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Abstract

Wireless Mesh Networks (WMN) have proven to be an important technology for interconnect-
ing computer systems in a flexible way. There exist many application areas that profit from
WMN technologies such as surveillance and monitoring systems, the wireless integration of
mobile clients into a network infrastructure or simply the spontaneous setup of a network for
data exchange between several mobile devices. The development process for new protocols and
architectures in the area of WMN is typically split into a first implementation and evaluation
phase performed with help of a network simulation, followed by a real-world prototype im-
plementation, which is tested in a realistic test-bed. Especially for WMNs including wireless
communication and mobile clients, the testing in a real test-bed is time-consuming and expen-
sive. External interferences can occur and make debugging and performance evaluation difficult.
Additionally, real-world test-beds usually only support a limited number of test topologies and
wireless clients and rarely provide the possibility for repeatable experiments with mobile clients.

For this reason, we developed VirtualMesh, a new WMN evaluation framework providing a
virtual wireless network, which can be used for network protocol and application development
before considering a real hardware test-bed. Its architecture offers the testing of real communi-
cation software including the operating system with the original network stack in a controlled
environment. The wireless communication is handled by a real-time network emulation, which
can imitate complex network scenarios in an inexpensive way. VirtualMesh captures the real
network traffic through a virtual wireless interface at the mesh clients and redirects it to a wire-
less model based on the OMNeT++ network simulator. The simulator, which is responsible for
the wireless emulation, computes the node connectivity and packet latency and forwards the
traffic to the destination nodes accordingly. To be able to imitate a truly dynamic network en-
vironment, which even allow the reconfiguration of wireless parameters by routing protocols or
applications, a sophisticated mechanism in VirtualMesh allows the corresponding adaptation of
the wireless settings inside the simulation model during emulation run-time.

In our experiments, VirtualMesh has proven to be very flexible and scalable in the network
scenario. It is able to perfectly imitate the throughput behaviour in a WMN and only introduces a
small packet delay mainly caused by the distributed emulation setup. VirtualMesh has therefore
proven to be a valuable tool for protocol and application developers to test their real-world
implementation in a controllable environment prior to the final development.
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Chapter 1

Introduction

Nowadays, nearly all of us are regularly using devices which can connect to a network, without
requiring a wire. These can be mobile phones, Personal Digital Assistants (PDA), net-books,
laptops, or even multimedia players. One get more and more used that every portable device can
communicate and that it provides the same services as our wired computer, gaming console, or
phone. However, developing and evaluating services for such an environment requires sophisti-
cated tools for debugging and testing. This Master thesis introduces and evaluates VirtualMesh,
a flexible and modular framework for testing new network protocols, applications or even entire
network architectures, with focus on wireless mesh networking.

This introductory chapter is divided into several sections approaching the wider domain, of
which this thesis is part. After a sum up of the important milestones in the history of wireless
networking (Section 1.1), the focus is set on wireless mesh networks (Section 1.2). Section 2.1
introduces computer simulation as a basic technology used for network development. Embedded
in these research areas, the VirtualMesh emulation framework is finally motivated in Section 1.4.
Eventually, a brief overview about the further chapters of this thesis (Section 1.5) follows.

1.1 Short History of Wireless Networking

The origin of computer networking goes back to the cold war when the US department of defence
wanted to create a redundant command network for nuclear warfare. In the 1960’s efforts and
ideas for creating a distributed computer network were bundled and finally resulted 1969 in the
first larger scale network, the ARPANET [1]. A few years later, in 1974, Vinton Cerf and Robert
Kahn published their suggestion for a inter-network communication protocol [2], today better
known as Transmission Control Protocol (TCP). Since then, the interconnection of computer
systems achieved a previously unknown density with its prime example, the Internet. Specialised
networks as the World Wide Web could only be developed thanks to the approach of individual,
service-oriented layers, formally defined in the OSI reference model [3] and technically specified
in the in the TCP/IP reference model [4]. This layered design allows independent and concurrent
development, testing and deployment of diverse protocols and technologies.

A subtopic of computer network science is wireless communication. First attempts go back
to the physicist Guglielmo Marconi who engineered the wireless telegraph with binary Morse
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transmission in 1899 [5]. Sixty years later, around the same time as the previously mentioned
ARPANET has evolved, first efforts were made to develop a wireless communication technol-
ogy for computer systems. In 1970 Norman Abramson of the University of Hawaii introduced
ALOHANET [6], in which he linked computers on distinct campus areas with low-cost ama-
teur radio-like systems. The late 1970’s are then mostly affected by research on best practises
for wireless medium access. After first portable computers started to appear in the 1980’s, the
IEEE Communication Society started to organise workshops on ’Wireless Local Area Networks’
(WLAN) [7] in 1991. At the same time, the newly formed IEEE 802.11 committee started its
ongoing activities on the development of standards for WLANs. Their released IEEE standards,
namely 802.11b, 802.11g, and 802.11n, are the nowadays most used technologies for wireless
computer networking. However, the main usage scenario of the currently approved 802.11 spec-
ifications is limited to a central access point (AP), to which all wireless clients connect. IEEE
has also specified the Independent Basic Service Set (IBSS) mode, the so-called ad-hoc mode,
with no central instance, but still, ”the IBSS mode is not enough for many application scenar-
ios” [8]. Thus, there are new standards in development and therefore particularly interesting
for wireless network research. These are among others, IEEE 802.11s (Mesh networking, cur-
rently draft 5.0, started 2003) and IEEE 802.16 (WMAN/WiMAX, drafts started 2001) with
more distributed structures.

1.2 Wireless Mesh Networks

As stated in the previous section, distributed networks, especially Wireless Mesh Net-
works (WMN), are growing in attention. Common conservative wireless network topologies
consist of one or several AP(s), which manage the entire network (Figure 1.1) in respect of
authorisation, authentication, routing, and quality of service. This centralisation is avoided in
a WMN (Figure 1.2). Therein each participating host has equal functionality and responsibil-
ities in terms of the network establishment. Such hosts are called wireless nodes or simply
nodes hereafter. In a WMN, certain nodes can still be linked to a wired network and provide
some gateway functionality. Instead of directly connecting to the AP, a wireless node is able to
participate in a network, as soon as it is within transmission range of any other node. Sophis-
ticated routing algorithms, such as Ad-Hoc On-Demand Distance Vector Routing (AODV) [9]
or Optimised Link State Routing (OLSR) [10] allow flexible and dynamic network structures
with self-healing mechanisms around blocked or broken paths. Wireless mesh networks are
decentralised, i.e., a failing node cannot completely tear down the network. This is useful in
situations, where a traditional wired network is missing, too expensive, or damaged. A Wireless
Metropolitan Area Network (WMAN) is an example for a stationary WMN. Mobile Ad-hoc
Networks (MANET) combine the mesh structure of a WMN with totally independent and mo-
bile nodes. Their topology can be highly dynamic, with nodes joining and leaving at any sudden
instant. These properties are consequently best suited for totally versatile and reliable commu-
nication systems, used in a wide area such as surveillance systems for traffic control or weather
monitoring.

The high degree of flexibility and distribution in a WMN or MANET is challenging and
involves all layers of networking and applications. Wireless links can be asymmetric or discon-
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Figure 1.1: Wireless infrastructure network.
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Figure 1.2: Wireless mesh network.

tinuous. Network routes usually are not static. It has to be considered that mobile devices have
limited power. Therefore their energy consumption for communication has to be minimised.
The distributed nature is also challenging for providing network security. Altogether, the effort
of understanding and testing such systems is enormous.

1.3 Computer Network Evaluation

To cope with the wide range of requirements that WMN and MANET environments need to
fulfill, different techniques to evaluate the involved network protocols and applications has been
established. It can be distinguished between real-world, emulation and simulation test-beds.
These approaches differ by the granularity of the implementation and the fidelity of the achieved
results. Table 1.1 summarises the important properties of the different network evaluation pro-
cedures.

Real-world Testbed Emulation Testbed Simulation Testbed
Scenario setup (-) difficult (+) easy (+) easy
Simplifications (+) none (+) definable (-) high abstraction level
Scalability (-) bad (+/-) depending on the setup (+) high
Reproducibility (-) difficult (+) easy (+) easy
Costs (-) very expensive (+) cheap (software-based)

(-) expensive (hardware-based)
(+) cheap

Duration (+) real time (+) soft real-time (-) variable
Limitations (-) hardware capabilities (+) none (+/-) processing power
Network traffic (+) real (+) real or modelled (-) modelled

Table 1.1: Real-world vs. emulation vs. simulation test-bed.

Real-world test-beds consist of a number of computer hosts which are connected through the
real communication medium. The network entirely consists of the original components which
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are able to handle any interaction under realistic conditions. This is valuable for studying wired
network scenarios, but this approach imposes some drawbacks for wireless network evaluation.
As the radio signals can interfere with environmental influences, real-world wireless test-beds
limit the repeatability of experiments and restrict the portability of findings to other environ-
ments. Since every network node is represented by a real device, real-world test-beds have a
limited scalability caused by high hardware costs and the test-bed complexity. Especially the
inclusion of node mobility for evaluating MANETs, require an immense effort to retrieve com-
parable test results. Some examples of real-world test-beds are further discussed in Section 2.3.1

In sharp contrast to real-world test-beds, network simulations imitate the entire network rep-
resentation, including the communication hosts and channels, in a virtual model. However, the
implementation of the network components often require structural and functional simplifica-
tions to reduce the complexity of the evaluation subject (e.g. a protocol implementation or a
network device). On the other hand, the fully artificial environment of a network simulation pro-
vides a controllable and scalable system which also allows complex network topologies. There
is a longer discussion about network simulations in Section 2.1.

Network emulation is the integration of a modelled network with real computer hosts and
applications. It accepts a compromise between a real-world environment and a simulation, by
transparently imitating the network’s behaviour for the overlaying services and connected hosts.
The implementation of the network properties can be either done in software, which is flexible
but not very performant, or in hardware, by a dedicated micro controller, adequate to satisfy
real-time requirements. The use of network emulation to create a realistic WMN and MANET
environment is the main idea behind VirtualMesh and is further discussed in Section 2.2.

Depending on the purpose of the network evaluation, the one or the other of the introduced
approaches can be more satisfying. Network simulations are mostly used for the initial develop-
ment of a new protocol. As soon as the entire system interaction needs to be considered, network
emulation provides a more realistic evaluation environment, and can often be an alternative to
an expensive real-world test-bed.

1.4 Motivation

In the previous sections, the complex nature of mesh networks and the possibilities for applica-
tion development and evaluation, in the area of wireless mesh networks, have been shown. It
has been recognised that pure wireless network simulations are often suffering from the abstract
implementation, especially when modelling higher layers, and real test-beds are too expensive
in terms of hardware costs and deployment. A valid solution for these shortcomings is the use
of network emulation together with system virtualization. Therefore, VirtualMesh is proposing
an wireless network evaluation framework by combining real (virtualized) systems, with a net-
work simulator that is responsible to emulate the intermediate wireless links. These are our main
goals:

• Offer a flexible, scalable and accessible environment based on wireless network emula-
tion for studying the behaviour of wireless mesh network communication. VirtualMesh
is targeted for network/routing protocol studies, overlay network development, wireless
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topology experiments, and distributed network application debugging and functional eval-
uation.

• Provide the native OS and kernel application programming interface (API) to wireless
developers for easy deployment and debugging. As a result, the original software on the
real operating system can be used and does not require a porting of software from the
virtual development environment (e.g. simulation) to the real system.

• Design a virtual wireless device in a way, that it can be configured through the native OS
tools and affects the functionality of the wireless emulation. As a proof-of-concept, the
approach is integrated in Linux.

• Try to avoid assumptions and restrictions concerning the use of OS, kernel, architecture,
wireless setup and network protocol for the network emulation. The implementation is
tested in a setup which uses system virtualization to demonstrate the flexibility and mod-
esty of this approach.

• The OMNeT++ network simulation framework is used to implement the wireless network
emulation model. It is extended by an interface which allows to compute the real wire-
less traffic inside the simulation environment and evaluated with focus on soft real-time
capabilities.

1.5 Document Structure

The remainder of this Master thesis is structured as follows: In Chapter 2, an explanation of
the various technologies used for wireless network emulation is provided with a number of re-
search examples and in relation to VirtualMesh. A special focus is set to network simulation,
network emulation, real-world test-beds, and operating system virtualization. With this infor-
mation it should be possible to understand the distributed architecture of VirtualMesh presented
in Chapter 3. It describes how wireless network emulation is achieved in VirtualMesh with help
of a network simulator. Furthermore, it includes a discussion about the developed emulation
protocol which transports the real network traffic from the nodes to the wireless simulation.
Chapter 4 is then focusing on the implementation of the VirtualMesh client tools, which are re-
quired to represent a virtual wireless interface and responsible for connecting the nodes to the
simulation. To complete the implementation details, the simulation model of the wireless stack
is covered in Chapter 5. It mainly describes the different modules required to build the wireless
simulation server and their interaction during an emulation run. Chapter 6 eventually evaluates
VirtualMesh, by comparing various emulated network scenarios with a network simulation un-
der the same conditions. Eventually, the findings are concluded in Chapter 7, where also an
outlook for possible future work is given.
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Chapter 2

Related Work

To study the behaviour of an entire software stack in a WMN, a sophisticated experimentation
setup is required. It has to be able to represent an accurate real-world scenario in terms of mesh
node software and connectivity. Furthermore, it has to allow a flexible test setup and guarantee
a reliable repeatability of the collected results. VirtualMesh is trying to solve this challenge by
opening the closed system of a network simulator and let it act as a real-time emulation of a
wireless network between real computer hosts. This offers the possibility to evaluate real-world
software in a controlled wireless scenario and to analyse the simulation model with real-world
traffic. The setup can be fully virtual and thus only requires a modern workstation computer for
emulating a complete WMN.

This chapter is discussing the technologies used in VirtualMesh and relates it to various other
test-bed approaches. Section 2.1 focuses on the domain of network simulations. It especially dis-
cusses the representation of the physical radio propagation inside the simulation and introduces
the OMNeT++ network simulator, used as part of VirtualMesh. Section 2.2 focuses on net-
work emulation. This section also treats the use of a simulator for real-time network emulation,
and it eventually compares different emulation-based network evaluation test-beds. Section 2.3
presents some real-world test-beds for network evaluation. There are a lot of benefits when
combining network emulation with operating system virtualization. Section 2.4 introduces and
explains the virtualization of network hosts and presents some test-beds which are successfully
performing network evaluation with virtualized hosts.

2.1 Computer Simulations

Whenever the study of an real system is too complex, researchers employ a simulation to repre-
sent the system in an accessible way. Simulation models the behaviour of an existing or theo-
retical system or process. It further provides an interface for repetitively running an experiment
of the system using different input values or tuned process parameters. Thus, the system can
be investigated in a wide range of scenarios. After analysing the output, conclusions about the
system’s behaviour under the tested conditions can be drawn. Additionally, the reproducibility
of the results for later statistical analysis is guaranteed. This is often not given in real-world ex-
periments due to many unpredictable impacts. Generally, simulations allow a cost-effective way
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of researching more complex systems. Therefore, it became a common practise for engineers to
simulate technologies they are building and for scientists to simulate models they are studying.

2.1.1 Network Simulation Basics

The roots of computer simulation can be traced back to the 1940’s, when Nicholas Metropo-
lis, Stanislaw Ulam and other mathematicians around John von Neumann started to evaluate
the Monte Carlo method [11, 12] on early computer systems. The Monte Carlo method is an
approach used in physical or mathematical computations, to determine a complex system’s be-
haviour by repeatedly analysing it under a wide range of random input sets. As it heavily de-
pends on random number generation, the Monte Carlo method is most suited to be processed by
computers [13]. This helped the domain of simulations to grow and improve with the increase in
computer system performance. On the other hand, computer simulations of new processor chip
architectures and system interactions made it possible to evaluate and construct steadily more ef-
ficient computer hard- and software. Nowadays, this development results in a flood of simulation
environments for many aspects in Computer Science or computer system development.

The difficult part of using a computer simulation is the representative implementation of the
original system in a model. To cope with the real system’s complexity, the simulation model
requires abstractions and simplifications, which in best-case do not have an impact on the final
result. Also the run-time performance of the simulation is heavily depending on the degree of de-
tail in the implementation [14]. Therefore, a computer simulations are an appropriate instrument
to evaluate specific effects, but due to the introduced simplifications they can fail to accurately
imitate the full system behaviour. When analysing the results returned by a simulation, it is
always required to consider these limitations.

There are two main categories of simulations: discrete [15] and continuous [16] simula-
tions. In continuous simulations the model is represented as a set of differential equations. They
are often used for researching physical phenomena, such as aerodynamics or hydraulics, which
require numerical solutions. As the name says, discrete simulations implement the model as a
sequence of events at discrete time points. In computer networking, they are an important instru-
ment for protocol development and evaluation. A central event queue is sequentially handling
each packet’s individual interaction through the network stacks while interesting parameters can
be tracked. Experiments with different settings or protocols always can be repeated and com-
pared. Even complex scenarios, including mobility or energy considerations, can be modelled
and evaluated.

In most cases, simulations are a closed environment. But there are special types of simula-
tions, which include real-time interactions with external systems. There exists the principle of
‘man-in-the-loop’ [17] where a human interacts with the simulator, e.g., in a flight simulator.
This is used for human training and analysing interface usability of a system. Thereby the hu-
man behaviour is in the centre of attention, while the procedures inside the system are already
established. Another method is the ‘hardware-in-the-loop’ technique [18] where the events pro-
cessed within a simulation are generated by a hardware device. This approach is mainly used for
testing embedded controllers, e.g., in the auto mobile industry. In computer science these meth-
ods are not widely used, still there exist similar approaches. There are different ways to connect
a network simulator to real computer systems. Existing techniques for including external code
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into a simulation are, e.g., inter-process communication (IPC) [19] or shared libraries [20]. But
this is clearly not always suitable, as the internal simplifications of a simulation model make it
impractical to provide the correct interfaces to external applications and libraries. This is espe-
cially restricting when considering the evaluation of applications or protocols in higher layers,
which depend on an entire operating system (OS) or network protocol stack. Another approach
of interconnecting a simulation with the real environment is the inclusion of real traffic in a
network simulation. This either can be done off-line by previously capturing the traffic of live
systems and replay it in the simulation environment or on-line, by running the actual traffic of
real systems through a real-time capable network simulation. For the second case, the name
’host-in-the-loop’ technique is introduced at this place.

2.1.2 Radio Propagation Models

The imitation of the network protocol behaviour in a network simulation is often not a very
complex task. The network simulation is just a different software environment where the
protocols need to be implemented. But for modelling the realistic behaviour of a wireless
network, it has to be considered, the propagation of a network packet, does not happen in an
isolated, dedicated medium as in wired networks. The accurate calculation of the connectivity
parameters in a wireless network, is based on a wide range of physical effects. The number of
factors influencing the radio transmission quality in a real environment is enormous and very
difficult to reproduce. In a computer simulation, there is always a trade off between accuracy
and performance, what often results in the omission of effects based on specific terrain structure.
To qualify these effects, there are three multiplicative propagation phenomena:

1. Multipath Propagation The signal arriving at the receiver does not only con-
tain a direct line-of-sight radio wave, but also a large
number of reflected radio waves.

2. Shadowing Field strength variations occur if the antenna is dis-
placed over distances larger than a few tens or hun-
dreds of metres. Therefore, the covered area cannot
be seen as a perfect circle.

3. Large-scale Effects They cause the received power to vary gradually due
to signal attenuation determined by the geometry of
the path profile in its entirety.

There exist various radio propagation models with gradual simplification concerning the
above phenomena. An overview of the most prominent models is provided in the following.
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Free Space Model

The free space model [21] imitates ideal propagation conditions. It does not consider any of
the previously mentioned propagation phenomena. There is only one clear line-of-sight path
between the sender and receiver. It assumes a quadratic loss of signal strength along the distance
and a signal propagation in a perfect circle around the transmitter. The received signal power in
distance d from the transmitter is computed by the transmission equation by Harald T. Friis [22]:

Pr(d) =
(

λ

4π d

)2

PtGtGr (2.1)

Pt = transmission power λ = wave length
Pr = reception power Gt,r = antenna gain (transmitter, receiver)

Two-ray Ground Reflection Model

The two-ray ground reflection model [23], which is also referred as plane earth model, corrects
the fact that there is only one line-of-sight path between the transmitter and receiver. It adds a
second path, namely the ground reflection. The reception power is therefore marginally adapted
from the original Friis equation (Equation 2.1) and also takes the height ht,r of transmitter and
receiver into consideration:

Pr(d) =
PtGtGr h

2
t h

2
r λ

2

d4
(2.2)

This formula is not as accurate for short distances d as the free space model. It adds an
oscillation effect caused by the constructive and destructive combination of the two transmission
rays. All the more, it models a better signal prediction for longer distances, since the signal
power is decreasing slower for long, than for short distances. There also exist probabilistic
models for multi-path reception of more than two radio waves, namely the Rayleigh fading
model [24] or the Rician fading model [25].

Shadowing Model

To predict the radio power, the previously covered radio models both use a deterministic func-
tion of distance. The shadowing model [26] now adds a random variable to respect multi-path
propagation effects, also known as fading effects. This corrects the fact that the covered sig-
nal area is not a perfect circle. In this context, the previous formula are simplifications of the
shadowing model, providing just its mean values.

The shadowing model defines a path loss exponent β justified by some diffraction losses.
The exact value is depending on the environment and has to be determined by empirical evalua-
tion. Larger values correspond to more obstructions and hence in faster decrease of the average
reception power as distance becomes longer. Table 2.2 shows the typical values that are often
used for β [27]. Additionally, there is the mentioned random value XdB , reflecting the variation
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of the reception power at a certain distance. It is a log-normal random value, which has a Gaus-
sian distribution, if expressed in decibel. XdB has a mean value of zero and a standard deviation
σdB · σdB , also called shadowing deviation, which is obtained by measurement. Typically, the
value for σdB varies between 4 to 12 dB. The formula for the reception power Pr now uses a
close distance d0 as reference and is expressed as follows:

[
Pr(d)
Pr(d0)

]
dB

= −10β log
(
d

d0

)
+XdB (2.3)

Environment β

Outdoor Free space 2
Shadowed urban area 2.7 - 5

In building Line-of-sight 1.6 - 1.8
Obstructed 4 - 6

Table 2.2: Typical values for the path loss exponent β.

The Equation 2.3 is also called log-normal shadowing model. While the path loss exponent
β adds some large-scale effect, XdB is responsible for modelling the fading effect. In this
propagation model, wireless nodes that are near the edge of the communication range, can
rightly only communicate with a certain probability.

The presented radio propagation models are known to be implemented in current wireless
network simulation environments. Often a combination of the defined models can result in a
higher accuracy under certain conditions. However, they still neglect a wide range of effects
as for example co-channel interference [28, 29, 30]. A detailed study about the used models in
WMN research and their empirical accuracy can be found in [31, 32].

2.1.3 The OMNeT++ Network Simulation Framework

OMNeT++ is a C++-based framework for computer network and protocol simulation. Its
development started in the early 1990ies by András Varga at the Technical University of
Budapest, Department of Telecommunications (BME-HIT) and it is publicly available since
1997 [33]. OMNeT++ is released under an open source license, which allows free private
and academic use. OMNeT++ has a modular concept that enables simple integration and
development of custom extensions. There already exists many add-ons for specific tasks. The
most important ones are listen in Table 2.3. Thanks to this flexibility, OMNeT++ has gained a
wide field of application in scientific research and it also features an own yearly workshop [34].
A discussion of publications including the OMNeT++ simulator can be found below.
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Project Implemented Extensions
INET Internet protocols such as UDP, TCP, SCTP, IP, IPv6, Ethernet, PPP, IEEE

802.11, MPLS, OSPF, etc.
MiXiM Wireless and mobile simulations (IEEE 802.15.4, etc.)
Oversim Peer-to-peer and overlay networks
xMIPv6 Mobile IPv6 protocol
Castalia Wireless Sensor Networks (WSN) and generally networks of lowpower em-

bedded devices

Table 2.3: Most important add-ons for the OMNeT++ simulation framework.

OMNeT++ Internals

OMNeT++ is a discrete event network simulator. It consists of a main library for the simulation
core and a module framework to build a network architecture or protocol. The interaction of
the network components is modelled by passing messages between the modules. The basic OM-
NeT++ distribution already contains a big number of predefined modules, which are built on two
generic module types. One type is the simple module. It contains the message handling logic,
e.g., part of a network adaptor or a protocol stack. The other type is the compound module.
It combines several simple modules or other compound modules to higher order entities, e.g.,
network adapters, hosts or even full networks (Figure 2.1). The modules are connected through
message queues on module gates, which handle the messages exchange inside the simulation.
Properties such as data rate, propagation delay, and bit error rate can be added to a message
queue. The object-oriented inheritance system provides an easy integration of new modules
with adapted behaviour or properties. While the simple modules are proper C++ classes inherit-
ing from the simulation library’s cModule, the compound modules are defined in a NED file. It
lists the combined simple modules and connects their message gates. The NED language is an
OMNeT++ specific topology description language. It supports the concept of packages to dis-
tinguish name spaces, inheritance, dynamical number of modules and property value assignment
inside modules. An additional advantage is the ability to convert these NED files from and to
XML files without losing any information. This makes it viable for programmatic manipulation
and generation of the NED files with information stored in other systems, e.g., an SQL database.
More details about the concrete implementation of the OMNeT++ simulation environment can
be found in the author’s paper about this topic [33].

An important feature of OMNeT++ is the rich graphical user interface (GUI), built on Toolkit
(Tk) widgets [35]. It allows starting pre-configured simulation runs, shows a graphical repre-
sentation of the full simulation setup and offers a detailed browser for module introspection,
debugging, and analysing logged simulation results. This is also supported for any user written
modules. The OMNeT++ framework provides special variables and data containers for state and
performance tracking and logging.
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Network Simple modules

Gates

Figure 2.1: Module structure in OMNeT++.

OMNeT++ in WMN Research

There are a lot of publications evaluating the wireless capabilities of OMNeT++ and its
extensions. The authors of [36] have compared the wireless network performance of a real
IEEE 802.11g network with an OMNeT++ simulation. They attest a high model accuracy in
most cases, especially for long observation periods, but also note some inaccuracies in case of
rare events. Another performance evaluation of OMNeT++ investigates the hand-over time of
a wireless station moving between two access points [37]. The paper eventually concludes that
the simulation measurement conforms the expected theoretical values but, “In order to obtain
a handover delay that accurately follows real implementations, cross talk between channels
must be modelled”. A detailed investigation of different radio propagation models implemented
with the OMNeT++ Mobility Framework add-on has been made in [38]. Additionally to the
deterministic Free Space Model, a probabilistic model with a shadowing effect based on the
Nakagami distribution has been implemented and compared with the ns-2 network simulator.
In [39], different interference scenarios with help of OMNeT++ and the INET framework
have been evaluated. For this reason, real traffic has been recorded from an existing location
and combined with the virtual traffic of the simulation scenario, to compute the resulting
interferences. With the help of such a technique it is possible to add a specific location-based
interference model to the INET wireless model.

The modular design of OMNeT++ is well suited for VirtualMesh. Thanks to its clear in-
terfaces and module structure, the required functionality can be fully integrated. Also the sim-
ulation scheduler itself is pluggable and can be easily exchanged. Furthermore, the integrated
wireless stack has been evaluated and used by many research projects what guarantees a solid
base when using these components for VirtualMesh. The listed add-on frameworks for OM-
NeT++ (Table 2.3) aditionally offer a number of alternative link-layer protocols for future en-
hancements of VirtualMesh.
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2.2 Network Emulation

Network simulations have been introduced in Section 2.1 as a common instrument to study
complex network scenarios as they happen in a WMN. Still this approach suffers from the dis-
advantage that the entire system needs to be implemented inside the simulation. While this can
be appropriate for the study of protocols under laboratory conditions, the understanding of a
WMN should not be limited to the protocol behaviour. In VirtualMesh, we are interested in run-
ning the original OS software stack in a WMN. The network and transport protocols are already
fully implemented in the OS kernel and so only the medium access and the wireless propagation
remain to be modelled. This is achieved by a wireless network emulation.

2.2.1 Emulation Basics

Emulation is a technique to provide the interface and functionality of a system component in
a potentially unrelated environment. In the best case the emulation offers the same functional
properties (service) and the same non-functional properties (performance) as the original sys-
tem. Since an emulation imitates the interface of the real system that it models, it can be used
transparently without requiring changes on other parts of the setup. The decision which ele-
ments are in the form of real devices or software and which parts are modelled depends on the
purpose and study goal of the emulation. The experience with emulation has grown with the
development of new chip designs, where the functionality has been first modelled in software
for examination. Another wide-spread application is the use of processor emulation for porting
software to unavailable hardware architectures.

In computer network research, emulation can be used as an instrument to model the func-
tionality and properties of a network link, such as connectivity, latency and bandwidth capacity.
It still allows running the original protocols and applications of a real OS. This makes network
emulation a valuable technique to study realistic network scenarios. The authors of [40] pro-
vide a detailed discussion about this topic. They mainly name four major application areas for
network emulation:

• Study the behaviour of a protocol implementation under specific network conditions to
find outside effects, limitations, bugs, or any problems.

• Comparison of different protocols under the same network and traffic conditions to study
the advantages and drawbacks of the individual solutions.

• Testing and benchmarking protocols and applications for evaluation purpose.

• Demonstration of the effectiveness of distributed network applications in a realistic net-
work scenario.

These applications are congruent with our motivations for VirtualMesh made in Section 1.4, thus
network emulation has been selected as the basic principle for our solution.
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2.2.2 Simulation Requirements for Real-Time Emulation

The structured and flexible architecture of a network simulation is an ideal instrument for mod-
elling the wireless link properties. Still, it has to satisfy a number of non-trivial requirements to
integrate the simulation with the real environment and to guarantee the accuracy of the expected
results. These are:

(a) Interface to connect the real network hosts to the simulator (‘host-in-the-loop’).
(b) Compatible protocol stack emulation.
(c) Simulation time synchronised with real time.
(d) Realistic physical environmental effects.

In the following, these requirements are discussed in more detail.

(a) ‘Host-in-the-loop’ Interface

A mechanism is required to integrate the real-world application traffic into the network simula-
tion. The complexity of this interface is depending on the network layer, on which the emulation
is performed. Every real network packet arriving at the simulation model has to be translated
into a simulation internal packet representation, which can be handled by the simulation. Higher
layer protocols, such as transport or sophisticated application layer protocols, are much more
difficult to transform due to their extensive state models and their overall complexity. Lower
layer protocols, such as medium access or link-layer protocols, are more trivial to handle since
they are mostly only datagram protocols, which can be parsed with less effort. This interface
needs to be transparent to the network hosts.

(b) Compatible Protocol Stack Emulation

Once the a network packet is represented in the simulation, the modelled network stack needs
to be compatible to the real behaviour. For example, the simulation environment should not
suddenly ask an Ethernet packet for its target IP address. An Ethernet packet is received based
on the MAC address and therefore has no detailed knowledge about its payload content. In case
the emulation is done on a network or transport layer protocol it has to be ensured, that the
behaviour of the protocol inside the simulation corresponds to the same RFCs or comparable
protocol definitions, as the real implementation. As already mentioned for the ‘host-in-the-loop’
interface, this is more complex for higher layer protocols, as they rely on the correct functionality
of a complete network protocol stack.

(c) Synchronization of Simulation Time and Real Time

The most difficult requirement is clearly the synchronisation of simulation time and real clock
time. Normally, a discrete-event network simulator maintains its own representation of time,
the simulation time. At every point of time, the pending events are evaluated and executed
without the consideration of execution time. The progress of simulation time is therefore not
continuous and heavily depends on the effectiveness of the simulation model. Figure 2.2 shows
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this behaviour in comparison to real time simulation. The graph of the discrete-event simulation
has no quantitative meaning and may be shifted up or down depending on the performance of
the simulation.
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Figure 2.2: Consideration of clock time vs. simulation time.

If synchronisation with real time is intended, the simulation has to be effective in the execu-
tion of events, modelling the connection properties. It should not introduce an unintended packet
delay (Figure 2.3). If a constant event execution time is assumed, the CPU only allows a limited
number of events to be handled in real-time. In case the simulation generates more events, some
of them are consequently delayed. This typically leads to inaccuracies in the packet process-
ing. There are two possibilities. First, if the emulation needs to meet hard real-time demands,
the events that cannot be processed in real-time have to be dropped and the related packets are
deleted from the system. This behaviour eventually confuses the protocol stack, which leads to
unwanted side-effects, such as unnatural packet retransmissions. Hence, in a true real-time em-
ulation event dropping has to be avoided by assuring that the hardware performance can always
cope with the complexity of the simulation. The second possibility is to still deliver the packet
with the introduced delay. In this case, only a soft real-time demand on basis of best-effort can
be met. This procedure has the drawback, that the accuracy of the packet delays is related to the
computational efficiency of the emulation model, as well as to other external influences. On the
other side, it still perfectly models the entire environment for less latency sensitive applications.
VirtualMesh is following the approach of soft real-time simulation.

(d) Exact Modelling of Physical Environmental Effects

These effects are depending on the medium that is imitated by the network emulation. In our
studies about wireless transmission these physical effects are consequently described by a ra-
dio propagation model. The common mathematical solutions therefore have been discussed in
Section 2.1.2. Detailed interference models can be integrated independently from the physical
environment. As they are implemented in software, an accurate repeatability of effects can be
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Figure 2.3: Number of simulation events vs. clock time.

achieved when evaluating series of wireless networking experiments. The difficulty of this re-
quirement is the simplification of the environmental effects in a way that they are performant in
the simulation, but still remain representative for a real-world environment.

2.2.3 Emulation-based Wireless Network Evaluation

In scientific research network emulation is a widely used approach to evaluate network protocols,
topologies and applications. Also here, at least two different approaches can be distinguished.
Some emulation solutions do an on-line processing of live traffic in real-time, as its done in
VirtualMesh. The other approach is the off-line processing of previously generated communica-
tion scenarios. Depending on the implementation, this is either done by manually defining the
scenario, or by capturing live traffic between real-world systems, which is then replayed inside
the emulation environment. The emulation is then either implemented with help of a hardware
controller or in software. The software-based approach can even further be distinguished into
dedicated network emulator applications and network simulators, which are able to emulate a
real network connection by including the real traffic in their environment. In the following sub-
sections, we are giving an overview and discuss the different evaluation test-bed approaches
which are considering network emulation.

Online Network Emulation

Online network emulators provide a solution for this issue. An interesting approach is the use
of a hardware-based channel simulator for testing and verifying the wireless network perfor-
mance [41, 42]. Real wireless hosts are placed in a radio frequency (RF) shield box and their
radio interfaces are connected to the hardware channel simulator. It is responsible for emulat-
ing the signal propagation and interferences using an FPGA (Field-programmable Gate Array)
controller. The hardware emulation also supports mobility scenarios and directional antennas.
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In [42], the IEEE 802.11b performance of a system consisting of 15 nodes has been evalu-
ated. The used FPGA supports the modelling of 210 independent channels which also allow the
integration of multipath effects. The advantages of an FPGA-based solution are manifold. The
consideration of hardware wireless devices using the real medium access (MAC) layer combined
with a realistic physical layer model, supporting multipath fading, achieves a high accuracy. Fur-
thermore, experiments are easily repeatable, as they do not suffer from external interferences.
The main drawback is the limited scalability, which depends on the supported number of chan-
nels in the channel simulator and the overall hardware costs for an appropriate FPGA.

Offline Network Emulation

W-NINE [43] is a platform aiming at the emulation of a wide range of wireless networks. In
a first stage, a high-level experiment description is processed by an off-line scenario generator
called SWINE (Simulator for Wireless Networks Emulation). It computes the network-level
parameters on the IP layer, i.e., data throughput, delay and packet losses, by considering node
movement, radio propagation issues and communication stack behaviour. In a second step, their
network emulator NINE (Nine Is a Network Emulator) execute the scenario on physical nodes
including real-world applications. SWINE supports a wide number of radio propagation models
such as the free space model, the two-ray model, but also more sophisticated models which
include large scale effects like per-obstacle absorption. The authors of the evaluation show a
high accuracy of wireless related properties. The disadvantage of this solution and generally
off-line emulators is discussed after the next section.

Another wireless network emulator using a two-stage scenario-driven approach is
QOMET [44, 45]. Their main principle is, that in a wireless scenario, network packets either
go lost or are delayed. They name it ‘quality degradation’. The initial user-generated scenario
is therefore transformed into a network quality degradation description, based on a log-distance
path loss model and the IEEE 802.11b specifications. This description can be finally processed
with the Dummynet [46] emulator, which is interconnecting the physical test machines. An eval-
uation of QOMET has been done by analysing the wireless communication between a static and
a mobile node. Promising results for the packet loss rate, the maximum bandwidth, the average
delay, the introduced jitter and even some Voice over IP (VOIP) quality tests are given.

Off-line emulators have the advantage that the pre-processing of the behaviour of wireless
connections can be done without timely pressure. This is valuable for the precise computation
of complex effects. The connection properties are afterwards applied to a live system, which use
real-world software for the node communication. In this way the original application stack can
be evaluated. In comparison to on-line emulations, such as VirtualMesh, the off-line emulation
technique does not allow a modification of wireless parameters based on application feedback,
after the scenario has been generated. This makes them unusable to evaluate real-world software
accessing and reconfiguring the wireless network interface, as it is possible with VirtualMesh.

Multi-purpose Emulation/Simulation Approaches

There is a lot of effort in trying to show the advantages of emulation-based approaches in com-
parison to simulations. An example for such a comparative solution is JiST/MobNet [47]. It
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provides a flexible Java framework for simulation, emulation and real world testing of wireless
ad-hoc networks. MobNet is a wireless extension to the Java in Simulation Time (JiST) li-
brary [48]. Their setup allows running the same tests independently of the abstraction level and
platform. The publication mainly evaluates the performance of their solution in respect to soft
real-time constraints for event execution and communication mechanisms. They are indicating
a “good scalability of the emulation test-bed up to a few dozen nodes”. The use of Java and
the TUN/pcap (packet capture) APIs are a clear advantage for platform independence. On the
other side, the extensive use of Java is also the drawback of this approach. Protocols developed
with JiST first need to be ported to the native network stack, i.e., implementing them in C/C++,
before they can be used on a real-world system.

The network experimentation platform Emulab [49] offers an OS independent solution
mainly for local and wide-area network research. An Emulab experiment can consist of sim-
ulated, emulated and wide-area links. Connections between real hosts can either be mapped on
real network connections or artificially be modelled with the Dummynet [46] network emulator.
The evaluation of the setup has been done by studying the dynamics of different TCP imple-
mentations where they could show effects not possible with a pure simulation. Emulab has been
extended for wireless networks in [50]. Several nodes with wireless interfaces are deployed on
the floors of an office building. They are connected to the Emulab network environment and
allow an inclusion of wireless experiments. Considering mobility, an interesting approach has
been made by mobile Emulab [51]. They extended the Emulab software by a control unit for
robot-based mobile wireless nodes. Thereby, a central, accurate, and repeatable coordination of
the node movement can be achieved. The communication with the mobile robots is done over
an IEEE 802.11b network and 900 MHz radios. Each controllable robot also acts as a wireless
node. The setup is able to create a fully managed real-world experiment of wireless communi-
cation with mobile nodes. The test-bed is based on a commercial robot platform, which should
allow the replication of the test-bed with modest effort. A main condition for such a test-bed
is the availability of a large enough area, what definitely cannot be provided easily. As soon as
experiments are done outdoor, the results are likely disturbed again by external interferences.
So, also this setup the downsides mentioned for real-world wireless test-beds can be applied.

The presented solutions combining approaches of simulation, emulation and real-world tests
are certainly interesting in the study and comparison of these technologies. The different gran-
ularities allows examining effects introduced through the various layers. Still, their main draw-
back is the very complex setup. Unfortunately, for these environments are no results available
that include a wireless model. For such comparative approaches, WMN test-beds are still too
complex to handle in an accurate way.

Simulation Back-end for Network Emulation

The idea of running a simulator back-end in a wireless network emulation has been previously
proposed in [52]. The used simulator is the commercial QualNet [53]. The publication includes
evaluation results for throughput and video streaming tests in a Linux-based MANET using
the OLSR [10] routing protocol. This approach has many parallels to VirtualMesh in design
and accuracy. Unfortunately, neither the software nor the documentation of QualNet is freely
available, so no detailed comparison with VirtualMesh can be made.
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The most prominent network simulator that can be used for network emulation is ns-2 [54]. It
features a number of sophisticated radio propagation models, and has been widely used for wire-
less protocol analysis (e.g., [55, 56]) and the study of physical effects in wireless networks [57].
Especially, ns-2 supports a real-time scheduler for network emulation which has been developed
in [58]. The authors of [59] evaluate the emulation mode with User-mode Linux instances. As
a main drawback the authors identified that, “[their] current setup imposes some tight limita-
tions on the scalability of the simulation complexity”. A more detailed evaluation has been done
by [60]. They compare ns-2 in simulation and emulation mode with a real wireless network
setup. After measuring latency over various hops and packet delivery ratio in all three setups
they concluded: “The packet delivery ratios and the connectivity graphs can be modelled with
a high accuracy once the model is properly calibrated.” They show that their results from the
emulated network match the real measurements more accurately than the simulation, since some
aspects, such as delays introduced by hardware and the OS, cannot be properly modelled in a
simulation.

Recently, the newly developed ns-3 network simulator [61] has been extended to support the
integration of real nodes. They are connected with the simulation through the TUN/TAP driver
of the Linux kernel and a proxy node. This allows the evaluation of the protocol stack and native
applications under the Linux OS. ns-3 is still very young and therefore no evaluation results have
been published so far. The traffic redirection techniques used for the network emulation in ns-2,
ns-3 and VirtualMesh are quite similar. But as the only solution, VirtualMesh also supports the
dynamic modification of the wireless device configuration through the usual system tools which
allows more dynamic test scenarios.

Also OMNeT++ has been previously used for network emulation scenarios. The authors
of [62] evaluate OMNeT++ in a real-time SCTP transport layer emulation. They implemented
a simulator interface which is translating real SCTP packets into simulation traffic. The solu-
tion is evaluated by measuring the throughput on diverse multi-hop routes, also including pure
simulated hosts. Thanks to the restriction to only one protocol it is possible to include hosts,
which only exist inside the simulation, as long as the simulated protocol applications understand
the real payload. Their conclusion is that “The major limitation is the CPU of the host running
the simulation”. In contrast to VirtualMesh, they do not include a wireless model and so their
results mainly show how efficient SCTP can be parsed from and to the simulation environment.

Even the effort of research in the domain of wireless emulation and evaluation is huge, there
is no other solution available that is fully comparable with VirtualMesh. Many of the presented
efforts still have high hardware costs or lack of an appropriate radio propagation model, protocol
independence, or wireless client configurability.

2.3 Real-world Wireless Network Test-beds

In Section 1.3, real-world test-beds were introduced to be a possible instrument for network
evaluation. At this place, two real-world test-beds used for WMN research are presented and
their advantages and disadvantages are discussed. Later, ADAM [63], a embedded Linux system
for wireless mesh networking is introduced. It has been developed by our research lab and
extensively used for testing and evaluating WMN technologies in a real-world environment.
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2.3.1 Examples of Real-world Test-beds

UMIC-Mesh [64] combines several dozens IEEE 802.11a/b/g-based hardware wireless nodes
with virtual hosts running on Xen. The authors of UMIC Mesh have separated the task of wire-
less network research into a development and debugging part done in the virtualized environ-
ment, and a part including functional and performance evaluation, done within the real test-bed.
This solution therefore provides an adapted environment for the different tasks in protocol re-
search. However, it has the disadvantage that the overall setup is very complex and expensive
in costs and maintenance. Another drawback is the lack of a wireless model in the virtual-
ized test-bed. Accordingly, influences of the wireless medium cannot be considered during the
development and debugging cycle of an application.

A similar approach of testing real implementations in a large wireless network is the ORBIT
test-bed [65, 66] consisting of four hundred IEEE 802.11 radio nodes. The nodes are built up in a
configurable indoor radio grid for controlled experimentation and an outdoor field trial wireless
network for evaluating real-world settings. Furthermore, ORBIT provides a sophisticated testing
environment with a fine-grained measurement framework. The controllable and isolated indoor
setup offers the possibility for detailed studies of wireless interference effects. Although the 20 x
20 grid of nodes offers a large variety of different topologies, it can be too restrictive, especially
regarding mobility tests. ORBIT can be accessed for research by universities, industrial research
labs, and both US and non-US institutions. The downside of ORBIT are the costly resources
and the limited access.

OneLab [67] is a European project driven by a number of universities and telecommunica-
tion companies. Its target is to develop and provide facilities and tools for computer network
research. In the past a few smaller wireless test-beds with about half a dozen nodes have been
used [68]. With OneLab2, an inclusion of larger wireless test-beds is intended [69]. One of it
is NITOS (Network Implementation Testbed using Open Source platforms) [70]. It combines
about fifty wireless nodes of different types (PC Engine Alix2, ORBIT-like nodes) to a Linux
real-world wireless test-bed. While NITOS is providing static node locations, other associated
test-beds provide a limited number of laptops for wireless scenarios with mobile nodes.

Evaluations with help of real-world test-beds clearly have the advantage of using real radio
transmission and real computer systems, which allow the study of complex interference effects
with a high fidelity. Nonetheless, in comparison to VirtualMesh, real-world test-beds require an
expensive hardware setup, which need a sophisticated setup for not being influenced by external
radio transmissions. Furthermore, the presented approaches are not flexible at all to conduct
experiments including multiple mobile nodes, as it happens in WMNs and MANETs.

2.3.2 ADAM - A Linux Environment for WMN Research

ADAM (Administration and Development of Wireless Mesh Networks) [63, 71, 72] provides a
flexible platform for building, configuring, and updating a minimal Linux system, adapted for
embedded and wireless mesh networking scenarios.

It includes an build-tool for building an adapted Linux installation. A range of target pro-
cessor architectures are supported through different build profiles. They manage the creation
of a cross-compilation environment, which allows the building of an ADAM Linux system for
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a number of embedded platforms, such as Alix (i386) [73], Meraki (mips) [74], and the Neo
Freerunner (arm) [75]. Small build scripts arrange the automatic compilation of the applications
from the source code. Afterwards, the integrated image-tool allows the generation of a Linux
system image which is then deployed on the wireless nodes. The basic components of a Linux
system built with ADAM are listed in Table 2.4.

Program Version Program Version
Linux Kernel 2.6.26.5 µclibc 20080913
Busybox 1.11.2 Wireless-tools 29
Dropbear sshd 0.51 OpenSSL 0.9.8h
radvd 1.2 olsrd 0.5.6
cfengine 2.2.8 nostromo httpd 1.9.1

Table 2.4: ADAM mesh node components.

ADAM does not only include the Linux build system, but also provides a user-friendly Web
interface for displaying the node status (Figure 2.4) and for generating and distributing node
and network configurations for an entire WMN setup. This allows the fast configuration and
deployment of a mesh network. Additionally, an autonomous distribution mechanism integrated
in ADAM allows the safe update of the configurations or even the upgrade of an entire operating
system image in an already deployed wireless network.

So far ADAM has been used for a number of wireless network publications. [76] evaluates
with help of ADAM wireless nodes multi-path routing inside buildings. [77] uses ADAM-based
wireless nodes in an experimental wide-range communication setup for connecting remote sites.
In VirtualMesh, ADAM is used to provide the Linux wireless nodes for the network emulation.

2.4 Operating System Virtualization

In Computer Science, virtualization is defined as technique to abstract and multiplex computer
hardware access and CPU time. Nearly every resource is or can be virtualized for better manage-
ment. A few examples are virtual memory, virtual networks (VLAN), virtual terminal, virtual
machines for byte-code interpretation (e.g., Java [78] or Common Language Runtime [79]), and
also virtual machines for running entire operating systems. This is called platform virtualization
or also operating system virtualization.

In VirtualMesh we are interested in evaluating a fair number of wireless nodes. With help
of platform virtualization, a single hardware machine is able to concurrently host the operating
system instance of every wireless node. Thus, the full operating system functionality, including
the network and application stack, can be used in VirtualMesh in the same way as on a real
hardware machine in a real environment.

2.4.1 Platform Virtualization Overview

Platform virtualization separates the operating system (OS) from the underlying computer re-
sources and allows the concurrent use of multiple OS in parallel on the same hardware. In the
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Figure 2.4: ADAM Web interface of the node status.

1960’s IBM started researching time sharing systems which emerged in the VM/CMS [80] sys-
tems in the 1970’s. They first introduced a virtualization solution which allowed the partitioning
of the computer hardware between several OS instances. Also other vendors developed similar
solutions afterwards, but as this technology was extremely expensive, it was mainly used in the
enterprise segment. Only in the last decade similar features became available on the wide spread
x86 platform. The free User-mode Linux (UML) [81, 82] is an early virtualization technology
used in scientific research for network evaluation [83, 84, 85]. In UML, virtual Linux systems
can run as guest processes on a Linux host machine. The priviledged system instructions of the
guest kernel are emulated by the underlying host. Modern approaches implement more efficient
techniques to multiplex virtualized guest systems. The low-level signalling (interrupts) and the
access to the physical resources such as processor, memory, and I/O-devices are handled by a
virtualization management system, which is called Virtual Machine Monitor (VMM) or Hyper-
visor. Depending on the implementation, the VMM can run either below the OS directly on the
hardware (e.g., VMware ESX [86], Xen [87]) or inside an OS in extension to its kernel (e.g.,
Virtualbox [88], KVM [89]).

Another two different techniques for platform virtualization can be distinguished on their
interface between the VMM and the virtual host. Full virtualization provides an emulation of
the complete computer hardware (Hardware Virtual Machine, HVM), including I/O devices such
as network and storage controller. In this setup, the guest OS does not notice any difference
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to a physical computer. It can run completely unmodified as a virtual host, but suffers from
noticeable performance penalties due to the emulation overhead. Paravirtualization (PV) [90]
improves the device access by providing a proprietary driver interface to the virtual machine.
The device driver itself is split into a back-end driver in the VMM and a front-end driver in the
virtual host. In that way, the virtual host can achieve nearly native effectiveness.

Any of the presented techniques allow the operation of multiple OS instances sharing the
same physical machine. This significantly reduces the hardware costs for a test-bed and even
simplifies the administration and maintenance of numerous hosts.

2.4.2 Virtualization and Network Evaluation

The already presented test-bed approaches mostly had a common drawback. In case real traffic
should be included, a setup with multiple hardware machines is required. This limits the scala-
bility of the test environment and requires more effort for creating and monitoring the test-bed
setup. Platform virtualization is therefore especially useful for network evaluation, as a fair num-
ber of network hosts can be handled by a single machine. If a more complex network scenario
is required, a network emulation can be connected to imitate the correct network behaviour.

One of the earliest approaches evaluating platform virtualization in MANET research is
found in [91]. It combines L4Linux [92] micro-kernels running as virtual hosts on top of a
real-time system. A network emulation is provided by MobiEmu [93], which allows packet
forwarding between mobile nodes based on scenario files. Similar to VirtualMesh the traffic is
captured through virtual network interfaces and then redirected to MobiEmu. In comparison to a
previous approach with User-Mode Linux (UML) [82, 93], the high-performance of the L4Linux
has been underlined. It allows a test-bed of up to ten Linux nodes on a Pentium 4 with 1.8 GHz
and 512 MB memory, versus four with UML. The setup is mainly thought for development and
testing of routing algorithms, since MobiEmu does not support the modelling of communication
errors and delays of a true wireless scenario.

If real-time behaviour of the emulation cannot be achieved, the domain of virtualization
adds new possibilities of bending the time. The authors of [94] introduce a simple but smart
technique of manipulating the software timer in Xen for emulating high-speed networks over a
slow connection. They have simulated up to a 10 Gbps connection on a physical 100 Mbit link.
More sophisticated is the concept of ‘Synchronised Network Emulation’ [95]. It introduces a
hybrid setup of platform virtualization with Xen for the node’s representation, and a network
emulation based on OMNeT++. A central synchronisation component controls the run-time
behaviour of both, the simulation and the virtualized systems attached. Thus, they are not
dependent on the real-time capability of the simulator. Their evaluation contains successful
ping measurements between a simulation node and a virtualization node. The author of [95]
even mentioned in a mailing list, that in combination with ns-3 they are able to achieve a
synchronisation with an accuracy down to 10 µs [96]. A wireless model is not yet used, so this
is an ideal future extension to the VirtualMesh testing framework. We have already contacted
the authors, but unfortunately, neither the source code for the original paper, nor the ns-3
integration has been released so far.
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Chapter 3

VirtualMesh: An Approach of Wireless
Network Emulation

VirtualMesh is a framework, which successfully combines established technologies such as com-
puter simulation, network emulation and platform virtualization to a comprehensive and flexible
development, debugging, and evaluation platform for WMN and MANET experiments. It al-
ready has been published in [97] and [98]. VirtualMesh is able to virtualize the entire test-bed
by emulating the wireless network and by running the wireless nodes as fully-featured virtual
hosts. The use of Linux hosts as wireless nodes offers the native real-world interface for network
protocol and application developers. The network scenario that can be used with VirtualMesh is
freely definable and easy to setup in the simulation back-end of the network emulation. Thanks
to the flexible approach, VirtualMesh can be adapted to a range of individual study domains.
However, our focus is clearly set on IEEE 802.11b network environments.

This chapter introduces the distributed emulation concept of VirtualMesh. In Section 3.1,
the general architecture is discussed. Section 3.2 then presents the intermediate communication
protocol used in VirtualMesh, which has been developed to connect the nodes with the wireless
network simulation. Section 3.3 finally discusses the inclusion of operating system virtualiza-
tion, for hosting the wireless nodes in VirtualMesh.

3.1 VirtualMesh Architecture and Design

The basic principle of VirtualMesh is the link layer emulation by a standard network simulator.
The simulator is responsible to model the wireless communication including the representation
of the wireless device driver, the medium access layer (MAC), and the physical medium, in our
case the radio transmission. The wireless nodes that can participate in the VirtualMesh wireless
network are native or virtualized Linux hosts. With some restrictions also purely simulated
hosts can be integrated. The Linux nodes do not need to have a wireless card installed as the
emulation tools create a virtual wireless interface (VIF) that can be used transparently by the
operating system and applications. Using a custom emulation protocol (Section 3.2), the nodes
are connected over a wired infrastructure network to the simulation server which is running the
wireless model, the so-called WlanModel. Figure 3.1 shows the division of the network layers
between the real Linux hosts and the WlanModel. On the nodes, the VIF is forwarding the
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Figure 3.1: Subdivision of the TCP/IP network
stack between the wireless node and the wireless
simulation server.

wireless network traffic to the simulation server and injects the replies back to the local network
stack. As mentioned before, this is done on the data link layer, so VirtualMesh is able to handle
all types of network and transport layer protocols implemented in the Linux kernel, including
the Address Resolution Protocol (ARP) [99].

A network host that wants to participate in the wireless emulation requires a couple of small
utilities, the VirtualMesh client tools, to be installed. They are responsible to create one or
multiple VIF(s) and provide access to the wireless emulation. Furthermore, the tools offer an
interface to manage the wireless driver properties within the simulation model. These client
tools and their implementation are extensively discussed in Chapter 4.

The WlanModel simulation server is connected with all the nodes through the infrastructure
network. It receives the forwarded wireless traffic from the nodes and computes the propaga-
tion of the packets between the nodes. The WlanModel is implemented and fully integrated
in the OMNeT++ network simulator framework [33, 100]. This allows the use of any physi-
cal layer technology implemented in OMNeT++ or one of its extensions such as INET [101]
or MiXiM [102]. The flexible design enhances the application area of VirtualMesh, which can
also be used for developing and evaluating new radio propagation models for OMNeT++. Per
default VirtualMesh is using the IEEE 802.11b stack of INET. It is responsible for the correct
modelling of the wireless driver functionality, including the medium access (CSMA/CA) with
the IEEE 802.11 RTS/CTS exchange. By using OMNeT++ VirtualMesh further profits from
the sophisticated mobility models available for that network simulator. This allows the setup of
extensive mobility scenarios, as they can happen in a MANET or WMN, with minimal effort.
The implementation of the WlanModel is discussed in more detail in Chapter 5.

It is also possible to include simple simulation-only wireless nodes, not represented by Linux
nodes. However, the major issue is that they do not have a compatible view of the network and
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transport layer protocols. As long they do not communicate with real nodes, this issues is not
a problem. In this way, simulation-only nodes can be used to generate background traffic for
the wireless emulation. If they also should be used as intermediate hops in a multi-hop com-
munication between Linux nodes, the nodes only represented inside the simulation need to be
extended to at least correctly handle the ARP protocol, as it is used to find the next-hop desti-
nation. Otherwise, the MAC/IP address assignment has to be manually synchronized between
the Linux nodes and the simulation-only nodes. For the integration of more sophisticated node
types, such as wireless sensor nodes, it has to be ensured that they are able to understand the
network or application protocols over which they are accessed from the Linux nodes. One way
to achieve this is to integrate a protocol parser within the node’s simulated network stack, which
then translates the original Ethernet frames sent by a Linux host to a more specific packet type
which is understood by the node’s simulated network application. As this is very application
specific, such functionality is not yet integrated into VirtualMesh and left for future work.

Figure 3.2 shows the architecture of VirtualMesh. There is a central server hosting the
WlanModel and an arbitrary number of real or virtualized Linux nodes. After connecting to
the simulation server, the nodes are represented by a VirtualHost inside the wireless simulation.
The infrastructure network is providing the communication channel between the nodes and the
WlanModel server. The entire wireless traffic is captured by the VIF, forwarded to the simu-
lation server, processed, sent to the target node, and finally received by its VIF. The wireless
network scenario of the WlanModel is completely independent of the physical positions of the
participating nodes. It can reflect any arbitrary network topology of a WMN and MANET.

Xen Hypervisor

        Virtualized Nodes
 (with virtual wireless devices)

Real Nodes
  (with virtual wireless devices)

Simulation Server

(WlanModel)

Mesh Routers

Mesh Clients

Communication between 
  Nodes and WlanModel

Figure 3.2: VirtualMesh architecture with virtualized nodes, real nodes and the WlanModel.

VirtualMesh is not able to provide any hard real-time emulation guarantees for the emula-
tion. The distributed approach, where the nodes and the simulation server are connected through
a normal Ethernet link, is adding a small delay to the wireless connection. It can be minimized
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by using a high bandwidth link or theoretically even by a low latency interconnection such as
Infiniband [103]. Such network installations are not always common in research environments
and so our experiments are based on a 1 Gbps cross-link. Nonetheless, the wireless packet la-
tency is primarily determined by the OMNeT++ simulation model. As the computation of the
individual packet properties may be too computationally intensive to be made in real-time, an-
other small delay not found in a real wireless transmission is introduced by the computation
overhead. By using a soft real-time scheduler, described in Section 5.1.1, the WlanModel tries
to be as accurate as possible, which is sufficient for most evaluation scenarios. In the evalu-
ation part (Section 6.3.3), we examine this delay for our hardware setup and various wireless
emulation conditions in order to estimate how accurate real-time performance evaluations can
be performed.

3.2 Communication Protocol for the Wireless Emulation

The distributed setup of VirtualMesh requires a communication channel and protocol between
the wireless nodes and the WlanModel simulation server. Obviously the main purpose is the for-
warding of the wireless traffic, but additionally, certain management tasks have to be offered as
well. While the channel is provided by the infrastructure network, the communication protocol
is especially developed to meet the specific requirements of VirtualMesh. Though, the following
requirements are considered.

• Wireless nodes need to be able to join or leave the emulated wireless network and thus
inform the simulation model about these actions.

• Each connection need to be identifiable by the simulation model, to which corresponding
wireless node it belongs.

• Packet forwarding for exchanging the original wireless traffic must happen with high per-
formance and a minimal delay in packet generation and transmission.

• Any arbitrary wireless device parameter, which is changed on the wireless node, has to be
propagated to the simulation server in a timely manner.

• Transparent communication between different processor architectures by ensuring com-
patible data representation.

To minimize the complexity of the communication protocol, the management communication
(node registration, device configuration change) is unidirectional from the wireless node to the
simulator model. A fully-featured feedback mechanism from the simulation to the node is left
for future work. Shortly after having considered piggybacking the required information with
each wireless packet forwarded to the simulation, it has been shown, that this approach is not
very performant and too restrictive in its possibilities. Therefore, a simple emulation protocol
has been created. It defines five different packet types for different purposes (see Figure 3.3).
As the low-latency behaviour is critical for the wireless traffic exchange, the emulation protocol
is put on top of the UDP transport protocol. It is a connection-less datagram protocol that
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also matches the traffic pattern of the transported wireless frames. UDP does not guarantee the
sequence of the packets nor does it guarantee the error-free transmission of the committed data.
In VirtualMesh, this can be still accepted, as it is used in a dedicated laboratory environment
only, where the connectivity between the hosts can be considered optimal. The performance
gain of UDP instead of TCP is definitely the determining factor for our choice.
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Figure 3.3: Protocol messages used to communicate between the wireless nodes and the WlanModel.

3.2.1 Protocol Messages

In this section, the different message types are characterized. The protocol has been imple-
mented with a minimal set of functionality in mind, that includes node de-/registration at the
WlanModel simulation server, traffic tunnelling between the node and the WlanModel and the
propagation of wireless device parameter changes from the node to the simulation environment.

REGISTRATION Message

The REGISTRATION message is the first message sent by any node that wants to participate in
the wireless emulation. It contains the full information about the node, including a sender iden-
tifier, a message identifier, the host name, the connection information (IP address and port) for
sending replies, the number of VIFs and the full set of configuration values for the correspond-
ing VIFs. Based on this information the simulation server is able to create and initialize the
VirtualHost node representation inside the simulation model. The simulated wireless device of
this VirtualHost then reflects the configuration of the real node and is used to inject the wireless
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traffic into the simulation network and send its replies from the simulation model back to the
original host.

ACK Message

The ACK message is used to acknowledge the registration of the wireless node at the simulation
model. As long as the node does not receive such a message, it is not able to participate in
the wireless network. The message identifier field corresponds to the message identifier of the
acknowledged REGISTRATION message. The sender identification is not used in this message,
since it is always the model that acknowledges the messages. It is only present as the ACK and
DE-REGISTRATION message share the same packet format.

DE-REGISTRATION Message

The DE-REGISTRATION messages is sent by a wireless node when leaving the wireless emu-
lation. It only fills the sender identifier which is compared with the list of registered hosts in the
simulation model. If the initiating node is registered, the corresponding VirtualHost is deleted
from the simulation network and no further wireless traffic is accepted from or directed to this
node. The message identifier is unused but present due to format sharing with the ACK message.

DATA Message

The DATA message is used to forward the network traffic from the node to the simulation server
and vice versa. It contains the sender identification, which allows an association of the sending
node to the corresponding VirtualHost in the simulation model. Furthermore, it includes a field
to identify the involved VIF, a payload size attribute and eventually the original Ethernet frame
sent over the VIF to a target wireless node. The payload size is used for sanity checks and easier
payload handling. If the standard Maximal Transmission Unit (MTU) of 1500 bytes has been
set for the VIF, a DATA message containing a full size Ethernet frame cannot fit the same MTU
in the infrastructure network. Therefore, it has to be ensured, that either the wireless MTU is
configured smaller or the MTU of the infrastructure network is big enough to handle a full size
DATA message without fragmenting the packet.

CONFIGURATION Message

The CONFIGURATION message is sent to inform the simulation model about modifications
of the wireless device properties. It contains the sender identification, to associate the corre-
sponding VirtualHost in the simulation model, the involved VIF, the property type, and the new
value. If a VIF parameter such as transmission power or channel is modified on the wireless
mesh node, the new value is propagated with a CONFIGURATION message to the simulation
model. Unlike one might expect, the WlanModel does not send an ACK message for a configu-
ration change. The acknowledgement of a configuration change has been abandoned in order to
minimize the overhead for handling this message in the WlanModel and the client tools. Further-
more, it should avoid that the emulation blocks in case no acknowledgement has been received.
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In the extreme case the parameter change cannot be performed in the WlanModel, the emulation
continues just with the old value.

3.2.2 Message Flow of the Emulation Protocol

The message flow in the VirtualMesh emulation protocol is simple and straight forward. The
wireless node knows three different protocol states, whereas a state change is always initiated
by the wireless node:

• Unconnected: No connection to the simulation server. Any wireless traffic is dropped.

• Pending registration: A REGISTRATION message has been sent and the node is waiting
for an ACK message.

• Connected: The node is registered at the simulation server. DATA and CONFIGURATION
messages can be sent any time.

Figure 3.4 shows a typical emulation scenario including two wireless nodes, A and B, and the
simulation server. At the beginning both nodes are in the unconnected state and thus have to
send a REGISTRATION message to the simulation server in order to join the wireless network
emulation. Node A immediately receives an ACK message and is therefore successfully
registered (1). For some reason, node B does not receive its ACK message (2) and remains
in the state registration pending. It resends a REGISTRATION message after a time-out of
five seconds. The second attempt is successful and also node B receives its ACK message.
Both nodes are now represented inside the simulation environment and hence in the connected
state. Now, they are able to send and receive wireless traffic. First, node A sends a wireless
packet, which is encapsulated in a DATA message directed to the simulation server (3). Inside
the simulation environment, the original packet is decapsulated, processed, and eventually
encapsulated in a new DATA message, in order to transmit it to the destination node B. Needless
to say, the reply of node B is taking the same way back to node A. In case a wireless device
parameter is modified, e.g., the nodes are changing the WLAN channel, a corresponding
CONFIGURATION message is sent to the simulation model (4). As soon as the nodes want
to leave the wireless emulation, they transmit a DE-REGISTRATION message, the model
then deletes their representation in the simulation, and the nodes get again in their initial,
unconnected state.

3.3 Virtualization in VirtualMesh

VirtualMesh is evaluated in combination with platform virtualization to lower hardware costs
and administrative effort. Each virtual node can provide the OS interface (kernel, libraries) of
a real machine and therefore be used to run any kind of real-world application in the wireless
environment. The use of a hypervisor running on common x86-compatible hardware is an in-
expensive way to provide a sufficient number of wireless nodes for any possible WMN and
MANET scenario.
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Figure 3.4: Message flow between wireless nodes and simulation server.

VirtualMesh is compatible to most of the virtualization products, as long they can host virtual
Linux guest systems. For the evaluation of VirtualMesh, we have selected the Xen virtualization
platform [87]. Xen provides a powerful and efficient open-source stack and is suitably inte-
grated into several kernels of free OS such as Linux, NetBSD, FreeBSD or OpenSolaris. It is
currently regarded as one of the most effective virtualization technologies and widely used in
scientific research, especially in combination with network emulation [104, 105, 106]. We have
selected Xen, as it perfectly integrates into VirtualMesh thanks to the full integration of the par-
avirtualization feature into the stock Linux kernel. In this way no operational drawbacks need
to be accepted when running VirtualMesh in a virtualized environment. Also, Xen is the only
virtualization solution which does not require novel CPU virtualization techniques (Intel VT or
AMD-V) and thus can be run also on older computer hardware.

The inclusion of operating system virtualization adds a minimal latency overhead for the
wireless traffic transmission between the wireless nodes and the simulation server. This effects
are evaluated for our test-bed in Section 6.3.2.
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Chapter 4

VirtualMesh: Client Implementation

In the previous chapter, the distributed nature of the VirtualMesh framework has been introduced,
namely the distinction between the client part on the wireless node, and the server part, which
runs the wireless simulation model. The responsibility of the wireless client is to inform the
simulation which packets have to be sent over the artificial wireless connection and their precise
timing. To achieve the real system’s integration, this is simply done by forwarding the original
network packets to the WlanModel server. This requires a virtual wireless interface (VIF) where
any application can send real traffic to. Furthermore, the client should be able to transparently
configure the properties of its VIF in the same manner, as if it is a real hardware wireless adapter.
Ideally, no difference between a native and a virtual wireless device should be experienced.

In this chapter, a closer look is taken on the client part. In Section 4.1 the overall client
architecture and design decisions are discussed. Afterwards, the concrete implementation of the
client tools is presented in Section 4.2 (vif-tools) and Section 4.3 (iwconnect). In Section 4.4,
the mechanism for propagating the VIF parameter modifications to the simulation model is ex-
plained.

4.1 Client Architecture and Design

For a prototype implementation of the client systems, Linux has been selected, as it is a wide-
spread OS for embedded systems and research. Additionally, Linux is completely open source
and its free license allows a straightforward implementation of extensions and modifications.
Traditionally, the wireless drivers in the Linux kernel are accessed over the Wireless Exten-
sion (WE) API [107]. Also some kernel external wireless driver projects (i.e., Madwifi [108]),
support this kernel API. The WE mainly consists of a number of commands, which can be sent
over the ioctl device control function of the kernel. User-space tools such as the wireless-tools
package [109] and wpa supplicant [110] are using the WE API to provide command-line appli-
cations for configuring the wireless devices. However, the recent kernel development created a
new Netlink-based interface (nl80211 [111]) to access and configure the generic IEEE 802.11
functionality, which is shared by some newer wireless drivers. Netlink is a socket-like mecha-
nism for IPC between the kernel and the user-space. The appropriate wireless configuration tool
using this new interface is iw [112].
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Within this mix of technologies in the wireless support of Linux, VirtualMesh has to find an
approach, which provides transparent VIFs to the applications. Moreover, the implementation
should not depend too much on kernel internal structures, since they are in an ongoing devel-
opment between different kernel versions. There are different ways how these required func-
tionality could be achieved. It is obvious that the kernel needs to provide the network interface
itself. Only in this way, the networking is transparent to the applications and the kernel-internal
network stack is used. But the question remains open, how to provide the artificial wireless
functionality and the interface to the simulation model.

One possibility is to develop a dedicated Linux kernel module for the VIF by combining,
adapting and enhancing the packet encapsulation functionality of the IP-in-IP tunnel device with
the traditional WE API. Therewith the VIF transparently handles the packet forwarding to the
model and provides the common wireless configuration API to the management applications.
Additionally, a user-space application communicating with the kernel (e.g., via Netlink [113] or
sysfs [114]) is required to configure the forwarding target (i.e., the simulation server address),
The clear advantage of this solution is that all driver related functionality is included in the
kernel, where it technically belongs to. As this module provides the same API as a normal
wireless device, the user-space configuration tools (e.g., ifconfig, iwconfig) do not have to be
adapted to this virtual wireless device. Another big advantage concerning the packet forwarding
is, that all performance critical activities reside within the kernel. This could certainly minimise
the packet delay overhead. The disadvantages, however, also have to be considered. Since this
module is not part of the main kernel source tree any future kernel API change could instantly
break the compatibility of the module. Furthermore, especially in the domain of embedded
and development systems, where a lot of network testing is done, a likely incompatible kernel
version may be required.

Another approach is to implement as much logic as possible in user-space. This solution
only depends on the kernel’s TUN [115] device to forward the network traffic to the user-space
where it is forwarded to the server. The access to the device configuration can be offered through
a shared library that is responsible for managing the internal device state. The obvious disadvan-
tage of this approach is the additional overhead introduced through the packet handling outside
of the kernel. This leads to many expensive context switching during a packet transmission.
Another shortcoming has to be made at the wireless configuration tool compatibility. Since the
VIF is not known to the kernel, the tools have to be enhanced to also query our external virtual
wireless device configuration. By imitating the WE ioctl interface, compatibility with the con-
figuration tools still can be achieved. As requested, also this solution profits from the standard
Ethernet interface provided by the TUN kernel driver and guarantees transparent network access
for the configuration tools and applications.

In favour of the better compatibility and the ease of development, the second approach has
been followed and the client tools are completely implemented in user-space. This means that
the virtual device configuration and redirection part is not that closely tied to the Linux kernel. It
only requires the TUN device driver, and due to the fact that the tools are written in C, a POSIX
compliant C library. Furthermore, no restrictions on the machine architecture are imposed. So
these requirements can even be fulfilled by a minimal embedded system. Besides Linux, the
possible target platforms include a number of UNIX-like operating systems including the BSD
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variants, which are very popular for networking tasks. Since the approach is implemented in
user-space, the development, testing, maintenance, and debugging of the application is more
straightforward than in kernel-space. Moreover, a public API can be provided, so that additional
programs can easily be adapted or implemented to make use of the VIF. An example of the nec-
essary adaptations of an already existing program is shown in Section 4.4.1, where our changes
to the Linux wireless-tools package are described.

The VirtualMesh client tools consist of three different binaries. These are the virtual in-
terface library libvif, vifctl, and iwconnect. libvif is responsible to abstract the access to the
VIF, including its parameter states. It offers an API to access the VIF from existing applica-
tions, which allows the management and integration of the virtual wireless device with the usual
OS tools. The vifctl utility provided by VirtualMesh makes use of this API and implements a
command-line tool for creating and deleting VIFs. The connection between the wireless node
and the simulation server is handled by iwconnect, which implements our emulation protocol on
the client side. Figure 4.1 shows the comparison between a real Linux wireless stack and our
VirtualMesh emulation counterpart. With the original stack, the configuration tools (ifconfig,
iwconfig) directly access the kernel to modify network and wireless parameters. In VirtualMesh
the network parameters are set in the same way, as they only affect the TUN device of the VIF,
provided by the kernel. In this case, the wireless properties are set and retrieved through appli-
cations calling libvif. The parameter modifications are then propagated to the network emulation
through iwconnect.

Wireless device

Linux kernelLinux kernel

Wireless device emulation

VirtualMesh

Wireless node

VirtualMesh

WlanModel

Linux host

with real

wireless

adapter

wireless-tools, net-tools, iproute2 net-tools, iproute2

wireless-tools, vifctl

VirtualMesh emulation protocol

Figure 4.1: Real wireless stack vs. the wireless stack of VirtualMesh.

4.2 vif-Tools

The vif-tools are responsible to provide the virtual wireless device (VIF). They create a network
interface, which is handled by the client host as a normal wireless network device. The IP
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address (IPv4 or IPv6), netmask, MTU etc. can be assigned via the normal configuration tools of
Linux, such as ifconfig from the net-tools package [116] or ip from the iproute2 package [117].
With a slightly patched version of the wireless-tools it is further possible to set the wireless
parameters, e.g., transmit power, retry limit, wireless frequency. More details about the wireless-
tools can be found in Section 4.4.1. Furthermore, there is a mechanism to notify the wireless
driver representation in the simulation environment about configuration changes done on the
client. This is necessary to ensure that the wireless device on the server operates in the same
way as the VIF device on the client is configured.

In a normal device driver implementation, the kernel address space is used to store the device
properties. They are normally read and set by configuration tools, as mentioned above, which
use the ioctl system call to do so. The Linux wireless drivers using the Wireless Extensions
API (e.g., Madwifi, Prism, Orinocco) and the Ethernet drivers are implemented in such a way.
In order to create a compatible VIF in user-space, the vif-tools have been implemented. They
consist of two parts:

1. libvif Library for accessing and managing virtual wireless devices
2. vifctl Command-line utility to create and delete virtual wireless devices

The virtual interface library libvif is a shared library, that stores the device properties in a
global address space. They can be accessed and modified through a public API, which imitates
the wireless extension kernel API. It is used by vifctl to create and delete a VIF, but can also
be used by other programs to configure the VIF parameters. In the following sections, the two
separate parts of the vif-tools and their interaction are being discussed in detail.

4.2.1 libvif - Virtual Interface Library

The virtual interface library (libvif ) unifies and controls the access from applications to the
virtual wireless device. It is designed as a shared library, so it is not directly accessed from
the command line. This is shown in Figure 4.2. Instead of accessing the kernel, the wireless
operations are performed through libvif. Since the library is only loaded at program run-time
and therefore not constantly in memory, the wireless configuration is stored in a persistent
shared memory segment. In case libvif is accessed, the shared memory configuration is loaded
and eventually read or modified. libvif has a simple API listed in Table 4.1. It copies the ioctl
system call from the kernel and adds a number of additional functions for interface creation,
listing and removal. libvif has a limited responsibility for the actual wireless emulation. It only
provides iwconnect the necessary information about the VIFs for the node registration and the
packet forwarding. Every new application which would like to interact with the configuration of
the VIF, has to include vif.h and link against libvif to access its functionality. In the following a
short description about each implemented public function is given.

vif init()
This function tries to load the shared memory VIF configuration. If there are no VIFs
present at the system a new shared memory segment is initialised. Otherwise the number
of found VIF configurations is returned.
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Figure 4.2: libvif providing application access to the VIF.

vif init() Load virtual interface configuration list
vif get names() List virtual wireless device names
vif create(devname) Create a virtual wireless device
vif delete(devname) Remove virtual wireless device
vif ioctl(type, request) Perform an ioctl() on the virtual device
vif get <property>(devname) Get the value of a wireless property

<property> = mac|channel|frequency|
sensitivity|rts|frag|txpower|retry

Table 4.1: Public virtual interface API (defined in vif.h)

vif get names()
This call returns the number of virtual devices and their names.

vif create(device name)
This function is used to create a VIF. This includes the creation of a TUN device with the
given name and saving the device’s wireless properties into the shared memory segment.
On the creation of a device, its parameters are set to default values based on an Atheros
wireless card using the corresponding Madwifi driver. This behaviour could be adapted in
future work for other types of wireless controllers.

vif delete(device name)
This function is used to delete the wireless configuration from the shared memory segment
and destroy the corresponding TUN device.

vif ioctl(ioctl type, request)
This function emulates the ioctl system call for the VIF. Its arguments are corresponding

37



to the normal system’s ioctl function. They consist of the type of the ioctl and the request
structure with the device information and parameter fields. The latter is used to set and
return the wireless device properties. The implemented ioctl types are listed in Table 4.2.
Calls, which require operational feedback of the VIF, such as SIOCGIWSTATS for
retrieving detailed traffic statistics, are not implemented. To do so, it would be necessary
to query the wireless driver representation in the simulation model. This extension is
left as future work. The nearly complete number of implemented ioctl types offers great
compatibility with the Linux wireless-tools, e.g., iwconfig (Table 4.3). As the OMNeT++’s
IEEE80211NicAdhoc module used in the simulation model cannot handle all of these prop-
erties, not all of them really affect the device behaviour in the actual wireless simulation.

SIOCGIWNAME Get the device type (i.e., IEEE 802.11b)
SIOCGIWNWID Get the network ID
SIOCSIWFREQ Set the radio frequency
SIOCGIWFREQ Get the radio frequency
SIOCSIWMODE Set the radio mode (i.e., ad-hoc, master, managed)
SIOCGIWMODE Get the radio mode
SIOCSIWSENS Set the radio sensitivity
SIOCGIWSENS Get the radio sensitivity
SIOCGIWRANGE Get the driver properties range
SIOCGIWPRIV Get a list of private ioctl types
SIOCGIWAP Get the access point address
SIOCSIWESSID Set the ESSID name
SIOCGIWESSID Get the ESSID name
SIOCGIWNICKN Get the nickname
SIOCSIWRATE Set the transmission rate
SIOCGIWRATE Get the transmission rate
SIOCSIWRTS Set the Request-to-Send (RTS) threshold
SIOCGIWRTS Get the Request-to-Send (RTS) threshold
SIOCSIWFRAG Set the fragmentation threshold
SIOCGIWFRAG Get the fragmentation threshold
SIOCSIWTXPOW Set the radio transmission power
SIOCGIWTXPOW Get the radio transmission power
SIOCSIWRETRY Set the number of retries
SIOCGIWRETRY Get the number of retries
SIOCSIWENCODE Set the encryption key/properties
SIOCGIWENCODE Get the encryption key/properties
SIOCGIWPOWER Get the power management properties

Table 4.2: Supported ioctl types by libvif
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vif get <property>(device name)
Returns a property value of the given wireless device. This is mainly used to get the new
value after a configuration change. The <property> can be one of the following: MAC
address, channel, frequency, fragmentation threshold, retry limit, RTS threshold, radio sen-
sitivity, or transmission power. The corresponding functions are named accordingly (e.g.,
vif get channel()).

4.2.2 vifctl - Virtual Interface Control

vifctl is a minimal command-line front-end to libvif, which is able to create and delete virtual
wireless interfaces (VIF). Its name refers to similar Linux networking tools like brctl, which is
used to combine interfaces in a bridge, or tunctl, for managing TUN/TAP devices. The user
interface of vifctl is shown in Listing 4.1.
root@node01:˜ # vifctl -h
Usage: vifctl [-cdhlr] VIFNAME

Create/delete virtual wireless interfaces
Arguments: -c VIFNAME Create virtual wireless interface

-r VIFNAME Remove virtual wireless interface
-l List virtual wireless interfaces
-d Enable verbose output
-h Print this help

Listing 4.1: vifctl user interface.

To create a virtual interface, vifctl has to be invoked with the ’-c’ argument and the desired
device name. After checking for duplicate names, vifctl calls the vif create() function pro-
vided by libvif, which does the setup and initialization tasks of the VIF as described above. This
operation actually imitates the loading of a wireless device module into the kernel, where the
corresponding device, e.g., ath0 is created. After creating the VIF, it can be configured in the
same way, as a normal network interface. To modify the wireless parameters of the VIF, an
adapted version of the wireless-tools is used (see Section 4.4.1). In order to send and receive
emulated wireless traffic, the node first has to be registered at the WlanModel by invoking iw-
connect. A VIF can be deleted again by running vifctl with the ’-r’ argument or by restarting the
wireless node. As for a real network device, it is not possible to save the device configuration
over a reboot of the OS. However, the VIF can be automatically initialised at system start-up via
the common network configuration scripts. Listing 4.2 is showing an example configuration for
a VIF in a Debian-based Linux distribution.
auto v_ath0
iface v_ath0 inet static

pre-up vifctl -c v_ath0
address 192.168.1.1
netmask 255.255.255.0
wireless_mode ad-hoc
wireless_channel 8
wireless_essid virtualmesh
post-down vifctl -r v_ath0

Listing 4.2: VIF configuration in /etc/network/interfaces.
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4.3 iwconnect

The iwconnect utility is a system service that connects the wireless node to the simulation model.
Its main responsibility is the forwarding of the wireless traffic from the VIF to the wireless model
and the re-injection of the received traffic from the model into the local network stack. iwconnect
also handles the node registration and the propagation of wireless configuration changes to the
WlanModel.

The user interface of iwconnect is shown in Listing 4.3. It requires to specify the simulation
server host to which the traffic has to be forwarded. Optionally, the infrastructure network
device for the communication with the model server can be selected. This is especially useful
for hosts, with multiple network interfaces in different networks. If it is not specified, the traffic
is forwarded using the default interface eth0. If the infrastructure network supports IPv6, there
is also an argument to force communication over IPv6. If debugging is enabled, every packet is
printed to the command line with its properties and its content.
root@node01:˜ # iwconnect -h
Usage: iwconnect WLANMODEL [-p PORT][-i INTERFACE][-6][-n][-d][-h]

Iwconnect tunnels traffic from a virtual wireless interface
to a wireless emulation model. First you have to create a virtual
interface with ‘vifctl -c INTERFACE‘. The virtual interfaces are
then detected automatically by iwconnect.

Parameters:
WLANMODEL IP address/hostname of the wireless simulation model
-p PORT Destination port (default: 2424)
-i INTERFACE Infrastructure network interface (default: eth0)
-6 Use IPv6 protocol
-d Enable debug output
-n Enable node-to-node communication without registration

(only for testing!)
-h Show this help message

Listing 4.3: iwconnect user interface.

On program start iwconnect queries libvif to learn about the virtual wireless devices. Every
device which has been created with vifctl is considered and enabled for wireless traffic emu-
lation via WlanModel. If there are multiple virtual devices, all of them are represented within
the same wireless model server. For the interaction with the WlanModel simulation server the
emulation protocol described in Section 3.2 is used. The program start immediately triggers a
REGISTRATION message to be sent to the simulation server. This can be prevented by adding
the ’-n’ argument when invoking iwconnect. In this way, it is possible to directly tunnel the traf-
fic between two wireless clients without emulating the wireless propagation connectivity. This
is especially useful for debugging and benchmarking the iwconnect utility. For example, we
have analysed the latency introduced through iwconnect in our evaluation part in Section 6.3.2.
When the wireless node is successfully registered at the simulation model, iwconnect receives
the Ethernet frames from the VIF and encapsulates them into DATA messages, which then are
sent to the simulation server. At the same time it listens on UDP port 2424 for reply packets sent
by the server. In case a wireless parameter in libvif is changed, iwconnect is informed about
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this action and triggers a CONFIGURATION message with the updated values. This mechanism
is described in more detail in Section 4.4.2. If the wireless node wants to leave the wireless
network it has to shut down iwconnect. This is done by sending a SIGTERM signal to the run-
ning iwconnect daemon, e.g. by invoking ‘kill -15 `pidof iwconnect`’ on the command-line. A
DE-REGISTRATOIN message is then sent and the traffic forwarding from the VIF is stopped.

4.4 Virtual Interface Configuration

The previous section has presented vifctl as the tool to create a virtual device and initialises it
with the default wireless properties. It does not provide access to directly set or change the
wireless parameters. For compatibility to the configuration procedure of a real wireless device
this is done with the usual OS tools. But since the VIF is not registered in the kernel as a wireless
device, these tools need to be modified to use libvif, as shown in Figure 4.2. In this section the
requirent changes are described, which are necessary to integrate libvif in a custom application.
Later on, the configuration change propagation via iwconnect to the model is explained.

4.4.1 Linux Wireless Tools

As mentioned earlier, Linux wireless drivers using the wireless extension (WE) are normally
configured through the wireless-tools. For the VirtualMesh framework, they are adapted to also
consider our VIFs, thorugh libvif. libvif is designed to support the same syntax as the original
ioctl system calls, so the amount of required modification is minimised. Listing 4.4 shows the
patch for iwlib.h, which adds libvif support to the wireless-tools utilities. The only required
modification is calling vif ioctl() if the kernel’s ioctl call fails. This means if the name of a
wireless interface (i.e., the name of the VIF) is not known to the kernel, the operation is handled
by libvif.

--- wireless_tools.29/iwlib.h 2007-06-22 20:01:04.000000000 +0200
+++ wireless-tools-libvif/iwlib.h 2009-07-13 13:39:31.000000000 +0200
@@ -282,6 +282,9 @@
+ /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ VIF SUPPORT ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /
+#include <vif.h>
+

@@ -508,10 +511,16 @@
+ int rtrn;
+

/∗ S e t d e v i c e name ∗ /
strncpy(pwrq->ifr_name, ifname, IFNAMSIZ);
/∗ Do t h e r e q u e s t ∗ /

- return(ioctl(skfd, request, pwrq));
+
+ if((rtrn = ioctl(skfd, request, pwrq)) < 0)
+ rtrn = vif_ioctl(request, pwrq);
+
+ return(rtrn);

Listing 4.4: Modifications to the standard wireless-tools library (iwlib) in order to add libvif support
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Thanks to the extensive support of wireless ioctl types in libvif (Table 4.2) most function-
ality of the wireless-tools applications can be used with the VirtualMesh VIF (Table 4.3). Only
iwspy, which collects link quality information of wireless peers and iwevent, which displays
wireless events generated by the driver, are not supported due to the unimplemented driver in-
teractivity. In the same manner as shown here, it is possible to add support for VIF devices to
any application, which is using the Wireless Extension API to communicate with the wireless
device driver.

Command Sub-command Description
iwconfig essid, mode, freq, channel, bit,

rate, enc, key, ap, txpower, sens,
retry, rts, frag

Set and query wireless network interface con-
figurations

iwlist frequency, channel, bitrate, rate,
encryption, keys, power, tx-
power, retry, ap, accesspoints

Get detailed information from a wireless net-
work interface

iwpriv mode Configure optional (private) parameters of a
wireless network interface

iwgetid Report ESSID, NWID or AP/Cell Address of
a wireless network

Table 4.3: Supported wireless-tools operations.

4.4.2 Changing Simulation Parameters from the Wireless Node

A sophisticated feature implemented in VirtualMesh is the possibility to propagate modifications
of VIF parameters during emulation run-time right into the simulation model. The simulated net-
work device inside the wireless model is then re-configured accordingly and uses the newly set
parameter value from the wireless node. This feature is unique in VirtualMesh and cannot be
found in other wireless emulation solutions. It allows a node to dynamically adapt its connection
parameters, e.g., based on some application or routing protocol feedback. An example for such a
mechanism is Net-X [118], a multi-channel, multi-interface solution for mesh network commu-
nication. The possibility to change simulation parameters from the original wireless node surely
adds new possibilities for developing and researching new MANET technologies.

The implementation of this feature is based on IPC message queues. It is a POSIX API
which provides a way for system processes to exchange information in form of messages. On
program start, iwconnect creates a message queue and subsequently polls it for notifications.
When a VIF parameter is modified, e.g., by running iwconfig, libvif sends a notification to the
mentioned message queue, informing about the happened parameter change. iwconnect receives
this notification and assembles a CONFIGURATION message including the modified VIF, the
parameter type and the new value. This message is then sent to the simulation server, where the
corresponding value is updated. That way all relevant parameters for the wireless connection
can be set on the wireless node itself via configuration tools or via another application which is
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accessing libvif.
This notification mechanism can be extended to also handle other information with addi-

tional message types. It provides a basis for sending arbitrary data from the wireless node to
the simulation environment. This could include the dynamic addition or removal of wireless
devices, or notifications about the power management, which could then be reflected in the sim-
ulation environment. So far the notification only works in one direction. From the wireless node
to the wireless model. A bi-directional mechanism is clearly more complex and an interesting
idea for future work.
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Chapter 5

VirtualMesh: Wireless Simulation Server

The simulation server, called WlanModel, is the central part of the VirtualMesh wireless network
emulation architecture. It receives the original link layer traffic from the wireless nodes and is
responsible to model the wireless connection properties. Based on a real-time simulation, the
received network packets are temporarily accurately forwarded to the other connected wireless
nodes that are within reception range. The WlanModel simulation is based on the OMNeT++
network simulation framework [100]. To compute the packet delay and node connectivity it
further utilizes the IEEE 802.11b implementation of the INET simulation framework [101]. It
has been extended to represent our wireless nodes inside the simulation environment. The con-
figuration of the simulated wireless device is thereby reflecting the VIF settings of the involved
wireless nodes. The simulated hosts then inject the wireless traffic forwarded by their corre-
sponding node’s iwconnect tool into the wireless simulation. The position of the nodes within
the simulated playground area can be freely configured, with support of many advanced mobility
models provided by INET.

In this chapter, the implementation of the WlanModel is discussed. First, section 5.1 gives an
overview about the individual OMNeT++ modules and components involved in the WlanModel.
Later, in Section 5.2, the focuse is then set on the functionality of WlanModel, where the message
flow between these modules is evaluated.

5.1 WlanModel Components

The WlanModel has been implemented around the fully-featured simulation library of the OM-
NeT++ simulation framework. It intensively uses the offered features such as the module system,
which also includes the NED file parser. WlanModel further adds its own real-time scheduler
(EmulationRTScheduler) to the simulation core and builds up a dynamic wireless network sim-
ulation based on internally developed modules and some extensions of INET.

Figure 5.1 shows an overview of the modules used in WlanModel. Our custom modules,
namely ProtocolHandler, NodeManager, VirtualHost and VifBackend enable the integration of
external wireless nodes into the simulation model. On the other side, additional INET mod-
ules are responsible for providing the IEEE 802.11b network stack (IEEE80211NicAdhoc), as
well as the radio propagation model driven by ChannelControl, and various mobility models.
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WlanModel is able to run with the detailed graphical user interface (Tkenv), which can be used
for analysing and debugging. However, the graphical interface adds a big delay to the message
processing, so it should not be considered when running a performance critical wireless emula-
tion experiment. As a consequence, WlanModel employs the alternative command line interface
(Cmdenv), which minimizes the feedback to the user and thus reduces the packet processing
delay.

OMNeT++
Simulation Kernel

EmulationRTScheduler

INET Library

- IEEE80211NicAdhoc

- ChannelControl

- Mobility

Figure 5.1: WlanModel components.

Our implementation is based on OMNeT++ version 4.0, released in March 2009. The code
also should remain compatible to any later 4.x releases. Subsequently, the single components of
WlanModel are discussed.

5.1.1 EmulationRTScheduler

The communication between the OMNeT++ simulation modules works via messages which are
coordinated by the simulation scheduler. These messages define events representing the net-
works functionality (e.g. send a packet to a host, handle a packet to a higher protocol layer),
which are executed when the message is scheduled. OMNeT++ admits the inclusion of a cus-
tom scheduler. Hence, a custom soft real-time scheduler has been developped to provide the
required functionality for WlanModel. Additionally, to the internal messages, our scheduler
further considers external traffic received from the wireless nodes. As a consequence the Emu-
lationRTScheduler listens on the UDP socket 2424 for arriving network packets. These packets
trigger new messages, which are added to the simulation queue and therefore are considered
in the scheduling. This dependency on real-time events, which require immediate attendance,
classify the scheduler as a real-time scheduler. Also, the messages are scheduled relating to the
clock time instead of an independent simulation time. This results in message delays in case the
computational effort is too high for real-time execution. Also the design of the scheduler itself
adds some temporal restrictions, so it is not capable to meet hard real-time demands. Therefore,
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the EmulationRTScheduler is classified as a soft real-time scheduler.
The implemented scheduling policy is as follows (Figure 5.2): Each message generated by

a module or an arriving network packet is added to a global message queue, with an event time
stamp (ET). This ET tells the scheduler when the message needs to be scheduled to accurately
model the network’s behaviour. The scheduler now checks the queue and if there are no
messages in the queue or the first message’s ET is still in the future, the scheduler is listening
on the network socket for further arriving packets. This is done by monitoring the network file
descriptor for a SIGIO signal, which indicates that it has received some data. If this happens, a
notification message is immediately sent to the ProtocolHandler module, which then takes over
the responsibility of the packet. If no network packet is received within the given time-out, the
scheduler checks the message queue again and the algorithm goes to the next iteration.

check scheduler queue for event messages

check event time (ET)

[found event message]

listen on network socket
till timeout expires

set timeout

[no event message]

[ET > current time]

send event message
(execute event)

[ET =< current time]
[no packet received]

create event message for 
incoming packet

[receive packet]

Figure 5.2: EmulationRTScheduler state diagram.

The used approach has the following caveats. First, there is only one global message queue.
Therefore, all internal messages have the same priority. This can result in event messages,
generated by the reception of a REGISTRATION or CONFIGURATION message, slowing down
the processing of DATA messages. Fortunately, the occurrence of such interrupting messages is
very small compared to the amount of DATA messages.

Second, the global message queue is meant to be chronological. Each new message is sup-
posed to have an ET later than the previous one. This could result in a wireless message, whose
computed transmission latency sets the arrival time at the destination node in a few microseconds
in the future. The corresponding simulation message representing the arrival event therefore has
an et in the future. The scheduler therefore ignores the message and listens on the network
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socket for new packets, until the point in time is reached to appropriately execute the mentioned
packet arrival. In this meantime, an external network packet is received. The ET for further
processing the new network packet is obviously its arrival time and therefore still smaller than
the ET of the wireless message. Nonetheless, it is enqueued after the latter. Accordingly, the
scheduler first needs to wait for the ET of the wireless packet to arrive, before it can schedule
the further computation of the arrived network packet.

The third caveat can be concluded by the just described scenario. The internal message
queue is prioritised over the network socket. If there are still messages in the scheduler queue
with an expired ET, they are first processed before new network packets are received. This
ensures that the system does not overload with messages, which could starve in the message
queue. As long there are messages with the current ET, new network packets arriving from the
nodes are ignored. This behaviour can add a slight delay to incoming packets, if the system is
very busy. However, this delay is so small, that it does not influence the overall behaviour of the
wireless emulation.

5.1.2 ProtocolHandler

The ProtocolHandler module is responsible to handle the communication protocol (Section 3.2)
with the wireless node. Depending on the message type, it can be REGISTRATION, DE-
REGISTRATION, CONFIGURATION, or DATA, the ProtocolHandler forwards the information
to the NodeManager or a VirtualHost within the simulation. In case of a faulty message type,
the message is discarded.

5.1.3 NodeManager

The NodeManager module keeps track of the participating wireless nodes in the simulation.
They register and de-register themselves dynamically through iwconnect (Section 4.3). On reg-
istration the NodeManager creates a new VirtualHost module which represents the wireless node
henceforth. The module is deleted as soon as the node has de-registered.

5.1.4 VirtualHost

The VirtualHost is a compound module consisting of the VifBackend, the IEEE80211NicAdhoc
and several INET simple modules required for correct functionality. It is the virtual represen-
tation of a wireless node within the simulation. For identification it stores the wireless node’s
parameters such as host name, host ID, and host address sent with the REGISTRATION mes-
sage. Among the included INET modules is a mobility module, which keeps track of the node’s
current position. It is fully integrated into the INET’s mobility framework, which allows the
configuration of various mobility patterns. Per default the NullMobility module is used to set the
node to a static position.
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5.1.5 VifBackend

The VifBackend is the interface to the simulated network device. The main purpose is to handle
the communication between the the wireless node and the virtual wireless interface represented
through IEEE80211NicAdhoc in the simulation. If the VifBackend receives a DATA message,
it extracts the original Ethernet frame and creates a RAWEtherFrame packet within the simu-
lation. It also handles the received RAWEtherFrames from the wireless device and sends them
as DATA messages back to the wireless node. Additionally, the VifBackend offers an interface
to change the wireless parameters in the IEEE80211NicAdhoc, which is used for handling the
CONFIGURATION messages.

5.1.6 RAWEtherFrame

Unlike some other network emulation simulation scenarios in OMNeT++ (e.g., [62]), the orig-
inal network packets are not parsed and wrapped into their specific protocol. VirtualMesh is
working on link layer (Figure 3.1) and therefore only uses a simple Ethernet frame simulation
packet. This is RAWEtherFrame, which simply wraps the original Ethernet frame within the
simulation. RAWEtherFrame is an enhanced version of INET’s EtherFrame and so it can be
handled by any INET network device module. On creation, it autonomously fills in its destina-
tion MAC address, as well as the packet size according to the original frame, which is stored in
the payload. The transformation from and into a RAWEtherFrame can only be performed by the
VirtualHost and does not allow communication between real wireless nodes and simulation-only
wireless hosts. Message parsing for supporting these interactions is left for future work.

5.1.7 IEEE80211NicAdhoc

The IEEE80211NicAdhoc is an INET module that implements an IEEE 802.11 wireless network
adapter in ad-hoc mode. It is a compound module that contains of the following simple modules:

IEEE80211MgmtAdhoc It represents the module for managing the wireless network de-
vice. It supports channel switching. The INET version correctly
handles IEEE 802.11 data frames, but no control or management
frames.

IEEE80211Mac This module implements the MAC layer. It receives data and
management frames from the upper layer, and transmits them
according to the CSMA/CA protocol.

IEEE80211Radio This module implements the physical layer. It deals with mod-
elling transmission and reception of wireless frames. For a more
detailed description please see Section 5.1.8. There are imple-
mentations with alternative reception models available. There
is the SnrEval80211 developed in [38] or the Decider80211 im-
plementing a Gilbert Elliot bit error model [119].
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This IEEE80211NicAdhoc network adaptor module is able to join a wireless network in ad-
hoc mode, as it is often used for setting up WMNs with commodity hardware. Especially, it also
supports channel switching during the simulation.

5.1.8 IEEE80211Radio

This module is responsible for transmitting and receiving wireless frames. It implements the
AbstractRadio interface which allows to separately define a radio and a reception model. The
radio model defined in IEEE80211RadioModel is responsible for calculating frame duration,
and modelling the modulation scheme and possible forward error correction. The reception
model defined in PathLossReceptionModel is responsible for modelling path loss, interference
and antenna gain. It implements the free space radio propagation model covered in Section 2.1.2
with an additional path loss α. The reception power Pr is computed by Equation 5.1, which is
derived from the Friis Equation 2.1. The used wave length λ is defined in Equation 5.2.

Pr =
λ2 Pt

(4π)2 dα
(5.1)

λ = wave length Pt = transmission power
α = path loss coefficient d = transmission distance

λ =
c

fc
(5.2)

c = speed of light fc = carrier frequency

The IEEE80211Radio module supports a wide range of configuration parameters. These param-
eters include channel number, transmission power, bit rate, thermal noise, signal-to-noise ratio,
sensitivity and the path loss exponent.

5.1.9 ChannelControl

The ChannelControl module, which is also part of the INET framework, is the central compo-
nent of the wireless network model. It gets informed about the location and movement of the
wireless nodes, and determines which nodes are within communication distance. There are var-
ious parameters, which need to be known by ChannelControl: the playground dimensions, the
maximum sending power used for this network, the signal attenuation threshold, the path loss
coefficient, the basic carrier frequency and the number of available wireless channels.

All wireless nodes which are within a so-called interference distance di from the trans-
mitting node, are considered to receive a packet. The interference distance is calculated with
Equation 5.1 resolved by distance using the pre-defined maximal transmission power Ptmax and
minimal reception power Prmin , which is derived from the signal attenuation threshold. Each
node within this range receives a transmitted frame and decides individually if it accepts the
frame or discards it due to noise or bit errors. In this way the overhead of participating nodes
outside the transmission range is minimised.
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ChannelControl supports multiple channels, however the implementation is very basic. No
cross-channel effects are modelled. Each channel just represents an independent communication
medium. Also the interference by the concrete channel frequencies, which differ by 5 MHz in
the 2.4 GHz spectrum of the IEEE 802.11b specification, are not taken into account.

5.1.10 Mobility

The mobility functionality of VirtualMesh is completely based on the INET framework. It de-
fines the BaseMobility interface which is used in the VirtualHost NED definition. INET already
provides a number of different mobility patterns, which can easily be plugged to BaseMobility
interface. The NullMobility module implements static positions and the LinearMobility module
allows the definition of a dislocation vector for each host. More sophisticated modules include
MassMobility, a module for simulating random movement of a mass, or an ANSim [120] and
BonnMotion [121] trace integration modules. The configuration parameters of the individual
mobility patterns can be configured separately for each simulation run.

5.1.11 Simulation Configuration

There are two configuration levels in the WlanModel. The first level is the configuration of
static properties, which is performed by the NED files. The NED files define the simulation
design which remains unchanged during a set of experiments. The configuration parameters
include the concrete radio propagation module (ChannelControl), the wireless network device
type (IEEE80211NicAdhoc), and the mobility module. The second level is the configuration of
fine graded simulation settings, which are meant to be modified for each simulation run. This
is done in an INI-formatted configuration file. These settings include all public parameters of
the integrated modules. The range goes from debugging levels and user interface properties, to
wireless settings and mobility details. Especially, the latter ones can also be predefined individ-
ually for different simulation runs. In that way, a wide range of of conditions can be tested with
a minimal configuration effort.

5.2 WlanModel Message Flow

In this section the message flow of an emulation run inside WlanModel is analysed. The cen-
tral component responsible for scheduling the messages is EmulationRTScheduler introduced
in Section 5.1.1. At every point of time, a list of pending events is evaluated and eventually,
an event is executed by sending its message to the target module, which then takes care of the
processing. Only the simple modules are able to directly handle messages, since they contain
the processing logic.

A typical emulation run can be divided into two major phases. First, the wireless nodes
that want to participate in the wireless emulation register themselves at the WlanModel. Once
they are represented within the simulation, their wireless traffic is processed in the second step
and forwarded by WlanModel, based on the wireless stack interaction with the radio propaga-
tion model. Additionally, a wireless node can also initiate an update of its driver configuration
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according to the VIF configuration on the node itself. In the following a closer look at the
WlanModel events during these procedures is given.

5.2.1 Node Registration

Before a node can register at the WlanModel, the wireless simulation has to be started. Only
then it is able to accept REGISTRATION requests from the wireless nodes. The node itself starts
the registration process by invoking iwconnect (Section 4.3) with the target address of the Wlan-
Model server. The operational sequence after the simulation model receives a REGISTRATION
message are depicted in Figure 5.3.

The EmulationRTScheduler monitors the infrastructure network interface of the simulation
server for arriving packets. When a packet is received (1), it notifies the ProtocolHandler to han-
dle the packet (2). The ProtocolHandler is then checking the type and the sender identification
of the packet. It queries the NodeManager, if the sender node is already registered in the simu-
lation environment (3). In case it is not yet registered and the packet contains a REGISTRATION
message, the NodeManager is assigned to add the node to a list of registered hosts and to initiate
the creation of a new VirtualHost (4). This represents the wireless node inside the simulation.
The VirtualHost location within the wireless network is thereby read from the network simula-
tion configuration file. The node parameters sent by the REGISTRATION message are copied
to the VirtualHost module. Also the number of VIFs is correctly reflected in the creation of the
VirtualHost. Critical for the correction functionality of the wireless network is the assignment
of the real MAC address to the IEEE80211Mac module, which is part of the simulated wireless
stack inside the VirtualHost. The remaining information such as the node’s IP address and the
listen port of the node’s iwconnect process are used to forward the processed wireless traffic to
the corresponding target node. Also with help of this information, the VirtualHost finally ac-
knowledges its presence by sending an ACK message to the initiating wireless node (5). Once
this message is received by the node, it is able to start the forwarding of its wireless traffic via
the WlanModel. In case the node sending a REGISTRATION message is already registered with
the NodeManager, it simply advises the corresponding VirtualHost to acknowledge its presence
to the wireless node again.

5.2.2 Wireless Traffic Processing

After the wireless node is registered at the WlanModel, the local iwconnect process is redirecting
the wireless traffic from its VIF to the simulation server. This is done by capturing the original
Ethernet frames and encapsulate them into DATA messages for sending them to the WlanModel.
The operational sequence after the simulation model receives such a DATA message is depicted
in Figure 5.4.

The reception of the message works in the same way as shown with the REGISTRATION
message. After being notified about a packet reception (1)(2), the ProtocolHandler again checks
the type and sender identification of the packet. If the sender node is not registered with the
NodeManager, the packet is ignored and dropped. In case the NodeManager acknowledges
the presence of a corresponding VirtualHost (3), it is informed about the arrival of its packet (4).
The VifBackend of the VirtualHost then unpacks the DATA message and generates an appropriate
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Figure 5.3: Node registration at the WlanModel.

RAWEtherFrame that represents the packet within the simulation network. The RAWEtherFrame
consists of the original Ethernet frame from the wireless hosts with the target MAC address of
the frame as its destination address. It can then be sent through the IEEE80211NicAdHoc adapter
to the wireless network (5). The ChannelControl evaluates which other VirtualHosts are within
transmission range and delivers the RAWEtherFrame to the reachable simulation hosts. The
receiving VirtualHosts then evaluate the reception power, possible bit errors and the target MAC
address of the wireless packet. If the address corresponds with the MAC address of the own
network adapter, the packet is processed through the IEEE80211NicAdhoc stack again, before
it arrives at the VifBackend. With help of the node information stored with the VirtualHost, a
new DATA message is generated, containing the Ethernet frame from the RAWEtherFrame and
finally sent to the target wireless node (6). There it is received by iwconnect and the packet is
injected into the local network stack on the node.

5.2.3 Wireless Parameter Modification

An interesting feature of VirtualMesh is the configuration update mechanism, which enables the
wireless node to configure its wireless interface in the running simulation. The client part of this
mechanism has been previously explained in Section 4.4.2. The result from this action on the
node is a CONFIGURATION message sent to the WlanModel simulation server. The operational
sequence after the CONFIGURATION message is received is depicted in Figure 5.5.

After the SimulationRTScheduler informs the PacketHandler about the arrival of a packet
(1)(2), the type and sender identification is again extracted. Then it is verified if the sending node
is registered with the NodeManager (3). If it is registered, the VifBackend of the corresponding
VirtualHost takes over the CONFIGURATION message (4). It extracts the information about the
involved VIF, the changed parameter and the new value. According to this, the module property
of the involved wireless network interface is updated (5). The wireless channel, radio sensitivity
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Figure 5.4: Wireless traffic processing at the WlanModel.

and transmission power settings are thereby modified in the IEEE80211Radio module, while
the remaining parameters such as RTS threshold and retry limit are set in the IEEE80211Mac
module. They both belong to the INET IEEE80211NicAdhoc stack which emulates the wireless
adapter inside the simulation. It is worth mentioning that the radio module ensures the complete
radio transmission, before changing the wireless parameters.

  Wireless Node
(iwconnect)

1

Figure 5.5: Wireless parameter update at the WlanModel.

During the development of the WlanModel, the focus has been set on a performant message
execution, and on avoidance of new bottlenecks. Therefore, the WlanModel binary has been
constantly profiled with gprof, which is part of the GNU binutils utility collection [122]. So,
we can be confident that an optimal approach has been found to enhance OMNeT++ with the
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required ‘host-in-the-loop interface’, used by the VirtualMesh wireless emulation. Additionally,
the mechanism to influence the simulated device functionality from the wireless node adds com-
pletely new possibilities for WMN application and protocol developers since this functionality
cannot be found in another emulation solution yet.

55





Chapter 6

Evaluation

VirtualMesh is a complex system, consisting of a high number of individual parts. By using
an emulation approach, VirtualMesh is creating a realistic wireless network, which supports
the participation of real Linux hosts. In comparison to a network simulation, the evaluation of
a network emulation is therefore more complex. A simulation is an autonomous self-contained
system, that already provides the necessary interface to setup the parameters and repeat the same
experiment under different conditions. At the end, the results can be read from an accessible
log file. In a network emulation, the creation of the experimental setup and the capturing of
performance data requires a higher effort. The distributed nature of VirtualMesh makes high
demands on the logging and evaluation of the produced effects. The applications accessing the
wireless network and generating the traffic reside on the individual Linux hosts, so the events
triggering and logging has to be done there as well. Static parameters, such as the included
mobility model, or the playground size, have to be set in the WlanModel configuration on the
simulation host. Moreover, it is even possible to modify simulation parameters during run-time.
Therefore, the repeatability of complex scenarios is much harder to achieve than in a simulation.
We solved this issue by exactly scripting the actions and logging of an experimentation run. A
set of command-line scripts helps to run the performance measurements, which can randomly be
repeated with different parameter values. The result of our efforts, are measurements which are
representing the normal operation of the operating system and applications with a high degree
of accuracy. Test runs made under the same conditions still may slightly vary, but this behaviour
is expected and also necessary in order to evaluate a realistic scenario.

In this chapter, VirtualMesh is evaluated in terms of functionality and performance. In Sec-
tion 6.1, the test configuration is introduced. A functional evaluation of VirtualMesh is presented
in Section 6.2, where a distributed mesh network between a number of virtualized Linux hosts
has been built-up. The estimation of the emulation accuracy is based on performance measure-
ments in various network scenarios. The comparison with the simulation counterparts, highlight
critical components and effects in the emulation. In Section 6.3, we were focusing on the packet
round-trip time and in Section 6.4 on link throughput.
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6.1 VirtualMesh Test Configuration

For the evaluation of VirtualMesh, a hosting environment, as shown in Figure 3.2, consisting
of two servers has been used. One server is dedicated to run the WlanModel (Chapter 5). The
other server runs the Xen virtualization service (Section 3.3) with a number of virtual machines,
representing the wireless nodes. The guest systems are running a Linux installation built by
the ADAM framework, introduced in Section 2.3.2. The connection between the two physical
servers is done through a 1 Gbps cross-link, dedicated to be used for the infrastructure network
traffic only. More details about the specific hard- and software setup can be found in Appendix A

The WlanModel is configured to emulate a common IEEE 802.11b wireless connection.
Table 6.1 lists the static simulation parameters that have to be configured prior to the emulation
run. They do not change during emulation run-time. The wireless driver parameters (Table 6.2)
are configured at the wireless nodes and reflected in the simulation after node registration.
Although these parameters could be changed during an emulation run, this mechanism has
not been evaluated, due to yet missing applications which could profit from a dynamic driver
reconfiguration.

Description Parameter Value
Number of radio channels **.channelcontrol.numChannels 13
Maximum transmission power **.channelcontrol.pMax 50.0 mW
Signal attenuation threshold **.channelcontrol.sat -110 dBm
Path loss exponent **.channelcontrol.alpha 2
Radio carrier frequency **.channelcontrol.carrierFrequency 2.4 GHz
Wireless device bitrate **.bitrate 11 Mbps
Contention window for normal data frames **.mac.cwMinData 32
Contention window for broadcast frames **.mac.cwMinBroadcast 32
Maximum queue length in frames **.mac.maxQueueSize 14
Base noise level **.radio.thermalNoise -110 dBm
Signal/Noise ratio threshold **.radio.snirThreshold 4 dB

Table 6.1: Static WlanModel IEEE 802.11b configuration.

Description Value
Wireless channel 1
Transmission power 17 dBm
Radio sensitivity -85 mW
RTS/CTS threshold 2346 B (off)
Maximum number of retries 7

Table 6.2: Virtual wireless device (VIF) configuration.

The WlanModel is executed in command line mode as a system service on Linux. For the
detailed configuration, we refer to Appendix A.2. Before starting the emulation, we ensured that
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no other system services are interfering and provoking additional system latencies. Namely cron,
syslog and ntpd have to be stopped on our minimal server installation. After starting the model,
the nice value of the relating process has been decreased to -20. This results in highest possible
CPU scheduling priority for the WlanModel process. With these steps, effects disturbing the
emulation latency are minimised. These actions are eventually automated with help of an init-
script. In case wireless emulation is not run for performance evaluation and some casual system
latencies can be accepted, these steps are not required.

6.2 Functional Evaluation: ADAM

A big advantage of VirtualMesh is its integration of real Linux hosts. The modest soft- and
hardware requirements of VirtualMesh provide compatibility to most Linux installations. In this
section, the use of ADAM Linux together with VirtualMesh is evaluated.

In a first test, we evaluated the compatibility of ADAM with the Xen virtualization setup.
Per default, the kernel was missing the needed Xen support, as well as the TUN device driver
required for the VirtualMesh client tools. For this reason, a new node profile ‘xen’ was added
to ADAM’s build-tool. The ‘xen’ profile contains the necessary changes to use ADAM in a
virtualized environment, including VirtualMesh. These changes consist of the adapted Linux
kernel configuration and a modified network initialisation script, which automatically creates a
virtual wireless interface with vifctl, in case no hardware wireless network device can be found.
In this way, exactly the same environment can be provided, no matter if the ADAM Linux
system is running on real hardware or as a virtual machine on Xen. ADAM’s image-tool has
been adapted to create a virtual disk image, including the boot loader Grub [123], responsible
to start the correct system kernel. This disk image is then used to start the node in Xen. Once
running the image file can be accessed through the common block device interface also used with
physical hard disks. Of course, the ‘xen’ node type also includes the VirtualMesh client tools.
With these changes, the ADAM Linux system gained full compatibility with the VirtualMesh
Xen environment and the WlanModel server.

In a next step, it has been tested, whether all the services provided by ADAM still work in the
same way as they do on a real hardware device. For this reason, the WlanModel simulation server
has been started and several virtualized ADAM nodes have been connected with the emulated
wireless network. As expected, all wireless network operations are transparently handled by
VirtualMesh. There are no difficulties to access a node’s Web server or login to a node via SSH,
over the wireless network. All protocol stacks, including ARP, IPv4, UDP, TCP and also IPv6,
fully cooperate with the wireless emulation. This is the expected behaviour, as the protocols are
handled by the Linux kernel of the nodes. For the unrestricted use of the emulation protocol,
which connects the wireless nodes to the WlanModel server, an important remark should be
given here. Since it encapsulates the full Ethernet frame sent over the VIF, the packet size of
the resulting DATA message is depending on the MTU of the VIF. If the MTU of the wireless
interface is set to the usual 1500 bytes, the resulting DATA message exceeds this size due to
the additional header and message fields. The MTU of the infrastructure network interface
(per default eth0) therefore has to be increased by at least 32 bytes (size of the DATA message
header), to handle the maximal DATA message size without packet fragmentation. Alternatively,
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the MTU of the VIF can be reduced. In our setup, we are using wireless MTU of 1500 bytes and
an infrastructure network MTU of 2000 bytes.

A nice feature of ADAM is the distributed update mechanism for wireless node images and
configurations [71, 124]. With the help of a Web interface [72], the network configuration of an
entire WMN can be created and managed, and finally distributed to the actual wireless nodes.
Also a system update on the wireless nodes can be graphically initiated. In the background
cfengine [125] is responsible to distribute the images and configurations. Since cfengine consists
of normal network services, again no difficulties are experienced by updating the node config-
uration over the emulated wireless network. A system update is more complex as it includes
the reboot of the node. So, we are interested if this can be performed with VirtualMesh too. As
mentioned before, the virtual host can access its image file in the same manner as the hard disk.
During the image update, the kernel and system image are copied to the node’s hard disk. After
updating the Grub configuration with the new default kernel entry, the node is rebooted into the
updated environment. Thanks to Xen’s pygrub [126], which reads the Grub configuration file of
a virtual machine, also the virtualized ADAM nodes are able to correctly boot the new system.

Using the mobility feature of INET, we finally evaluate the behaviour of ADAM with mobile
wireless nodes. A scenario consisting of twelve virtualized wireless nodes has been set up,
including some nodes, which are in permanent movement. In this situation the set of direct
neighbours is always changing and static network routes cannot be used any more. So, the
dynamic routing daemon oslrd [127], which is a free implementation of the OLSR [10] protocol,
has been started. By regularly exchanging its routing table with the neighbour nodes, knowledge
about the reachable nodes and the required next-hop address for each, is collected. According
to the node movement in the simulation, olsrd is effectively able to find the next-hop address
for all other involved wireless nodes. In this way, every node is able to communicate with every
other node, independent of the position and the neighbour nodes.

It has been shown, that VirtualMesh is able to fully virtualize a complex wireless network,
without loosing any functionality. It is possible to imitate even the most complex wireless net-
work architectures, as they can be found in WMNs and MANETs, without restricting the oper-
ation of the participating OS and applications.

6.3 Performance Evaluation: Round-Trip Time

An important characteristic of a network link is the time used by a packet to reach its destina-
tion. This property is normally identified by measuring the round-trip time (RTT). The RTT
indicates the time required to send a packet to another network host and receive its immediate
reply. As long as the delay is about the same in both directions, what is assumed to be true for
VirtualMesh, this is a reliable approach. To measure the RTT the standard ping utility from the
iputils package [128] is used. ping sends an ICMP Echo Request to a given host and measures
the time needed to receive an ICMP Echo Reply from the other host.
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6.3.1 Test Procedure

The measurements are performed with a payload size range from 56 bytes (default) to 1472 bytes
in the wireless emulation and up to 1532 bytes in the infrastructure network. This ensures that
the tests also cover the basic latency for packets with an larger size than the standard MTU,
as it is necessary for our emulation protocol. In order to prevent packet fragmentation, the
ping command is run with the corresponding ‘-S do’ argument. Furthermore, the ping interval
is varied between 0.1 and 1 second, to analyse the different time pressure to the underlying
medium. The latency tests are run for 1’000 seconds what gives a number of 1’000 to 10’000
result values for each parameter configuration. If not further hinted, the RTT results mentioned
in this chapter always represent the median value of a complete test series, summarizing the
results of the different packet sizes and transmission intervals. The exact results of the single
measurements can be found for each case in Appendix B. During the RTT measurements, the
involved hosts were in idle state. This guarantees that no remarkable scheduling delays blur
the results. Caused by the included ARP look-up, the first RTT result is sometimes noticeably
higher than the following measurements. This value is therefore not included in the analysis.

6.3.2 Infrastructure Network Latency

The emulated wireless communication has to cross the infrastructure network twice, once when
sending a packet to the WlanModel and once when it forwards the packet to the destination node.
This does not happen in a real wireless environment, so VirtualMesh includes an additional net-
work delay. This delay might be even slightly larger when using system virtualization. Another
delay, not found in a real wireless network, is introduced through iwconnect (Section 4.3), which
encapsulates the wireless traffic into the emulation protocol for redirecting it to the WlanModel
host. This transformation is done in user-space and so it requires a number of timely expensive
context switches. Summing up, at least three delaying effects in the VirtualMesh infrastructure
network influence the accuracy of the wireless emulation. These delays are the latency of the
local network, the delay introduced through system virtualization and the latency introduced
by traffic en-/decapsulation of the emulation protocol through iwconnect and the WlanModel.
To evaluate this infrastructure latency, a number of RTT evaluation tests are run with different
host combinations, also including node-to-node communication over the emulation protocol, as
listed in the following:

(a) Two physical hosts connected via 1 Gbps cross-link
(b) Physical host to paravirtualized host connected via 1 Gbps cross-link
(c) Physical host to full-virtualized host connected via 1 Gbps cross-link
(d) Two physical hosts connected via 1 Gbps cross-link and using the emulation

protocol through iwconnect
(e) Physical host to paravirtualized host connected via 1 Gbps cross-link and using

the emulation protocol through iwconnect

In the following, the general characteristics and some specific effects are discussed. A list
with the full results can be found in Appendix B.1. Figure 6.1 shows the comparison of the
achieved results. The plot of a single setup summarises the whole range of parameter settings,
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including different packet sizes and transmission intervals. It shows the maximal RTT as top
bar, the minimal RTT as bottom bar and a box including the range between the 25% and 75%
quartile. The thick line in the middle of the box depicts the median RTT value of all the series.
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Figure 6.1: Summarized RTT results for qualifying infrastructure network delay.

The median RTT of the native cross-link connection is about 0.19 ms for a payload of
56 bytes and about 0.25 ms for a payload of 1532 bytes. This clearly indicates, that the RTT
increases for packets with a bigger size, which can be explained that it takes longer to fully place
a big packet on the medium. The maximal RTT in the figure therefore depicts the average RTT
with the maximal payload size.

When comparing the RTT results of the native link (a) and the virtualization setups (b)(c), it
can be noticed that the system virtualization adds a minimal delay due to the additional packet
handling layer in the virtualization server. When using paravirtualisation (PV) (b), this addi-
tional delay averages in 0.04 to 0.06 ms. In the full virtualization setup (c), using the hardware
emulation layer (HVM), the additional delay can go up to nearly 0.3 ms, which is a multiple
of the latency measured in the PV setup. This obviously has large impacts on the emulation
accuracy. As a consequence, only PV hosts are considered in our subsequent performance eval-
uation. It is not shown in Figure 6.1, but noticeable, that the involvement of virtualization does
not alter the characteristics of the traffic. The average standard deviation in all the measurement
series is around 15 µs.

Running the RTT measurement over a VIF, including iwconnect and the emulation protocol,
the average latency overhead to the native connection is about 0.06 ms. However, an interesting
effect shows up. The RTT overhead of the physical-to-physical connection (d) does not resemble
the overhead of the physical to PV connection (e). As iwconnect is a user-space daemon, its
performance is more sensitive to process scheduling and traffic characteristics. This is shown
visually in the Figures 6.2 and 6.3, which compare the RTT overhead and standard deviation
characteristics to the native connection (a).
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Figure 6.2: iwconnect/emulation protocol RTT overhead with respect to payload size.

Between two physical hosts the latency overhead of iwconnect is constant over all payload
sizes. When connecting to a virtualized host however, the overhead is in average about 0.02 ms
higher and slightly increasing with the payload size. Also the standard deviation of the results
is higher when using iwconnect and the emulation protocol. Independent of the payload size, a
short transmission interval leads to more outliners and thus a higher standard deviation.

Section summary

In order to conclude the analysis of the infrastructure network overhead, it can be stated
that both the paravirtualization and the emulation protocol with iwconnect individually
add a delay in a range of 0.04 to 0.08 ms. However, full virtualization multiplies
the RTT value and is therefore no reasonable option for performance evaluation with
VirtualMesh. Additionally, it has to be accepted that iwconnect does slightly alter the
traffic characteristics when used in a virtualized environment, by increasing the jitter
of the link, especially in case of short transmission intervals.

6.3.3 Wireless Emulation Accuracy

The VirtualMesh wireless emulation tries to imitate the packet latency of a real wireless connec-
tion. In the previous section it has been shown, that the underlying infrastructure required to run
VirtualMesh already introduces a minimal delay. This section is discussing the accuracy of the
WlanModel simulation as well as the overall wireless emulation. To evaluate which components
are influencing the result, the measurements of the VirtualMesh emulation are compared with
the results of a pure OMNeT++/INET simulation.
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Figure 6.3: iwconnect/emulation protocol RTT overhead with respect to transmission interval.

RTT over various Distances

The first test finally including the wireless emulation evaluates, if it is possible to correctly
measure a latency difference when communicating over different communication ranges. The
WlanModel was configured according to Table 6.1. Two ADAM wireless nodes were used
and their distance was configured one meter for the first test series, 300 meters for the second
and 580 meters for the third test series. 580 meters is the maximum communication range
possible with the configuration from Table 6.2. As the wireless signal is considered to have a
propagation speed according to the speed of light, there should be a difference in transmission
time of 3.86 µs between two hosts within minimal communication range and two hosts within
the maximum range. Again the experiment is made with different packet sizes and transmission
intervals. Since the list of all the results is too extensive to show in this place, they are listed
the Tables B.6 and B.11 in Appendix B. Table 6.3 below shows a short summary of the most
important results. It compares the measured RTT from the pure simulation and the VirtualMesh
emulation within the different communication ranges.

Distance
1 m 300 m 580 m

OMNeT++ simulation 1.242 ms 1.244 ms 1.246 ms
VirtualMesh emulation 1.600 ms 1.600 ms 1.580 ms

Table 6.3: RTT over various distances (payload size = 56B, transmission interval = 1s).

First, it can be noted that the predicted propagation time difference of close to 4 µs between
the minimal and maximal communication range is achieved by the simulation. Even though
Table 6.3 only shows the results for the default ping parameters, the same propagation time dif-
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ference can be measured for the other transmission intervals and payload sizes. The results of the
VirtualMesh emulation show an additional latency of about 0.35 ms. It can also be seen that the
results from the emulation even vary by up to 20 µs, what is clearly too much to accurately sim-
ulate a propagation delay difference of 4 µs. That clearly shows, that different communication
ranges and other wireless effects causing delays of only a few microseconds cannot realistically
be imitated with the distributed emulation approach of VirtualMesh.

To further evaluate the emulation delay, the DATA traffic between the wireless nodes and the
WlanModel server was analysed. With help of the tcpdump packet sniffer [129], it was recorded
how long a DATA message is processed inside the wireless simulation. This is indicating the
actually accuracy of the soft real-time simulation. Unfortunately, the simulation part in the wire-
less emulation is not able to precisely model the theoretical real-time latency with the required
accuracy. For all distances the time where the packets are processed in the WlanModel is within
measurement accuracy the same. For the previously listed payload size of 56 bytes and 1 second
transmission interval, an ICMP packet stays in the WlanModel for about 0.48 ms. In the overall
wireless RTT, this latency is included twice, once for each transmission direction. Summing
it up with the previously measured delay for the VirtualMesh infrastructure network, where the
RTT is about 0.274 ms for the mentioned ping configuration, the resulting emulation RTT should
be about 1.5 ms. The VirtualMesh emulation result of 1.6 ms (Table 6.3) mostly attests this theo-
retical analysis. About one third of this value is therefore the infrastructure network delay. Thus,
it can be concluded that the VirtualMesh real-time accuracy is mainly depending on the latency
of the underlying physical network.

RTT of different Traffic Characteristics

The behaviour of VirtualMesh with different work loads was evaluated by additional measure-
ments with different transmission intervals and payload sizes. Again, there are two wireless
nodes involved as in the previous setup. The full range of RTT results can be found in Ap-
pendix B, in Table B.7 for the emulation and Table B.12 for the simulation. While there are
no abnormalities when comparing RTT results for different transmission intervals, a summary
of the VirtualMesh behaviour under various payload sizes is shown in Figure 6.4. Next to the
median values of the RTT also the minimal and maximal values are shown. It can be clearly
seen that the emulation results correspond nicely with the simulation results, with exception of
the previously discussed latency overhead of about 0.35 ms in the emulation case. While the
standard deviation of the RTT values in VirtualMesh is comparable to the measured standard de-
viation of a physical network, the simulation results have a wider distribution shown by the long
error bars in the figure. Even after extensive research we could not find the exact reason for this
behaviour but it seems to indicate an anomaly in the simulation configuration or implementation.

RTT with Concurrent Network Load

The next experiment analyses the behaviour of the RTT, if there is a concurrent network stream
keeping the wireless model busy. Various stream bandwidths between 100 and 900 Kilo-
bytes/s (KB/s) have been tested, while the maximal bit rate nearly fully saturates the wireless
link. Again, the results from a pure OMNeT++ wireless simulation and the emulation with
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Figure 6.4: RTT with various payload sizes (distance = 300m, transmission interval = 1s).

VirtualMesh are compared. In the simulation the TCPSessionApp module is used to generate
a constant TCP packet stream. In VirtualMesh on the other hand, the stream is generated with
the help of curl [130], downloading data from another node. curl has been selected as it is
a simple but powerful tool, which allows the limitation of the utilised bandwidth. One wire-
less node is providing data consisting of a simple zero bit-stream through a nc socket, started
with ‘dd if=/dev/zero | nc -l -p 1337’. The consuming node is then downloading the data with
‘curl –limit-rate <bitrate>K <providerhost>:1337’. These procedures should generally return
comparable results, however they provoke a network protocol interaction which might not be
identical in the simulation and the real Linux network stack. So the interesting question is, if the
concurrent network stream already puts a workload to the emulation in a way that the resulting
RTT is additionally delayed, or if the emulation can profit from the sophisticated algorithms in a
real network stack and reproduce the real-world behaviour better than the simplified and generic
simulation. The answer can be found in Figure 6.5, where the resulting RTTs for a payload size
of 56 and 1472 bytes are shown.

As measured in the evaluation scenarios before, the emulated wireless traffic is generally
delayed by about 0.35 ms, in case there is no concurrent stream or it only saturates a fraction of
the available bandwidth. If there is a concurrent stream with a throughput of 300 KB/s or more,
the RTT of the simulation is larger the RTT of the emulation. Even when the emulated wireless
link is busy with a 900 KB/s stream, VirtualMesh still returns a lower RTT. Obviously, the
overhead of the network stream does not negatively influence the RTT accuracy in the emulation.
Furthermore, there seems to be a side effect in the simulation, causing a high RTT already with
more than 200 KB/s. Strangely enough, the RTT is slightly decreasing again, if the wireless
link is handling concurrent stream throughputs higher than 400 KB/s. These results show, that
simulation measurements cannot always exactly indicate the real world behaviour. The rather
generic way to generate the traffic in the simulation obviously puts a higher load to the network
than the real curl application. The VirtualMesh emulation is taking advantage of the real software
stack and returns results, that can be classified more realistic than the simulation. Even, this test
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Figure 6.5: RTT with concurrent streams (distance = 300m, transmission interval = 1s).

setup is very basic, it shows the advantage of having the real kernel and real applications in a
wireless network evaluation.

Section summary

The accuracy that can be achieved with VirtualMesh is clearly depending on the com-
plexity of the scenario and the underlying hardware. In the evaluation an average RTT
overhead of about 0.35 ms, in comparison with the simulation, was measured. Only
a fraction of that value is caused by the simulation overhead, but mostly it is influ-
enced by the network latency of the infrastructure network. The main factor affecting
the VirtualMesh accuracy is therefore the underlying network. Despite this increased
network delay, it could be shown that VirtualMesh is able to realistically represent a
real-world condition. When measuring the RTT with concurrent network transfers, the
simulation seems to suffer by an inaccurate protocol behaviour. This does not happen
with the real network stack of Linux in VirtualMesh.

6.3.4 WlanModel Scalability

This section evaluates the influence of the number of virtual nodes on the emulation accuracy.
So far the basic RTT behaviour under different conditions and aspects has been evaluated, but
only using two wireless nodes. Regarding the computational effort of the wireless emulation,
this can be seen as a best case scenario. Normally, a distributed wireless setup, as it is used in
WMNs, consists of up to a dozen or more nodes. We can expect that any additional node adds
some overhead, since the propagation model has to check their position and state too, no matter
if they participate in an actual packet transmission or not.
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Simulation Latency Overhead

In order to quantify the simulation model overhead of uninvolved hosts, the RTT between two
wireless nodes, node01 and node02, is measured with a different number of additional nodes
within transmission range. They are placed in a grid around node01 and node02. Again, the test
procedure described in Section 6.3.1 has been followed. An extensive list of the achieved results
can be found in Table B.10, which is placed as usual in Appendix B.2. A statistical analysis
thereof is shown in Figure 6.6.
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Figure 6.6: WlanModel scalability (distance = 300m, transmission interval = 1s, payload size = 56B).

The results clearly show an influence of the uninvolved nodes. It is interesting, that the in-
troduced overhead per node is not constant, but roughly proportional to the number of additional
hosts. VirtualMesh is clearly suffering from the soft real-time approach under this condition.
The radio propagation model has to check every additional hosts if it can potentially receive the
sent ICMP packets, which increases the total transmission latency for the transferred packet. It
has to be noted, that the virtualization technique does not influence these results, because this
effect is only caused by the MAC layer computations, which are entirely done in the WlanModel.

Multi-hop Latency

Another test to evaluate the scalability behaviour of the WlanModel, is the evaluation of the
multi-hop performance. For this reason, a number of wireless nodes are placed in a row. Their
network routes are configured in a way, that they are only able to communicate with the imme-
diate neighbours in the row. This means for the RTT measurements that each intermediate node
has to receive the ICMP packet and forward to the next-hop neighbour. To minimise the over-
head of uninvolved nodes a transmission range of 500 meters has been selected, so that each host
can anyway only reach its next-hop neighbours. In this way, the limited interference distance of
the ChannelControl module, described in Section 5.1.9, should engage and omit the reception
checks for uninvolved hosts.
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Again, the tests are done with VirtualMesh and in an OMNeT++ simulation. The detailed
results of the measurements can be found in Appendix B, in Table B.9 for VirtualMesh and in
Table B.14 for OMNeT++. A summary of these results is shown in Figure 6.7. Surprisingly,
the VirtualMesh results correspond well with the simulation counterparts. A per-hop network
latency overhead of the emulation cannot be experienced in this test. The RTT results of the
simulation partially seem a bit too high, what could be caused by a different ARP lookup be-
haviour in OMNeT++/INET and VirtualMesh. Only for more than six hops, VirtualMesh adds a
noticeable latency overhead to the RTT. Generally, the emulation is perfectly able to imitate the
multi-hop behaviour of a wireless network. This is crucial for the decentralised WMN commu-
nication model.
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Figure 6.7: WlanModel multi-hop behaviour (distance = 500m, transmission interval = 1s, payload size
= 56B).

Section summary

During the scalability evaluation of VirtualMesh, several effects have been identified.
First, we note that the number of hosts within a transmission area is influencing the
result. More hosts lead to a bigger effort in evaluating the reception host and therefore
increases the overall latency of the wireless packet. On the other hand, in the multi-
hop scenario, the VirtualMesh emulation corresponds well with the simulation. Only
for more than six hops, an additional latency overhead through the emulation can be
experienced. Generally, the scalability behaviour of VirtualMesh is good. Neither the
Xen virtualization, nor the emulation model is restricting the use of VirtualMesh with
up to a dozen tested nodes.

6.4 Performance Evaluation: Bandwidth

Another important property of a network link is the offered bandwidth capacity. Especially for
wireless links, this can be a critical factor. The recent wireless specifications still only support
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a bandwidth much lower than what is common in a wired network. We therefore evaluated the
bandwidth performance of VirtualMesh and compared it with the OMNeT++ simulation results.

6.4.1 Test Procedure

The measurement of the offered bandwidth capacity is not that simple. There is no instrument
to measure the pure peer-to-peer throughput without making use of a transport layer protocol.
However, each protocol also clams a portion of the offered bandwidth for its protocol head-
ers and connection management which then influences the resulting payload throughput. To
measure the actual bandwidth the network link has to be totally saturated. Unfortunately, most
network protocols have mechanisms to prevent this in order to guarantee a fluent communica-
tion. Therefore retransmission and buffering effects can come into play here. We encounter
an additional difficulty when comparing the simulation and emulation results. Neither the ex-
act transport protocol implementation nor the overlaying benchmark application from the real
wireless node can be used in the simulation environment.

In order to measure the maximal throughput in the emulation case, we use the netperf util-
ity [131]. It supports a wide range of performance tests and parameters. We found that the
TCP STREAM test gives the most reliable results and therefore choose this for our evaluation.
The duration of the test is increased with the argument ’-l 300’ to 5 minutes. To confirm the
netperf results the time needed to transfer a 200 MB file transfer via busybox’s nc tool has
been measured. On one host nc is started in the listening mode by running ‘nc -p 1337 -l >>
/dev/zero’. From the other host the file is sent to the listening host, by executing ‘time dd
if=/dev/zero bs=1M count=200 | nc <targethost> 1337’. If the transfer is finished, the passed
time is printed to the command line.

In the simulation case, several different approaches are followed to measure the throughput.
The INET’s Sink module together with the EtherClientApp are used to measure the link layer
throughput. For gaining more comparable results of the transport layer throughput the UDP and
TCP application modules are considered. The according UDPSinkApp and TCPSinkApp have
been modified to sample the throughput after every received frame. The TCP throughput test
is then done with the TCPSessionApp sending a bulk transfer of 200 MB to the receiver and
measure the time until completion. The UDP throughput test is done with the UDPBasicApp
sending 1 MB sized packets in short intervals to saturate the link and check the amount of
transferred data after 300 seconds.

6.4.2 VirtualMesh Throughput

Unlike with the RTT tests, the influence of the hardware setup has a smaller influence on the
throughput measurements. With our cross-connected 1 Gbps link, netperf returns a throughput
of 113.07 MB/s to the native host and 72.33 MB/s to a virtualized host respectively. Unfortu-
nately, if using the VIF, together with iwconnect and the emulation protocol, the throughput is
roughly halved. With this setup only a maximal throughput of 68.30 MB/s in the native case
and 38.19 MB/s with a virtualized host could be achieved. The overhead in context switching
and en-/decapsulating the traffic with iwconnect does not seem to scale properly up to a band-
width of 1 Gbps per second. The provided bandwidth is still more than enough for experiments
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with a IEEE 802.11b wireless network, which has a specified bandwidth of maximal 11 Mbps
(1.375 MB/s).

To analyse the throughput of the different test methodologies (Section 6.4.1) each bench-
mark is run with a multiple of concurrent transmissions. In this way, it can be evaluated how
the throughput scales with concurrent clients. The measured bandwidth capacity in the different
test cases are shown in Figure 6.8. At a first glance, it may be disappointing that a result, not
even close to the expected 11 Mbps could be achieved. For a IEEE 802.11b wireless network
the gained results are still correct as shown in [55]. The reason can be found in the mechanisms
of the IEEE 802.11 protocol. The available bandwidth for the overlaying communication pro-
tocols is decreased by the fact, that transport layer transmission is randomly delayed through
CSMA/CA and frames are individually acknowledged. It is noticeable, that the Ethernet and
UDP benchmarks are missing in the case of concurrent transmissions. This is because these pro-
tocols do not support any congestion avoidance mechanisms and therefore the first connection
stream does already saturate the link in a way that the other streams get dropped. Furthermore, it
can be recognised that the test results of the simpler protocols show a slightly higher throughput
than their protocol specific implementations. But generally, the tests confirm each other and re-
alistically scale with the number of parallel transfers. Unfortunately, there seems to be an issue
with the TCP behaviour in the simulation. It has been confirmed by the developers of OMNeT++
that the TCP protocol has some problems when runing over a wireless network. Nonetheless,
the achieved results are presented for later reference.
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Figure 6.8: Parallel stream throughput results.

The throughput behaviour is also analysed over various hops. The wireless nodes setup is
the same as in the previous multi-hop evaluation in Section 6.3.4. As Figure 6.9 shows, the Vir-
tualMesh results are realistic. They exactly match the values from the simulation. IEEE 802.11b
divides the totally available bandwidth among the clients, so with every additional hop, the end-
to-end throughput is decreasing proportionally. VirtualMesh accurately imitates the expected
bandwidth of an IEEE 802.11b network up to four hops. Afterwards, the achieved bandwidth
with VirtualMesh is minimally lower than in the simulation.
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Figure 6.9: Multi-hop throughput results.

Section summary

The throughput behaviour of the VirtualMesh wireless emulation is able to match
the pure simulation case. In terms of maximal throughput, concurrent streams and
multi-hop communication we are able to model the correct bandwidth capacity of a
IEEE 802.11b wireless link.
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Chapter 7

Conclusion and Future Work

This chapter summarises the experience we made by implementing and evaluating the Vir-
tualMesh emulation framework. Furthermore, some ideas are given how VirtualMesh could
be extended and improved in future work.

7.1 Conclusion

With VirtualMesh a new instrument for wireless protocol and application developers is intro-
duced. It consists of a modular platform which allows real operating systems and applications
to be tested in a complex wireless network environment. VirtualMesh differs from other simi-
lar solutions that it sets minimal restrictions to the supported wireless clients and offers a true
protocol independence. It has been shown that the full functionality of an OS and its applica-
tions can be used. Another prominent feature is the full control of the emulated wireless device
through the native OS configuration tools. This feature allows new possibilities for testing ap-
plications, which dynamically adapt the functionality of the wireless network interface, as it is
used in multi-channel/multi-interface networking solutions.

The inclusion of the OMNeT++ simulation framework has shown to provide a flexible emu-
lation model, which can easily be extended and modified. VirtualMesh is adding the integration
of the ‘host-in-the-loop’ technique to handle real network traffic within the simulation environ-
ment. Together with the INET radio propagation and mobility model, a configurable scenario
for all kind of WMN and MANET experiments can be set up and tested.

Although, the emulation technique does not guarantee a timely correct computation of the
latencies caused by wireless transmission, the evaluation of VirtualMesh attests an accuracy of
less than a millisecond and is mainly caused by the network delay of the infrastructure network.
The accuracy of the simulation model does only have a minor influence on the overall latency,
as we have shown with the node distance experiment. By using a soft real-time scheduler it
also has to be accepted, that the packet delay is influenced by the computational effort of the
simulation model. This can be seen for example by the slight increase of the RTT in scenarios
with additional uninvolved hosts being placed inside the transmission area. In the end, these
latency effects are mostly important when doing performance evaluations based on VirtualMesh.
The overall functionality of the emulation is not hampered by these delays.
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Regarding the bandwidth capacity the VirtualMesh can satisfy the specifications of an
IEEE 802.11b network. Even over multiple hops, the expected throughput could be achieved.

Our evaluation based on the Xen virtualization, has shown, that VirtualMesh can seamlessly
integrate with the available platform virtualization tools. The emulation accuracy is taking big
advantage of the improved I/O-layer found in the paravirtualization approach. Hence, especially
Xen can be recommended as virtualization platform.

Refering back to the motivation of VirtualMesh (Section 1.4), most of the goals were
achieved. VirtualMesh can be used as an extensible development, testing and evaluation frame-
work that fully integrates into a Linux environment. It does not offer the high accuracy as found
in conventional network simulations. Especially for network protocol development, it still may
be required to evaluate a proof-of-concept implementation in the simulation. However, Vir-
tualMesh can help to test a real-world implementation. This is valuable when analysing the
functionality and compatibility of a protocol or application under realistic conditions.

The work presented in this thesis has contributed to two publications [97, 98]. VirtualMesh
is freely available from the software repository of the research group ‘Computer Networks and
Distributed Systems’ at the Institute of Computer Science and Applied Mathematics of the
University of Bern. It can be downloaded as source code and Debian Linux packages under
http://www.iam.unibe.ch/∼rvs/research/software.html

7.2 Future Work

The flexible approach of VirtualMesh offers many areas of improvements and interesting exten-
sions. With some additional work the scope of VirtualMesh could be drastically widened. In the
following some ideas about valuable enhancements are presented.

So far the emulation uses a pre-defined network stack which only allows to create
IEEE 802.11b network devices. For an IEEE 802.11g adapter or even only a IEEE 802.11b
adapter in access point mode, another module is required in the OMNeT++ simulation. There-
fore the emulation model could be enhanced to automatically load the correct network device
module depending on the virtual device on the host. This idea can be continued towards a freely
configurable simulation network stack. The client tools could be extended to support any pos-
sible network device. It would require that we can give vifctl the type of the desired virtual
network interface. Next to wireless interfaces also Bluetooh, WiMAX, PPP, FastEthernet or
any other type of network devices, for which a simulation model exists, could be supported by
VirtualMesh.

Another enhancement includes the use of different wireless card profiles with their specific
hardware capabilities. So far a rather generic set of parameters derived from an Atheros/Madwifi
card/driver combination is loaded. libvif could be extended to offer different network card pro-
files with distinct parameter ranges and default settings. This would make it possible to compare
different network adapter types in the emulated environment. So far, the network overhead in
VirtualMesh and the rather simple radio propagation model do not support the fidelity for such
detailed wireless device models.

It would be also possible to extend the capabilities of libvif to track the run-time statistics
from the emulated wireless adapter. Since logging is disabled in the emulation for performance
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reasons, the number of successfully submitted, received and dropped frames could be made
accessible to the iwconfig/ifconfig tools, would further allow the host to react on such events.
This could be useful for a dynamic WMN routing protocol as an example.

Since the Linux wireless development is breaking away more and more from the Wireless
Extension API, and is turning towards the Netlink-based configuration interface, libvif may not
be compatible to future wireless networking tools. Already now, the configuration of a VIF is
not possible with the next generation wireless interface configuration tool . If compatibility with
this tool is required, either has to be adapted to query the Wireless Extension API or libvif has
to be extended with a compatible Netlink interface. Though both solutions may require some
effort. But also the current version of libvif is not becoming obsolete soon, since most wireless
drivers in the Linux kernel are still using the Wireless Extension API and therefore is not being
deprecated in a predictable time frame.

To overcome the mentioned scalability issues, VirtualMesh could be combined with the syn-
chronised emulation approach found in [95]. The idea of synchronising the timers of the virtual-
ization and simulation environment would finally invalidate the current complexity restrictions.
Combined with the features mentioned above, this solution could be even enhanced to an ex-
tended, fully-featured wireless network development platform, which would be able to provide
an accuracy close to a simulation and still include the real OS and real applications.

For the wireless model, the area possible enhancements are nearly unlimited. We have cho-
sen the default INET propagation model for our evaluation. But there exist alternative imple-
mentations, for example in the MiXiM framework. They implement a more sophisticated MAC
layer, which could be adapted to satisfy the WlanModel setup. Anyway, VirtualMesh is also a
possible instrument for testing enhanced radio propagation model under real traffic conditions.
A possible operation purpose in this area could be the calibration of a wireless model according
to measurements taken in a re-playable traffic scenario on real wireless nodes.
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Appendix A

Evaluation Setup

A.1 Test Machines

Hostname: meshmodel
Purpose: Run the WlanModel simulation server
Operating System: Gentoo Linux 10.0 (x86 64)
Kernel: 2.6.30-gentoo-r4
OMNeT++: 4.0p1 (compiled with CFLAGS=”-O2 -DNDEBUG=1”)
INET: 2010-01-19 (git-snapshot, compiled with CFLAGS=”-O2 -DNDEBUG=1”)

Machine: Dell PowerEdge SC1425
Processor: 4x Intel Xeon (Irwindale) 3.60 GHz, 2048 KB L2-Cache
Chipset: Intel E7520/ICH5R
Memory: 12 GB DDR2 (PC2-3200), 400 MHz, ECC
Harddisk: Samsung SpinPoint T166, HD321KJ, 320 GB, SATA
Network 1: Intel 82541GI, 1 Gbps (driver: e1000), public interface
Network 2: Intel 82541GI, 1 Gbps (driver: e1000), infrastructure network interface

Hostname: virtualmesh
Purpose: Run the virtualized wireless nodes
Operating System: Linux CentOS 5.3
Kernel: 2.6.18
Xen Hypervisor: 3.3.1

Mainboard: Asus P5LD2
Processor: Intel Pentium D 935 (Presler) dual-core 3.2 GHz, 2048 KB L2-Cache
Chipset: Intel 945P/ICH7R
Memory: 1 GB DDR
Harddisk: Samsung SpinPoint P120, SP2004C, 200 GB, PATA
Network 1: Realtek RTL-8169, 1 Gbps (driver: r8169), public interface
Network 2: Marvell 88E8053, 1 Gbps (driver: sky2), infrastructure network interface
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Notes:

• The infrastructure network devices were cross-connected via a 2 meter Cat-5e Ethernet
cable.

• The MTU of the infrastructure network has been set to 2000 bytes. This is required
to handle the emulation protocol (Section 3.2) with a maximal DATA message size of
1532 bytes, without fragmentation.

A.2 OMNeT++ Configuration for the WlanModel

The classical way to manage an OMNeT++ simulation is by invoking its built-in Tk GUI. In
the VirtualMesh emulation approach we need to run the WlanModel simulation as a daemon
listening for the wireless client traffic. We therefore make use of the alternative command line
interface. This can be selected by invoking WlanModel with the ’-u Cmdenv’ parameter. Since
we try to run OMNeT++ in real-time, every simulation-related overhead has to be minimized.
The performance critical parameters, which should be set in the ‘.ini’ configuration file are
shown in Listing A.3.

scheduler-class = "cUDPSocketRTScheduler" # select our custom scheduler

cmdenv-express-mode = true # set express mode (soft real-time)
cmdenv-interactive = false # don’t ask for user feedback
cmdenv-performance-display = false # don’t show performance status

record-eventlog = false # don’t record stuff

**.vector-recording = false

**.scalar-recording = false

Listing A.1: WlanModel OMNeT++ configuration.

Depending on the selected mobility model, different parameters have to be set in the
configuration file. Listing A.2 is showing a simple example configuration. Host 0 uses the
NullMobility module and therefore has a static position. Host 1 uses the LinearMobility module,
which takes another parameter ‘speed’. The position of this host is moving with the given speed
along the x axis.

**.playgroundSizeX = 100

**.playgroundSizeY = 100

*.host[0].mobilityType = "NullMobility"

*.host[0].mobility.x = 20

*.host[0].mobility.y = 10

*.host[1].mobilityType = "LinearMobility"

*.host[1].mobility.speed = 3mps

*.host[1].mobility.x = 10

*.host[1].mobility.y = 20

Listing A.2: Example wireless node position configuration.
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The WlanModel is able to dynamically integrate new wireless nodes as VirtualHosts. How-
ever, this only succeeds if the positions are defined. There is no strict mapping possible between
a specific wireless node and a position. It is assigned at run-time in order of the host registration.

A.3 How to create a Xen image with ADAM’s image-tool?

A new target profile called ‘xen’ has been added to the ADAM build tool. It selects the ap-
propriate kernel, network and service configurations and a standard set of mesh node programs
(Table 2.4), including the VirtualMesh client tools. After precompiling the target software with
the build-tool, the kernel image, including the ramfs of the root file system, is generated with
‘image-tool gen image xen vm01’. A new command is introduced to setup the required xen
partition images. The system partition can be created with ‘image-tool gen virtfs xen-image-
vm01.bin.gz’ with an optional parameter for the image size. The configuration partition is cre-
ated with ‘image-tool gen virtfs config-node01.tar.gz’ respectively. The two partition images
can then directly be integrated with xen. The appropriate disk configuration (e.g., for node01
/etc/xen/node01.cfg) looks as follows:

disk = [ ’file:/srv/xen/nodes/node01-xen-boot-vm01.img,xvda1,w’,
’file:/srv/xen/nodes/node01-config.img,xvda2,w’ ]

Listing A.3: Xen wireless node disk configuration
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Appendix B

Evaluation Results

All test are automatically done with a wide range of parameter settings. It is not possible to
write down all results in this place. But at least a representative choice should be given here for
individual analysis. RTT results of intermediate packet sizes or ping intervals are omitted.

B.1 Infrastructure Evaluation Results

(a) Physical to physical host

Payload size Send interval Minimal 1st quartile Median 3rd quartile Maximal Stddev
[bytes] [s] RTT [ms] [ms] RTT [ms] [ms] RTT [ms] [ms]

56
0.1 0.149 0.168 0.181 0.193 1.080 0.017
0.5 0.155 0.175 0.188 0.201 0.280 0.016
1 0.156 0.175 0.187 0.200 0.225 0.015

1472
0.1 0.135 0.226 0.238 0.251 2.740 0.031
0.5 0.209 0.228 0.241 0.254 0.305 0.015
1 0.213 0.232 0.245 0.257 0.300 0.015

1532
0.1 0.209 0.228 0.240 0.253 1.490 0.022
0.5 0.211 0.230 0.243 0.255 0.298 0.015
1 0.212 0.234 0.247 0.259 0.297 0.015

Table B.1: RTT of 1 Gbps cross-link.
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(b) Physical to paravirtualized host

Payload size Send interval Minimal 1st quartile Median 3rd quartile Maximal Stddev
[bytes] [s] RTT [ms] [ms] RTT [ms] [ms] RTT [ms] [ms]

56
0.1 0.188 0.212 0.226 0.239 0.349 0.018
0.5 0.194 0.219 0.233 0.246 0.375 0.020
1 0.200 0.225 0.238 0.250 0.310 0.017

1472
0.1 0.247 0.269 0.282 0.295 3.940 0.041
0.5 0.252 0.278 0.291 0.304 0.413 0.018
1 0.259 0.287 0.300 0.313 0.384 0.017

1532
0.1 0.260 0.281 0.294 0.307 3.560 0.038
0.5 0.265 0.291 0.303 0.316 0.389 0.017
1 0.268 0.299 0.312 0.325 0.446 0.018

Table B.2: RTT of 1 Gbps cross-link to PV host.

(c) Physical to full virtualized host

Payload size Send interval Minimal 1st quartile Median 3rd quartile Maximal Stddev
[bytes] [s] RTT [ms] [ms] RTT [ms] [ms] RTT [ms] [ms]

56
0.1 0.291 0.448 0.461 0.475 1.810 0.025
0.5 0.413 0.447 0.461 0.475 0.952 0.027
1 0.414 0.453 0.467 0.482 0.987 0.028

1472
0.1 0.354 0.508 0.521 0.534 0.689 0.020
0.5 0.474 0.516 0.530 0.544 0.662 0.022
1 0.484 0.514 0.529 0.543 0.847 0.026

1532 Xen does not allow to set a MTU > 1500 for HVM guests

Table B.3: RTT of 1 Gbps cross-link to HVM host.
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(d) Physical to physical host via iwconnect /emulation protocol

Payload size Send interval Minimal 1st quartile Median 3rd quartile Maximal Stddev
[bytes] [s] RTT [ms] [ms] RTT [ms] [ms] RTT [ms] [ms]

56
0.1 0.201 0.240 0.253 0.266 0.377 0.017
0.5 0.223 0.250 0.263 0.276 0.359 0.019
1 0.226 0.260 0.274 0.287 0.343 0.019

1472
0.1 0.246 0.299 0.312 0.324 0.456 0.017
0.5 0.252 0.310 0.323 0.336 0.429 0.019
1 0.260 0.321 0.334 0.348 0.421 0.020

Table B.4: RTT of 1 Gbps cross-link via iwconnect/emulation protocol.

(e) Physical to paravirtualized host via iwconnect

Payload size Send interval Minimal 1st quartile Median 3rd quartile Maximal Stddev
[bytes] [s] RTT [ms] [ms] RTT [ms] [ms] RTT [ms] [ms]

56

0.1 0.201 0.240 0.253 0.266 0.377 0.021
0.5 0.223 0.250 0.263 0.276 0.359 0.024
1 0.226 0.260 0.274 0.287 0.343 0.025

1472

0.1 0.368 0.399 0.413 0.426 0.687 0.020
0.5 0.380 0.406 0.420 0.433 0.564 0.024
1 0.354 0.417 0.433 0.448 0.573 0.029

Table B.5: RTT of 1 Gbps cross-link to PV host via iwconnect/emulation protocol
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B.2 VirtualMesh Evaluation Results

Node Payload Send Minimal 1st quartile Median 3rd quartile Maximal Stddev
distance size interval RTT RTT RTT RTT RTT

[ms]
[m] [bytes] [s] [ms] [ms] [ms] [ms] [ms]

1

56
0.1 1.46 1.53 1.56 1.59 1.73 0.035
0.5 1.48 1.56 1.59 1.61 2.48 0.049
1 1.50 1.58 1.60 1.63 1.73 0.042

1472
0.1 3.72 3.79 3.80 3.82 3.97 0.025
0.5 3.72 3.79 3.81 3.82 4.01 0.031
1 3.73 3.80 3.82 3.84 3.95 0.032

300

56
0.1 1.48 1.54 1.57 1.59 1.70 0.034
0.5 1.48 1.55 1.58 1.60 1.75 0.040
1 1.50 1.57 1.60 1.62 1.78 0.042

1472
0.1 3.74 3.79 3.81 3.82 3.97 0.026
0.5 3.72 3.79 3.80 3.82 3.98 0.029
1 3.73 3.79 3.81 3.83 4.01 0.032

580

56
0.1 1.47 1.54 1.56 1.59 1.91 0.040
0.5 1.470 1.55 1.58 1.61 1.80 0.043
1 1.49 1.55 1.58 1.61 1.77 0.042

1472
0.1 3.72 3.79 3.80 3.82 3.98 0.028
0.5 3.72 3.79 3.81 3.82 12.80 0.390
1 3.73 3.79 3.81 3.83 10.10 0.202

Table B.6: RTT results of various distances with VirtualMesh emulation.

Payload Send Minimal 1st quartile Median 3rd quartile Maximal Stddev
size interval RTT RTT RTT RTT RTT

[ms]
[bytes] [s] [ms] [ms] [ms] [ms] [ms]

56 0.1 1.47 1.55 1.58 1.60 2.44 0.042
1 1.50 1.57 1.60 1.62 1.78 0.042

128 0.1 1.59 1.68 1.70 1.71 2.12 0.038
1 1.59 1.67 1.69 1.71 1.95 0.040

256 0.1 1.81 1.89 1.90 1.92 2.95 0.037
1 1.83 1.9 1.94 1.97 2.08 0.044

512 0.1 2.21 2.29 2.30 2.32 2.65 0.042
1 2.23 2.3 2.33 2.36 2.52 0.041

768 0.1 2.49 2.61 2.63 2.66 121.00 1.838
1 2.53 2.61 2.62 2.64 2.81 0.032

1024 0.1 2.93 3.01 3.02 3.04 11.20 0.166
1 2.94 3.01 3.03 3.05 3.23 0.034

1280 0.1 3.34 3.41 3.42 3.44 10.10 0.087
1 3.35 3.41 3.43 3.45 3.62 0.035

1472 0.1 3.65 3.73 3.75 3.79 10.60 0.124
1 3.73 3.79 3.81 3.83 4.01 0.032

Table B.7: RTT results of various payload sizes with VirtualMesh emulation (distance = 300m).
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Stream Payload Send Minimal 1st quartile Median 3rd quartile Maximal Stddev
throughput size interval RTT RTT RTT RTT RTT RTT

[ms]
[KB/s] [bytes] [s] [ms] [ms] [ms] [ms] [ms]

100

56
0.1 1.46 1.55 1.58 1.67 17.50 3.785
0.5 1.49 1.56 1.595 1.67 16.90 3.704
1 1.50 1.58 1.61 1.72 18.70 3.735

1472
0.1 3.65 3.73 3.77 3.85 20.40 3.715
0.5 3.66 3.76 3.79 3.86 17.80 3.567
1 3.70 3.78 3.82 4.18 19.00 3.935

200

56
0.1 1.46 1.57 1.61 10.00 19.30 5.055
0.5 1.47 1.58 1.64 9.53 23.40 5.040
1 1.49 1.60 1.74 10.10 19.90 5.216

1472
0.1 3.65 3.76 3.80 12.20 20.30 5.059
0.5 3.70 3.78 3.825 12.00 21.70 5.011
1 3.70 3.81 3.87 13.10 18.90 5.212

300

56
0.1 1.47 1.58 3.73 12.50 20.00 5.665
0.5 1.50 1.60 3.755 12.20 19.80 5.480
1 1.47 1.79 2.38 12.40 20.40 5.540

1472
0.1 3.67 3.78 6.39 14.60 25.10 5.640
0.5 3.70 3.79 5.87 14.70 22.90 5.635
1 3.70 3.82 4.845 14.50 22.60 5.621

400

56
0.1 1.48 1.62 10.90 13.40 20.90 5.491
0.5 1.51 1.69 10.90 13.30 19.70 5.365
1 1.51 2.57 10.85 13.50 18.40 5.337

1472
0.1 3.67 3.81 12.80 15.30 24.60 5.370
0.5 3.69 3.82 12.90 15.40 22.30 5.415
1 3.71 4.09 12.95 15.30 23.70 5.279

600

56
0.1 1.52 10.60 12.10 13.80 19.70 2.571
0.5 1.51 10.70 12.30 13.80 19.70 2.640
1 1.57 10.50 12.00 13.90 18.50 2.691

1472
0.1 8.91 12.70 14.20 15.80 24.80 2.190
0.5 3.73 12.90 14.40 16.00 19.80 2.678
1 3.75 12.90 14.25 15.70 22.20 2.769

900

56
0.1 6.61 10.60 12.10 13.60 19.30 2.177
0.5 2.47 10.90 12.20 13.90 18.90 2.207
1 7.08 10.80 12.40 13.90 18.00 2.130

1472
0.1 8.72 12.70 14.20 15.70 22.20 2.166
0.5 8.81 12.90 14.35 15.80 21.20 2.195
1 9.17 12.90 14.65 16.00 20.60 2.222

Table B.8: RTT results of VirtualMesh emulation with concurrent network stream.
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Number Payload Send Minimal 1st quartile Median 3rd quartile Maximal Stddev
of hops size interval RTT RTT RTT RTT RTT

[ms]
[bytes] [s] [ms] [ms] [ms] [ms] [ms]

1
56

0.1 1.48 1.54 1.57 1.59 1.70 0.034
1 1.50 1.57 1.60 1.62 1.78 0.042

1472
0.1 3.74 3.79 3.81 3.82 3.97 0.026
1 3.73 3.79 3.81 3.83 4.01 0.032

2
56

0.1 3.09 3.23 3.25 3.29 12.10 0.673
1 3.16 3.31 3.35 3.40 4.15 0.074

1472
0.1 7.45 7.57 7.60 7.62 18.20 0.163
1 7.50 7.61 7.63 7.66 7.90 0.052

3
56

0.1 4.68 4.84 4.87 4.91 13.20 0.211
1 6.55 6.75 6.82 6.88 13.40 0.265

1472
0.1 11.20 11.30 11.40 11.40 30.80 0.422
1 11.30 11.40 11.40 11.50 18.00 0.222

4
56

0.1 6.40 6.60 6.64 6.70 16.50 0.185
1 4.71 4.96 5.015 5.08 6.09 0.094

1472
0.1 15.10 15.30 15.30 15.40 24.60 0.175
1 15.20 15.30 15.40 15.50 21.60 0.275

5
56

0.1 8.20 8.39 8.44 8.50 25.80 0.321
1 8.28 8.51 8.57 8.64 9.95 0.161

1472
0.1 18.90 19.10 19.30 19.30 33.00 0.290
1 19.00 19.30 19.30 19.40 22.20 0.291

6
56

0.1 10.10 10.30 10.40 10.40 22.90 0.208
1 10.30 10.50 10.60 10.60 11.90 0.140

1472
0.1 23.00 23.20 23.20 23.30 35.70 0.257
1 23.10 23.30 23.30 23.40 36.20 0.497

7
56

0.1 12.60 12.80 12.80 12.90 20.10 0.169
1 12.70 12.80 12.90 12.90 13.80 0.078

1472
0.1 27.30 27.40 27.50 27.60 40.00 0.280
1 27.30 27.50 27.60 27.70 36.60 0.480

8
56

0.1 15.20 15.30 15.40 15.40 34.30 0.420
1 15.30 15.40 15.40 15.40 16.40 0.098

1472
0.1 31.80 32.00 32.10 32.10 46.10 0.313
1 31.90 32.10 32.10 32.20 40.60 0.328

9
56

0.1 17.90 18.20 18.50 18.60 30.30 0.330
1 17.90 18.30 18.50 18.50 18.70 0.182

1472
0.1 36.70 37.10 37.10 37.10 49.60 0.348
1 37.10 37.20 37.20 37.20 46.70 0.306

Table B.9: RTT results of multi-hop test with VirtualMesh emulation (distance = 300m).
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Number Payload size Send interval Minimal 1st quartile Median 3rd quartile Maximal Stddev
of nodes [bytes] [s] RTT [ms] [ms] RTT [ms] [ms] RTT [ms] [ms]

2

56
0.1 1.46 1.54 1.56 1.59 1.81 0.039
0.5 1.48 1.56 1.59 1.61 8.53 0.164
1 1.50 1.59 1.61 1.65 1.84 0.054

1472
0.1 3.66 3.74 3.77 3.79 4.46 0.040
0.5 3.70 3.77 3.79 3.81 10.20 0.150
1 3.71 3.78 3.8 3.82 5.33 0.068

3

56
0.1 1.47 1.55 1.56 1.59 1.83 0.038
0.5 1.48 1.56 1.59 1.62 1.88 0.052
1 1.49 1.59 1.61 1.65 1.83 0.051

1472
0.1 3.66 3.74 3.77 3.79 13.1 0.140
0.5 3.71 3.77 3.79 3.81 5.96 0.066
1 3.71 3.78 3.8 3.83 4.04 0.053

4

56
0.1 1.50 1.58 1.60 1.63 6.03 0.071
0.5 1.53 1.60 1.63 1.67 4.79 0.089
1 1.55 1.61 1.66 1.70 1.84 0.059

1472
0.1 3.71 3.77 3.79 3.81 10.10 0.111
0.5 3.71 3.78 3.80 3.85 4.26 0.053
1 3.72 3.79 3.82 3.87 4.36 0.064

5

56
0.1 1.53 1.61 1.63 1.65 15.7 0.176
0.5 1.55 1.62 1.65 1.68 4.69 0.084
1 1.57 1.66 1.69 1.72 1.88 0.051

1472
0.1 3.74 3.81 3.83 3.85 6.46 0.061
0.5 3.75 3.82 3.84 3.88 4.11 0.055
1 3.75 3.82 3.85 3.92 4.11 0.064

8

56
0.1 1.68 1.76 1.77 1.79 8.17 0.069
0.5 1.71 1.77 1.79 1.80 1.97 0.034
1 1.72 1.78 1.80 1.82 1.97 0.034

1472
0.1 3.83 3.90 3.92 3.93 4.45 0.030
0.5 3.84 3.91 3.92 3.94 8.62 0.112
1 3.85 3.91 3.93 3.97 4.17 0.047

12

56
0.1 1.92 2.00 2.01 2.03 2.21 0.025
0.5 1.95 2.01 2.03 2.05 2.32 0.033
1 1.96 2.02 2.04 2.06 2.23 0.032

1472
0.1 4.05 4.13 4.15 4.17 6.45 0.039
0.5 4.07 4.14 4.16 4.19 20.70 0.374
1 4.07 4.15 4.17 4.20 4.42 0.038

Table B.10: RTT dependeny on number of hosts.
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B.3 OMNeT++/INET Simulation Results

Node distance Payload size Send interval Minimal 1st quartile Median 3rd quartile Maximal Stddev
[m] [bytes] [s] RTT [ms] [ms] RTT [ms] [ms] RTT [ms] [ms]

1

56
0.1 0.902 1.062 1.222 1.402 2.574 0.193
0.5 0.902 1.062 1.222 1.402 2.794 0.206
1 0.902 1.062 1.242 1.402 2.614 0.213

1472
0.1 2.962 3.122 3.282 3.462 4.634 0.193
0.5 2.962 3.122 3.282 3.462 4.854 0.206
1 2.962 3.122 3.302 3.462 4.674 0.213

300

56
0.1 0.904 1.064 1.224 1.404 2.578 0.193
0.5 0.904 1.064 1.224 1.404 2.798 0.206
1 0.904 1.064 1.224 1.404 2.618 0.214

1472
0.1 2.964 3.124 3.284 3.464 4.638 0.193
0.5 2.964 3.124 3.284 3.464 4.858 0.206
1 2.964 3.124 3.284 3.464 4.678 0.214

580

56
0.1 0.906 1.066 1.226 1.406 2.582 0.193
0.5 0.906 1.066 1.226 1.406 2.802 0.206
1 0.906 1.066 1.246 1.406 2.622 0.214

1472
0.1 2.966 3.126 3.286 3.466 4.642 0.193
0.5 2.966 3.126 3.286 3.466 4.862 0.206
1 2.966 3.126 3.306 3.466 4.682 0.214

Table B.11: RTT results of various distances with OMNeT++ simulation.

Send Payload Minimal 1st quartile Median 3rd quartile Maximal Stddev
interval size RTT RTT RTT RTT RTT RTT

[ms]
[s] [bytes] [ms] [ms] [ms] [ms] [ms]

1

56 0.904 1.064 1.244 1.404 2.618 0.214
128 1.009 1.169 1.349 1.509 2.723 0.214
256 1.195 1.355 1.535 1.695 2.909 0.214
512 1.567 1.727 1.907 2.067 3.281 0.214
768 1.940 2.100 2.280 2.440 3.654 0.214
1024 2.312 2.472 2.652 2.812 4.026 0.214
1280 2.684 2.844 3.024 3.184 4.399 0.214
1472 2.964 3.124 3.304 3.464 4.678 0.214

Table B.12: RTT results of various packet sizes with OMNeT++ simulation (distance = 300m).
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Stream Payload Send Minimal 1st quartile Median 3rd quartile Maximal Stddev
throughput size interval RTT RTT RTT RTT RTT RTT

[ms]
[KB/s] [bytes] [s] [ms] [ms] [ms] [ms] [ms]

100
56 1 0.904 1.064 1.224 1.384 1.544 0.186

1472 1 2.964 3.124 3.284 3.444 3.604 0.186

200
56 1 0.904 1.064 1.224 1.384 1.544 0.188

1472 1 2.964 3.124 3.284 3.444 3.604 0.188

300
56 1 4.873 7.385 8.619 9.889 17.924 1.982

1472 1 6.933 9.449 10.678 12.072 19.984 2.001

400
56 1 5.578 12.387 14.860 18.457 27.421 4.132

1472 1 7.637 14.422 17.302 20.718 28.777 4.215

600
56 1 4.370 11.936 14.738 17.613 28.072 4.333

1472 1 6.949 14.452 17.005 19.367 31.107 3.963

900
56 1 5.481 11.614 14.404 16.955 24.268 3.864

1472 1 7.055 14.351 16.788 19.531 27.183 3.756

Table B.13: RTT results of OMNeT++ simulation with concurrent network stream (distance = 300m).

Number Payload Send Minimal 1st quartile Median 3rd quartile Maximal Stddev
of hops size interval RTT RTT RTT RTT RTT RTT

[ms]
[bytes] [s] [ms] [ms] [ms] [ms] [ms]

1 56 1 0.905 1.085 1.245 1.385 1.545 0.184
2 56 1 2.409 2.849 3.049 3.289 3.769 0.307
3 56 1 3.752 4.612 4.902 5.252 5.972 0.435
4 56 1 5.315 6.375 6.655 7.015 8.015 0.529
5 56 1 6.979 8.079 8.499 8.899 15.836 0.751
6 56 1 8.362 9.862 10.302 10.722 16.975 0.842
7 56 1 10.205 11.585 12.065 12.585 21.494 0.979
8 56 1 11.709 13.409 13.869 14.409 24.273 1.073

Table B.14: RTT results of multi-hop test with OMNeT++ simulation (distance = 300m).
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[102] K. Wessel, M. Swigulski, A. Küpke, and D. Willkomm, “MiXiM (mixed simulator): A
simulation framework for wireless and mobile networks,” http://mixim.sourceforge.net/,
2010.

[103] H. A. Council, “Interconnect Analysis: 10GigE and InfiniBand in High Perfor-
mance Computing,” http://www.hpcadvisorycouncil.com/pdf/IB and 10GigE in HPC.
pdf, 2009, White Paper.

[104] A. M. Mukwevho, J. A. van der Poll, and R. M. Jolliffe, “A virtual integrated network
emulator on XEN (viNEX),” in 2nd International Conference on Simulation Tools and
Techniques (Simutools ’09), 2009, pp. 1–7.

[105] P. D. Gennaro, R. Bifulco, and R. Canonico, “Link Multiplexing in a Xen-based Net-
work Emulation System,” in 6th International Workshop on Next Generation Networking
Middleware (NGNM ’09), Oct 26-30 2009.

[106] R. Canonico, P. D. Gennaro, V. Manetti, and G. Ventre, “Virtualization Techniques in
Network Emulation Systems,” in Proceedings of the International Euro-Par Workshops
2007. Springer, November 2007.

[107] J. Tourrilhes, “Wireless Extensions: A Wireless LAN API for the Linux Oper-
ating System,” http://www.hpl.hp.com/personal/Jean Tourrilhes/Linux/Linux.Wireless.
Extensions.html, 2010.

108

http://mailman.isi.edu/pipermail/ns-developers/2009-July/006198.html
http://tools.ietf.org/html/rfc826
http://www.omnetpp.org/
http://inet.omnetpp.org/
http://mixim.sourceforge.net/
http://www.hpcadvisorycouncil.com/pdf/IB_and_10GigE_in_HPC.pdf
http://www.hpcadvisorycouncil.com/pdf/IB_and_10GigE_in_HPC.pdf
http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Linux.Wireless.Extensions.html
http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Linux.Wireless.Extensions.html


[108] “The Madwifi Project,” http://madwifi-project.org/, 2010.

[109] J. Tourrilhes, “Wireless Tools for Linux,” http://www.hpl.hp.com/personal/Jean
Tourrilhes/Linux/Tools.html, 2010.

[110] J. Malinen, “Linux WPA/WPA2/IEEE 802.1X Supplicant,” http://hostap.epitest.fi/wpa
supplicant/, 2010.

[111] “nl80211: The new 802.11 Netlink Interface,” http://wireless.kernel.org/en/developers/
Documentation/nl80211, 2010.

[112] J. Berg, “iw: CLI configuration utility for wireless devices,” http://wireless.kernel.org/en/
users/Documentation/iw, 2010.

[113] K. K. He, “Why and How to Use Netlink Socket,” Linux Journal, Jan. 2005, http://www.
linuxjournal.com/article/7356.

[114] P. Mochel, “The sysfs Filesystem,” in Proceedings of the 2005 Linux Symposium, July
2005.

[115] M. Krasnyansky and F. Thiel, Universal TUN/TAP device driver, 2002.

[116] B. Eckenfels and P. Blundell, “Linux net-tools,” http://net-tools.berlios.de/, 2010.

[117] A. Kuznetsov and S. Hemminger, “Linux iproute2,” http://www.linuxfoundation.org/
collaborate/workgroups/networking/iproute2, 2010.

[118] P. Kyasanur, C. Chereddi, and N. H. Vaidya, “Net-X: System eXtensions for Supporting
Multiple Channels, Multiple Interfaces, and other Interface Capabilities,” University of
Illinois at Urbana-Champaign, Urbana, IL, USA, Tech Report, Aug. 2006.

[119] J.-P. Ebert and A. Willig, “A Gilbert-Elliot Bit Error Model and the Efficient Use in Packet
Level Simulation,” Technical University Berlin, Telecommunication Networks Group,
TKN Technical Report TKN-99-02, Mar. 1999.

[120] H. Hellbrück, “Ad-Hoc Network Simulation,” http://www.ansim.info/, 2006.

[121] M. Gerharz and C. de Waal, “BonnMotion: A mobility scenario generation and analysis
tool,” http://net.cs.uni-bonn.de/wg/cs/applications/bonnmotion/, 2010.

[122] Free Software Foundation, Inc., “GNU Binutils,” http://www.gnu.org/software/binutils/,
2010.

[123] “GNU GRUB - A Multiboot boot loader,” http://www.gnu.org/software/grub/, 2010.

[124] T. Staub, D. Balsiger, M. Lustenberger, and T. Braun, “Secure Remote Management and
Software Distribution for Wireless Mesh Networks,” in 7th International Workshop on
Applications and Services in Wireless Networks (ASWN ’07), May 24-26 2007, pp. 47–
54.

109

http://madwifi-project.org/
http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Tools.html
http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Tools.html
http://hostap.epitest.fi/wpa_supplicant/
http://hostap.epitest.fi/wpa_supplicant/
http://wireless.kernel.org/en/developers/Documentation/nl80211
http://wireless.kernel.org/en/developers/Documentation/nl80211
http://wireless.kernel.org/en/users/Documentation/iw
http://wireless.kernel.org/en/users/Documentation/iw
http://www.linuxjournal.com/article/7356
http://www.linuxjournal.com/article/7356
http://net-tools.berlios.de/
http://www.linuxfoundation.org/collaborate/workgroups/networking/iproute2
http://www.linuxfoundation.org/collaborate/workgroups/networking/iproute2
http://www.ansim.info/
http://net.cs.uni-bonn.de/wg/cs/applications/bonnmotion/
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/grub/


[125] M. Burgess and R. Ralston, “Strategies for Distributed Resource Administration Using
Cfengine,” Software-Practice and Experience, vol. 27, pp. 1067–1081, Sept. 1997.

[126] J. Katz, “pyGrub,” http://wiki.xensource.com/xenwiki/PyGrub, 2010.

[127] “olsrd - An ad-hoc wireless mesh routing daemon,” http://www.olsr.org/, 2010.

[128] A. Kuznetsov and Y. Hideaki, “Linux iputils,” http://www.linuxfoundation.org/
collaborate/workgroups/networking/iputils, 2010.

[129] “Tcpdump/Libpcap Public Repository,” http://www.tcpdump.org/, 2010.

[130] D. Stenberg, “curl,” http://curl.haxx.se/, 2010.

[131] “netperf - Network Performance Benchmark,” http://www.netperf.org/, 2010.

110

http://wiki.xensource.com/xenwiki/PyGrub
http://www.olsr.org/
http://www.linuxfoundation.org/collaborate/workgroups/networking/iputils
http://www.linuxfoundation.org/collaborate/workgroups/networking/iputils
http://www.tcpdump.org/
http://curl.haxx.se/
http://www.netperf.org/

	Introduction
	Short History of Wireless Networking
	Wireless Mesh Networks
	Computer Network Evaluation
	Motivation
	Document Structure

	Related Work
	Computer Simulations
	Network Simulation Basics
	Radio Propagation Models
	The OMNeT++ Network Simulation Framework

	Network Emulation
	Emulation Basics
	Simulation Requirements for Real-Time Emulation
	Emulation-based Wireless Network Evaluation

	Real-world Wireless Network Test-beds
	Examples of Real-world Test-beds
	ADAM - A Linux Environment for WMN Research

	Operating System Virtualization
	Platform Virtualization Overview
	Virtualization and Network Evaluation


	VirtualMesh: An Approach of Wireless Network Emulation
	VirtualMesh Architecture and Design
	Communication Protocol for the Wireless Emulation
	Protocol Messages
	Message Flow of the Emulation Protocol

	Virtualization in VirtualMesh

	VirtualMesh: Client Implementation
	Client Architecture and Design
	vif-Tools
	libvif - Virtual Interface Library
	vifctl - Virtual Interface Control

	iwconnect
	Virtual Interface Configuration
	Linux Wireless Tools
	Changing Simulation Parameters from the Wireless Node


	VirtualMesh: Wireless Simulation Server
	WlanModel Components
	EmulationRTScheduler
	ProtocolHandler
	NodeManager
	VirtualHost
	VifBackend
	RAWEtherFrame
	IEEE80211NicAdhoc
	IEEE80211Radio
	ChannelControl
	Mobility
	Simulation Configuration

	WlanModel Message Flow
	Node Registration
	Wireless Traffic Processing
	Wireless Parameter Modification


	Evaluation
	VirtualMesh Test Configuration
	Functional Evaluation: ADAM
	Performance Evaluation: Round-Trip Time
	Test Procedure
	Infrastructure Network Latency
	Wireless Emulation Accuracy
	WlanModel Scalability

	Performance Evaluation: Bandwidth
	Test Procedure
	VirtualMesh Throughput


	Conclusion and Future Work
	Conclusion
	Future Work

	Evaluation Setup
	Test Machines
	OMNeT++ Configuration for the WlanModel
	How to create a Xen image with ADAM's image-tool?

	Evaluation Results
	Infrastructure Evaluation Results
	VirtualMesh Evaluation Results
	OMNeT++/INET Simulation Results

	List of Acronyms
	List of Figures
	List of Tables
	Bibliography

