
IPAD/IPHONE APP AS A FRONT-END FOR
PROTOTYPE OF A HIGHLY ADAPTIVE AND

MOBILE COMMUNICATION NETWORK USING
UNMANNED AERIAL VEHICULES (UAVS)

Bachelorarbeit
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Adrian Hänni
2014

Leiter der Arbeit:
Professor Dr. Torsten Braun

Institut für Informatik und angewandte Mathematik

Abstract

Wireless Mesh Networks (WMNs) have made a rapid progress over the past few years and have
inspired numerous developers since they provide an highly flexible communication infrastruc-
ture. The concepts of WMNs provide new scopes and use cases in daily life as well as after a
severe disaster. In disaster scenarios, it is urgent to have a working communication infrastruc-
ture. The architecture of a WMN allows to deploy a required network in a fast and reliable way.
Therefore, the prototype UAVNet was developed. It is a framework that provides an highly adap-
tive, autonoumous, airborne deployment of a WMN using Unmanned Aerial Vehicles (UAVs)
and is intended to be used in future disaster scenarios. UAVNet provides different deployment
procedures using a single or multiple UAVs.

Such a system must be manageable in an usable way to take the steps towards a real-life
operation. Hence, the Remote Control App, a front-end application for the UAVNet was devel-
oped. It monitors the current states of the UAVs and is used to set up and to abort a deployment
scenario for the UAVNet. It was developed as an user-friendly mobile application for iOS de-
vices and additional features are supported to improve user experience. This includes saving of
the provided information in the UAVNet, the use of different map sources and exportable data.
The application can monitor a deployment scenario with a single UAV or multiple participating
UAVs and provides the functionality to operate in an environment without Internet access. The
UAVs of the deployed network are represented and monitored on an interactive map using either
locally stored or online available map data sources. Further, the application’s setup and manag-
ing procedures for the deployment of the WMN is easy to perform. This assures that end-users
can understand its functionality in a short time since the time spent is important in disaster sce-
narios. The deployment process using the Remote Control App was successfully tested for the
supported deployment scenarios in an outdoor environment.

i

Contents

Contents iii

List of Figures v

List of Tables vii

1 Introduction 1
1.1 Motivation . 1
1.2 iOS . 2
1.3 Wireless Mesh Networks . 5
1.4 Unmanned Aerial Vehicles . 6
1.5 Structure of the Thesis . 7

2 Related Work 9
2.1 UAVNet . 9

2.1.1 Architecture . 10
2.1.2 Uavcontroller . 11
2.1.3 External Communication . 13
2.1.4 Network Scenarios . 17
2.1.5 UAV Simulator . 21

2.2 Route-Me . 21
2.2.1 Map Sources . 22
2.2.2 Cache . 23
2.2.3 Offline Maps . 24

3 Remote Control Application 27
3.1 Architecture . 28

3.1.1 Model View Controller Design Pattern in iOS 28
3.2 Implementation . 29

3.2.1 Implementation of the Remote Control App 30
3.2.2 Objective-C . 31
3.2.3 Database . 31

3.3 Graphical User Interface . 34
3.3.1 Map View . 34

iii

3.3.2 Scenario View . 36
3.3.3 Communication View . 36
3.3.4 Archive View . 37
3.3.5 Options View . 38

3.4 Communication . 40
3.5 UAVNet Deployment with the Remote Control App 43

4 Conclusions and Future Work 47
4.1 Conclusions . 47
4.2 Future Work . 48

Bibliography 49

iv

List of Figures

1.1 Stack of iOS abstraction layers . 3
1.2 Wireless Mesh Network . 5
1.3 Examples of UAVs . 6

(a) Cypher UAV, Author: Wikipedia, Public Domain 6
(b) MQ-9 Reaper, Author: Pacific Standard, Public Domain 6
(c) MD4-1000, Author: microdrones.com, Press Image 6

2.1 Typical setup of UAVNet with two UAVs with attached wireless mesh nodes and
multiple clients.[1] . 10

2.2 Scheme of the architecture of the uavcontroller[1] 11
2.3 StartConfig t structure[1] . 15
2.4 AllowedClients t structure[1] . 15
2.5 Submitted Pos t structure[1] . 15
2.6 GPS Pos t structure[1] . 16
2.7 NotificationSubscription t structure[1] . 16
2.8 Notification t structure[1] . 16
2.9 Status t structure[1] . 17
2.10 Airborne Relay scenario . 19
2.11 Airborne Multihop Relay scenario . 20
2.12 Different map sources based on OSM data . 22

(a) OSM standard tile image . 22
(b) CloudMade tile image . 22
(c) MapQuest tile image . 22
(d) OpenCycleMap tile image . 22

2.13 Structure of downloaded tile images . 26

3.1 Cocoa version of MVC as a compound design pattern[23] 28
3.2 Scheme of the implementation of the Remote Control App 30
3.3 Core Data Model of Remote Control App . 32
3.4 map view with detailed UAV marker representation on iPad 34
3.5 GUI-Marker showing the current state of a UAV 35
3.6 scenario view of the setup procedure for Airborne Relay on iPhone 37

(a) Selection of a scenario . 37
(b) Selection of the search mode . 37

v

(c) Selection of the position mode with confirmation 37
3.7 Different parts of the archive view on iPhone 38

(a) Flights part of the archive . 38
(b) UAVs part of the archive . 38
(c) Detailed view about a flight . 38

3.8 Different parts of the options view on iPhone 40
(a) Options view . 40
(b) Managing allowed MAC addresses . 40
(c) Online source selector view . 40

3.9 Communication flow between Remote Control App and a UAV with application
states . 41

3.10 Communication flow between Remote Control App and multiple UAVs with ap-
plication states . 42

3.11 Performing a UAVNet scenario with application states 43
3.12 Setup procedure for Airborne Relay on iPhone 45

(a) Detection of UAVs . 45
(b) Subscription to a UAV . 45
(c) Inserting of a direction marker . 45
(d) Selection of a UAV to submit the start configuration 45
(e) Selection of MAC addresses . 45
(f) map view of the deployment . 45

vi

List of Tables

2.1 Supported parameters for cache types in routeme.plist 24
2.2 Supported parameters for downloadosmtiles.pl[18] 25
2.3 Examples of sources for map tile images[21] 25

vii

Chapter 1

Introduction

Over the past few years mobile technology has evolved dramatically in consequence of the
increased popularity of mobile devices. Nowadays, smartphones and tablet devices are very
prevalent and the use of mobile applications has increased accordingly. The expanded avail-
ability of various mobile applications for different domains and purposes assist us in daily life
situations. Mobile applications fullfill our demand for information, communication and enter-
tainment. They cover many versatile use cases, are benefical for everday activities and take
advantage of the possibilities provided by increased mobile Internet access as well.

Mobile devices provide a platform to manage highly mobile, deployable systems such as
the ”UAVNet: A Prototype of a Highly Adaptive and Mobile Wireless Mesh Network Using
Unmanned Aerial Vehicles (UAVs)”[1], which was implemented by Simon Morgenthaler as
his Master’s thesis. UAVNet is a concept of an airborne, autonomously deployable, transient
Wireless Mesh Network (WMN) carried by UAVs. The UAVs establish an airborne WMN for
a certain size of an area as they are carrying the WMN nodes. In this thesis, the front-end
application termed Remote Control App for the UAVNet is implemented, introduced, described
and tested.

This chapter discusses the motivation behind UAVNet and its front-end application in Sec-
tion 1.1, followed by an introduction on the iOS operating system in Section 1.2. Section 1.3
gives an overview about WMNs. Afterwards, a definition and a short description for UAVs is
presented in Section 1.4. The subsequent chapters are described in Section 1.5.

1.1 Motivation

Because of increasing human settlements, population growth and global effects as climate
change, severe disasters affect more people. In disaster scenarios, such as floods, earthquakes,
avalanches and storms, the communication structure of the affected area may become inopera-
tive and damaged, which results in a discontinuous communication chain. Most communication
infrastructure is ground-based and its hubs may become inaccessible due to the effects of a dis-
aster on the ground. For the rescue forces, it is essential to have an operating communication
infrastructure for coordinating the help and gathering the needed informations. It is a challenge
to establish a ground-based communication infrastructure in a destroyed or badly accessible

1

area. Therefore, an air-based solution provides additional benefits, such as better accessibil-
ity, avoidance of mechanical challenges and better coverage. In respect of these facts, Simon
Morgenthaler implemented a prototype for deploying an autonomous, highly adaptive, airborne
Wireless Mesh Network (WMN) using UAVs[1].

We assume that local people, who are responsible for the deployment of the airborne WMN
in the disaster area, may not be technically skilled. Accordingly, it is required that the front-
end application has a good usability and is mostly self-explanatory. The front-end application
should offer the required functionality to quickly set up the deployment of a WMN. The usage
of mobile devices such as smartphones and tablets as platform for the application is reasonable
because of the fact that they are widely spreaded and their owners are familiar with them. For
this project the iOS operating system was chosen which runs on Apple’s iPhone, iPad and iPod
devices. The application makes use of the location-awareness of these devices as well as of the
UAVs and provides an integration of different maps. Hence, the availability of an application
providing both usability and functionality is a key for establishing an airborne WMN by rescue
forces.

1.2 iOS

The proprietary operation system iPhone OS was first presented in January 2007[2]. It is an
adapted operating system for mobile devices based on Mac OS X which includes support for
touch-gestures. Since its operation has been expanded to Apple’s iPod and iPad devices, the
iPhone OS was renamed to iOS in June 2010[3]. iOS operates only on iPhone, iPad and iPod
devices due to security as well as commercial considerations and except for a few open-source
components, it is a closed system. Native application for iOS are implemented in Objective-C
and are only available over Apple’s App Store. The iOS applications are implemented with the
free available application Xcode that provides a full integrated development enviroment (IDE)
including a device simulator for developers.

There are four abstraction layers given in iOS termed Core OS, Core Services, Media and
Cocoa Touch[4]. Each of these layers is made up of different frameworks that can be used and
incorporated into the applications. The stack of these layers is illustrated in Figure 1.1.

• The Core OS layer is the foundation of the operating system. It is responsible for in-
teraction with the hardware as well as taking care of file system tasks, security, memory
management, threats and networking.

• The Core Services layer provides an abstraction of the services offered by the underly-
ing Core OS layer including technologies and frameworks to support features as Core
Location, iCloud, Core Data, Address Book, SQLite, XML support, and others.

• The Media layer offers multimedia services including graphic, audio and video technolo-
gies as well as the proprietary streaming protocol ”AirPlay”.

• The Cocoa Touch layer contains key frameworks for the user-interface and focuses on
optimization for touch-based interfaces. It consists of many high-level system services

2

High-Level

Low-Level

Cocoa Touch

Media

Core Services

Core OS

Figure 1.1: Stack of iOS abstraction layers

as touch-based input, push notifications, multitasking, animation, components for views
and graphical interfaces. Its design is constructed according to a Model-View-Controller
(MVC) software architecture and is based on the Mac OS X Cocoa Application Program-
ming Interface (API).

Modern iOS mobile devices come up with touchscreen, location service, built-in accelerom-
eter and other functionalities. Their hardware specifications provide possibilities for extended
purposes of use, but there are some limitations of iOS platforms a developer has to be aware
of[4].

Limitations of the Device Simulator
The device simulator is acting close to the real device concerning hardware and software
compability, but it does not behave identical. The applications running on the simulator
could run without failures while the same application fails on the mobile device as the
same frameworks available on the simulator and the device have a few differences. Even
for the really emulated APIs some differences in behavior can occur, since the simulator
uses several OS X frameworks as part of its own implementation and Cocoa frameworks
from Mac OS X. The execution of processes is more performant in the simulator compared
to several different types of iOS devices. Additionaly, the simulator misses some hardware
functionalities such as the camera and the digital compass.

Limitations of Storage Capacity
iOS only requires a few hundred MB for storage and it offers frameworks covering a
large-scale of purposes. Those frameworks, built-up from precompiled routines, faciliate
the execution and development of applications. The system files are tailored to fit into a
small storage. Although, the free storage capacity depends on the saved content and the
device model, the iOS applications can be as large as 2 GB, but the executable file cannot
exceed 60 MB.

Limitations of Main Memory
Memory management for iOS applications does not use garbage collection and is based

3

on a reference counting model. The applications cannot use a page file for extending the
physical memory. By using a reference counting model for the memory, the developer has
to assure that the application frees up data that is no longer in use. Keeping unneeded data
can lead to memory leaks that consume ever-increasing amounts of memory. If the amount
of free memory reaches a certain threshold, the operating system requests the applications
to release memory voluntarily. Applications that fail to release enough memory are termi-
nated. Overall, the memory limit varies depending on the currently running applications
and the device model.

Limit of Data Access
Every iOS application runs in a sandbox. This means the iOS applications do not have
access to certain resources and run in a regulated environment of the operating system.
iOS installs each application in its own sandbox directory which acts as the home for the
application and its data. Each sandbox directory contains several well-known subdirecto-
ries for placing files. As a result of the sandbox processing, an application does not have
access to files of an other application. The purpose of a sandbox is to limit potentional
unwanted effects that a compromised application can cause to other applications and the
system.

Limit of Interaction
The absence of physical input devices does not mean that users have to loose flexibility in
interaction with the device, but adaptations have to be made. Instead of imitating a desktop
enviroment, the design should provide a easy-to-use interface that takes care of usability
enhancements for mobile devices, such as touch gestures, device shaking, adaptive layouts
and motion gestures.

Limit of Energy
Energy consumption cannot be ignored on mobile devices. Since high CPU usage can
lead to a rapid decrease of energy reserve, the developer has to be cautious on performing
long-term calculation tasks.

Limitations for Applications
Each application available on the Apple App Store has to go through an approval process
for being officially released. The violation of certain guidelines[5] cause an application
to be rejected. For example, applications that fundamentally duplicate the built-in iOS
applications without adding new functionality. Furthermore, there are some restrictions
on functionalities that an application can provide. An application cannot run in the back-
ground, nor can it run besides of an other running application. Although, Apple introduced
mulitasking for iOS, it cannot be understood as multitasking in the usual way. Only cer-
tain tasks or services can run in the background either for a finite period or periodically
and the developers have to implement explicit support for the use of multitasking features.

Limitations by User Actions
Most iOS applications are used sporadically. An application design should take care of the
nature of a common user who will use an application only over a short interaction period.
The presence of complex interfaces and too many settings confuse and should be avoided.

4

1.3 Wireless Mesh Networks

A WMN defined by the standard IEEE 802.11s is considered to be a special case of Mobile Ad-
hoc Networks (MANETs), which stands out by interconnection of radio nodes organized in a
mesh topology. Each node in a WMN acts as a host as well as a router for multihop destinations.
In WMNs, there can be both fixed and mobile nodes, where each node has the same functionality
and responsibility according to the network topology. A WMN is dynamically self-organized,
self-healing and self-configured. The meshed topology offers a way to avoid the centralized
approach of traditional wireless network architectures and it ensures the possibility of multiple
routing paths for each node in the network. If one or multiple nodes fail, the packets will be
rerouted taking a different path in the communication chain. The reliability of the communi-
cation and the network coverage are increased by deploying additional nodes. Mobile clients,
which are connected to a WMN, can roam within the network coverage area and have untethered
connectivity across different mesh nodes. Due to the meshed structure, a WMN supplies good
reliability, network coverage, scailability as well as low upfront investments[6]. Furthermore,
WMNs can interconnect to other networks such as IEEE 802.11, IEEE 802.15, IEEE 802.16,
Internet, cellular, Worldwide Interoperability for Microwave Access (WiMAX) and Wireless
Sensor Network (WSNs) through the gateway and bridging functions in the mesh routers[7]. A
scheme of a WMN is shown in Figure 1.2.

Wired Gateway

Wireless Mesh Node

Mobile Client

Figure 1.2: Wireless Mesh Network

According to [7, 8, 9], WMNs are considered to be promising candidates for the next-
generation wireless broadband networking. Because of their advantages in respect to traditional
wireless formats such as the absence of a rigid structure and the flexible deployment model, it is

5

expected that WMNs will be part of upcoming wireless network applications as they are suitable
for many different kinds of scenarios.

Although, WMNs provide inherent failure tolerance through multi-path routing, rapid de-
ployment and flexible coverage areas[9], there are some concerns regarding to scalability both
in terms of number of clients and increased area of network coverage[8]. The increase of net-
work capacity is incompatible with the improvement of the coverage due to the factors such as
multi-hop routing, which degrades the performance with increasing number of nodes. The us-
age of IEEE 802.11 MAC protocol, which is not scalable, degrades throughput as the number of
hops increases[9]. Other critical performance factors are the state of the art of radio techniques,
the behavior of mesh connectivity, broadband and QoS, compatibility and inter-operability of
conventional and mesh clients, security, and the ease of use[7].

1.4 Unmanned Aerial Vehicles

An Unmanned Aerial Vehicle can be defined as ”a powered, aerial vehicle that does not carry
a human operator, uses aerodynamic forces to provide vehicle lift, can fly autonomously or
be piloted remotely, can be expendable or recoverable, and can carry a lethal or nonlethal
payload”[10]. Although UAVs are mostly known for their military usage nowadays, they can
also perform surveillance, communication relay, remote sensing, search and rescue, scientific,
commercial and public safety tasks. Modern UAVs have a built-in flight control and guidance
assistance which allows them to carry out simple flight commands as waypoint following, flight-
path stabilization and calculating, velocity and altitude control. To perform those flight proce-
dures, UAVs have recourse to sensor data from multiple sources like gyroscope, GPS, lasers,
airpressure sensors and others. There are a wide variety of UAV shapes. Some examples are
shown in Figure 1.3.

(a) Cypher UAV, Author:
Wikipedia, Public Domain

(b) MQ-9 Reaper, Author: Pacific
Standard, Public Domain

(c) MD4-1000, Author: micro-
drones.com, Press Image

Figure 1.3: Examples of UAVs

6

1.5 Structure of the Thesis

Chapter 2 provides an overview about the concepts of the UAVNet where its basic architecture,
the different types of messages and deployment scenarios as well as the simulator used by the
Remote Control App are introduced. Then, the functionality of the Route-Me library is explained
including the map database creation and its caching system. The front-end application Remote
Control App of the UAVNet is presented in Chapter 3. It expresses the architecture, implemen-
tation, usage and design of the Remote Control App including the interaction with the UAVNet.
Chapter 4 concludes this thesis. It points out to possible future extensions and use cases.

7

Chapter 2

Related Work

For the interaction with the UAVNet[11], its concept and operation has to be understood. It
provides different deployment scenarios and there are several well-defined types of network
messages which an application can use to control and monitor the UAVNet. For the integration of
maps, the Remote Control App uses the free available Route-Me library[12] due to its additional
benefits. In contrast to the MapKit framework provided by the Cocoa Touch layer from the iOS
operating system, it supports various map sources and the ability to display locally stored map
sources as well.

This chapter gives an overview about the architecture, communication and supported net-
work scenarios of UAVNet in Section 2.1. It leaves out background information that is not
fundamental necessary for a front-end application, such as the details about the hardware com-
ponents of the UAVNet. For more detailed information, the consideration of ”UAVNet: A Proto-
type of a Highly Adaptive and Mobile Wireless Mesh Network Using Unmanned Aerial Vehicles
(UAVs)”[1] is recommended. The description of the Route-Me library in Section 2.2 concludes
this chapter.

2.1 UAVNet

UAVNet is a framework of a prototype that is capable to deploy an autonomous, highly adaptive,
airborne Wireless Mesh Network (WMN) carried by UAVs. It is intended to be used in disaster
scenarios, such as earthquakes, floodings and avalanches, when ground-based communication
infrastructures have stopped working or were never available. A disaster could have severe
effects on the infrastructures on the ground, such as impassable roads, electrical blackouts, dis-
connected communication hubs and other damages. As the use of UAVs enables an autonomous,
airborne deployment of WMN nodes, this concept grants additional advantages compared to a
ground-based autonomous deployment. The UAVs can reach certain locations that are no longer
accessible in a practial way. It can be assumed that deployment over the air can be achieved
faster than deployment on the ground since mechanical barriers on the ground can be avoided.
Because radio waves of frequencies used by WLAN are susceptible to physical obstacles, flying
mesh nodes are more favorably placed than mesh nodes on the ground. Hence, the mesh nodes
of the UAVNet can provide a better network coverage.

9

First response rescue forces usually have a lack of information. As a consequence, they
require to exchange reports and information with responsibles, residents and among each other.
A WMN is capable to provide a network for multimedia data transmissions. The WMN provides
a temporary solution for the communication within its coverage. If a mesh client can provide a
gateway to a network that is connected to the Internet, even world-wide communication would
be possible for the nodes of UAVNet. Therefore, the UAVNet WMN can improve the ability to
communicate with rescue forces in a fast and reliable way. This benefit will raise the chance for
a successful coordination of the rescue forces within the disaster area.

The general deployment process of the UAVNet uses two client notebooks running the
UAVNet client software. The first client is known at the beginning of the deployment by the
participating UAVs and the second has to be discovered for establishing the WMN between
these clients. The supported scenarios for the deployment of the UAVNet are described in Sub-
section 2.1.4.

2.1.1 Architecture

UAVNet consists of client devices, wireless mesh nodes and UAVs. Its typical setup is shown
in Figure 2.1. The clients can either be notebooks, which communicate with each other over
the WMN, or mobile devices, such as iPhone, iPad and iPod, which configure and monitor the
UAVNet. UAVNet provides access over the IEEE 802.11g standard for the clients because most
mobile clients do not yet support the IEEE 802.11s standard for wireless mesh networks.

Figure 2.1: Typical setup of UAVNet with two UAVs with attached wireless mesh nodes and multiple
clients.[1]

The different connections are described as follows[1]:

1. The wireless mesh nodes are directly connected to the flight electronics of the UAVs using
a serial connection.

10

2. The two client notebooks of the rescuers are connected to the mesh network using a stan-
dard IEEE 802.11g wireless connection. The wireless mesh nodes act as ordinary APs.

3. Mobile devices like iPhone and iPad are used to configure the network and monitor the
UAVs as well as and the client notebooks. They use also an IEEE 802.11g wireless con-
nection to interact with UAVNet.

4. Traffic between end devices is forwarded over the IEEE 802.11s wireless mesh network,
automatically set up by the UAVs.

2.1.2 Uavcontroller

The uavcontroller is the primary software component of the UAVNet. It is implemented with
the C programming language and runs as a daemon on every wireless mesh node. It consists of
a main part, several threads, as well as the libuavint and libuavext libraries. It is responsible to
handle the communication between the mesh nodes, the clients and the UAV electronics. The
scheme of its architecture is illustrated in Figure 2.2.

main

 uavcontroller

 libuavint

 serial interface

 libuavext

 wireless interface

 7654 7655 7656

seriallistenerpinger noti!er

library

thread

hardware

main part

wireless

Connections:

 pinglistener

serial

Figure 2.2: Scheme of the architecture of the uavcontroller[1]

The main part of the uavcontroller manages the pinger, notifier, pinglistener and seriallis-
tener threads, the communication over the serial and wireless interface and the flight path of its
controlled UAV. It contains the logic behind the different types of network scenarios and the de-
sired behavior of the UAVs. Its methods and algorithms ensure that every UAV acts as intended,
depending on the current state of other UAVs and the state of the network deployment. The
main part handles processing and evaluation of received messages and keeps track of the status
of discovered clients, managing and monitoring devices, and other UAVs. It uses the libuavint
library for the serial communication with the UAV electronics and the libuavext library for the

11

external wireless communication, providing both required methods. Both libraries have a sim-
ilar construction and are capable to handle different types of messages. These are the control,
ping and notification messages for external communication. The libraries can be described as
follows:

libuavext
libuavext is a library that is integrated in uavcontroller and the Remote Control App. Its
purpose is to handle the external communication between the mesh nodes as well as be-
tween the mesh nodes and the client devices. Therefore, it provides the functionality to
establish, to close and to manage sockets for TCP and UDP packets on different ports. As
this library is responsible for incoming and outgoing network traffic, it contains the meth-
ods to send, to receive and to handle different types of messages. The structure of these
messages require a Cyclic Redundancy Check (CRC) of the modified-base64 encoded
payload. The functionality for the validation and computation of CRC values and for the
encoding and decoding of payloads is included as well. Additionally, it handles common
network tasks, such as hostname translation, Domain Name System (DNS) resolving and
the Address Resolution Protocol (ARP).

libuavint
The libuavint library is needed to handle internal communication between the UAV elec-
tronics and the wireless mesh node. These two components are interconnected over a
serial interface. The libuavint library provides the functionality to manage the communi-
cation over the serial connection including the methods to send, to receive, to handle and
to validate internal sent messages. The internal messages are used to receive sensor data
and to send flight commands, such as waypoints, to the UAV.

uavcontroller runs three different threads for the external communication and one for the in-
ternal communication. These threads are termed pinger, notifier, pinglistener and seriallistener
and are described as follows:

pinger
The pinger thread does periodically broadcast a ping message every few seconds using
port 7655. Its purpose is the announcement of the current status of the transmitting UAV
to other participants within the UAVNet. As a consequence, the detection of formerly
unknown UAVs and clients can be achieved by listening to ping messages. The status
information of a UAV includes the hostname, the position, the IPv4 and MAC address.
Additionally, they contain information about the current network scenario and the position
of already discovered clients.

notifier
The notifier thread sends periodically unicast notification messages using port 7656. Each
UAV has a notification service provided by the uavcontroller and executed by the notifier
thread. The notification messages contain detailed information about the current values of
sensor data from the UAV electronics including the height, battery, heading and speed. A
managing or monitoring device can subscribe to this service and will, from this point on,

12

receive notifications. Every UAV supports multiple subscribed devices. The subscription
has to be made for every UAV separately because the UAVs do not inform each other
about their subscribed clients.

pinglistener
The pinglistener thread handles incoming ping messages on port 7655. It observes the
status of all connected UAVs and the detected clients. Therefore, the uavcontroller is
aware about the current positions of those participants. If a UAV receives new information
about a client that was found by an other UAV, it will update the client information in its
own ping messages.

seriallistener
The seriallistener thread handles incoming messages from the serial interface and for-
wards them to the main part of the uavcontroller where the information is processed. As
an example, the current values of sensors provided by the UAV electronics are received
over the serial interface and are processed afterwards.

2.1.3 External Communication

Although, there is internal communcation between the wireless mesh nodes running the uavcon-
troller software and the UAV electronics, only the external communication has to be investi-
gated for the configuration and monitoring of the UAVNet through the Remote Control App. The
libuavext library consists of well-defined methods and message structures for the interaction be-
tween the Remote Control App, the client notebooks and the UAVs. The mobile device, which
runs the Remote Control App, does not have to be set up in a special way for the communication
with the UAVNet because each wireless mesh node runs a Dynamic Host Configuration Protocol
(DHCP) service to assign IP addresses. By contrast, the wireless mesh nodes of the UAVs use
static assigned IP addresses.

Types of Messages

As seen in Figure 2.2, the wireless interface of the libuavext library uses different ports for the
control, ping and notification messages. Depending of their relevance, either the TCP or UDP
protocol is used.

Control Messages
control messages are transmitted as unicast messages over TCP socket on port 7654. They
are used to transmit subscription information for the notification service as well as to set
up and to abort a network scenario. The use of TCP assures that the sending device gets
informed about the success of the transmission since this information is necessary for
managing applications. The control messages used by the Remote Control App are the
submitStartConfiguration, sendAbort, outSocketResponse, sendFlightDirection and send-
NotificationSubscription messages.

13

Ping Messages
ping messages are transmitted as broadcast messages over UDP socket on port 7655. Lis-
tening applications and other active UAVs use the information contained in ping messages
to discover UAVs and clients. They are sent periodically as broadcast messages because
some participants of the network might not be known in the current state of the deploy-
ment and there might be multiple participants waiting for the same information. UDP is
used for this type of message since there is a possibility that a UAV may get out of range
from client notebooks, the managing device running the front-end application and other
UAVs during its flight. Since they are sent periodically and contain only general informa-
tion, it is uncritical for the managing and monitoring applications if some ping messages
get lost.

Notification Messages
notification messages are transmitted as unicast messages over UDP socket on port 7656.
They are only transmitted to the subscribed devices. It uses UDP because the UAV may
get out of range from the subscribed devices, but it is not critical for the deployment of
the network scenario if some messages are lost. The purpose of this kind of message is to
inform about the current state of a UAV. The Remote Control App uses the information of
notification messages for graphical representations of the UAVs. The consequence of lost
notification messages is unactual information on the managing and monitoring devices.

External Messages

The deployment of UAVNet requires the transmission of several external messages between the
Remote Control App, UAVs and the client notebooks. Each type of message consists of a start
and end delimiter, a 1-byte command sign to classify its type, a modified-base64 encoded pay-
load and a CRC value of two bytes[1]. The CRC procedure assures the validity of the data. As
mentioned in Subsection 2.1.2, the libuavext library provides the methods for the encrypting,
decrypting, encoding and decoding procedures. To provide transmission of complex data, such
as navigation and position information, the data is packed and handled in C structures. These
messages are described as follows:

submitStartConfiguration

The submitStartConfiguration message is of type control. This message is used by the
Remote Control App to submit the parameters for a desired network scenario. The de-
ployment process starts, if this message was successfully transmitted to a UAV. It contains
the StartConfig t structure as payload, shown in Figure 2.3. This structure consists of
the setup information of a network scenario, such as the scenario type, the searching and
positioning mode for the UAVs, and the allowed clients. The AllowedClients t structure
is shown in Figure 2.4. It provides the MAC addresses of the two allowed clients and
is used for the Airborne Relay and Airborne Multihop Relay scenarios. The integration
of the allowed clients into the start configuration assures that the UAV will only accept
messages of these two clients for the deployment process. If a UAV has already received

14

a submitStartConfiguration message, it will not accept a second message of this type. The
deployment has to be aborted using the sendAbort message to change the start configura-
tion.

StartCon�g_t

Scenario

Searching

(uint8)

(uint8)

Positioning

AllowedClients

(uint8)

(AllowedClients_t)

Figure 2.3: StartConfig t structure[1]

AllowedClients_t

MAC1

MAC2

(uint8[6])

(uint8[6])

Figure 2.4: AllowedClients t structure[1]

submitPosition
The submitPosition message is a control message. When a UAV gets in signal range of a
client, the client uses this message to submit its own position. The message contains the
Submitted Pos t structure, as shown in Figure 2.5. This structure consits of the MAC ad-
dress of the transmitting client and its GPS position provided by the GPS Pos t structure,
as illustrated in Figure 2.6. After a UAV has received a client position, it includes this
information into its regularly broadcasted ping messages. This mechanism ensures that
the position of detected clients is propagated to other participants in the UAVNet.

Submitted_Pos_t

Position

MAC

(GPS_Pos_t)

(uint8[6])

Figure 2.5: Submitted Pos t structure[1]

sendNotificationSubscription
The sendNotificationSubscription message is a control message. This type of message is
used by the Remote Control App to subscribe to the notification service of a UAVs. It
contains the NotificationSubscription t structure, as shown in Figure 2.7, and provides the
IPv4 or IPv6 address of the transmitting device. The value of the subscription integer
indicates whether a device wants to subscribe or to unsubscribe.

15

GPS_Pos_t

Longitude

Latitude

(int32)

(int32)

Altitude

Status

(int32)

(uint8)

Figure 2.6: GPS Pos t structure[1]

Noti�cation_Subscription_t

Subscription

Addr

(uint8)

(sockaddr_storage)

Figure 2.7: NotificationSubscription t structure[1]

sendFlightDirection
The sendFlightDirection message is used by the Remote Control App to submit the GPS
coordinates of a waypoint. It is a control message as its successful transmission requires
a response to the sending application. The transmission of this message is only needed
if the selected network scenario uses the Manual Search Mode. The GPS position of the
waypoint defines the endpoint of the UAV’s flight path for the discovery of the second
client. The message contains the Submitted Pos t structure, as shown in Figure 2.5, that
provides a format for the position.

sendNotification
The sendNotification message is sent regularly to all subscribed devices by the notifier
thread of the uavcontroller running on the wireless mesh nodes. It defines the notification
message type and it contains the Notification t structure as shown in Figure 2.8. The send-
Notification message provides status information included as Status t structure as well as
information about the current values of the position, height, battery, heading and speed.
The Status t structure is illustrated in Figure 2.9.

Noti�cation_t

Position

Height

Speed

Status

(GPS_Pos_t)

(uint16)

Battery

Heading

(uint8)

(int16)

(uint16)

(Status_t)

Figure 2.8: Notification t structure[1]

16

sendPing
The sendPing message is regularly broadcasted by the pinger thread of the uavcontroller.
The payload of this ping message is a Status t structure that contains information about
the type of the current network scenario, the position of the sending UAV, the already
discovered clients, as well as the UAV’s hostname, its IPv4 and MAC address.

Status_t

Scenario

State

Position Client1

Position Client2

Hostname

(uint8)

(uint8)

Positioning

Searching

(uint8)

(uint8)

(Submitted_Pos_t)

(char[])

(Submitted_Pos_t)

IPv4 (char[])

MAC (uint8[6])

Position (GPS_Pos_t)

Figure 2.9: Status t structure[1]

outSocketResponse
The outSocketResponse message is used as response to various control messages. The
Remote Control App and other transmitting clients use this kind of message to determine
if a command was processed and received successfully. Therefore, the payload contains
a 1-byte integer to indicate the success of the transmittion or to report that additional
information is required.

sendAbort
The sendAbort message is a control message. It is used by the Remote Control App to
signal the end of a network deployment. It simply contains a 1-byte integer as payload.
After a UAV receives this message, it stops the deployment of the WMN and flies back to
its start location.

2.1.4 Network Scenarios

There are three deployment procedures for UAVNet with different search and position behaviors.
The two relay scenarios, termed Airborne Relay and Airborne Multihop Relay, provide a solu-
tion to deploy wireless mesh nodes carried by UAVs between two distant clients, which are are
too far away to communicate with each other. The attached wireless mesh nodes of the UAVs
provide an airborne WMN and the ability to communicate with the participants of the WMN.
When the UAVs have reached their final position, a communication path between the two clients
is available. Depending on the distance between the clients and the signal strength of the par-
ticipants of the WMN, the use of one or multiple UAVs is required. The remaining scenario is

17

termed Network Area Coverage that could provide a WMN coverage for a certain area, but it is
not implemented completely by the UAVNet.

Both relay scenarios use the starting UAV for the detection of the second client. If a third
client comes into transmission range of the searching UAV earlier than the second client, the
deployment of the WMN could fail unexpectedly. Therefore, the UAVNet provides a mecha-
nism to ensure that the deployment process of the relay scenarios will not get compromised.
As a part of the submitStartConfiguration message that initializes the network deployment, the
uavcontroller receives the MAC addresses of the allowed clients. This procedure ensures that
the transmissions from unauthorised clients are ignored, but it requires that the MAC addresses
are known in advance.

There are two different position procedures for the UAV, either by the geographical distance
between the two clients or similar signal strength in reference to both clients. These are termed
Location Position Mode and Signal Strength Position Mode. The current implementation of the
UAVNet allows to choose these modes in the start configuration for the Airborne Relay scenario.
The Airborne Multihop Relay scenario has always the same procedure for the positioning of the
UAVs since it uses the functionalities of both procedures. Additionally, UAVNet provides two
different search modes for the detection of the second client, either by a manual or autonomous
procedure. Therefore, they are termed Manual Search Mode and Autonomous Search Mode. The
Airborne Relay as well as the Airborne Multihop Relay scenario support these detection modes.
The values for the position and search modes are parts of the submitStartConfiguration message.
These modes are described as follows:

Location Position Mode
The Location Position Mode uses the GPS coordinates of both clients. When the second
client gets discovered, the uavcontroller receives its GPS coordinates from a submitPosi-
tion message. Afterwards, the uavcontroller calculates the average of the longitude and
latitude value from both clients to find the geographical center between them. Because
the result is processed as the next waypoint to the UAV electronics, the UAV will position
itself between the two clients.

Signal Strength Position Mode
The Signal Strength Position Mode extends the Location Position Mode for the adjuste-
ment of the UAV’s position. In the first place, the UAV is always positioned using the
Location Position Mode. Then, the Signal Strength Position Mode is performed. It uses
permanent measurements of the signal strength from both clients and directs the UAV
towards the client with the lower signal strength until the signal strength in reference to
both clients is equal. The mode ignores values that are expected to be wrong. As measured
values of signal strengths fluctuate, it would cause the UAV to move constantly forward
and backward. To avoid permanent movement of the UAV, this mode uses a threshold
value to determine the equality of the signal strengths. The UAV will finalize its position,
when both signal values have the same value in reference to a certain range defined by the
threshold.

Manual Search Mode
The Manual Search Mode requires to know where the second client is located. After the

18

transmission of the parameters for a desired scenario using the Manual Search Mode, the
uavcontroller on the wireless mesh node responds that it awaits a sendFlightDirection
message. The estimated position of the second client can be set by touching on the map
of the Remote Control App. After the UAV has received the message, it sets the contained
coordinates as the next waypoint and flies towards its direction.

Autonomous Search Mode
The Autonomous Search Mode does not require a sendFlightDirection message, in contrast
to the Manual Search Mode. If the uavcontroller receives a submitStartConfiguration
message that contains the Autonomous Search Mode, it will calculate multiple waypoints
forming a spiral around its location. Then, the UAV will begin to follow the flight path for
the detection of the second client.

Airborne Relay

The Airborne Relay network scenario uses one UAV as carrier for the WMN and requires two
clients for a successful deployment. Because the clients are not too far away from each other, it
is sufficient to use only one UAV for the connection. The Airborne Relay scenario is illustrated
in Figure 2.10 and its start configuration supports the following modes:

• Location Position Mode

• Signal Strength Position Mode

• Manual Search Mode

• Autonomous Search Mode

In this scenario, the UAV starts within the signal range of the first client and the managing
device running the Remote Control App. The UAV does periodically broadcast ping messages.
When the first client receives such a message, it answers with the submitPosition message. Then
the UAV knows the GPS coordinates of the first client. After the UAV received the submitStart-
Configuration message from the Remote Control App, the UAV starts the deployment depending
on the submitted parameters. If the Manual Search Mode was chosen, it requests the sendFlight-
Direction message. Otherwise, it instantly starts the deployment using the Autonomous Search
Mode.

Figure 2.10: Airborne Relay scenario

19

The UAV begins to fly towards the submitted waypoint or on a flight path forming a spiral
around its location, depending on the search mode. After a while, the UAV gets into the trans-
mission range of the second client. If the second client receives the broadcasted ping message,
it answers with the submitPosition message. From this moment on, the UAV knows both loca-
tions of the clients. Therefore, it flies to the center of their locations according to the Location
Position Mode. If the start configuration contained the Signal Strength Position Mode, the UAV
additionally changes its position to provide equal signal strength in reference to both clients.
When the UAV comes back into the signal range of the managing device, the position of the
second client is known by the Remote Control App as it receives this information through the
notification messages. Both clients can communicate with each other over the WMN when the
UAV reached its final position.

To finish the Airborne Relay scenario the sendAbort message has to be submitted. After-
wards, the UAV will return to its start location.

Airborne Multihop Relay

The Airborne Multihop Relay, as illustrated in Figure 2.11, uses multiple UAVs and forms a
communication chain between two clients that provides multihop network transmission between
them. If one UAV is not enough to establish a WMN that covers both clients, this scenario can
provide a solution. It supports the Manual Search Mode and the Autonomous Search Mode. The
positioning behavior is not part of its start configuration since it uses always the same positioning
procedure. Additionally, this scenario requires that the UAVs are placed on different altitudes
because they do not have a collision avoidance system.

Figure 2.11: Airborne Multihop Relay scenario

The UAV that receives the submitStartConfiguration message from the Remote Control App
starts the deployment process. Similar to the Airborne Relay scenario, the UAVs receive the sub-
mitPosition message from the first client. Afterwards, the starting UAV begins to fly depending
on the search mode.

When the UAV detects the second client, it includes the information about its position into
the ping and notification messages. As a consequence, the remaining UAVs get informed about
the position of the second client, as soon as the UAV comes back into their signal range. After
the detection of the second client, the first UAV flies towards the geographical center between
the clients according to the Location Position Mode.

When the center position is reached, the UAV begins to fly towards the first client. If the
connection to the first client achieves a certain predefined signal strength, the UAV stops its
movement. Then the UAV propagates that it reached its final position over the ping messages.

20

Every time when a UAV has reached its final position the following UAV flies towards its
location. Afterwards, it flies towards the direction of the second client until the signal strength
between itself and the last deployed UAV reaches a certain value. This procedure is repeated
until all UAVs are placed accordingly.

To end the Airborne Multihop Relay scenario the sendAbort message has to be submitted to
a participating UAV. Afterwards, the UAVs will return to their start location.

Network Area Coverage

The Network Area Coverage scenario is intended to provide network coverage for a certain
polygonal area using multiple UAVs. After submitting the coordinates of the area as a part of
the start configuration, UAVNet positions the UAVs autonomously within the area so that their
positions provide the best possible network coverage. This kind of scenario requires a collision
avoidance system, a smart positioning mode, as well as swarm behavior of the UAVs. Although,
this mode is not yet implemented in the prototype of UAVNet, some of its future requirements
have influenced the development of UAVNet and the Remote Control App. For this scenario, the
Remote Control App includes the functionality to draw a polygonal area on the map, but it does
not provide any further processing.

2.1.5 UAV Simulator

The uavcontroller is able to run as a simulator for testing and developing of managing and mon-
itoring applications like the Remote Control App. It uses a predefined list of comma-separated
values that are sent with the ping and notifiction messages. The simulator only handles send-
NotificationSubscription messages. It simulates a UAV notification service and its broadcasted
ping messages. Other types of message transmissions are not supported by the simulator, such
as the response to sendFlightDirection, submitStartConfiguration and sendAbort messages. The
response values have to be hard-coded in the application for testing and debugging. The trans-
mission of a start configuration for a UAVNet scenario does not affect the values sent by the
simulator. An example list of the comma-separated values is included in the UAVNet software.
As shown in Listing 2.1, the simulator mode is initialized by adding the -s flag to the start
command of the uavcontroller.

$. / u a v c o n t r o l l e r −s

Listing 2.1: Starting uavcontroller in the simulation mode.[1]

2.2 Route-Me

Route-Me[12] is an open-source Objective-C library for displaying maps on iOS devices. The
library depends on the PROJ.4 cartographic projections library[13]. It was initially developed
by Joseph Gentle as the basis for a transit routing application[14]. Gentle’s application was
never completed due to government licensing issues. As a consequence, the Route-Me library

21

was released in September 2008 as open-source under the New BSD license[15] and is currently
hosted on GitHub[12].

The Route-Me library provides several advantages for map representations compared to other
frameworks. It is capable to use locally stored, precompiled databases containing map tile im-
ages and to integrate different online map data sources. Additionally, the library provides a
configurable caching mechanism that creates databases of tile images from online map sources.

2.2.1 Map Sources

Since different users have different preferences, Route-Me provides integration for many various
map sources including OpenStreetMap (OSM), CloudMade, MapQuest and OpenCycleMap,
shown in Figure 2.12.

(a) OSM standard tile
image

(b) CloudMade tile
image

(c) MapQuest tile im-
age

(d) OpenCycleMap
tile image

Figure 2.12: Different map sources based on OSM data

These sources used by the Remote Control App are described as follows:

OpenStreetMap
OSM is a collaborative project of volunteers, who collect mapping information all over
the world, to provide a free and editable map. The map from OSM is ”Open Data”.
This means that everyone can utilize the data for his own usage as long as its source is
mentioned. All tile images from OSM are 256 x 256 pixel PNG files.

CloudMade
CloudMade is a company, which provides commercial applications with map data. Cloud-
Made’s maps are based on OSM data and provide many different map styles using various
coloring and different map labels. The usage of CloudMade maps requires an API-key.

MapQuest
MapQuest is currently the second-largest mapping service company according to their
owner AOL[16]. It provides desktop, mobile and business solutions, and uses map data
from both commercial and free sources. The data from free sources is largely based on
OSM data.

22

OpenCycleMap
OpenCycleMap is a OSM rendering layer and is primary focused to show relevant infor-
mation for cyclists.

2.2.2 Cache

The default cache structure of the Route-Me library consists of a memory cache of 32 tile images,
followed by a SQLite-based database cache that is created in the document folder of the Remote
Control App at the first use of each online source[17]. The database cache stores by default the
1000 most recently downloaded tile images. The library creates for each tile source a separate
database file that is stored by default in the application’s documents folder. The cache strategy
for the database cache is by default Least Recently Used (LRU). It is possible to configure the
Route-Me library to use First In First Out (FIFO). This is a more performant purge strategy since
LRU needs a write process for marking the date after each read access, while FIFO does not.

<? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =”UTF−8” ?>
<!DOCTYPE p l i s t PUBLIC ” − / / Apple / / DTD PLIST 1 . 0 / / EN” ” h t t p : / /www.

a p p l e . com / DTDs / P r o p e r t y L i s t −1 .0 . d t d ”>
< p l i s t v e r s i o n =” 1 . 0 ”>
<d i c t>

<key>c a c h e s< / key>
<a r r a y>

<d i c t>
<key>t y p e< / key>
< s t r i n g>memory−cache< / s t r i n g>
<key>c a p a c i t y< / key>
< i n t e g e r>48< / i n t e g e r>

< / d i c t>
<d i c t>

<key>t y p e< / key>
< s t r i n g>db−cache< / s t r i n g>
<key>c a p a c i t y< / key>
< i n t e g e r>1024< / i n t e g e r>
<key> s t r a t e g y< / key>
< s t r i n g>FIFO< / s t r i n g>
<key>u s e C a c h e s D i r e c t o r y< / key>
< t r u e />
<key>minimalPurge< / key>
< i n t e g e r>10< / i n t e g e r>

< / d i c t>
< / a r r a y>

< / d i c t>
< / p l i s t>

Listing 2.2: Example of a cache property list[17]

To adapt the default cache configuration, a custom property list termed ”routeme.plist” can
be created and included as target to the application build. The property list is a dictionary with

23

the key caches which contains an array of dictionaries defining the parameters for each cache
type. Every entry in the caches array must contain the key type indicating either memory or
database cache by values memory-cache and db-cache. The supported parameters are listed in
Table 2.1 and an example is shown in Listing 2.2. If the property list misses an entry for the
database cache, it will not instantiated.

Parameter Type Description
capacity Number The number of tile images kept by cache. No upper

limit can be set by 0 value.
strategy String The purge strategy has to be set to either LRU or FIFO.

(database cache only)
useCachesDirectory Boolean Use the App Caches folder or App Documents folder.

(database cache only)
minimalPurge Number The smallest amount of images removed during a purge

operation. Must be at least one and at most the cache
capacity. (database cache only)

Table 2.1: Supported parameters for cache types in routeme.plist

2.2.3 Offline Maps

Since the Remote Control App is supposed to be used in an enviroment without Internet access,
the opportunity of using an offline source for the map representation in the application is signif-
icant. The Route-Me library has the functionality to use two different database-backed formats.
These are called DBMap and MBTiles. The Remote Control App uses the DBMap format for
offline map sources. The DBMap format is a generic database file of the db-format containing
the map tiles of a certain area. The download of tile images and the following creation of the
database file cannot be accomplished by a mobile device itself in an usable way because of the
long-term download time. Depending on the size of the area and the supported zoom level, the
database file can grow quickly to a large amount of data even for small areas.

For the generation of a map tile database, the custom open-source PERL script called
”downloadosmtiles.pl”[18] and the command line tool ”map2sqlite”[19] are needed. The down-
loadosmtiles.pl script provides the functionality to download the map tile images of a certain
area from various sources. Its parameters are shown in Table 2.2. The square brackets stand for
optional values. A missing maximum value for latitude or longitude will lead to download only
tile images affected by the minimum value, like tile images laid over the minimum latitude or
longitude. The Listing 2.3 shows an example command to download map tiles.

$ d o w n l o a d o s m t i l e s . p l −− l a t = 4 6 . 9 5 1 7 3 : 4 6 . 9 5 5 5 8 −−l ong
= 7 . 4 3 7 4 5 : 7 . 4 4 2 8 8 −−zoom =12:15 −−d e s t d i r = / t i l e s / f o l d e r

Listing 2.3: Example of a command to download map tiles.

The Table 2.3 shows the various sources that can be used as value for the baseurl pa-
rameter including its supported zoom levels[21]. The square brackets stand for alternative

24

Parameter Syntax Description
latitude min[:max] Minimum and maximum latitude of the bounding box of coor-

dinates to download
longitude min[:max] Minimum and maximum longitude of the bounding box of co-

ordinates to download
zoom min[:max] Minimum and maximum zoom level
link URL A URL consisted of tile source, latitude, longitude and zoom

level information
baseurl URL The base URL of the download server
destdir directory The destination for the downloaded tile on the local file system
quiet Switches off the verbose mode
dumptilelist filename Writes a file in YAML format[20] containing the list of the

tiles. The script will not download map tile images when using
this parameter.

loadtilelist filename Does download the tiles from a given list.

Table 2.2: Supported parameters for downloadosmtiles.pl[18]

values because the tile sources have multiple subdomains to download the tiles from (e.g.
a.tile, b.tile, c.tile), and the Listing 2.4 shows the command for the creation of the generic
database file. The folder structure of the downloaded map tiles is shown in Figure 2.13
where the top level folder names denote the zoom level. The second level folder names de-
note the value of the X-axis and the name of the tile images stand for the value of the Y-
axis, both based on the Mercator projection[21]. The resulting folder structure has the shape
/zoom/x/y.png and is used also as URL template by all supported download sources (e.g.
http://a.tile.openstreetmap.org/zoom/x/y.png).

Source URL Zoom Levels
OpenStreetMap http://[abc].tile.openstreetmap.org 0-19
MapQuest http://otile[1234].mqcdn.com/tiles/1.0.0/map 0-19
MapQuest
Open Aerial

http://otile[1234].mqcdn.com/tiles/1.0.0/sat 0-11 (global),
12+ for U.S.

OpenCycleMap http://[abc].tile.opencyclemap.org/cycle 0-18
OpenCycleMap
Transport

http://[abc].tile2.opencyclemap.org/transport 0-18

CloudMade http://[abc].tile.cloudmade.com/your-API-key/1/256 0-18

Table 2.3: Examples of sources for map tile images[21]

$. / m a p 2 s q l i t e −db mapname . s q l i t e −mapdir / t i l e s / f o l d e r

Listing 2.4: Command that creates the SQLite database file from a tiles folder.

25

Figure 2.13: Structure of downloaded tile images

26

Chapter 3

Remote Control Application

As front-end application for the UAVNet, the Remote Control App has been developed. The
application provides a comfortable interface to manage the UAVNet system. It provides the
functionality to set up and to monitor UAVNet and to abort the deployment procedure of the
UAVs. It stores the information about past deployments in the application’s underlying SQLite
database as well as the notification messages sent by the UAVs during a flight scenario. It is
implemented for the iOS operating system as a so-called ”universal app”, which means, that it is
both running on iPhone, iPod and iPad devices with the same code basis. Furthermore, the Re-
mote Control App running on iPad adjusts its graphical user interface automatically, depending
on horizontal or vertical device orientation. The Remote Control App is a collaborative project
with [1] and [22]. The application functionalities are:

• Configuration, setup and deployment of one to several UAVs for the supported network
scenarios.

• Geographical representation of the device, clients and UAVs on a map including graphical
representation of actual sensor values transmitted by the UAVs.

• Integration of various online and offline map sources.

• Monitoring of an already deployed UAVNet.

• Storage of the received messages.

• Reviewing of past flights.

This chapter discusses the architecture of applications following the Model-View-Controller
(MVC) design pattern that is used by the Remote Control App as well as any other iOS appli-
cation in Section 3.1, followed by an overview about the implementation of the Remote Control
App including a short description about the Objective-C language and the construction of its
database in Section 3.2. As the Remote Control App consists of many different views, Sec-
tion 3.3 provides the presentation of the graphical user interface (GUI) in detail. The message
flow between the Remote Control App and the UAVNet is investigated in Section 3.4. The Sec-
tion 3.5 concludes this chapter as it declares the setup procedure with Remote Control App for a
network scenario.

27

3.1 Architecture

This section is about the architecture of the Remote Control App. Since every iOS application
should follow the Model-View-Controller (MVC) design pattern and as the provided frameworks
built into the iOS operating system correspond to this concept, it is described first and has to be
known to understand the construction of those applications.

3.1.1 Model View Controller Design Pattern in iOS

The MVC design pattern splits up the parts of an application into three interconnected compo-
nents, each responsible for different processings and each specialized for its task[4]. These three
different roles are termed model, view and controller, and have to interact with each other. The
advantage of this type of architecture is the convenience with regard to maintenance and reusing
of the programmed parts. This concept is illustrated in Figure 3.1.

Figure 3.1: Cocoa version of MVC as a compound design pattern[23]

The model contains the data to be presented or processed. The view is responsible for the
interaction with the user as well as for the presentation of the data. The controller handles the
flow of data between the view and model, thus it acts as mediator between them. The changes
of the data in the model, such as updated database rows or changed object values, are notified
and processed by the controller, and afterwards delegated to the view if this is necessary. Con-
versely, the view takes care of user input and delegates the user action to the controller where
the information is processed and transfered to the model once its necessary. For the Objective-C
programming language the different parts can be described as follows:

• A model is typically a subclass of NSObject, which is the root class for most inheritances
of Objective-C classes, or a database data type like those provided by a Core Data model
as described in Subsection 3.2.3.

• A view is usually a UIView object or a XIB file that acts as a container for multiple
different classes and subclasses of UIView.

• A controller is typically a class or subclass of UIViewController that acts as mediator
between its associated models and view.

28

3.2 Implementation

The current implementation of the Remote Control App supports the Airborne Relay and Air-
borne Multihop Relay modes of the UAVNet. It additionally provides a Monitor Mode, which
subscribes to the UAVs managed by an other device. The Monitor Mode can be used by other
users to gather information about the current state of a UAVNet deployment without the need
to set up and to control the deployment process. The different views are implemented as XIB
files. A XIB file is a XML representation of an object graph of various classes and subclasses of
UIViews that defines the structure of a certain view in the application.

Almost the entire code is written in Objective-C, exept for some small C code parts that are
needed to handle the ping and notification messages of UAVNet. The threads that are responsible
for listening to ping and notifiaction messages are placed in their responsible controller class.
Each received notification message gets processed by the observing thread into the database.
Multiple controller classes track database changes and trigger the representation update of UAVs
and clients on the map view or the detailed list of the UAVs current values on their corresponding
table view. The application uses the default cache behavior of the Route-Me library, as described
in Subsection 2.2.2, and it integrates common touch-based user actions, such as the swiping over
table cells for deletion.

The application consists of the documents, library and tmp folders on the file system level
as any other iOS application since these folders are part of the sandbox environment, but only
the documents folder is used directly by the Remote Control App for storage of the Route-Me
cache and the primary databases. As the contents of the documents folder are accessible over
the iTunes software, this provides the possibility to export and to backup the complete primary
database of the Remote Control App as well as to delete unwanted cache databases. To include
an offline source for the representation of the map, the tile database simply has to be placed in
the folder. Additionally, the contents of this folder are backed up during the synchronisation
procedure between the iOS device and iTunes.

An other aspect is the behavior of the Remote Control App when its execution is interrupted.
As an example, an incoming phone call during the deployment of UAVNet forces the application
into the ”background” state. In this state, the application has only a few seconds to perform
algorithms to ensure that it will not crash because after a few seconds the application will enter
the ”suspended” state where no more code execution is possible. Therefore, the Remote Control
App assures that all cached changes of the database, which are currently not saved to the SQLite
database file and are only stored in the main memory, are synchronized with the SQLite database
file when entering the ”background” state. iOS applications are forwarded to the ”suspended”
state shortly after entering the ”background” state. The suspended applications remain in the
memory and cannot execute any code. An other problem, which comes with the ”suspended”
state, is reclaiming of resources. This could cause that a socket used by the Remote Control App
gets closed. Although, the application ensures that the closed sockets are reestablished when
entering back into the ”active” state, some messages from the UAVNet are irrevocably lost.

29

3.2.1 Implementation of the Remote Control App

The impementation of the Remote Control App follows the MVC design pattern. The applica-
tion includes the Route-Me and libuavext libraries. The model of the application is extended
by several exportable databases. There is a cache database for each online map source that is
managed over the Route-Me library. An additional primary database, managed by several con-
troller classes, is used for the storage of received messages, past UAVNet deployments and the
application stettings. Additionally, the controllers manage the display of their associated view
according to the current state of the application. The application provides multiple views that are
described in Section 3.3. By using the libuavext library, it is able to listen to ping and notification
messages from UAVNet as well as to submit control messages using the IEEE 802.11g standard.
The implementation of the Remote Control App is illustrated in Figure 3.2.

Route-Me libuavextControllers Views

Remote Control App

iOS

iOS Device

7654 7655 7656
Databases

Wireless Interface

MVC Library Hardware

IEEE 802.11g connection

File Access

Ports

Figure 3.2: Scheme of the implementation of the Remote Control App

The Remote Control App uses several frameworks that are provided by the iOS layers as
previously seen in Figure 1.1. These are the Foundation, UIKit, Core Data and Core Location
frameworks. The following paragraphs give a short overview about these frameworks.

Foundation Framework

According to its term, the Foundation framework provides the base layer for Objective-C
classes[4]. It is part of the Core Services layer and provides the root class NSObject, which
is the basis of many widely used and inherited subclasses. Further, it provides so-called ”util-
ity classes” and introduces consistent conventions. Its portable code enhances the portability of
other frameworks that build on the Foundation framework and implementations towards other
platforms.

30

UIKit Framework

The UIKit framework contains all needed classes for the GUI-development of the iOS operating
system and it is specially optimised for touch-based input. Therefore, it is part of the Cocoa
Touch layer[4]. It provides an application object, event handling, drawing model, windows,
views and controls.

Core Data Framework

The Core Data framework is used to manage relational entity-attribute models and data, such
as SQLite databases and XML[4]. It is a part of the Core Services layer providing relation-
ship maintenance, tracking and undo support, validation of attribute values, observing, merge
policies, search query compilation and exportable data. As it is essential to handle the primary
database, its functionality has been included into the Remote Control App.

Core Location Framework

The Core Location framework is provided by the Core Services layer[4]. It is used to access the
hardware providing the device’s geographical location or orientation, thereby this framework is
needed by the Remote Control App to find its own location and to adjust the orientation of the
map towards the magnetic North direction.

3.2.2 Objective-C

Objective-C is the primary programming language used to write software for iOS as well as for
Mac OS X. The concept of the syntax of Objective-C is based on the Smalltalk programming
language. It extends the procedural C programming language with object-oriented concepts
and forms a strict superset of C. Therefore, every C-program or C-library, such as the libuavext
library, can be compiled through an Objective-C compiler and C code can be included directly
within an Objective-C class.

3.2.3 Database

The interaction with the primary database is implemented with the services provided by the
Core Data framework. The controllers use observing methods to track changes of the database
objects and adjust the views according to the MVC concept. On the other side, user generated
input, such as the changing of settings over the GUI, is processed by the controllers and the
information is forwarded to the database if this is necessary. The model of the database is
illustrated in Figure 3.3.

There are several objects with different relationships among each other. These are the Set-
tingState, MacAddress, Flight, UAV, Station, Notification, Status and Location objects and are
described as follows:

SettingState
The SettingState object is responsible to contain the current settings of the Remote Con-
trol App. These settings include the API key for map sources provided by the CloudMade

31

cmAccessKey

detailedMarkers

o ineMap

o ineSource

onlineSource

String

String

String

Boolean

Boolean

macAddress String

SettingState MacAddress Flight UAV

Station

Noti!cation

Status

Location

identName

isActive

macAddress

"ightDirection

"ightMode

"ightName

"ightType

hostName

ipAddress

ipv6Address

isActive

isSubscribedisActive

battery

heading

height

recvDate

speed

latitude

locDate

longitude

positioning

scenario

state

searching

String

String

String

String

Boolean

Double

Double

Date

Int 32

Int 32

Int 32

Int 32

Date

String

String

Boolean

Int 32

Int 32

Int 32

Int 32

String

String

String

Boolean

Boolean

noti!cations

stations

uavs

"ights

recvNoti!cations

pingStatus

"ight

location

noti!cation

station

"ight

location

status

uav

Subclass of NSManagedObject

Relationship

Attribute

Figure 3.3: Core Data Model of Remote Control App

company, the filename of the chosen offline map database and the name of the online
source as strings. Additionally, a boolean value indicates whether to use an offline map
or online map source. An other boolean value is used to switch between the use of de-
tailed markers for the representation of the UAVs and the simple UAV representation, as
described in Subsection 3.3.1. There can be only one SettingState object in the database
at any time.

MacAddress
There can be several MacAddress objects in the database. These are used to manage the
allowed MAC addresses of the clients of the UAVNet. As it is very uncomfortable to
type in MAC addresses over a touch-based GUI, they can be stored permanently. The
list of the allowed MAC addresses can be managed over the options view as explained in
Subsection 3.3.5.

Flight
A Flight object is created when the user sets up the parameters of a desired UAVNet
scenario. Each Flight object stores the information about a completed, past Airborne
Relay, Airborne Multihop Relay or Monitor Mode scenario. It contains the type of the
network scenario, the type of the position and search mode, as well as a name for it.
The name is intended to give additional information for the management over the archive
view as illustrated in Figure 3.7. Additionally, a boolean value flags a Flight object if

32

it is currently active. This would indicate that there is an ongoing UAVNet deployment
or a flight scenario is set. The Flight object contains two one-to-many relationships to
determine the client notebooks as Station objects as well as all notifications that have been
received during this flight scenario. Additionally, there is a many-to-many relationship
between the Flight objects and the UAV objects as a flight can have multiple associated
UAVs and a UAV can be part of several past flights.

UAV
A UAV object is created as soon as an unknown UAV gets discovered for the first time.
It contains the hostname of its associated UAV as an unique identifier, its IPv4 and IPv6
address, a boolean value to indicate if the UAV object is marked as active and an addi-
tional boolean value to point if the device is currently subscribed to the UAV’s notification
service. A UAV object which is marked as active indicates that its associated UAV has
been recently detected through listening for ping messages. After a UAVNet deployment
is finished, the UAV objects are marked as inactive. Since the UAVs associated with the
UAV objects can be part of multiple past UAVNet deployments and because a UAVNet de-
ployment can consist of several UAVs, a many-to-many relationship is used between the
Flight and UAV objects. Additionally, all notifications that have ever been received by
the UAV are associated with a one-to-many relationship. The pingStatus attribute is ref-
erencing to a single Status object. It contains the values of the last received ping message
and is updated every time when the Remote Control App listens to these messages for the
detection of currently unknown UAVs.

Station
The Station object is used for the clients of UAVNet. Similar to the Flight and UAV objects,
a boolean value indicates if the client is part of an active scenario. The other stored values
are the name of the client that either can be Client1 or Client2, as well as its MAC address.
It provides an one-to-one relationship to indicate the position of the client by a Location
object. An one-to-many relationship is used between the Flight object and its associated
clients.

Status
The Status object stores the information contained in the ping messages as well as the con-
tained Status t structure in the notification messages. A single Status object is referenced
by either a Notification object or a UAV object.

Notification
For each received notification message of the UAVNet, a Notification object is created. It
consists of the information contained in the message indicating the current state of a UAV.
That includes a reference to a single Status object as the Status t structure is part of a
notification message. A one-to-one relationship is used to associate the contained location
information to a Location object. Additionally, two one-to-many relationships are used to
associate Notification objects to the sending UAV and to the associated flight.

33

Location
The Location object consists of the longitude, latitude and date for a certain GPS position.
It can either be connected to a Station or Notification object over a one-to-one relationship.

3.3 Graphical User Interface

The Remote Control Application is composed of the map, scenario, communication, archive and
options views. To switch between the views on the iPhone or iPod, the navigation is accom-
plished through a tab bar on the bottom. For the iPad, the navigation is shown as drop down
menu for a vertical device orientation. An horizontal device orientation leads to a splitted view
consisting of the map view on the right side and the remaining views on the left side.

3.3.1 Map View

A purpose of the map view is the representing of the clients of the UAVNet, the current geo-
graphical position and states of subscribed UAVs, and the location of the mobile device on the
map. The location of the mobile device is marked by a blue point and the detected clients are
shown using a blue marker with either the label ”Client1” or ”Client2”. The UAV representation
can be a detailed marker or a simple red point. Figure 3.4 shows the map view as seen on an
iPad device.

Figure 3.4: map view with detailed UAV marker representation on iPad

34

The layout of the detailed marker is shown in Figure 3.5. For the detailed view of a UAV, the
representation includes an arrow indicating the current flight direction and speed by orientation,
length and coloration. This means that the faster the UAV, the longer the arrow is on the map
view. The exact position of the UAV is shown by a red dot on the UAV graphic. An adaptive
colored bar is placed on the right side of the marker that shows the altitude over ground in
relation of the take-off height. On the bottom of the detailed marker, the battery gauge and the
hostname are shown. The coloration of the direction and speed vector, battery gauge and altitude
bar is either red, yellow or blue. The blue color refers to good states. This decision was made
to give a better contrast since there might be large green areas on the map view. The red color
stands for dangerous states as low altitude, high velocity and low battery charge. The yellow
color indicates acceptable states.

Because the Manual Search Mode requires a waypoint location, the user can set such a
location by touching on the map. When a location is set, it is shown with a red direction marker
similar to the client marker. Additionally, a line is drawn between the UAV and the direction
marker that indicates the direction on the map. As soon as the direction marker is set, it can be
moved to adjust the desired position.

Figure 3.5: GUI-Marker showing the current state of a UAV

Control Bar

An other purpose of the map view is to manage the current flight scenario. For this purpose, it
holds a control bar on the top. The control bar consists of a location, a state and a cancel button
from the left to the right. Additionally, a field on the right side displays the type of the current
flight scenario.

Location Button
Pushing the location button one-time will execute the location tracking of the mobile
device by setting and moving a blue point at the device’s GPS coordinates on the map.
The map view will be centered at the blue location point during location tracking. A
second push on the location button will additionally perform automatic rotation of the

35

map towards the magnetic North direction using the integrated digital compass. Location
tracking can be aborted by swiping the map or pushing the location button again.

State Button
The state button allows to forward to the next state of a flight scenario and changes its
label according to the current state of the Remote Control App. The procedure to manage
a network scenario is described in Section 3.5.

Cancel Button
The cancel button has multiple purposes, depending on the current state of the Remote
Control App. It can be used to cancel a network scenario before the submitStartConfig-
uration message was sent to the UAVs. Since the UAVs are flying the network scenario
after receiving this message, the sendAbort message has to be submitted to end the de-
ployment process. This procedure is provided by the state button. Another purpose is to
remove drawn flight paths provided by the archive view.

3.3.2 Scenario View

The scenario view simply provides the ability to set up the parameters of a desired network
deployment for the UAVNet. First, the type of the scenario has the be chosen. This either can
be an Airborne Relay, Airborne Multihop Relay or Monitor Mode according to 2.1.4. There
is a selection for Network Area Coverage, but it is disabled since this scenario is currently not
supported. The selection of this scenario would forward to a drawing mode for the polygonal
area. After chosing the type of the scenario, the next view slides in, requesting additional setup
information depending on the chosen scenario. As last step, the user is asked to confirm his
selection. Once a scenario is set, the user cannot set up an other scenario as long as the initial
scenario is active. The Figure 3.6 illustrates this procedure for the Airborne Relay scenario.

3.3.3 Communication View

The communication view is shown in Figure 3.4 next to the map view. It provides a connect
button on the top left and consists of a Network Status, an UAVs and a Clients section. The
Network Status section simply shows the IPv4 and IPv6 address of the device. A purpose of the
connect button is to listen to the broadcasted ping messages by UAVNet. For the subscription to
the notification service and the transmission of the start configuration of a network scenario, the
participating UAVs have to be discovered previously. Once the Remote Control App has received
such a message from a UAV, it is shown under the UAVs section. Accordingly, the clients section
gets updated if clients within the UAVNet are discovered.

Furthermore, the selection of a client row will forward to a table view where the actual
values of its status is shown. The selection of a UAV does the same, but the information will
also include the values of the last received notification message. If the device is not subscribed
to the selected UAV, it will show only the information of the last received ping message.

36

(a) Selection of a scenario (b) Selection of the search mode (c) Selection of the position mode
with confirmation

Figure 3.6: scenario view of the setup procedure for Airborne Relay on iPhone

3.3.4 Archive View

The archive view displays information about the saved data from past network scenarios. The
different parts of the archive view are shown in Figure 3.7. The view uses the information
contained by the stored notification messages. It is separated into two sections. On the top, a tab
bar is placed where the user can choose between a Flights or UAVs overview.

The Flights selection presents all locally stored flights, one for each row. The selection of
a flight forwards to a table view that presents stored and calculated information, such as the
duration of the network deployment by calculating the time between the first and last received
notification messages that are associated with this flight. Furthermore, the date, the search and
position mode, the number of received messages, the MAC addresses of the found clients, as
well as the hostnames of the participated UAVs are shown. Additionally, the option to draw the
flight paths of the UAVs onto the map is available at the bottom.

The UAVs selection lists all stored UAVs including the number of participated flights. The
selection of a UAV will forward to a table view where each associated flight of the selected UAV
is shown similarly to the Flights selection. Then, the selection of a row forwards to the table
view that presents the detailed information about the flight.

If a scenario is active, the flight paths cannot be drawn on the map view. This prevents

37

confusion since the labels and the area of the scenario might be similar. Additionally, the data
of the UAVs as well as the saved flights can be removed by using the edit button on the top.

(a) Flights part of the archive (b) UAVs part of the archive (c) Detailed view about a flight

Figure 3.7: Different parts of the archive view on iPhone

3.3.5 Options View

The options for the Remote Control App are separated into the database, general and tile source
section. The database section provides options to manage the content of the tile image databases
as well as the primary database of the Remote Control App. It is followed by the general settings
that provide common options for the representation of the map as well as the MAC address con-
figuration for the network scenario of the UAVNet. The database section provides the selection
of the map sources. The options view as displayed for an iPhone is shown in Figure 3.8. The
individual settings are described as follows:

Clear image cache
The user can clear out all tile images from the Route-Me database cache of the current
map source with the selection of this item.

Clear NSURL cache
The different online tile source implementations load tile images via NSURLRequest.

38

There is a possibility that some tile images will remain in the applications shared URL
cache. If the user wants to clear them out, he can use this option.

Clear database
This option clears out all past flights including all information associated with them. This
option does not affect the allowed MAC addresses list as well as the current flight scenario
and UAVs, which are marked as active.

Offline Map
Using the provided switch, the user can enable or disable the use of an offline tile source.

Detailed Markers
This switch enables or disables the use of detailed markers for the UAV representation.

Allowed MAC Addresses
This item forwards to a table view where the user can modify the list of allowed MAC
addresses for the UAVNet.

Online Source
This item opens a view where the user can choose between several predefined online map
sources.

Offline Source
This option forwards to a table view where the user can choose between all locally stored
offline map databases.

Cloud Made API Key
The usage of CloudMade maps requires an API-key. This item forwards to a view where
the user can type it in.

39

(a) Options view (b) Managing allowed MAC ad-
dresses

(c) Online source selector view

Figure 3.8: Different parts of the options view on iPhone

3.4 Communication

This section describes the communication flow between the managing device and UAVs for the
Airborne Relay and Airborne Multihop Relay scenario using the Autonomous Search Mode. Fig-
ure 3.9 illustrates the Airborne Relay scenario and shows messages used by the Remote Control
App. The application states depending on the communication stand on the left side and the re-
quired messages structures are provided by the libuavext library. The communication flow for
Airborne Relay is as follows:

1. The Remote Control App starts in an unconfigured state indicating that the participants of
the UAVNet are unknown. As soon as the UAV is operating, it broadcasts ping messages
every few seconds using UDP.

2. In the next step, the managing application listens for ping messages. After receiving, the
UAV is discovered and the information is saved to the primary database of the application.

3. When the Airborne Relay scenario is defined in the Remote Control App, the knowledge
about the UAV allows the subscription to the UAV’s notification service, accomplished
through a control message using TCP. After receiving the acknowledgement, the device is
subscribed and receives the notification messages from the UAV.

40

4. The next step is to transmit the submitStartConfiguration message containing the type of
the scenario, the positioning and searching mode as well as the allowed MAC addresses for
the deployment. If the scenario contained the Manual Search Mode, the application will
automatically transmit the previously set location of the direction waypoint without user
action after receiving the acknowledgement of the submitStartConfiguration message. For
the transmission of the direction waypoint the sendFlightDirection message is used. Then,
the UAVNet deployment procedure is initiated and performed by the UAV.

5. When the scenario should be aborted, the Remote Control App transmits the sendAbort
message. The acknowledgement of this message will initiate an automatic unsubscription
procedure for every subscribed UAV.

ping

ping

ACK

ACK

ping

ping

ACK

ACK

ping

Uncon�gured

UAV in database

Device subscribed

UAVs !y scenario

Device unsubscribed

sendNoti�cationSubscription

noti�cation

noti�cation

sendNoti�cationUnsubscription

submitStartCon�guration

sendAbort

noti�cation

Figure 3.9: Communication flow between Remote Control App and a UAV with application states

41

The message flow for the Airborne Multihop Relay is illustrated in Figure 3.10. The differ-
ence to the Airborne Relay is that ping messages are received from multiple UAVs and multiple
sendNotificationSubscription messages are sent as the Remote Control App must subscribe to
every UAV separately. The submitStartConfiguration and the sendAbort, as well as the send-
FlightDirection messages have to be submitted always to only one participating UAV. The UAVs
inform each other through ping messages. How this message flow is handled with the GUI, is
described in the following Section 3.5 and illustrated in Figure 3.12.

The Monitor Mode uses only control messages for subscription and unsubscription because
an other device manages the UAVNet deployment.

Uncon�gured

UAV in database

Device subscribed

UAVs !y scenario

Device unsubscribed

sendNoti�cationSubscription

noti�cation

noti�cation

sendNoti�cationUnsubscription

submitStartCon�guration

sendAbort

ping

ACK

ping

ping

ACK

ACK

ping

noti�cation

ACK

sendNoti�cationSubscription

noti�cation

noti�cation

sendNoti�cationUnsubscription

ping

ACK

ping

ping

ACK

ping

noti�cation

ping ping

ping ping

ping ping

Figure 3.10: Communication flow between Remote Control App and multiple UAVs with application
states

42

3.5 UAVNet Deployment with the Remote Control App

Only one instance of the Remote Contol App can manage a UAVNet scenario at a time. Other
devices running the application within the same UAVNet can monitor the current deployment of
the UAVs using the Monitor Mode. To set up a scenario, several steps must be carried out by the
managing user. Figure 3.11 illustrates a typical setup for a UAVNet scenario. First, the UAVs
have to be placed in the air because there is no automatic take-off procedure. The following list
introduces the steps that have to be accomplished for a Airborne Relay scenario and Figure 3.12
shows how they are carried out with the GUI. These steps are similar for the Airborne Multihop
Relay scenario.

Uncon�gured

UAVs in database

Scenario set Device subscribed Setup complete

Device unsubscribed

UAVs !y scenario

Discover UAVs in WMN

Set type of scenario

Subscribe Select direction

and MAC addresses

Submit start con�guration

Send abort message

Set name or delete data

Figure 3.11: Performing a UAVNet scenario with application states

1. After establishing a connection to the WMN provided by the waiting UAV, the Remote
Control App is started by the user. When the application’s startup procedure is finished,
it is in an unconfigured state as there is no UAV, Station or Flight object in the database
marked as active.

2. Because the UAV has to be discovered prior to the transmission of the sendNotification-
Subscription message, the user switches to the communication view. The connect button
starts the listening thread for ping messages. After a few seconds the Remote Control App
receives the first broadcasted ping message. Once the Remote Control App has received
such a message, it creates a UAV object according the the provided information. The ap-
plication will not create a UAV object if there exists already one with the same hostname.
Instead, it marks the UAV object as active. Afterwards, the UAV is visible under the UAVs
section of the communication view as shown in Figure 3.12(a).

3. The next step is to set up the desired flight scenario with the scenario view as illustrated
in Figure 3.6. After the confirmation of the scenario type, a Flight object is created. It is
also possible to set up the scenario before the detection of the UAVs.

4. Now the required information is available and the user can subscribe to the notification
service of the UAV. On the map view the state button has to be pressed. This opens a view
for the selection of the UAV as there might be multiple, previously discovered UAVs, but
only one is needed. The view for the selection of the UAVs can be seen in Figure 3.12(b).

43

The checkmark next to the hostname indicates if the device is subscribed to the notification
service. After subscription the user must confirm that he has finished the subscription
procedure because it is still possible to unsubscribe and to subscribe to another UAV. For
the Airborne Multihop Relay scenario, the selection view allows multiple simultaneously
subscribed UAVs. Each received notification message gets processed by the observing
thread into the database. The UAV will appear on the map view when the first of his
notification messages is received.

5. When the subscription procedure is finished, the next state of the Remote Control App
allowes to define the flight direction of the UAV depending on the search mode of the
network scenario. If the Manual Search Mode was chosen, the state button enables the
drawing mode and the user has to set a marker on the map to define the flight direction as
illustrated in Figure 3.12(c). If the Autonomous Search Mode was chosen or the marker
has been set, he can directly proceed to the selection of the UAV that receives the start
configuration and the selection of the allowed MAC addresses.

6. Afterwards, the start configuration for the deployment of the UAVNet has to be submitted.
The selection of the state button opens a view where the receiving UAV has to be chosen.
The view for the selection of the UAV is shown in Figure 3.12(d). This is only intended
for the Airborne Multihop Relay scenario as there is only one UAV in the Airborne Relay
scenario, but the same view is used for both. The selection of a UAV slides in a table view
where the user can select two MAC addresses similar to the selection for the subscription
as illustrated in Figure 3.12(e). The confirmation of the selected MAC addresses triggers
the transmission of the start configuration.

7. As soon as the UAV receives the start configuration, it starts the autonoumous deployment
procedure according to the provided information. Figure 3.12(f) shows the map view for
the Airborne Relay scenario with both clients and the UAV.

8. If the user wants to abort the deployment of the UAVNet, he submits the sendAbort mes-
sage with the state button. Similar to the transmission of the start configuration, the user
has to choose the UAV that should receive the sendAbort message for the Airborne Multi-
hop Relay scenario. When the confirmation from the UAV has been received, the Remote-
Control App automatically unsubscribes from all UAVs. Then the user is promted to set a
name for the flight or he can instantly remove the data of the flight from the database.

44

(a) Detection of UAVs (b) Subscription to a UAV (c) Inserting of a direction marker

(d) Selection of a UAV to submit
the start configuration

(e) Selection of MAC addresses (f) map view of the deployment

Figure 3.12: Setup procedure for Airborne Relay on iPhone

45

Chapter 4

Conclusions and Future Work

4.1 Conclusions

This Bachelor thesis introduced the front-end application Remote Control App for UAVNet, a
prototype for the deployment of an highly adaptive, mobile, airborne WMN using the IEEE
802.11s standard. This front-end application is capable to setup, to monitor and to manage
the currently supported network scenarios of UAVNet. Since UAVNet is intended to be used
in disaster scenarios for fast establishment of a communication solution, the use of a mobile
platform, such as the iOS devices, supports this mobility concept. The design and layout of the
Remote Control App as well as the graphical representation of the involved participants provide
a user-friendly GUI for the overview about the status of the deployment and the management of
the deployment procedures. The integration of locally saved map databases assures that a map
can be shown even if there is no Internet access. The application states are simple for deployment
of a scenario and can be accomplished by using only a small number of buttons on the interface.
As there is always only one action that forwards to the next state, it can be assumed that even not
very technically skilled people can understand and perform the deployment procedure with the
application in a short time. These aspects provided by the Remote Control App support a future
real-life usage of UAVNet in disaster scenarios.

Since the Remote Control App saves information of the received messages in its primary
database, it provides exportable data that can be used for further analysis of the deployment
process as well as for future developments of the UAVNet. The ability to support additional
future extensions of UAVNet, such as the Network Area Coverage mode, are provided as well
and could be achieved in the next steps. The use of the integrated libraries assures that the
managing front-end and the UAVNet can evolve together.

Several flight tests during the development have shown that the deployment of the UAVNet
can be successfully achieved with the Remote Control App, but there are still some shortcomings
that have to be overcome. The take-off and landing procedures of the UAVs are not initiated
by the Remote Control App and are currently unsupported by UAVNet. As a consequence, an
additional remote control unit for the UAV-hardware is needed. This is a drawback for a real-life
usage since the user has to use and to handle two different devices. Additionally, the whole
deployment process of the UAVNet depends strongly on correct GPS values. When they are
inaccurate, the Remote Control App does not show the real positions of the UAVs. Therefore, it

47

can not be trusted that the saved location data is accurate to the really taken flight paths.

4.2 Future Work

The improvement of the Remote Control App strongly depends on the evolvement of UAVNet.
There are many use cases that could be supported in future versions of the application, but some
of them require extensions in the uavcontroller software, such as the Network Area Coverage
mode. This mode requires a polygonal area that can be drawn by the Remote Control App, but
additional adaptations have to be made once this scenario is supported by UAVNet since it is not
defined how to transmit the nodes of the area. UAVNet requires additional collision detection
and avoidance systems and a swarming behavior to achieve this type of scenario.

The MVC design ensures that the Remote Control App can be extended in an usable way
and the application provides a starting point for future enhancements that could be an inte-
grated cache configuration for the Route-Me library, an sophisticated download mechanism for
map databases over the GUI and a geographical representation of other connected devices than
the two clients of the UAVNet on the map. Since the Remote Control App is implemented in
Objective-C, it would be possible to use parts of its code for a front-end application running on
Mac OS X.

Additionally, an exchange of information over the WMN between a managing and multiple
monitoring front-end applications, such as message exchange and Voice over IP (VoIP) calls,
could be achieved. This would include a kind of detection mechanism for other connected de-
vices running the front-end application similar to the ping message system of the UAVNet. In the
current implementation, only one instance of Remote Control App can manage a scenario. It is
possible to have multiple managing devices of a current UAVNet deployment, but this would re-
quire a security mechanism to either delegate the control to another device or to assure that only
certain devices can manage a scenario. The first concept would require a detection and message
exchange mechanism between the connected front-end applications. The second would require
to log in to UAVNet as a managing device by a password or key. In the current implementation,
the deployment of a network scenario is final because it has to be aborted to establish an other
scenario, but the UAVNet and the Remote Control App could be adapted to change a scenario
during a deployment, such as from Airborne Multihop Relay to Network Area Coverage.

48

Bibliography

[1] S. Morgenthaler, “UAVNet: A Prototype of a Highly Adaptive and Mobile Wireless Mesh
Network Using Unmanned Aerial Vehicles (UAVs),” Master’s thesis, University of Bern,
2012. [Online]. Available: http://cds.unibe.ch/research/pub files/Mo12.pdf

[2] M. Honan. (2013) Apple unveils iPhone. PCWorld. [Online]. Available: http:
//www.macworld.com/article/1054769/iphone.html

[3] A. Brooks. (2010) iPhone OS Renamed iOS. World of Apple. [Online]. Available:
http://www.worldofapple.com/archives/2010/06/07/iphone-os-renamed-ios

[4] E. Sadun, Das grosse iPhone Entwicklerbuch, 2nd ed. Pearson Education Deutschland
GmbH, 2010.

[5] (2013) App Store Review Guidelines. [Online]. Available: https://developer.apple.com/
appstore/guidelines.html

[6] J. Jun and M. L. Sichitiu, “The Nominal Capacity of Wireless Mesh Networks,”
Wireless Communications, IEEE, vol. 10, pp. 8–14, Oct 2003. [Online]. Available:
http://networking.ncsu.edu/capacityWCM.pdf

[7] I. F. Akyildiz, X. Wang, and W. Wang, “Wireless Mesh Networks: A Survey,” Computer
Networks Journal, vol. 47, no. 4, pp. 445–487, March 2005. [Online]. Available:
http://bcs.adi-share.com/contents/Wireless Mesh Networks - A Survey428.pdf

[8] S. Misra, S. C. Misra, and I. Woungang, Guide to Wireless Mesh Networks, 1st ed.
Springer Verlag London, 2010, pp. 325–326.

[9] I. F. Akyildiz and X. Wang, “A Survey on Wireless Mesh Networks,” IEEE Communica-
tions Magazine, vol. 43, no. 9, pp. 23–30, September 2005.

[10] (2013) Unmanned Aerial Vehicles. [Online]. Available: http://www.thefreedictionary.
com/unmanned+aerial+vehicle

[11] S. Morgenthaler, T. Braun, Z. Zhao, T. Staub, and M. Anwander, “UAVNet: A Mobile
Wireless Mesh Network Using Unmanned Aerial Vehicles,” in Globecom Workshops
(GC Wkshps), 2012 IEEE. IEEE, Dec. 3–7, 2012, pp. 1603–1608. [Online]. Available:
http://cds.unibe.ch/research/pub files/MBZSA12.pdf

49

http://cds.unibe.ch/research/pub_files/Mo12.pdf
http://www.macworld.com/article/1054769/iphone.html
http://www.macworld.com/article/1054769/iphone.html
http://www.worldofapple.com/archives/2010/06/07/iphone-os-renamed-ios
https://developer.apple.com/appstore/guidelines.html
https://developer.apple.com/appstore/guidelines.html
http://networking.ncsu.edu/capacityWCM.pdf
http://bcs.adi-share.com/contents/Wireless_Mesh_Networks_-_A_Survey428.pdf
http://www.thefreedictionary.com/unmanned+aerial+vehicle
http://www.thefreedictionary.com/unmanned+aerial+vehicle
http://cds.unibe.ch/research/pub_files/MBZSA12.pdf

[12] J. Gentle and various developers. (2013) Route-Me: iOS map library. [Online]. Available:
https://github.com/route-me

[13] G. Evenden. (2013) PROJ.4 - Cartographic Projections Library. [Online]. Available:
http://trac.osgeo.org/proj/wiki/WikiStart

[14] (2013) Route-Me Map Framework. Universität Wien. [Online]. Available: http:
//athene.geo.univie.ac.at/project/route-me/html

[15] (2013) BSD License. Open Source Initiative. [Online]. Available: http://opensource.org/
licenses/bsd-license.php

[16] (2013) ”AOL - Products - Services - Local”. [Online]. Available: http://corp.aol.com/
products-services/local

[17] J. Gentle and various developers. (2012) Route-Me: Open source iPhone-native slippy
map. [Online]. Available: http://code.google.com/p/route-me/w/list

[18] R. Krahl. (2013) Geo-OSM-Tiles-0.04. BerliOS. [Online]. Available: http://geo-osm-tiles.
berlios.de

[19] F. Schröder. (2013) Map2Sqlite. [Online]. Available: https://github.com/magiconair/
map2sqlite

[20] O. Ben-Kiki and C. Evans. (2013) YAML. [Online]. Available: http://www.yaml.org/spec

[21] (2013) OpenStreetMap - Wiki - Slippy Map Tilenames. [Online]. Available: http:
//wiki.openstreetmap.org/wiki/Slippy map tilenames

[22] T. Staub, “Development, Testing, Deployment and Operation of Wireless Mesh
Networks,” Ph.D. dissertation, University of Bern, May 2012. [Online]. Available:
http://www.iam.unibe.ch/∼rvs/research/pub files/St11.pdf

[23] iOS Developer Library. [Online]. Available: https://developer.apple.com/library/ios/
documentation/general/conceptual/devpedia-cocoacore/MVC.html

50

https://github.com/route-me
http://trac.osgeo.org/proj/wiki/WikiStart
http://athene.geo.univie.ac.at/project/route-me/html
http://athene.geo.univie.ac.at/project/route-me/html
http://opensource.org/licenses/bsd-license.php
http://opensource.org/licenses/bsd-license.php
http://corp.aol.com/products-services/local
http://corp.aol.com/products-services/local
http://code.google.com/p/route-me/w/list
http://geo-osm-tiles.berlios.de
http://geo-osm-tiles.berlios.de
https://github.com/magiconair/map2sqlite
https://github.com/magiconair/map2sqlite
http://www.yaml.org/spec
http://wiki.openstreetmap.org/wiki/Slippy_map_tilenames
http://wiki.openstreetmap.org/wiki/Slippy_map_tilenames
http://www.iam.unibe.ch/~rvs/research/pub_files/St11.pdf
https://developer.apple.com/library/ios/documentation/general/conceptual/devpedia-cocoacore/MVC.html
https://developer.apple.com/library/ios/documentation/general/conceptual/devpedia-cocoacore/MVC.html

Erklärung

gernäss Art. 28 Abs. 2 RSL 05

NameNomame:
fr::- · A j '
.~.(l~öQ[.I.f\(.1

Matrikelnummer: .Q..2.:-0.A.'3..-:.~~ .. .

Studiengang: . .l..~.{-9.r.~.f.(~ .. .

Bachelor ~ Master D Dissertation D

Titel der Arbeit: .i.P.~.I..~f~~ ... Af..p. .. ~S ... ß .. :f.tC?.0.~.::g.(.\~\..f.~L

·.f.rs;:::\9:-b,.~~ .. o..f ... 9.. ... ~!!;)~~~/ ~~~~ ... <.\f.'\~\ .. H.C?~~-\(.

(Q~~'M~~~~b~.~-~!?r.~ ... ~~\00.~~~ .. ~ö~t~~.~~., (uA\Js)

Leiterin der Arbeit: .'tl·9.~':?~ ... ~:-.. 19.~~ .. :B.r.~~n

Ich erkläre hiermit, dass ich diese Arbeit selbständig verfasst und keine anderen als die

angegebenen Quellen benutzt habe. Alle Stellen, die wörtlich oder sinngernäss aus Quellen

entnommen wurden, habe ich als solche gekennzeichnet. Mir ist bekannt, dass andernfalls

der Senat gernäss Artikel 36 Absatz 1 Buchstabe o des Gesetztes vom 5. September 1996

über die Universität zum Entzug des auf Grund dieser Arbeit verliehenen Titels berechtigt ist.

~!.~ .. ~J.,9.1.~t .. l!t
Ort/Datum

··~··························
Unterschrift

	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	iOS
	Wireless Mesh Networks
	Unmanned Aerial Vehicles
	Structure of the Thesis

	Related Work
	UAVNet
	Architecture
	Uavcontroller
	External Communication
	Network Scenarios
	UAV Simulator

	Route-Me
	Map Sources
	Cache
	Offline Maps

	Remote Control Application
	Architecture
	Model View Controller Design Pattern in iOS

	Implementation
	Implementation of the Remote Control App
	Objective-C
	Database

	Graphical User Interface
	Map View
	Scenario View
	Communication View
	Archive View
	Options View

	Communication
	UAVNet Deployment with the Remote Control App

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

