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Abstract

Real-time localization systems become increasingly important due to the rapid
growth of context-aware services and the Internet of Things (IoT). As there are
already accurate approaches for outdoor environments, current research focuses on
indoor localization. Most of the works in this field implement a system that runs
the localization algorithms on the target device. However, this approach has to deal
with limited computational resources of target devices (mostly smartphones). Thus,
we introduce a Multi-Access Edge Computing (MEC) based localization system that
allows offloading the heavy computations to an external server at the edge of the
network. Our proposed localization algorithm achieves high room-level localization
accuracy by fusing Wi-Fi and Ultra-Wideband (UWB) Received Signal Strength In-
dicator (RSSI), Earth Magnetic Field (EMF) values and environmental information
in a combined Deep Learning model consisting of a Convolutional Neural Network
(CNN) and a Recurrent Neural Network (RNN). We conduct extensive experiments
in an office-like indoor environment along different trajectories. Evaluation results
show that our system can achieve room-level prediction accuracy of 98.52% and,
therefore, outperforms existing approaches in this field.
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Chapter 1

Introduction

In the past few years, the rising importance of context-aware applications and the
growing ubiquitousness of the Internet of Things (IoT) have increased the attention
in indoor location-based services. Context-aware systems are able to adapt their
behaviour to the current environmental context. When it comes to using mobile
devices, the most frequently used attribute of context is their current location [1].
Therefore, accurate real-time positioning systems are required. In outdoor environ-
ments, the Global Positioning System (GPS) is an effective and accurate approach.
However, satellite based navigation systems suffer from positioning errors in indoor
scenarios (e.g., complex buildings). GPS receivers determine their geo-positions
using triangulation of radio signals transmitted by satellites. Due to the missing
Line-Of-Sight (LOS) propagation between the satellites and the GPS receivers in
indoor environments the travel time of the transmitted signal is affected and this
can lead to a significant location estimation error [2].

Thus, alternative technologies are needed that provide higher accuracy indoors. Al-
though there are a lot of theoretical and experimental works in this field there is not
a simple and accurate solution for indoor positioning so far. So, indoor positioning
can still be considered as an open challenging problem [3].

Radio-based positioning is one of the most widely used approaches for indoor lo-
calization due to the availability of a large variety of radio signals, such as Wi-Fi,
Bluetooth, magnetic field, sound, light, etc. in indoor environments [4]. Wi-Fi
signals are often used because of the advantage of reusing an already available in-
frastructure (wireless networks are available in most corporate environments and
commercial buildings, such as universities, airports, restaurants, hospitals, etc.) [2].
Most of the existing radio-based indoor localization approaches use Wi-Fi Received
Signal Strength Indicator (RSSI) as radio parameter. However, one problem of RSSI
is that it suffers from the multipath effect. This means that there are multiple signals
(not just the LOS signal) propagating through different paths from the transmitter
to the receiver. This undesirable effect is even more severe in indoor environments
due to the presence of different obstacles such as walls, ceiling, floor and furniture
[5]. Additionally, the signal propagation is affected by several environmental factors
such as the presence of people in the area of interest, relocation of furniture, tem-
perature and humidity variations and opening and closing doors [6]. Thus, the RSSI
is dependent on distance and environmental factors. The fluctuation of RSSI leads
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to undesirable localization errors, which result in considerable reduction of the es-
timation accuracy [2]. In addition to Wi-Fi radio signals, the Earth Magnetic Field
(EMF) is often used for localization purposes. Due to the presence of ferromagnetic
materials the EMF distorts over space. These distortion patterns can also be used
to estimate indoor positions [4].
Compared to Wi-Fi signals, Ultra-Wideband (UWB) has recently attracted atten-
tion due to its capabilities of reducing the localization errors to lower than one
meter [7]. The main feature of the UWB technology is the use of a large frequency
band (more than 500 MHz) and short-pulse, low-powered radio signals. In addition,
UWB radios are able to distinguish pulses that are reflected from different objects
what makes it robust to multipath effects. Therefore, UWB radios are often used
for accurate indoor localization [8].

A large number of indoor positioning systems are running on client devices with
limited computational power. Offloading the heavy computations to a centralized
server could be a solution to this problem. However, the data transmission between
the client device and the server could lead to increased latency and unreliable perfor-
mance which is not tolerable for real-time applications [7]. An alternative solution is
the Multi-Access Edge Computing (MEC) technology [9], which brings cloud com-
puting capabilities to the edge of the network to satisfy application requirements
of short latency and high resource-demanding. By applying the MEC paradigm,
heavy computations are offloaded from the client devices to a near edge server. Due
to the short device-server distance the data transmission time can be reduced and,
therefore, the performance of the indoor localization system can be improved.

In this work, we consider the question "What will be the impact of applying Deep
Learning (DL) algorithms to indoor localization and how can the open technical
challenges in this field be tackled?". Thus, we present a novel room-level localiza-
tion approach by fusing Wi-Fi RSSI, UWB RSSI, EMF readings and environmental
information in a discriminative DL model. To include information about previous
positions of the client device we apply a Recurrent Neural Network (RNN) using
Long Short-Term Memory (LSTM). In order to overcome the temporal and spatial
instability of RSSI, we apply a Convolutional Neural Network (CNN) to filter out the
environmental noise. Our system is implemented based on the paradigm of MEC.
Thus, the localization algorithms are implemented in an external server at the edge
of the network. We prototype our approach on Raspberry Pi (RP) both as client
device and anchor nodes. To validate our indoor localization system, we conduct
extensive experiments in a complex indoor environment along several trajectories.
Evaluation results show that our proposed approach can achieve a prediction accu-
racy of 98.52%.

The main contributions of this work are summarized as follows:

• We propose a Deep Learning approach that fuses Wi-Fi and UWB RSSI, EMF
readings and environmental information for room recognition.

• We implement and evaluate a MEC-based positioning system that runs our
proposed localization algorithms on an external server.
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• We conduct a set of extensive experiments in a real complex indoor scenario
along several trajectories. Our proposed room recognition method can achieve
98.52% accuracy, which outperforms existing approaches in this field.

The rest of our work is organized as follows. Chapter II presents some related
work in the field of indoor localization and introduces the background theory. The
architecture of our proposed room recognition system is reviewed in Chapter III.
Chapter IV shows the implementation details of the MEC-based localization system.
In Chapter V the performance evaluation results are discussed and finally Chapter
VI concludes the work.
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Chapter 2

Related Work and Theoretical
Background

Indoor positioning has been investigated for many years and became a hot topic for
research as well as industry. Many solutions for accurate indoor positioning systems
have been proposed. Most of the work in this field focus on inertial sensor-based
tracking and radio-based positioning.

2.1 Overview of Indoor Localization Methods

As described in [10], previous indoor positioning research can be divided into two
categories, 1) Pedestrian Dead Reckoning (PDR) based on Inertial Measurement
Unit (IMU) and 2) Radio-based positioning.

2.1.1 Pedestrian Dead Reckoning (PDR)

With the fast development of mobile devices (over 5 billion of mobile users today
[11]), PDR relying on IMUs has evolved into a widely used technique for indoor
localization. PDR systems use inertial sensors in smartphones, e.g., accelerometer,
magnetometer and gyroscope, to calculate the relative movement of the target by
detecting steps, estimating stride length and heading orientation [10]. The position
is incrementally estimated from a given starting point [12] by integrating the relative
movement at sequential time intervals.

In [13], the authors propose an indoor tracking system that is decomposed into a
stride length estimation part and a heading determination part. The stride length
is calculated by using accelerometer readings whereas the heading direction is es-
timated by means of the gyroscope as it is much less noisy than accelerometers or
magnetometers and relatively immune to environmental disturbances. A similar ap-
proach can be found in [14]. The stride determination is based on walking speed,
walking frequency and acceleration magnitude. In order to estimate the heading
direction, they use a combination of gyroscope and magnetic compass. In this inte-
grated system, the gyroscope is able to correct the magnetic disturbances while the
compass can compensate for the bias of the gyroscope and the initial orientation.
The authors of [15] proposed a method named Heuristic Drift Elimination (HDE)
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that extends their previous work [16] so that the accumulated errors due to sensor
drift are eliminated. This leads to near-zero heading errors. Nevertheless, HDE re-
quires additional hardware (sensors on the foot of the pedestrian). In another work
[12], the authors constructed a PDR system in which accelerometer readings and
magnetometer readings are fused to detect steps and estimate the moving direction
as well as the stride length. For the stride length estimation, they use different
models for walking mode and for running mode, respectively. It is assumed that the
user’s activity mode is continuously classified into “walking”, “running”, and “station-
ary”. In [17], the authors apply an accelerometer-based walking distance estimation.
Gyroscope measurements are used to detect the physical turns made by the user.

As PDR systems estimate relative movements instead of absolute positions, that re-
sults in an accumulation of sensor errors over time which is a significant drawback of
this approach. For that reason, PDR positioning systems must consider integrating
additional information such as Wi-Fi signals or floor plan constraints to compensate
for these errors.

2.1.2 Radio-based Positioning

In contrast to PDR that measures relative position changes, radio-based positioning
systems estimate the absolute position of targets in a coordinate system [10]. Due
to its ubiquitous availability, radio signals are often used in indoor positioning [18].
Different parameters of these radio signals can be extracted to localize the target.
For instance in [19] and [20], the authors propose to use Received Signal Strength
Indicator (RSSI). In contrary, the authors of [21] apply time information related
to radio signal propagation. Radio-based positioning can be classified as range-free
and range-based methods [10]. Range is defined as the propagation distance from
the Target Device (TAG) to the Anchor Node (AN).

2.1.2.1 Range-free Methods

Fingerprinting is one of the most widely used range-free localization methods. It
has the advantage that there is no need for a special infrastructure as ubiquitous
signals (such as Wi-Fi or magnetic field) can be used that are already present in in-
door environments [22]. Indoor localization systems based on fingerprinting consist
of two phases [23], which are shown in Figure 2.1. In the training phase (off-line),
the fingerprint database (also named radio map) is built by collecting various types
of radio signals in the target environment. In the localization phase (on-line), the
fingerprint (composition of radio signals) at an unknown position is measured and
then compared with the stored fingerprints in the fingerprint database to determine
the closest match [24]. In this phase, any discriminative learning model (i.e., classi-
fication model exclusively based on previously observed data [7]) can be applied.
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Figure 2.1: Fingerprinting phases [23]

There are two main kinds of learning methods according to [22].

• Probabilistic algorithms

• Deterministic algorithms

Probabilistic approaches are based on statistical inference between the target signal
measurement and the stored fingerprints. Given a training set (set of fingerprints),
maximum likelihood is applied to find the target’s location [23]. In [25] for instance,
the authors propose to apply Bayesian Graphical Models. In [26], Gaussian Process
Latent Variable Model (GP-LVM) is used as probabilistic algorithm.

Deterministic approaches use distance or similarity metrices to compare online sig-
nal measurement and fingerprint data. The target position is then estimated based
on the closest fingerprint. The ease of implementation is a major advantage of this
method. In [27], K-Nearest Neighbours (KNN) is applied to find the most similar
fingerprint. Also, some more advanced algorithms such as Support Vector Machine
that is proposed in [28] belong to this category. A comparison of the performance
of a large number of deterministic Machine Learning (ML) algorithms can be found
in [29].

Despite its popularity in indoor localization, fingerprinting has also several draw-
backs that have to be taken into account [22]. The main disadvantage is the ex-
pensive and time-consuming generation of the radio map. Especially in large areas
of interest, many fingerprints need to be measured and stored in the fingerprint
database. Furthermore, the radio map has to be maintained as any change in the
infrastructure (e.g., displacement of access point) could affect the positioning results.

2.1.2.2 Range-based Methods

In range-based localization approaches, the creation and maintenance of a radio
map is not necessary. Therefore, range-based positioning is often computationally
less expensive compared to fingerprinting. The main idea is the derivation of ranges
to different ANs from certain physical parameters which is named ranging [30]. In
[30] and [31], the authors apply Time Difference Of Arrival (TDOA) and Differential
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Time Difference Of Arrival (DTDOA) for ranging. Under LOS conditions, the usage
of time information can provide satisfying accuracy. However, the signal’s bandwidth
limits this approach [30]. Another physical parameter that is used in ranging is RSSI.
Often, the Log-Distance Path Loss (LDPL) model is applied [32] to calculate the
propagation distance d using the following formula:

RSS = P t − (PL(d0) + 10 · γ · log 10(
d

d0
) +Xθ), (2.1)

where P t is the transmission power in dBm, PL(d0) is the path loss at reference
point d0, and γ is the path loss exponent. Xθ is a random variable with zero-mean
reflecting shadowing attenuation in dB. In a rather novel approach called FILA
[5], the authors proposed to extract Channel State Information (CSI) in order to
estimate the range information. CSI can be considered as fine-grained values from
the Physical Layer (PHY), which describes the amplitude and phase on each sub-
carrier in the frequency domain. That results in obtaining multiple CSIs at one
time whereas with RSSI we only have one value per packet. The empirical results
[5] show that this approach outperforms RSSI ranging in terms of accuracy as well
as time tracking latency.

After this step, the ranging information needs to be converted into the location of
the target. Different positioning algorithms such as trilateration and multilateration
[30] can be applied to find the absolute positions.

2.1.3 Hybrid Localization Methods

Due to the mentioned drawbacks of both PDR-based and radio-based positioning,
some works have been proposed that integrate these two approaches (named motion-
assisted localization [23]). Figure 2.2 shows a typical system of motion-assisted local-
ization. Wi-Fi fingerprinting is complemented by motion sensor data (accelerometer,
gyroscope and magnetometer) in order to detect displacement and changes in di-
rection. All the information is combined in a fusion algorithm, which provides the
location estimation. For instance in [33], the authors presented a fingerprinting-
based method by combining Wi-Fi information with accelerometer and magnetic
field information. In another work [3], an enhanced particle filter that fuses range
information estimated from RSSI, move detection using IMUs and floor plan con-
straints, was introduced.

Figure 2.2: Illustration of motion-assisted system [23]
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2.2 Deep Learning Algorithms

Over the past decade, Deep Learning algorithms have significantly advanced the
performance of many supervised learning tasks, such as image classification [34],
language modelling [35], healthcare [36], and online advertising [37]. Further appli-
cations can be found in [38]. As shown in Figure 2.3, Deep Learning is a subset
of Machine Learning which is again a subset of Artificial Intelligence (AI) and can
be defined as the set of algorithms that were developed in order to train multilayer
neural networks more efficiently [39]. The purpose of neural networks is to mimic
how the human brain works. Basically, neural networks use a hierarchy of layered
filters in which each filter learns from the previous layer and then passes its output
to the next layer, similar to the interaction of the neurons in the human brain where
about 100 billion of neurons are connected to 100’000 of their neighbours each [40].

Figure 2.3: Overview of Artificial Intelligence [41]

This section provides an introduction to supervised learning and briefly introduces
the different architectures of a Deep Neural Network (DNN): Feedforward Neural
Network (FNN), Convolutional Neural Network and Recurrent Neural Network.

2.2.1 Supervised Learning

Neural networks are often applied to supervised learning problems. There is also
intensive research in the area of unsupervised learning (e.g., clustering), for detailed
information we refer to further reading [42] as this field is not covered in our work.
The following dataset (Table 2.1) represents an example of supervised learning.

Living area (feet2) #Bedrooms Price(1000$)
2104 3 400
1600 3 330
2400 3 369
1416 2 232
3000 4 540
...

...
...

Table 2.1: Supervised learning example [43]
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Given data like this (living area, number of bedrooms and price for several houses
in Portland, Oregon) we want to learn how to predict the prices of other houses
in Portland, as a function of the size of their living area as well as the number
of bedrooms [44]. To describe this supervised learning problem more formally, we
denote the input variables (in this case the living area and the number of bedrooms)
as x(i), also known as input features, and the output or target variable that we are
trying to predict as y(i). So, a pair of (x(i), y(i)) is called a training example and the
set of m training examples (x(i), y(i); i = 1. . .m) is called training set. Additionally,
X denotes the space of input variables and Y means the space of output variables.
Therefore, the main goal is, given a training set, to find a function h : X → Y (h
is also called hypothesis) so that h(x) is a “good” predictor for the corresponding
value of y.

Figure 2.4: Process of finding hypothesis in supervised learning [43]

As shown in Figure 2.4, the hypothesis h is derived by a learning algorithm. This can
be any discriminative (e.g., logistic regression) or generative machine learning algo-
rithm (e.g., Gaussian Discriminant Analysis). Moreover, Deep Learning algorithms
can be applied to approximate the function h(x).

2.2.2 Feedforward Neural Networks

In Figure 2.5, a simple architecture of a Feedforward Neural Network is displayed.
The reason why these networks are called feedforward is that the flow of information
takes place only in the forward direction (in contrast to recurrent neural networks
as we will see later) [45].

The displayed network architecture consists of an input layer, two hidden layers
and an output layer. The network is fully connected as every unit of a layer is
connected with every unit of the next layer. The learning process (training of the
neural network) can be summarized in three steps [39]:

1. For every training example, the information (input features x1, x2, . . . , xn) is
propagated through the network from the input layer to the output layer
(forward propagation) in order to make a prediction.

2. The predicted error is measured by a cost function between the predicted
output and the desired output (real values).

3. In order to minimize this cost function, we apply gradient descent and update
the weights in the network with the classical backpropagation algorithm [46].
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Figure 2.5: Architecture of Feedforward Neural Network

2.2.3 Convolutional Neural Networks

Convolutional Neural Networks belong to a family of models that try to imitate
the functionality of the visual cortex in the human brain in order to visually detect
objects [39]. The development of CNNs started back in the 1990s. At that time, the
authors of [47] proposed a novel neural network architecture to classify handwritten
digits. Due to their outstanding performance in image classification tasks, CNNs
have received increasing attention over the past years.

The main goal of a CNN is to extract relevant features from the input data (in this
case a handwritten digit) to construct a feature hierarchy. This means that low-
level features (such as pixels and edges) are extracted in the first layers and then
combined to high-level features which represent objects (such as a car or a dog) [39].

Figure 2.6: Application of Convolutional Neural Network to handwritten digit classification [48]

This can be achieved using a multilayer architecture as shown in Figure 2.6. The
CNN for handwritten digit classification consists of three different types of layers:

1. Convolutional Layer
A convolutional layer consists of multiple feature maps, each of which learns
to extract a local feature regardless of its position in the previous layer [49].



11

A basic convolution operation is applied for the feature extraction. In Figure
2.7, the leftmost matrix represents the input data (e.g., 6x6 greyscale image).
The 3x3 matrix in the middle is also called kernel or filter which is the second
element involved in the convolution operation. Beginning in the top left-
hand corner of the input matrix, the filter calculates the elementwise product
between the area of the image over which the filter is hovering and the filter
itself, followed by summing up the results to get a single number. Then, the
filter moves to the right with a certain stride value (in this example we assume
a stride value of 1) until it passes the complete width. Moving on, it jumps
down to the beginning (left) of the next row of the image and repeats this
process until the entire image is traversed [48]. However, a convolutional layer
is not limited to one filter. There are often multiple filters which produce
multiple convolved feature maps.

Figure 2.7: Convolution operation

2. Pooling Layer
The convolved feature maps (results from convolutional layer) can be further
processed by a pooling layer. Similar to convolutional layers, the purpose
of a pooling layer is to reduce the spatial size of the convolved feature that
decreases the computational power required to process the data. Additionally,
it is useful for extracting dominant features [48] and suppresses the noise in
the data. There are two different types of pooling as illustrated in Figure
2.8. Max pooling extracts the maximum value from the portion on the image
that is covered by the kernel (here we use a 2x2 kernel). In contrast, average
pooling returns the average of all the values from the portion.

Figure 2.8: Pooling operation
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3. Fully Connected Layer
After a series of convolutional and pooling layers, the final output is flattened
(converted to a single column vector) and fed to a regular feedforward neural
network. Therefore, we add one or multiple fully connected layers in order to
perform the classification using the softmax function. In case of handwritten
digit classification, there are ten different outputs representing the probabilities
that the image belongs to a specific class (numbers from 0 to 9).

2.2.4 Recurrent Neural Networks

Recurrent Neural Networks are often used in time series prediction. Time series
prediction can be defined as a process that extracts historical information and then
determines future values [50]. A basic RNN architecture is depicted in Figure 2.9.
In contrast to Feedforward Neural Networks where the information flows in one
direction (i.e., no connection between the neurons within the same layer), RNNs
allow neurons within the same hidden layer to be connected. Therefore, every hidden
unit receives two inputs, the input at the current time step (denoted as x<t>) and
the activation from the previous time step (denoted as a<t-1>). By means of this
feature, the network is able to capture the effect of prior information on the current
time step. In addition, there may be an output ŷ<t> at every time step. In an
application of Natural Language Processing (NLP) for instance [51], the RNN takes
the different words of a sentence as input x<t> and predicts for each word whether
it is a name or not. Thus, we have a prediction ŷ<t> at every time step.

Figure 2.9: Architecture of Recurrent Neural Network

Similar to Feedforward Neural Networks, the parameters (weights to calculate activa-
tions and outputs) of an RNN are adjusted using backpropagation. So, we calculate
a loss function (e.g., logarithmic loss function) by comparing the “real” values with
the predictions and minimize the loss with gradient descent. However, there are
two widely known issues when training a RNN by backpropagation, the vanishing
and exploding gradient problems (for detailed information see [52]). Consequently,
RNNs are unsuitable for modelling long-term dependencies. Long short-term mem-
ory networks can overcome this issue. LSTMs are a special category of RNNs that
introduce the application of memory cells to store information in the long-term.
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Figure 2.10: Architecture of Long Short-Term Memory cell

Figure 2.10 shows a typical architecture of a LSTM memory cell. As illustrated, the
memory cell consists of three different gates classified as input gate, forget gate and
output gate. The input gate controls how much information flows into the memory
cell whereas the forget gate determines how much information still remains in the
cell, and the output gate is responsible for deciding which information is used to
compute the output activation of the memory block and further flows into the rest
of the network [50]. These memory blocks are the main components of a LSTM
network as they replace the standard RNN blocks (see Figure 2.11).

Figure 2.11: Architecture of LSTM network

2.3 Multi-Access Edge Computing Paradigm

In recent years, the importance of new computing applications, such as virtual real-
ity and smart environments, has grown rapidly. These delay-sensitive applications
have strong delay requirements which leads to a significant problem. This problem
becomes more evident when multiple smart devices are integrated in human’s life as
for instance in case of smart cities or Internet of Things [53].
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Cloud Computing solutions [54] are unable to meet these requirements. There-
fore, Multi-Access Edge Computing technology [9] was introduced as an alternative
solution to bring cloud computing capabilities to the network edge to fulfill the
application demands of short latency and high resource-demanding [7]. Different
definitions of MEC have been proposed. In [55], Multi-Access Edge Computing
(formerly Mobile Edge Computing) is described as:

"Mobile Edge Computing is a model for enabling business oriented, cloud
computing platform within the radio access network at the close proxim-
ity of mobile subscribers to serve delay sensitive, context-aware applica-
tions."

When implementing the MEC architecture in an indoor localization system, compute-
intensive tasks can be offloaded from client devices to near edge servers. Due to the
short distance between the client and the server, the data transmission time can
be reduced and, therefore, real-time localization performance can be guaranteed [7].
Instead of replacing the cloud computing model, MEC is rather a complement by
executing delay-sensitive tasks on the MEC server while the delay-tolerant compu-
tation part can be executed on the cloud server [53].

Figure 2.12: Overview of MEC-based system [55]

Figure 2.12 shows the architecture of a MEC-based system. The system consists of
three different layers:

1. Client layer: including all types of devices (mobile devices and IoT devices)
connected to the network

2. Edge layer: MEC servers (edge cloud) as the less resourceful cloud deployed
in each of the mobile base stations

3. Cloud layer: cloud infrastructure hosted in the Internet that is able to store
a large amount of data
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Figure 2.13: Use cases of MEC-based systems [9]

Due to the many advantages of MEC, there is a large number of applications that
benefit from offloading heavy computations to near edge servers. Three main use
cases can be distinguished according to [56] and [57]. These categories are shown in
Figure 2.13 and shortly discussed in the next subsections.

2.3.1 Customer-Oriented Services

The first use case is consumer-oriented and, therefore, the end-users benefit from the
MEC by offloading computational expensive applications to an external server near
the network. In [58] for instance, the authors implemented a prototype named Edge
Accelerated Web Browsing by executing most of the browsing functions, such as con-
tents fetching, contents evaluation, layout of the contents component and rendering,
on the edge server. In terms of performance (web contents rendering time), this
approach is able to outperform the standard Android browser and Chrome browser.
Furthermore, face recognition and NLP can benefit from a MEC architecture due to
the large amount of required computational power and storage capacity. As a result,
the execution time is decreased significantly [59]. Yet another work [60] showed the
applicability of MEC for augmented reality. Conducting expensive experiments, the
authors could achieve reducing the latency up to 88% and the energy consumption
up to 93% by the computation offloading to the MEC server.

2.3.2 Operator and Third Party Services

The second use case category comprises applications that bring benefits for opera-
tors and third parties. One novel approach is described in [61] and [62] where the
MEC paradigm is applied to IoT. IoT devices are connected through various radio
technologies (e.g., 3G, LTE, Wi-Fi, etc.) using different communication protocols.
So, MEC servers can be used as IoT gateways that intend to aggregate and deliver
IoT services into highly distributed mobile base stations enabling applications to re-
spond in real time. Moreover, Nokia has recently proposed a system based on MEC
technology that is suitable for car-to-car and car-to-infrastructure communication
[63]. Roadside applications are running in the edge layer and are able to receive
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local messages directly from applications in the vehicles and roadside sensors. The
edge server then analyses this data and broadcasts warnings to nearby vehicles if
necessary with very low latency [55].

2.3.3 Network Performance and QoE Improvement Services

The third category of applications aims to optimize network performance and im-
proving Quality of Experience (QoE). For instance, MEC can be implemented in
order to conduct radio network optimization. Network optimization is defined as
the continuous process of enhancing the overall network quality [64]. Therefore, re-
lated information is collected from the client devices and processed in the edge layer.
Adjusting parameters and hardware results in a more efficient scheduling and better
support of the user demands. Additionally, MEC can also be used for mobile video
delivery optimization [65] using throughput guidance for Transmission Control Pro-
tocol (TCP). TCP suffers from its difficulty to adapt to rapidly varying conditions
on radio channels, which results in an inefficient use of resources. MEC can be used
to address this problem by introducing an analytic application (running in the edge
server) that provides a real-time estimation on the throughput to a video server.

2.4 Ultra-Wideband Radio Technology

Ultra-wideband wireless communication is a revolutionary technology for transmit-
ting large amounts of data over a wide frequency spectrum using short-pulse, low-
powered radio signals [66]. UWB has its origins in the late 1890s in the spark-gap
transmission design by Marconi and Hertz. UWB radio communication was based
on electromagnetic waves propagating from electrical sparks. The first systems were
rudimentary and not efficient in terms of spectrum usage [67]. Research has been
carried on mainly around 1960 when this technology was restricted to military and
Department of Defense (DoD) applications [66]. A significant change in the devel-
opment of UWB occurred in 2002, when the Federal Communications Commission
(FCC) of the United States reserved the unlicensed frequency band between 3.1 GHz
and 10.6 GHz for indoor UWB wireless communication systems. Afterwards, some
industrial standards such as IEEE 802.15.3a (high data rate) and IEEE 802.15.4a
(very low data rate with ranging) have been introduced based on UWB technology
[68]. FCC proposed the following definition for UWB transmission [67]:

"Any signal, which has a fractional bandwidth (Bf) larger than 0.2, or
which occupies a bandwidth (BW ) greater than 500 MHz."

The fractional bandwidth is the ratio of signal bandwidth (BW ) and center fre-
quency (fc). As shown in Figure 2.14, conventional radio signals have much smaller
fractional bandwidth as for instance the signal bandwidth is below the level of UWB.
One important consequence of using a large frequency band and low power for com-
munication is an increased channel capacity. This relationship can be explained
through Shannon’s formula [43]:

C = BW · log 2(1 +
S

N
)
bits

second
(2.2)
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This formula gives how many bits of information per time can be transmitted with-
out error over a channel with a bandwidth of BW Hz and a limited average signal
power S when the signal is exposed to an additive, uncorrelated noise of power N
with a Gaussian probability distribution [66]. This shows that the increase of the
channel capacity requires a linear increase in bandwidth whereas a similar capacity
increase would require an exponential increase in power. Thus, UWB technology is
able to transmit high data rates with very low power [66].

Figure 2.14: Power Spectrum Density (PSD) of different radio signals [67]

Due to these major characteristics, UWB can be applied in many fields. A classifi-
cation of these applications is shown in Figure 2.15.

Figure 2.15: Overview of UWB applications [67]

Among many other applications, such as Wireless Sensor Networks, Radio Frequency
Identification (RFID) or Wireless Adhoc Networking, Ultra-Wideband is used for
indoor localization. Recently, a large number of works focusing on UWB indoor lo-
calization methods have been presented [8]. There are multiple reasons that explain
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this increase in popularity [69]. The main advantage over other radio technologies
(such as Wi-Fi, Bluetooth, etc.) is that UWB radios are able to precisely differentiate
between signals that are reflected from different objects. Therefore, this technology
is very robust to the undesirable effect of multipath interference due to the fact that
it transmits short pulses over a large bandwidth. Another characteristic is the ability
of UWB pulses to effectively penetrate objects (such as walls, doors, etc.). The pen-
etration capabilities come from the lower frequency components, which were mostly
centered at 1 GHz for early UWB communication systems. However, the center
frequency for most UWB systems has essentially increased with the 2002 ruling of
FCC. Consequently, the penetration characteristics of the signals have decreased,
especially compared to the IEEE 802.11b systems, which are centered at 2.4 GHz
[70]. Furthermore, the high data rate of UWB (can reach 100 Megabits per second
(Mbps)) is advantageous for indoor localization as it is suitable for near-field data
transmission. A comparison of the maximal signal rate with other radio technologies
can be found in [71]. In [72], the author adds one more positive characteristic of
UWB to this list. Due to the low power of the signal and the even distribution over
a wide frequency spectrum, it is difficult to intercept an UWB signal. In addition,
there is no disturbance of other wireless technologies. According to [69], UWB is
the most promising technology for indoor positioning and localization.

There are different positioning algorithms that can be used in order to apply this
technology for indoor localization. In [69], these algorithms are classified into five
main categories: (1) time of arrival (TOA), (2) time difference of arrival (TDOA), (3)
angle of arrival (AOA), (4) received signal strength (RSS) and (5) hybrid algorithms.

2.4.1 TOA-based Algorithms

In TOA systems, the position of the target device is estimated based on the dis-
tance between the TAG and multiple receivers (intersection of circles as shown in
Figure 2.16). The TAG transmits a time stamped signal towards the receiving bea-
cons. When it is received, the distance is calculated from the measured transmission
time delay and the corresponding speed of the signal. This method requires precise
knowledge of the transmission start time. Therefore, all the receiving beacons are
synchronized with an accurate time source [73]. One of the disadvantages of this
approach is the need for precise time delay measurement. For this purpose, an ad-
ditional server is required, which increases the cost of the localization system.

TOA-based algorithms have been used to locate targeted objects for various applica-
tions and environments. In [74] for instance, the author introduced an UWB-based
localization system for coal mines. Using TOA-based algorithms, workers can be
effectively located in case of an emergency. In another work [75], the design of an
UWB navigation system was presented that allows mobile robots (MR) or other
mobile vehicles to autonomously navigate in indoor environments. By means of
TOA-based algorithms, the MR is able to estimate its position referred to fixed
reference points with known locations. Experiment results show that in 95% of the
measurements the estimation error is below 20cm.
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Figure 2.16: Position estimation using Time of Arrival (TOA) [69]

2.4.2 TDOA-based Algorithms

TDOA-based localization systems are based on measuring the time difference of
arrival of a signal transmitted by a target object and received by three or more re-
ceivers, see Figure 2.17. It is also possible that a single receiver determines the time
difference by measuring the delta in arrival times of two transmitted signals [69].
Each difference of arrival produces a hyperbolic curve in the localization space. By
calculating the intersection of multiple hyperbolic curves the position of the target
device can be estimated. This technique is called multilateration. In contrast to
TOA, TDOA does not require the use of a synchronized time source of transmission
in order to resolve timestamps and determine the location [73]. A disadvantage of
these algorithms is the increased need of bandwidth in comparison with other al-
gorithms due to the fact that multiple receivers share the measurement data and
collaborate to find the location of the transmitter.

A large number of UWB localization systems have been developed that apply
TDOA-based positioning algorithms. For instance in [76], the authors proposed
a centimeter-accuracy, 3D localization system using UWB technology for tracking
miniature mechanical parts within a metal enclosed space (airplane wheel). This is
achieved by implementing two UWB transmitters in a mechanical tool. This tool
rotates around the target object while the position of both transmitters is tracked by
the localization system. The moving trajectories are then used to determine the 3D
location of the mechanical part. The system implements a TDOA-based localization
algorithm and consists of four receivers (minimum number of receivers required for
3D localization with TDOA). Two technical challenges were observed during the
experiments: (1) angle-dependent waveform distortion and (2) path-overlap. The
authors concluded that for medium to low location accuracies (e.g., greater than
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10 cm) the error due to angle-dependent pulse distortion is negligible, regardless of
the timing-detection method. However, for centimeter-accuracy localization, such
errors must be reduced. In order to overcome the effect of path-overlap in dense
multipath environments, a new range estimation method was developed. See [76]
for more detailed information about these technical challenges.

Figure 2.17: Position estimation using Time Difference of Arrival (TDOA) [69]

2.4.3 AOA-based Algorithms

In localization systems that implement AOA-based algorithms, the estimation of
the signal reception angles (at least two beacons required) is compared with either
the signal amplitude or carrier phase across multiple antennas [69]. The number
of beacons can be increased (three or more) in order to improve accuracy [73]. As
indicated in Figure 2.18, the location of the target can be calculated from the inter-
section of the angle line of each reference point. AOA-based localization techniques
are limited in indoor environments. This is mainly due to the fact that they are
affected by multipath interference and NLOS propagation of signals as well as re-
flections from walls and other objects. This can significantly change the direction of
signal arrival (angle changes) and, therefore, decrease the accuracy of the localiza-
tion system. Furthermore, the cost of the AOA system implementation is increased
by the requirement of additional antennas with the capacity to measure angles [73].

AOA-based algorithms have been presented in many studies that evaluated the
performance of this technique for different applications, environments, hardware,
and configurations. In [77], a real-time localization system was introduced that is
able to define the health status of an athlete objectively. The system allows a highly
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precise localization (10 − 20cm) of the moving target device, which is worn by the
athlete. Additionally, four fixed receivers were deployed, which measure the AOA
of the UWB impulses transmitted by the target. The estimated position of the
target is then calculated from the intersection of the angle lines. Processing the
collected data from different runs allows to conclude technical considerations about
the performance of the athlete and, therefore, measure the progress or regress of
his/her physical status.

Figure 2.18: Position estimation using Angle of Arrival (AOA) [69]

2.4.4 RSS-based Algorithms

In RSS-based algorithms, signal strength of received UWB impulses is used as an
estimator of the distance between the transmitters and the receiver (target device).
Therefore, the target measures the received signal strength (RSS) of multiple UWB
transmitters. Then, the position of the target can be estimated applying either tri-
lateration or fingerprinting. Trilateration algorithms estimate the distances from the
target device to three reference nodes. Given this information, the current location
of the target can be calculated. In contrast, fingerprinting is based on collecting a
dataset of RSS fingerprints in the target environment (offline phase). Online mea-
surements are then compared with the entries in the fingerprint database to find the
closest match and, thus, the position estimation of the target object [69].
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UWB localization systems using RSS-based positioning algorithms were developed in
a large amount of literature. The authors of [78] presented a device free localization
(DFL) system that fuses UWB radios and RSS sensors in order to localize people
through a building (e.g., in case of a tactical operation or crisis situation to help
emergency personnel localize people in a room before they enter). The DFL system
consists of radio transceivers (combination of transmitter and receiver) on all four
sides of a target area. For every pair of sensor, the RSS is measured. Changes in the
RSS measurements introduced by a person near the link between a transmitter and
receiver are used for the localization process. The performance of this localization
system can be improved by adding UWB radios to the setup. Combining UWB
radios with RSS sensors, a person can still be localized through walls even when the
devices are only placed on two sides of the target area.

2.4.5 Hybrid Algorithms

Hybrid algorithms combine multiple positioning algorithms. The advantage of this
method is that the algorithms are able to complement each other and cover different
parts depending on their capabilities and strengths. In general, the overall accuracy
of a localization system based on hybrid algorithms will improve. On the other
hand, complexity and cost of the system will increase as well.

In literature, there are a lot of studies focusing on the performance of localization
systems that implemented hybrid algorithms. For instance in [79], the authors intro-
duced an indoor localization system that can be applied in a medical environment.
The aim of this work is to seamlessly combine indoor and outdoor localization in
order to track medical staff, patients or instruments. By integrating GPS and UWB
technologies along with TDOA and AOA as positioning algorithms, accurate local-
ization is provided regardless of where the person or object is in indoor or outdoor.
Experiments showed that the accuracy in indoor scenarios can be reduced to 15cm.
In contrast, the localization error outside is 10m or above.

Despite all the advantages of using UWB technology for indoor localization, there
are still some open issues prior to becoming a successful indoor localization choice [8].
Most of the works in this field focus on improving the accuracy of the localization
system. However, they rarely consider scalability aspects. Current UWB-based
localization methods are typically designed for localizing at most tens of mobile
devices and the experiments are conducted in small (office) environments or open
space areas.
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Chapter 3

System Architecture

This chapter presents the design details of our proposed MEC-based indoor local-
ization system. Figure 3.1 gives an overview of the system architecture consisting
of two different layers: Client layer and Edge layer. In our work, there is no need
for a Cloud layer. The next sections describe some further details of each layer.

3.1 Client Layer

The client layer includes multiple hardware components, such as a target device,
multiple Wi-Fi access points and UWB anchor nodes. We use a Raspberry Pi as
target device (client) that needs to be located. It is equipped with external sensors
(accelerometer, magnetometer, temperature, humidity and air pressure sensors) that
allow the measurement of motion-based and environmental information. Addition-
ally, the RP includes Wi-Fi and UWB modules so that RSSI data from every access
point and anchor node can be collected. The Wi-Fi access points and UWB anchor
nodes (also Raspberry Pis) are distributed homogenously in the area of interest in
order to cover the largest possible area. More detailed information about the hard-
ware components can be found in the next chapter. The data collection process is
conducted constantly by the TAG. Instead of sending the collected data to the edge
layer directly (as raw data), the client processes them locally to derive meaningful
insights (i.e., Wi-Fi, UWB and EMF fingerprints) [7].

The processed information is then merged into an appropriate data format (in our
case a JSON file) and sent to the edge layer via a data transmission module (Web-
Socket connection) for further processing. This architecture moves all the device-
dependent data processing, such as Wi-Fi or UWB signal processing, to the client
layer. Therefore, the edge layer is completely independent of the client device spec-
ifications which is a significant advantage as the system is able to support different
client devices. For instance, the Raspberry Pi could easily be replaced by a smart-
phone without any major modifications in the client layer as well as edge layer [7].
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Figure 3.1: Overview of the localization system components

3.2 Edge Layer

The computationally heavy localization algorithms that provide real-time indoor
locations of the target device are running in the edge layer due to the higher compu-
tation resources available in the edge server. The proposed room-level localization
algorithm is illustrated in Figure 3.2. It takes the data periodically received from
the client layer (sensor information, EMF values, Wi-Fi and UWB fingerprints) as
input. As shown in Figure 3.2, the Deep Learning localization algorithm includes
two different neural networks.

First, there is a Convolutional Neural Network which takes the input data and prop-
agates this data through multiple layers (more details about the implementation of
the algorithms can be found in the next chapter) in order to extract relevant in-
formation. In addition, the CNN aims to suppress the noise in the data due to
the temporal and spatial instability of the fingerprints. The compressed data is
then passed to the second neural network, the Recurrent Neural Network. Since
we have a time series dataset as input (a series of datapoints ordered in time), the
RNN composed of LSTM cells is capable of modelling long-term dependencies in
the data. This means that historical information about the location of the target
device is extracted and used to determine future locations. For instance, with the
knowledge that the last 100 datapoints are all labeled with the same room, the algo-
rithm learns that it is more likely that the next location of the target device will be
in the same room or a room next to it instead of one far away. Therefore, the RNN
computes probabilities for every room that the TAG could be located in. The room
with the highest probability is chosen as prediction for the actual datapoint. Finally,
all the real-time predictions are stored in a database in the edge server for further
evaluation (performance metrices). The learning of the Deep Learning localization
algorithm is an iterative process and consists of two phases, forward propagation
and backpropagation. This learning process is described in detail in section 4.2.
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Figure 3.2: Overview of the localization algorithm components

3.3 Cloud Layer

Instead of storing the results of the localization algorithm in a local database in the
edge layer, another layer (cloud layer) could be introduced which takes responsibility
for the storage of historical localization information. The data flow would then be
slightly different: The client device is continuously collecting data from on-site,
then it passes this data to the edge layer for processing (i.e., localization of the
target device). Afterwards, the processed data is sent to the cloud layer which is
located in a different geographical location (e.g., cloud infrastructure hosted in the
Internet). The main advantage of this approach is that the cloud layer enables
high-order queries over the historical localization information to provide predictive
analysis and business control. Besides this, the application could be scaled up to
several client devices gathering data from multiple scenarios and making this data
accessible anywhere in the world [7]. As we do not have to meet these requirements
of worldwide accessibility of the data and scalability in our application, there is no
cloud layer in our work.
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Chapter 4

System Implementation

In this chapter, we specify the hardware components of our system architecture in
detail. In addition, we focus on the implementation of the proposed localization
algorithm and discuss the underlying UWB communication.

4.1 Hardware Components

We have implemented a MEC-based system for accurate room recognition. The
system architecture was presented in the last chapter (Figure 3.1) and includes four
different hardware components: a target device (TAG), some commercial Wi-Fi ac-
cess points (APs), some UWB anchor nodes (ANs) and an edge server.

The TAG is the device to be localized. It is a Raspberry Pi 3 Model B [80] running
on the operating system Raspbian with a 1.2 GHz CPU and 1 GB RAM. Using
a Grove Base Hat [81] we connected a Grove Temperature and Humidity Sensor
[82] to the Raspberry Pi in order to measure environmental factors. Additionally,
the 40-pin GPIO was equipped with a Sequitur InGPS Tag Chip from the company
UNISET [83], which enables UWB communication along with acceleration and mag-
netic field readings as well as air pressure measurement. The UWB ANs that were
distributed in the area of interest are also Raspberry Pis with the same specifications
as the TAG. In contrast to the TAG, the ANs were equipped with a Sequitur InGPS
Anchor Chip instead of a Tag Chip. As for the Wi-Fi APs, we use some commer-
cial access points (D-Link DAP-2553 and TP-Link AC750) as well as the strongest
access points (APs with the highest RSSI values) which are already present in the
environment. The positions of the deployed ANs and APs in the environment were
chosen to provide the maximum coverage in the area of interest.

Our proposed localization algorithm is running on the edge server, which is a mid-end
commercial laptop with limited computational power. The communication between
client layer and edge layer was implemented by using WebSocket technology [84].
WebSocket is a communication protocol that enables a two-way communication be-
tween a client and a host. The protocol consists of an opening handshake, followed
by basic message framing.
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WebSocket is simply a layer on top of TCP and does the following [84]: It

• adds a security model for browsers,

• adds an addressing and protocol naming mechanism that supports multiple
services on one port and multiple host names on one IP address,

• layers a framing mechanism on top of TCP, and

• includes an additional closing handshake

In contrast to a HTTP connection where every action of the webserver requires
a request of the client, WebSocket allows both the server and the client to send
messages at any time without any relation to a previous request (bidirectional com-
munication). Besides this, WebSocket enables full-duplex communication – client
and server can send messages independently at the same time. These characteristics
are suitable for our application since we have to be able to send the measurement
data from the client device to the edge server at any time without opening and clos-
ing the connection every time (single TCP connection). Autobahn [85] was used to
provide WebSocket client and WebSocket server was implemented in Python Django
[86]. Table 4.1 shows the detailed specifications of each hardware component.

Component Specification

Edge Server Model: Samsung Series 9 Ultrabook
CPU: 1.8 GHz Intel Core i5-3337U
RAM: 4 GB
Architecture: 64-bit
OS: Ubuntu 18.04.1 LTS

Target Device Model: Raspberry Pi 3 Model B
CPU: Quad Core 1.2 GHz Broadcom BCM2837
RAM: 1 GB
Architecture: 64-bit
OS: Raspbian 4.14
WLAN: Wi-Fi b/g/n
UWB: Sequitur InGPS Lite Tag

Access Points Model: D-Link DAP-2553 and TP-Link AC750

Anchor Nodes Model: Raspberry Pi 3 Model B
CPU: Quad Core 1.2 GHz Broadcom BCM2837
RAM: 1 GB
Architecture: 64-bit
OS: Raspbian 4.14
WLAN: Wi-Fi b/g/n
UWB: Sequitur InGPS Lite Anchor

Table 4.1: Hardware components
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4.2 Localization Algorithms

4.2.1 Deep Learning Algorithm

In the room recognition method, we set up a Deep Learning algorithm (combination
of Convolutional Neural Network and Recurrent Neural Network as seen in the
previous chapter) using Python’s high-level neural network API Keras [87] that
runs on top of the open-source platform TensorFlow [88].

4.2.1.1 Data Collection

To build the fingerprint map, we placed the Raspberry Pi (target device) on a
SunFounder PiCar [89] that was remote-controlled by a laptop. The fingerprint
database entries were collected equally distributed over the whole area of interest
in each room. During the data collection process we gathered 55000 data points in
total, 5000 in each of the 11 rooms (independent of the size of the room). The layout
of the rooms in the area of interest is illustrated in Figure 5.2. The data collection
was restricted by the computational capabilities of the built-in Wi-Fi sensor of the
Raspberry Pi, i.e., every fingerprint entry was collected at a rate of approximately 1
entry/second. Therefore, building the fingerprint database was very time-consuming
and took about 15 hours.

Feature Description

Wi-Fi RSSI The TAG scans the surrounding Wi-Fi access
points to obtain their RSSI values. Wi-Fi RSSI
depends on the distance between the TAG and the
AP as well as some environmental factors. RSSI
is measured in dBm and the closer to 0 dBm, the
stronger the signal is.

UWB RSSI The TAG collects the RSSI values of the surround-
ing UWB anchor nodes by sending a request to
every AN which then sends back its corresponding
RSSI. The range of the UWB RSSI is identical to
the Wi-Fi RSSI.

EMF values Magnetic field values with respect to the device’s
coordinate system are measured by the Sequitur
InGPS Tag Chip attached to the TAG. However,
these values have to be converted into the earth
magnetic field values (as described above).

Temperature
Humidity
Air Pressure

Due to the dependence of the RSSI not only on
the distance between the TAG and the APs and
ANs but also on environmental factors, we mea-
sure three different meteorological parameters that
could possibly affect the RSSI. Temperature and
humidity is measured by an external sensor and
air pressure values are provided by the Sequitur
InGPS Tag Chip.

Table 4.2: Detailed description of the features
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The fingerprint instances consist of different features. We collected the Received
Signal Strength of the various Wi-Fi access points and UWB anchor nodes in the
environment. In addition, the magnetic field values were measured along with some
environmental factors, such as temperature, humidity and air pressure. A descrip-
tion of these features can be found in Table 4.2. Along with the features, every
datapoint contains a label (enumerated rooms) of the room where the measurement
was taken.

4.2.1.2 Data Preprocessing

Before training the model, data preprocessing was necessary in order to guarantee
high-quality data. This can a have significant impact on the performance of the
learning algorithm [39]. First of all, there were a few missing values in the dataset
due to the unavailability of some sensors during collection. One way to handle miss-
ing values is removing the affected datapoints. However, this might lead to the loss
of observations with valuable information. Therefore, we applied mean imputation
method instead. This works by calculating the mean of the non-missing values in
a column and then replacing the missing values (with the mean) within this col-
umn [90]. In addition, depending on the position of the TAG, some signals from
Wi-Fi access points and UWB anchor nodes were too weak to be measured by the
built-in sensors due to their large distance from the TAG. Signal strengths can range
from approximately −30dBm (strong connection) to −110dBm (no signal). In our
dataset, the lowest measured signal strength is −109dBm. Therefore, we decided to
set all undetected signals to −110dBm.

Finally, we had to apply one-hot encoding [39] in order to transform the nominal
feature ’room label’ into numeric values. As illustrated in Figure 4.1, for each
possible value (room 1, room 2, etc.) of this label, we introduced a separate dummy
variable, which takes zero or one as values. Thus, an observation with room label 1
for instance has a value of one for the newly created variable ’room 1’ and zero for
all the other dummy variables.

Figure 4.1: One-hot encoding of room labels



30

The conversion of the magnetic field values from the local coordinate system of the
RP to the world coordinate system was adapted from the Android Developer Doc-
umentation [91]. The measured magnetic field values are represented by a vector
with respect to the local coordinate system (x, y, z) where x is along the shorter side
of the device pointing right, y is along the longer side pointing up and z is perpen-
dicular to the surface pointing out (as indicated in Figure 3.1). However, when the
target device stands still and only rotates around its own axis, the magnetic field
values change and consequently the fingerprint also changes. That is not suitable
for our application since in this case the position of the TAG is still the same (so
fingerprint should not change). Therefore, we have to transform the magnetic field
values to the fixed world basis (w1, w2, w3) to get the earth magnetic field values.
This can be achieved by means of a basis change where we multiply the magnetic
field values with a rotation matrix. See more details about the derivation in [91].

4.2.1.3 Model Training

The localization algorithm was trained with the preprocessed data - we first stan-
dardized the features to zero-mean and standard deviation of one - to optimize the
internal parameters (e.g., weights). We used 80% of the data as training data and
20% as test data. However, certain parameters (called hyperparameters) that have a
significant impact on the performance of the learning-based algorithm were not opti-
mized during the training process. We used a nested cross validation [39] instead to
adjust them. Nested cross validation techniques consist of an inner and outer cross
validation. The inner cross validation intends to find the optimal hyperparameters
over a set of possible values whereas the outer cross validation estimates the gener-
alization error. We applied ten-fold cross validation on both inner and outer cross
validation [24]. According to the results of the nested cross validation, the proposed
localization algorithm has the following optimal values of hyperparameters (listed
in Table 4.3).

Hyperparameter Optimal Value
Number of convolutional layers 2
Number of filters 10
Kernel size 3x3
Padding same
Activation function tanh
Optimizer adam
Number of LSTM layers 1
Number of LSTM cells per layer 100

Table 4.3: Overview of optimal hyperparameters (combined model)

Figure 4.2 shows the implementation of the Deep Learning algorithm. When training
the model with the training data, sample after sample is propagated through the
network consisting of two convolutional layers (including a max pooling layer each),
a LSTM layer as well as a dense layer. The convolutional part of the network is
responsible for the feature extraction. This means that the data is decomposed
and simple patterns are extracted. The LSTM layer is able to include historical
information of samples that were propagated through the network earlier in order
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to calculate the output. The fully connected layer (dense layer) acts as a classifier
on top of the features. It learns how to use the features provided by convolutions
with the aim to correctly classify the samples (predict the room where it is located).
After a specific number of propagated samples (called batch size), the weights of
the network are updated. For this purpose, we use the categorical entropy as loss
function [39]:

J = −
N∑
n=1

yi ∗ log(ŷi), (4.1)

where N is the number of samples, ŷi is a vector containing the calculated proba-
bilities that the sample belongs to the different rooms and yi is the ground truth.
In order to minimize this cost function, the weights of the network are adjusted.
After training the model with all samples (from training dataset), we have the final
model, which can then be used for the online localization.

Figure 4.2: Implementation of Deep Learning algorithm
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4.2.2 Reference Algorithms

To be able to compare our indoor localization approach, we also implemented a
standard Feedforward Neural Network and a Feedforward Neural Network that has
differential RSSI values as input instead of raw values (as proposed in [2] and [6]). We
will refer to these two neural networks as the reference algorithms. The optimized
hyperparameters of these algorithms (using nested cross validation) are listed in the
Table 4.4 below.

Hyperparameter Optimal Value
Number of layers 3
Number of units per layer 5
Activation function tanh
Optimizer adam
Kernel initializer glorot uniform
Bias initializer zeros

Table 4.4: Overview of optimal hyperparameters (neural network)

4.3 Ultra-Wideband Communication

For UWB communication between the TAG and the ANs we use Sequitur InGPS
Lite (provided by the company UNISET), which enables wireless communication
between neighbouring nodes in the same network via a UWB interface. However,
UNISET does not provide full insight into the transmission techniques [92]. Here-
after, we describe the customizable parameters and known configuration.

The radio module of Sequitur InGPS Lite provides six different radio channels (listed
in Table 4.5). They differ from each other in terms of central frequency and band-
width. The central frequency ranges from about 3.5 GHz (channel 1) to 6.5 GHz
(channel 6) whereas the corresponding bandwidth is between 500 MHz and 1300
MHz. Another customizable configuration parameter is the radio mode, which de-
fines the data rate according to the IEEE 802.15.4a specification [93]. There are
three available values of 110 kbps (mode 1), 850 kbps (mode 2) and 6.8 Mbps (mode
3) to choose for the data rate. It is important that different nodes in the network
must be set on the same radio channel and radio mode to communicate correctly.
In general, a lower frequency or lower data rate allows larger operating distances
between the nodes. As a default, the Pulse Repetition Frequency (PRF) is set to
64 MHz for all the channels. Finally, the power level of the radio module can take
values between 1 (lowest value) and 63 (highest value). The transmitting power is
increased of 0.5 dB by every number.

In our application, we configured all the UWB devices (target and anchor nodes)
to operate in channel 5 with a central frequency of 6489.6 MHz and a bandwidth of
500 MHz as well as radio mode 1 with a data rate of 110 kbps. The pulse repetition
frequency (PRF) was set to the default value of 64 MHz and the transmission power
level to a maximum of 63.
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Channel Number Central Frequency [MHz] Bandwidth [MHz]
1 3494.4 500
2 3993.6 500
3 4492.8 500
4 3993.6 1300
5 6489.6 500
6 6489.6 1100

Table 4.5: Configuration options for the radio channels
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Chapter 5

Performance Evaluation

In this chapter, we describe the setup of our experiments to test the localization
algorithms. Furthermore, the experiment results are presented and analysed in
detail.

5.1 Experiment Setup

We tested our localization system in an office-like indoor scenario along complex
trajectories. The experiments were conducted in the third floor of the building of
the Institute of Computer Science at the University of Bern. An area of 702 m2

(39m x 18m) was chosen to deploy the 8 UWB ANs and 4 Wi-Fi APs (two addi-
tional access points were used that are already present in the environment). They
were distributed to cover the largest area possible. The exact positions are marked
in Figure 5.1.

Figure 5.1: ANs and APs distribution in the area of interest

The target device (Raspberry Pi) was placed on a SunFounder PiCar moving along
three different trajectories (Figures 5.3, 5.4 and 5.5). Every time a new fingerprint
was available (approximately once per second), the TAG sent this data to the edge
server where the room-level method was executed. This results in 388 measure-
ments in trajectory 1, 419 measurements in trajectory 2 and 337 measurements in
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trajectory 3. The localization algorithms (proposed Deep Learning algorithm, neu-
ral network with raw RSSI values and neural network with differential RSSI values)
predicted the room where the TAG is most likely to be located in. For that purpose,
we defined 11 zones in the area of interest. Each zone is a wall separated area (i.e.,
room or corridor). Only one corridor was split into two zones (zone 5 and 9) due to
its large size. The definition of the zones is displayed in Figure 5.2.

Figure 5.2: Zone definition in the area of interest

To evaluate the performance of our predictive models, we apply three different met-
rices: correct classification rate (prediction accuracy), F1 score and processing time.
Prediction accuracy is defined as the ratio of the correctly predicted observations to
the total number of observations. F1 score combines two performance metrices, pre-
cision and sensitivity (recall). Table 5.1 shows the relation between prediction and
actual value. Precision is defined as the number of True Positives (TP) divided by
TP and the number of False Positives (FP), i.e., the percentage of all observations
that are predicted as positive which are actually positive.

Precision =
TP

TP + FP
(5.1)

Sensitivity can be considered as the percentage of all actually positive samples which
are predicted as positive. It is defined as the ratio of the number of TP to the number
of TP and the number of False Negatives (FN).

Sensitivity =
TP

TP + FN
(5.2)

Therefore, F1 score can be written as (harmonic mean of precision and sensitivity):

F1 = 2 · sensitivity · precision
sensitivity + precision

(5.3)
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Table 5.1: Relation between prediction and actual value of observations

5.2 Experiment Results

In the following, we present the experiment results of our proposed room recognition
method in the indoor scenario. We analyse the localization results with reference
to three different metrices (prediction accuracy, F1 score and processing time) and
compare them with the results of a standard Feedforward Neural Network (one
model with raw RSSI values and one model with differential RSSI values).

Figure 5.6 shows the accuracy of room recognition for the learning algorithms in
the three trajectories. Figures 5.7 to 5.9 present the harmonic mean (F1 score) of
precision and sensitivity for every room and in Figure 5.10, the average processing
time per prediction is displayed. All classifiers are fed with the same fingerprint
data (consisting of Wi-Fi and UWB RSSI, EMF values, temperature, humidity and
air pressure). Furthermore, the hyperparameters of the models are optimized as
described in Chapter 4.

Figure 5.3: Path of trajectory 1
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Considering the prediction accuracy, our proposed Deep Learning algorithm is able
to outperform the reference algorithms in all trajectories. In the first trajectory
(see 5.3), our room recognition algorithm achieves a prediction accuracy of 98.33%
whereas the standard Feedforward Neural Network and the differential Feedforward
Neural Network classify 91.67% and 92.50% of the observations correctly. Thus, the
accuracy of our proposed algorithm is improved by 7.3% and 6.3% compared to the
reference algorithms.

Figure 5.4: Path of trajectory 2

In trajectory 2 (see 5.4), the differences between the accuracy of the three localization
algorithms are even more significant than in the first trajectory. The proposed
algorithm achieves 99.38% accuracy compared to 90.62% and 94.38% of the standard
FNN and differential FNN, respectively. This is an increase of 9.7% and 5.3%,
respectively.

Figure 5.5: Path of trajectory 3
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As for trajectory 3 (see 5.5), similar results can be observed. Here, our proposed
algorithm outperforms the reference algorithms (standard FNN achieves 90.71%
accuracy and differential FNN 95.71%) by 7.9% and 2.2%, respectively, with a pre-
diction accuracy of 97.86%. This results in an average prediction accuracy of 98.52%.

In terms of precision and sensitivity of the models, Figures 5.7 - 5.9 show that our
novel approach outperforms the existing solutions in all tested zones (i.e., rooms
and corridors) of all trajectories. In most of the zones (1, 2, 3, 4, 6, 7 and 11), the
localization algorithm is able to reach the highest F1 score possible (perfect precision
and recall) which means that all observations in these zones were predicted correctly.
However, there are other rooms (e.g., room 9) where a lower F1 score is achieved,
i.e., room 9 is one of the hardest zones to classify correctly. This can be explained
as zone 9 corresponds to a corridor where the collected fingerprints are similar to
fingerprints in neighbouring zones. Especially in border areas, the localization algo-
rithm is not able to differentiate between this corridor and an adjacent room. That
leads to higher localization errors. Nevertheless, the proposed localization algorithm
improves the F1 score in this zone by 18.3% and 5.4% (in trajacetory 2) compared
to standard FNN and differential FNN, respectively.

In addition, we introduce another metric to measure the time it takes to make a
prediction (per observation) as this is an important aspect of a real-time localization
system. As indicated in Figure 5.10, the average prediction time is very different in
all the models. However, our proposed algorithm is not able to reduce the processing
time per prediction. In contrary, the prediction of one observation lasts 820µs and
takes therefore the double and fourfold amount of time compared to the reference
algorithms. The standard FNN achieves an average processing time of 431µs and
the differential FNN reaches 258µs. This is mainly due to the higher computational
resources that are required to calculate a prediction with our model including two
different Deep Learning algorithms, Convolutional Neural Network and Recurrent
Neural Network. However, the average processing time could be decreased by of-
floading the heavy computations to the edge server in our work compared to running
the localization algorithms on the target device itself as described in [24] for instance.
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Figure 5.6: Predictive model accuracy
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Figure 5.7: Room recognition F1 score (harmonic mean) for trajectory 1
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Figure 5.8: Room recognition F1 score (harmonic mean) for trajectory 2
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Figure 5.9: Room recognition F1 score (harmonic mean) for trajectory 3
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Chapter 6

Conclusion and Future Work

In this section, we conclude our work and summarize our findings. Furthermore,
some aspects are discussed that could be tackled in future research to further improve
the room level localization system.

6.1 Conclusion

In our work, a MEC-based room level indoor localization system is presented to
achieve high room recognition accuracy in complex indoor scenarios. The Deep
Learning approach fuses Wi-Fi and UWB radio signals along with EMF values and
environmental information in a model that includes a Convolutional Neural Network
to filter out the environmental noise and a Recurrent Neural Network using LSTM
cells to model long-term dependencies in the data. The localization algorithm is run-
ning on an external server near the network edge to offload the heavy computations.
Experiment results show that our approach achieves high room level localization
accuracy (average of all three trajectories is 98.52%). Compared to previous works
in this field (e.g., [24]), our implementation is able to accomplish higher localization
accuracy and, therefore, outperforms existing approaches. Due to the short distance
between target device (Raspberry Pi) and edge server, the data transmission time
can be reduced and, therefore, the performance of the indoor localization system
(processing time per prediction) can be improved. As we include UWB radio signal
information, our model is robust to multipath effects since UWB radios are able to
differentiate between pulses that are reflected from different objects. However, this
requires the deployment of additional hardware to enable UWB communication. To
further increase the performance of our system, some improvements could be made
which are discussed in the next section.

6.2 Future Work

One problem that occurred in our implementation was the failure of UWB com-
munication between the TAG and the ANs due to long transmission distances. It
happened that at a given point in the indoor environment, we could not receive the
response of every single UWB anchor node as they were too far away from the tar-
get. The reason for that is a low UWB-AN density (i.e., low number of UWB ANs
in a large area of interest). To tackle this UWB communication issue, the UWB-AN
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density could be increased by either reducing the size of the area of interest or de-
ploying more UWB ANs. With such a modification of the system, a larger amount of
data would be available for the estimation and, therefore, the localization accuracy
could be improved. Another approach is to apply a different wireless technology to
communicate between the TAG and the ANs. For instance, ZigBee or Wi-Fi could
provide longer transmission ranges [71].

Our work is limited to the localization of one target device at a time. In order to ap-
ply indoor localization in complex buildings with multiple users, the system should
be able to scale up. To enable scalability, a cloud layer can be introduced. This
additional layer is responsible for storing historical localization information as well
as enabling high-order queries over the historical localization information to provide
predictive analysis and business control. Furthermore, multiple client devices can
be introduced to gather data from multiple scenarios. The connection between edge
layer and cloud layer could be established using WebSocket technology for instance.

Finally, it is possible that this work will be integrated with an enhanced indoor track-
ing system (similar to [7]) that applies our proposed algorithm as room recognition
method, which provides coarse-grained accuracy. Fusing with additional informa-
tion (e.g., floor plan information) in a particle filter, the tracking algorithm is then
triggered to localize the target within the predicted zone to provide highly accurate
results. We can see that our proposed localization approach is promising for the
future and can be envisioned as a basis for accurate indoor localization.
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