
Authentication, Authorization and Resource Reservation for
Distributed Laboratories

Diplomarbeit

der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Thomas Jampen

2002

Leiter der Arbeit:

Prof. Dr. Torsten Braun
Institut für Informatik und angewandte Mathematik

Leiter der Arbeit:

Prof. Dr. Torsten Braun

Institut für Informatik und angewandte Mathematik
Rechnernetze und Verteilte Systeme

Betreuer der Arbeit:

Marc A. Steinemann

Institut für Informatik und angewandte Mathematik
Rechnernetze und Verteilte Systeme

iii

iv

Zusammenfassung
Im Rahmen des “Swiss Virtual Campus” (SVC) wird ein Projekt mit dem Namen “Virtual Inter-
net Telecommunications Laboratory of Switzerland” (VITELS) durchgeführt. An diesem Projekt
sind mehrere Universitäten und Ingenieurschulen beteiligt, um gemeinsam ein virtuelles Labor
für Praktika im Bereich der Rechnernetze aufzubauen. Im Gegensatz zu herkömmlichen Labor-
arbeiten bietet dieses virtuelle Labor den Studenten dieser Hochschulen die Möglichkeit, via
Internet auch von zu Hause aus darauf zuzugreifen und somit bequem ihre Kenntnisse zum
Thema Computernetzwerke zu vertiefen. Die verschiedenen Versuche, die als ganzes das Projekt
VITELS bilden, werden im Moment unabhängig von einander an den verschiedenen Hochschulen
entwickelt.

In einer ersten Phase wurden existierende Sicherheitsarchitekturen (wie z.B. PKI und Ker-
beros) analysiert und auf ihre Tauglichkeit für das VITELS Projekt getestet. Das wichtigste Ziel
war, den Zugriff auf die Laborhardware nur autorisierten Teilnehmern zu gewähren. Da bis jetzt
jede Hochschule ihre eigene Studentendatenbank verwaltet hat, musste eine zentralisierte Daten-
bank aufgebaut oder eine Möglichkeit gefunden werden, bereits existierende Datenbanken auf
geeignete Art und Weise zu verbinden. Eine besondere Schwierigkeit stellten die beschränk-
ten Ressourcen (z.B. Router) des Praktikums dar, die nicht von mehreren Studenten gleichzeitig
konfiguriert werden können. Deshalb musste ein Online-Terminplanungssystem (Scheduling)
implementiert werden, das die Ressourcen verwaltet und registrierten Studenten die Möglichkeit
bietet, sich für bestimmte Stunden für ein spezielles Modul einzuschreiben. Während eines
solchen Timeslots hat der eingeschriebene Student das alleinige Recht, auf die Hardware zuzu-
greifen.

Es hat sich herausgestellt, dass eine Public Key Infrastruktur (PKI) die am besten geeignete
Architektur für das VITELS Projekt ist. Die hier vorgeschlagene und zusammen mit der Diplom-
arbeit “Gateway für entfernte Praktika” in die Praxis umgesetzte Architektur benutzt nur kryp-
tographisch gesicherte Verbindungen (z.B. mittes IPsec, SSL oder SSH) zwischen den Clients
und den Servern, um die persönlichen Daten der Studenten (wie z.B. Benutzernamen und Pass-
wörter) zu schützen. Für den Zugriff auf die Studentendatenbanken wird das Lightweight Direc-
tory Access Protocol (LDAP) verwendet. Das implementierte Reservationssystem erlaubt es den
Hochschulen, entweder, die benötigten Studentendaten im zentralen VITELS Verzeichnis einzu-
tragen, oder aber, einen eigenen Server zu verwalten und diesen mit dem zentralen Server durch
einen gesicherten Tunnel zu verbinden. Als Benutzerschnittstelle zu diesem Reservationssys-
tem dienen in PHP geschriebene Webseiten, welche einerseits den Studenten erlauben, online
Timeslots zu reservieren und wieder freizugeben und andererseits den Moduladministratoren er-
möglichen, solche Timeslots zur Verfügung zu stellen, Moduleinstellungen zu ändern und das
Registrierverhalten der Studenten zu kontrollieren.

vi

Abstract
Within the scope of the “Swiss Virtual Campus” (SVC) a project called “Virtual Internet Telecom-
munications Laboratory of Switzerland” (VITELS) is implemented. Several universities and en-
gineering schools are involved in this project in order to build a virtual laboratory where students
can improve their skills in the realm of computer networks. The different modules form a com-
mon online course but are developed independently by the participating universities. In contrast
to conventional laboratories, the modules provided by the VITELS project are meant to be online
available and thus, can be solved from every computer connected to the Internet.

First of all, existing security architectures (e.g. PKI, Kerberos) have been evaluated relating
to the needs of the VITELS project. An important goal was to provide access to the laboratory
resources only to authorized participants. Each university maintains its own student database
needed for the VITELS authentication. As a consequence, a common student database had to
be built or a common interface for accessing each university’s student database had to be found.
A major problem was the fact that, unforunately, the hardware resources for such an online
laboratory are limited. Therefore, an online timetable and an underlying scheduling script has
been implemented in order to provide the means for reserving timeslots during which only one
student can access a certain module.

The most appropriate security architecture has emerged to be a Public Key Infrastructure
(PKI). The developed architecture only uses cryptographically secured connections (e.g. with
IPsec, SSL or SSH). The proposed architecture uses the Lightweight Directory Access Protocol
(LDAP) in order to access the student database. The implemented scheduling system allows
the universities to deploy and maintain their own student directories that are accessed when
authenticating students. Furthermore, it offers an easy to use online user interface that allows
to reserve or to free timeslots and - to the module administrators - it provides the means to add
and remove timeslots, to change module settings and to control the registration behavior of the
students.

viii

Dedication

My diploma thesis is dedicated to Christine.

ix

x

Contents

List of Figures xiv

Abbreviations xv

Acknowledgements xvii

1 Introduction 1

2 Basic Technologies 4
2.1 Lightweight Directory Access Protocol (LDAP) 4

2.1.1 Attribute Types and Object Classes . 5
2.1.2 Schema Files . 5
2.1.3 Searching LDAP Entries . 7
2.1.4 Adding/Modifying/Deleting LDAP Entries 8
2.1.5 Filters . 8
2.1.6 Aliases . 8
2.1.7 Referrals . 9

2.2 Authentication, Authorization, Accounting . 10
2.3 Kerberos . 10
2.4 Public Key Infrastructure (PKI) . 11

2.4.1 Secure Sockets Layer (SSL)/Transport Layer Security (TLS) 12
2.4.2 Hypertext Transfer Protocol over Secure Sockets Layer (HTTPS) 13
2.4.3 Secure Shell (SSH) . 14
2.4.4 Internet Protocol Security (IPsec) . 14

3 Architecture 15
3.1 Security Architecture: Kerberos versus Public Key Infrastructure 16

3.1.1 Advantages and Disadvantages of Kerberos 16
3.1.2 Advantages and Disadvantages of a PKI 17

3.2 Proposed Security Architecture . 18
3.3 Directory Structure . 19

3.3.1 Student Entries . 21
3.3.2 Timetable . 22
3.3.3 Modules . 22

xi

3.3.4 Staff . 23

4 Implementation 24
4.1 Scheduling Script . 24

4.1.1 LDAP Queries . 24
4.1.2 LDAP Locking Mechanism . 26
4.1.3 LDAP Configuration . 27

4.2 User Interface to the Scheduling Script . 28
4.2.1 Slot Reservation and Module Administration 28
4.2.2 User Interface Configuration . 29

4.3 Cron Jobs . 29
4.3.1 Updating Each Module’s Current User 30
4.3.2 Removing Expired Timeslots . 30

4.4 VITELS Staff Directory . 31
4.5 PHP-based API for Accessing a Module’s Current User 32

5 Configuration and Usage 33
5.1 LDAP Server Configuration . 33

5.1.1 VITELS Schema File . 33
5.1.2 Slapd Configuration File . 35

5.2 Web-based User Interface . 37
5.2.1 Online Timetable and Administration Interface 37
5.2.2 VITELS Staff Website . 40
5.2.3 VITELS Staff Addressbook . 42

6 Integration of Security Architecture and Laboratory Hardware 44
6.1 Apache Authentication Based on LDAP . 44

6.1.1 Installation . 45
6.1.2 Apache Configuration . 45
6.1.3 .htaccess Files . 46
6.1.4 LDAP Directives . 46
6.1.5 Usage of auth_ldap for the VITELS Project 47

6.2 Using the API for Accessing a Module’s Current User 48
6.3 LDAP-based Shadow-File Modification . 50

7 Related Work 51
7.1 Shibboleth . 51
7.2 PAPI . 51
7.3 GASPAR . 52
7.4 FEIDHE . 52

8 Conclusions and Outlook 53
8.1 Conclusions . 53

xii

8.2 Outlook . 54
8.2.1 Reservation Limitations . 54
8.2.2 Multiple LDAP Servers . 55
8.2.3 Certificate Authorities . 56
8.2.4 VITELS for Students all Over the World 56

A Glossary 59

Bibliography 62

xiii

List of Figures

2.1 A Sample LDIF-File . 4
2.2 A List of Common Attributes and Abbreviations 5
2.3 Definition of the Attribute name . 6
2.4 Object Class Definition . 6
2.5 An Alias Entry . 8
2.6 Two Branches of a Company with Separate LDAP Servers 9
2.7 A Referral Entry . 9
2.8 Kerberos Overview . 11

3.1 General Architecture . 16
3.2 Security Architecture . 19
3.3 Domain-based Structure . 20
3.4 Organization-based Structure . 20
3.5 Directory Structure for Universities . 21
3.6 Directory Structure for VITELS-specific Entries 21
3.7 A Student Entry . 21
3.8 A Timetable Entry . 22
3.9 A Timeslot Entry . 22
3.10 A Module Entry . 23

5.1 Login Website . 37
5.2 Timetable . 38
5.3 Administration Menu . 38
5.4 Adding and Removing Timeslots . 39
5.5 Change Module Settings . 40
5.6 VITELS Staff List . 41
5.7 VITELS Staff Details . 41
5.8 Change VITELS Staff Details . 41
5.9 Change VITELS Staff Password . 42
5.10 Netscape - VITELS Staff Configuration . 42
5.11 Netscape - VITELS Staff Password . 43
5.12 Netscape - VITELS Staff Addressbook . 43

8.1 Referral Entry for Multiple LDAP Servers . 55

xiv

Abbreviations

AAA Authentication, Authorization, Accounting

AAI Authentication and Authorization Infrastructure

ACL Access Control List

AH Authentication Header

API Application Programming Interface

ASN.1 Abstract Syntax Notation number One

CGI Common Gateway Interface

DN Distinguished Name

DSS Digital Signature Standard

ESP Encapsulating Security Payload

GUI Graphical User Interface

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

HTTPS HyperText Transfer Protocol over Secured Sockets Layer

IKE Internet Key Exchange

KDC Key Distribution Center

LDAP Lightweight Directory Access Protocol

LDIF LDAP Data Interchange Format

MAC Message Authentication Code

MD5 Message Digest (one-way hash function)

xv

MIT Massachusetts Institute of Technology

PHP PHP Hypertext Preprocessor

PDF Portable Document Format

PKI Public Key Infrastructure

RFC Request For Comment

RSA Public Key Cryptosystem named by its inventors Rivest, Shamir and Adleman.

SHA Secure Hash Algorithm

SSH Secure SHell

SSL Secure Sockets Layer

SVC Swiss Virtual Campus

TCP Transmission Control Protocol

TGS Ticket Granting Service

TGT Ticket Granting Ticket

TLS Transport Layer Security

TTP Trusted Third Party

URL Uniform Resource Locator

VITELS Virtual Internet TElecommunications Laboratory of Switzerland

VPN Virtual Private Network

WWW World Wide Web

XML eXtensible Markup Language

xvi

Acknowledgements

First of all, I would like to thank everybody who contributed to the success of my diploma thesis.
Especially, I would like to thank Prof. Dr. T. Braun who gave me the possibility to carry out
my diploma thesis in his research group. Furthermore, I would like to express my gratitude to
Marc-Alain Steinemann who coordinated my diploma work with the rest of the VITELS project.
He gave me lots of hints and valuable recommendations and sacrificed a lot of his spare-time in
order to proof-read my documentation. I would also like to thank Matthias Scheidegger whose
door has always been open when I ran into trouble, Stefan Zimmerli who helped me a lot to
proceed my work with numerous interesting and fruitful discussions and Christian Heim, Peter
Geiser, Roland Trummer and Robert Casties from the Informatikdienste (ID) who helped me
with the development of the student directory structure and the integration into the productive
system. Last but not least, I would like to thank my girl-friend who has always been patient and
insightful when I had been working until late in the night or over the weekend.

xvii

xviii

1 Introduction

The medium of the late nineties and the beginning of the new century seems to be the Internet.
Almost everyone has Internet access - either at home, at work or at one of many Internet cafes.
Computer Science is considered to be important enough for being tought already at elementary
school. Our pupils’ generation is a generation where almost everyone’s parents own a computer.
Thus, the need arose of establishing or improving the possibilities of online or Distance Learn-
ing. Distance Learning, also known as Distance Education, is simply learning from a distance,
usually from home, or from any conveniently located off-campus place. Distance Learning ge-
nerally makes use of the Internet, television, videocassettes or audio tapes and the mailbox, to
deliver instructions, theory and exercises. Distance Learning also refers to on-campus classes
where the professor is not physically present, but communicating with students at several places
simultaneously via television, Internet, or some other electronic means. This work concentrates
on online Distance Working, which is based on the Internet or World Wide Web (WWW).

Nowadays, pupils and students most often use the Internet for their spare-time activities and
not for learning, because the online available material is not presented appropriately. As a con-
sequence, a lot of work has to be done in order to make Distance Learning more attractive and
efficient. A common problem with new technologies is the fact that, at the beginning, solutions
increasing the use of such technologies are not adequate enough. Adopted to the Internet this
means that under online Disance Learning one cannot understand reading regular books online
neither is it appropriate offering just lecture notes or slide-shows on the Internet. Online Distance
Learning is totally different from learning we are used to. New concepts have to be found and
evaluated and known didactical methods have to be adapted to fit the needs of online learning.

The Swiss Ministry of Education and Science recognized the problems mentioned above
and tried to coordiate the steps by funding a federal program called “Swiss Virtual Campus”
(SVC) [33]. The aim of the SVC is to improve the quality of online learning and interactive
teaching by providing web-based courses and exercises. Members of the SVC are the two Swiss
federal institutes of technology, Swiss universities of applied sciences and Swiss engineering
schools. The SVC was funded with three main goals in mind. First of all, the SVC intends to
improve the quality of student learning processes and strengthening interactive teaching. The
students should be encouraged to use all the information and resources available on the Internet
as a part of their real studies. Second, the SVC aims to improve the collaboration between the
universities, that is why several institutions are involved in each project. The third goals is to
develop high-quality teaching material and adapted methods appropriate for web-based learning.

The SVC initialized several projects for different subjects where each project should develop
a course that can be followed via the Internet and which includes teaching material, exercises,

1

seminars or practical work as well as online help. One of these projects is the “Virtual Internet
Telecommunications Laboratory of Switzerland” (VITELS) [38]. The goal of this project is to
make online Distance Learning more attractive by providing a virtual computer network labo-
ratory which can be accessed by the students via the Internet. Instead of working with several
computers and routers in a real laboratory, the VITELS project intends to offer the possibility to
setup, configure and analyse the necessary hardware from the student’s own computer. Such a
laboratory is often called remote laboratory because its users can operate from remote computers
and do not have to be at the same place where the laboratory equipment is located. The lab work
developed in this project intends to provide the students that have attended computer network
lectures the means to apply their theoretical knowledge in practical exercises. It is also planned
to provide supplementary theoretical material in addition to the practical modules. The VITELS
project tries to add a new dimension to Distance Learning by stimulating online exercises and
online laboratory work instead of just providing online theory. Furthermore, a remote lab has the
advantage of offering a much more flexible usage because the access is not restricted to office
hours.

“Each partner of the VITELS project - four universities (Bern, Fribourg, Genève and Neuchâ-
tel) and one engineering school (Fribourg) - is currently developing modules based on the own
competence and equipment. The seven modules focus on Linux System Installation and Configu-
ration, IP Network Simulation, Configuration and Performance Evaluation of a Real IP Network,
Client/Server Programming, Protocol Analysis, IP Security, and Firewall Management” [32].
Based on these seven modules a course of one semester duration can be implemented, in which
- at the University of Bern - the students can spend twelve hours for preparing, performing and
evaluating a single module. Of course, this course can be extended by additional modules. This
would allow to select certain modules depending on the particular needs of each university.

An important aspect of this university spanning project is the user and module data manage-
ment. Students from different universities need to be able to access all modules from their own
and from other universities’ computers. Thus, all involved educational institutes need to agree
on a concerted way of storing student data. The here-proposed hardware uses the Lightweight
Directory Access Protocol (LDAP) in order to access the student directories. LDAP is a very
powerful but still developing standard currently also deployed by SWITCH. Most probably the
directories of Swiss universities will be linked into the federal directory tree - developed and
maintained by SWITCH - in the near future.

A second aspect to be considered was the security architecture. Already existing architectures
such as PKI and Kerberos had to be evaluated. The most appropriate security architecture had to
be chosen based on the needs for the VITELS project but also relating to the development done
by SWITCH which influences a lot the research directions of the universities. The evaluation has
shown that a PKI seems to be the most suitable architecture for the VITELS project. There are a
lot of protocols (e.g. IPsec, SSL and SSH) that allow to secure network connections in order to
protect the student data (e.g. usernames and passwords).

Another problem that had to be solved originated in the fact that some course modules offer
the possibility of configuring real hardware. Unfortunately, the amount of available hardware is
limited and, usually, the same hardware cannot be accessed and configured by different students
at the same time. This implies that there have to be scheduling functions that allow students

2

from different educational institutes to reserve certain timeslots. The fact that it is a remote la-
boratory raises the need for an online accessible timetable with an underlying script that controls
and grants the access to the different modules. The underlying scheduling mechanism needs to
maintain a database linked to every universities’ student database. Students need to login with
a username and a password stored on their home university’s database server. The scheduling
script needs to be able to verify the login and mark potential reservations within its own database.

The goal of this diploma thesis was to deal with the above described problems and - in a first
phase - to evaluate possible solutions and potential security architectures. In a second phase,
the most suitable security architecture had to be built up and the scheduling mechanism had to
be implemented. In order to make it as convenient as possible for the students and to allow
them to reserve certain hardware for a specified duration, an online timetable that communicates
with the underlying scheduling script was programmed. After the described architecture and the
scheduling system had been developed and tested in a test network, the whole system has been
successfully transferred into the productive environment of the University of Bern. Right now, a
real-world test for students of the University of Bern has been performed successfully using the
“IP Security“ module as an example.

The structure of this paper is as follows: In the second Chapter the involved technologies
will be introduced and explained. The third Chapter presents the elaborated architecture for the
VITELS project. The implementation is described in the fourth Chapter. Chapter five points out
different LDAP configuration aspects, shows screenshots of the web-based user interface and
explains its usage. The sixth Chapter describes the integration of the chosen security architecture
and the laboratory hardware with the example of the “IP Security” module of the VITELS course.
In Chapter seven related products are mentioned and compared to the here-presented architecture,
while Chapter eight concludes this diploma thesis and gives a short outlook.

3

2 Basic Technologies

2.1 Lightweight Directory Access Protocol (LDAP)
The Lightweight Directory Access Protocol (LDAP) [27] is a lightweight client/server protocol
for accessing a directory service. It was initially used as a front-end to X.500, but can also be
used with stand-alone directory servers. LDAP is optimised for read access and, thus, is usually
deployed in environments where data is read very often but hardly changed. An Open Source [20]
project called OpenLDAP [17] offers a free LDAP implementation. To be short, Open Source
means that the source code of an Open Source project is publicly available and can be used and
changed for own purposes.

In order to import and export directory information to or from LDAP-based directory servers,
or to describe a set of changes which are to be applied to a directory, the LDAP Data Interchange
Format (LDIF) is used. LDIF files store their information in an object-oriented hierarchy. A
sample LDIF file could look like this:

Figure 2.1: A Sample LDIF-File

The first four lines define an entry for the country Switzerland, the second group of lines
determines an organization with the name Company within the country Switzerland. The third
entry specifies one employee called Max Muster of this company. Additional information like
the telephone number can be saved as well. The most important line of each entry is the line
beginning with dn, this line represents the hierarchy or - in other words - the position within
the hierarchy. For a detailed technical specification of the LDIF format see the Request for
Comments (RFC) 2849 [28].

4

2.1.1 Attribute Types and Object Classes

As Figure 2.1 showed, an LDAP entry is a group of attribute-value pairs. The most important
attribute is the distinguished name dn.

Definition 1 A distinguished name (dn) uniquely identifies an entry within the hierarchical di-
rectory. The dn consists of the entry’s name plus the path (list of entry names) back to the top of
the tree.

Each dn must be unique, because it allows you to find the corresponding entry within the tree-
like directory structure. From right to left a dn contains all the entry’s names leading from the top
level to the desired entry. Thus, the top level of the example hierarchy is the country, followed
by one (or more) organization within this country. Each organization can have subtrees like for
example employees. The directory data is represented as attribute-value pairs. Any information
that is to be stored is associated with a descriptive attribute (Figure 2.2).

Figure 2.2: A List of Common Attributes and Abbreviations

When talking about LDAP, there are two important terms: object class and attribute type.

Definition 2 An attribute type defines the data representation of an attribute. It defines how the
associated values are to be compared and ordered. Furthermore, an attribute type allows you to
define, whether an attribute can have just one single value or a set of values.

Definition 3 An object class defines the collection of attributes that can be used to define an
entry. These attributes are divided into two groups. The first group specifies attributes that must
be used in order to define a valid entry, the second group lists additional attributes that can be
used to characterize the entry.

An entry can belong to more than one object class, but must provide all required attributes
from all object classes. The entry can assign additional attributes that are listed as optional within
at least one of the object classes. All entries require the attribute objectclass that specifies
to which object class(es) an entry belongs.

2.1.2 Schema Files

Schema files are used to store the different object classes and attribute types that are available.
There are some existing schema files like for example the core.schema and the cosine.schema

5

file. The core.schema file defines the LDAP schema items specified in RFC 2251 - 2256 [29].
The cosine.schema file attempts to describe RFC 1274 [25]. These are the essential schema
files that include the most common object classes (e.g. country, organization, person,
account, etc.) and attributes (e.g. uid, userpassword, cn, etc.). The entry defining the
attribute name looks as shown in Figure 2.3.

Figure 2.3: Definition of the Attribute name

The attribute is given a globally unique number - so-called Abstract Syntax Notation number
One (ASN.1) [5] - followed by a name. For better readability, a description can be defined (DESC
parameter). Then, one has to specify how attributes of this type are compared. This is done with
the help of the EQUALITY parameter. There are several possibilities for comparing entries such
as matching numbers, matching character (case-sensitive or case-insensitive). In this example,
the case is ignored when comparing the values. The parameter SUBSTR defines how substrings
are compared. There are the same possibilities as for comparing the whole entry. Finally, the
parameter SYNTAX defines the type of the value to be saved. This large number specifies a case-
ignore string, but it could also be a case-exact string, an integer or binary data (e.g. for saving
pictures), etc. After that, between curly brackets, it is possible to define a maximum number of
characters to be stored.

An object classes definition is shown in Figure 2.4. It represents the definition of the object
class person.

Figure 2.4: Object Class Definition

Like attributes, every object class has its own unique ASN.1 number followed by the param-
eter NAME and the name of the object class. It is possible to specify another object class from
which the current object class inherits. That is done by using the parameter SUP. An LDAP entry
cannot contain more than one object class that is defined to be STRUCTURAL. This is used in
order to prevent entries from being for example a person and an organization at the same
time. There are two lists of attributes, the first specifies the attributes an entry must contain in
order to be valid and the second list defines attributes an entry is allowed to contain.

6

2.1.3 Searching LDAP Entries
LDAP searches can be influenced in many ways.

server/port First of all, the LDAP server and - if necessary - a port can be specified. The
default LDAP port is 389. If no server is specified, localhost is used.

base dn A base dn can be specified in order to limit the search to the specified directory subtree.

scope The scope of the search can be influenced by choosing either base, one or sub. Base
searches just the search attributes of the base object, which is the object specified by the
base dn. The second possibility is to perform a one level search, which considers the base
object and all objects at the next level. A subtree search is the default and searches the
whole subtree of the base object.

sort The sort option allows to specify an attribute that is to be used for sorting the results.

bind dn/bind pwd Sometimes, anonymous binding to the LDAP server is not allowed. This
means that a valid dn and the corresponding password has be supplied in order to retrieve
data.

time limit It is possible to specify a time period in seconds one is willing to wait for the results.
If the period is over, the search is canceled.

size limit The size limit can be used in order to receive at most the specified amount of entries.

attributes only Sometimes, one just needs to know whether an attribute is present in an entry
but there is no need the get its value. This options allows to limit the results to the attributes
only.

aliases LDAP allows aliases. An alias is a pointer to another entry. This parameter specifies
how alias dereferencing is done. The possible values are never, always, search and
find. This means that aliases can be dereferenced never, always, when searching the
subtree but not when locating the base object or only when locating the base object but not
when searching the subtree.

chase referrals This option can be used in order to automatically chase referrals. A referral is
an alias to a directory branch on another server (see Chapter 2.1.7).

filter A valid filter can be specified (see Chapter 2.1.5). If no filter is provided, the default
“(objectclass=*)” is used.

attributes Last but not least, it is possible to specify a list of attributes that are returned if
entries are found.
It is possible to search for a user Smith, but as a result it is only needed to know his
telephone number. As a filter one would use “(sn=Smith)” and the attribute list would
contain just the attribute telephonenumber.

7

2.1.4 Adding/Modifying/Deleting LDAP Entries
First of all, the appropriate LDAP server and the port the daemon is running on have to be
specified. In order to add, modify or delete entries, a bind dn and the corresponding password
have to be provided unless the LDAP server is configured to allow anonymous changes which is
very unlikely. These parameters are described above (see Chapter 2.1.3).

The entries to be added or changed have to be provided in standard LDIF format. Entries to
be deleted are to be specified simply by their dn.

2.1.5 Filters

After defining a base dn, the search can be further limited by providing a filter that is applied to
every entry below the base dn. If the filter matches, the entry is returned as a result. A simple
filter could be “(cn=Thomas Jampen)”. A search using this filter would result in entries
containing the attribute cn and the corresponding value Thomas Jampen. This can be used in
order to search for persons, phone numbers, etc.

Instead of providing the full value to an attribute, it is possible to use the * in order to allow
any characters. The filter “(sn=Me*er)” finds all users called Meier, Meyer, Meister, etc. It
is even allowed to specify just an attribute followed by * - e.g. “(mail=*)” - this returns just
entries that contain this attribute (e.g. just user’s that have an email address).

Combining filters is possible by connecting them either with a logical AND (“&”) or with
a logical OR (“|”). Searching every entry for a user Meyer that lives in Bern can be done with
the filter “(&(sn=Meyer)(location=Bern))”. If all users having an email address or a
fax number have to be found, the appropriate filter is “(|(mail=*)(fax=*))”. For further
details please consult the RFC 2254 [26].

2.1.6 Aliases

Aliases are used when an already existing directory entry should be present in a different lo-
cation within the same directory as well. Assuming that an employee works in two different
departments of the same company at the same time. He has already got an entry for the de-
partment A (dn: cn=Max Muster,ou=DeptA,o=Company,c=CH) and needs to have
the same entry for department B. It is not necessary to copy his data, and thus, to maintain two
identical entries for him. The entry for the department B can be an alias to the the entry of de-
partment A (Figure 2.5). There is an object class alias that has one mandatory attribute called
aliasedobjectname which takes the dn of the original entry as its value. Aliases are not
dereferenced by the server. It is the client that needs to do the dereferencing (see Chapter 2.1.3).

Figure 2.5: An Alias Entry

8

2.1.7 Referrals

It can be necessary to include a directory branch which is stored on another LDAP server into
an existing directory tree. The subtree that should be included does not need to be copied. It
it possible to place a special entry in the directory of one server linking to a subtree of another
server. Such a link is called referral. A referral is similar to an alias, just that it links to an entry
on another server.

A company, for example, has an LDAP server that stores the data of the employees working
at branch A. Another branch B of this company has its own LDAP server with the data of its
employees. The structure on the two servers might look as depicted in Figure 2.6. At branch A,
the entry shown in Figure 2.7 can be added in order to link the two servers.

Figure 2.6: Two Branches of a Company with Separate LDAP Servers

Figure 2.7: A Referral Entry

9

The referral entry contains the object classes referral and extensibleobject and,
additionally, the attribute ref containing an URL specifying the other server and the desired dn.
At the moment, the LDAP server implementation does not allow to chase the referrals automati-
cally, this can only be done by the client (e.g. the ldapsearch tool). For future LDAP versions it
is planned to include this functionality into the server.

2.2 Authentication, Authorization, Accounting
The VITELS project provides a remote laboratory to students from different educational insti-
tutes all over Switzerland. In order to control the access to the limited hardware resources, an
efficient authentication, authorization and accounting (AAA) architecture needs to be imple-
mented.

Definition 4 Authentication is the process of determining whether someone is, in fact, who he
claims to be.

Authentication is needed in order to guarantee that only registered students of the participa-
ting institutes can access the online courses.

Definition 5 Authorization is the process of giving someone permission to do something.

After a successful authentication phase the student is given access to some of the resources
based on an online timetable where students can reserve timeslots for accessing certain parts of
the lab.

Definition 6 Accounting is the process which measures the resources a user consumes or plans
to consume during his session. Accounting is used for authorization control, billing, trend ana-
lysis and capacity planning activities.

Billing and trend analysis do not have priority at the moment but could be an issue later on
when access to the lab is no longer restricted to registered students (see Chapter 8.2.4). Due
to the limited resources, accounting has to be used for authorization control. This means that
students cannot access the whole lab all at once but are just given access to a certain module
based on their online reservations.

2.3 Kerberos
Kerberos has been developed at the Massachusetts Institute of Technology (MIT). The name
Kerberos originates from Greek mythology, it is the three-headed dog that guarded the entrance
to Hades. The MIT offers a free implementation of this protocol on their homepage [12].

Definition 7 Kerberos is a network authentication protocol that is designed to provide strong
authentication for client/server applications by using secret key cryptography.

10

Figure 2.8: Kerberos Overview

Figure 2.8 shows the involved parties in a Kerberos system. A user at a client intends to get
a certain service from a service provider. The following happens:

The client sends a Ticket Granting Ticket (TGT) request to the Key Distribution Center
(KDC) which is the Kerberos server (connection 1). The KDC returns a TGT and a corre-
sponding session key - that allows the client to use this TGT - encrypted using a key generated
from the user’s password (connection 2). All user passwords are stored in a central database of
the KDC. After that, the user at the client computer is prompted for his password. His password
is used to compute the key that is able to decrypt the session key received from the KDC. If the
user enterd the correct password he obtains the TGT and its associated key. Usually, this entire
process already happens when the user logs into the client.

After receiving the TGT, the user can demand a service from a service provider. The client
asks the Ticket Granting Service (TGS) for a service ticket by sending the TGT and a service
request to the TGS (connection 3). The TGS looks in its master database for an entry for the
client and the requested service. If the entry exists, the TGS issues and returns a ticket for this
service (connection 4).

The client sends this service ticket to the service provider, that verifies the ticket using its
own service key (connection 5). If the ticket is valid, the service provider now knows the identity
of the user at the client computer and is able to provide the service (connection 6).

2.4 Public Key Infrastructure (PKI)

In the physical world, face-to-face transactions, photo identification and even written signatures
offer some protection against fraud. However, the Internet remains relatively anonymous, making
it harder to know who is at the other end of the network.

The challenge is to translate the trust conventions from the physical to the online world. A
Public Key Infrastructure (PKI) has become the de facto standard for establishing this trust over
electronic networks.

11

Definition 8 A Pulic Key Infrastructure (PKI) is a system of digital certificates and Certificate
Authorities that verify and authenticate the validity of each involved party.

Definition 9 A Certificate Authority (CA) is an authority in a network that issues and manages
security credentials and public keys for message encryption and signature verification.

Definition 10 A digital certificate consists of the public key and the identity of an entity, ren-
dered unforgeable by digitally signing the entire information with the private key of the issuing
Certificate Authority (CA).

The name Public Key Infrastructure is used because Certificate Authorities issue digital cer-
tificates by signing public keys.

Definition 11 A public key is a value that can be used to effectively encrypt messages and verify
digital signatures.

The public key can be made publicly available, it does not contain secret information. All
secret information is stored within the corresponding private key.

Definition 12 A private key is a value - known only to one party - that can be used to decrypt
encrypted messages, issue digital signatures and compute the corresponding public key.

The private key must be kept private and must not be made publicly available. Together, a
private and a public key form a key pair.
The most important services of a Certificate Authority are:

� Key Registration Issuing a new certificate for a public key after verifying the identity of
the person demanding the certificate.

� Certificate Revocation Canceling a previously issued certificate. This is usually done
when a private key is corrupted.

� Key Selection Obtaining a party’s public key. The CA provides the corresponding public
key if someone asks for a specific identity.

� Trust Evaluation Determining whether a certificate is valid and what operations it au-
thorizes.

2.4.1 Secure Sockets Layer (SSL)/Transport Layer Security (TLS)

The Secure Sockets Layer Protocol (SSL) is a protocol developed by Netscape [31] designed to
provide privacy between two communicating applications (a client and a server) by using public
key cryptography. Second, the protocol is designed to authenticate the server, and optionally the
client. SSL requires a reliable transport protocol (e.g. TCP) for data transmission and reception.

12

An advantage of the SSL protocol is that it is application protocol independent. An ap-
plication level protocol (e.g. HTTP, FTP, Telnet, etc.) can layer on top of the SSL protocol
transparently. The SSL protocol can negotiate an encryption algorithm and a session key as well
as authenticate a server before the application protocol transmits or receives its first byte of data.
All application protocol data is encrypted before transmission, ensuring privacy. The connection
provided by the SSL protocol has three main properties:

1. The connection is private. All messages are encrypted using secret key cryptography (e.g.
DES, RC4, etc.) with a session key that is defined at the beginning with an initial hand-
shake.

2. The identities can be authenticated using public key cryptography (e.g. RSA, DSS, etc.).
The server endpoint of the conversation is always authenticated, while client endpoint
authentication optionally.

3. The connection is reliable. The protocol includes a message integrity check using a Mes-
sage Authentication Code (MAC) ensuring that package alteration between client and
server is detected. The MAC is calculated using secure one-way hash functions (e.g. SHA,
MD5, etc.).

Transport Layer Security (TLS) [36] is the latest enhancement of SSL. The TLS protocol is
based on the SSL 3.0 protocol specification as published by Netscape. The differences between
this protocol and SSL 3.0 are not dramatic, but they are significant enough that TLS 1.0 and SSL
3.0 do not interoperate. The major changes are cryptographically stronger MAC computation,
larger padding (up to 256 instead of 63 bytes) and some protocol cleanup (e.g. ignoring unknown
record types, improved alert messages, etc.).

The OpenSSL project [19] offers an Open Source implementation of the SSL/TLS protocols.
The project is managed by a worldwide community of volunteers. This project is based on the
excellent SSLeay library developed by Eric A. Young and Tim J. Hudson.

2.4.2 Hypertext Transfer Protocol over Secure Sockets Layer
(HTTPS)

Hypertext Transfer Protocol over Secure Sockets Layer (HTTPS) is used in order to provide
cryptographically secure web connections. All common browsers support HTTPS. Thus, no
additional installation is needed on client side. HTTPS connections are often used for submitting
private information (e.g. credit-card numbers, personal details, etc.).

On the server side there are SSL/TLS modules for mosts of the common webservers (e.g.
Apache, Microsoft Internet Information Server, etc.). The architecture presented in this paper
uses Apache webservers [4]. There is a project called mod_ssl [15] that provides strong crypto-
graphy for the Apache webserver via the SSL/TLS protocols by the help of the OpenSSL toolkit
described above.

13

2.4.3 Secure Shell (SSH)
In order to work on remote computers, Telnet [35] was formerly used. But today it is outdated due
to security problems. Telnet sends the username and the password unencrypted over the network.
Nowadays, protocols like SSH (Secure Shell) are used. SSH provides extended Telnet function-
ality over an encrypted connection. There is an Open Source project called OpenSSH [18] that
provides a free implementation of the SSH protocol.

Linux distributions usually come with an SSH client, Windows unfortunately does not. But
there is an SSH client called MindTerm from AppGate [14] entirely programmed in Java [11].
MindTerm can be run as a stand-alone application or as an Applet within a Webbrowser. MindTerm
is available for free for personal, non-commercial, non-profit and non-governmental use.

2.4.4 Internet Protocol Security (IPsec)
IPsec stands for Internet Protocol Security. The IPsec protocols were developed by the Internet
Engineering Task Force (IETF) [10] and will be a part of IPv6. They are also being widely
implemented and used for IPv4.

IPsec uses strong cryptography in order to provide authentication, privacy and data integrity
at the protocol level of the network protocol stack. These services allow to build secure tunnels
through untrusted public networks. Everything passing through the untrusted network is en-
crypted by the IPsec gateway machine on one side and decrypted by the gateway machine on the
other end of the tunnel. The result is Virtual Private Network (VPN). IPsec uses three different
protocols:

1. AH Authentication Header provides a packet-level authentication service.

2. ESP Encapsulating Security Payload provides encryption plus authentication.

3. IKE Internet Key Exchange negotiates connection parameters, including keys, for the other
two protocols.

The here-proposed architecture uses the FreeS/WAN IPsec [8] implementation for Linux in
order to secure connections between the different servers.

14

3 Architecture

In order to provide an online laboratory - with the possibility for remote hardware setup, confi-
guration and exercises - that can be accessed by students from different educational institutes, it
is unavoidable to build a rather complex network of different types of servers and connections.
Such a distance learning architecture is depicted in Figure 3.1) and needs to contain at least the
following elements:

� Databases where student data - such as usernames, passwords, matriculation numbers,
email addresses, etc. - is stored.

� Course Servers where theory, exercises, online help and the possibility to communicate
with other participants is provided.

� Portals (entry points) where users can login in order to access the laboratory hardware.

� Laboratory hardware that can be configured or used for exercises.

� Secured connections in order to guarantee privacy by encrypting network traffic that con-
tains sensitive student data.

Every participating educational institute maintains its own student database, sets up its own
Portal Server, possibly a Course Server and provides different hardware to solve the tasks. The
here-proposed architecture is designed to stimulate collaboration between the different educa-
tional institutes. Nowadays, each institute already maintains a student database that is very often
stored on an LDAP server. For those who have not yet used LDAP, it is easy to export their data
in LDIF files.

Student data is read very often, but it is hardly changed. As LDAP is optimized for read
access, LDAP seems to be a good choice. Another good reason for using LDAP is that LDAP is
a widely accepted standard which is still being developed. Furthermore, there is a product called
OpenLDAP [17] which is free and Open Source.

Based on LDAP a rather powerful student management system with minimal administra-
tional overhead can be outlined. Student data stored in an LDAP server cannot only be used for
VITELS related tasks but allows also an LDAP-based implementation of a university-internal on-
line phone book, web-based authentication against the LDAP server, LDAP-based authentication
for the student’s email accounts and so on.

15

Figure 3.1: General Architecture

3.1 Security Architecture: Kerberos versus Public Key
Infrastructure

First of all, the most appropriate type of security architecture had to be evaluated. There are lots
of proposed security architectures available on the Internet. Most of them are not yet available
in a stable release or do not cover the needs of the VITELS project. It was important to find a
solution that could be implemented immediately. Furthermore, the VITELS project consists of
several educational institutes and, thus, requires an inter-organizational AAA architecture. The
two architectures presented here seemed to be the most elaborated security architectures. On
one side there is Kerberos, on the other side there is Public Key Infrastructre (PKI). Both have
advantages but there are also significant disadvantages on both sides.

3.1.1 Advantages and Disadvantages of Kerberos

The advantages of Kerberos are the followings:
� Kerberos provides authentication, confidentiality and data integrity.

� Passwords that are not secure enough are rejected.

� Kerberos is designed to be user-friendly, the user has to login with his password only once.

� The password is encrypted before it is transmitted, this prevents network sniffing attacks.

16

� And finally, Kerberos is Open Source and freely available.

Unfortunately, there are also disadvantages:
� Kerberos needs an especially secured environment with an online database where all the

secret keys can be stored. This is critical because if the system containing all the secret
keys is vulnerable, the entire architecture is corrupted. The centralized aspect could be
seen as an advantage, too, because it takes the responsibility of securely storing the key
from the user.

� Another, major drawback is that Kerberos relies on kerberized clients. This means that
every student needs to have special software installed on his system in order to access the
VITLES online courses. This cannot be accepted because students should not be required
to install additional software or forced to use a special operating system. And this implies
that access should be granted from every available computer, whether it is MAC, a PC or
a Unix system, whether it is at home, at the university or in an Internet cafe.

� The problem described above could have been reduced, if there had been existing Kerberos
patches for Apache [1, 2] and plugins for Netscape Communicator [16] and Internet Ex-
plorer. Some of them existed, but either they are no longer maintained, or have problems
(e.g. with Microsoft’s Internet Explorer) and have not released new versions for more than
a year now.

� Another disadvantage is the use of secret key (traditional) cryptography, which - if based
on user passwords - cannot be as secure as public key cryptography. This favors password
guessing attacks.

� There are problems with inter-realm authentication. A user from a realm A (e.g. University
of Bern) that intends to access another realm B (e.g. University of Geneva).

� Last but not least, Kerberos provides authentication, but no authorization.

3.1.2 Advantages and Disadvantages of a PKI
PKIs have lots of advantages as listed below:

� a PKI provides authentication, confidentiality and data integrity.

� In contrast to Kerberos, it offers public key cryptography. Therefore, the keys are stored on
the user’s computer, which implies that there is no need for an online accessible centralized
key database.

� Because of the use of public key cryptography, a PKI provides secure key distribution.

� Another consequence is the non-repudiation. This means that a user that has used his
private key to commit some action cannot deny this later on, because he is assumed to be
the only one that has access to his private key.

17

� Yet another important advantage is that a PKI does not require an online accessible Trusted
Third Party (TTP) that has to be protected against attacts (such as the KDC in Kerberos).

� There are lots of protocols like Secure Sockets Layer (SSL), Transport Layer Security
(TLS), Secure Shell (SSH), IPsec, etc.

� And finally, PKIs are LDAP-capable which is very welcome in the VITELS project.

The disadvantages of a PKI are:

� PKI is still developing, there are some aspects that are not entirely resolved, as for example
suspended certificates. That means certificates that are not revoked but, nevertheless, not
valid at the moment, they are suspended for later use.

� Another problem might be the online availability of an up-to-date black-list of revoked
certificates. Certificates can be revoked when assuming that the corresponding private key
has been compromised. Revoked certificates should not be used anymore and thus, the
black-list needs to be accessed every time a certificate is used.

� The advantage described above - no centralized key database - contains a negative part,
too. The user alone is responsible for the protection of his private key. At least, a few
malicious users can not corrupt the whole system, just their own accounts.

� The private key is secured by a user defined passphrase. The user cannot yet be forced to
use a cryptographically strong passphrase.

� And last but not least, one has to ensure the distribution/protection of the real root certifi-
cate. This certificate is the ultimately trusted certificate which has to be accepted by every
user, thus it must be published over and over again in different medias in order to prevent
man-in-the-middle-attacks.

3.2 Proposed Security Architecture
For the use within the VITELS project PKI seems to be more appropriate. Students ought to
be able to access the architecture without any installation and configuration effort on their part.
Every common browser supports HTTPS which uses SSL/TLS for secure communication. SSH
connections can be established through SSH Java applets which are also supported by most
common browsers. Thus, when using a PKI no additional installation is required on the student
side. As a consequence, in order to make it as convenient as possible for the students a PKI
architecture was chosen. There are existing protocols as described above that fit the needs for the
VITELS project. Figure 3.2 shows a possible architecture using these security protocols.

All connections to the LDAP and CA servers are secured with IPsec. The LDAP servers reply
to queries coming over the IPsec network interfaces and do not accept incoming requests on other
network interfaces. The IPsec tunnels are statically set, which allows every university to easily
control the database queries to their servers. Such queries can only be made from connected

18

Figure 3.2: Security Architecture

(with IPsec) servers such as the Portal Servers or the Course Servers. This solution does not
limit the advantages of an accessible student database (like for example an online phonebook)
because such applications only need to run on securely connected web servers. But it prevents
abuse, the LDAP server cannot be contacted from unwanted or unsecured servers or hosts on the
Internet.

The widespread protocols like SSL and TLS allow students and module administrators to
access the course and configuration websites, the online exercises and discussion forums over
an encrypted connection without being afraid of having an attacker sniffing the connection for
private information such as usernames, passwords, etc.

Where a direct login to laboratory hardware is necessary, the connection - and therewith
private information such as usernames and passwords, etc. - can be secured making use of the
SSH protocol. The MindTerm SSH client can be started simply by clicking on a link on a website.
The Java applet is then being launched and the secure connection can be established.

3.3 Directory Structure

In order to store the complex data used by the scheduling script a clear and simple directory
structure needs to be defined. It is also desired that the LDAP servers can later be easily integrated
into the architecture developed by SWITCH [34]. Thus, the VITELS directory structure should
conform to the directory structure developed by SWITCH.

19

As LDAP is a hierarchical database system, there must be a top level entry, a so-called root
entry. Usually, there are two approaches for an appropriate hierarchy: the domain-based and the
organization-based approach. The domain-based approach builds the directory structure based
on the Internet domain name of the company. Applied to the University of Bern this would result
in the structure shown in Figure 3.3 because the Internet domain is http://www.unibe.ch.

Figure 3.3: Domain-based Structure

The second approach represents a more natural structure. It starts with a country, followed
by organizations that are split up in organizational units (ou). In our example (see Figure 3.4) an
ou could be the Institute of Computer Science and Applied Mathematics (IAM).

Figure 3.4: Organization-based Structure

For the VITELS architecture the second approach has been chosen because it fits the di-
rections formed by SWITCH. The second approach makes an eventual integration into the tree
maintained by SWITCH easier. SWITCH also uses the second approach for its directory and as
LDAP is still being developed the assumption can be made that in the future all universities are
linked into the directory maintained by SWITCH.

Thus, each university needs to have an organizational subtree with its student data stored
inside. This tree is not strictly defined, at the University of Bern it was chosen to be as shown in
Figure 3.5. An additional subtree containing VITELS specific data needed to be defined. There
are basically three important groups of information that need to be stored in this tree: module
data, the timetable and contact and login information for the VITELS staff members (Figure 3.6).

20

Figure 3.5: Directory Structure for Universities

Figure 3.6: Directory Structure for VITELS-specific Entries

3.3.1 Student Entries

The student entries are not stored in the VITELS subtree but within the university subtree and
should at least contain the information shown in Figure 3.7.

Figure 3.7: A Student Entry

The attribute userpassword is usually stored encrypted with the standard unix crypt func-
tion. The prefix {crypt} indicates that the value is not the password itself but contains an
encrypted password. When comparing passwords, the LDAP server first encrypts the password
entered by the user and compares the two in encrypted form, because the crypt-algorithm is
designed not to allow to decrypt encrypted data within a reasonable amount of time.

21

3.3.2 Timetable

The timetable used for authorizing students to access a certain module is stored within its own
directory subtree ou=Timetable. There is a separate timetable for each module. As a conse-
quence, the next level of the tree contains entries for each module (Figure 3.8 shows an example
for module 1). The entries are just used in order to split the timetable into different sections. This
makes sense because each module maintains its own timetable. There is an attribute mid that
uniquely identifies each module. This attribute is forced by the object class module.

Figure 3.8: A Timetable Entry

On the next level, there are the entries for the actual timetable (Figure 3.9).

Figure 3.9: A Timeslot Entry

The attribute slot uniquely defines a timeslot within one module. This attribute is claimed
by the object class timetable (see Section 5.1.1). The first eight digits specified by slot
represent a date (the format is YYYYMMDD), the last four digits indicate the slots starting time
(the format is HHMM). The attribute aliasedobjectname points to the user that has reserved
this very slot.

3.3.3 Modules

The dirctory subtree ou=Modules is built in order to provide a simple interface for other ap-
plications that intend to access a module’s current user and general module settings (such as the
number of slots per day, the slot length and the starting time of a day’s first slot). Every VITELS
module needs to know its current user and, in order to prepare a new user’s session, it needs to
access the module settings. A sample module entry is shown in Figure 3.10.

This entry defines a module that allows five slots per day lasting three hours each. The first
slot starts at eight o’clock in the morning. The analogue to the user identification uid is the
module identification mid that has to be unique. The mid is mandatory because of the use of the
object class module (see Chapter 5.1.1). The object class alias - and the belonging attribute
aliasedobjectname - is used in order to provide a link to the user that is currently - at the
time of the query - allowed to access the module.

22

Figure 3.10: A Module Entry

3.3.4 Staff

The entries stored within the directory subtree ou=Staff have got the same structure as the
entries stored within the universities’ student data subtree explained above (see Chapter 3.3.1).
They contain at least the object classes person and account or alternatively the object class
alias when the entry is linked to an entry stored within a different subtree.

This subtree contains user entries or aliases to user entries for the VITELS staff. On one
side, it is used to authenticate VITELS staff members and on the other side, it serves as an online
addressbook. This addressbook can be viewed and changed on the VITELS staff website [38] or
it can be imported for example into the addressbook provided by Netscape’s Communicator. In
order to make this possible, the entries include another object class called inetOrgPerson.
Its attributes are recognized by Netscape and allow to access the directory entries from within
Netscape’s addressbook. The attributes specify values that are used in the context of the Internet,
such as email or homepage address, etc.

23

4 Implementation

4.1 Scheduling Script

As a programming language for the scheduling schript and the online timetable PHP (PHP
Hyptertext Preprocessor) [24] has been chosen because it allows to dynamically create web pages
on the server and offers a comfortable LDAP API (Application Programming Interface). PHP is a
widespread Open Source scripting language that is especially suited for web programming. PHP
can be embedded into HTML (Hypertext Markup Language) code. PHP can be used to create
usual CGI (Common Gateway Interface) scripts, but it can do even more: With PHP images,
PDF (Portable Document Format) documents and Flash animations can be dynamically genera-
ted. PHP supports XML (Extensible Markup Language) and almost every database system. PHP
can be used to directly send and receive mails and allows even to instanciate Java objects.

4.1.1 LDAP Queries

All LDAP-based operations and the main scheduling functions have been realized within the
PHP class LDAPQueries. The class is stored in a file called ldapqueries.inc.php. The
name of the file contains the extension .inc in order to make clear that this file cannot be loaded
in a browser because it contains functionality that cannot be run on its own and, furthermore, it
does not display anything. Thus, it has to be included in another .php file. The extension .php
is given for security reasons. Filenames ending with .inc are displayed in plaintext within the
browser and this could be a security problem, and as a consequence, the extension .php has
been added. As we will see later on in Chapter 4.2.2, the entire configuration is done whithin a
separate file.

The class LDAPQueries has to include this configuration file in order to access the confi-
guration variables. There is another file ldaplock.inc.php that has to be included in order
to be able to use a directory locking mechanism when reserving slots (see Chapter 4.1.2).

There are just a few global variables in the class LDAPQueries. $conn saves a link iden-
tifier for the current LDAP connection and will be used by most of the functions within this class
but should not be accessed from outside. The variable $timetable saves the reservations
extracted from the LDAP tree. It is a three dimensional array that is used later (within the file
timetable.inc.php) in order to display the online timetable. The variables $num_slots,
$first_slot and $slot_len save the current module’s specific information. This infor-
mation covers the amount of slots per day, the starting time of the first slot and the duration

24

of each slot of the current module. $module contains the current module’s id. Furthermore,
there is the variable $num_modules containing the number of modules currently available, and
$module_ids is an array that stores all the identifications for these modules. All these vari-
ables are made global for convenience in order to reduce the overhead of passing lots of variables
back and forth.

The class LDAPQueries offers functions that connect and bind to a specified LDAP server
(connect() and bind($dn, $pwd)). This class does not allow anonymous binding, that
means, in order to make successful queries you need to specify an existing distinguished name
and the corresponding password. Another function allows to properly close the connection to the
LDAP server (cleanup()).

The function get_all_modules() retrieves all currently available modules from the
LDAP tree and builds the global array module_ids and assigns the variable num_modules.
This is done in order to be able to display a list of modules the student can choose from.

There are two functions for accessing and changing module specific settings. The first one
- set_module_settings($user_data, $mid, $first, $slots, $len) - al-
lows a user whose dn and password are saved in the array $user_data to change the specified
module’s values for the first slot, the number of slots per day and the slot length. The second
function - get_module_settings($user_data, $mid) - reads these settings from the
directory tree. The user data is again used in order to authenticate the user to the LDAP server and
the module id determines which module’s settings are to be retrieved. This function in fact just
binds the user to the directory and then calls the function read_module_settings($mid)
in order to really read the data from the directory. This functionality has been split into two func-
tions because sometimes the connection to the server has already been established when module
settings need to be read.

After connecting and binding to the LDAP server, build_timetable($user_data,
$mid, $date, $show_attr) retrieves all available modules and the settings of the spe-
cified module with the help of the above described functions. This is the module the timetable
is built for. Thus, it has to be known how many slots there are per day, how long these slots
are and when the first slot begins. After that, a three dimensional array $timetable for this
module is built. This timetable represents exactly one week, beginning with the Monday speci-
fied by $date. The first dimension of the array specifies the slot time, the second dimension
determines the weekday and the third dimension is used in order store the attribute given by
$show_attr (usually the common name) of the student and another shorter value (e.g. the
user id) that can be displayed within the timetable. This function returns true, if the timetable
could have been built or false, if there are slots missing in the LDAP directory.

reservation_allowed($user_data, $mid, $slot) just checks if the speci-
fied user is allowed to bind to the server. This has to be verified because the actual reserva-
tion is done using an administrator account because ordinary students are not allowed to make
changes in the directory. This function can or should be extended if reservation limitations are
desired (see Chapter 8.2.1). This function is called by make_reservation($user_data,
$mid, $slot) which actually performs the reservation. In order to make sure that no one
else is reserving the same slot at the same time, a locking mechanism has to be used (see
Chapter 4.1.2). After successfully locking the directory, it has to be verified that the slot is

25

still unreserved because the locking procedure may take some time. Slots can be freed with
the function undo_reservation($user_data, $mid, $slot). This function first
verifies if the slot is reserved by the user that is currently trying to free it (using the function
is_reserved_by($user_data, $mid, $slot)). If that is the case, the slot is freed
using the already mentioned administrator account, if not, the administrator account is not used,
but it is tried to free the slot using the user’s own account. This procedure will succeed only, if
the user is the module administrator and, therefore, has the right to free other user’s slots. Unfor-
tunately, this cannot be checked by the program because module administrators are hard-coded
in the LDAP configuration file (see Chapter 5.1.2).

A module administrator is allowed to create and remove timeslot entries belonging to the
module(s) he administrates. By calling create_slots($user_data, $change_mid,
$from, $to, $expiry) slots can be added to the directory. It is possible, but not manda-
tory, to specify an expiration date for these slots. That means, that these slots are removed auto-
matically when they expire. The function remove_slots($user_data, $change_mid,
$from, $to) is used when an administrator removes timeslots manually. Before creating any
timeslots the starting and ending date is verified using the function verify_date($date).
This function can be extended or adapted to special needs, at the moment it just verifies that
the date is not more than one year in the past or future. After that, the desired timeslots are
added - if they do not already exist - or removed, if they in fact existed, (this is verified using
slot_exists($dn)). If the modification succeeds, the amount of added or removed slots is
returned in order to be displayed on the website, if not, it is because the user is not a module
administrator.

The function is_staff($user_data) allows to check whether a user is a VITELS staff
member. This is used in order to display the administration menu for staff members and module
administrators. As a consequence, each module administrator has to be a staff member. This
makes sense since module administrators are responsible for their module and, thus, probably
need to be contacted.

Last but not least, the function display_page($page) is used in order to display an
error page when the LDAP server cannot be contacted or the login page, if the user cannot be
bound to the server due to an invalid username or password.

4.1.2 LDAP Locking Mechanism
Given that several students are able to try to reserve the same timeslot simultaneously, the LDAP
directory has to be locked in order to prevent that one student overwrites the reservation of
another student. Due to the fact that locking is not supported by LDAP, such a locking mechanism
had to be implemented.

PHP provides a mechanism to lock files, that means one can grab the lock for exclusively
accessing a file. Unless the exclusive lock is released, no one else can access that file. For the
VITELS project this means that a lockfile has to exist permanently. Before a reserveration is
made, the program tries to grab the lock for the special file. If the lock could be acquired the
reservation is accomplished, if not the timetable on the screen is updated and will probably show
that the slot is reserved by now. After a successful reservation the lock is released.

26

The locking procedure is encapsulated within the class LDAPLock. This class just provides
the functions lock() and release(). The lock function grabs the lock if possible and times
out if the lock could not be acquired for a certain time. This is seen as a comfort to the students
because it is unpleasent to sit in front of a computer seeing the sandglass and not knowing how
long it is going to take.

4.1.3 LDAP Configuration

The file ldapconfig.inc.php contains the necessary configuration options for the schedu-
ling system. Every parameter and its meaning is described below:

$server This specifies the URL of the VITELS’ main LDAP server. This is meant to be the
server containing the VITELS subtree.

$port The port used to connect to the server.

$sizelim A size limit for entries to be returned when searching the directory. 0 is unlimited.

$timelim A time limit after which a search is canceled. 0 means unlimited.

$unibe_base The base dn for students at the University of Bern.

$unifr_base The base dn for students at the University of Fribourg.

$unige_base The base dn for students at the University of Geneva.

$unine_base The base dn for students at the University of Neuchatel.

$ingfr_base The base dn for students at the Engineering School Fribourg.

$tt_base The base dn for the timetable.

$mod_base The base dn for the modules subtree.

$staff_base The base dn for VITELS staff entries.

$dummy_uid The user id of the dummy user. This user is needed in order to keep unreserved
slots available. If an LDAP entry contains attributes with empty values, they are removed.
This is not desired, thus a dummy user has been created.

$dummy_dn The dn of the dummy user.

$dummy_data An array containing the dummy user’s data.

$login_page The name of the login page to be displayed when a user enters invalid login
information.

27

$error_page The name of the error page to be displayed when the LDAP server is not reach-
able over the Internet.

$dt_format The format of the date and time of a timeslot. Currently it is YYYYMMDD HHMM.

$bind_dn The dn of an administrator used when reserving and freeing timeslots.

$bind_pwd The password corresponding to the dn of the administrator used when reserving
and freeing timeslots.

$mail_admin The email address of the LDAP server administrator.

$lockfile The name of the lockfile. This file needs to have permissions 0644 or 0444, which
means, it has to be readable by “other”, e.g. the webserver user.

$lockdelay The delay in seconds to wait when grabing the lock for reserving a timeslot.

4.2 User Interface to the Scheduling Script

4.2.1 Slot Reservation and Module Administration

The graphical user interface (GUI) consists of several .php files. The main files are: gui.php,
login.php and ldaperror.php. All of them include the file html.inc.php that con-
tains some basic HTML functions. It provides three functions, the first one for printing a HTML
header print_html_header($title) (including basic cascading style sheet (CSS) infor-
mation for a common look and feel of the websites), the second one for printing an HTML
footer print_html_footer() that correctly terminates HTML documents, and the third
one for printing hidden fields (print_hidden_fields($user_data, $mid, $date,
$staff_view, $ldap)) that are used to store the internal state of the website. This means
that the hidden fields contain information about what action the user has performed the last time
he submitted a form by clicking on a link.

The file login.php displays a login page where students and administrators can enter their
login information such as educational institute, username and the corresponding password. The
educational institute is very important in order to determine which LDAP server to contact for
authenticating the user. The data entered in this form is submitted to the file gui.php together
with a date. This date represents the current week’s Monday. This is used in order to know which
week to display in the timetable.

The ldaperror.php file is displayed when an LDAP server cannot be contacted. It dis-
plays the information that the LDAP server might be down and shows an email address where
students can inform an administrator.

The main file is gui.php. It evaluates every parameter passed by the submitted forms.
Based on these parameters it decides, what action to perform and, thus, which part of the GUI
to display. This file includes the two files timetable.inc.php and admin.inc.php that
contain the HTML code for the timetable and for the administration menus. Furthermore, it

28

includes ldapqueries.inc.php. With the help of these included files, gui.php is able to
perform the appropriate LDAP queries in order to display the desired menu or data.

The file timetable.inc.php only contains one function that builds and displays the
timetable based on the given parameters (display_timetable($user_data, $ldapq,
$staff_view, $query, $done)). $ldapq is an object of the class LDAPQueries.
The parameter staff_view indicates whether symbols - defining reserved and free slots -
or the real names are displayed within the timetable. Of course, this option is limited to mo-
dule administrators. $query indicates whether the timetable could have been built or not
and $done contains additional information for module administrators. For ordinary students,
just the timetable is built and displayed but if a module administrator is logged in, the func-
tion display_admin_menu($isstaff, $staff_view, $done) defined in the file
admin.inc.php is called in order to display the administration menu where all possible ad-
ministrational task can be performed. These tasks cover displaying the usernames instead of
the symbols in order to see who reserved which slot, adding and removing timeslots for certain
modules and changing a module’s settings.

Last but not least, the file admin.inc.php contains three function of which one has al-
ready been described above. The two remaining functions display forms to add and remove slots
display_ar_slots($user_data, $mid, $date, $staff_view, $done) and
to change a module’s settings (display_change_mod($user_data, $mid, $date,
$staff_view, $ldapq, $done)).

4.2.2 User Interface Configuration
The configuration file guiconfig.inc.php influences the behavior and the look and feel of
the websites. Every parameter and its meaning is described below:

show_attr The attribute to be displayed in the timetable for administrators if they decide to
view the names instead of the symbols.

weekdays An array of abbreviations for the weekdays to be displayed in the timetable.

num_days How many days to display in the timetable. Usually the length of weekdays.

no_slots A sentence to display when no slots or not enough slots are available for the currently
selected module and week.

title_pre A title prefix to be displayed in the title bar of the browser for every VITELS page.

4.3 Cron Jobs
A cron job specifies a program and a point of time. At that time the given program is au-
tomatically run by the operating system. For the VITELS project two cron jobs are needed.
These cron jobs have been implemented in Perl [22]. The implementations use the Perl Module
Net::LDAP in order to access the LDAP directory.

29

4.3.1 Updating Each Module’s Current User

In order to make it as simple as possible for other educational institutes that are implemen-
ting their own applications which need to verify the current user of their module, the branch
ou=Modules,o=VITELS,c=CH has been inserted into the directory tree. Every module has
an entry, defining an alias to the current user at the time of the request. These entries have to be
always up-to-date and, thus, a program is run every minute on the server containing the VITELS
directory tree in order to check whether the current user has changed. Like that, potential changes
are straight away detected and the corresponding entry is adapted.

The steps performed by the script current_user.pl include contacting the LDAP server,
binding as an administrator and getting all available module ids. Based on these ids, each mo-
dule’s settings (such as a day’s first slot, the slot length and the number of slots) are extracted.
Based on these values, the starting time of the current slot is calculated using the function
get_current_slot_time($firstslot, $slotlen, $numslots). If there is an
available slot at the moment, its effective current user is queried from the LDAP server. Then, the
user marked as current user in the ou=Modules,o=VITELS,c=CH directory tree is queried
using the function lookup_aliasedObjectName($ldap, $dn) and is then compared
to the effective current user. If necessary, the corresponding entry is updated. At the end, the
connection the LDAP server is closed.

This Perl script is supposed to be run every minute by the cron daemon. In order to install
the current_user.pl script as a cron job, a so-called crontab file needs to be created
or edited. Assuming the script is placed in the directory /usr/local/bin the appropriate
crontab looks as follows:

file: crontab

SHELL=/bin/sh
crontab file for the VITELS project
#
check the current user every minute
m h dom mon dow command

* * * * * /usr/local/bin/current_user.pl

In order to be run as a cron job, the file current_user.pl needs to be executable. The
entries of the crontab file specify when the script is run. The first entry specifies the minute (*
means every minute), the second entry determines the hour. After that, the day of month (e.g. 13
for the thirteenth), the month itself (e.g. 4 for April) and the day of week (e.g. sun for Sunday)
can be specified. The last entry contains the path to the script and the name of the script.

4.3.2 Removing Expired Timeslots

Module administrators are able to add new timeslots to the LDAP directory tree. Generally,
timeslots that are past should be removed in order to prevent the directory from growing ad
infinitum. For the course statistics and for the behaviour of the online timetable it is convenient
to keep the timeslots for a certain time after they are past.

30

When adding new timeslots, administrators are recommended to specify an expiration date.
A daily cron job checks every existing slot and removes expired slots from the directory tree. If
an administrator omits the expiration date for certain slots, these timeslots will not be removed
automatically and have to be deleted by the administrator himself using the “add/remove time-
slots” webpage shown in Chapter 5.2.1.

After connecting to the appropriate LDAP server and binding as an administrator, all available
modules are retrieved. Based on the result, each module’s timetable is queried in order to get all
available slots. Each slot’s expires entry has to be accessed in order to determine whether or
not to remove the slot from the directory. After removing the expired slots, the connection to the
LDAP server is closed and the script terminates.

This script should be run once a day, usually during the night because the system activity is
lower as hardly any users are connected. The crontab file for this cron job looks as follows. It
is run every night at 3:42 am.

file: crontab

SHELL=/bin/sh
crontab file for the VITELS project
#
daily cleanup of expired timeslots
m h dom mon dow command
42 3 * * * /usr/local/bin/ldap_cleanup.pl

4.4 VITELS Staff Directory

As mentioned before, the VITELS website contains a section that lists all staff members and their
personal details. These HTML pages are generated by a single PHP file called staff.php. It
is divided by if-else-statements into six parts. The first part is executed when no specific
action has to be performed. It queries the ou=Staff,o=VITELS,c=CH subtree of the LDAP
server and gets all available staff members. The entries are sorted and HTML code is generated
in order to display a list of all staff members’ names and their educational institute. The second
part is executed when a single entry of the staff list has been chosen by clicking on a staff
member. The LDAP server is contacted in order to get the selected staff member’s personal
contact information. Based on this information, a table is built and displayed to the user. The
third section gets executed when a staff member intends to change his personal information. The
same table as descibed above is built and displayed but the attribute values are shown within a
textfield in order to allow modification. An additional textfield where the staff member enters
his password is appended in order to prevent other users from changing his details. If the staff
member submits the changes, the fourth section is called. The changes are sent to the LDAP
server and the user is displayed whether the changes could have been performed or not. A failure
most often results due to an invalid password, but could also result from invalid (e.g. too long)
entries. The fifth section is called when a staff member intends to change its password. A
password can only be changed, when the old password is valid and when the new password has
been entered two times without any difference. After submitting the new password, it is written

31

to the LDAP directory in the sixth part. In case of errors, appropriate information is displayed
on the website.

4.5 PHP-based API for Accessing a Module’s Current
User

In order to provide an easy to use API to other VITELS module developers, the PHP class
VitelsLDAP has been implemented. This API provides the functionality to access the subtree
ou=Modules,o=VITELS,c=CH of the LDAP directory. That is where a module’s current
user is saved.

This API contains the functions connect(), bind($dn, $pwd), and cleanup() -
that have already been described in Chapter 4.1.1 - in order to build or terminate connections
to the LDAP server. Furthermore, the functions read_module_settings($mid) and
display_page($page) have already been discussed, too. There are new functions, such
as get_current_user($mid), which retrieves the current user for the specified module
and returns his distinguished name. get_current_slot_info($mid) reads the specified
module’s settings and uses them in order to calculate the starting and ending time of the current
slot. The resulting times are stored in standard date format (seconds since January, 1

���
1970)

within an array that is returned.
The most comfortable functions are authenticate_user($dn, $pwd), which tries to

bind with the specified distinguished name and password and returns, whether that could be done
successfully, and authorize_user_for_module($mid), which must be called after a
successful authentication. It compares the current user with the authenticated user and returns
the result. Finally, there is one last function that does all the above in one function in order to
make it as simple as possible for developers who only need to get the starting and ending time
of the current slot under the condition that the specified user is, in fact, the current user and the
provided password matches. This function is called get_slot_if_current_user($dn,
$pwd, $mid).

32

5 Configuration and Usage

5.1 LDAP Server Configuration

As described in Chapter 2.1, schema files are an important part of the LDAP server configuration.
The other major part is the configuration file for the stand-alone LDAP daemon (slapd). These
files are explained in detail in the following Chapters.

5.1.1 VITELS Schema File

Within the VITELS directory subtree, module and timeslot information needs to be stored. This
information does not use a structure already used by other common directory trees. This means
that there are no appropriate object classes and attribute types for the VITELS specific entries.
Thus, a new schema file had to be created.

The following file first defines all necessary attribute types and specifies later in the context
of which object classes they can or must be used.

file: vitels.schema

VITELS schema file
#
Depends on:
core.schema
cosine.schema
#
author: Thomas Jampen <jampen@iam.unibe.ch>
created: 20011119

attributetype (1.3.6.1.4.1.9999.2.1.1 NAME ’mid’
DESC ’A string uniquely defining a module’
EQUALITY caseIgnoreMatch
SUBSTR caseIgnoreSubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{10}
SINGLE-VALUE)

attributetype (1.3.6.1.4.1.9999.2.1.2 NAME ’slot’
DESC ’A string of the form YYYYMMDD HHMM defining the beginning of a time slot’
EQUALITY caseIgnoreMatch
SUBSTR caseIgnoreSubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{13}
SINGLE-VALUE)

attributetype (1.3.6.1.4.1.9999.2.1.3 NAME ’numslots’
DESC ’An integer defining the number of timeslots/day’
EQUALITY numericStringMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.27{2}

33

SINGLE-VALUE)

attributetype (1.3.6.1.4.1.9999.2.1.4 NAME ’firstslot’
DESC ’A string defining the starting time of the first slot’
EQUALITY caseIgnoreMatch
SUBSTR caseIgnoreSubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{4}
SINGLE-VALUE)

attributetype (1.3.6.1.4.1.9999.2.1.5 NAME ’slotlen’
DESC ’A string defining the length of the slots in hours’
EQUALITY numericStringMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.27{2}
SINGLE-VALUE)

attributetype (1.3.6.1.4.1.9999.2.1.6 NAME ’expires’
DESC ’A string of the form YYYYMMDD defining when a slot expires’
EQUALITY caseIgnoreMatch
SUBSTR caseIgnoreSubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{8}
SINGLE-VALUE)

objectclass (1.3.6.1.4.1.9999.2.2.1 NAME ’module’ SUP top STRUCTURAL
DESC ’VITELS Module Object’
MUST (mid)
MAY (objectClass $ description $ numslots $ firstslot $ slotlen))

objectclass (1.3.6.1.4.1.9999.2.2.2 NAME ’timetable’ SUP top STRUCTURAL
DESC ’VITELS Timetable Object’
MUST (slot)
MAY (objectClass $ expires $ description))

The first attribute is a unique module identification mid. Currently, this is only a number but
it is defined to hold any - at most ten character - string identifying a single module. One module
cannot have more than one module identification. The attribute slot is a string consisting of
exactly thirteen digits. The format is YYYYMMDD HHMM. To be more clear, this attribute specifies
the beginning of a timeslot. It consists of a date and - after a space character - the starting time in
hours and minutes. The next four attribute types specify attributes defining the duration a single
slot, the number of slots per day, the starting time of a day’s first slot and the slot expiry date.

Below these specifications, two object classes define within which context the above at-
tributes can or must be used. The first object class has the name module. It defines the behavior
of the VITELS modules. Each module needs to have a unique module id (mid) and is allowed
to have additional information like a description, the length of the timeslots for this module, a
number of slots per day and the time of a day’s first slot. A module entry is also allowed to
contain additional object classes in order to provide extensibility. The second object class spec-
ifies a VITELS timetable object which is actually a timeslot. A timetable entry must provide
a value for the slot attribute and is allowed to give additional information for the attributes
description and expires. The attribute expires can be used in order to prevent the
directory from growing constantly as expired slots are removed automatically from the directory.
A timetable object is also allowed to specify additional object classes like for example the object
class alias with the mandatory attribute aliasedobjectname. This allows to specify an
alias (pointer) to the student who has reserved the timeslot.

34

5.1.2 Slapd Configuration File
The configuration file for the stand-alone LDAP daemon (slapd) is not presented as a whole
because a part of the configuration file is system specific and has no influence on the behavior
for the VITELS project (e.g. location of the database). Nevertheless, there are two important
parts within the configuration file slapd.conf that are mentioned here: including schema files and
access control list (ACL).

Schema Files

It is possible to include standard, as well as user-defined, schema files. As the VITELS directory
structure is well-defined, it makes sense to turn on schema checking. This means that changes to
the LDAP directory tree are only accepted if they conform to the rules specified by the included
schema files. Schema checking might be turned off when using the server for a project where
users can add entries and attributes not yet defined when starting the LDAP daemon, but this is
not the case for VITELS project. Schema files are included in slapd.conf as listed below.

Schema Files

Schema and objectClass definitions
include /etc/ldap/schema/core.schema
include /etc/ldap/schema/cosine.schema
include /etc/ldap/schema/inetorgperson.schema
include /etc/ldap/schema/vitels.schema

Schema check allows to force entries to
match the schemas specified above
schemacheck on

Access Control list

The slapd.conf file allows you to specify an access control list (ACL), where access to certain
parts of the directory tree can be limited or granted.

ACL: Students and VITELS Staff

The userPassword by default can be changed
by the entry owning it if they are authenticated.
Others should not be able to see it, except the
admin entry below
access to attribute=userPassword

by dn="uid=admin,ou=Staff,o=VITELS,c=CH" write
by anonymous auth
by self write
by * none

access to dn="uid=.*,ou=Staff,o=VITELS,c=CH"
by dn="uid=admin,ou=Staff,o=VITELS,c=CH" write
by self write
by * read

access to dn="uid=.*,ou=users,o=Universitaet Bern,c=CH"
by dn="uid=admin,ou=Staff,o=VITELS,c=CH" write
by self write
by * read

35

The first entry specifies that the attribute userPassword can be changed by the administra-
tor listed and by the owner of the entry (self). It can be used to authenticate a user, but all users
- except the admin and the owner - have got no access and thus cannot read the password. The
next two entries define the access restrictions to the staff member and the student entries. Again,
the administrator and the owner have got the right to write changes, all other users are allowed
to read the entry. It is essential that the above access restiction to the attribute userPassword
is mentioned before this one because otherwise, the password is readable by everyone.

ACL: Module Administration

Restrict module write access to the global administrator
and the module administrator
access to dn="mid=6,ou=Modules,o=VITELS,c=CH"

by dn="uid=admin,ou=Staff,o=VITELS,c=CH" write
by dn="uid=jampen,ou=Staff,o=VITELS,c=CH" write
by * read

access to dn="mid=6,ou=Timetable,o=VITELS,c=CH"
by dn="uid=admin,ou=Staff,o=VITELS,c=CH" write
by dn="uid=jampen,ou=Staff,o=VITELS,c=CH" write
by * read

access to dn=".*,mid=6,ou=Timetable,o=VITELS,c=CH"
by dn="uid=admin,ou=Staff,o=VITELS,c=CH" write
by dn="uid=jampen,ou=Staff,o=VITELS,c=CH" write
by * read

These three rules define access to the module entries in the Modules and in the Timetable
directory subtree. Such rules need to exist for each module (the example shows the rules for mo-
dule 6). The first rule describes access to one specific module within the Modules subtree,
where important module information is stored. Write access is granted to the global administra-
tor and to a specified module administrator. Each involved educational institute develops and
maintains at least one module for the VITELS project. For each module, the responsible person
should be listed here as a module administrator. Module administrators must have a VITELS
staff member entry in the Staff directoy subtree because they are recognized by the scheduling
script as administrators only if they authenticate to the Staff subtree. As a consequence, a
module administrator listed in the student directory subtree will not be shown the administration
menu below the online timetable.

The second entry specifies access to one module’s entry in the Timetable subtree. The
third entry defines the access rules for the subtree, or to be more precise, the slot entries of the
specified module. Again, write access is granted to the global administrator and to the module
administrator. Everyone else is just allowed to read the entries.

In the example above, only one module administrator is registered. Of course, there could be
more than one for each module. It is also possible to split the module administration task into
two realms. The professor, for example, could intend to define the module information (timeslot
properties), but let an assistant do the administration tasks for slot reservations. So, two different
administrators could have been listet above, one for the professor in the first entry and another
one for the assistant in the following two entries.

36

5.2 Web-based User Interface

This Chapter shows the web-based user interfaces of the implementations described in detail in
Chapter 4 and explains how they are supposed to be used.

5.2.1 Online Timetable and Administration Interface

The online timetable and the administration menu are a user interface to the scheduling script.
Due to the fact that students are visiting an online course and intend to access the timetable
through the Internet, the user interface is programmed as a set of websites that can be viewed in
every browser. The websites do not contain special code that requires certain plug-ins, they are
just shown to the user as normal HTML pages containing basic JavaScript code.

Login

At the beginning, the user (e.g. student or administrator) is prompted to enter his username and
password. He also has to choose from a pull-down list to which educational institute he belongs
(see Figure 5.1). Module administrators choose “VITELS Staff” in order to get the appropriate
privileges.

Figure 5.1: Login Website

If the login is successful, the user is directly brought to the online timetable. If not, the same
login site is displayed again.

Timeslot Reservation

After a successful login, the current week’s timetable of one module is displayed (see Figure 5.2).
There are three symbols used in order to visualize the state of each timeslot within the timetable.
A red cross indicates that the slot has already been reserved by another student. A green circle
shows that this slot is still available and can be reserved simply by clicking on the circle. The
blue check mark is used to mark slots that have been reserved by the user himself. These slots
can be freed by clicking on the blue symbol.

37

Figure 5.2: Timetable

Above the timetable the displayed week is indicated. On the left and on the right side links
have been placed in order to change to the timetable of the previous or the next week respectively.
On top, there is a list of all available modules. The module that is currently selected is marked
with a bigger font face. If a user clicks on a module id, the timetable of that module is displayed.
The time period stays the same as before changing the module. In the case that the directory
does not contain entries for the currently selected week and module, the message “no timeslots
available” is displayed instead of the timeslot information symbols.

LDAP Directory Administration

If a VITELS administrator is logged in, an administration menu is displayed below the timetable
(see Figure 5.3).

Figure 5.3: Administration Menu

An administrator is allowed to see who has reserved which slot. This allows him to track
students that reserve lots of slots and, thus, block other students. A module administrator is even

38

allowed to free slots, but only for modules he administrates. In order to free a slot he has to click
on view names first and then, select the slot he likes to free. When the administrator moves the
mouse over a username the user’s real name appears within a little window. The administrator
can only free slots, when clicking on a username whose slot he intends to free. It is not possible
to free slots without seeing the corresponding username (e.g. when seeing only the symbols).
This is done not only for error prevention but also because a module administrator should be
allowed to reserve slots as well and, thus, being able to solve the module or parts of it himself in
order to make sure everything works as planned.

When an administrator clicks on add/remove slots, he is presented a page where he can add
and remove timeslots (see Figure 5.4).

Figure 5.4: Adding and Removing Timeslots

The first field has to be filled with the module identification. Unfortunately, this cannot be
filled automatically because the access restrictions for administrators are not saved within the
LDAP directory tree but in the LDAP server’s configuration file. Thus, it is not possible for
the scheduling script to determine whether an administrator is allowed to do changes to just
a single module, to several or to none of them. This is not a security problem because if an
administrator tries to add or remove slots to or from a module that he does not administrate, the
LDAP server daemon prohibits the changes. There is a status report field in the administration
menu that reports whether and how many entries have been added or removed. The second
and third field must be filled with the date for the first and last slot to be added or removed,
respectively. The format for the date is YYYYMMDD. The last field allows the administrator to
specify an expiration date for the slots he intends to add. This field is ignored when removing
slots. A daily cron job (see Chapter 4.3.2) checks the LDAP directory tree for expired slots and
removes them automatically. Slots without expiration date will have to be removed manually
by the module administrator. Before any changes to the LDAP directory tree are performed, the
administrator is displayed a pop-up window, explaining the steps that will be executed. Now, he
has the possibility to commit the changes or to abort without changing anything.

By clicking on change module settings the administrator is shown a page where the slot
duration, the number of slots per day and the starting time of the first slot can be changed (see
Figure 5.5). Caution: This should be done only at the beginning of a semester because all
information stored within the module’s timetable will be deleted when changing these values.

39

Figure 5.5: Change Module Settings

The first field takes the identity of the module to change. Administrators are strongly recom-
mended to press the load button after entering the module identity in order to check the current
values before performing unnecessary changes. The second field takes a four digit number spe-
cifying the starting time of a day’s first slot. The format is HHMM. Starting with this time, all the
other slot times will be calculated without any break inbetween. The duration of a single slot
can be entered in the third field. Module administrators should pay attention to specify a number
representing the duration in hours. The last field allows to specify how many slots you would like
to make available per day. It is important to enter a reasonable value otherwise the execution will
fail or produce unwanted results. Before any changes to the LDAP directory tree are applied, the
administrator has to validate the changes and press the OK button in a pop-up window.

5.2.2 VITELS Staff Website

The staff list on the VITELS website [38] described in Chapter 4.4 displays the contact informa-
tion of the staff members. The first page lists all VITELS staff members (see Figure 5.6) and the
educational institute they are belonging to.

After clicking on a single entry, detailed information for this person is displayed (see Fi-
gure 5.7). The detail contain links to the homepage of the staff member, email address, phone
and fax numbers and the corresponding educational institute. The button change entry placed
below the table can be used in order to change the own personal details, while the button change
password can be used by staff members to change their own password.

The personal details are presented in the same table as described before, but the values are
written in textfield which allows staff members to make the appropriate changes (see Figure 5.8).
Each staff member can only change its own entry because a password has to be specified. The
button save changes can be used to write the changes to the LDAP directory.

When a staff member intends to change its password, the old password has to be supplied
together with the new password. This new password must be entered two times in order to
prevent mistyping (see Figure 5.9).

40

Figure 5.6: VITELS Staff List

Figure 5.7: VITELS Staff Details

Figure 5.8: Change VITELS Staff Details

41

Figure 5.9: Change VITELS Staff Password

5.2.3 VITELS Staff Addressbook

The above described staff member list can also be accessed using Netscape’s addressbook. Fi-
gure 5.10 shows the configuration window for accessing a directory. Description is the name
of the addressbook, LDAP Server takes the IP address or the domain name of the directory
server and the base dn can be specified in the Search Root field. Verify the port and check
Login with name and password if anonymous binding is not allowed.

When selecting the newly created VITELS staff directory in the addressbook list, a pop-up
window prompting for a username and a password appears (see Figure 5.11). The username
that must be entered here is the email address stored in the personal details in the directory tree.
After entering the password and clicking the OK button, the addressbook can be searched. If all
addresses should be displayed, the value for the name to search is * (see Figure 5.12).

Figure 5.10: Netscape - VITELS Staff Configuration

42

Figure 5.11: Netscape - VITELS Staff Password

Figure 5.12: Netscape - VITELS Staff Addressbook

43

6 Integration of Security Architecture
and Laboratory Hardware

The integration of the security architecture and the laboratory hardware will be shown based on
Stefan Zimmerli’s diploma thesis Gateway for a Remote Laboratory [40]. This diploma thesis is
not yet finished but it is partially described in the paper Architectural Issues of a Remote Network
Laboratory [32]. Chapter six of this paper describes the VITELS IP Security module as follows:
“The isolated laboratory network was connected to a portal server and additional connections
were made with the routers over serial links. The portal server of this prototype implementation
manages the routers and the hosts. [. . .] The IP Security module consists mainly of two parts.
In the first part students learn to configure two routers in order to set up a secured VPN tunnel
between the routers. In the second part, students have to perform measuring tasks like traffic
analysis on the VPN link [. . .] with and without encrypted traffic and analyzing traffic [. . .] to
verify whether the exchanged traffic is really encrypted.”

Students that intend to access the laboratory hardware, connect to the Portal Server using the
Java SSH Applet. From there, they are automatically redirected to the host - using the SSH proto-
col again - or to the routers - using a serial line connection. These Java Applets are launched from
a website that should be accessible by the current user only. This website can be protected using
two different means. One possibility is to integrate an Apache module that authenticates users
based on the VITELS LDAP directory, the other one is to use the PHP-based API for accessing
a module’s current user. These possible solutions are described in the following Chapters.

6.1 Apache Authentication Based on LDAP

The Apache webserver [4] offers the possibility to restrict access to certain webpages with
.htaccess files. These files can be placed within the directories to be protected from unau-
thorized access.

Usually, these files refer to a password file which looks similar to a Unix standard passwd or
shadow file. The password file contains usernames and the corresponding, encrypted password.
Everytime someone opens a browser in order to access webpages that are located within a pro-
tected directory he must enter his username and password in order to authenticate himself to the
webserver. Once authenticated, the user can access all restricted directories and subdirectories
without being prompted for the password anymore. The session holds as long as the browser is
open.

44

If an LDAP server is running, the Apache webserver can use an LDAP module in order to
access an LDAP directory. The user authentication on websites can be done with the help of the
LDAP directory instead of the password file and, thus, it is possible to reduce the administrational
overhead of maintaining an additional password file.

The proposed LDAP authentication module for Apache is called auth_ldap and was writ-
ten by Dave Carrigan [6]. auth_ldap is designed to have excellent performance and to support
Apache version 1.3.x on both Unix and Windows. The use of this module is recommended as its
configuration is easy and plain, although there are several other modules available on the web [3].
Furthermore, the new version of Apache - Apache version 2.0.x - comes with integrated LDAP
authentication support. The directives used there are exactly the same as the ones described
below. Thus, the other modules are not recommended as they use another syntax.

6.1.1 Installation

If the auth_ldap module is intended to be installed on a Debian/GNU Linux system, the
appropriate package libapache-auth-ldap can be downloaded from the Debian homepage
[13]. The following command automatically installes the package:

debian:~# dpkg -i libapache-auth-ldap_version_system.deb

It is also possible to use dselect or apt-get. Dependency problems with other packages
will be displayed automatically.

If the operating system is not Debian/GNU Linux, there is a tar.gz archive on the module’s
website [6] that can be downloaded and extracted. Further instructions for compilation can be
found on this webpage as well.

6.1.2 Apache Configuration

In order to load the module, the appropriate LoadModule directive has to be added to the
httpd.conf file:

LoadModule auth_ldap_module /usr/lib/apache/auth_ldap.so

Finally, the webserver has to be restarted using the command:

debian:~# /etc/init.d/apache restart

It has to be considered that the .htaccess files can only be used if the directives specified
within the Apache configuration file are allowed to be overridden by the .htaccess files. This
can be achieved by changing the parameter AllowOverride in the httpd.conf file from
None to AuthConfig.

45

6.1.3 .htaccess Files
An .htaccess file is a special file that can be placed within any directory below the directory
specified by DocumentRoot. This file prevents the directory and all its subdirectories from
being accessed without sucessful authentication. A simple .htaccess file looks as follows:

file: .htaccess

AuthType Basic
AuthName "Restricted Area"
AuthLDAPURL ldap://webct.unibe.ch:389/ou=users,o=Universitaet Bern,c=CH?uid
require valid-user

Most often Basic can be used for the AuthType and any quoted string for AuthName. This
string is displayed when the user is prompted for username and passoword. These two directives
are mandatory. The next line contains the LDAP server and the port followed by the base dn
from where the search will be started. After an interrogation mark, the attribute to be used for
the authentication is specified. Finally, a require directive is needed in order to indicate which
users should be accepted. In this example valid-user is used, which means that every user
can access the page if he provides a valid username and password.

6.1.4 LDAP Directives

The most important directives are listed and described here. For further details refer to the
auth_ldap homepage [6].

AuthLDAPBindDN and AuthLDAPBindPassword can be specified if the module has to
authenticate itself for performing the search.

AuthLDAPDereferenceAliases allows to specify how aliases should be dereferenced during
the LDAP operations. never, always, searching and finding are allowed. De-
fault is always. For further information see Chapter 2.1.3.

AuthLDAPEnabled allows to completely disable LDAP authentication when set to off. This
can be useful if auth_ldap is used but needed to be disabled within certain subdirecto-
ries.

AuthLDAPGroupAttribute specifies the attribute used by the LDAP server to store members
of a group. This directive can be specified multiple times. Default values are member and
uniquemember.

AuthLDAPUrl specifies the LDAP search parameters to be used. The format is the follow-
ing: ldap://server:port/basedn?attribute?scope?filter. The values
server and port specify the LDAP server to use for the search. Default is localhost
and 389, respectively. In order to list multiple servers they can be separated by spaces.
basedn specifies the base dn for all LDAP searches. attribute determines the at-
tribute that should be compared with the supplied username. The default is uid. scope

46

specifies the scope to be used for LDAP searches. Possible values are one or sub (see
Chapter 2.1.3). Default is sub. filter allows to specify a valid LDAP filter. Default is
(objectClass=*).

After the authentication directives the following authorization directives can be specified:

require valid-user allows any user that is successfully authenticated.

require user specifies a list of allowed user. A user is defined by the attribute used in the
AuthLDAPUrl.

require group allows access to any successfully authenticated user of the given group. The
group members must be listed in the attribute given by AuthLDAPGroupAttribute.
Note: The group dn must be a full dn.

require dn allows to specify distinguished names of the allowed users.

All the above described directives can be entered in a .htaccess file or within a <Location
/some/directory> directive of the httpd.conf file.

6.1.5 Usage of auth_ldap for the VITELS Project

The auth_ldapmodule allows to dereference aliases and, thus, can be configured to check the
ou=Modules,o=VITELS,c=CH directory subtree. This allows the use of Apache authenti-
cation in order to restrict access to certain webpages to the currently registered student. A sample
.htaccess file looks as follows:

file: .htaccess

AuthType Basic
AuthName "Restricted Area"
AuthLDAPDereferenceAliases finding
AuthLDAPEnabled on
AuthLDAPURL ldap://webct.unibe.ch:389/mid=6,ou=Modules,o=VITELS,c=CH?uid
require valid-user

Alias dereferencing is set to finding in order to dereference already the base object because
the aliased entry is directly specified in the base dn mid=6,ou=Modules,o=VITELS,c=CH.
Then, authentication is enabled. After that, the LDAP server and the port are specified, followed
by the base dn - pointing to the module to be accessed - and the attribute to search for (uid).

This .htaccess file can be placed in the directory containing the webpages that load the
Java SSH Applets. This prevents unregistered users from accessing the course and the Applet.

47

6.2 Using the API for Accessing a Module’s Current
User

In order to send cookies with slot information to the browser when students visit a module’s
website, the module’s current user and the corresponding slot settings have to be accessible. The
file vitelsldap.inc.php offers an easy to use interface in order to check whether a user is
the current user of a module, whether the supplied password is correct and what the starting time
and the ending time of the current slot is.

The needed functionality is provided by the class VitelsLDAP which has already been
described in detail in Chapter 4.5. There are several functions that can be calledin this API,
but the most convenient way to verify a current user and to get the slot boundaries is to use the
function get_slot_if_current_user($dn, $pwd, $mid). This function returns an
array containing the starting and ending time of the slot only if the user specified by $dn is
the current user of the module $mid and if his password stored in $pwd is correct. Otherwise,
false is returned.

file: APIexample1.php

<?php

require(’vitelsldap.inc.php’);

// when composing the dn make sure you know from which
// institute the user comes!
// choose one of:
// $unibe_base, $unifr_base, $unige_base, $unine_base, $ingfr_base
$dn = "uid=ausername,$unibe_base";

$pwd = "some-password";

// for example module 6
$mid = "6"

// access to the LDAP directory
$ldap = new VitelsLDAP();
$result = $ldap->get_slot_if_current_user($dn, $pwd, $mid);

if ($result) {
// the date is specified as seconds since 1.1.1970
$starting_time = $result["starttime"];
$ending_time = $result["endtime"];

// get printable date, e.g. 20020426 1830
$start = date("Ymd Hi", $starting_time);
$end = date("Ymd Hi", $ending_time);

// ...
}
else {

print "wrong password or not current user!";
}

// ...

?>

48

The above code shows a little example on how to use the class VitelsLDAP. The distin-
guished names for the different educational institutes are saved in the variables $unibe_base,
$unifr_base. $unige_base, $unine_base and $ingfr_base. In order to create a
valid dn the string uid=ausername, has to be prepended to one of the base dns. After that, an
new instance of the class VitelsLDAP has to be created in order to access the above described
function. The starting and ending times returned within the array are represented as the seconds
past since January, 1

���
1970. They can be easily converted to the preffered format using the PHP

date($format, $time) function. The $format variable contains a string specifying the
desired time format. In the above example “Ymd Hi” is used in order to get a date formatted as
follows: 20020426 1830. Other possible formats are described on the PHP homepage [23].

Another useful function is authenticate_user($dn, $pwd) which returns true is
returned if the user specified by $dn is registered and if the password given by $pwd is valid.
In order to authenticate a user, the connection to the LDAP server has to be established al-
ready. This can be done using the function connect(). After successful authentication, the
user has to be authorized for accessing the desired module. In order to do that, the function
authorize_user_for_module($mid) can be called. This function returns true if the
authenticated user is, in fact, the current user of the module specified by $mid. After the autho-
rization, the LDAP connection can be closed using the function cleanup(). The code below
shows a little example.

file: APIexample2.php

<?php

require(’vitelsldap.inc.php’);

$dn = "uid=ausername,$unibe_base";
$pwd = "some-password";
$mid = "6"

$ldap = new VitelsLDAP();
$ldap->connect();

if ($ldap->authenticate_user($dn, $pwd)) {
if ($ldap->authorize_user_for_module($mid)) {

// authorization successful
// ...

}
else {

print "not current user!";
}

}
else {

print "wrong password!";
}

$ldap->cleanup();

?>

The second file provided with this little API is ldaperror.php. This file contains the
HTML code for an error message to display if the LDAP server is not reachable at the moment.

49

6.3 LDAP-based Shadow-File Modification
The laboratory hardware of module 6, IP Security, is placed in a local network and, thus, is not
accessible from the Internet directly. The connections have to be established through the Portal
Server. On the Portal Server a shell account for each laboratory resource has been created (e.g.
user cisco2600 for the cisco 2600 router or user host1 for the host with the name host1, etc.).
A login to the Portal Server with one of these login names is redirected to the corresponding
laboratory resource. This can be easily done by setting the default shell of these users to a
program used to communicate with the routers or hosts (e.g. SSH for accessing the hosts or
Minicom for connecting to the routers).

The problem is, that always the same username has to be used for connecting to a certain
router or host, because the Portal Server determines where to redirect the request by the username
used for the login. As a consequence, students are not able to log in with their own username
and password. In order to grant access only to the user that has currently reserved the timeslot,
the passwords of these special users cisco2600, host1, etc. have to be changed at the end of a
slot or when a student frees the slot before the slot is over. The simplest solution is to change the
passwords for the redirection users always to the password - stored in the LDAP directory - of
the current user. To be more precise, the user that has reserved the current slot of the specified
module can login to the routers and hosts by specifying the corresponding username and his own
password. His password is only valid during his timeslot and will be replaced by the password
of the succeeding slot’s user.

In Unix environments passwords are stored in the shadow file. This file has to be changed by
a script for updating the password of the special users. This script has been implemented in Perl
and is called update_shadow.pl. It retrieves the current user of the specified module and
writes his password into the shadow file. Additionally, the script removes temporary files and
closes open connections to the laboratory resources if the current user has changed.

This script has to be installed as a cron job in order to make sure that changes are recognized
immediately. Such a cron job needs to be run every minute and not only, when the slot changes
because imagine a student that finishes his work before the slot is over. If he is fair enough to
free the slot in order to allow other students to reserve this very slot, such a change would not be
recognized. Thus, the appropriate crontab file looks as follows:

file: crontab

SHELL=/bin/sh
crontab file for the VITELS project
#
check for current user every minute and update shadow if necessary
m h dom mon dow command

* * * * * /usr/local/bin/update_shadow.pl

50

7 Related Work

7.1 Shibboleth

Shibboleth is a project of Internet2/MACE (Middleware Architecture Committee for Education)
and IBM. The aim of Shibboleth [30] is to develop an architecture that controls web access
based on already defined security standards. Shibboleth intends to provide authentication and
authorization for web-based applications. Accounting is not planned to be included.

Shibboleth has the advantage that inter-institutional authentication and authorization has been
included from the beginning. A user is able to control which information is transmitted to which
resource. Authentication is done by the user’s home organization, authorization by the resource
provider. Another advantage is that Shibboleth seems to be a scalable architecture that will be
released as Open Source.

The disadvantages are that Shibboleth is designed for web-based applications only. It depends
on HTTP redirection which means that Shibboleth is limited to browser applications and does not
allow to control direct connections to the hardware as needed in the VITELS project. Shibboleth
uses hardcoded answers, an LDAP back-end is not (yet) supported. Furthermore, Shibboleth
is not yet stable, the alpha version has just been released. That makes it impossible to deploy
Shibboleth for the VITELS project because the VITELS project needs a stable solution now.

7.2 PAPI

The Point of Access to Providers of Information (PAPI) system [21] provides control mecha-
nisms for accessing restricted information resources in the Internet. It does not specify a single
authentication mechanism, each organization is able to use its own scheme. Based on this authen-
tication mechanism, the organization provides the required attributes for access control decisions
to the information providers. These access control mechanisms are designed to be transparent to
the user and ought to be compatible with the most common web browsers. After a successful au-
thentication the user gets a list containing URLs of available resources and timeslot information
for each resource. In the meantime, all necessary points of access are contacted and a webpage
informs about the authentication results for the different resources. Now, the user is able to
access the resources during the specified timeslot.

Advantages are that there is no need for additional software on the user’s side, common au-
thentication schemes can still be used, no adaptions to new schemes are needed and the software

51

is freely available. Furthermore, PAPI is already operational in Spain in order to control access
to libraries.

The disadvantages are the followings: The system is designed to be web-based and does not
support access mechanisms to laboratory hardware. It is assumed that the desired resources are
stored on webservers. The authentication server of the home organization has to know all the
available services for each employee, because a list of these services has to be sent to the user.
All available points of access need to be accessed after authentication in order to perform the
authorization. This list of resources will presumably be rather large, while a user is - for the
moment - only interested in a small subset. This implies that this architecture will not scale very
well. Furthermore, the distribution of the list of available services to all points of access might
be seen as a privacy problem.

7.3 GASPAR
GASPAR (Guichet d’Accès Sécurisé aux Prestations Administratives et autres Ressources) is a
system used to authenticate students and professors at the EPFL (École Polytechnique Fédérale
de Lausanne) [9]. Users are identified by GASPAR using a unique ID called SCIPER and a cor-
responding password or by cookie, if present. If a user intends to access restricted information,
the application server redirects him to GASPAR in order to get a valid session identifier stored in
a cookie. GASPAR redirects the user back to the application server that verifies the cookie and
redirects the user to the desired resources.

GASPAR is a simple but working, home-made solution. But it is limited to a single organiza-
tion. An extension to a global Authentication and Authorization Infrastructure (AAI) requires a
major re-implementation. This makes it unusable for the VITELS project as inter-organizational
use is mandatory and a working solution is needed now.

7.4 FEIDHE
FEIDHE is a project of the Finnish higher education [7]. The goal is to implement a PKI based
on user identification with smart cards. These smart cards are mainly used for storing certificates.

Of course, the FEIDHE project offers interesting experiences in deploying a PKI using smart
cards, because smart cards might be one of the main technologies of the future. But on the
other hand, this is a major disadvantage because the whole architecture depends on smart cards.
As Swiss educational institutes already use different mechanisms of identifying students, they
cannot be forced to change to smart cards immediately and, thus, FEIDHE does not seem to be
appropriate for the VITELS project. Furthermore, FEIDHE only specifies autentication, autho-
rization is not a key element of the project. The current status of the project is unclear as no
evaluation reports are available.

52

8 Conclusions and Outlook

8.1 Conclusions
Choosing PKI as a security architecture seemed to be a good choice. All necessary connec-
tions could have been secured using already existing, well-known and tested, standard protocols.
IPsec tunnels could have been even built between Unix and Linux computers. There is a Howto
developed and maintained by the ID (Informatikdienste) that explains the steps needed to be per-
formed by other educational institutes in order to securely connect their module to the VITELS
directory server using IPsec. This Howto can be found on the VITELS homepage [38].

During the development phase of this project, the LDAP servers and the protocol have been
tested a lot. The performance has always been very satisfactory, LDAP really seems to be the
optimal student data management system for the VITELS project. Its uses are manifold, very
comfortable, for example, is its use together with the Apache webserver in order to authenticate
web users. The installation and configuration of the module is easy and straight forward as seen
in Chapter 6.1.

The scheduling mechanism is working reliably and the web-based user interface has been
designed to conveniently allow to perform every action needed by the students as well as by the
module administrators. The daily cron job that removes no longer required timeslots prevents
the directory from growing more and more, and prevents performance losses due to unnecessary
large directories.

The little PHP package offering an easy to use API for accessing a module’s current user and
slot boundaries has been integrated into the work of Stefan Zimmerli (Gateway for a Remote
Laboratory [40]). This API meets all the requirements for other module developers and can be
integrated easily into their work.

Within the test network, the scheduling mechanism has been successfully tested with multiple
LDAP servers. These servers have been connected using IPsec tunnels. One server stored the
main VITELS directory tree and one university tree. The other server stored additional university
trees. These trees have been connected using referrals (explained in Chapter 2.1.7). One major
problem emerged when using aliases and referrals together (as done in the directory subtree
ou=Timetable,o=VITELS,c=CH, where aliases to students are stored. These aliases can
point via a referral to another LDAP server). When searching for a student - that is stored
on another server - using uid=student,ou=users,o=institute,c=CH as the base dn
(instead of using ou=users,o=institute,c=CH as the base dn and specifying the filter
“(uid=student)”), all users from the specified institute are returned instead of just the entry
of the specified student. The base dn is chosen to contain the user id because the dn of the alias

53

entry stored in the timetable looks exactly like that. This problem could have been fixed for
the scheduling implementation, but the Apache authentication module fails to authenticate users
stored on another directory server if accessed as described in Chapter 6.1.5. At the moment, it
is planned to use a centralized student directory, but the test results with the scheduling system
open the possibility of using separate directories later. This shows that the chosen architecture
should be smoothly extensible.

After the successful test phase, the whole scheduling system (the scheduling script, the web-
based user interface, the LDAP directory tree and the corresponding cron jobs) has been inte-
grated into the productive system of the Informatikdienste (ID). This process allowed to correct
minor bugs that have been detected due to the slightly different setup of the two environments.
The productive system is operational at the moment and the whole project is tested within the
ordinary network laboratory using module six IP Security as an example. In accordance with
some feedback recieved from student that solved this lab module, it can be said that the schedu-
ling system and the authentication mechanisms work reliably. There seem to be minor problems
on the side of the Informatikdienste (ID) with rebuilding the entire LDAP directory every night.
This has to be done because the student entries are extracted from the Course Server running
WebCT [39]. Another problem appears when using some versions of Netscape Communicator.
There seem to be a problem when minimizing the Java SSH Applets. But generally, the feedback
has been positive.

SWITCH is very interested in the work of the VITELS members and, thus, the collaboration
between the University of Bern and SWITCH has been deepened. As a consequence, the relations
between the universities and SWITCH are ameliorating. This could result in a standardized,
federal authentication and authorization system in the near future.

8.2 Outlook

8.2.1 Reservation Limitations

One could implement a limitation mechanism that prevents students from reserving unreasonable
amounts of timeslots. At the moment, this task is performed manually by the module admini-
strator. His job is to verify that every student gets the chance to reserve slots. He has the means
to free slots if a student acquires too many of them.

The design of such a mechanism is trickier than it looks. Questions like “What is a reason-
able limitation tactics?”, “How many students will access the lab?” and “How long should the
limitation periods last (one week, two weeks, etc.)?” have to be answered first. A possibility is
to simply allow the reservation of further slots for the same week only after every student has
reserved exactly one slot. This approach does not seem to be very comfortable to the students
because they depend on each individual. If for example a single student becomes ill, the whole
system is blocked.

Another approach could be to divide the slots in two levels: first level and second level
slots. The first level slots are slots that take place during the office hours. Second level slots are
evening or nightly slots. Only one first level slot can be reserved per week (or per two weeks),

54

but students have the possibility to reserve additional two or three second level slots per week
(or per two weeks). This would allow every student to get one daily slot per week and the right
to reserve additional nightly slots without waiting for other students to finish their reservations.

These changes can be easily performed within the file ldapqueries.inc.php. There is
a function called reservation_allowed($user_data, $mid, $slot) that can be
extended. At the moment, this function only checks whether the student has provided a valid
username and the corresponding password.

8.2.2 Multiple LDAP Servers

This issue has already been solved but tested only in a test network. It has not yet been applied
to the productive system. The institute maintaining the VITELS directory subtree needs to create
referrals for each university that intends to maintain its own LDAP directory tree. Such a referral
entry on the VITELS LDAP server looks as depicted in Figure 8.1.

Figure 8.1: Referral Entry for Multiple LDAP Servers

Important for compatibility reasons is, that the organizational unit ou on the VITELS direc-
tory server is users. This must not be the case on the university side. The above example shows
an organizational unit etudiants. This is no problem because the subtree is included into the
VITELS tree under the name of the specified dn (where the organizational unit is users).

The only thing a university has to consider is the fact that the student entries must contain
at least the object classes person and account. This should not be a problem because these
object classes are really standard.

An open problem is the fact that when chasing referrals with a base dn that is more specific
than the referral (e.g. the base dn uid=student,ou=users,o=institute,c=CH) some
hierarchy levels (in this example uid=student) seem to get lost. As a consequence the entire
subtree is returned which is useless and not efficient at all. This problem could have been solved
by changing the implementation of the scheduling script but still remains when using Apache
LDAP authentication. As LDAP is a still developing standard and referrals are not yet supported
directly by the server (the client implementatoin has to chase them), one can assume that is
problem will be fixed in the near future.

55

8.2.3 Certificate Authorities
Another open issue is that in order to build a complete PKI, each university needs to have its
own Certificate Authority (CA) that creates the certificates for the university web server, for the
Portal Server and for the IPsec connections. These CAs should have their own certificates signed
by another approved CA such as VeriSign [37].

8.2.4 VITELS for Students all Over the World
Accounting consists of several parts, of which billing and trend analysis do not have priority
at the moment, but could be an issue later on, when access to the lab is no longer restricted to
registered students from Swiss educational institutes but open to users from all over the world.
One can assume that such a service would raise the needs of a billing system in order to charge
foreign students or universities that are accessing the VITELS laboratories.

56

Appendix

57

58

A Glossary

Accounting Accounting is the process which measures the resources a user consumes during
his session.

Apache Apache is a very common web server running on Unix, Linux and Windows.

Authentication Authentication is the process of determining whether someone or something
is, in fact, who or what it is declared to be.

Authorization Authorization is the process of giving someone permission to do something.
Usually, this is done after successful authentication.

Certificate A certificate consists of the public key and the identity of an entity, with other infor-
mation, rendered unforgeable by digitally signing the entire information with the private
key of the issuing Certificate Authority (CA).

Certificate Authority A Certificate Authority (CA) is an authority in a network that issues
and manages security credentials and public keys for message encryption.

Confidentiality Confidentiality is the non-occurrence of the unauthorized disclosure of infor-
mation.

Cron Job A cron job specifies a program and a point of time. At that time the given program
is automatically run by the cron daemon.

Data Integrity Data integrity ensures that information is not altered in storage or transit by
unauthorized persons in a way that is not detectable by authorized users.

Digital Signature A digital signature is an electronic signature that can be used to authenticate
the identity of the sender of a message or the signer of a document and, possibly, to ensure
that the original content of the message or document that has been sent is unchanged.
Digital signatures are easily transportable and cannot be imitated by someone else. The
ability to ensure that the original signed message arrived means that the sender cannot
repudiate it later.

Directory Service A directory is similar to a database, but tends to contain more descriptive,
attribute-based information. The information in a directory is generally read much more

59

often than it is written. As a consequence, directories don’t usually implement the compli-
cated transaction or roll-back schemes that regular databases use. Directories are tuned to
give quick responses to high-volume lookup or search operations.

IPsec Internet Protocol Security. IPsec is a developing standard for security at the network
or packet layer of network communication. IPsec is especially useful for implementing
virtual private networks and for remote user access through dial-up connection to private
networks.

Java Applet A Java Applet is a piece of code that cannot be run stand-alone. An Applet needs
an existing environment as for example a webbrowser (e.g. Netscape Communicator or
Internet Explorer) that contains the Java Virtual Machine (VM).

Key Pair A key pair consists of a private and a public key.

LDAP Lightweight Directory Access Protocol. Directories containing information such as, for
example, names, phone numbers and addresses. LDAP provides a relatively simple proto-
col for updating and searching such directories. See Directory Service.

Man-in-the-Middle-Attack A man-in-the-middle-attack is a well known attack where an at-
tacker sniffs packets (read packets that are intended for someone else) from network, mo-
difies them and inserts them back into the network in a way that communicating parties do
not realise the man-in-the-middle. They still think that they are communicating directly
with each other.

MAC Message Authentication Code. A MAC is a one-way hash computed from a message and
some secret data. Its purpose is to make message alteration detectable.

Non-Repudiation Non-repudiation means that a user cannot deny having digitally signed a
document which contains his signature. This is possible with Public Key Cryptography
because the user is supposed to be the only one that knows his private key. As a conse-
quence, he is the only one being able to produce the signature.

One-Way Hash Function A one-way hash function is a one-way transformation that converts
an arbitrary amount of data into a fixed-length hash. It is computationally hard to reverse
the transformation or to find collisions (e.g. two different messages with the same hash
value). MD5 and SHA are examples of one-way hash functions.

Passphrase A passphrase is a string of characters longer than the usual password (which is
typically from four to 16 characters long) that is used for creating a digital signature, for
the encryption or for the decryption of a message.

Password-Guessing-Attack A password-guessing-attack can be used in order to attack users
that do not seem to use cryptographically secure passwords. This kind of attack is done
either by trying names and values related to that person or by using a dictionnary (list of
often used passwords).

60

PHP PHP Hypertext Preprocessor. PHP is a scripting language that is especially suited for web
development and can be embedded into HTML.

Private Key A private key is a value - known only to one party - that can be used to decrypt
encrypted messages, issue digital signatures and compute the corresponding public key.
The private key must be kept private and must not be made publicly available! This term
is most often used in the context of Public Key Cryptography and not in the context of
traditional (or Secret Key) Cryptography (see also secret key).

Public Key A public key is a value that can be used to effectively encrypt messages and verify
digital signatures. The public key can be made publicly available, it does not contain secret
information.

Public Key Cryptography Public Key Cryptography is the science of information security
that uses private key and public key pairs for encryption, decryption and signature creation
and verification. The problem of the key distribution is solved because the public key can
be made publicly available, just the private key is kept as a secret. RSA is an example of a
Public Key Crypto System.

Revoked Certificate A revoked certificate is a certificate that contains a special marking in-
dicating that the certified key should no longer be used because the corresponding key has
been compromised.

Secret Key A secret key is a key that is intended for use by a limited number of correspondents
for encryption and decryption. This term is most often used in the context of traditional
(or Secret Key) Cryptography, not to be confused with private key!

Secret Key Cryptography Secret Key Cryptography is the science of information security
that uses the same key (secret key) for encryption and decryption. Secret Key Cryptogra-
phy often implicates the problem of distributing this secret key among the communicating
parties. DES, Triple-DES, RC4 and IDEA are examples of secret key ciphers.

Secure Key Distribution Secure key distribution can be achieved by using Public Key Crypto-
graphy.

Suspended Certificate A suspended certificate is a certificate that contains a special marking
indicating that the certified key is not in use at the moment but can be used again later. It
does not indicate that the corresponding private key has been compromised!

Sniffing Network sniffing is the process of gathering information (from a network) that is not
designated for you.

X.500 An electronic directory service (also known as the White Pages). See Directory Service.

61

62

Bibliography

[1] Kerberos v4 Apache Module.
http://www.monkey.org/~dugsong/krb-www/kapache/.

[2] Apache Kerberos Module.
http://stonecold.unity.ncsu.edu/software/mod_auth_kerb/
index.html.

[3] Apache Module Registry.
http://modules.apache.org.

[4] Apache HTTP Server Project.
http://httpd.apache.org/.

[5] ASN.1 Information Site.
http://asn1.elibel.tm.fr/.

[6] An Authentication Module for Apache.
http://www.rudedog.org/auth_ldap/.

[7] Feidhe.
https://hstya.funet.fi/.

[8] FreeS/WAN Project.
http://www.freeswan.org/.

[9] GASPAR.
https://gaspar.epfl.ch/.

[10] The Internet Engineering Task Force.
http://www.ietf.org/.

[11] The Source for JavaTM Technology.
http://java.sun.com/.

[12] Kerberos: The Network Authentication Protocol.
http://web.mit.edu/kerberos/www/.

63

[13] LDAP Authentication Module for Apache.
http://packages.debian.org/testing/interpreters/
libapache-auth-ldap.h%tml.

[14] MindTerm: SSH Client.
http://www.mindbright.se/mindterm/.

[15] mod_ssl: The Apache Interface to OpenSSL.
http://www.modssl.org/.

[16] Kerberos v4 Web Authentication Plug-in.
http://www.monkey.org/~dugsong/krb-www/kplugin/.

[17] Open Source Implementation of the Lightweight Directory Access Protocol.
http://www.openldap.org/.

[18] OpenSSH.
http://www.openssh.org/.

[19] OpenSSL: The Open Source Toolkit SSL/TLS.
http://www.openssl.org/.

[20] The Open Source Definition.
http://www.opensource.org/docs/definition.html.

[21] PAPI - Point of Access to Providers of Information.
http://www.rediris.es/app/papi/dist/PAPI.html.

[22] The Source for Perl.
http://www.perl.com/.

[23] PHP Manual: Date.
http://www.php.net/manual/en/function.date.php.

[24] PHP Hypertext Preprocessor.
http://www.php.net/.

[25] The COSINE and Internet X.500 Schema.
http://www.ietf.org/rfc/rfc1274.txt.

[26] The String Representation of LDAP Search Filters.
http://www.ietf.org/rfc/rfc2254.txt.

[27] Lightweight Directory Access Protocol.
http://www.ietf.org/rfc/rfc1777.txt.

[28] The LDAP Data Interchange Format (LDIF) - Technical Specification.
http://www.ietf.org/rfc/rfc2849.txt.

64

[29] IETF RFC Page.
http://www.ietf.org/rfc.

[30] Shibboleth.
http://middleware.internet2.edu/shibboleth/.

[31] SSL 3.0 Specification.
http://www.netscape.com/eng/ssl3/.

[32] M.-A. Steinemann, S. Zimmerli, T. Jampen, and T. Braun. Architectural Issues of a Remote
Network Laboratory. 2002.

[33] Swiss Virtual Campus.
http://www.virtualcampus.ch/.

[34] Swiss Academic and Research Network.
http://www.switch.ch/.

[35] Telnet Issues.
http://asg.web.cmu.edu/rfc/rfc435.html.

[36] The TLS Protocol.
http://www.ietf.org/rfc/rfc2246.txt.

[37] VeriSign, The Value of Trust.
http://www.verisign.com/.

[38] Virtual Internet Telecommunications Laboratory of Switzerland.
http://www.vitels.ch/.

[39] WebCT.
http://www.webct.com/.

[40] S. Zimmerli, M.-A. Steinemann, and T. Braun. Gateway for a Remote Laboratory. 2002.

65

