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Abstract. Since the appearance of downsized and simplified TCP/IP
stacks, single nodes from Wireless Sensor Networks (WSNs) have become
directly accessible from the Internet with commonly used networking
tools and applications (e.g., Telnet or SMTP). However, TCP has been
shown to perform poorly in wireless networks, especially across multi-
ple wireless hops. This paper examines TCP performance optimizations
based on distributed caching and local retransmission strategies of inter-
mediate nodes in a TCP connection, and proposes extended techniques
to these strategies. The paper studies the impact of different radio duty-
cycling MAC protocols on the end-to-end TCP performance when using
the proposed TCP optimization strategies in an extensive experimental
evaluation on a real-world sensor network testbed.

1 Introduction

The performance of TCP across multiple wireless hops has yet been intensively
studied in the context of IEEE 802.11-based (mobile) ad hoc networks [1][2][3],
long before sensor networks emerged. The discovered performance degradation is
directly associated with the unreliable nature of the wireless channel (higher bit
error rates and packet loss), particular properties of and interactions with the
underlying wireless channel MAC protocols (exponential backoff mechanisms,
hidden node and exposed node problem), and the design of the TCP congestion
control, which erroneously interprets packet loss as an indication for congestion.

So far, the issue of optimizing TCP in the context of WSNs has not yet
attracted too much attention. The most well-known studies in this field are
DTC [4] and TSS [5], which propose mechanisms based on packet inspection in
intermediate nodes and distributed TCP segment caching [4] and/or TCP ACK
regeneration [5]. Both studies base on evaluations using network simulations with
rather simple channel assumptions, and on energy-unconstrained CSMA/CA
on the MAC layer, in order to overhear neighboring node’s transmissions. The
implications of radio duty-cycled MAC protocols on TCP performance, however,
have generally not yet been addressed. In this paper, we examine the impact of
different MAC protocols on the aforementioned distributed caching techniques
of DTC [4] and TSS [5]. We then propose and evaluate a series of extensions.
Section 2 discusses the basic concepts of DTC and TSS, which were specifically



designed for WSNs. In Section 3, we present various suggestions for optimizations
of TCP operating across multiple WSN hops, which we then examine in Section 4
in a series of real-world experiments. Section 5 concludes the paper.

2 Related Work

Distributed TCP Caching for WSNs (DTC) [4] proposes to locally cache TCP
segments on sensor nodes in between two TCP endpoints in order to perform local
retransmissions by the intermediate nodes to recover from random packet loss.
DTC can be seen as a generalization of Snoop [3]. Each intermediate node main-
tains a cache for buffering TCP segments, and continuously updates a round-
trip-time (RTT) estimation for each TCP connection. If it takes considerably
more time for a TCP ACK to arrive, intermediate nodes consider it to be lost,
regenerate the TCP segment and forward it again. DTC further relies on im-
plicit acknowledgements by continuously overhearing neighboring nodes’ trans-
missions, and hence relies on having energy-unconstrained CSMA on the MAC
layer. The simulation-based evaluation using in [4] claims a significantly reduced
amount of transmissions and an overall throughput increase by 450% in a 6 hop
scenario with a 10% overall packet loss rate.

TSS extends DTC [4] by local regeneration of TCP ACKs: an incoming TCP
segment that has already been acknowledged is not forwarded, but answered with
a locally generated TCP ACK with the highest TCP ACK number ever received.
An aggressive TCP acknowledgement recovery mechanism is introduced: each
node monitors if the TCP ACKs it has sent to the next node in line are effectively
forwarded by the latter. If such a forwarding transmission is discovered to be
missing, the TCP ACK is sent out again. The simulation-based evaluation of TSS
has shown to reduce the total amount of frame transmissions required to forward
500 TCP segments over a chain of 10 nodes, a reduction of over 70%. Same as
DTC, TSS relies on the assumption of an energy-unconstrained CSMA/CA MAC
layer for continuous overhearing of the neighboring nodes’ transmissions.

3 TCP Performance Optimizations

The starting point of our investigations is formed by the TCP segment caching
strategy proposed in DTC [4] and TSS [5], which perform local retransmis-
sions of TCP segments and TCP ACKs. Based on ideas of these two studies,
we iteratively designed, tested, and combined a number of TCP performance
optimizations, which we discuss in the following. Our optimizations are to a
large extent independent from each other, consist in either new functionalities
or modification of previous suggestions. We implemented all our TCP optimiza-
tions in in a modular manner in our so-called Caching and Congestion Control
(cctrl) module. The module can be integrated into the µIP stack [6] of the Con-
tiki OS [7], which together with the TelosB [8] nodes serves as our main platform
for implementation and evaluation. The transparency to the underlying network
stack was a major design goal of the cctrl module, since it allows to use all



Fig. 1. Contiki Network Stack, unmodified (left) and with cctrl Module (right)

its implemented features on top of every MAC protocol layer of Contiki. The
only prerequisite of the cctrl module to effectively interact with the flow of TCP
packets is to have symmetric routes, such that TCP ACKs are sent across the
same paths as the corresponding TCP data segments.

3.1 The Caching and Congestion Control (cctrl) Module

In order to locally cache TCP segments in intermediate nodes, the cctrl module
be aware of all TCP packets that are forwarded by the node. Figure 1 depicts a
packet traversing the different layers of the Contiki networking stack, in case of an
unmodified Contiki OS network stack (left) and with our cctrl module integrated
(right). A TCP packet, encapsulated in a Rime [9] packet, is received by the radio
and passed to the MAC layer, which copies it to Rime’s packet buffer. The node in
Figure 1 is an intermediate node. Therefore, the packet is sent out again without
passing it to the application layer. The cctrl module intercepts the packet flow
right before the packet is again passed to the µIP over mesh module, which
implements the routing functionality. We intercept outbound packets instead of
inbound packets, since at this stage packets have already been processed and
validated. The cctrl module allocates a buffer in which the data is cached. This
buffer has to be large enough to hold at least the content of two TCP/IP packets
per TCP connection, one for each direction. Since at least one host is assumed to
be running the µIP stack, which is restrained to only one single unacknowledged
segment per TCP connection, the cctrl module allocates exactly twice the size
of µIP’s packet buffer per observed TCP connection, one for each direction.

3.2 Initial Strategy: Segment Caching and Local Retransmissions

In our initial design of the cctrl module, we implemented the distributed caching
features from DTC [4] and TSS [5] that are independent from the underlying
MAC protocol. We avoided to rely on the overhearing assumption and to tightly
couple our cctrl module with specific MAC layer properties, since we intended
to examine the former with all available Contiki MAC layers. The TCP segment



Fig. 2. Local TCP Retransmission (a) and TCP ACK Regeneration (b)

caching and local retransmission strategy of our initial design of the cctrl module
are illustrated in Figure 2, and will be denoted as initial cctrl in the graphs of
Section 4.

• In each intermediate node between two TCP endpoints, the cctrl module pro-
cesses each IP packet that is received and forwarded. IP packets without a
TCP payload (e.g., UDP packets) are ignored. The cctrl module copies the
entire content of the µIP buffer to one of its empty buffer slots, and schedules
a retransmission timer. This timer is calculated as trto = 3 × RTTest, with
RTTest being the round-trip-time estimation from the intermediate node to
the target node of the segment. RTTest is continuously updated according to
the TCP Exponentially Weighted Moving Average (EWMA) filter.

• If the incoming packet is a TCP ACK, only the TCP/IP header is cached, and
no retransmission timer is scheduled. Caching is omitted for out-of-sequence
packets and retransmissions, such that the connection status always keeps
valid sequence and acknowledgement numbers.

• When the retransmission timer of a forwarded TCP segment expires before
a TCP acknowledgement has returned, the cctrl module assumes that the
segment has been lost, releases it from the cache and sends it out again, as
displayed with label (a) in Figure 2, with C initiating a local retransmission.

• Each TCP segment is checked according to the state of the TCP connection
it belongs to. If the current packet is a TCP ACK of a cached TCP segment,
the cctrl module checks whether the current segment’s acknowledgement num-
ber is greater than the cached segment’s sequence number, and removes this
segment from the cache if this is the case.

• If the packet is a retransmission of a TCP segment, for which a TCP ACK has
already been received, it is discarded and a TCP acknowledgement returned
towards the packet’s sender, as displayed with label (b) in Figure 2, where
node A responds to a TCP retransmission with regenerating the previously
received TCP acknowledgement. The regeneration of TCP acknowledgements
is not linked to a timer, in contrast to TSS [5].

3.3 Channel Activity Monitoring

Numerous WSN studies have proposed to take advantage of the broadcast na-
ture of omnidirectional wireless transmissions, in order to gain additional infor-



mation about ongoing transmissions in the vicinity. In CODA [10], the chan-
nel conditions of the recent past and the amount of buffered packets in the
TinyOS internal send queue are used to calculate an indicator for congestion
in the network. Most features of CODA, however, rely on the assumption of
energy-unconstrained CSMA on the MAC layer, similarly as DTC and TSS.
When a radio duty-cycling E2-MAC protocol is used on the MAC layer, contin-
uous overhearing of every transmission of the neighboring nodes is not possible.
Transmissions can only be overheard when the radio is currently turned on, e.g.,
in a wake-up. However, even the coincidental reception of other nodes’ frames
can provide valuable information. With preamble-strobing MAC protocols, e.g.,
X-MAC [11], the overhearing of a strobe targeting another node indicates cur-
rently ongoing transmissions in the vicinity. A large amount of overheard packets
over the recent past generally indicates a situation in which it would be benefi-
cial to withhold a scheduled transmission to avoid further collisions, independent
from the MAC layer. Therefore, we designed a solution that a) remains indepen-
dent from the MAC protocol, but that b) still allows to feed information about
the current channel utilization and channel conditions to the cctrl module.

The MAC Protocol Proxy: We implemented a simple hook for the cctrl mod-
ule to the MAC protocol’s packet buffer, however, keeping the MAC protocol
implementation completely unmodified and replaceable. Our solution consists
in a MAC protocol proxy, which implements the MAC layer interface of the
Contiki OS, but does not provide any functionality on its own, except for noti-
fying the cctrl module upon reception of any packet. The MAC protocol proxy
initializes a real MAC protocol (such as X-MAC or LPP), and simply forwards
every function call to that of the real protocol module, as depicted in Figure 1.
Even in case of an error in a received packet, e.g., a CRC checksum mismatch
or a wrong target address, the MAC proxy becomes aware of the overheard but
corrupted packet. After each reception, it notifies the cctrl module about the
overheard packet and stores a timestamp into its newly introduced activity his-
tory. In this history, the cctrl stores the timestamps of the most recent activity
notifications received from the MAC proxy. The cctrl module continuously cal-
culates the channel activity level, which we defined as the amount of overheard
packets registered by the MAC proxy that are not older than one average RTT
estimation (RTTest) of the observed TCP connection. Relating the activity level
calculation to RTTest compensates for the large differences among the various
MAC protocols’ latencies.

Idle Channel Periods: In a preliminary evaluation, we investigated whether
the calculation of the activity levels has any informative value, especially when
overhearing is only possible to a minor extent with radio duty-cycling E2-MAC
protocols. We evaluated the obtained activity values in a scenario using X-MAC,
where one TCP sender at the beginning of a 7-nodes linear chain sends TCP
segments to the receiver at the end of the chain. Five nodes with cctrl mod-
ules hence forward the TCP data segments and ACKs between these two nodes.
Figure 3 depicts the activity levels registered by the cctrl modules of the five
intermediate nodes versus the experiment time. Each node is represented by one



specific color, the reception of data packets at the end node and the correspond-
ing sequence number are displayed along the x-axis. During most of the time,
all nodes register rather high activity levels: 6-8 packets are overheard within
each node’s RTTest on average, since X-MAC samples the channel each 125ms
per default, chances are high that some preamble strobes of currently ongoing
transmissions are overheard by non-targeted nodes. Between t=100s-130s and
t=250s-300s, the flow of TCP segments and ACKs is continuous. However, some
TCP segments (e.g., sequence numbers 27, 31, 45, 47 etc.) need significantly
longer to be delivered. During these time periods (e.g., t=150-160s), little or no
channel activity is registered by all the nodes. We investigated on the problem
for these long interruptions in the end-to-end TCP flow, during which precious
bandwidth remained unallocated. An in-depth analysis of the trace files revealed
that there are two common problems that caused these rather long idle periods,
cf. Figure 3. The first problem is the loss of a TCP segment on one of the first
hops. In such a situation, the packet has not been cached by many interme-
diate nodes, maybe even by none. All nodes in the chain hence have to wait
for the sending host’s or one of its neighbors’ RTO to occur. A second encoun-
tered problem occurs when a TCP ACK is lost close to its final destination.
The retransmission of the ACK can then only be triggered by the reception of
a retransmitted TCP segment with an already acknowledged sequence number,
which has to come from the original TCP sender, because all intermediate nodes
have already emptied their cache. The more nodes the ACK has already passed,
the longer is the waiting time, and hence, the idle channel period.

Activity Dependent Early Retransmissions: We investigated on a means
to exploit the additional channel knowledge gained with the employed MAC

Fig. 3. Different Nodes’ Activity Levels with X-MAC vs. Time Dashed Line indicates
Traveling Time for Data Segments (yellow) and TCP ACKs (blue)



protocol proxy and channel activity history, in order to resolve or alleviate the
discovered problems of the long idle periods and to further improve the end-to-
end TCP throughput. According to our observation that the activity values of
most nodes equal to zero in the discovered situations of an idle waiting period, cf.
Figure 3, we altered the cctrl module’s retransmission mechanism to retransmit
earlier when the channel was found idle for a long time. The retransmission
timer of cached TCP segments was hence split into two parts: trto = trto1 +
trto2. The first timer times out at 2

3 of the usual RTT estimation value RTTest,
hence trto1 = 3 × RTTest × 2

3 , and the second timer trto2 = 3 × RTTest × 1
3 .

When the first retransmission timer expires, the cctrl module checks its activity
history, and initiates an early retransmission if the activity level equals zero.
Otherwise the retransmission is deferred again by the second timer trto2. With
this retransmission strategy, we targeted at reducing the occurrence probability
and the duration of the discovered long idle periods. Since the value of RTTest

decreases towards the nodes closer to the destination of the TCP data segments,
the channel activity level value (calculated as the number of packet receptions
within [tnow −RTTest, tnow]) decreases as well, and is more likely to equal zero
than at the beginning of the chain. Therefore, the outlined strategy triggers the
retransmissions of the nodes closer to the destination earlier than those at the
beginning of the node chain, which is a desirable property.The absolute value of
the activity level has no particular deeper meaning. Our outlined retransmission
strategy is only triggered when its value is zero, a situation in which it is probable
that the channel has not been used and has hence been left idle for 2 ×RTTest.

3.4 Multiple Connections

Since the Contiki µIP stack only allows to transmit one unacknowledged TCP
data segment at any time per TCP connection, precious bandwidth could prob-
ably remain unallocated, especially on long routes, where transmissions on one
end of the route would not necessarily interfere with transmissions on the far
other end. We investigated a means to spatially reuse the wireless channel and
to allow the transmission of multiple segments in flight. However, sticking to our
initially described design decisions, we decided to keep the cctrl module modular,
MAC-layer-independent and independent from modifications within the estab-
lished µIP stack.We designed a simple solution that simultaneously establishes
multiple TCP connections between TCP client (sender) and TCP server (re-
ceiver). This allows an application to send out a new data packet over a second
TCP connection, although the previously transmitted packet has not yet been
acknowledged, permitting a maximum of two TCP segments or ACKs in flight.
In the subsequent evaluation, we compare this approach with the mechanism of
activity-dependent early retransmissions of Section 3.3, as well as both mecha-
nisms combined. The effective implications of this approach were yet unforesee-
able at the time of designing it: instead of an improvement of throughput, it
could also result in a deterioration, since more TCP segments being transmitted
could also lead to congestive situations and an increasing number of collisions.



Fig. 4. Seven TelosB [8] Nodes in the Distributed Testbed

4 Experimental Evaluation

4.1 Testbed Platform and Experiment Setup

For all the experiments and evaluations, we used our distributed indoor testbed
facilities [12][13]. The topology used for experimentation is depicted in Figure 4.
TCP data is transmitted over 2, 3, 4, 5 and 6 hops on the depicted route. In
each of these single route experiment configurations, node 1 formed the receiver
of the TCP segments, and nodes 3, 4, 5, 6 and 7 were the the senders of the TCP
segments. As one can see in Figure 4, nodes are located in different rooms of the
building, with the configured route spanning across three floors. The links of the
employed routes exhibit a rather high success rate in case of no other ongoing
transmissions (≥ 75%). Besides the links displayed in the figure, some close node
pairs physically are within each other’s transmission range (e.g., nodes 3 and 5).
However, for many node pairs, direct communication failed because of the signal
attenuation from obstacles (e.g., walls, floors) and/or the distance (e.g., 1, 4 and
7 are definitively out of each other’s transmission range, respectively).

By running all experiments with four different wireless channel MAC proto-
cols, we thoroughly investigate the impact of the MAC layer on the end-to-end
performance. The examined Contiki OS MAC layers are:

• the NullMAC layer, which, combined with the Contiki CSMA layer operates
as simple energy-unconstrained CSMA with a random backoff contention,

• the X-MAC [11] protocol layer applying asynchronous preamble sampling and
preamble strobing,

• the ContikiMAC [14] layer, which merges features from a range of asyn-
chronous preamble-sampling E2-MAC protocols, and which has become the
default MAC layer of the Contiki OS v.2.5, and

• the receiver-initiated Low Power Probing (LPP) protocol layer, with which
nodes periodically send out beacons to indicate reception readiness.

We chose every experiment run to last 10 minutes, during which the TCP
sender on one end of the route sent as many segments as possible to the TCP



receiver on the other end. All TCP data packets contained a 16 byte character
string as payload. Including the TCP/IP and Rime headers, the radio had to
transmit 79 bytes per data frame. A TCP ACK, as transmitted by the TCP
receiver in response to a data packet, contains only 63 bytes in total. All experi-
ments were run with and without our proposed cctrl module and the extensions
proposed in Sections 3.3 and 3.4. The results of the experiment runs obtained
without the cctrl module, hence, with the same application sending TCP packets
but an unmodified Contiki networking stack, are referred-to as unmodified in the
subsequent figures. In order to reduce the impact of environmental impacts on
the experiment results, all experiments were run over night or during weekends,
when fewer people were expected to be present in the building. Thus, the channel
conditions were comparable to a large extent. Each configuration was repeated
15 times, in order to obtain a data set from which stable statistical measures
could be calculated (i.e., mean and standard deviation).

4.2 Initial Strategy: Segment Caching and Local Retransmissions

Figure 6 depicts the number of successfully transmitted TCP segments of the
four examined MAC layers dependent on the number of hops. The graphs la-
beled initial cctrl refer to our initial design of the cctrl module discussed in
Section 3.2, which implements the basic features of DTC/TSS, but without the
extensions of Sections 3.3 and 3.4 (channel activity monitoring and multiple con-
nections). The figure conveys that NullMAC clearly benefits from the caching
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(c) LPP

 0

 50

 100

 150

 200

 250

 2  3  4  5  6

S
u

c
c
e

s
s
fu

lly
 D

e
liv

e
re

d
 T

C
P

 S
e

g
m

e
n

ts

Hops

unmodified
initial cctrl

cctrl + activity monitoring
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Fig. 6. Throughput with unmodified Contiki, the initial cctrl Strategy without and
with the Activity Monitoring Extension



and retransmission mechanisms introduced with the initial cctrl design, most
notably when data travels across long routes consisting of 5 and more hops,
where it reaches almost twice the throughput of the unmodified Contiki network
stack. For the shorter routes, the result is less distinctive, but the application of
local retransmissions still tends to be an improvement. For X-MAC, throughput
remained more or less in the same range with the initial cctrl approach as with
unmodified X-MAC. An analysis of the traces yielded that retransmissions and
the duplicate segment dropping features increased throughput for longer routes,
but had a slightly adverse impact for shorter routes. For LPP, the introduction
of the caching mechanisms had almost no impact on the end-to-end through-
put at all. The curves both exhibit an astonishingly similar degradation of the
throughput with increasing length of the route. With ContikiMAC, the initial
cctrl approach dramatically decreased the amount of delivered TCP packets.
ContikiMAC suffers more from increased levels of interference and competing
medium access, which is probably triggered by the early local retransmissions
of the cctrl module. The degrading effect of such early retransmissions is higher
in ContikiMAC than in X-MAC, since ContikiMAC, after knowing the schedule
offsets of its neighbors, only transmits the data frames at the announced wake-
up time of the targeted receiver. A collision at this point then inevitably results
in a transmission failure. In contrast, X-MAC sends out long preamble strobes
preceding every frame transmission, where a collision of two strobe packets has
no dramatic impact. The preamble strobes further serve to reserve the channel,
since they are likely to be heard by nodes checking the channel for transmission,

(a) NullMAC
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Fig. 7. Energy measured as Radio On-Time ton with unmodified Contiki, the initial
cctrl Strategy without and with the Activity Monitoring Extension



probably even some that are more than one hop away in the testbed topology,
which alleviates the hidden node problem.

Figure 7 depicts the radio on-time ton of all the nodes in the chain summed
up and divided by the number of successfully transmitted and acknowledged
TCP segments from the TCP senders to the TCP receivers. Contiki’s internal
power profiler [15] calculates ton as the combined duration the radio spends in
receive and transmit mode. Since the radio is in general by far the most power-
hungry component of a WSN node, the estimation ton has recently often been
used for estimating the energy consumption, e.g. in [14]. The curves in Fig-
ure 7 represent a metric for the energy-efficiency of the different configurations,
since they denote how much radio on-time has been spent per TCP segment
on average. The displayed ratio tends to increase with the number of hops for
the E2-MAC protocols, since longer routes obviously require more energy to
be spent per segment. In absolute numbers, all protocols operate in a similar
range. The energy-unconstrained NullMAC protocol combined with our initial
cctrl strategy even outperforms X-MAC and LPP for most route lengths, since
it can transmit much more segments within the 10 min experiment time. The in-
troduction of the initial cctrl mechanism tends to improve the energy-efficiency
of NullMAC and X-MAC, but clearly deteriorates that of ContikiMAC.

4.3 Activity Monitoring

We examined the impact of the channel activity monitoring approach intro-
duced in Section 3.3, where the MAC proxy is introduced between the µIP and
the MAC layer, in order to make information regarding the current channel
utilization available to the cctrl module. Our strategy then consists in making
the cctrl module’s local retransmission timeouts dependent of the registered ac-
tivity level, transmitting earlier in situations of low channel activity (to avoid
long wasted idle periods of the channel ), and prolonging it when transmissions
from neighboring are detected. We refer to this strategy as activity dependent
retransmissions, and label it as cctrl + activity monitoring in the figures.

Figure 6 illustrates how this strategy affects the achieved throughput, and
compares it with the initial cctrl strategy. NullMAC and X-MAC convey a sim-
ilar behavior: for both, the activity dependent retransmissions increase the end-
to-end TCP throughput for the 2-hop and 3-hop experiments, but decrease it for
longer routes, compared to the initial cctrl strategy. With X-MAC the through-
put even falls below the unmodified Contiki configuration for long routes. The
LPP throughput could be improved across all route lengths, which resulted in
the highest amount of successfully transmitted TCP segments with this MAC
protocol so far. When comparing the maximum throughput in absolute values,
LPP remains far behind ContikiMAC and XMAC, which both operate on a simi-
lar level. The energy-unconstrained NullMAC, in contrast, reaches a throughput
that is at least 2-3 times as high for all route lengths. ContikiMAC also slightly
benefits from the activity monitoring approach. Its throughput was increased
for shorter routes (2-4 hops), or remained at roughly the same level for longer
routes. However, the throughput of ContikiMAC remained remarkably below



that of its configuration without any cctrl mechanisms. Obviously, concurrent
channel activity and competition is particularly harmful for ContikiMAC.

The energy-efficiency metric of the activity monitoring approach, calculated
as radio on-time per TCP segment, is further depicted in Figure 7. Compared
to the initial cctrl strategy, no significant changes could be observed. This result
was rather expected, since the MAC proxy remains transparent to the MAC
protocol, without introducing any energy costs whatsoever.

4.4 Multiple Connections

In Section 3.4, we outlined our proposed concept of establishing a second TCP
connection between the TCP client and server, which remains transparent to the
application, and through which data can be continuously transmitted. During
a disruption in the packet flow of one of the connections, e.g., due to a packet
loss on one link, the second connection can still operate, and the channel is not
left idle until the TCP retransmission is triggered. We refer to this approach as
dualconnection. First, we evaluated whether the approach of initiating two con-
nections without the cctrl basic mechanisms increases the end-to-end throughput
at all. Then, we examined the initial cctrl caching strategy with a second con-
nection (cf. cctrl + dualconnection) but without the activity monitoring, and
then in combination with the activity monitoring (cf. cctrl + dualconnection +
activity monitoring).

Figure 8 illustrates their achieved throughput, together with the unmodi-
fied Contiki examined beforehand. With NullMAC, the availability of a second
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(b) X-MAC
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(c) LPP
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(d) ContikiMAC
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Fig. 8. Throughput with Multiple Connections and combined Strategies



connection and the initial cctrl caching and retransmission strategy (cf. cctrl
+ dualconnection) doubled the amount of transmitted TCP segments, across
almost all tested routes, compared to the unmodified Contiki variant. If the cc-
trl module applied the activity dependent retransmission strategy, together with
the dual-connection approach, the throughput was even further increased for
the 2-hop and 3-hop routes, and performed only slightly worse than the cctrl
+ dualconnection approach for longer routes. The X-MAC protocol also bene-
fited from a second open connection, but only if the cctrl module was active.
The X-MAC throughput was increased consistently across all route lengths, in
the best case by roughly 37% (cf. 5 hops). Similar results were obtained for the
LPP protocol: the experiment configurations relying on two TCP connections
significantly increased the throughput, and the best results were obtained with
the combination of two connections and the activity dependent retransmissions.
ContikiMAC consistently remained the exception: no matter whether it was
run with the dual-connection strategy, the activity dependent retransmissions
or both extensions combined, its throughput persistently remained at a very low
level. We presume that its degradation was mainly caused by early triggered re-
transmissions colliding with the original transmissions or TCP ACKs, probably
due to the hidden node problem, which may occur more often with ContikiMAC
due to the lack of preamble strobes in advance of frames, compared to X-MAC.

4.5 Overall Comparison

The previous results provided a detailed insight into the performance of the
different cctrl module variants for the different route lengths. Since the results
sometimes vary heavily across the different configurations and route lengths, a
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Fig. 9. Single Route Scenario: Overall Comparison of Throughput



general conclusion and guideline remains hard to derive. We therefore averaged
the mean values of each different route length and configuration (= mean value
of the five hop-specific values per protocol and configuration) to obtain a single
one-dimensional number for each examined approach, with which the results of
the different strategies become somewhat comparable.

Figure 9 displays the obtained averaged values for each examined approach
and each MAC protocol. The application of distributed caching and local retrans-
mission of TCP segments and ACKs, denoted as initial cctrl approach, obviously
had a positive impact on the NullMAC protocol. Across all route lengths, this
approach reached an improvement of 42.51% compared to unmodified Contiki.
Our proposed extensions of activity dependent retransmissions as well as multiple
connections combined finally reached the best results, with an average increase
of 84% compared to the unmodified Contiki µIP configuration. With the X-MAC
protocol, the improvement is less distinctive. When following to the initial cctrl
design, the performance remained almost equal to the unmodified Contiki vari-
ant. The best results of 17% more transmitted TCP segments could be achieved
when combining the initial cctrl approach with a second TCP connection. Sim-
ilar results were obtained by combining this approach with activity monitoring.
The LPP protocol behaves similarly as X-MAC when applying the different cctrl
extensions. Again, our modifications of activity dependent retransmissions and
the multiple connections combined achieve the best overall performance with
X-MAC, an end-to-end throughput increase of 40%.

Figure 10 depicts the energy-efficiency metric calculated as radio on-time
per transmitted TCP segment for the four protocols. The efficiency of NullMAC
clearly profits from the cctrl module, in particular when combining all the fea-

(a) NullMAC

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

unmodified initial cctrl cctrl + 
activity monitoring

cctrl + 
dualconnection

cctrl + 
dualconnection + 
activity monitoring

R
a
d
io

 O
n
 T

im
e
 [
s
e
c
s
/T

C
P

 s
e
g
m

e
n
t]

100.00%

73.06%
77.23%

59.64%
54.08%

(b) X-MAC

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

unmodified initial cctrl cctrl + 
activity monitoring

cctrl + 
dualconnection

cctrl + 
dualconnection + 
activity monitoring

R
a
d
io

 O
n
 T

im
e
 [
s
e
c
s
/T

C
P

 s
e
g
m

e
n
t]

100.00%
94.68%

105.74%

94.24% 95.43%

(c) LPP

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

unmodified initial cctrl cctrl + 
activity monitoring

cctrl + 
dualconnection

cctrl + 
dualconnection + 
activity monitoring

R
a
d
io

 O
n
 T

im
e
 [
s
e
c
s
/T

C
P

 s
e
g
m

e
n
t]

100.00%

119.88%

93.35%

156.85%

114.20%

(d) ContikiMAC

 0

 0.5

 1

 1.5

 2

 2.5

unmodified initial cctrl cctrl + 
activity monitoring

cctrl + 
dualconnection

cctrl + 
dualconnection + 
activity monitoring

R
a
d
io

 O
n
 T

im
e
 [
s
e
c
s
/T

C
P

 s
e
g
m

e
n
t]

100.00%

287.21%
269.68%

304.03%
328.74%

Fig. 10. Single Route Scenario: Overall Comparison of Energy Consumption



tures. Since NullMAC reaches the highest number of transmitted TCP segments
over the entire experiment timespan, its efficiency is even better than that of
any radio duty-cycled MAC protocol (< 0.5 seconds per TCP segment). The
energy-efficiency of X-MAC is slightly improved by most of the mechanisms of
the cctrl module. LPP remains in the same range as X-MAC in absolute values.
However, its efficiency varies rather strongly with the different strategies, but is
neither deteriorated nor improved. ContikiMAC again constituted the negative
exception among the four evaluated protocols: its energy-efficiency suffers a lot
when introducing any caching strategies whatsoever. This degradation can most
probably be explained by the increase in collisions and other sources of packet
losses due to concurrent activity in the channel. This does not occur when only
one TCP segment is in flight at any time and no local retransmissions are trig-
gered, which is only the case with the unmodified variant. Since ContikiMAC
acknowledges the data packets themselves, and re-attempts to transmit upon
failed attempts, as opposed to X-MAC, it already integrates a certain reliability.
Comparing the similar, yet even slightly better results of the X-MAC config-
uration with all our extensions (cctrl + dualconnection + activity monitoring)
with that of unmodified ContikiMAC, the question whether reliability should
rather be ensured on a hop-by-hop or end-to-end manner can not be answered
conclusively.

5 Conclusions

In this paper, we have proposed and evaluated our cctrl module, a modular
add-on for Contiki’s µIP stack, which implements and augments the distributed
caching and local retransmission features proposed in DTC [4] and TSS [5] for
the Contiki OS network stack. To the best of our knowledge, our evaluation is
the first to study distributed TCP caching in a real-world environment. We thor-
oughly examine the impact of three different radio duty-cycling energy-efficient
MAC protocols on the distributed caching mechanisms proposed in [4][5], which
turned out to be significant. We tested our implementations in an indoor wire-
less sensor node testbed using five different route lengths. Some protocols (e.g.,
NullMAC, LPP) generally provided a good response to the local retransmission
strategies, whereas others, i.e., ContikiMAC, performed significantly worse. The
cctrl module has been shown to increase the throughput of TCP data segments
in many of the examined configurations, though it remained impossible to find an
approach that maximizes the throughput with every MAC protocol. The applica-
tion of our cctrl module with all our proposed extensions combined achieved the
best results with respect to the maximum throughput for energy-unconstrained
NullMAC and, also the best energy-efficiency measured as radio on-time per
successfully transmitted TCP segment. For the class of E2-MAC protocols, the
configuration of X-MAC with the cctrl module and the dualconnection option
achieved the highest average throughput across the different route lengths, even
more than its successor ContikiMAC in any of its configurations.
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