
SDN-WISE Anti-Attack

An SDN framework for securing IoT networks using

machine learning

Master Thesis

Severin Zumbrunn

Philosophisch-naturwissenschaftlichen Fakultät
der Universität Bern

January 2019

Anhang 1 / Umschlagseite

SDN-WISE Anti-Attack

An SDN framework for securing IoT networks using

machine learning

Masterarbeit der Philosophisch-naturwissenschaftlichen Fakultät
der Universität Bern

vorgelegt von

Severin Zumbrunn

Januar 2019

Leiter der Arbeit

Prof. Dr. T. Braun

i

“IoT without Security equals the Internet of Threats”

— Stephane Nappo

Abstract

In this work we propose a framework for automatic attack recognition, at-
tacker identification and attack mitigation based on anomaly detection in
combination with machine learning classification and Software Defined Net-
working. This framework was designed to find potential attacks based on
residual analysis on network characteristics like topology and tra�c statistics.
The main goal is to have a framework which is not specifically designed for a
certain attack, but rather to provide detection and mitigation of novel attacks
in a general manner. This work provides a performance analysis and a con-
ceptual insight to the framework. Results indicate, that the anomaly based
approach for attack detection in combination with an appropriate mitigation
algorithm can detect and mitigate attacks e�ciently.

Prof. Dr. Torsten Braun, Communication and Distributed Systems, Insti-
tute of Computer Science, University of Bern, Supervisor

Dr. Zhongliang Zhao, Communication and Distributed Systems, Institute
of Computer Science, University of Bern, Assistant

Cand. Dr. Jakob Schaerer, Communication and Distributed Systems, In-
stitute of Computer Science, University of Bern, Assistant

iii

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Objectives . 3
1.3 Thesis Contribution . 3
1.4 Thesis Structure . 4

2 Background and Literature 5
2.1 Related Work on Security Issues in Wireless Networks 5
2.2 Resource Constrained Networks . 7

2.2.1 Internet of Things . 7
2.2.2 Wireless Sensor Networks . 7
2.2.3 Wireless Sensor and Actor Networks 7
2.2.4 Routing Protocol for Lossy Networks - RPL 8

2.3 Software Defined Networking . 9
2.3.1 SDN-WISE . 9
2.3.2 ONOS . 9
2.3.3 SDNWisebed . 10

2.4 COOJA . 10
2.5 WSN Security . 10

2.5.1 Node-to-node communication . 11
2.5.2 Attacks . 11

2.5.2.1 (Distributed) Denial of Service (DDoS) 12
2.5.2.2 Node Replication Attack 13

2.5.3 RADAR: Residual Analysis for Anomaly Detection in Attributed
netwoRks . 14

2.5.4 Attack Mitigation . 15

3 SDN-enhanced Attack Mitigation in WSNs 17
3.1 Introduction to Anomaly Detection . 17

3.1.1 Feature Selection . 18
3.1.1.1 DoS Attack Features . 18
3.1.1.2 Node Replication Attack Features 19

3.2 Attack Detection Framework . 20
3.3 Attack Mitigation . 21

3.3.1 Attack Recovery and Mitigation Algorithm - ARMA 23
3.3.2 Caching . 24

4 Experiments 25
4.1 DoS Simulation . 25

v

vi CONTENTS

4.1.1 Overview . 25
4.1.2 Dataset . 26
4.1.3 Results . 26
4.1.4 Threshold-based DoS Detection . 28

4.2 Node Replication Attack Simulation . 30
4.2.1 Overview . 30
4.2.2 Results . 30

4.3 Multi-attack Classification . 31

5 SDN-WISE Framework
Contribution 35
5.1 Bugfix to OpenPath Forwarding . 35

5.1.1 Packet Masquerading . 36
5.1.2 Bugfix to current SDN-WISE implementation 36
5.1.3 Bugfix to OpenPath Generator . 37

5.2 Topology Display of SDN-WISE Dynamic Routing Packet Processor . . . 40

6 Discussion 41
6.1 Summary of Results . 41
6.2 Conclusion . 42
6.3 Future Work . 42

Chapter 1:

Introduction

Today, as the hardware integration size is halved every year, more and more devices in
daily use become connected to the Internet. This phenomenon is well-known under the
term Internet of Things (IoT). In the beginning of the Internet, engineers thought that
the Internet will have a thousand up to ten-thousands of devices connected. Instead
today there are billions of devices communicating with each other which leads to emerg-
ing problems with manageability, controllability and, especially, security. The growth
in popularity of IoT let many issues and threats arise. A prominent example of such
issues are Distributed Denial of Service (DDoS) attacks. As IoT devices often lack basic
security measures, botnets consisting of millions of devices can easily be built up. To
encounter this problem, a variety of approaches have been proposed recently that try to
secure the IoT devices and the network as a whole. These mechanisms focus mostly on
securing the di↵erent layers in the network stack and are implemented directly on the
devices themselves. Examples are pre-shared key authentication and secure transport
layer protocols like TLS. While these implementations only work for devices that pos-
sess the required non-negligible resources, it is unimaginable for most low-powered IoT
devices like sensors. For that reason, other mechanisms are required that do not use
great amounts of energy or computational power.

In 2005, Stanford University proposed a new paradigm called Software Defined Network-
ing (SDN) which splits the network architecture into two virtual planes (data and control
plane). While the control plane is used for establishing routes and exchanging report
messages with the controller, the data plane transports the actual data. This not only
improves the manageability of networks, it also introduces a completely new toolset to
provide network security. With SDN, system administrators are given complete knowl-
edge about the topology and tra�c patterns of a network. Another promising field
for applying SDN are Wireless Sensor and Actuator Networks (WSAN) which consist of
sensors and actors that are often low-powered or have limited computational power avail-
able. Additionally, the complexity for routing is moved from the sensors to the central
controller, which can save the scarce resources of the distributed nodes. Furthermore,
WSNs often require point to point communication with very low delay. In this case,
SDN provides full-flexibility and dynamic route management, which has been proofed
to outperform conventional distributed routing algorithms (Schaerer 2018).

1

2 CHAPTER 1. INTRODUCTION

Recently, it has been shown that SDN is far more than just a way of routing packets in a
network. Although, one of the foundations is routing, security applications can be easily
developed using SDN. Mostly, because such systems have already abstracted network
characteristics available, such as transmission and reception packet count per link. Using
the network topology for example, it can be much simpler to detect attackers or error
patterns. In combination with machine learning, this can be used to automatically
recognize and mitigate such threats.

1.1 Motivation

Securing IoT networks has become a very popular and continuously growing field of
research recently. There have been many studies carried out, focusing on the detection
of DDoS attacks in networks by using Deep Packet Inspection (DPI) in combination
with Machine Learning. In these approaches, the security algorithms are deployed to
gateways like routers or firewalls that handle the tra�c between the Internet and the
consumer IoT devices. The basic assumption is that all packets to or from the Internet
have to pass these gateways. The values of these packets are then transformed into
features that can be used by appropriate classification algorithms like KDTree, SVM or
Random Forest. The accuracy for detecting DDoS attacks based on those algorithms
goes up to very high 99.9% (Doshi et al. 2018). Nevertheless, it is important to note
that these studies focus on a single attack for consumer IoT devices and are specialized
for this task only. The high accuracy can also be explained from the fact that they
specialized on recognizing only DDoS attacks and even more that they are focusing on
the attack rather than the attacker itself.

Common DDoS attacks, with billions of requests within a tiny fraction of time, are
seldomly used against IoT devices as targets but more that the IoT devices become
attackers. This comes from the fact that, IoT devices are often not su�ciently secured.
Frequently, default credentials are left untouched or they do not even contain basic se-
curity considerations so that they can be hacked easily. Regardless of this fact, DDoS
attacks are omnipresent and can be simulated well and so this thesis includes an exper-
iment with DDoS for comparison with other papers. To this date, current research on
IoT and especially WSN attacks focuses mainly on the detection of DDoS attacks using
both centralized and decentralized approaches. However, no studies can be found on the
detection of WSN attacks using SDN and machine learning. Available papers consider
the detection of the attack only but not the detection of the attacking node. Therefore,
the focus of this thesis is to study di↵erent security issues and attacks in WSNs using
SDN and how they can be detected, prevented or mitigated using machine learning and
more especially how attackers can be identified.

With IoT several characteristics are typical: limited resources, large number of nodes,
heterogeneity of nodes, error prone communication, and hostile environments. All these
issues increase the risk for potential security leaks and threats and need to be addressed
in order to improve the overall security of IoT networks. This becomes even more
clear when having a look at a particular subgroup of IoT, the Wireless Mesh Networks
(WMNs).

In Siddiqui (2007) the general problem of mesh network security is described as ”[..]
WMN has features such as an open medium, dynamic changing topology, and the lack

1.2. OBJECTIVES 3

of a centralized monitoring and management point, many of the intrusion detection tech-
niques developed for a fixed wired network are not applicable in WMNs.” It is therefore
a logical consequence to add a central controller for management and security purposes
that is able to control all network flows and is aware of ongoing tra�c. Furthermore, it
should have enough computational power to apply machine learning on the information
it is collecting from the network to detect attacks and take countermeasures against
potential attackers.

1.2 Objectives

The goal of this master thesis is to study and identify potential WSN security attacks,
simulate, detect and mitigate them by using SDN-empowered security. Additionally,
machine learning should be considered for classifying attacks and identifying attackers.
This goal can be split into several sub goals:

• Analyze state-of-the-art approaches for attack and attacker detection.

• Find characteristic WSN attacks. Implement and simulate some of the identified
attacks in SDN-WISE using COOJA.

• Extract features from the generated tra�c datasets to train machine learning clas-
sifiers and apply them to recognize attacks and if possible, to detect the attacker
as well

• Find ways to mitigate these attacks to prevent complete network loss

This thesis tries to answer the following research questions:

• How can WSNs be protected by applying the SDN paradigm having a centralized
controller?

• Can attacks against WSNs be detected using SDN?

• How can attacks be recognized and what are useful features to detect attacks?

• How is it possible to identify an attacker during an attack?

• What possibilities can prevent an attacker from taking down or compromising a
network?

1.3 Thesis Contribution

This thesis proposes a monitoring application for the SDNWisebed framework that is
able to recognize attacks, identify attackers and mitigate the attacks by penalizing con-
nections to attackers, e.g. push back. It provides a generalized approach that is flexible
and not constraint to a fixed network size, or special network architecture despite other
solutions proposed in the past.

Furthermore, it investigates how the SDN paradigm can be used in lossy wireless sensor
networks, to enhance security and enable the mitigation of attacks in such networks.
And it shows

4 CHAPTER 1. INTRODUCTION

1.4 Thesis Structure

This thesis is structured into six basic chapters. In this Chapter 1 a short overview over
the topic is provided and the goal of this thesis is explained. Furthermore, in this section
the structure of this thesis is described.

In Chapter 2, a literature study on related work is given including explanations for the
most important terms used in this thesis. It also provides insight for di↵erent attacks
for WSN and how they are commonly prevented.

Chapter 3 proposes a framework for attack mitigation in WSNs using SDN. The chap-
ter discusses the machine learning approach, which is used to detect two WSN attacks,
Denial of Service and Node Replication. It explains the selected features for the classifica-
tion and proposes a framework for attack recovery and mitigation for DoS attacks.

In Chapter 4, the experiments conducted in this thesis and their results are shown. The
experiments show the advantage of an SDN-based approach for attack detection in WSN.
Additionally, this chapter provides measurements for multi-attack classification.

Chapter 5 highlights additional work on the SDN-WISE framework that has been done
in this thesis. These side products improve the quality of future experiments with SDN-
WISE and provide more advanced functionality for the framework.

In Chapter 6, the results of the experiments are discussed and evaluated. Furthermore,
a summary of the work of this thesis is provided and a brief outlook for future work is
given.

Chapter 2:

Background and Literature

This chapter gives an overview on the related work, the technologies and paradigms that
are used and are essential for the understanding of this thesis. The first part features an
introduction to give an overview on recent studies in the field of WSN and IoT Security.
In the latter, di↵erent terms are introduced and explained briefly.

2.1 RelatedWork on Security Issues inWireless Networks

Within fifteen years of development on WSNs, many papers have been published, focus-
ing on the security of Wireless Sensor Networks. Although, with the current hype for
the Internet of Things it is still considered a young and fresh topic.

Back in 2003, Karlof & Wagner (2003) took a survey over numerous routing protocols
and highlighted their security issues. In the end of their paper, they proposed several
countermeasures on the lower layers during the design stage of a protocol. But they
found especially the wormhole and sinkhole attack as a significant challenge to the ap-
plication of security countermeasures when a protocol has already been implemented.
They concluded that security has to be an integral part of protocol design from the
beginning.

Padmavathi & Shanmugapriya (2009) studied the arising problems for sensor networks
in the way those networks are deployed in unattended environments, what makes them
vulnerable to a variety of potential attacks. They made a survey on various network
attacks that can be taken out and then listed some attacks specifically designed for
WSNs.

Siddiqui (2007) studied security issues in wireless mesh networks (WMNs) and identified
the lack of centralized Intrusion Detection Systems as one of the main issues in WMN
security. Furthermore, they concluded that WMNs can be very reliable due to the
massive amount of individual wireless transceivers, making the system error tolerant and
resilient. With their work they highlight the great potential of a centralized approach
to control a network based on its distributed knowledge.

5

6 CHAPTER 2. BACKGROUND AND LITERATURE

Airehrour et al. (2018) proposed a framework called SecTrust-RPL which extends the
Routing Protocol for Low-Power and Lossy Networks (RPL) with additional security
functions. It was specifically designed to protect RPL against the prominent Rank
and Sybil attacks. It is particularly interesting for this thesis, as in SDN-Wise the
control packets are routed by RPL which lays the foundation for the complete SDN
approach.

Wani & Revathi (2018) used SDN for an Intrusion Detection System (IDS) to recognize
attacks from the outside to IoT networks. By analyzing ingress tra�c to IoT networks
with a back-propagation neural network they achieved accuracies of up to 99%.

In 2017, Bhunia & Gurusamy (2017) first applied SDN to IoT networks for security
reasons. They propose a framework called SoftThings with attack detection, where
SDN is used to control the tra�c coming from and to IoT devices. It consists of a
master SDN controller, several cluster SDN controller and the end devices. A machine
learning module resides in the master SDN controller that is prefilled with a training
set of various known TCP attacks. Their approach is based on already known and
common attacks and they focus on wired instead of wireless networks. In their work,
they highlight a literature study made by Sood et al. (2016) which was made explicitly
to show opportunities and risks in wireless sensor networks that are driven by SDN.
They state that DDoS could be a major issue in wireless sensor networks due to the
scarce resources and the lack of security. They see the possibility of SDN to do attack
mitigation and prevention in terms of constant analysis of the network characteristics.
But they also show issues coming along when bringing SDN to WSNs, e.g. the inability
of SDN to do Deep Packet Inspection (DPI) as described by Sood et al. (2016) ”[..]
Deep Packet Inspection (DPI) is unfortunately not supported in standard OpenFlow
because currently defined match fields in order to evaluate packet are limited to the
packet header only.”. In the end, they conclude that there is a lack of research in the
specific field of security when applying SDN to WSNs. In their work, they conducted a
single experiment using Support Vector Machines for classification. However, SVMs are
rather slow what can lead to problems especially in attack mitigation where detection
speed is crucial.

Zhu et al. (2007), Conti et al. (2007) and Parno et al. (2005) proposed di↵erent dis-
tributed algorithms for detecting node replication attacks. All of the proposed algo-
rithms show accuracies for detection between 60% and up to 94.5% in special cases,
what clearly indicates room for improvement. These distributed approaches consume a
lot of energy due to the overhead that is additionally created by the detection mecha-
nisms. The use of a centralized approach thereof could not only save energy but also
boost the performance for detecting attacks.

In the paper of Grover et al. (2011), a machine learning detector for multiple attacks
in VANETs, such as packet suppresion, packet replay, packet detention, position forging

and identity spoofing aka. node replication attacks was proposed. It is the only paper
that could be found where they tried to detect node replication attacks and especially
attackers with a centralized approach in combination with machine learning.

Studying this related work showed, that often countermeasures and detectors respectively
are specifically designed for a single attack, but there is no general attack detection or
prevention mechanism available. As WSN imposes many di↵erent attack threats it
is therefore, almost impossible to provide protection against all potential attacks at

2.2. RESOURCE CONSTRAINED NETWORKS 7

once. But previous research showed that it could be beneficial to include distributed
knowledge (Siddiqui 2007) that is available within a network. Also, SDN on WSN shows
much potential (Bhunia & Gurusamy 2017) but also has its drawbacks that need to be
addressed. Due to the missing Deep Packet Inspection capability, there is the need for
constant monitoring of the tra�c flows and the evaluation of statistics that are provided
by the switches (Sood et al. 2016). To conclude the related work study: SDN could be
a new method for securing WSNs which is not focusing on a particular attack and how
to prevent it but rather monitor the network state and tra�c flows and dynamically
mitigate the attack to minimize the overall harm and impact of such.

2.2 Resource Constrained Networks

2.2.1 Internet of Things

The Internet of Things (IoT) is an inflationary used term in Computer Science and
describes the recent phenomenon of connecting everyday things to the Internet. IoT
describes devices that can be wired or are wireless. Most of the time such devices have
limited resources available like limited computational power, limited energy or limited
memory and are specialized for a given task, e.g. smart fridges ordering food that is o↵.
That is why most of these devices are not properly secured. Nevertheless, these devices
have a full network stack, like TCP or UDP and are therefore frequently threatened by
attacks from hackers, worms or viruses. Consequently, it is no wonder, that in some of
the biggest DDoS attacks that have been carried out in history thousands of refrigerators,
cameras and other typical IoT devices were involved.

2.2.2 Wireless Sensor Networks

WSNs are best described as networks built from wireless IoT devices that are using
low-bandwidth connections. A variety of network forms for WSNs exist, but the most
frequently used is the multi-hop sensor network where every node is sensing and/or
forwarding packets. As Karlof & Wagner (2003) describe, it consists of a sink node
that acts as a gateway between the low-bandwidth connection and the high-bandwidth
connection. Usually, the sink node is neither battery nor computational power constraint,
as it can be a full-fledged computer. A WSN can have multiple sinks.

2.2.3 Wireless Sensor and Actor Networks

In contrast to WSNs, WSNs are the super group of WSNs that additionally include
actors which impose new tra�c patterns. From the WSNs network perspective, every
node can transmit data to every other node, not only to some distinguished sink nodes.
Therefore, node-to-node (n2n) communication can be frequent. Today, this is better
known under the term Machine-to-Machine communication (M2M), but in this case,
the mixture of IoT devices, wired or wireless, low- or high-bandwidth is not constrained.
That is why in this thesis the term n2n refers to node-to-node communication in Wireless

8 CHAPTER 2. BACKGROUND AND LITERATURE

Sensor and Actor Networks where at least some nodes are assumed to be energy and
resource constrained.

In WSNs, tra�c is often made from rapid streams (e.g. video streams) or low-bandwidth
communication from sensors. This mixture is very typical for WSNs as there are sensors
connected which report information to actor nodes and establish control loops between
them. Therefore, we often find node to node communication that is latency sensitive.
Additionally, constant flows of data to controller nodes or sinks can be found due to
Internet connectivity.

2.2.4 Routing Protocol for Lossy Networks - RPL

To overcome the issues in resource constrained networks, lightweight routing protocols
become necessary. One famous example routing protocol is RPL.

In this protocol, every node that receives a so called DIO message, rebroadcasts it by
incrementing the current degree by one. Afterwards, a routing tree is built up and
nodes can start transmitting packets to a sink. At this stage, more problems show up
immediately: What if a node rebroadcasts with false degree? What if a central node
does not rebroadcast at all? A good analysis of these attacks and ways to prevent them
were published by Airehrour et al. (2018).

After the bootstrap phase of building up the network, in order to keep the network fresh
and up to date, we can then simply rebuild the RPL tree with a higher version number.
Additionally, RPL provides ways to handle adding and removing nodes during runtime
by DIS messages and parent selection lists. The parent selection is done by a so-called
Objective Function that calculates costs for every parent node in the list. The node with
the lowest costs is chosen afterwards and used for forwarding packets.

Although, this routing mechanism allows us to have node to sink communication, we
are required to exchange packets with other nodes than just the sink. Therefore, an
additional routing mechanism is needed. In RPL it is proposed to maintain downward
routes using routing tables. This obliges all nodes to inform their parents about their
children what results in having routing tables that grow with every step upwards in the
tree. To not have to store all the child nodes, RPL supports a non-storing mode, where
the information is just stored temporarily and then passed upwards to the sink node.
In this mode, only the sink node keeps track of the children in the network and every
packet has to travel through the sink and can then be routed downwards by using a
node address stack that contains the next hops. Nodes receiving this packet simply pop
the next hop address from the stack and forward the packet to this next address. A
clear advantage of this routing protocol configuration is that it is very simple for child
nodes, does not require a lot of memory but it is rather complicated for the sink node
and it requires all packets to flow through the sink node what results in a bottleneck.
However, with this approach we can fulfill basic routing requirements to support node
to node communication.

2.3. SOFTWARE DEFINED NETWORKING 9

2.3 Software Defined Networking

SDN describes the splitting of the network stack into two planes, the control and the
data plane, in order to make the transmission of user data more transparent and to
manage networks centrally. This opens up completely new possibilities of routing and is
especially interesting for large networks, where fast and flexible routing between nodes
is required. In contrast to common networks, where distributed routers make their own
decisions about routing packets, with SDN a central controller calculates the best path
through the network. These routing decisions are made based on network information
gathered with report packets. Although, this creates a dependency and a potential
security issue, however, it can improve security due to the distributed knowledge of the
network nodes.

2.3.1 SDN-WISE

SDN-WISE is a framework proposed by Galluccio et al. (2015) that combines SDN and
WSN. It consists of a network stack based on OpenFlow for sensor nodes, that have
scarce resources available and few packets should be transmitted therefore. It features
three components: nodes, sinks and visors. The latter is used to control the network and
is an instance of ONOS, described in Subsection 2.3.2. The procedure for bootstrapping
the network is defined as follows: First, to establish the control plane, a route is built
up using the Routing Protocol for Low-Power and Lossy Networks (RPL) in non-storing
mode which enables nodes to transmit REPORT packets at a regular interval via the
sink to the visor. In these REPORT packets, the nodes announce their current state,
their neighbours with its connection quality and additional sensor information for the
current period. This helps the controller to be aware of the ongoing tra�c in the network
and the availability or absence of nodes. It can also be used for monitoring purposes
and network control. Afterwards, when a node requires a route to another node, a
route REQUEST packet is sent to the SDN controller which then eventually calculates
the best route and responds to the requesting node with an OpenPath packet. This
packet contains the path which should be installed. When the requesting node has
been reached, it forwards the OpenPath packet on the designated path and all nodes
receiving this packet subsequentially establish a route by installing appropriate entries
in their FlowTables that connect the source with the destination node. This way a
flow is installed and the requesting node can start transmitting packets to the target
destination.

2.3.2 ONOS

With SDN-WISE the foundation for the communication between nodes, sink and visor is
laid. But since the visor is monolithic, it is not very handy for development. Therefore,
ONOS an SDN controller has been created. It comes with a complete toolset for man-
aging the network topology, monitoring tra�c, processing packets, etc. It is maintained
by the Open Networking Foundation which is a non-profit operator led consortium that
creates several OpenSource network applications.

10 CHAPTER 2. BACKGROUND AND LITERATURE

2.3.3 SDNWisebed

The SDNWisebed as described by Schaerer (2018), enables researchers to carry out
experiments with SDN on University of Bern’s wireless sensor network testbed TARWIS
(Hurni et al. 2012). It consists of up to 40 nodes that are distributed within two buildings
of the Computer Science Institute. This testbed can be used for fast development of
sensor network applications and it is able to deploy images built for Contiki fast and
easy. The testbed was extended by the two earlier described components SDN-WISE
and ONOS. Additionally, he proposed a protocol called Dynamic Tra�c Aware Routing
Protocol (DTARP) as an improvement for node-to-node communication in WSNs.

2.4 COOJA

COOJA is a simulator for wireless sensor networks based on Contiki. It can be used
to tryout di↵erent network topologies with heterogenous devices. COOJA is fully SDN-
WISE compatible and is therefore the first choice for fast simulations. It provides logs, a
timeline, a topology view and the radio frequency channel display. In this thesis COOJA
was used to generate datasets and develop and evaluate various attack detection and
mitigation mechanisms for SDN-WISE.

Figure 2.1: Screenshot of Cooja - The Contiki Network Simulator

2.5 WSN Security

In order to understand the security issues in a Wireless Sensor Networks, one has to
understand the fundamentals of WSNs. As we have already seen, a WSN consists of a

2.5. WSN SECURITY 11

certain number of nodes that may join or leave the network at any time. Mostly, battery
powered sensor nodes with limited energy are deployed in the wild. After deployment,
the nodes start to collect information about their immediate neighborhood. In this
period, the first security issue arises: Whom to trust? Are all neighbors of a given node
trustworthy? Only some of them? Going one step further, now we need some way of
transmitting the data to some target in or even outside the network, but how do we
know where to send to? This is defined by the routing protocol we use. In WSNs it is
typical that a sink node initiates the creation of a route tree, e.g. by using RPL.

In RPL from the security perspective we have the problem that when the sink node
fails, the complete network is lost, and nodes cannot exchange information anymore. An
approach that is often seen in this case, is to have additional sink nodes. This can be
achieved for example by introducing tree identifiers for every sink node and build up
multiple trees for the same network. However, this creates a lot of overhead for the sake
of security, which is what is not desired in WSNs.

2.5.1 Node-to-node communication

Due to the simplicity of the RPL protocol and the work of Airehrour et al. (2018) we
know that the control tra�c from node to sink and backwards can be secured. But
how is it possible to secure direct node to node communication in WSNs e�ciently?
This question shows a bunch of new problems. Previously, in the case of Node-to-Sink
communication we have had several tools available to secure the network tra�c, e.g.
with end-to-end encryption using pre-shared keys. Building a network of trust according
to Djedjig et al. (2015) can help to prevent attacks. But in n2n communication using
end-to-end encryption would be too heavy for simple sensor nodes. In the extreme, this
would mean that every node has a key for every other node in the network. Or if the
keys are not pre-shared it would require some form of RSA calculation which is clearly
infeasible for sensor nodes due to the lack of su�cient computational power and the
permanent energy scarcity.

Not only protecting the actual data transfer, but also the establishment and freshness of
routes generates a dozen of new issues. Tra�c overhead and high resource usage would
lead to early battery exhaustion which is unfeasible for low-power sensor networks. To
limit the e↵ects of producing overhead for routing causes, Schaerer et al. (2018) proposed
the introduction of an SDN-based routing algorithm called DTARP, the Dynamic Tra�c
Aware Routing Protocol for WSNs. They showed that WSNs benefit from the addition of
SDN in terms of manageability, lower congestion and energy saving. In combination with
their findings and the central availability of network statistics, SDN could be promising
for attack detection and mitigation.

2.5.2 Attacks

As previously mentioned in Section 2.1, WSNs are threatened by various attack types
that basically come from the architecture of WSNs itself. WSN attacks can be grouped
into active and passive attacks. While passive attacks can be prevented by appropriate
security mechanisms like encryption through pre-shared keys or calculating an encryp-
tion key adhoc, active attack require additional attention. Active attacks are generally

12 CHAPTER 2. BACKGROUND AND LITERATURE

more di�cult to detect than passive attacks, as their e↵ects are closely related to nor-

mal network malfunction. Therefore, an attack detector not only has to identify net-
work characteristic changes but also has to distinguish between real attacker or node
failure.

The group of active attacks can be further split into routing attacks and application
attacks, based on the network layer the attack takes place. In order to verify the proposed
framework in this thesis, some attacks had to be implemented. Two very important
attacks against WSNs are described more in detail in this section.

2.5.2.1 (Distributed) Denial of Service (DDoS)

Denial of Service (DoS) or Distributed Denial of Service (DDoS) attacks describe a
collection of attacks where an attacker tries to take down a specific target by overusing
its capability of handling requests (Douligeris & Mitrokotsa 2004). This can be any
service that the target provides. In DoS, the attacker tries to request data so that the
target is kept busy for as long as possible. He then repeats such requests until the target
cannot response to the requests anymore and eventually fails due to stack overflow or
has to be removed from the network for rebooting. In DDoS, the attack is taken out by
a distributed set of attacking nodes which are orchestrated by an attacker in the way of
a botnet or trojan. This set of nodes then carries out the attack on the same target at
the same time during a short period of time in order to avoid recognition. Such DDoS
attacks became very prominent in recent history as they were used to take down websites
or servers of political opposition (Czosseck & Geers 2009) in so called cyberwars.

The problem with DoS attacks is, that there is basically always a lack of protection
mechanisms as servers have to provide services and that normal requests can often not
be distinguished from DoS attacks as there is nothing wrong with the requests itself,
rather the huge number of packets create the problem as a whole. Especially, with
IoT devices that are part of botnets the fact that they use legitimate IP addresses, it
is almost impossible to discriminate between DoS and normal requests. Due to that,
there have only a few countermeasures been proposed that try to limit the attack e↵ects
rather than prevent them. But very often this is only possible with great costs and
investments, therefore only global players with massive infrastructure can a↵ord it, like
Googles Project Shield, Akamai or CloudFlare (Bhardwaj et al. 2018).

In the paper of Bhardwaj et al. (2018) they propose a framework called ShadowNet for
DoS protection that is installed on the border router of an IoT network. It transmits
small statistics packets to some ShadowNet web service about the current ongoing tra�c
in the network. The web service is then able to recognize DoS attacks and use the
ShadowNet border routers to prevent the transmission of these packets directly before
they reach the Internet.

Another approach for DoS recognition is by remembering requests per node and com-
bining the number of requests per node with the Expected Transmission Count (ETX)
metric. In the study from Esposito et al. (2008) they describe ETX as a metric, specifi-
cally designed for wireless mesh networks to find the most reliable path for transmission.
But in the case of SDN, it can be used as plausibility score for DoS detection. This
could be done as follows:

2.5. WSN SECURITY 13

1. Calculate the ETX value to a given node based on previous statistical values, e.g.
how many times a request was made within the recent n time frames.

2. Compare the ETX value with the number of OpenPath requests to the target node
received within the last time frame.

3. If the ETX value is lower than the actual number of requests within the last time
frame, the request is considered as being part of a DoS attack.

Of course, the ETX values are always influenced by the environment and can therefore
be unreliable for attack detection. However, one foundation pilar of security is the
availability of information and so the ETX measure combines both goals, the attack
detection and the search for unavailable paths.

2.5.2.2 Node Replication Attack

A node replication attack is when an attacker seeks an existing node id in a network and
then connects to the network using this already existing id. By doing that, the network
nodes falsely believe to communicate with only one (the victim) node, but the attacker
possibly receives all information either. The main problem considering an SDN-based
network is that newly created routes lead to network disruption when establishing routes,
as the reported routes do not actually exist, but only if the two nodes are considered as
a single individual. An example is shown in Figure 2.2.

Figure 2.2: Toy example: Node Replication Attack. Attacker A and Victim V

In this example, attacker A copies the id of victim V. Node 2 may falsely believe to reach
node V directly and would forward packets for V to A instead of 1. As nodes A and
V do not share their network knowledge, the resulting contradiction may even lead to
network disruption. Especially, in SDN networks, node replication attacks can do a lot
of harm. Because the controller would falsely believe V and A to be the same and would
e.g. install a route between node 1 and 3 over V, respectively A. All packets sent between
the two nodes would get lost therefore. Node replication attacks are di�cult to detect
by distributed algorithms or require additional overhead Parno et al. (2005) what should
be avoided in WSNs. Usually the attacker’s goal is to disrupt the network. Therefore,
he copies the victim node and moves to some other place in the network topology, so
that attacker and victim are not in the same neighbourhood what maximizes routing
issues and confusion because nodes do not know where to route packets to anymore. An
outside observer however can help to overcome this attack by remembering the network
topology and observing changes that do not seem plausible. As we will see later, SDN
can be a great tool for that matter.

14 CHAPTER 2. BACKGROUND AND LITERATURE

2.5.3 RADAR: Residual Analysis for Anomaly Detection in Attributed

netwoRks

As Li et al. (2017) state ”Besides, people can always develop a new type of anomaly as
long as some natures of data are exploited. Therefore, it is beneficial and desirable to
explore and spot anomalies in a general sense.” They are possibly referring to an attacker
willing to break into a network or e.g. falsify packet transmissions. They indicate with
that sentence that attacks and anomalies might correlate strongly. With the fact that the
previously discussed attacks, DDoS and Node Replication, are both assumed to create
network anomalies in either the structure or the tra�c. RADAR could help to recognize
those attacks.

Li et al. (2017) propose a framework for anomaly detection that uses graph-based in-
formation to calculate anomaly scores for every node in the graph. This is done by
calculating the residuals by approximation. Residual analysis bases on the relation be-
tween modeled and observed data. It describes the error that is found between these two
and can therefore be used to find anomalies. As Li et al. (2017) state, ”Instances with
large residual errors are more likely to be anomalies, since their behaviors do not conform
to the patterns of majority reference instances.” RADAR uses structural data from the
adjacency matrix of a graph and a matrix that holds node attributes as shown in Figure
2.3. It not only uses data directly, but it includes a community detection algorithm for
attributes and topologies. This allows to have very di↵erent node types within one graph
which may create highly varying tra�c. But with the community detectioning part of
RADAR it can handle such di↵erencies without misclassifying such nodes as anomalies.
This is specifically helpful for heterogeneous networks, like WSN and IoT.

Figure 2.3: Toy example: Topology and Attribute matrix with anomalies (Li et al. 2017)

The toy example in Figure 2.3 shows three types of anomalies that RADAR considers.
Structural Anomalies are interpreted as the residuals of node degrees. In this example,
node 12 is seen as an anomaly since it has a degree of only 1 while every other node
has at least a degree of 3. Contextual Anomalies are defined as residuals in the node
attributes. The node attributes in the toy examples are f1, f2 and f3. These have to be
numerical values but their range is not constrained. In this toy example, the f2 attribute
of node 7 (38) is completely di↵erent from the average f2 value of 22.6 and is therefore
considered a Contextual Anomaly. The third type of anomalies, the so called Community

2.5. WSN SECURITY 15

Anomalies are a combination of structural and contextual anomalies. Using appropriate
algorithms, for example with the Girvan-Newman or the Minimum-cut algorithm, it
is possible to find communities in a network graph. Such communities are defined as
groups of nodes that share very similar attributes and are strongly interconnected. In
the toy example in Figure 2.3, nodes 1, 2, 3, 4, and 5 build a community as they all
share the similarity of having at least 3 edges to other members of the community.
Considering the node attributes of this community, it can be seen that the f1 value of
node 2 di↵ers completely from the other nodes in that set. Therefore, node 2 is identified
as an anomalous node.

2.5.4 Attack Mitigation

When discussing the detection and recognition of attacks it is also always the ques-
tion of how it is possible to prevent or mitigate an attack that has successfully been
detected.

A simple example for this are DoS attacks that pose a great problem to network security,
most of the time, prevention is impossible, while the only way of protection against DoS
is by mitigation and focusing on Quality of Service (QoS) to keep the network healthy. A
typical way of doing that is by using the pushback architecture (Douligeris & Mitrokotsa
2004). This architecture is installed on several upstream-routers that analyze ongoing
tra�c and eventually limit the rate or drop packets for nodes identified as attackers.
Rather than preventing the attack from happening, in this case we try to limit the
harm to the network. A similar mitigation architecture is throttling, where the system
for detecting attackers can be left to the server, which defines a throttle value such
that the upstream-routers drop packets randomly according to the throttle level. By
this approach, the server is able to reduce the amount of tra�c before an e↵ect can be
measured. However, this can still lead to a reduced QoS for well-behaving nodes as there
can be misclassification.

Preventing attacks is often not possible without extensive system changes and huge costs.
Network monitoring combined with appropriate mitigation frameworks however can be
a good choice. Especially, in sensor networks this is often the only viable choice due to
resource scarcity and constraint possibilities.

Chapter 3:

SDN-enhanced Attack Mitigation

in WSNs

This chapter explains how we used the SDN-WISE framework to detect, identify and
mitigate attacks on WSNs. First, the main goal of this thesis is described in detail
and afterwards the findings are discussed and evaluated eventually. The underlying ar-
chitecture of this work consists of SDNWisebed, the framework proposed by Schaerer
(2018) which is composed of the work from Galluccio et al. (2015) and ONOS, the SDN-
controller developed by the Open Networking Foundation described in Subsection 2.3.2.
The control plane is built up with RPL in non-storing mode, to enable the communi-
cation with the SDN controller. This Chapter explains what extensions were made to
SDNWisebed in order to enable basic security by monitoring the network using attack
detection and mitigation.

3.1 Introduction to Anomaly Detection

Anomaly detection describes the method of distinguishing the odd from the normal
tra�c. But in order to discriminate the two, first we have to define what is normal.

In statistical terms, normality means that a data set is said to be normal if it is well-
modeled by a normal distribution, which is also called a Gaussian distribution. Further-
more, it defines that for a random variable, how likely it is that the underlying data
set is normally distributed and within a normal distribution, we have that 99.7% of the
data lays between 3 standard deviations of the mean.

Applying this to network security, a definition of normality of a node is required. Such a
definition can be found by choosing random variables, also called features that we think
model normality well in the network. After the identification of such, an algorithm
is used to learn and optimize a model given an observation set. From this model, it
is then possible to calculate an anomaly score for a given observation that tells how
di↵erent a given sample is from others. This can be either stateless, where for every
state the score is calculated independently, or it can be made dependent where the score

17

18 CHAPTER 3. SDN-ENHANCED ATTACK MITIGATION IN WSNS

is calculated over a given time series. In the following subsection, the choice of features
is described.

3.1.1 Feature Selection

In general, every model is only as good as its data. Therefore, the selection of appro-
priate features is the key to design an algorithm that recognizes anomalies well. In
traditional machine learning used for intrusion detection, often raw packet data is used
in combination with Deep Packet Inspection (DPI). DPI describes the way how packets
are analyzed in terms of where it is sent to, from whom was the packet sent, what type
of protocol was used, how frequent packets of this type are sent and especially what
content the packet holds. In SDN-driven networks, there is only aggregated information
available like the current network topology or the number of transmitted or received
packets over a given link. This information however, is enough in order to recognize and
identify attacks and attackers respectively. But the key to successful detection lies in
the selection of appropriate features. In the following, the feature selection for the two
attack types studied in this thesis is discussed.

3.1.1.1 DoS Attack Features

Generally, DoS attacks base on the foundation of packet transmissions. This has two
basic implications: First, the size of a DoS attack linearly correlates to the number of
packets transmitted. Second, a DoS attack generally focuses on a single target, rather
than multiple destinations. Bhunia & Gurusamy (2017) used a bunch of features for DoS
detection, such as no. of sent requests, no. of failed authentication attempts, source of

requests, bandwidth consumption, device usage at di↵erent time periods, etc. The clear
advantage of this is that they not only use the raw tra�c pattern, but already build
on a certain protocol. In our case, however, we try to make no assumptions of the
protocol in use and therefore want to classify attacks only from network information
that is typically available in networks like the total number of packets sent, the network
topology and e.g. additional general node attributes. This means that we do not need
to use features like failed authentication attempts or protocol, but solely use the number
of packets sent.

Often, DoS attackers try to cover their malicious behaviour e.g. with carrying out their
attack for a short time period only (in DDoS) or that they spoof sender addresses.
For that reason it became obvious to use distributed network knowledge, that is for
example, that we never use the knowledge of a single node only, but we try to use the
combined knowledge of the majority instead. This is based on the assumption that the
more nodes are compromised the more improbable this is. And so we may trust on our
network statistics.

In SDN-WISE, every node sends a report packet to the SDN controller at a fixed interval.
As it was described in Subsection 2.3.1, these report packets contain information about
the current state of the node, its neighbours, the number of packets sent to neighbour
X and the number of packets received by neighbour X, for every neighbour of this node.
In Figure 3.1, a toy example topology having a DoS attacker A and its immediate
neighbourhood is shown with the reported statistics aside each node. In order to cover-
up the DoS attack, attacker A reports having sent only 1 broadcast packet since the

3.1. INTRODUCTION TO ANOMALY DETECTION 19

last report. However, his neighbours report that A has sent 20 packets during this time.
Clearly, this is a contradiction and results in a logical anomaly.

As it is suggested in general, DoS attacks can be recognized from analyzing the number
of packets that are sent in a period of time. Therefore, in this work, we use the sum
of the packets that were reported having being sent by a given node. As we do not use
the information about sent packets from a given node, this prevents misclassification by
using information from potentially manipulated reports. To summarize, the resulting
input features for DoS detection are simply the sum over all packets that a given node has
sent, but from the perspective of the receivers rather than that of the sender itself.

Figure 3.1: Toy example: DoS attack anomaly in attribute matrix. Each table contains the report
of nodes to the SDN-controller

3.1.1.2 Node Replication Attack Features

As previously seen in subsection 2.5.2.2, node replication attacks are very hard to detect
in distributed networks. This is because the potentially resulting network disruption
does not appear as an attack but rather as a temporal network failure due to routing
causes and due to the fact that di↵erent route reports are indistinguishable whether they
are sent by victim or attacker.

In common network security based on packet anaylsis, we often face the issues described
above, but having topology knowledege available in combination with additional individ-
ual node characteristics, it is possible to identify attackers or at least the attacker/victim
pair.

So in order to recognize node replication attacks, it is necessary to select features that
are very individual for di↵erent nodes such as the number of neighbours, the battery level
or some geographical information if possible, information that cannot be reconstructed
that easily. In SDN, since this information is based on report packets and nodes are
identified with their MAC address, we cannot directly see changes in the reported node
values and use them for our attack recognition. But we can add a change detector
that scans report packet information for inconsistencies and changes. This is done by
storing previously reported information and compare it to the newly received values. The
outcome of this is a value that defines how much two consecutive reports di↵er from each
other. Experiments in this thesis have shown that the best feature for node replication
attack detection is by observing the set of neighbour node ids. This was calculated by

20 CHAPTER 3. SDN-ENHANCED ATTACK MITIGATION IN WSNS

having an edge store that holds all currently known edges in the network that is then
updated by the new information. During the update, the number of removed edges and
the number of added edges is counted and used as the input feature for node replication
attack detection. Of course, it is a very simple feature but it can be extended to account
for other changes as well to map more complex issues. The focus on the neighbourhood
of a node was experimentally evaluated and logically inferred from the fact that node
neighbourhoods normally only change in the connecting phase of a network.

As previously mentioned, RADAR uses two input matrices: Adjacency matrix and an
attribute matrix. While the former is made from the structure of the network, the
attribute matrix can be defined by the user of the framework. The elegance of this
framework basically is that the attribute matrix can contain very heterogeneous data
while having only the single constraint that the number of rows must match the number
of nodes in the adjacency matrix.

In RADAR, the features of both worlds, the structural and the contextual, are used
and combined to find anomalies in all three kinds of ways. In Figure 2.3 an example
for all three anomaly types is shown. Node 12 poses a structural anomaly, since it is
the only node with less than 2 neighbors. Taking a look at the attribute table, node 7
is considered an anomaly because its f2 value di↵ers a lot from that of all other nodes.
Now combining structure and attributes we find that node 2 is an anomaly as well due
to its neighborhood, which usually has low f1 values, while node 2 is completely di↵erent.
These three examples are then listed in the anomaly score table e.g. like n12: 123.45,
n2: 87.21, n7: 85.41, n6: 12.94, n8: etc. From this example, we can see that it might be
di�cult to tell whether a given score actually describes an anomaly or not. Comparing
these scores, we find that there is a gap between anomalous nodes and normal nodes, but
this gap is not well-defined and can vary a lot. For that matter, it is crucial to interpret
the score values correctly. This issue is described in the next section.

3.2 Attack Detection Framework

The Attack Detection Framework proposed in this thesis consists of a pipeline built from
RADAR created by Li et al. (2017), a filter for generalization, and a machine learning
classifier. Figure 3.2 shows the complete pipeline with inputs and output. First, the
adjacency matrix of the network graph and an attribute matrix made from columns of
the features described in the previous section 3.1.1 are input into RADAR. Also the
hyperparameters ↵, �, and � for RADAR are set. Then, RADAR calculates anomaly
scores for every node and outputs a score vector that is filtered and sorted. Afterwards,
a machine learning classifier determines based on the score vector whether there was an
attack, and if so, who was the attacking node. It then outputs either an attack label or
an attacker label, based on the configuration.

Filter

In all classifiers that are machine learning based there exists the constraint that the size
of the input vector has to be fixed. This constraint bears a huge problem for graph-based
attack detectors because graphs are dynamic and vary in their structure because in a
network, nodes may appear and leave at any time. However, RADAR in conjunction
with a simple filter, which is proposed in this thesis, provides an easy solution for this

3.3. ATTACK MITIGATION 21

Figure 3.2: Attack(er) Detection Framework

problem. RADAR maps matrices of sizes n⇥n and n⇥m to a variable score list of size
n. This list can be ordered and further used for classification by using a subset from
the ordered score list of fixed size k. A more detailed explanation of this procedure is
described in the following paragraph: First, the score list obtained from RADAR, which
contains entries of the form (score for node 1, score for node 2, ...) can be sorted by
score in descending order. Then, the k highest score values are taken (in this case, k
will be a new hyperparameter). These values create the fixed feature vector for our
classifier. Then from the node-score-list, a map can be made that maps the score back
to the actual node identifier. Now, the classifier is trained to predict the rank from 1..k

of the attacker. For the sake of completeness, it is to note here that if the attacker is
not found in the top k ranks of our training set, then the label will be set to -1. In our
case, we try to identify a single attacker, which is usually ranked by RADAR in the top
k nodes. With this setup, it is possible to have a very generalized approach for di↵erent
network sizes that can train a single model for multiple network topologies and attacks.
However, it can be di�cult to set k appropriately. Experiments with networks of various
di↵erent sizes would be required to identify the average rank of an attacker.

Because attackers will have a significantly high value for the previously mentioned fea-
tures, they will also achieve the highest values from RADAR (see Figure 3.3. frequency
of attacker appearance at rank). In combination with these properties and because the
scores can be mapped back to the nodes, a generalized approach that deals with varying
network sizes can be built by applying such a filter. Experiments have shown, that it
may be beneficial to use additional features like average score or minimal score.

3.3 Attack Mitigation

As we have discussed how we can recognize attacks and attackers, this recognition is
useless as long as we cannot prevent the attack from happening or at least mitigate it.
Therefore, some mechanism is required to mitigate or prevent the attack after detection.
Di↵erent ways have been proposed for attack mitigation. But the mitigation mechanism
however depends a lot on the attack that is carried out.

A simple and e↵ective way for attack mitigation is push back. Push back is defined as
dropping packets or blocking an attacking node. It is usually achieved by broadcasting
an alert to all nodes in the network with the desired behaviour e.g. dropping packets

22 CHAPTER 3. SDN-ENHANCED ATTACK MITIGATION IN WSNS

Figure 3.3: Attacker appearance at ranks in ordered score list obtained from RADAR of a network
with 10 nodes

from node X. However, broadcasting is not very e�cient, which is why only a subset of
nodes should be informed instead. The subset consists of all nodes that are a↵ected by
the attack. For example in a DoS attack against the controller, this would be the nodes
on the shortest path from the attacker to the sink node.

Assuming the topology in Figure 3.4 and that node A is carrying out a DoS attack on
the controller, nodes 2 and 4 are on a shortest path to the sink node S.

Eventually, the attack is detected and the attacking node A is identified. Now, the
push back strategy would be to drop packets from node A. Therefore, the sink node S
would initiate a broadcast message that all tra�c from node A is to block. The packet
eventually reaches node 2, but might get lost and not reaching node 4. For that matter,
the attacker tra�c is still sent to the sink node S. Although, the packets are dropped at
the sink node S, other packets may not be received anymore due to congestion.

Figure 3.4: Toy example topology with attacker and sink node

3.3. ATTACK MITIGATION 23

3.3.1 Attack Recovery and Mitigation Algorithm - ARMA

To counteract this problem, we propose ARMA, the Attack Recovery and Mitigation
Algorithm. It is based on OpenFlow and attempts to install FlowRules on certain nodes
to block DoS attack tra�c and afterwards tries to reset the attacker node in a further
step.

The algorithm works as follows:

1. Attacker A is detected

2. Create set S with all neighbours of A

3. Find all shortest paths P with source Sink and destination A over s 2 S

4. For every path p 2 P , create unicast message containing FlowRule IF(P.2 = X)
DROP

5. When receiving such a message:

If nextHop == A then continuously send unicast messages to X with action
RESET

else install FlowRule and forward unicast message to nextHop

Having this simple algorithm, DoS attacks can be mitigated, what can be explained
with the example topology in Figure 3.3.1. In this example, there is an attacker A,
several interconnecting nodes and a sink node S. First, the attacker A is identified
with the proposed Attack Detection Framework. Then the neighbour set of the at-
tacker is built S = {1, 2}. Afterwards, all shortest paths through s 2 S are found:
P = {(S, 6, 3, 1, A), (S, 5, 3, 2, A)}. Now, for every p 2 P a unicast message is created
containing FlowRule IF(P.2 = A) DROP. The two messages travel downwards the paths
(S, 6, 3, 1) and (S, 5, 3, 2) and installs the FlowRule in every node. Then, the packets
reach nodes 1 and 2. At this point, unicast messages containing the action RESET are
sent to attacker A. Eventually, one of the RESET packets reaches node A, node A is
reset, and the attack was successfully mitigated. After a while, the DROP FlowRule is
timed out and is removed from the FlowTable.

It is crucial to note that normally, DoS attackers are not trying to flood or jam the whole
network, but rather want to bring down a specific node. Jamming the network would
result in loosing the zombie nodes that are carrying out the attack due to not being
able to communicate with the attack initiator anymore. For that reason, we assume
that at some time the attacker is able to receive a RESET command. Of course, it is
questionable, whether the node would actually reset itself on such a command. But it
is worth a try, e.g. to reboot misconfigured or erroneous nodes. However, this step is
optional, since the network tra�c will already be blocked at the earliest point anyway,
which is at the next hop from the attacker node.

First, little experiments with a small number of nodes have shown that this protocol
can block a DoS attack e↵ectively. However, this was not investigated further and
is considered to be future work. Simulations with many tens of nodes and multiple
attackers should be carried out to proof the e�ciency of this algorithm.

24 CHAPTER 3. SDN-ENHANCED ATTACK MITIGATION IN WSNS

Figure 3.5: Toy example topology with attacker and sink node

3.3.2 Caching

Another simple mechanism that was implemented to prevent DoS attacks is caching. It
is the first measure against server overload because it tries to minimize the computation
power needed to provide a service. Caching means to store request and answer pairs in
fast memory to retrieve it immediately without having to do additional calculation other
than matching the request with the cache. On a cache hit, the response is retrieved and
returned, while on a cache miss, the request will be processed normally.

Figure 3.6: Cache for OpenPath Requests

In SDN, the SDN controller keeps track of its answers to previous OpenPath requests
with a simple cache. This can be achieved using a hash table with keys containing source
and destination addresses for each request and holding the response as value. With that
setup, the controller can prevent calculating the same paths multiple times in a row and
simply retrieve the appropriate answers from its cache. In order to be aware of new
routes and route changes, the controller should check the cached routes from time to
time to avoid responding with wrong path information.

Clearly, caching may not be able to prevent on-purpose DoS attacks completely, but it
can help to keep the QoS stable for a longer time and therefore prolongs the interval
between the first sign of attack to the time the server goes down. This is crucial for DoS
detection and mitigation, as every millisecond counts.

Chapter 4:

Experiments

To test the performance of the proposed framework, several experiments with the two
attack types (DoS and Node Replication) in a sample network of 10 and 11 nodes were
carried out respectively. For the evaluation metric, the accuracy was used which is
defined as the sum of all True Positives divided by the total number of samples. This
Chapter is split into two di↵erent sections, each focusing on one of the two attacks.

4.1 DoS Simulation

4.1.1 Overview

As we have discussed previously, DoS attacks can do a lot of harm to network perfor-
mance and they can be hardly detected before they have an e↵ect. In SDN-WSNs there
are di↵erent ways in which DoS attacks can be carried out. In this chapter, a spe-
cific threat will be highlighted that eventually came up during an experiment for DoS
simulation where one node should have attacked another one in the network, but the
experiment resulted in having lost the SDN controller temporarily, due to a stack over-
flow. In the bootstrap phase of the network, the SDN controller is not aware of all paths
and can not provide all routes that may actually exist. Therefore, it can happen that a
node requests such a path for which the SDN controller may not respond appropriately.
For that matter, the requesting node may continue requesting the same path over and
over. Since the processing of such an OpenPath packet requires a lot of computational
power in the SDN controller for decoding, topology building, path selection, shortest
path calculation, etc., this can easily lead to a DoS attack against the SDN controller.
After a while the SDN controller got overloaded with requests, could not process them
anymore, and crashed. Not only does this attack a↵ect the SDN controller but also
the sink node and all nodes on the RPL path to the attacking node. Therefore, it can
be compared to the DNS amplification attack (Douligeris & Mitrokotsa 2004). That is,
when an attacker spoofs a small packet with the originating IP address of the victim
and then gets the larger responses back from the DNS server.

25

26 CHAPTER 4. EXPERIMENTS

Additionally, it was observed that the duration of this DoS attack is actually growing
with the depth of the branch in which the attacking node resides. This is mostly because
of the packet stacks on every hop that are filled up and then emptied within a short period
of time. It is therefore almost impossible for the SDN controller to recover from such an
attack just by fulfilling its service responsibility. Furthermore, it can be problematic for
the sink node and other central nodes close to the sink node, as they have to handle a
huge number of packets from both sides.

4.1.2 Dataset

For the DoS attack classification, a dataset of 1800 RADAR-score samples, which are
separated into two groups attack (800 samples) and normal (1000 samples) was created.
The data set was sampled with COOJA and the Attack Detection Framework pipeline
without Filter and Classifier. This way, the width of the data set could be reduced to
only 11 columns (time stamp + 10 RADAR scores). The attack group is split into 8
equal sized groups, each of which is labeled with the node id of the attacker 2-9. The
normal dataset was generated by simulating two scenarios with 30 random topologies
of 10 nodes (1 sink node included). The first scenario considers one pair of nodes to be
selected in the beginning, who then transmit packets in a fixed interval of 10s over a
period of 5min. After that, another pair of nodes was chosen for transmission. Every
60s the flowtables are purged and, therefore, the path from sender to receiver needs to
be requested from the SDN controller. All nodes generate report packets every 10s that
are passed to the SDN controller. For every received report packet, the SDN controller
calculates the RADAR scores and appends them to a log file. In the second scenario,
every node picked another node randomly as destination to send packets to. Like in
the first scenario, every 5min the destinations were changed what resulted in having
randomized data. Due to the long report interval, a lot of duplicates are logged in the
dataset. Therefore, the duplicates were filtered out what resulted in having only 534
unique samples in the dataset, 183 of which are attacks, and 351 are non-attacks.

As RADAR requires three hyperparameters to set the sensitivity, Li et al. (2017) propose
to fix the values for beta = 0.2, gamma = 0.2 and alpha = 0.5 to let it perform best.
Those values were determined empirically by Li et al. (2017). During our experiments
it was found that when setting beta to such a high value, it did not detect attribute
anomalies well given such a small network as in our case. Therefore, a value of 0.01
for ↵ and � to increase the sensitivity of RADAR and setting gamma = 0.1 to give
more weight to attribute anomalies than structural anomalies showed to be appropriate.
However, it is di�cult to tweak these hyperparameters and even small changes in those
may significantly change the results. Li et al. (2017) provided a 3D plot that shows the
Area under Curve (AUC) with fixed alpha = 0.5. It can be seen, that beta should not
exceed 0.1 in order to have great sensitivity.

4.1.3 Results

In order to determine the best classifier for the DoS dataset, di↵erent machine learning
classifiers have been tested. This was done by using Weka, a machine learning framework,
which provides many di↵erent algorithms and includes training and testing functionality.
As the task was to predict one or more labels given a dataset, it was logically to select

4.1. DOS SIMULATION 27

Figure 4.1: RADAR hyperparameter coherence with fixed ↵ = 0.5 (Li et al., 2017)

simple predictors like K-Nearest-Neighbour (K-NN), RandomTREE and KStar. Support
Vector Machines (SVM) were left out, because they did not achieve a high enough score
in order to be comparable with the other three algorithms.

In Figure 4.2 the accuracy results of a multi-class classification to determine the attacking
node are shown. The dataset was created from samples like: Score1, ..., Score N, Node
id 1, ..., Node id N, AttackLabel, Attack/Non-Attack. This structure of the dataset
was necessary because RADAR does not output a list ordered by node id but by score.
Therefore, the list of node ids had to be added as well to indicate what node achieved
which score.

Figure 4.2: DoS attacker classification accuracy, k = N scores in a network of 10 nodes. The
accuracy with 1-NN and RandomTREE does not depend much on the availability of node scores

From Figure 4.2 it can be concluded, that 1-NN and RantomTREE are nearly constant
in accuracy, which is quite clear from the fact, that RADAR provides a very good

28 CHAPTER 4. EXPERIMENTS

anomaly detection and K-NN and RandomTREE find similar patterns over the scores.
1-NN achieved the highest score with 96.44% accuracy having the top five RADAR
scores available. RandomTREE and KStar share the second rank with an accuracy of
93.43%, but there is to say that KStar required all 10 scores to get this accuracy while
RandomTREE only used eight top scores. Furthermore, RandomTREE showed constant
accuracy. It was found that attacker classification can be done quite performantly with
only three top RADAR scores. This could be due to the fact that RADAR successfully
calculates appropriate anomaly scores for the DoS attack. In combination with Figure
3.3, the proposed framework should be able to detect more than 90% of the DDoS
attackers with only having scores of the top-3 nodes for any network.

Comparing the results of Doshi et al. (2018), who used data from Deep Packet Inspection
(DPI) and achieved 99% accuracy, to our highest accuracy of 96.44% we achieved a
similarly high accuracy having only a very small amount of attack information available.
Doshi et al. (2018) used a variety of stateful and stateless features for their classification,
while we used only the number of packets sent by each node in combination with the
network topology for plausibility and weight correction as described in Subsection 3.1.1.
It would have been interesting to compare our results with the performance of ShadowNet
proposed by Bhardwaj et al. (2018) since they used a similar SDN approach. However,
in their paper they only provide results for attack mitigation duration and not for the
actual attack recognition. In the paper from Bhunia & Gurusamy (2017), they state
to have achieved precision values for DoS classification of 98%. However, their scenario
considers tra�c from consumer IoT devices, like IP-Cameras only and not sensor nodes.
Therefore, their experimentation results are hardly comparable to our results.

4.1.4 Threshold-based DoS Detection

In Section 3.1, we discussed how the RADAR framework can be used to detect anomalies
in a network with residual analysis. Especially, DoS attacks can be recognized pretty
well. This is due to the fact that DoS attacks have a big influence on network statistics.
During an attack, the total number of packets in the network increases a lot, what
di↵ers much from the normal tra�c in a network. In addition to the attack detection
mechanism based on anomalies, a threshold-based DoS detection algorithm was tried
out to check an alternative without machine learning.

For this reason a threshold-based detector was created, which can be seen as a linear
classifier that distinguishes between attack and normal tra�c. Of course, a non-static
threshold for recognizing attacks is required, since tra�c continuously varies in every
normal network. Normally, this would be learned from samples of a training dataset or
by training a Recurrent Neural Network (RNN) and rewarding it appropriately. But this
can often be very di�cult and mostly it is less e�cient than simple statistical analysis.
Therefore, in the threshold-based detector, a simple rolling median in addition to some
scaling factor according to the expected peak packet rate and an o↵set representing the
network size was developed (see Equation 1).

DTh↵,�,�(S, k) = ↵ ⇤mediank��,k(S) + � (1)

Using such a threshold that is based on time series and the total number of packets that
were exchanged per interval it is possible to detect DoS attacks easily. Figure 4.4 shows

4.1. DOS SIMULATION 29

the results of this threshold-based DoS attack detector. The experiment was carried out
with data from a sample topology with 10 nodes, including one attacker and one sink
node. The values for the hyperparameters were set as follows: ↵ = 1.1,� = 9, � = 3 In
Figure 4.1.4, the total number of packets of four normal and four malicious scenarios
are shown. It can be seen that in the beginning, the tra�c is inconspicuous in all cases.
After time stamp 14, DoS tra�c clearly di↵ers from normal tra�c.

In Figure 4.4, the grey line shows the dynamic threshold, which predicts the maximum
normal peak rate, and in dark blue the actual number of packets in the network. When-
ever this blue line exceeds the threshold, a DoS attack is taking place.

Figure 4.3: Network tra�c with and without DoS attack

Figure 4.4: Dynamic threshold attack classification

One of the reasons why this additional experiment was conducted is that it was important
to see whether the chosen DoS scenario would be realistic. With this, it could be shown
that a threshold is able to detect DoS attacks from the same features we used for our
Attack Detection Framework described in Subsection 3.1.1.

30 CHAPTER 4. EXPERIMENTS

4.2 Node Replication Attack Simulation

4.2.1 Overview

Another experiment that was conducted during this thesis was to detect node replica-
tion attacks. Node replication attacks, as previously described, mean to have multiple
instances of nodes in the network that share their id. This attack basically always
changes the network topology and, therefore, the structural part of the network. Since
RADAR collects information not only from node attributes, but also from the structural
part of the network such as topology, RADAR provides the prerequisite to detect node
replication attacks as well.

For the detection of such attacks, another dataset had to be created. This was done by
adding additional nodes that clone the id of a random node. The attacker nodes have
been placed such that they cover most of the network nodes to disrupt the complete
network as an attacker would probably do.

When trying to detect DoS attacks, we have used attributes for RADAR that contained
only the number of packets that had been sent by node X to node Y. Since node repli-
cation does not necessarily increase the number of packets sent by a certain node, at
least not as its first e↵ect, other features had to be considered. After some simulations,
it became obvious that the best feature for detecting anomalies would be to look at
report packets. Node replication attacks usually consist of cloning an id and putting
the attacker to another place of the network, to disrupt it by false routing or gaining
information from other nodes. The original node often remains untouched. Therefore,
contradicting report packets would most probably show the biggest anomalies. Due to
that fact, we attempted to upgrade ONOS, to also update the topology of the network
by removing edges that were not reported any more in a future report packet. But as
described in Section 5.2 several problems lead us to use a workaround which compared
neighbourhood samples before and after a report packet of a given node. That way it
became possible to observe the changes in the neighbourhood of every node.

The resulting feature vector then consisted of how many edges had to be changed after
a certain report packet. As the original node and the copy of it would not report the
same topology, this would lead to high values in the di↵erence and therefore, result in
a high anomaly score. Additionally, the number of current neighbours and some other
values like battery, light etc. were considered.

4.2.2 Results

From the results shown in Figure 4.5. it can be seen that 1-NN (96.61%) constantly
performs best, RandomTREE (94.27%) second and the worst is KStar only achieving
72.75% accuracy. Similarly to the results of DoS attacker classification, 1-NN and Ran-
domTREE perform constantly well. In contrast to the DoS results, the accuracy drops
linearly for 1-NN with decreasing amount of scores. Compared to the performance with
related works Grover et al. (2011) (precision: 93%), Zhu et al. (2007) (success rate:
94.5%), Parno et al. (2005) (probability of detection: 85%) and Conti et al. (2007)
(performance: 87%), we achieved better performance, assuming that the various and
unspecified values are comparable.

4.3. MULTI-ATTACK CLASSIFICATION 31

Figure 4.5: NodeRep attacker classification accuracy with k = N in a network of 10 nodes. The
accuracy with 1-NN and RandomTREE does not depend much on the availability of node scores

4.3 Multi-attack Classification

After having discussed the classification accuracy of attackers from datasets that only
had two types Attack and No-Attack, it is interesting to see whether the classifiers
can distinguish between the two attack types Dos, NodeRep and the normal type No-

Attack. For this experiment, the complete dataset including node replication attack
tra�c and DoS tra�c was used. This was done by merging the two datasets into one
and labeling the attacks with their name as a string label. Afterwards, the dataset has
been introduced into AutoWeka with 10-fold cross validation to obtain the accuracy for
six di↵erent classifiers.

The results show relatively high accuracies for most of the classifiers. 1-NN performs
best again, while RandomForest and Bagging achieve at least 90% accuracy. Again,
it is pretty obvious why BayesNet performed less good than DecisionTable or 1-NN:
BayesNet assumes normal distribution and the scores calculated by RADAR are not
normally distributed at all. Classifiers that do not use distribution assumptions therefore
performed better, which is why there is no distribution-based classifier found in the top
3.

Since the attack classification achieved good results, identifying the attacker in the mixed
dataset was tried out in order to compare it with the previous results when only one
attack type was present.

As expected, the highest accuracy when using the mixed dataset dropped by around
1.5%. This is simply due to the fact that some of the score samples are similar between
DoS and NodeRep. Again, 1-NN achieved the highest accuracy of 94.80% with eight
scores, followed by RandomTREE with 90.66% using nine scores. The worst performance
resulted again from KStar with only 72.64%.

32 CHAPTER 4. EXPERIMENTS

Figure 4.6: Classifying three attack types by having the top 5 scores available

Summarizing the results, RADAR provides a very good separation of attackers and
non-attackers. Using a filtering and sorting algorithm that outputs the highest anomaly
scores, combined with a classifier like 1-NN or RandomTREE attack and attacker classifi-
cation is possible with having very high accuracies of up to 96.61%. The most appropriate
classification algorithm was found to be 1-NN.

4.3. MULTI-ATTACK CLASSIFICATION 33

Figure 4.7: Classifying attacker from mixed dataset

Chapter 5:

SDN-WISE Framework

Contribution

During the thesis, many bugs and missing features could be found. This Chapter tries
to highlight the most important ones and gives an overview on how they were fixed or
added respectively.

5.1 Bugfix to OpenPath Forwarding

In the current implementation of SDN-WISE for Contiki we could identify a bug with
the forwarding of OpenPath response messages travelling from the controller to the
requesting node. When a node on the calculated path from the OpenPath message
received the packet before the requesting node, the packet was always passed along the
best route defined in the OpenPath message. To clarify, the OpenPath packet holds the
path information from the requesting node to the target node that is currently seen as
the most favorable path between these two nodes. It is a response to the REQUEST
message that was previously initiated by the requesting node. Naturally, the OpenPath
response packet has to be delivered to the requesting node in the network. Therefore, the
controller passes an OpenPath packet to the sink node who injects the packet in to the
network according to the handle open path() function. Currently, every node receiving
the OpenPath response packet iterated through the specified path in the packet, searched
for his position and if the position exists, it would eventually forward the packet to the
next node in the path. If the position did not exist in the path, it would ask the controller
for a route to the requesting node. This simplified protocol implementation resulted in
a bug, so that when the packet receiver is part of the path and is not the root of the
path, the packet never arrived at the requesting node target. This is due to a false
implementation of the algorithm that was used to deliver the packet. The misleading
algorithm can be read as follows:

1. Find own position in path

If position was not found,

35

36 CHAPTER 5. SDN-WISE FRAMEWORK CONTRIBUTION

ask controller for a route to the request node ! exit

2. Install route for requesting (req) node.

3. Install route for target (tgt) node.

4. Select immediate subsequent node (ni+1) in path

5. Forward packet to this node

Figure 5.1: Next hop selection from OpenPath

This way, the packet could never reach the requesting node if one of the nodes in the
path other than the requesting node was reached first. In order to fix this bug, several
attempts have been tried. The simplest approach would have been to identify the pre-
vious hop and determine whether it was already part of the route, and if so, the packet
could have been copied and passed along the path forwards and backwards, based on
the position of the originator. Instead, due to the missing knowledge of the previous hop
address, two other solutions were tried out.

5.1.1 Packet Masquerading

Packet masquerading describes that a packet is either encapsulated or the type is changed
so that the protocol does not interpret the actual payload. This can help to handle mas-
queraded packets di↵erently. In our case, this was helpful for forwarding the OpenPath
packet from the sink to the requesting node. Packet masquerading was implemented as
follows:

1. OpenPath packet from controller reaches the sink node

2. Change packet type to ENC OPEN PATH (11)

3. Forward packet to next hop according to the control layer

At the requesting node, the packet type is reverted to normal OpenPath and the packet
then travels along the actual path from req to tgt.

Using this simple masquerading, it is guaranteed that the whole path is installed on every
node in the corresponding path. But the drawback of this algorithm is its ine�ciency.
For every node receiving this message, due to the still persistent bug it could happen
that there an additional OpenFlow message has to be sent to reach the requesting node
what results in having to request for the destination twice.

5.1.2 Bugfix to current SDN-WISE implementation

Due to the manipulation of the SDN-WISE protocol in the previous solution, it was
clear to look for a better way. Therefore, the bugfix to the actual problem was tried out.

5.1. BUGFIX TO OPENPATH FORWARDING 37

The protocol specification for OpenPath tells that whenever a node in the OpenPath is
reached, it should determine where to forward the packet based on the current position
in the path, the source node and the destination node of the packet. This can be
done since the OpenPath packet includes the information for the source and destination
independently of the OpenPath content. So, the actual and correct implementation for
the algorithm looks as follows:

1. Look for own position in the path

If it is not found, request a path to the requesting node ! exit

2. Check whether the requesting node is destination node of the packet

If so, pass packet to previous node

and install route for requesting and target node

Otherwise, pass packet to next node in the path

and install route for requesting and target node

Additionally, there was an error in the current implementation of ONOS that results
in setting the wrong destination address for the OpenPath packet. Therefore, we
have added a conversion algorithm to set the correct destination address in the sink
node.

With this bugfix, the installation of routes uses at most two OpenPath requests and it
does not violate the specification of OpenFlow. Also, as in the previous version, two
packets have to be requested. One packet is used to establish a route from the sink node
and all intermediate nodes to the requesting node and the actual OpenPath packet to
establish the route between requesting and target node.

5.1.3 Bugfix to OpenPath Generator

In the previous part on Bugfix to OpenPath forwarding, we described ways to reduce the
number of OpenPath packets for establishing routes. As these methods still had several
drawbacks, because they required to request multiple paths to reach the requesting node
or they based on changing fundamental parts in the OpenFlow protocol by creating an
additional packet type, a real fix rather than workaround was needed. Therefore, we
investigated the OpenFlow protocol and its implementation in SDN-WISE. From that,
we found that parts of the protocol specification were left out or implemented wrong.
E.g. the protocol specification stipulates that on every node of the path from source
to destination, this route should be installed. But in the SDN-WISE implementation
of OpenFlow, they installed routes for every node in the path, which not only led to
a performance issues on the nodes, but most of the time also setup unnecessary routes
that wasted a lot of space. Due to that fact, an update for the OpenPath installation
procedure was necessary.

Whenever an OpenPath is requested, it is necessary for the controller to route the packet
downwards to the requesting node. This was previously done by a method called packet
matching, which means that a node requests another route to the target node from the
controller. Therefore, it was necessary to request two routes for every route that was
needed. This was already showed before. It became obvious, that it would make sense

38 CHAPTER 5. SDN-WISE FRAMEWORK CONTRIBUTION

Figure 5.2: Packet definition of OpenPath packet with windows and path

Figure 5.3: Toy example OpenPath packet at sink node (0 1)

to make the sink node be aware of the path to the requesting node directly. With that
in mind, it was clear that it would work when simply transmitting the route to the
requesting node before sending the actual OpenPath packet. The procedure works as
follows:

1. The best1 path to the requesting node is calculated

2. The best1 path from requesting node to destination node is calculated

3. The paths are merged, and the response packet holding the complete path is sent
to the requesting node in a row

In the OpenPath packet, there are several window fields available that define the match
filter for the packets of the flow entries. A window is consisting of 5 bytes and holds the
type, the address and operators. In the current implementation of SDN-WISE the type
and operator are constantly set to 19, which means to match any packet and the equal
operator =. The following two bytes then define what fields of the received packet has to
be matched with the two bytes following afterwards. With this, all the forwarding rules
can be defined. However, in the current implementation, this installation did fail in two
ways: During the path installation to the destination node, according to the specs, also
the backward route should have been installed automatically. However, the installed flow
rules were wrong and therefore, packet transmission could fail in the opposite direction.
The second problem that appeared was that the implementation did not account for a
change of path. It was rather defined that every path starts at the source node and
ends at the destination. But with the proposed implementation, this was no longer true.
Therefore, a workaround had to be created for that purpose. The toy example on the
next pages highlight that.

In the packet header, the source address (in this case the controller), the destination
address (in this case the last node in the path) and the next hop is defined. Furthermore,
the packet TYP = 5 for OpenPath is set. In the payload of the packet, we first have the
windows defined which tell what path should be installed and the path on which this
packet should travel.

The packet starts at node 1, which is our sink node in the topology shown in Figure
5.4. The packet is then travelling along node 9, node 2 and back to node 9, this time it
should install the flowrules. These are defined as follows:

1the best path, in this case refers to the path with the lowest cost according to the cost function in the controller

5.1. BUGFIX TO OPENPATH FORWARDING 39

Figure 5.4: Toy example topology with route from node 2 to 10 (2, 9, 1, 10)

IF (P.2 = 2; P.2 = 10; P.4 = 2) {FORWARD([0 1]}

IF (P.2 = 10; P.2 = 2; P.4 = 10) {FORWARD([0 2]}

Figure 5.5: FlowRules installed at node 0 9

In the IF() statement, the parameters that have to match a packet to be handled ac-
cording to the actions rules are defined. The first P.2 value matches the source from
which the packet arrives. The second P.2 value defines the destination of the packet.
With these values, it can be decided how the packet has to be handled. In the case
when a packet has to travel from node 2 to node 10, the first rule will match, and the
packet will therefore be forwarded to node 10. Previously, the second FlowRule was not
installed correctly what could have led to accidental packet drop. Also, multiple packets
had to be sent in order to set up the path, what has already been shown before with the
tunneling approach.

In order to install the path only when a node resides between the requester and the
destination, there had to be a workaround used. This approach consists of removing the
previous node from the path, because otherwise it could happen that paths, such as the
one provided in the toy example, where nodes appear twice, the current position could
not be determined. Additionally, a simple check is implemented whether the current
node is found in the actual path or before it. This is done by checking whether the
requesting node still resides in the path. If so, the current node is not on the path that
has to be installed.

To proof that this implementation improves the performance of the previous implementa-
tion of SDN-WISE, we conducted an experiment with di↵erent topologies. In Figure ??,
the average times for OpenPath route establishment for the three implementations be-
fore (old), after bugfix described in section 6.1.1 (tunneling), and after bugfix described
in this section (new) are shown. The times were measured from the initiation of the
request by the requesting node and the time the path was established. In all scenar-
ios, the same topology, path request, cost function, and a message interval of 10s was
used.

40 CHAPTER 5. SDN-WISE FRAMEWORK CONTRIBUTION

Table 5.1: Evaluation results of the three implementations

From Table 5.1 we can see that the tunnel protocol performed better in terms of speed
than the new approach. But the time can be neglected for two reasons: First, the
time di↵erence is only 120ms on average and secondly, the tunnel protocol requires
modification of the OpenFlow specs which is always something that should be avoided.
Additionally, the new approach also installs the backward routes correctly, which makes
up for the speed di↵erence. To summarize, the new approach of calculating OpenPath
packets improves the performance and it should be considered as a way of setting up
routes using SDN on WSNs.

5.2 Topology Display of SDN-WISE Dynamic Routing Packet

Processor

In the current implementation of SDN-WISE for ONOS, nodes and links are only added
once and shown independently of the current state they are in. This results in having
invalid topologies and thereof routing in to the wild.

For that respect, I have implemented the functionality to deactivate nodes during the
startup of the network. As deactivated nodes are not considered for routing, this helps
to exclude invalid or inactive nodes from routing decisions.

I have also tried to update links and remove dead nodes from the topology view. However,
the implementation of SDN-WISE in ONOS has several architectural issues that makes
such updates impossible without having to change the architecture completely. In future
work, a total revision of the implementation should be considered therefore.

Chapter 6:

Discussion

6.1 Summary of Results

In this thesis, a framework for SDN-based Anomaly Detection for Wireless Sensor Net-
works has been proposed. This framework helps to detect WSN attacks in a general-
ized way in terms of scalability and extensibility for additional attacks by looking for
anomalies using the anomaly detector RADAR proposed by Li et al. (2017) described in
Section 3.1 and SDN. In combination with an additional machine learning pipeline, the
framework has been shown to recognize frequent WSN attacks, such as Denial of Ser-
vice or Node Replication. After recognizing attacks and identifying attackers, a simple
algorithm to mitigate DoS attacks was proposed.

The literature study in Section 2.1 revealed that a lot of research has been done in the
field of security for IoT, but the majority of papers focus on the detection of DDoS
attacks using machine learning based on Deep Packet Inspection (Doshi et al. (2018),
Meidan et al. (2018), Saad et al. (2011)) or they used SDN with additional security
characteristics such as authentication features (Bhunia & Gurusamy 2017) (see Subsec-
tion 3.1.1). However, to the time this thesis was written, there has not been done any
research on WSN attack detection using SDN.

The goal of this work was, therefore, to have a generalized approach for attack and at-
tacker classification that is scaleable for di↵erent network sizes and topologies and being
extensible by the means of adding additional attack features as it has been discussed in
Subsection 3.1.1 of Chapter 3. The main reason for the addition of an anomaly detector
was to have a system where one can change the attack to be detected based on inputting
appropriate SDN network features. Furthermore, it helped to prevent false positives due
to attack tra�c forwarding when trying to identify the attacker. Using RADAR, these
problems could be avoided.

We have not only simulated and recognized DoS attacks, but we also implemented the
Node Replication attack, which is known to be di�cult to detect, as the e↵ect is often
minimal or not directly visible at all. Chapter 3 showed how SDN can help to make this
attack type observable and what features can be used to obtain the necessary anomaly
information. It was shown that we can achieve similar or even better performance

41

42 CHAPTER 6. DISCUSSION

results than compared to several related work Grover et al. (2011), Zhu et al. (2007),
Parno et al. (2005) and Conti et al. (2007). But it has to be considered with caution,
because first, the results have been achieved using di↵erent implementations of the node
replication attack, di↵erent topologies and secondly, the terms ”performance”, ”success
rate” and ”probability of detection” are not clearly defined. Therefore, the comparability
is questionable. Nevertheless, an accuracy of 96.61% is relatively high, and compared
to the results of DoS detection (96.44%), there is evidence that our detection algorithm
for node replication attacks works well.

The experiments described in Chapter 4 showed that our framework can achieve similarly
high accuracy of 96.44% compared to the results published by Doshi et al. (2018) of 99%
for DoS attack detection in IoT. Additionally, we have seen that our approach may
even perform better because it recognizes attacks and identifies the attacker only from
anomaly scores rather than from raw features. Using such data, it is conceivable that
novel attacks could be detected as well.

In the end, in Chapter 5, we described our implicit contribution in terms of bugfixes to
the SDN-WISE implementation for ONOS and Contiki.

6.2 Conclusion

There is a huge variety of proposals for attack detection in IoT networks using machine
learning or SDN available. But to our knowledge at this time, all of these approaches
either consider DoS attacks only, use Deep Packet Inspection in order to obtain the
relevant data for classification or are distributed algorithms that increase the network
overhead additionally. DPI has the clear drawback of requiring intelligent gateways that
forward all tra�c to an analytics controller or have to classify tra�c on their own. To
overcome this issue, we propose to use SDN in combination with distributed knowledge,
anomaly detection and machine learning. This thesis showed the architecture of our
framework, an evaluation and comparison with other research studies.

In this thesis we could show that, it is possible to recognize attacks from structural
data, such as the network topology, and network statistics that are checked for con-
sistency. Furthermore, we showed that using the output of RADAR, attackers can be
identified e�ciently. Besides, we could show how new attacks can be recognized using
this framework, by defining additional input features for RADAR.

6.3 Future Work

In this Section, a few parts that might be interesting for further research are high-
lighted.

This thesis focused on the potential for security mechanisms that SDN brings to WSNs.
Although, security as a standalone topic is omnipresent in current research, very few
studies have focused on the opportunity for SDN in WSNs. Especially, WSN security is
getting more and more attention due to the new upcoming technologies like Machine to
Machine Communication (M2M), 5G, etc. Thus, the future work could be to research

6.3. FUTURE WORK 43

novel attacks and find ways to identify and mitigate them, for example by using the
framework proposed in this thesis.

Generally it is true that with the increase of interconnection and interaction which is
typical in WSNs, greater security risks come up. Additionally, there is a lack of studies
which focus on the security issues of SDN. For example, how can a nodes establish
trust against a certain SDN controller? And how could the control plane be secured in
SDN-WISE?

Additionally, as the experiments of this thesis were done in a simulated environment
using COOJA, it would be interesting to see how the framework performs in a real
environment. Furthermore, in most Wireless Sensor and Actuator Networks we have
heterogeneous nodes, rather than nodes of a single type. This could create completely
di↵erent tra�c patterns with data streams from high-bandwidth devices such as cameras
or microphones. A lot of further research could be done therefore in this field.

Bibliography

Airehrour, D., Gutierrez, J. A. & Ray, S. K. (2018), ‘SecTrust -RPL: A secure trust-aware
RPL routing protocol for Internet of Things’, Future Generation Computer Systems .
URL: https://linkinghub.elsevier.com/retrieve/pii/S0167739X17306581

Bhardwaj, K., Miranda, J. C. & Gavrilovska, A. (2018), ‘Towards IoT-DDoS Prevention
Using Edge Computing’, p. 7.

Bhunia, S. S. & Gurusamy, M. (2017), Dynamic attack detection and mitigation in IoT
using SDN, IEEE, pp. 1–6.
URL: http://ieeexplore.ieee.org/document/8215418/

Conti, M., Di Pietro, R., Mancini, L. V. & Mei, A. (2007), A randomized, e�cient, and
distributed protocol for the detection of node replication attacks in wireless sensor
networks, in ‘Proceedings of the 8th ACM international symposium on Mobile ad hoc
networking and computing - MobiHoc ’07’, ACM Press, Montreal, Quebec, Canada,
p. 80.
URL: http://portal.acm.org/citation.cfm?doid=1288107.1288119

Czosseck, C. & Geers, K., eds (2009), The virtual battlefield: perspectives on cyber war-

fare, number v. 3 in ‘Cryptology and information security series’, IOS Press, Amster-
dam ; Washington, DC. OCLC: ocn489010240.

Djedjig, N., Tandjaoui, D. & Medjek, F. (2015), Trust-based RPL for the Internet of
Things, in ‘2015 IEEE Symposium on Computers and Communication (ISCC)’, IEEE,
Larnaca, pp. 962–967.
URL: http://ieeexplore.ieee.org/document/7405638/

Doshi, R., Apthorpe, N. & Feamster, N. (2018), ‘Machine Learning DDoS Detection for
Consumer Internet of Things Devices’, arXiv:1804.04159 [cs] . arXiv: 1804.04159.
URL: http://arxiv.org/abs/1804.04159

Douligeris, C. & Mitrokotsa, A. (2004), ‘DDoS attacks and defense mechanisms: classi-
fication and state-of-the-art’, Computer Networks 44(5), 643–666.
URL: http://linkinghub.elsevier.com/retrieve/pii/S1389128603004250

Esposito, P. M., Campista, M. E. M., Moraes, I. M., Costa, L. H. M. K., Duarte, O. C.
M. B. & Rubinstein, M. G. (2008), Implementing the Expected Transmission Time
Metric for OLSR Wireless Mesh Networks, in ‘2008 1st IFIP Wireless Days’, IEEE,
Dubai, United Arab Emirates, pp. 1–5.
URL: http://ieeexplore.ieee.org/document/4812900/

45

46 BIBLIOGRAPHY

Galluccio, L., Milardo, S., Morabito, G. & Palazzo, S. (2015), SDN-WISE: Design, proto-
typing and experimentation of a stateful SDN solution for WIreless SEnsor networks,
IEEE, pp. 513–521.
URL: http://ieeexplore.ieee.org/document/7218418/

Grover, J., Prajapati, N. K., Laxmi, V. & Gaur, M. S. (2011), Machine Learning Ap-
proach for Multiple Misbehavior Detection in VANET, in A. Abraham, J. L. Mauri,
J. F. Buford, J. Suzuki & S. M. Thampi, eds, ‘Advances in Computing and Commu-
nications’, Vol. 192, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 644–653.
URL: http://link.springer.com/10.1007/978-3-642-22720-268

Hurni, P., Anwander, M., Wagenknecht, G., Staub, T. & Braun, T. (2012), TARWIS
— A testbed management architecture for wireless sensor network testbeds,
in ‘2012 IEEE Network Operations and Management Symposium’, IEEE, Maui, HI,
pp. 611–614.
URL: http://ieeexplore.ieee.org/document/6211968/

Karlof, C. & Wagner, D. (2003), ‘Secure Routing in Wireless Sensor Networks: Attacks
and Countermeasures’, p. 15.

Li, J., Dani, H., Hu, X. & Liu, H. (2017), Radar: Residual Analysis for Anomaly Detec-
tion in Attributed Networks, in ‘Proceedings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence’, International Joint Conferences on Artificial In-
telligence Organization, Melbourne, Australia, pp. 2152–2158.
URL: https://www.ijcai.org/proceedings/2017/299

Meidan, Y., Bohadana, M., Mathov, Y., Mirsky, Y., Breitenbacher, D., Shabtai, A. &
Elovici, Y. (2018), ‘N-BaIoT: Network-based Detection of IoT Botnet Attacks Using
Deep Autoencoders’, arXiv:1805.03409 [cs] . arXiv: 1805.03409.
URL: http://arxiv.org/abs/1805.03409

Padmavathi, D. G. & Shanmugapriya, M. D. (2009), ‘A Survey of Attacks, Security Mech-
anisms and Challenges in Wireless Sensor Networks’, arXiv:0909.0576 [cs] . arXiv:
0909.0576.
URL: http://arxiv.org/abs/0909.0576

Parno, B., Perrig, A. & Gligor, V. (2005), Distributed Detection of Node Replica-
tion Attacks in Sensor Networks, in ‘2005 IEEE Symposium on Security and Privacy
(S&P’05)’, IEEE, Oakland, CA, USA, pp. 49–63.
URL: http://ieeexplore.ieee.org/document/1425058/

Saad, S., Traore, I., Ghorbani, A., Sayed, B., Zhao, D., Wei Lu, Felix, J. & Hakimian,
P. (2011), Detecting P2p botnets through network behavior analysis and machine
learning, in ‘2011 Ninth Annual International Conference on Privacy, Security and
Trust’, IEEE, Montreal, QC, pp. 174–180.
URL: http://ieeexplore.ieee.org/document/5971980/

Schaerer, J. (2018), ‘SDNWisebed: A Software-Defined Wireless Sensor Network
Testbed’, p. 82.

Schaerer, J., Zhao, Z. & Braun, T. (2018), ‘DTARP: A Dynamic Tra�c Aware Routing
Protocol for Wireless Sensor Networks’, p. 6.

Siddiqui, M. S. (2007), ‘Security Issues in Wireless Mesh Networks’, p. 6.

BIBLIOGRAPHY 47

Sood, K., Yu, S. & Xiang, Y. (2016), ‘Software-Defined Wireless Networking Oppor-
tunities and Challenges for Internet-of-Things: A Review’, IEEE Internet of Things

Journal 3(4), 453–463.
URL: http://ieeexplore.ieee.org/document/7279061/

Wani, A. & Revathi, S. (2018), Analyzing Threats of IoT Networks Using SDN Based
Intrusion Detection System (SDIoT-IDS), in P. Bhattacharyya, H. G. Sastry, V. Mar-
riboyina & R. Sharma, eds, ‘Smart and Innovative Trends in Next Generation Com-
puting Technologies’, Vol. 828, Springer Singapore, Singapore, pp. 536–542.
URL: http://link.springer.com/10.1007/978-981-10-8660-141

Zhu, B., Addada, V. G. K., Jajodia, S. & Roy, S. (2007), ‘Efcient Distributed Detection
of Node Replication Attacks in Sensor Networks’, p. 10.

E r k l ä r u n g

gemäss Art. 30 RSL Phil.-nat. 18

Name/Vorname:

Matrikelnummer:

Studiengang:

Bachelor Master Dissertation

Titel der Arbeit:

LeiterIn der Arbeit:

Ich erkläre hiermit, dass ich diese Arbeit selbständig verfasst und keine anderen als die angegebenen

Quellen benutzt habe. Alle Stellen, die wörtlich oder sinngemäss aus Quellen entnommen wurden,

habe ich als solche gekennzeichnet. Mir ist bekannt, dass andernfalls der Senat gemäss Artikel 36

Absatz 1 Buchstabe r des Gesetzes vom 5. September 1996 über die Universität zum Entzug des auf

Grund dieser Arbeit verliehenen Titels berechtigt ist.

Für die Zwecke der Begutachtung und der Überprüfung der Einhaltung der Selbständigkeitserklärung

bzw. der Reglemente betreffend Plagiate erteile ich der Universität Bern das Recht, die dazu

erforderlichen Personendaten zu bearbeiten und Nutzungshandlungen vorzunehmen, insbesondere die

schriftliche Arbeit zu vervielfältigen und dauerhaft in einer Datenbank zu speichern sowie diese zur

Überprüfung von Arbeiten Dritter zu verwenden oder hierzu zur Verfügung zu stellen.

Unterschrift

Ort/Datum

	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Thesis Contribution
	1.4 Thesis Structure

	2 Background and Literature
	2.1 Related Work on Security Issues in Wireless Networks
	2.2 Resource Constrained Networks
	2.2.1 Internet of Things
	2.2.2 Wireless Sensor Networks
	2.2.3 Wireless Sensor and Actor Networks
	2.2.4 Routing Protocol for Lossy Networks - RPL

	2.3 Software Defined Networking
	2.3.1 SDN-WISE
	2.3.2 ONOS
	2.3.3 SDNWisebed

	2.4 COOJA
	2.5 WSN Security
	2.5.1 Node-to-node communication
	2.5.2 Attacks
	2.5.2.1 (Distributed) Denial of Service (DDoS)
	2.5.2.2 Node Replication Attack

	2.5.3 RADAR: Residual Analysis for Anomaly Detection in Attributed netwoRks
	2.5.4 Attack Mitigation

	3 SDN-enhanced Attack Mitigation in WSNs
	3.1 Introduction to Anomaly Detection
	3.1.1 Feature Selection
	3.1.1.1 DoS Attack Features
	3.1.1.2 Node Replication Attack Features

	3.2 Attack Detection Framework
	3.3 Attack Mitigation
	3.3.1 Attack Recovery and Mitigation Algorithm - ARMA
	3.3.2 Caching

	4 Experiments
	4.1 DoS Simulation
	4.1.1 Overview
	4.1.2 Dataset
	4.1.3 Results
	4.1.4 Threshold-based DoS Detection

	4.2 Node Replication Attack Simulation
	4.2.1 Overview
	4.2.2 Results

	4.3 Multi-attack Classification

	5 SDN-WISE FrameworkContribution
	5.1 Bugfix to OpenPath Forwarding
	5.1.1 Packet Masquerading
	5.1.2 Bugfix to current SDN-WISE implementation
	5.1.3 Bugfix to OpenPath Generator

	5.2 Topology Display of SDN-WISE Dynamic Routing Packet Processor

	6 Discussion
	6.1 Summary of Results
	6.2 Conclusion
	6.3 Future Work

	Group12: Master
	Name/Vorname: Severin Zumbrunn

