch instances called on top of the same ccnd
instance access the same text file. It would be advisable to examine the case in which a client
invokes multiple synchomeclients for concurrency issues and perhaps introduce a way to
seperate synchomewatch access to the log file into sessions.

Additionally, functionality could be added to the home repository to keep track of what
content a client possesses. This would make it possible for the home repository to inform other
clients, which have subscribed for content updates, about new content available.
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Chapter 6

Appendix

6.1 Code Listings

In the following, all edited code files are declared. The source code itself can be found on the
attached physical medium

6.1.1 Newly Created Source Code

The following files have been newly created for this thesis:

src/ccnx/csrc/cmd/synchomeclient.c
The mobile client application synchomeclient was implemented in this file.

src/ccnx/csrc/cmd/synchomeserver.c
The synchome server application synchomeserver was implemented in this file.

src/ccnx/csrc/cmd/synchomewatch.c
The function responsible for tracking the sync was implemented in this file.

6.1.2 Modified Source Code

The following files have been modified for this thesis:

src/ccnx/csrc/ccnd/ccnd msg.c
Logic to extract debug messages was implemented in this file.
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