
IMPLEMENTATION OF A MULTICHANNEL
MULTIRADIO PROTOTYPE ON EMBEDDED

LINUX

Bachelorarbeit
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Christine Müller

2010

Leiter der Arbeit:

Professor Dr. Torsten Braun

Institut für Informatik und angewandte Mathematik

2

Contents

Contents iii

List of Figures v

List of Tables ix

1 Introduction 1

2 Related Work on Multichannel Multiradio Communication on WMNs 7

2.1 Multichannel Protocols . 7

2.1.1 Split Phase . 8

2.1.2 Common Hopping . 9

2.1.3 Dedicated Control Channel . 10

2.1.4 Hybrid Protocol . 11

2.1.5 Multichannel Protocol Overview . 13

2.2 Why a Multichannel Protocol can boost IEEE 802.11 Performance? 13

2.3 Adjacent Channel Interference . 14

2.4 Secure Remote Management and Software Distribution for Wireless Mesh Net-
works . 15

3 Net-X Framework 17

3.1 Channel Abstraction Layer . 18

3.2 Interface Device Driver Modifications . 19

3.3 Kernel Multichannel Routing Support . 21

3.4 Integrated Protocol . 22

3.4.1 Multichannel Routing Protocol . 22

iii

3.4.2 Interface Management Protocol . 23

4 Implementation of the Net-X Framework for Linux Kernels with Version 2.6 25

4.1 Migration of the Channel Abstraction Layer 26

4.2 Migration of the Kernel Multchannel Routing Support Module 26

4.3 Network Interface Device Driver Modifications 27

4.4 Start-up Script . 27

4.5 Integration in SRM . 30

5 Performance Evaluation 31

5.1 Testbed Environment . 31

5.1.1 Hardware and Software . 31

5.1.2 Traffic Parameters . 31

5.2 Unidirect UDP Traffic Throughput . 32

5.2.1 Adjacent Channel Interference in a Static Multichannel Multiradio Net-
work . 32

5.2.2 UDP Throughput with Dynamic Multichannel Multiradio Communication 35

5.3 Bidirectional UDP Traffic . 44

6 Conclusions and Future Work 47

Bibliography 51

iv

List of Figures

1.1 Wireless network running in infrastructured mode 2

1.2 MANET architecture . 2

1.3 WMN running in adhoc mode . 4

2.1 Split Phase Protocol [1] . 8

2.2 Common Hopping Protocol [1] . 10

2.3 Dedicated Control Channel Protocol [1] . 11

2.4 Hybrid Protocol . 12

2.5 Hidden Node Problem . 13

(a) Node C is inside node A’s interference range 13

(b) Node A is outside node D’s interference range 13

3.1 Multichannel Routing [2] . 18

3.2 Position of CAL and device driver in ISO/OSI network stack 19

3.3 The Net-X framework as depicted in [2] . 20

3.4 Multichannel Routing Metric (MCR) [3] . 22

(a) Channel Divers Routes . 22

(b) Reduction of switching delay . 22

5.1 Channel interference measurement . 32

(a) Test with two nodes. Both are sender and receiver. 32

(b) Test with three nodes. One is sender, one is receiver and one is sender and
receiver. 32

5.2 Overall throughput in kbps of mutual transmissions between two nodes 33

5.3 Overall throughput in kbps of two simultaneous one-hop transmissions 34

v

5.4 Different scenarios of channel interference measurement with four nodes. . . . 35

(a) receiving nodes are close . 35

(b) receiving and sending node are close 35

(c) sending nodes are close . 35

5.5 Throughput in kbps with parallel transmissions 36

5.6 Measuring throughput after different number of hops 37

5.7 Throughput after a certain hop distance measured in kbps 38

(a) Multichannel network . 38

(b) Monochannel network . 38

5.8 Impact of the hop distance on the delay (in seconds) in a multichannel network 39

(a) 1500 kbps data stream . 39

(b) 3000 kbps data stream . 39

5.9 Impact of the hop distance on the delay (in seconds) in a monochannel network 40

(a) 1500 kbps data stream . 40

(b) 3000 kbps data stream . 40

5.10 Simultaneous Transmission Scenarios . 41

(a) Scenario 1 . 41

(b) Scenario 2 . 41

(c) Scenario 3 . 41

5.11 The throughput of two simultaneous transmissions as shown in Figure 5.10(a). . 42

(a) Monochannel network . 42

(b) Multichannel network . 42

5.12 The throughput of two simultaneous transmissions as shown in Figure 5.10(b). 42

(a) Monochannel network . 42

(b) Multichannel network . 42

5.13 The throughput of two simultaneous transmissions as shown in Figure 5.10(c). . 43

(a) Monochannel network . 43

(b) Multichannel network . 43

5.14 The throughput of two simultaneous transmissions in a multichannel network. . 44

5.15 Limited queue length of network devices lowers the TCP network throughput . 45

5.16 Bidirectional UDP traffic . 45

5.17 Throughput measurements with bidirectional UDP 46

vi

5.18 Impact of the hop distance on the delay (in seconds) in a multichannel network
using bidirectional UDP . 46

(a) 1500 kbps data stream . 46

(b) 3000 kbps data stream . 46

6.1 Proposed solutions to reduce packet loss when switching the channel 47

vii

List of Tables

2.1 Overview of the multichannel protocols . 13

2.2 The measured channel power of adjacent channels when an 802.11a radio con-
tinuously broadcasts on channel 52 (5260MHz) [4]. 15

5.1 Overall throughput in kbps of mutual transmissions between two nodes 33

5.2 Throughput of two simultaneous one-hop transmissions in kbps 34

5.3 Throughput with parallel transmissions (illustrated in Figure 5.4(a)) 36

5.4 Throughput with parallel transmissions (illustrated in Figure 5.4(b)) 36

5.5 Throughput in kbps with parallel transmissions (illustrated in Figure 5.4(c)) . . 36

5.6 Impact of the hop distance on the throughput (in kbps) in a multichannel network 38

5.7 Impact of the hop distance on the throughput (in kbps) in a monochannel network 38

5.8 Impact of the hop distance on the delay (in seconds) in a multichannel network
with a 1500 kbps data stream . 39

5.9 Impact of the hop distance on the delay (in seconds) in a multichannel network
with a 3000 kbps data stream . 39

5.10 Impact of the hop distance on the delay (in seconds) in a monochannel network
with a 1500 kbps data stream . 39

5.11 Impact of the hop distance on the delay (in seconds) in a monochannel network
with a 3000 kbps data stream . 40

5.12 Average throughput of two simultaneous transmissions in a monochannel network 41

5.13 Packet loss rate . 43

ix

Acknowledgment

I would like to thank very much Peter Dely and Prof. Dr. Andreas Kassler from the University
of Karlstad (Sweden) for inviting me to their University and helping me with the measurements
for this Bachelor thesis. Further thanks are dedicated to my supervising tutor, Thomas Staub
who assisted me with helpful advises and reading through my work and to my colleagues and
friends for their mental support. At last, a special thank goes to my parents who afforded my
entire education.

xi

Chapter 1

Introduction

In conventional wireless networks running in infrastructured mode (WLANs) the communica-
tion between the network clients is handled by a central instance which is responsible for the
data transmission between two clients, as shown in Figure 1.1. The central instance is the ac-
cess point. The access point not only enables connectivity within the wireless network itself, it
also interconnects the wireless network to the wired network (Ethernet, DSL, etc.). If too many
clients want to communicate with each other or to access another network at the same time the
access point becomes a bottleneck. Furthermore, if the access point fails, the whole network is
put out of service. But in exchange, routing in such networks is simple, as the clients only com-
municate via access point with other clients (star topology). In other words the clients simply
have to send data to the access point.

Networks running in adhoc mode bypass the need of a centralized access point. Adhoc networks
are self-managed since every node in the network provides routing functionality and connects
directly or indirectly to all other nodes. Every node maintains its own routing table. Transmis-
sion is routed over multiple hops if the source and destination node are not neighbors. The main
challenge for adhoc networks is the avoidance of packet collision. Since no centralized instance
manages the data traffic of the network, the nodes have to monitor the network on their own by
exchanging control packets.
Examples for adhoc networks are mobile adhoc networks (MANETs) [5] (illustrated in Fig-
ure 1.2) or wireless mesh networks (WMNs) [6] (illustrated in Figure 1.3), whereas MANETs
only consist of mobile clients and WMNs consist of both mobile and stationary instances.

Clients in MANETs join or leave the network or change their position frequently, which con-
stantly leads to changes in the network topology. A link in the path from source to destination
may break due to node mobility. In contrast, when a new node joins the network a better path
could evolve. Since no centralized routing instance exists and every node has to maintain a rout-
ing table, such topology changes complicate routing in MANETs compared to infrastructured
WLANs. Further routing difficulties result from the asymmetric network connections. The path
from node A to node B can be different than the path from node B to node A due to asymmetric
transmission ranges and link qualities. MANET routing protocols should further consider that
mobile network devices are often limited regarding to their energy consumption since they rely

1

Internet

Access Point

Network Clients

Figure 1.1: Wireless network running in infrastructured mode

Access Point

Network Clients

Figure 1.2: MANET architecture

2

on batteries.

WMNs [6] consist of mesh routers and mesh clients whereas the routers are mostly stationary
and build the backbone of the WMN. Some of the routers can act as an access point or they can
connect to one, which enables the access to the Internet and hence, to external networks. The
mesh clients are mobile and organized like a MANET. Multiple MANETs can join the WMN
by connecting to a mesh router as shown in Figure 1.3. The focus of this Bachelor thesis lies on
the stationary backbone of the WMN.
WMNs are more robust and therefore more reliable than conventional wireless infrastructured
networks. As the access point in infrastructured networks may be a single point of failure, a
broken link in adhoc networks does not necessarily yield to a communication interrupt between
two nodes because in WMNs several paths from one node to another may exist. The path redun-
dancy in WMNs can further be utilized to distribute the network traffic on several links. This
may highly lower data congestion.
Furthermore, WMNs have the ability to integrate different network technologies. For example,
mesh nodes can act as a gateway to the Internet. Since the infrastructure and installation costs
for WMNs are low, they are used as the last-mile infrastructure between mobile wireless and
wired networks.
Moreover, WMNs are easily extensible. If the network coverage should be enlarged, additional
mesh routers can be simply installed on the area’s border. Due to their straight forward deploy-
ment process, WMNs can for example be set up at locations where wired network infrastructure
is scarce (e.g. mountainous regions, deserts, developing countries, etc.).

There are two routing concepts which are applicable for routing in MANETs and WMNs - the
proactive and the reactive routing. Proactive routing protocols calculate the routing tables even
though some routes may never be used. The routing tables have to be calculated periodically as
the network topology permanently changes. This generates high control traffic in the network
and costs additional energy due to the frequent recalculation of each node’s routing table. There-
fore, proactive protocols became obsolete for MANETs. Although, for the stationary backbone
of WMNs proactive routing is an option, it will not be applied in this thesis. The proactive ap-
proach has been implemented in the Destination Sequence Distance Vector (DSDV) [7] routing
or in the Optimized Link State Routing (OLSR) [8] protocol.
Reactive, also called on-demand, routing protocols establish routes only if the route is required
to transmit data traffic. The route is then kept in the routing table for a certain life-time. The on-
demand characteristic reduces significantly the control traffic and the network devices can stay
in standby mode as long as they are not involved in any transmission and hence save energy.
Examples for on-demand routing protocols are Dynamic Source Routing (DSR) [9], Dynamic
MANET On-demand (DYMO) routing [10], Associativity Based Routing (ABR) [11] and Ad-
hoc On-Demand Distance Vector (AODV) routing [12]. Relevant for this thesis is the AODV
routing protocol which is the basis of the multichannel routing protocol provided by the Net-X
developers [2]. This protocol is therefore explained in detail in Section 3.4.1.

As WMNs are robust, reliable, affordable and everywhere deployable, they have the potential
for commercial use. But to establish a network technology for commercial use high throughput
is one of the most important requirements because transmission payload is increasing constantly

3

Internet

Access Points

Mesh Routers

Mesh
Clients

Figure 1.3: WMN running in adhoc mode

4

with the rise of multimedia computing. Common wireless transmission technologies are still
not as efficient as wired ones. The reasons for that are manifold. One example is the medium
access control protocol. In contrary to wired networks, wireless networks have no mechanism
to detect packet collisions. Therefore, the devices have to use a mechanism to avoid packet col-
lision with the Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA) protocol [13].
A node which intends to transmit sends a Request-to-Send (RTS) packet to reserve the network
as soon as it assumes that the network is free. If the transmission range of the receiver is free
as well, the receiver sends back a Clear-to-Send (CTS) to the sender and the data transmission
starts. The exchange of the control packets delays the data transmission. The CSMA/CA proto-
col helps to avoid packet collisions and enhance the network throughput as less packets have to
be retransmitted. However, as shown in Section 2.2 many collisions happen anyway due to the
hidden node problem.
Another reason for the lower capacity for wireless data transmission is that it is subject to com-
paratively high levels of interference. Simultaneous wireless transmissions increase the noise
level at the receiver and may even lead to erroneous or lost packets.
Packet loss and packet disturbance lead to lower overall throughput as data packet transmissions
have to be repeated. An approach to minimize packet collisions and retransmission is to send
data on multiple orthogonal frequencies within a wireless network. This method allows nodes
to transmit their data simultaneously without disturbing each others data traffic. Research has
shown that this can increase the throughput in the network considerably. Section 2.2 discusses
this statement.

The goal of this thesis is to increase the overall throughput in a WMN by implementing a mul-
tichannel multiradio prototype running on embedded nodes. The mesh nodes are PCEngines
WRAP platforms which are equipped with two MiniPCI 802.11 a/b/g. The operating system, an
Embedded Linux (see Section 2.4), and the applications are stored on a CompactFlash card.

The implementation of a multichannel protocol is not trivial. The following aspects have to be
taken into account. Connectivity between neighbor nodes is only given if they have at least
one of their antennas tuned to the same frequency. This can be easily achieved by using the
same channels as there are several interfaces per node. But in most cases, the devices do not
have as many radios as there are channels available. Therefore, some channels stay unused.
IEEE 802.11a for example provides 12 orthogonal channels which may be used simultaneously.
But usual devices only offer one to three radio interfaces and therefore, a simple one-to-one
mapping does not achieve an optimal throughput. Furthermore, the static mapping may lead to
interference due to common channels on the path.
Another scheme utilizes more channels than interfaces. This makes the system more efficient
but also more complex. A mechanism has to be introduced which decides at what time on
which frequency an interface should stay in order to guarantee connection to a certain neighbor
whenever necessary. At the same time, another tool has to guarantee that the nodes in the
network do not switch all their interfaces to the same channel. Otherwise, collisions appear as
in monochannel networks and there are no performance benefits. As already shown in literature,
despite the higher complexity, the approach where more channels are used than interfaces leads
to a clearly higher throughput. Therefore, we will concentrate on this approach.

5

Furthermore, multichannel routing protocols are poorly supported by common operating sys-
tems. A research group at the University of Illinois at Urbana-Champaign has developed a
framework, the Net-X framework [2], which provides the lacking support for routing in a mul-
tichannel network. The framework was implemented for Linux operating systems with version
2.4, but the mesh nodes that we use in our testbed run a Linux kernel with version 2.6.22.2.
Therefore, the main contribution of this Bachelor thesis became the migration of the Net-X
framework to the newer kernel version.

Throughout the thesis, IEEE 802.11a is used for setting up the networks, if not explicitly named.
IEEE 802.11a operates in the 5GHz frequency band and provides 12 orthogonal channels,
whereas the channels 36, 40, 44, 48, 52, 56, 60 and 64 are in the lower band and the chan-
nels 100, 104, 108, 112, 116, 120, 124, 128, 132, 136 and 140 are in the upper band.

The outline of the thesis is as follows: Chapter 2 addresses related works which covers the sub-
jects beginning at multichannel routing protocol strategies to the benefit of using these protocols
and to the known problem called adjacent channel interference. Furthermore, the embedded
operating system running on the mesh nodes is described in this chapter. In Chapter 3, the
multichannel framework Net-X is presented. The framework provides solutions for the lacking
kernel features in order to support multichannel communication. Furthermore, it features an
adapted wireless driver, a multichannel routing protocol and a channel assignment protocol. The
Net-X framework was developed for Linux kernels with version 2.4. Then, in Chapter 4, we
describe the migration of Net-X to Linux kernels with version 2.6 and the integration into the
Embedded Linux which is running on the mesh nodes. In Chapter 5, we present and discuss
the results measured on the KauMesh testbed of the University of Karlstad, Sweden. Chapter 6
provides the conclusions and presents some topics for future work.

6

Chapter 2

Related Work on Multichannel Multiradio
Communication on WMNs

Multichannel multiradio communication on WMNs is a popular field of todays research and
therefore, lot of related work exist. The most relevant publications are explained in detail in this
chapter.
Section 2.1 describes different multichannel protocol approaches which guarantee connectivity
between neighbor nodes in a multichannel network. Section 2.2 is about the benefit of using mul-
tichannel protocols. Section 2.3 addresses adjacent channel interference which is a reason why
multichannel networks do not reach the maximal network throughput, and finally Section 2.4
describes the operating system running on the mesh nodes.

2.1 Multichannel Protocols

The multichannel communication requires a method that assigns channels to interfaces. There
are three categories of assignment strategies - a static, a dynamic, and a hybrid channel assign-
ment.

Static assignment strategies bind all interfaces to a fixed channel. Neighboring nodes have to
tune at least one of their interfaces to the same channel to hold connectivity. Otherwise, the
network splits and connectivity to all nodes in the network cannot be guaranteed. Furthermore,
if the network devices have less interfaces than available channels the bandwidth of the network
cannot fully be utilized.
For dynamic assignment strategies there is only one interface required per network device. In-
terfaces are switched to a new channel whenever required in order to set up connectivity to a
certain node. This way, all available channels can be fully utilized even if there are less inter-
faces available than channels. A disadvantage of the dynamic approach is that the devices have
to be time synchronized. Otherwise, there is no guarantee that the interfaces of two nodes are
tuned to the same channel at the same time and hence, the nodes cannot communicate.
Hybrid assignment strategies combine the static and the dynamic approach. This strategy re-

7

quires at least two interfaces per network device one of which is assigned to a fixed channel and
the other changes the channel dynamically. With this approach both connectivity to all nodes
in the transmission range can be guaranteed, all available channels can be exploited (maximum
bandwidth) and the devices do not require time synchronization.

The following sections explain different channel assignment schemes. Section 2.1.1 and Sec-
tion 2.1.2 cover dynamic strategies. The Sections 2.1.3 and 2.1.4 describe hybrid approaches.
Static assignment strategies are not covered in this thesis.

2.1.1 Split Phase

The Split Phase Protocol [1] is an example of a dynamic assignment approach. The protocol
does only require one interface. The time is split into two phases. During one sequence (control
phase) control messages are exchanged and during the other (data phase) data packets are sent.
Furthermore, a default channel is determined to which all nodes switch their interface during
the control phase. During the control phase a node that intends to send data agrees with the
destination node the channel to use in the data phase. The available channel set includes also the
default channel.
Some implementations of the Split Phase approach allow more than one node pair to be tuned
to the same channel for data exchange. In this case, a scheduling mechanism is necessary for
coordination of the data transmissions. If only one node pair is permitted to occupy the same
channel during the data phase, additional informations about channel reservations have to be
exchanged within the interference range of each node.

Figure 2.1 illustrates the Split Phase Protocol. During the control phase, two nodes inform two
other nodes about their intension of transmitting data to them by sending them an RTS (RTS1
and RTS2). The RTS includes a channel number to which the corresponding nodes should tune
their interface to as soon as the data phase starts. Like this, the data packets are transmitted on
different channels and therefore, they do not interfere each other. As soon as the data phase is
over, the nodes change the channel back to the control channel.

An advantage of this protocol is that only one interface per device is required. However, all
nodes in the network have to be time synchronized.

Examples for protocols which have been implemented after the Split Phase approach are the
Multichannel Access Protocol (MAP) [14] or the Multichannel MAC Protocol (MMAC) [15].

Figure 2.1: Split Phase Protocol [1]

8

2.1.2 Common Hopping

The Common Hopping Protocol [1] is another dynamic multichannel protocol working with
only one interface per network device. In this approach, all network devices follow a common
hopping sequence which means that they all switch their interface simultaneously in the same
order from one channel to the next. If a node wants to do a transmission to another node, it sends
an RTS packet on the common channel to the dedicated receiver and the receiver then sends a
CTS packet back. The node pair leaves the hopping pattern and stays on the channel until the
data transmission is done. Subsequently, they rejoin the common hopping cycle.

It is possible, that two nodes have not finished their data transmission when the hopping cycle
reaches a channel on which a data transmission still takes place. As the idle devices sense the
carrier, they are aware of the busy status of channels and devices. So if a node wants to send, it
has to follow the hopping pattern until the common channel is free.
Nodes that are about to exchange data and therefore do not follow the common hopping sequence
are unaware of the busy status of other devices. Therefore, it happens, that a node sends an RTS
to another node that is currently in a data transmission and that is not tuned to the common
channel. In this case, the sender of the RTS does not receive the CTS. Hence, instead of starting
the data transmission it stays in the common hopping cycle and tries to reach the destination
node later.

Figure 2.2 illustrates how the protocol is working. At the moment the first node sends an RTS
(RTS1) to another node, every interface is tuned to channel 0. The receiver of RTS1 sends back
the CTS1 and both sender and receiver keep their interfaces on channel 0 for data transmission
(data1). In the meanwhile the other idle devices hop from one channel to the next following
the common hopping sequence. As soon as the data1 exchange ends, the two nodes rejoin the
hopping cycle. The same set of actions are executed when other nodes try to communicate.
After the first hop in Figure 2.2, no other node has the intension to send. Therefore, the channel
stays idle. Only one hop later, an agreement between two nodes is done to stay on channel 2,
while the other idle devices - except the two communicating on channel 0 - go on cycling.

The protocol has more or less the same advantages as the Split Phase approach shown in Sec-
tion 2.1.1. The network nodes require only one interface and - in contrary to the Dedicated
Control Channel Protocol (explained in Section 2.1.3) - every available channel can be utilized
for data exchange. But the required time synchronization among the nodes is even more strict
than in the Split Phase protocol. All devices have to hop exactly at the same time. Therefore, an
exact synchronization is required.

Hop-Reservation Multiple Access (HRMA) [16], Channel Hopping Multiple Access (CHMA)
[17] and CHMA with Packet Train (CHAT) [18] are predicated on the Common Hopping ap-
proach.

9

2

Figure 2.2: Common Hopping Protocol [1]

2.1.3 Dedicated Control Channel

The Dedicated Control Channel Protocol [1] is a hybrid multichannel multiradio protocol. The
nodes that are participating in the network require at least two interfaces. The system bandwidth
is divided into n channels. One channel is reserved to exchange the network control messages
RTS and CTS and is assigned to the control interface. The remaining n−1 channels are available
to the other interface. This interface can switch the channel whenever necessary. It is exclusively
used to transmit and receive data and ACK messages.
When a device wants to send some data to another device the sender transmits an RTS message
to the receiver on the common control channel. To the source and destination ID and the packet
length, the RTS message additionally includes a list of all available channels, i.e. all channels
which are not occupied in the interference range of the sender. This list is called the Free
Channel List (FCL). When the destination node receives the RTS, it selects the channel which
has the lowest number and is free in the receivers environment. The selected channel is inserted
into the CTS message that is sent back to the source device. Because all nodes in the network
use the same channel for RTS and CTS exchange and the channel information is inside these
messages, every neighbor of the communicating nodes knows which channels are currently in
use and for how long. The control channel can further be used to spread broadcast packets.

Figure 2.3 shows an example with one control channel (channel 0) and three data channels
(channels 1 to 4). All nodes involved in this scenario are in each others interference range.
Furthermore, they all have their static interface tuned to the control channel (channel 0). A node
decides to send data to another node, and transmits an RTS (RTS1) to the intended receiver on
the control channel. As no channel is occupied, the FCL includes all data channels in the RTS1.
As soon as the receiver gets RTS1, it chooses the channel with the lowest number out of its FCL
(in this case its channel 1), sends this channel number in the CTS1 to the sender and tunes its
second interface to the proposed channel. After the sender has received CTS1, it changes its
switchable interface to the agreed channel 1 and starts transmitting the data.
In the meantime, the two other nodes have started their data channel selection. This time, the
FCL included in RTS2 contains only channel 2 and channel 3, as channel 1 is already reserved.
The receiver inserts channel 2 (the lowest number) in its CTS (CTS2) and the two nodes start
their data exchange on this channel.
At the time the third node wants to send data, channel 1 and channel 2 are already occupied.
Therefore, it can only propose channel 3 to the receiver. Even though channel 1 is free again

10

Figure 2.3: Dedicated Control Channel Protocol [1]

when the receiver sends back CTS3, it has to choose channel 3 due to the fact, that channel 3
was the only channel suggested by the sender.

The advantage of this protocol is the simplicity of the implementation and the nature of all hy-
brid protocols, that they do not require synchronization.
The protocol’s drawback lies in the character of the channel distribution. Control messages may
only be exchanged on one dedicated channel. If the network contains many nodes and the band-
width is divided into many narrow channels, the control channel can become a bottleneck. The
RTS and CTS messages may collide and reduce the network throughput. The control channel
can also become costly if the bandwidth is split into few channels. E.g. IEEE 802.11b only pro-
vides three orthogonal channels. So if one channel is reserved as a control channel only 66.6%
of the bandwidth remain for data exchange.

Implementations based of the dedicated control channel approach are the protocols Dynamic
Channel Allocation (DCA) [19] and Dynamic Channel Allocation with Power Control (DCA-
PC) [20].

2.1.4 Hybrid Protocol

The Hybrid Protocol [21] is another hybrid strategy working with at least two interfaces - one
of which is assigned to a fixed channel and the other switches channel whenever necessary. The
static interface of every device is assigned to a different fixed channel. This interface is for the
limited purpose of receiving data. The switchable interface is dedicated only for sending data.
Any data which arrives on this sending interface is rejected.
If a device intends to send it switches its sending interface to the fixed channel of the receiver
and transmits the data on this channel and interface. For broadcasting the sending device sends
a copy of the data packet on every available channel to make sure that every device in the
transmission range receives the broadcast message.
Via broadcast packets, a node informs its neighbors about the used receiving channel. The
receivers store this information in a list, so that every node knows the receiving channel of its
neighbors. Refering this list, a node may change the receiving channel if it notices that other
nodes in the interference range are utilizing the same channel as fixed channel.

Figure 2.4 shows a simple example. The receiving interface of node 1 is tuned to channel 0,

11

Figure 2.4: Hybrid Protocol

of node 2 to channel 1, of node 3 to channel 2 and of node 4 to channel 3. Node 1 intends to
send data (data 1) to node 3. Therefore, it switches the sending interface to channel 2 which
is the fixed receiving channel of node 3. On that channel it then starts the transmission. In the
meanwhile, node 4 wants to transmit data (data 2) to node 2. As the receiving interface of node 2
is tuned to channel 1 node 4 sends data 2 on this channel.
If the network devices are capable to send and receive simultaneously, node 3 may even start
transmitting data to node 4 while node 4 is still sending to node 2 (see data 2 and data 3 in
Figure 2.4).

Unlike the Dedicated Control Channel strategy, the Hybrid protocol approach uses all available
channels for data transmission. Furthermore, no time synchronization is required. As long as the
nodes are aware of the fixed channel of the neighbor devices, connectivity is always guaranteed.
Compared to the other channel assignment strategies the Hybrid protocol exploits the available
bandwidth the most, since all channels are used for data transmission and control data for time
synchronization is omitted.

The Hybrid approach was implemented by the Net-X developers at the University of Illinois
[21]. In Section 3.4 the implementation is discribed in more detail.

12

2.1.5 Multichannel Protocol Overview

Table 2.1 presents a short overview of the different channel assignment approaches.

Min. Req. Control
Approach Type Interfaces Time Synch. Channel Protocols
Split Phase dynamic 1 yes yes MAP, MMAC

HRMA, CHAT,
Common Hopping dynamic 1 yes no CHMA

Dedicated
Control Channel hybrid 2 no yes DCA, DCA-PC

Hybrid Protocol
Hybrid Protocol hybrid 2 no no of Net-X

Table 2.1: Overview of the multichannel protocols

2.2 Why a Multichannel Protocol can boost IEEE 802.11 Perfor-
mance?

The study [22] investigates the reasons for performance improvements of multichannel mecha-
nisms in an adhoc wireless network. The study assumes that the adhoc wireless network uses one
control channel which is reserved for RTS and CTS frames and multiple data channels to trans-
mit data and ACK packets. It identifies that multichannel networks reduce packet collisions and
therefore increase the overall throughput due to reduce the amount of packet retransmissions.

(a) Node C is inside node A’s interference
range

(b) Node A is outside node D’s interference
range

Figure 2.5: Hidden Node Problem

In monochannel wireless networks a common reason for packet collision is the hidden node
problem. This problem is illustrated in Figure 2.5. The dotted lines show the interference range,
the continuous lines show the transmission range. In Figure 2.5(a) node B is within the trans-
mission range and node C in the interference range of node A. On the other hand, node D does

13

not overhear transmissions of node A and vice-versa. Hence, the hidden node problem may
occur since node A considers the medium as free even though node D is transmitting data to
node B. Thus, their packets collide.
The multichannel network determined by [22] avoids the hidden node problem because con-
trol and data frames are sent on separate channels. Given the same scenario as above, the RTS
message of node A sent to node B does not collide even though node D is transmitting data.
Furthermore, since node B is in node D’s interference range, it knows about the data transmis-
sion although it does not correctly receive the frames. Therefore, node B informs node A to use
another data channel than node D in the CTS response. Thus, neither the control nor the data
frames sent by node A collide with the packets from node D.

Even in the scenario shown in Figure 2.5(b) where both nodes A and B are outside the inter-
ference range of node D a multichannel protocol may increase performance. The RTS frame of
node A interferes with the transmission of node D if the bandwidth is not separated in different
channels.
Using a separate control channel yields to an error-free control message transmission even
though node D is sending data to node C. But as both nodes A and B are outside the inter-
ference range of node D none of them knows about the channel node D is using currently.
Therefore, node A has to choose a channel randomly. By chance, it picks the same as node D
which then would lead to a data packet collision.

The study of [22] concludes that the multichannel approach only boosts performance in pres-
ence of hidden nodes. In a full visibility scenario where all nodes know about all transmissions
that could interfere with their own transmission, the throughput cannot be increased by using
multiple channels. It may rather be low because only a part of the bandwidth can be utilized.
The separation of the control channel from data channels has a bigger impact in terms of perfor-
mance boost than the separation of data channels. Even when using multiple data channels in a
network data packet collisions cannot be avoided for sure.

2.3 Adjacent Channel Interference

The paper of [4] analyses the cause and the effect of adjacent channel interference (ACI) in
multiradio multichannel adhoc networks. ACI is the interference of non-overlapping channels.
It happens, if a node sends at the same time as it receives data. Even though the sending and
receiving antenna are tuned to different channels, the outgoing data disturbs the incoming if the
channel distance is too low. ACI affects significantly the network throughput.
The disturbance happens because some of the transmission power is leaking to the adjacent
channels. Mainly, the direct neighbor channels are affected. The experiment of [4] resulted in
the transmission power leakage for the adjacent channels as shown in Table 2.2.

Table 2.2 points up the strong impact the sending data stream has on the node’s receiving data
if the channel distance is too low. For example, if the node sends on channel 56 and receives
on channel 52, the resulting noise signal on the receiving channel is only 27 dBm lower than

14

Ch. 36 40 44 48 52 56 60 64
dBm -59 -59 -52 -27 0 -26 -53 -57

Table 2.2: The measured channel power of adjacent channels when an 802.11a radio continuously broad-
casts on channel 52 (5260MHz) [4].

the transmission signal on the sending channel. This high noise averts a proper reception of the
incoming data.
In [23], the researchers came to the same conclusion as [4], namely, that a transmission of a
node interferes with the reception if the channel distance is less than three channels. ACI can
also occur if a neighboring node transmits to another neighboring node on a channel that is fewer
than two channels away.
Taking this findings into account, [23] designed a channel allocation algorithm which reduces
ACI. The algorithm is based on a local-balancing algorithm called LOCBAL. LOCBAL observes
which receiving channels are used by the two hop neighbors. This prevents the nodes from allo-
cating a channel which is already frequently used in the neighborhood.
However, LOCBAL only allows the usage of five channels out of the twelve channels in
IEEE 802.11a, if the channel distances mentioned above shall be guaranteed. Therefore, the
extended algorithm INTAWARE was developed. Although this algorithm allows utilizing all of
the twelve available channels, it is able to avoid ACI. Instead of having the receiving channel
statically assigned, INTAWARE tunes the receiving interface to another channel as soon as the
channel of the sending interface is switched to a channel with a lower distance than three chan-
nels away from the current receiving channel.
Furthermore, to avoid neighboring nodes to disturb the node’s own communication, a channel
selection algorithm assigns channels to the node’s receiving interface which is as far away from
the channels used by the one and two hop neighbors. Like this, the probability is reduced that
neighbors use a channel that is less than two channels away from the own receiving channel.
Thereby, the chance of ACI is decreased.
Compared to the channel allocation algorithm LOCBAL which uses at most five channels,
INTAWARE increases the overall network throughput by providing a strategy which enables the
reduction of ACI in a network that uses all of the twelve available channels in IEEE 802.11a.

2.4 Secure Remote Management and Software Distribution for
Wireless Mesh Networks

In many cases, wireless mesh networks (WMN) are spread over geographically large areas. The
mesh nodes are often located at places which can not easily be reached (e.g. rooftops, towers,
masts, ...) due to the terrain or the missing legal access to the spot. Therefore, software updates
and reconfigurations are getting very costly if the remote access to a node is disrupted. Erroneous
software or incorrect configurations potentially cause such disruption.

The paper [24] presents an architecture which provides a secure way to distribute software

15

updates and reconfigurations in a WMN. It protects each node from loosing connection from
the network by providing a fall-back mechanism. If the software upgrade or the configuration
changes contain failures which affect the node’s connectivity to the network a reboot with the
initial configuration or kernel images is activated.

Furthermore, the architecture offers a management console, a development environment and an
image generator. These tools are provided by the management nodes. Every network contains at
least one management node which is equipped with better hardware than ordinary mesh nodes
and therefore also has further features. Thus, a Linux management node can run a LiveCD which
provides the above mentioned tools.

The management console supplies making initial network configurations or changing existing
ones. When starting, the user is asked to choose an existing network configuration which is
stored on an usb device or to define some parameters (domain name, passwords, etc...) to initiate
a new network. Then, the user can connect to the LiveCD’s SSL web server via his web browser
where he finds a setup page. On this page, he can define the network (number of nodes, host
names and passwords of the nodes). Optionally, each node’s network setup can be configured
individually. The LiveCD then generates a configuration image for every node. This images
have to be installed on the corresponding nodes.

The development environment facilitates the compilation and installation of new software or
kernel upgrades on the mesh nodes. Instead of booting the LiveCD in management mode, it
can be started in development mode and operate as a development system. The newly compiled
software (binaries, libraries or kernel image) has then to be copied to a specified directory tree
from which the node image is generated by an image generation script. The node image is now
ready to be flashed on the mesh nodes.

The management console and the development environment provide an easy way to create or
change configuration images or to build node images with new software, respectively. Using
these tools the secure remote management architecture with its fall-back mechanism can be
retained.

16

Chapter 3

Net-X Framework

Multichannel multiradio communication depends on the use of multiple radios and multiple
channels as well as on the ability to change the assigned channel of each interface. Most wireless
device interfaces conform to these requirements. IEEE 802.11b/g provide 13 different channels
of which three are orthogonal. IEEE 802.11a divides the bandwidth in 19 channels of which
12 are orthogonal. Orthogonal channels do not overlap and therefore do not interfere with each
other as long as adjacent channels are not assigned on the sending and receiving interface of
the same node. Otherwise, Adjacent Channel Interference (ACI) may occur. The interfaces also
provide a mechanism to switch the channel.
But these features are poorly supported by current operating systems. For example, the routing
table is only designed for monochannel networks. To route a packet to its destination, current
operating systems only keep the interface but not the channel on which the packet has to be sent
listed in their routing table. Therefore, the packet cannot be routed correctly in a multichannel
network.
Furthermore, since a mesh network runs in adhoc mode, adhoc routing - in our case on-demand-
routing (ODR) - is required [25]. Most ODR protocols are designed for routing in monochannel
networks. To support multichannel networks, adhoc routing support has to be extended to work
with multiple channels.
The Net-X framework [2] offers the required operating system support. The framework con-
sists of two kernel modules. The Channel Abstraction Layer (CAL) module provides the kernel
features for utilizing the interface capabilities mentioned above and the Kernel Multichannel
Routing Support (KMCR) module facilitates on-demand routing. Moreover, a user space dae-
mon, called Integrated Protocol is provided by Net-X. The Integrated Protocol consists of a
routing and a channel assignment protocol.
Section 3.1 describes the CAL module, Section 4.3 goes into the network device driver modi-
fications, Section 3.3 explains the method of operation of the KMCR module and Section 3.4
concentrates on the Integrated Protocol.

17

3.1 Channel Abstraction Layer

In current operating systems there are several features missing required for multichannel com-
munication. The most important ones are the specification of the channel for sending unicast
and broadcast packets. There is no support that specifies the channel to use for the packet to
reach the destination. In monochannel networks the knowledge about the interface on which
the packet has to be transmitted is enough to send a packet to the destination. In multichannel
networks the channel has to be specified additionally (see Figure 3.1). If node A wants to send
to node B the interface has to be tuned to channel 1. If it wants to send to node C it has to use
channel 2. For broadcast packets it has to send a copy on both channels. A mechanism which
provides the required information is necessary.
Furthermore, there is a need for buffering and scheduling support as switching an interface incurs
a non-negligible delay and switching too frequently may degrade performance. To minimize the
packet and the switching delay, a scheduling mechanism has to decide when the interface may
change the channel. Until then, a buffer has to store the packets which are meant to be sent on a
different channel.

Figure 3.1: Multichannel Routing [2]

To support these features the CAL module was developed as a new layer in the network stack (as
shown in Figure 3.2). The CAL operates between the ISO/OSI network layer and the link layer
(device driver). It appears as a single virtual interface with a single channel to the network layer.
This insulates the network layer and its protocols from the implementation of the multichannel
features. In other words, the network layer does not have to care about the fact that multiple
channels are used for communication and network layer protocols (e.g. ARP) do not need any
modifications. The CAL provides to the device driver the information over which interface and
over which channel the packets have to leave the device to reach the destination. The driver itself
switches the interface whenever required.

As you can see in Figure 3.3, the CAL module is implemented in three components - unicast
table, broadcast table, and a scheduling and buffering component. The unicast table is similar to
the normal routing table but it contains the channel on which a packet has to leave the device in
addition to the destination address and the interface. The broadcast table defines all the interfaces
with their associated channels on which a copy of the packet has to be sent to reach all the
neighbors. For every interface there is a separate scheduling and buffering component. The
buffering component maintains a queue for every available channel. If a packet cannot be sent
because the interface is not yet switched to the accordant channel it is buffered in the queue

18

Figure 3.2: Position of CAL and device driver in ISO/OSI network stack

of that channel. The scheduler decides which queue can process the packets and send them
to the device driver. The scheduling algorithm can differ between every interface. The Net-X
developers use a round robin scheduler.
Moreover, if a new neighbor is detected, a node leaves the network, or changes the channel of its
fixed interface, a new entry in the unicast and broadcast table has to be added, deleted or edited,
respectively. This is done via ioctrl-calls from the user space, see Section 3.4.2.

3.2 Interface Device Driver Modifications

The Net-X project requires some modifications of the network device driver (MadWifi-old) to
work optimally. Beaconing has to be disabled and further, there has to be a queue length moni-
toring at every interface.

Network interfaces running in adhoc mode broadcast beacons periodically. Beacons are broad-
cast packets which announce to all devices in the transmission range the existence of the sender
and the network of which the sender is participating.
In multichannel networks, the sender has to send the beacon on every available channel to make
sure that every neighbor receives the message. The frequent interface switching yields to a
switching delay. Since every node of the WMN knows to which network it belongs to, time for
beaconing is wasted. Therefore, the beaconing of the network device driver of Net-X (MadWifi-
old) was disabled. Without beaconing, the throughput of the network could be increased consid-
erably.

Moreover, packets have to be queued if the interface is not yet assigned to the channel on which
the packet has to leave the node. As mentioned in Section 3.1 for every channel there is a
separate queue in the CAL. When the interface is switched to a certain channel, the CAL sends
the packets of this channel down to the device driver. The device driver itself stores the packets
in its own queue, until they can be transmitted.
For scheduling channel switching, the length of the packet queue at the device driver has to be

19

Figure 3.3: The Net-X framework as depicted in [2]

20

monitored. This prevents packet loss at the interfaces. If the channel is switched, the unsent
packets in the interface queue are flushed. Therefore, before switching the interface to the next
channel, the channel switching scheduler has to wait until the interface queue is empty. The
original Madwifi device driver does not support a functionality which allows the monitoring of
the queue length by higher network layers. Hence, the driver was modified to enable higher
layers to supervise the queue lengths.
Section 4.3 describes how this functionality is implemented.

3.3 Kernel Multichannel Routing Support

The Kernel Multichannel Routing Support (KMCR) module supports ODR in multichannel net-
works by keeping a table with all available routes. It is implemented as a Linux kernel module.
It is responsible to keep track about the existing routes and informs the user space daemon if a
new route has to be discovered.

As shown in Figure 3.3, the module contains a buffer and an activeroutes table. The buffer
stores packets which cannot be sent as there is not yet a route to the destination available. The
activeroutes table holds the IP-addresses of all nodes to which a route is active and an associ-
ated Time left field. The Time left field represents the time interval during which the route
to that address is active. When the time has expired the table entry is deleted.

The KMCR module maintains its tables by filtering all packets that traverse the network stack.
The filtering is done by the Netfilter framework [26] which is a framework inside the Linux
kernel. Netfilter provides a set of hooks. With these hooks packets can be taken out of the
network stack. Kernel modules can register to any of the hooks and when a packet traverses a
correspondent hook, Netfilter passes this packet to the registered module. Furthermore, Netlink
messages enable the communication between kernel space and user space applications.

By adding itself to some of the Netfilter hooks, the KMCR filters incoming and outgoing packets
and processes the packets depending on their source and destination addresses.
On the LOCAL OUT hook the module takes out the packets that come from the node itself.
KMCR checks if there is a route available to the destination address, if so, the packet is re-
injected into the network stack. Else, the packet will be buffered. Via a netlink message the
KMCR module informs the user space routing protocol to look for a route. When the route is
found, the packet is put back into the network stack for transmission.
The PRE- and POST ROUTING hooks intercept packets that come from external nodes. If the
destination address of the packet is for the node itself, it is filtered by the PRE ROUTING hook.
Else, the node has to act as router and forward the packet. In this case, the POST ROUTING
hook was intercepting the packet. However, the intercepted packets are used to set the LifeTime
of the source of these packets to the maximum in the active routes-table because if a packet
arrives from a source node, it means that the route is still in use.

The implementation of KMCR is based on the kernel module of AODV-UU [27].

21

(a) Channel Divers Routes (b) Reduction of switching delay

Figure 3.4: Multichannel Routing Metric (MCR) [3]

3.4 Integrated Protocol

The Integrated Protocol is the user space daemon of the Net-X framework. It is composed
of a multichannel routing protocol which is responsible for route discovery in a multichannel
network and of an interface management protocol which is concerned with the assignment of
the interfaces with the appropriate channel.

3.4.1 Multichannel Routing Protocol

The common routing metric utilized by adhoc multihop wireless networks, like WMNs, is the
shortest hop routing metric. This metric evaluates the path with the least hops between sender
and receiver. The Net-X multichannel routing protocol utilizes a new multichannel routing met-
ric (MCR) [3, 28]. MCR selects divers channel routes if those routes optimize the throughput.
Figure 3.4(a) illustrates the characteristics of that metric. All nodes are labeled with their fixed
channel and the links are labeled with the channel assigned to the switchable interface. For ex-
emple, Node A wants to send data to node D. Let us assume that the data is sent on the shortest
path, namely over node C. When node C forwards to node D the packets that it receives from
node A, these packets would interfere with the subsequent packets that node A sends to node C.
Therefore, either link A-C or link C-D can be active which highly decreases the throughput.
In this case, selecting the path via node B and E should be preferred, as every link can send
simultaneously on different channels. Thus, the end-to-end throughput can be increased, even
though the path contains more hops.
Moreover, the multichannel routing protocol considers the non-negligible switching delay. An
example is shown in Figure 3.4(b). The route from node A to node C is the same for A-D-C
and for A-B-C. But if node B sends data to node E the interface has to be switched between
channel 1 and channel 3. This yields to a switching delay which is why the route A-D-C would
be preferred.
The best route is chosen by selecting the route with the lowest costs. The costs are assigned to
each available route from the sending to the receiving node. Routes which use many different
channels are assigned with lower costs than routes which use few channels. In the same way the

22

interface switching costs are assigned. For further information about the implementation of this
protocol, refer to the technical report [3].

3.4.2 Interface Management Protocol

The interface management protocol implemented by [28] is a hybrid assignment approach, (see
Section 2.1.4). Every device has one interface assigned to a fixed channel - the fixed interface
- which stays on the same channel for a long interval. The other interfaces (at least one) are
dynamic and switch their channel whenever required. They are called switchable interfaces. If
node A decides to send data to node B, node A switches its switchable interface to node B’s
fixed channel and vice-versa. Only the fixed interface is determined to receive data.

The fixed channel of a node is the channel on which the node receives data. Given that two nodes
in an interference range have their fixed interface assigned to the same channel. When packets
are sent to these nodes at the same time the packets collide what yields to throughput decrease
because a retransmission is necessary. Therefore, the available channels should be distributed in
a way that the number of same fixed channels in an interference range is balanced.
Moreover, if a node wants to send data it has to send this data on the fixed channel of the receiver
node. Therefore, it has to be informed of the fixed channel assignments of its neighbors. Like
this, the switchable interface can be assigned to the channel on which it reaches the intended
neighbor.

The interface assignment protocol meets these challenges as follows. Every node in the net-
work broadcasts periodically a Hello message. The Hello message contains the fixed chan-
nel of the sender node and its direct neighbors. With this information the receiver maintains
the so-called ChannelUsageList and the NeighborTable. The ChannelUsageList quotes to each
available channel a counter which states how many nodes in the two-hop range assign the same
channel to the fixed interface. The nodes consult this list at regular intervals. If their fixed
channel is used by the neighbors with a certain probability they change it to the channel that is
utilized the least. In the next Hello-message they report the change to their neighborhood.
As mentioned above, the Hello-message is also used to maintain the NeighborTable. In this table
every node stores its neighbor nodes with the corresponding fixed channel. If a node decides to
send data, it inquires the NeighborTable to know to which channel the switchable interface has
to switch to.

The Multichannel Routing Protocol (Section 3.4.1) and the Interface Management Protocol (Sec-
tion 3.4.2) can be exchanged by any other implementation which satisfy the above described re-
quirements. The kernel modules CAL (Section 3.1) and KMCR (Section 3.3) are implemented
to support any routing and channel assignment protocols. In this thesis, the utilized protocols
are not exchanged.

23

Chapter 4

Implementation of the Net-X Framework
for Linux Kernels with Version 2.6

This thesis examines the implementation of a multichannel multiradio prototype on a WMN.
The mesh nodes used for the prototype are equipped with the secure remote management and
software distribution architecture (SRM) mentioned in Section 2.4. The SRM provides an en-
vironment to develop and compile all the software which is meant to run on the mesh nodes.
Moreover, a management console facilitates the network configuration of the nodes.

The Net-X kernel modules (CAL and KMCR) have to be compiled into the Linux kernel image
running on the mesh nodes. The Net-X framework has been developed for kernels with version
2.4 and the mesh nodes (PCEngines WRAP platforms) are running the Linux kernel with version
2.6.22.2. Since the kernel application programming interface (API) has changed between these
two kernel generations the Net-X project has to be ported to the newer version.

Moreover, the network interface driver MadWifi provided by [29] is massively out of date. To
work with the multichannel multiradio protocol, the current Madwifi driver (MadWifi v0.9.4)
[30] needs the following two modifications. First, the beaconing has to be disabled. If a node
sends beacons, it has to switch among all channels. This leads to a switching delay. Since all
nodes know to which network they belong to, beaconing is needless and can be disabled without
any drawbacks.
Moreover, packets have to be queued if the interface is not yet assigned to the channel on which
the packet has to leave the node. As mentioned in Section 3.2 the channel queue length of the
device driver has to be monitored to avoid packet loss when the interface is switched.

The porting of the Channel Abstraction Layer module and the Kernel Multichannel Routing
Support module are explained in Section 4.1 and Section 4.2, respectively. Section 4.3 describes
the device driver modifications that have been done. Section 4.4 goes into the script, which
loads both the CAL and KMCR modules and the interface device driver MadWifi. Furthermore,
the start-up script assigns an IP as well as a MAC address to the interfaces and it starts the
channel assignment (Section 3.4.2) and routing protocol (Section 3.4.1).

25

4.1 Migration of the Channel Abstraction Layer

In conventional Linux operating systems there already exists a module - the bonding driver
- which provides an interface between the network layer and the device driver for managing
multiple interfaces. The driver bonds interfaces together thus only one interface is visible to the
network layer. Like this, network layer protocols do not have to pay attention to the existence of
multiple radios and interfaces.

The developers of CAL [29] extend the bonding driver to support the bonding of multiple chan-
nels on one physical interface.
For the implementation of CAL on 2.6 series Linux kernels we ported the functionality of the
original extended bonding driver for 2.4 kernel to the newer one for 2.6 kernels. We added the
multichannel features from [29] to the bonding driver of the current kernel and adapted the code
to the new kernel API.

The integration of the extended bonding code into the kernel tree was done by integrating the
new code into the Linux network driver directory /linux/drivers/net. Additionally, the bonding
header file /linux/include/linux/if bonding.h has been replaced, since the original file has been
augmented with multichannel skills. As we just modify the existing bonding driver, the mod-
ifications are automatically compiled into the kernel without any Makefile changes. The same
applies for Kconfig-files which make the kernel option visible for the kernel configuration tool
make config.

4.2 Migration of the Kernel Multchannel Routing Support Module

Every on-demand routing procedure needs a mechanism which invokes the discovery of a new
route if an application wants to send a packet to a destination to which no route exists. Several
routing implementations implemented this mechanism into the kernel, as the kernel is the only
place which has access to all application packets. The Net-X developers [2] did it this way as
well.
Furthermore, if there is no route available to a packets destination, this packet has to be buffered
until the route is discovered. The network stack has the possibility to send this packet back to
the user space for buffering or to provide an own storage. The Net-X developers [2] decided to
implement this buffer directly in the network stack, i.e. kernel space.

AODV-UU from Uppsala University [27] provides the above described kernel features for
monochannel communication. The developers of the Net-X project [2] adapted this implementa-
tion to work with multiple channels. We decided to extend the newest AODV-UU kernel module
with the multichannel features in the same way. This way we were able to start with a basic
module that is already compilable with our 2.6.22.2 kernel. The basic module has then been
extended with the proposed mechanisms of the Net-X project [2].

The integration of KMCR into the Linux kernel tree is more complicated as the module does not
correspond to any existing kernel module. We decided to locate it in the network driver directory

26

/linux/drivers/net. To guarantee the compilation of KMCR with the Linux kernel the Makefile
of the /linux/drivers/net directory has been extended with the following line:

$ (CONFIG KMCR) += kmcr /

Furthermore, the Makefile of the KMCR module itself can be simplified because the compilation
configurations are already defined in the Makefile of the Linux directory (/linux/).
Moreover, the Kconfig-file of the network driver directory has been extended with the additional
line:

c o n f i g KMCR t r i s t a t e ” K e rn e l M u l t i C h a n n e l Rou t ing S u p p o r t ”

This line enables the KMCR module as a kernel option in the kernel configuration tool. This
adaptation is not mandatory for the compilation, but makes the integration of the module into
the Linux kernel complete.

4.3 Network Interface Device Driver Modifications

The network device driver has to be modified as well. As mentioned above, we use a newer
generation of MadWifi than the NetX developers [2]. This simplifies our work concerning the
deactivation of the beaconing, but still the mechanism to monitor the queue length at the inter-
faces has to be implemented to support the scheduling for interface switching.

The current MadWifi driver offers an operational mode called ahdemo (adhoc demo). This mode
operates in adhoc mode but deactivates the beaconing. Therefore, the changes in the MadWifi
code which disable the beaconing mechanism are dispensable.

For the monitoring of the queue length the function get wireless stats(), provided in Linux wire-
less device drivers was used. The function returns a data structure with wireless specific infor-
mations. Since there is an unused field in the data structure, [2] utilized this field to inform the
CAL about how many packets are still in the queue.
Again, we overtook this modification to the Madwifi driver version that we use for our imple-
mentation.

4.4 Start-up Script

The start-up script (Listing 4.1) creates the mesh node’s interfaces (in our case there are two on
each device), sets their IP and MAC addresses, loads the bonding and KMCR module which are
necessary for wireless multichannel multiradio communication, and starts the helloServer, i.e.
the routing and channel assignment protocol. Furthermore, it enables IP forwarding.

The script runs with two parameters. The first parameter is the mesh node’s host IP address and
the second defines the two last numbers of the MAC address entered in hexadecimal format.

Unlike the MadWifi driver provided by [2] (madwifi-old) the new generation of MadWifi drivers
(madwifi-ng) create one or more virtual devices on the real network interface. This behavior

27

leads to a conflict with the functioning of the bonding module and its user level control tool
ifenslave [31] which attaches and detaches slave devices to the bonding device.

When ifenslave bonds interfaces together, one master device is determined and the slave devices
can be attached to it. The MAC addresses of the slaves are modified to the MAC address of
the master. Like this, all bonded network interfaces appear as one single common interface to
incoming network data.
As the MadWifi driver creates virtual interfaces and only they are visible to ifenslave, ifenslave
is incapable to change the MAC address of the physical devices. Therefore, the real MAC
addresses cannot be bonded and hence, the interface bonding has no effect.

To solve this problem the MAC addresses of the physical network devices have to be set manu-
ally by using the application macchanger[32]. The first ten hexadecimal numbers of the address
are set statically by the script and the last two are given as a parameter. Thus, maximal 256
different network interfaces can be addressed which is more than enough for our testbed.

Moreover, the script configures the network interfaces to run in ahdemo mode. The ahdemo
mode is similar to adhoc mode, but the beaconing is disabled.

As soon as the MadWifi interfaces have been created and configured, the bonding module is
loaded and the newly created bonding device (bond0) is furnished with the IP address. The
address is composed of the network address determined by the script and the host address which
is given as a parameter. Then, the two network interfaces (ath0 and ath1) are attached as slave
devices to the master device bond0 via ifenslave.

Once the KMCR module is up and running, the user space application helloServer is started
with the parameters channelFile, myIp, broadcastIp and bondInterface. ChannelFile takes a file
as input which defines all channels that shall be used by the mesh node. myIp, broadcastIp and
bondInterface are self-explanatory. The script daemonizes the process to let the routing and
channel assignment protocol run in the background.

The mesh node is now ready to communicate in ahdemo mode on multiple channels and multiple
radios.

Listing 4.1: start-up script
/ b i n / sh
NODEID=$1
MACDIGIT=$2

PATH=$PATH : / u s r / l o c a l / s b i n / : / u s r / l o c a l / b i n
export PATH
###
D e f a u l t C on f ig
###

ESSIDBACKBONE=” UBernBackbone ”
DATARATE=” 6M”
BBIF=” 0 1 ”
RECONFSTAT=” 100 ”
MAC=” 00 :0B: 6B : 5 7 : 4 9 : $MACDIGIT”
MACACC=” 00 :0B: 6B : 5 7 : 4 9 : $MACDIGIT”
TXPOWER=” 16dBm”
MUIC TIME MAX=60
MUIC TIME MIN=25
MUIC CHANNEL MODE=0
AP MODE=” f a l s e ”

###
S t a r t u p NET−X

28

###
i p r o u t e d e l d e f a u l t dev e t h 0

echo ” S t a r t i n g Net−X S c r i p t on node $NODEID . $MAC”
echo 1 > / p roc / s y s / n e t / i pv4 / i p f o r w a r d
echo 0 0 0 0 > / p roc / s y s / k e r n e l / p r i n t k

c r e a t e B B I F () {
echo ” C r e a t i n g backbone i n t e r f a c e $1 / $2 . MAC w i l l be $MACDIGIT”
w l a n c o n f i g $1 d e s t r o y
i p l i n k s e t dev $2 down
macchanger −−mac=$MAC $2
i p l i n k s e t dev $2 up
w l a n c o n f i g $1 c r e a t e wlandev $2 wlanmode ahdemo
s l e e p 1
macchanger −−mac=$MAC $1
i w p r i v $1 mode 1
echo ” P u t t i n g i n t e r f a c e $1 up ”
i p l i n k s e t dev $1 up
i w c o n f i g $1 e s s i d $ESSIDBACKBONE r a t e $DATARATE txpower $TXPOWER

}

l oadBond ing () {
modprobe bonding muic t ime max =$MUIC TIME MAX muic t ime min =$MUIC TIME MIN
i p add r add 1 9 2 . 1 6 8 . 3 0 . $NODEID/ 2 4 dev bond0
i p l i n k s e t dev bond0 up
i f e n s l a v e bond0 a t h 0 a t h 1

echo 1 > / p roc / s y s / n e t / i pv4 / con f / bond0 / a c c e p t r e d i r e c t s
echo 1 > / p roc / s y s / n e t / i pv4 / con f / bond0 / s e n d r e d i r e c t s

}

Loads KMCR Module and c o p i e s c h a n n e l c o n f i g from n f s
loadKMCR () {

modprobe kmcr i n t e r f a c e N a m e =” bond0 ”
echo ” C o n f i g u r a t i o n Done ! ! ! ! ”
s l e e p 5
echo ” Running h e l l o S e r v e r . . . ”
i f [−f / mnt / con f / channe l−$NODEID . t x t] ; then

echo ” Using custom c h a n n e l c o n f i g . . . ” ;
cp / mnt / con f / channe l−$NODEID . t x t / r o o t / c h a n n e l . t x t

f i

/ r o o t / h e l l o S e r v e r −−c h a n n e l F i l e / r o o t / c h a n n e l . t x t −−b r o a d c a s t I p 1 9 2 . 1 6 8 . 3 0 . 2 5 5 −−myIp 1 9 2 . 1 6 8 . 3 0 . $NODEID
−−b o n d I n t e r f a c e ” bond0 ” −−daemonize

i p r o u t e add d e f a u l t dev bond0
}

S e t s some s t a t i c r o u t e s f o r ga teways
s e t R o u t i n g () {

g rep GATEWAY / r o o t / c h a n n e l . t x t
RETURNCODE=$?
i f [” ${RETURNCODE}” −eq ” 0 ”] ; then

s e t r o u t i n g f o r gateway
echo ” S e t t i n g r o u t e s on t h e gateway ”
i p r o u t e d e l d e f a u l t dev bond0
i p r o u t e add d e f a u l t gw 1 9 2 . 1 6 8 . 3 0 . 2 0 0
i p t a b l e s −t n a t −A POSTROUTING −s 1 9 2 . 1 6 8 . 3 0 . 0 / 2 4 −j MASQUERADE

f i
}

##
Main Commands
##
hostname ”meshnode$NODEID”
f o r NIC i n $BBIF ; do

c r e a t e B B I F ath$NIC wif i$NIC
done

l oadBond ing
loadKMCR
s e t R o u t i n g

29

4.5 Integration in SRM

To integrate the Net-X framework into the SRM, the modified kernel modules must be compiled
in the SRM development environment. This includes the CAL, the KMCR and the MadWifi
driver. Furthermore, since the user space multichannel routing and interface management pro-
tocol have to be compiled against the Linux kernel this also had to be done in the development
environment.
The management console stores the configurations in some special files. (The tutorial [24] de-
scribes the procedure in detail.) So, when booting the nodes, the specific configurations are
loaded. We entered the start-up script which loads the multichannel specific networking modules
and configures the necessary network devices into those files so that it is executed automatically
at boot time.

30

Chapter 5

Performance Evaluation

5.1 Testbed Environment

5.1.1 Hardware and Software

The multichannel multiradio network performance was measured on KAUMesh [33], a mesh
testbed of the University of Karlstad, Sweden. KAUMesh’s mesh nodes consist of a Cam-
bria GW2358-4 Network Computer [34] and are equipped with three Atheros [35] compatible
802.11a/b/g miniPCI WLAN radio cards (Atheros 5212 chipset). One of the cards is running in
the 802.11b frequency range to enable communication with clients and the other two cards are
operating in the 802.11a frequency band to build the backbone of the WMN. In this thesis we
are investigating the backbone that is why we were using only the two 802.11a interfaces.

Each node is provided with the following software: The Linux kernel is with version 2.6.22.2
which allows to use our migrated Net-X framework and the integrated multichannel routing
and channel assignment protocol (refer to Chapter 4). Further relevant for our purpose are the
tools for performance measurements, namely the Multi-Generator (mgen) [36] developed by the
Naval Research Laboratory (NRL) PROTocol Engineering Advanced Networking (PROTEAN)
Research Group and iperf [37] to generate traffic and tcpdump [38] and trpr [39] to analyze the
measured traffic. For time synchronization on the nodes which is required for delay measure-
ments we used the operating system tools ntpd and ntpdate.

5.1.2 Traffic Parameters

As mentioned, we generated network traffic with mgen. For UDP [40] throughput measure-
ments, we were sending a packet of 1024 KB 650 times per second. This generates traffic of
5.3 mbps, which is high enough to load the network to the maximum and determine the network
throughput.
In Section 5.2 we did tests with unidirect UDP. First, we measured ACI by setting up a static mul-
tichannel multiradio network and in the second part we did throughput and dely measurements
in different dynamic multichannel multiradio network scenarios. We did delay measurements

31

ch
a
n
n
e
l 4

4
, ... ,6

4

ch
a
n
n
e
l
3

6

(a) Test with two
nodes. Both are
sender and re-
ceiver.

node 10

node 11

node 12

ch. 36
, ... ,6

0,10
0

ch
an

ne
l 6

4

(b) Test with three
nodes. One is sender,
one is receiver and
one is sender and re-
ceiver.

Figure 5.1: Channel interference measurement

with a data rate of 1.5 mbps and one with 3 mbps. These rates are according to the rate of real-
time video streaming where low delay has a high priority.
In Section 5.3 we measured throughput and delay of bidirect UDP traffic. We did this measure-
ments, as the throughput and delay measurements with TCP [41] yield to very bad results. The
reasons for that are detailed in Section 5.3.

If not explicitly mentioned, all measurements have been done with a fixed transmission rate of
6 mbps and with the three channels 36, 64 and 140.

5.2 Unidirect UDP Traffic Throughput

With generated UDP traffic we first measured the impact of adjacent channel interference (ACI)
on different channel pairs in a static multichannel network (refer to Section 5.2.1). Then, we
enabled Net-X (dynamic multichannel network) and measured the impact of the hop distance
on the traffic throughput and delay. Last, we observed the overall network throughput when
neighboring nodes are sending simultaneously. Both these tests are detailed in Section 5.2.2.

5.2.1 Adjacent Channel Interference in a Static Multichannel Multiradio Net-
work

To measure the channel interference we disabled Net-X [2] and built a static multichannel net-
work manually. For the first test, we took two nodes and assigned one of their radios with one
channel and the other with another channel. Then we simultaneously sent traffic from one node
to the other and vice-versa like shown in Figure 5.1(a). Like this, both nodes are sender and
receiver at the same time. Table 5.1 illustrates the average of the overall throughput we mea-

32

sured while one interface was constantly assigned to channel 36 and the other was tuned from
channel 40 to channel 64 (all channels of the lower band) with a distance of four. Figure 5.2
visualizes the behavior of ACI.

A run was a transmission between two nodes during 60 seconds and repeated it three times per
channel pair. If the two simultaneous transmissions would be undisturbed, we would expect a
throughput of 4500 kbps to 5000 kbps in every direction which leads to an overall throughput of
around 9000 kbps. But as you can see in Table 5.1 and Figure 5.2, the throughput we measured
indicates that - depending on the used channel pair - the transmissions disturb each other. If
the channel distance is less than five the throughput is much lower than what could be possible
without interference. The different behaviour leads back to the fact, that the arriving signal is
weaker than the sending signal and therefore, the receiving signal is more sensitive to noise.

Channel 40 44 48 52 56 60 64
Ch. dist. 1 2 3 4 5 6 7

Run 1 365.19 4651.75 5931.41 6868.79 6596.17 9027.03 8948.47
Run 2 2397.8 4691.61 5235.36 5540.48 9674.21 8947.66 9615.92
Run 3 1078.34 5589.09 5145.21 5238.38 9717.73 9612.06 9120.63

Table 5.1: Overall throughput in kbps of mutual transmissions between two nodes

Figure 5.2: Overall throughput in kbps of mutual transmissions between two nodes

The second testing scenario (illustrated in Figure 5.1(b)) consisted of one more node, but still we
tested two channels against each other. Node 10 sends to node 11 on one channel and node 11
sends to node 12 on another channel. In this case, the critical point lies at node 11 which is
sender and receiver. Node 10 and node 12 are either sender or receiver. The communication of
node 10 and node 11 is taking place on channel 64, the transmission from node 11 to node 12 on

33

the channels 36 to 60 (lower band) and channel 100 (lowest channel on upper band). Table 5.2
Figure 5.3 show that at node 11 there is much disturbance if the channel distance is less than
three and at node 12 the channel distance must be at least two to avoid interference.

Channel Throughput from Throughput from Overall
Channel distance node 10 to node 11 node 11 to node 12 throughput

60 1 1011.17 3307.69 4318.85
56 2 1067.65 4921.78 5989.43
52 3 1240.2 4545.89 5786.09
48 4 4919.5 4898.95 9818.45
44 5 4974.69 4781.17 9755.87
40 6 4939.51 4938.84 9878.34
36 7 4943.4 4845.23 9788.63
100 9 4926.77 4901.47 9828.24

Table 5.2: Throughput of two simultaneous one-hop transmissions in kbps

Figure 5.3: Overall throughput in kbps of two simultaneous one-hop transmissions

In the third test we took four nodes to test if adjacent channels also interfere when two simul-
taneous transmissions are taking place in the same transmission range and the nodes are either
sender or receiver but not both. The three scenarios are illustrated in the Figures 5.4(a), 5.4(b),
and 5.4(c). First, node 11 and node 12, which are positioned in the middle, acted only as re-
ceivers, in the second test one was sender and the other was receiver and in the last test they both
were senders. We tested all these three scenarios, because as soon as the signal arrives at a node,
the signal strength is much lower than when the signal is produced. Therefore, we would expect
the highest interference rate when the senders are closest to each other. What we observed in the

34

three scenarios is presented in the Tables 5.3, 5.4, and 5.5, respectively. Figure 5.5 visualizes the
results. In every case the throughput is at the maximum for every channel pair, hence, the data
flows do not interfere.

(a) receiving nodes are close (b) receiving and sending
node are close

(c) sending nodes are close

Figure 5.4: Different scenarios of channel interference measurement with four nodes.

We interprete these results as follows: The observations made in the first two tests lead back
to ACI (see Section 2.3), where the transmission on the sending channel produces too much
noise on the receiving channel and hence, disturbs the receiving data. The high rate of erroneous
packet reception then lowers the throughput significantly.
The third test shows, that ACI only occurs, if sender and receiver are at the same node, or in other
words, if the distance of the sending and the receiving antenna is very low (some centimeters).

The results of the measurements indicate that two neighboring nodes should assign their receiv-
ing antennas with channels that are at least four channels away from each other to avoid ACI
and achieve the maximum possible throughput.

5.2.2 UDP Throughput with Dynamic Multichannel Multiradio Communication

Now, after having measured the mutual disturbance of specific channel pairs, we tested the dy-
namic multichannel multiradio communication with Net-X. The channels we used were chan-
nel 36, channel 64 and channel 140. To be sure, that the fixed channel assignment distribution
is perfectly balanced, we assigned the fixed interfaces manually. Furthermore, in all the fol-
lowing tests a run lasts 60 seconds, whereas we measured the throughput every second. The
measurements are presented in figures whereas the bars include 50% of all the measured values.
Furthermore, the median (black horizontal line) and the maximum and minimum value of the 60
second tests are each identified.

35

Throughput form Throughput from Overall
Run node 10 to node 11 node 14 to node 12 throughput

Run 1 4839.99 4931.72 9771.71
Run 2 4934 4915.47 9849.47

Table 5.3: Throughput with parallel transmissions (illustrated in Figure 5.4(a))

Throughput form Throughput from Overall
Run node 11 to node 10 node 14 to node 12 throughput

Run 3 4957.91 4960.46 9918.36
Run 4 4932.39 4936.69 9869.08

Table 5.4: Throughput with parallel transmissions (illustrated in Figure 5.4(b))

Throughput form Throughput from Overall
Run node 11 to node 10 node 12 to node 14 throughput

Run 5 4887.94 4918.42 9806.36
Run 6 4918.42 4799.03 9717.46

Table 5.5: Throughput in kbps with parallel transmissions (illustrated in Figure 5.4(c))

Figure 5.5: Throughput in kbps with parallel transmissions

36

Impact of the Hop Distance on the Throughput and the Delay

In this scenario we measured how the hop distance impacts the throughput. As you can see in
Figure 5.6, we sent data from node 7 via node 10, node 11, node 14 to node 18 and measured
the throughput in each case. As shown in Table 5.6 and Figure 5.7(a), we measured an average
throughput of 4.9 mbps at node 10, 4.7 mbps at node 11 and 4.1 mbps at node 14. Since the
sending and receiving radio of the forwarding links do not disturb each others communication,
the data can be forwarded in parallel as new data is received. This yields to the high through-
put even at node 14 were two hops are between source and destination. The small throughput
decrease with the increase of hops can be explained with the fact, that the node’s CPU can not
send and receive simultaneously. This weakly slows down the sending process.
At the fourth hop (node 18), the throughput was barely 2.7 mbps in average, which leads back
to the weak link and the high packet loss between node 14 and node 18. We measured a packet
loss of around 0.5 % between node 10 and node 11 and between node 11 and node 14, whereas
the loss between node 14 and node 18 was around 16 % in average.
Table 5.7 and Figure 5.7(b) show the throughput we measured in the same scenario but with
monochannel communication. The Table and the Figure clearly illustrate that the throughput
decreases rapidly when the hop distance increases since two neighboring nodes can not send
simultaneously. With the same scenario we have measured the delay in a multichannel and in

Figure 5.6: Measuring throughput after different number of hops

a monochannel network. As mentioned before, the delay measurements were performed with
a data stream of 1.5 mbps and of 3 mbps. The measurements are illustrated in Table 5.8 and
Figure 5.8(a), and in Table 5.9 and Figure 5.8(b) respectively. The results show a correlation
between the throughput and the delay. When we compare the throughput and the delay on a cer-
tain route we notice that the routes where the throughput measurements have shown a capacity
higher than the data stream we were sending for the delay tests (1.5 mbps and 3 mbps), the delay
was tiny. For exemple, the throughput at node 18 was around 2.7 mbps. For the 1.5 mbps data
stream even at the forth hop the delay is only 1 millisecond. But if we stream 3 mbps the data
arrives at node 18 200 milliseconds delayed.
The measurements done in the monochannel network are recorded in Table 5.10 and Fig-
ure 5.9(a) for the 1.5 mbps data stream, and in Table 5.11 and Figure 5.9(b) for the 3 mbps

37

data stream. As the results show, the delay increases rapidly even for the low data stream and
the network throughput decreases immensely with every further hop.

Hop distance Run 1 Run 2 Run 3 Average throughput
1 4888.475 4815.016 4934.892 4879.461
2 4847.112 4792.051 4785.202 4808.122
3 3613.343 3957.541 4772.176 4144.353
4 2771.984 2731.293 2649.239 2717.505

Table 5.6: Impact of the hop distance on the throughput (in kbps) in a multichannel network

Hop distance Run 1 Run 2 Run 3 Average throughput
1 4962.875 4965.695 4968.649 4965.739
2 2287.582 2452.899 2507.021 2415.834
3 1523.041 1633.621 1519.817 1558.826
4 1370.707 1322.083 1241.220 1311.337

Table 5.7: Impact of the hop distance on the throughput (in kbps) in a monochannel network

(a) Multichannel network (b) Monochannel network

Figure 5.7: Throughput after a certain hop distance measured in kbps

38

Hop distance Run 1 Run 2 Run 3 Average delay
1 0.00331 0.00329 0.00362 0.00340
2 0.00564 0.00541 0.00550 0.00517
3 0.00743 0.00782 0.00756 0.00760
4 0.01022 0.01045 0.00996 0.01021

Table 5.8: Impact of the hop distance on the delay (in seconds) in a multichannel network with a 1500
kbps data stream

Hop distance Run 1 Run 2 Run 3 Average delay
1 0.00484 0.00482 0.00499 0.00488
2 0.00711 0.00767 0.00821 0.00766
3 0.01011 0.01209 0.00948 0.01056
4 0.18028 0.20980 0.23587 0.20865

Table 5.9: Impact of the hop distance on the delay (in seconds) in a multichannel network with a 3000
kbps data stream

(a) 1500 kbps data stream (b) 3000 kbps data stream

Figure 5.8: Impact of the hop distance on the delay (in seconds) in a multichannel network

Hop distance Run 1 Run 2 Run 3 Average delay
1 0.00264 0.00397 0.00266 0.00309
2 0.00584 0.00854 0.00720 0.00719
3 0.00937 0.00919 0.00932 0.00930
4 0.56691 0.52833 0.52353 0.53959

Table 5.10: Impact of the hop distance on the delay (in seconds) in a monochannel network with a 1500
kbps data stream

39

Hop distance Run 1 Run 2 Run 3 Average delay
1 0.00465 0.00399 0.00472 0.00445
2 0.41071 0.28674 0.37070 0.35605
3 0.78643 0.78589 0.76491 0.77908
4 0.97042 0.93678 0.99289 0.96670

Table 5.11: Impact of the hop distance on the delay (in seconds) in a monochannel network with a 3000
kbps data stream

(a) 1500 kbps data stream (b) 3000 kbps data stream

Figure 5.9: Impact of the hop distance on the delay (in seconds) in a monochannel network

40

Simultaneous Transmissions

For these tests, we used four nodes being all direct neighbors to each other. The fixed interfaces
of the nodes are assigned as follows: Node 10 with channel 64, node 11 with channel 140,
node 13 with channel 36 and node 12 with channel 64.

(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

Figure 5.10: Simultaneous Transmission Scenarios

Scenario 1 is illustrated in Figure 5.10(a). This test measured the throughput of two simultaneous
transmissions, whereas two nodes only sent and the two other nodes only received data. Node 10
sent data to node 11 on channel 140 and node 13 to node 12 on channel 64. In monochannel net-
works we measured low performance because the two data flows interfered and a high amount of
retransmissions was necessary. The average throughput of three runs in a monochannel network
are shown in Table 5.12 and in Figure 5.11(a).
The multichannel multiradio WMN testbed furnished the performance shown in Figure 5.11(b).
As the Figure shows, the throughput from node 10 to node 11 and from node 13 to node 12
is 5 mbps in average, which makes a total network throughput of 10 mbps. Considering these
results, we can conclude that the throughput is almost doubled by using different channels for
sending two streams inside one interference range.

Run Node 10 to node 11 Node 13 to node 12 Overall throughput
1 1400.4291 3968.9568 5369.3859
2 1927.1344 3435.9396 5363.0740
3 2708.7318 2757.2123 5465.9441

Table 5.12: Average throughput of two simultaneous transmissions in a monochannel network

In scenario 2, node 11 transmits to node 10, node 10 transmits to node 12 and node 12 transmits
to node 13. The scenario is illustrated in Figure 5.10(b). Here, node 10 and node 12 act both as
sender and receiver whereas node 11 only sends and node 13 only receives.
The results presented in Figure 5.12(b) show that the throughput from node 11 to node 10 and
from node 12 to node 13 is more or less at the maximum. But from node 10 to node 12 it is very
poor.
The explanation for the bad throughput performance is the fact, that node 10 sends and receives
on the same channel. The channel assignment protocol uses the receiving interface for sending
if the fixed interface of the receiver is assigned with the same channel. Therefore, node 10 only

41

(a) Monochannel network (b) Multichannel network

Figure 5.11: The throughput of two simultaneous transmissions as shown in Figure 5.10(a).

sends data to node 12 if the receiving interface is idle. In our tests this is rarely the case and
causes the poor throughput. Even though channel 64 is used twice, the traffic between node 11
and node 10 is very high. This yields back to the fact that almost no traffic is sent from node 10
to node 12 and hence, the disturbance of the transmission is rather low. Furthermore, the amount
of data arriving at node 13 is extremely high because the CPU at node 12 has only few receiving
data to process and therefore can focus on handling the sending data.
Even though the throughput from node 10 to node 12 is poor, the overall network throughput still
is higher than what we observed in a monochannel WMN. The measurements in a monochannel
WMN are presented in Figure 5.12(a).

(a) Monochannel network (b) Multichannel network

Figure 5.12: The throughput of two simultaneous transmissions as shown in Figure 5.10(b).

In scenario 3 (Figure 5.10(c)) every receiving interface which was involved was tuned to an-
other channel. Node 10 transmits to node 11 on channel 140, node 11 transmits to node 13 on

42

channel 36, and node 13 transmits to node 12 on channel 64. The measured throughput through
every link is illustrated in Figure 5.13(a) for monochannel transmissions and in Figure 5.13(b)
for multichannel multiradio communication.
As expected, the monochannel network shows a rather low performance since the nodes cannot
transmit simultaneously. The links have an average capacity of 1000 kbps to 2000 kbps which
yields to an overall network throughput of 5000 kbps to 6000 kbps.
The tests using multiple channels and multiple radios for the transmissions resulted in an aver-
age overall network throughput of 11000 kbps to 15000 kbps which is twice to three times the
capacity of what we measured in the monochannel network.

(a) Monochannel network (b) Multichannel network

Figure 5.13: The throughput of two simultaneous transmissions as shown in Figure 5.10(c).

Run Minimum Maximum Average
1 0.371467 0.894118 0.647547
2 0.230769 0.893506 0.694007
3 0.086626 0.919854 0.754167
4 0 0.908023 0.420562
5 0 0.935950 0.720660
6 0.636651 0.909050 0.742478
7 0 0.735572 0.151972

Table 5.13: Packet loss rate

But Figure 5.13(b) exposes that the throughput through the link from node 10 to node 11 varies
from 1000 kbps to 5000 kbps. To find the reason for the low capacity, we first analyzed the
packet loss on every run as presented in Table 5.13. The extremely high rate of packet loss in-
fers to data traffic disturbance on this link. Since in scenario 1 we already measured the network
capacity when node 10 and node 13 send to node 11 and node 12, respectively, we know that
these two links do not interfere with each other. The throughput that we measured was as high
as we expected it to be.

43

Figure 5.14: The throughput of two simultaneous transmissions in a multichannel network.

Therefore, we studied how the throughput from node 10 to node 11 is affected, when node 11
sends to node 13 in parallel. Figure 5.14 presents the results and it shows that the throughput
is decreased. Accordingly, the link from node 11 to node 13 appears to be the reason for the
low throughput and the high packet loss rate at the other link. There is evidence to suggest that
this performance is a matter of ACI because only the receiving data is decreased. As explained
earlier the receiving signal is much weaker than the sending signal. But as one transmission
takes place on channel 36 and the other on channel 140 the channel distance is too high for
ACI. Therefore, the reason for the weak capacity must be caused by something else like e.g.
the performance of the CPU of node 11, incorrect channel switching at node 10, or signal in-
terference at the network card (cross-boarding talking). Whatever, the overall network capacity
in the multichannel multiradio network is still at a much higher level than in the monochannel
network.

5.3 Bidirectional UDP Traffic

Measuring the network throughput with TCP traffic [41] in our multichannel testbed yields to
strictly low results. The reason for this behavior lies in the congestion control mechanism of
TCP [42]. The TCP congestion control reacts sensitively to packet loss. As soon as a packet
gets lost, the congestion window is set to the minimum size. Step by step the window increases
until the next transmission failure occurs. As shown in Figure 5.15, the bonding driver holds
queues with unlimited length for every channel while the queue length of the network devices is
limited. The network device drops incoming packets, as soon as the queue is full.
Given that the queues of the network interfaces can hold at most 50 packets, that ath0 is set to
channel 1 and that the CAL queue of channel 2 stores 80 packets. As soon as ath0 switches
from channel 1 to channel 2, CAL flushes the queue for channel 2 to ath0. But the queue of
the network driver is only able to store 50 packets. Therefore, some of the flushed packets are
dropped by the driver. However, TCP reacts on the packet loss and decreases the congestion
window even though the network would have had the capacity to handle the current window

44

limited queue
length (50 packets)

unlimited
queue length

Figure 5.15: Limited queue length of network devices lowers the TCP network throughput

Figure 5.16: Bidirectional UDP traffic

size. In Chapter 6 a possible solution to this problem is presented.
Packets are also dropped by the network interface, when the channel is switched and there are
still packets in the buffer. Net-X has implemented a mechanism to defer this kind of packet flush
by monitoring the device driver’s queue length (refer to Section 3.2 and Section 4.3. But the
deferral often does not suffice to save all the packets. This scenario again yields to packet loss
and hence to the decrease of the TCP congestion window.

These issues do not allow a correct throughput measurements of the network itself. The network
capacity does not get fully exploited because the TCP congestion window is lower than the
network would allow. However, we measured bidirect UDP traffic where the sending node sends
a high amount of data to the destination node and the receiving node sends back low traffic to
feign the control traffic (Figure 5.16).
This scheme resembles TCP traffic as in a TCP connection the receiver periodically sends control
messages to keep up the connection and to signal to the sender that packets have arrived correctly.
This yields to a bidirectional transmission where the control messages produce low traffic in one
direction and the data transmission produces a high amount of traffic in the other direction.
But the scheme neither covers the behaviour of TCP when retransmissions occur nor TCP’s
congestion control.

With the appliance of this method we measured the similar throughput and delay as we did in
the measurements without simulating control messages.
Figure 5.17 presents the throughput that we measured with the bidirectional UDP traffic. It

45

shows that although there is traffic in both directions (data and control traffic) the data throughput
is as high as what we measured with unidirectional UDP where we have much less control
messages. This is possible because the control messages which are sent from the receiver to the
sender are transmitted on another channel than the data and hence the data and control flow do
not interfere.
Figure 5.18 shows the delay that we measured over multiple hops bidirectional UDP traffic.
Figure 5.18(a) presents the delay that results from a 1.5 mbps data stream and Figure 5.18(b)
presents the delay that results from a 3 mbps data stream. Again, the weak link between node 14
and node 18 decreases the throughput and consequently also increases the delay. So the delay is
approximately the same as with unidirectional UDP traffic.
But

Figure 5.17: Throughput measurements with bidirectional UDP

(a) 1500 kbps data stream (b) 3000 kbps data stream

Figure 5.18: Impact of the hop distance on the delay (in seconds) in a multichannel network using
bidirectional UDP

46

Chapter 6

Conclusions and Future Work

In this thesis we could demonstrate how multichannel multiradio communication can lower the
interference rate in a wireless mesh network and increase the overall network throughput com-
pared to the throughput in a common monochannel WMN. However, to enable multichannel
routing protocols we had to migrate the Net-X framework from Linux kernel with versions 2.4
to our Linux kernel with version 2.6.22.2. The Net-X framework provides the necessary opera-
tion system support for multichannel routing.
The UDP transmission measurements have shown that ACI may occur if neighboring nodes have
their fixed channels assigned with a low distance. But even if simultaneous transitions disturb
each other due to ACI, the overall network throughput is higher than in monochannel networks.
If the channel distance is high enough the network throughput can be increased significantly by
using multiple channels.

Figure 6.1: Proposed solutions to reduce packet loss when switching the channel

However, our multichannel multiradio implementation could still be optimized. As explained in
Section 5.3, TCP traffic does not reach the maximum possible throughput. Packets are getting
lost when the channel is switched. One reason for that is that CAL flushes the packets which
are in its queue to the relatively small buffer of the network interface controller (NIC) as soon as
the channel is switched. If the queue is too big for the buffer of the NIC packets get lost which
induces TCP to reduce the transmission rate. For future work this problem could be solved by

47

introducing a callback function in the NIC which informs the CAL how many packets it may
send.
The queue control could also be implemented as a busy waiting loop in the CAL. The busy
waiting loop periodically checks if there is free space in the buffer of the NIC. Like this, CAL
only sends packets if the buffer of the NIC can hold them. But a busy waiting loop utilizes a lot
of CPU capacity. Figure 6 illustrates the two mentioned approaches.

Furthermore, as WMNs are well suitable for connecting mobile wireless devices like mobile
phones, personal digital assistants, digital radios, etc. which mainly are applied for real time
applications like IP telephony, video streaming, or radio broadcasts, WMNs should support
these applications. Real time applications require low delay transmissions else, the received
audio or video signal is stuttering and that makes the application unusable. Therefore, WMNs
should privilege these flows over other flows to minimize the delay.

48

Glossary

ABR Associativity Based Routing
ACI Adjacent Channel Interference
AODV Adhoc On-demand Distance Vector Routing
AODV-UU AODV implementation from Uppsala University
API Application Programming Interface
CAL Channel Abstraction Layer
CHAT CHAM with Packet Train
CHMA Common Hopping Multiple Access
CSMA/CA Carrier Sense Multiple Access with Collision Avoidance
CTS Network Control Message (Clear-to-Send)
DCA Dynamic Channel Allocation
DSDV Destination Sequence Distance Vector
DSR Dynamic Source Routing
DYMO Dynamic MANET On-demand Routing
FCL Free Channel List
HRMA Hop Reservation Multiple Access
KAU Karlstads Universitet
Kbps Kilo bits per second
KMCR Kernel Multichannel Routing Support
MAC Media Access Control
MANET Mobile Adhoc Network
MAP Multichannel Access Protocol
Mbps Mega bits per second
MCR Multichannel Routing Metric
MMAC Multichannel MAC Protocol
NIC Network Interface Controller
ODR On-Demand Routing
OLSR Optimized Link State Routing
RTS Network Control Message (Request-to-Send)
SNR Signal to Noise Ratio
SRM Secure Remote Management and Software Distribution for WMN

49

TCP Transmission Control Protocol
VoIP Voice over IP
WLAN Wireless Local Area Network
WMN Wireless Mesh Network

50

Bibliography

[1] J. Mo, H.-S. Wilson So, and J. Walrand, “Comparison of multichannel mac protocols,”
IEEE Transactions on Mobile Computing, vol. 7, no. 1, pp. 50–65, 2008.

[2] P. Kyasanur, C. Chereddi, and N. H. Vaidya, “Net-x: System extensions for supporting
multiple channels, multiple interfaces, and other interface capabilities,” Wireless
Networking Group, University of Illinois at Urbana-Champaign,” Technical Report, 2006.
[Online]. Available: https://www-2.crhc.uiuc.edu:443/wireless/netxform.html

[3] P. Kyasanur and N. H. Vaidya, “Routing in multi-channel multi-interface ad hoc wireless
networks,” University of Illinois at Urbana-Champaign, Tech. Rep., 2004.

[4] C.-M. Cheng, P.-H. Hsiao, H. T. Kung, and D. Vlah, “Wsn07-1: Adjacent channel
interference in dual-radio 802.11a nodes and its impact on multi-hop networking,” in
Global Telecommunications Conference, 2006. GLOBECOM ’06. IEEE, 2006, pp. 1–6.
[Online]. Available: http://dx.doi.org/10.1109/GLOCOM.2006.500

[5] S. Corson and J. Macker, “Mobile Ad hoc Networking (MANET): Routing Protocol
Performance Issues and Evaluation Considerations,” RFC 2501 (Informational), Internet
Engineering Task Force, Jan. 1999. [Online]. Available: http://www.ietf.org/rfc/rfc2501.txt

[6] I. F. Akyildiz, X. Wang, and W. Wang, “Wireless mesh networks: a survey,” Computer
Networks, vol. 47, no. 4, pp. 445–487, March 2005.

[7] C. Perkins and P. Bhagwat, “Highly dynamic destination-sequenced distance-vector rout-
ing (dsdv) for mobile computers,” in ACM SIGCOMM, 1994, pp. 234–244.

[8] T. Clausen and P. Jacquet, “Optimized Link State Routing Protocol (OLSR),” RFC
3626 (Experimental), Internet Engineering Task Force, Oct. 2003. [Online]. Available:
http://www.ietf.org/rfc/rfc3626.txt

[9] D. Johnson, Y. Hu, and D. Maltz, “The Dynamic Source Routing Protocol (DSR) for
Mobile Ad Hoc Networks for IPv4,” RFC 4728 (Experimental), Internet Engineering Task
Force, Feb. 2007. [Online]. Available: http://www.ietf.org/rfc/rfc4728.txt

[10] I. Chakeres and C. Perkins, “Dynamic manet on-demand (dymo) routing.” IETF Draft,
March 2009, work in progress.

51

https://www-2.crhc.uiuc.edu:443/wireless/netxform.html
http://dx.doi.org/10.1109/GLOCOM.2006.500
http://www.ietf.org/rfc/rfc2501.txt
http://www.ietf.org/rfc/rfc3626.txt
http://www.ietf.org/rfc/rfc4728.txt

[11] E. M. Royer and C.-K. Toh, “A review of current routing protocols for ad hoc mobile
wireless networks.” IEEE Personal Communications, April 1999.

[12] C. Perkins, E. Belding-Royer, and S. Das, “Ad hoc On-Demand Distance Vector
(AODV) Routing,” RFC 3561 (Experimental), Internet Engineering Task Force, July
2003. [Online]. Available: http://www.ietf.org/rfc/rfc3561.txt

[13] A. Colvin, “Csma with collision avoidance,” Computer Communications, vol. 6, no. 5,
pp. 227 – 235, 1983. [Online]. Available: http://www.sciencedirect.com/science/article/
B6TYP-48TD57H-NS/2/60a05963e2834a5d0e8f7e6d5fb8ca84

[14] J. Chen, S. Sheu, and C. Yang, “A new multichannel access protocol for ieee 802.11 ad hoc
wireless lans,” In Proc. of PIMRC, vol. 3, pp. 2291–2296, 2003.

[15] J. So and N. H. Vaidya, “Multi-channel mac for ad hoc networks: handling multi-channel
hidden terminals using a single transceiver,” in MobiHoc 2004: Proceedings of the 5th
ACM international symposium on Mobile ad hoc networking and computing. New York,
NY, USA: ACM, 2004, pp. 222–233.

[16] Z. Tang and J. J. Garcia-Luna-Aceves, “Hop-reservation multiple access (hrma) for ad-hoc
networks,” in In IEEE Infocom, 1999, pp. 194–201.

[17] A. Tzamaloukas and J. J. Garcia-Luna-Aceves, “Channel-hopping multiple access,” in
Proc. IEEE ICC 2000, 2000, pp. 415–419.

[18] A. Tzamaloukas and J. Garcia-Luna-Aceves, “Channel hopping multiple access with
packet trains for ad hoc networks,” in Proc. IEEE Mobile Multimedia Communications
(MoMuC 2000), Tokyo, 2000.

[19] S.-L. Wu, C.-Y. Lin, Y.-C. Tseng, and J.-P. Sheu, “A new multi-channel mac protocol with
on-demand channel assignment for multi-hop mobile ad hoc networks,” Parallel Architec-
tures, Algorithms, and Networks, International Symposium on, vol. 0, p. 232, 2000.

[20] S.-L. Wu, Y.-C. Tseng, C.-Y. Lin, and J.-P. Sheu, “A multi-channel mac protocol with
power control for multi-hop mobile ad hoc networks,” The Computer Journal, vol. 45,
no. 1, pp. 101–110, January 2002. [Online]. Available: http://dx.doi.org/10.1093/comjnl/
45.1.101

[21] C. Chereddi, P. Kyasanur, and N. H. Vaidya, “Net-x: a multichannel multi-interface wire-
less mesh implementation,” SIGMOBILE Mob. Comput. Commun. Rev., vol. 11, no. 3, pp.
84–95, 2007.

[22] A. Baiocchi, A. Todini, and A. Valletta, “Why a multichannel protocol can boost
ieee 802.11 performance,” in MSWiM ’04: Proceedings of the 7th ACM international
symposium on Modeling, analysis and simulation of wireless and mobile systems. New
York, NY, USA: ACM Press, 2004, pp. 143–148. [Online]. Available: http:
//dx.doi.org/10.1145/1023663.1023689

52

http://www.ietf.org/rfc/rfc3561.txt
http://www.sciencedirect.com/science/article/B6TYP-48TD57H-NS/2/60a05963e2834a5d0e8f7e6d5fb8ca84
http://www.sciencedirect.com/science/article/B6TYP-48TD57H-NS/2/60a05963e2834a5d0e8f7e6d5fb8ca84
http://dx.doi.org/10.1093/comjnl/45.1.101
http://dx.doi.org/10.1093/comjnl/45.1.101
http://dx.doi.org/10.1145/1023663.1023689
http://dx.doi.org/10.1145/1023663.1023689

[23] V. Raman and N. Vaidya, “Adjacent channel interference reduction in multichannel wire-
less networks using intelligent channel allocation,” University of Illinois at Urbana-
Champaign, Tech. Rep., March 2009.

[24] T. Staub, D. Balsiger, M. Lustenberger, and T. Braun, “Secure remote management and
software distribution for wireless mesh networks,” in 7th International Workshop on Ap-
plications and Services in Wireless Networks. Santander, Spain: ASWN 2007, May 24–26
2007, pp. 47–54.

[25] M. Satyanarayanan and D. A. Maltz, “On-demand routing in multi-hop wireless mobile ad
hoc networks,” Tech. Rep., 2001.

[26] “Netfilter: firewalling, nat, and packet mangling for linux.” [Online]. Available:
http://www.netfilter.org/

[27] E. Nordström, “Ad-hoc on-demand distance vector routing, from uppsala university.”

[28] P. Kyasanur and N. H. Vaidya, “Routing and link-layer protocols for multi-channel multi-
interface ad hoc wireless networks,” SIGMOBILE Mob. Comput. Commun. Rev., vol. 10,
no. 1, pp. 31–43, 2006.

[29] C. Chereddi, P. Kyasanur, and N. H. Vaidya, “Design and implementation of a multi-
channel multi-interface network,” in REALMAN ’06: Proceedings of the 2nd international
workshop on Multi-hop ad hoc networks: from theory to reality. New York, NY, USA:
ACM, 2006, pp. 23–30.

[30] “Multiband atheros driver for wireless fidelity (madwifi).” [Online]. Available:
http://madwifi-project.org/

[31] D. Becker and et al., “ifenslave,” linux-2.6.22.2/Documentation/Networking/ifenslave.c.
[Online]. Available: www.kernel.org

[32] A. L. Ortega, “Gnu macchanger.” [Online]. Available: http://www.alobbs.com/macchanger

[33] P. Dely and A. Kassler, “Kaumesh demo.” Proceedings of 9th Scandinavian Workshop
on Wireless Ad-hoc and Sensor Networks, 2009.

[34] “Cambria gw2358-4 network computer.” [Online]. Available: http://www.gateworks.com/
products/cambria/gw2358-4.php

[35] “Atheros.” [Online]. Available: http://www.atheros.com/

[36] P. E. A. N. P. R. Group, “Multi-generator.” [Online]. Available: http://cs.itd.nrl.navy.mil/
work/mgen/index.php

[37] “Iperf.” [Online]. Available: http://sourceforge.net/projects/iperf/

[38] “Tcpdump.” [Online]. Available: http://www.tcpdump.org/

53

http://www.netfilter.org/
http://madwifi-project.org/
www.kernel.org
http://www.alobbs.com/macchanger
http://www.gateworks.com/products/cambria/gw2358-4.php
http://www.gateworks.com/products/cambria/gw2358-4.php
http://www.atheros.com/
http://cs.itd.nrl.navy.mil/work/mgen/index.php
http://cs.itd.nrl.navy.mil/work/mgen/index.php
http://sourceforge.net/projects/iperf/
http://www.tcpdump.org/

[39] “Trpr.” [Online]. Available: http://www.trpr.org/

[40] J. Postel, “User Datagram Protocol,” RFC 768 (Standard), Internet Engineering Task
Force, Aug. 1980. [Online]. Available: http://www.ietf.org/rfc/rfc768.txt

[41] ——, “Transmission Control Protocol,” RFC 793 (Standard), Internet Engineering
Task Force, Sept. 1981, updated by RFCs 1122, 3168. [Online]. Available:
http://www.ietf.org/rfc/rfc793.txt

[42] M. Allman, V. Paxson, and W. Stevens, “TCP Congestion Control,” RFC 2581 (Proposed
Standard), Internet Engineering Task Force, Apr. 1999, updated by RFC 3390. [Online].
Available: http://www.ietf.org/rfc/rfc2581.txt

54

http://www.trpr.org/
http://www.ietf.org/rfc/rfc768.txt
http://www.ietf.org/rfc/rfc793.txt
http://www.ietf.org/rfc/rfc2581.txt

	Contents
	List of Figures
	List of Tables
	Introduction
	Related Work on Multichannel Multiradio Communication on WMNs
	Multichannel Protocols
	Split Phase
	Common Hopping
	Dedicated Control Channel
	Hybrid Protocol
	Multichannel Protocol Overview

	Why a Multichannel Protocol can boost IEEE 802.11 Performance?
	Adjacent Channel Interference
	Secure Remote Management and Software Distribution for Wireless Mesh Networks

	Net-X Framework
	Channel Abstraction Layer
	Interface Device Driver Modifications
	Kernel Multichannel Routing Support
	Integrated Protocol
	Multichannel Routing Protocol
	Interface Management Protocol

	Implementation of the Net-X Framework for Linux Kernels with Version 2.6
	Migration of the Channel Abstraction Layer
	Migration of the Kernel Multchannel Routing Support Module
	Network Interface Device Driver Modifications
	Start-up Script
	Integration in SRM

	Performance Evaluation
	Testbed Environment
	Hardware and Software
	Traffic Parameters

	Unidirect UDP Traffic Throughput
	Adjacent Channel Interference in a Static Multichannel Multiradio Network
	UDP Throughput with Dynamic Multichannel Multiradio Communication

	Bidirectional UDP Traffic

	Conclusions and Future Work
	Bibliography

