
THE IMPLEMENTATION OF THE VITELS
IP SECURITY DISTANCE LEARNING MODULE

Computer Science Project

Reto Gantenbein
April 2007

Head:
Prof. Dr. Torsten Braun

Assisted by:
Thomas Bernoulli, Thomas Staub

RVS (Computer Networks and Distributed Systems)
Institute of Computer Science and Applied Mathematics (IAM)

University of Bern

Contents

Contents iii

Introduction vii
Document Structure . vii
Text Formatting . vii

1 Vitels 1
1.1 Vitels IP Security Module . 2

2 Hardware Installation 3
2.1 Requirements . 3
2.2 Architecture . 4

3 Linux Installation 5
3.1 Basic Installation . 5
3.2 Additional Software Installation . 7
3.3 Network Configuration . 7

3.3.1 Hosts . 7
3.3.2 Portal Server . 8

3.4 Disable Direct Root Login . 8

4 Module Installation 11
4.1 Module Overview . 11
4.2 Host Configuration . 12

4.2.1 User Configuration . 12
4.2.2 SSH Configuration . 12
4.2.3 Additional Software . 13

4.3 Portal Server Configuration . 14
4.3.1 User Configuration . 14
4.3.2 SSH Configuration . 14
4.3.3 Create Authentication Key Pair for SSH Remote Login 15
4.3.4 Login Redirection . 15
4.3.5 The namekill Script . 16
4.3.6 The Session Administration Script . 17

iii

4.3.7 Encrypted LDAP Querying . 17
4.3.8 Module Reset Script . 18
4.3.9 Serial Port Configuration . 19
4.3.10 Minicom Configuration . 19
4.3.11 Mail System Configuration . 20

4.4 Testing the Setup . 21
4.4.1 Manual Testing . 21
4.4.2 Monitoring Script . 21
4.4.3 Logwatch . 22

5 Router Reset with help of a TFTP Server 25
5.1 Overview . 25
5.2 What is TFTP? . 26
5.3 Router Reset in Detail . 26
5.4 Reset Script Changes . 27
5.5 Installing the Router Reset Script . 28
5.6 TFTP Server Configuration . 29
5.7 Manual Restore of a Router IOS over a TFTP Server 30

6 Module Content 31
6.1 Hands-On Session . 32

6.1.1 Basic Router Configuration . 32
6.1.2 Setting up Routing Information Protocol (RIP) 33
6.1.3 Testing RIP . 33
6.1.4 Setting up the VPN . 37
6.1.5 Testing the VPN . 40

6.2 Conclusion . 41

7 Practical Experience 43
7.1 Issues in practical use . 43
7.2 Troubleshooting Problems . 44

References 45

A Bibliography 47

B Linux Configuration Files 49
B.1 /etc/fstab . 49
B.2 /etc/hosts . 49

C Portal Server Custom Scripts 51
C.1 Overview . 51
C.2 /bin/host1 . 51
C.3 /bin/router1 . 52
C.4 /root/namekill . 52

iv

C.5 /root/update shadow ldap.cnds.unibe.ch ssl.pl 53
C.6 /usr/local/bin/stunnel ldap.sh . 56
C.7 /root/module reset.sh . 56
C.8 /root/module test.sh . 57
C.9 /root/PwGenLib.pm . 58
C.10 /usr/share/perl5/RelaisLib.pm . 61
C.11 /usr/share/perl5/RouterLib.pm . 65
C.12 /var/php safe mode bin/pw reset.pl . 69

v

Introduction

The VITELS distance learning module ’IP Security’ is hosted by the RVS group at the University
of Bern. It already went and will go again through different minor and major changes. The
main goal of this project in computer science was to migrate the bootstrapping process of the
Cisco routers used in this module to a bootstrapping process using a TFTP server. Because it
is relatively simple to implement this change, it was further asked to exchange the hardware
back-end of the ’IP Security’ module by new machines and to document the whole installation.
A sample solution for the practical exercise session of this module should also be provided.
Therefore this document should be used to troubleshoot the installation and give support to the
module maintainer. The setup documentation will help to integrate the module into a new Java-
based Web portal software which is currently under development and is going to replace the
current PHP-based portal.

Document Structure

At first there is a short introduction into VITELS and the an overview of the module (chapter
1). It is followed by the hardware description (chapter 2), an installation guide for the operating
system (chapter 3) and the scripts on all the involved machines (chapter 4). Afterwards the TFTP
setup is explained (chapter 5). A solution for the practical module part, the so called ’Hands-On
Session’ follows (chapter 6). Thanks to my employment as teaching assistant on the Computer
Networks lecture, where this module was extensively used by the students, the experience with
this module was written down to inspire future improvements (chapter 7). All used custom
scripts are attached in the appendix C.

Text Formatting

In this documentation different formatting styles are used to accent different terms:

• Words that are printed cursive mean files or paths. e.g. /home/host1/, module reset.sh

• Words that are printed in typewriter font mean commands on the Linux or router
console. e.g. ls -la.

There can also be whole sections in typewriter font which are step-by-step instruc-
tions for the command line:

vii

mkdir /home/host1

cd /home/host1/

• Listings in a grey box are printouts of configuration files. Depending on the caption it can
be a whole file or only a section of it:

search unibe.ch
nameserver 130.92.64.4

Listing 1: /etc/resolv.conf

When using program and institution names or brands they are written in their common notation
(e.g. only capital letters).

viii

Chapter 1

Vitels

VITELS stands for ’Virtual Internet and Telecommunication Laboratory of Switzerland’ and
was developed in the last few years on several Swiss academies as instrument for Web-based
learning. It provides a modular structured on-line course covering a variety of topics in the
area of telecommunications and computer networks. Besides an established theory part,
it also focuses practical experience in the considered domains. VITELS consists of eight
modules: ’Simulation of IP Network Configuration’, ’Client/Server Concepts’, ’IP Security’,
’Firewall Management’, ’Sockets and Remote Procedure Calls’, ’Remote Method Invocation’,
’Application Server’ and ’Linux Installation’ that are provided by the universities of Geneva,
Fribourg, Neuchâtel, Bern and the University of Applied Science of Fribourg. At the University
of Bern the VITELS modules are under constant use of the Computer Networks Laboratory and
the Computer Networks lecture.

VITELS was one of the first e-learning applications which was connected to the Swiss-wide
authentication and authorisation infrastructure AAI, lead by SWITCH the Swiss Education
and Research Network. SWITCH arose from a collaboration of numerous Swiss universities
and provides today, among other things, a high speed network between the universities in
Switzerland and connections to the Internet and other global science networks.
The basic principle of this authen-

Figure 1.1: AAI/VITELS Architecture

tication system is as follows: A
client (e.g. a student) is interested
in an e-learning content that is
provided by one of the VITELS
partners. When he wants to access
it, the authentication infrastructure
redirects him to the authentication
server of his own university, and
after successful authentication, it
grants permission to the desired
resource.

The VITELS modules are educational structured into four parts. The first part is an in-

1

troduction into the topic and module. It is followed by a theory part and a knowledge
application/exploration part. The latter contains the practical hands-on session. The modules
are then completed by a final quiz part. Every module is structured the same way what helps
the effective learning and testing of the gained knowledge. During the entire preparation of the
module, the student can make notes into a logbook and has to fill small in-between tests and
essays. Like that, he has all the time an overview about what he already learnt and the tutor
immediately receives feedback from the student.

1.1 Vitels IP Security Module

The theory part in the ’IP Security’ module introduces the reader into Virtual Private Networking
and an implementation of it called IPSec (RFC4301). For more information about the reading
section check the Computer Science Project ’IP Security Module for VITELS’ of Thomas
Spreng [1]. The reading part is finished with a first theory quiz. After that the student has to
solve the knowledge application part which will be especially discussed in this chapter. For the
hands-on session we have a small independent network with two routers, three hubs and three
Linux hosts. The student can access a console of each device over a Web portal and has to setup
and test some given configurations. He should then store its practical progress by copying the
console content to the logbook. In the final quiz part, a test about the practical session has to be
passed, a survey filled and a final report about the personal synthesis has to be given.

The target for the student is to gain some experience with Cisco routers and gain some
knowledge about and experience with network protocol security. The exact module content and
the solutions of the exercises can be found in chapter 6.

2

Chapter 2

Hardware Installation

2.1 Requirements

The hardware requirements for the ’IP Security’ module are rather moderate. There are no
special processor, memory or storage size or performance requirements. The most calculation
intensive part is the VPN decryption and encryption that is done by the processors of the routers.
For the hosts and the portal server we took four Intel Celeron 1.8 GHz machines with 512 MB
of RAM and a 80 GB hard disk. If the computers are in a rack-desktop case, they can easily be
installed into a 19“-rack. Like that, two complete modules fit into a normal 42 U rack. To save
some space and hardware resources it would even be possible to run all the hosts on a single
machine, for example with the virtualisation software Xen [5] or User-Mode Linux [6].

The most important features our portal server has to provide are the I/O-ports. The setup needs
three serial connectors; two for the terminal connections to the routers and one for a relay card
to switch the power supply of the routers. Therefore the standard serial port on the computer
mainboard has to be extended by a PCI serial interface adapter with two ports. Furthermore four
network ports are required for connecting three hubs and the university network to the portal
server. Here, a standard PCI four-port FastEthernet adapter fits our needs.

For the network we need three multi port repeaters (hubs) with at least four ports and two Cisco
routers. We have two nearly identical module setups one with two Cisco 2600 routers and the
other with two Cisco 3600 routers. For our scenarios the configuration of both of these router
types is identical.

A special device is the relay card which controls the electricity supply of the routers. It
should be able to switch on and off two separate 230V power lines over the serial connection.
Therewith the routers can be hard reset by interrupting the power connection. The relay we
used is available as construction set at Conrad Electronics [7].

Not really required, but useful, is a KVM (keyboard-video-mouse) switch. We installed a twelve-
port switch to have direct system maintenance access to all the hosts and portal servers of the
two modules.

3

2.2 Architecture

The network is divided into three subnets each using a hub as core distribution unit. Every host
belongs to one subnet and is directly connected to the repeater. The three hubs are linked to each
other by the two routers which direct the network traffic to the correct destination subnet. The
portal server is separately connected with every hub and as the only computer with the university
network and the Internet. There are serial connections for the configuration console between the
portal server and the two routers. The third serial connection is used for switching the relays
which control the power line of the routers’ power supplies.

Figure 2.1: Network Details

4

Chapter 3

Linux Installation

This chapter describes the Linux operating system installation. All four machines of the module
have the same basic setup. The easiest way to achieve this is to install only one machine and
clone its installation to the others.

3.1 Basic Installation

The operating system plays an important rule of a stable operation of the ’IP Security’ module
because the computers would run for a longer period without extensive system administration.
The original installation was running on the approved Debian GNU/Linux. Since the new stable
version 3.1 (Sarge) was released in 2005, when the new hardware was set up, this was the best
choice for our new machines too.

For the Sarge release the developers busily worked on implementing a comfortable in-
staller. They succeeded and so it is an easy task to setup a Debian server. For the exact
installation instructions follow the next lines. As already mentioned before, this installation is,
except from the network configuration, the same for all the Linux machines in our network.

Fetch the newest CD image of the Debian release from a mirror given by debian.org (in
our case debian-31r0a-i386-binary-1.iso). After we burnt it on CD, the computer can directly
boot from it. Then a few questions have to be answered:

Language - English

Country - Switzerland

Key Map - As keyboard layout we choose ’Swiss (German)’ (ch DE). If we want to change it
again later, we have to execute dpkg-reconfigure console-data.

Host Name - It is the name of the computer in the network. Choose from gridlab06 (module 1)
or gridlab07 (module 2) for the portal servers and host1, host2 or host3 for the remaining
hosts. The name is stored in /etc/hostname.

5

Domain Name - At least the portal server is reachable from the Internet therefore we fill in
’unibe.ch’ which is added as first entry to /etc/resolv.conf.

Hard Disk Partitioning - Select ’Manually edit partition table’. Because we have no special
data on our hosts, the partitioning is more or less simple. We do not need the entire 80
GB therefore we leave the unused space unpartitioned for possible future use. A separate
/boot-partition is made for the kernel image and the boot loader. For security reasons
this partition is not mounted by default. The same applies to the /backup-partition that
could be used for storing some copies of the machine configuration. The /var is also on
a separate partition because its logging content can grow seriously and suddenly fill the
partition. Of course we do not want to crash our machines because of this. For the exact
/etc/fstab file see Appendix B.1. Finally the partition table looks like this:

Device Mount point Size Partition type
/dev/hda1 /boot 100MB Linux
/dev/hda2 - 500MB Linux swap
/dev/hda3 / 7GB Linux
/dev/hda5 /var 4GB Linux
/dev/hda6 /backup 10GB Linux

Table 3.1: Harddisk partitioning

File System Formatting - For our purpose the file system type does not play an important role.
To prevent problems with the boot loader the /boot-partition is formatted with ext3 [8].
On the other partitions the more modern XFS [9] is used. It has a good performance, there
are a lot of administration tools for XFS and it is widely supported today and therefore it
is a good choice in every case.

Boot Loader Installation - The machines have no complex hard disk setup. Therefore the de-
fault boot loader GRUB [10] can be installed into the master boot record (MBR).

Timezone - CET - Central European Time

Root Password - Choose a good root password. At minimum 8 characters with digits, letters
and special characters.

User Creation - Select a user name and a password. After the installation this user can be used
as default user. Later we will disable direct root login. For security reasons, we then first
have to log in with the just created user before we can gain root privileges.

Choose package archive source - On the subnet hosts (host1-3) we choose ’cdrom’. All avail-
able CDs have to be inserted to let the package manager know which programs are avail-
able to it. For our installation it is enough to hold CD1 ready. On the portal server a lot
more packages were needed and thanks to Internet access we can choose ’ftp’ or ’http’
here.

6

3.2 Additional Software Installation

In the last part of the installation we are asked if we want to install some more packages. Nor-
mally you would choose here a preselection of packages for special purposes (e.g. X-server, Web
server, office applications,. . .). We select ’Choose manually’ and select the following packages:

• ’apmd’ is the Advanced Power Management Daemon. It is used for properly power off
the computer after shut down.

• ’hdparm’ is a tool for testing and configuring the hard disk parameters. In our case we
did not had to manually set some settings here because the hard disk was already de-
tected properly in the ’udma5’ mode. We can check their speed with hdparm -tT
/dev/hda or receive some disk information with hdparm -i /dev/hda.

• ’less’ is a very useful console tool for displaying plaintext files.

• ’ssh’ is the secure shell daemon and client of the OpenSSH project and is used as our
remote shell.

• ’traceroute’ is a network diagnostic tool for probing the routes of connections.

There are still some programs missing. But they are not the same on all machines. We are going
to handle this in the following chapter 4 ’Module Installation’.

3.3 Network Configuration

3.3.1 Hosts

In Debian GNU/Linux the network is configured through the /etc/network/interfaces file. There
we have to fill in the IP addresses, subnet masks, IP routes and the gateways.

Host Name IP Address Subnet Mask Default Gateway
host1 10.1.0.100 255.255.255.0 10.1.0.10
host2 10.2.0.100 255.255.255.0 See Listing 3.1
host3 10.3.0.100 255.255.255.0 10.3.0.20

Table 3.2: IP addresses of the hosts

A separate DNS server is not needed in our small subnets. For the name resolution we provide
the host names of our machines in the /etc/hosts file (see Appendix B.2). On host1 and host3
one default route satisfies our network configuration. But on host2 the routes to the two other
subnets have to be configured separately. Instead of one line e.g. ’gateway 10.1.0.10’ we have
to add the routes in /etc/network/interfaces as follows:

7

up route add -net 10.3.0.0 netmask 255.255.255.0 gw 10.2.0.20 dev $IFACE
up route add -net 10.1.0.0 netmask 255.255.255.0 gw 10.2.0.10 dev $IFACE

Listing 3.1: /etc/network/interfaces of host2 (section of interest)

Because this host only has one network interface $IFACE is automatically substituted with eth0
during network initialisation.

3.3.2 Portal Server

This machine has build-in a PCI four-port network adapter. One port is meant for the connection
to the university network and the Internet the three others for one subnet each. IP forwarding
is not configured (/proc/sys/net/ipv4/ip forward = 0) therefore the module portal machine is
the only machine which can be directly connected from outside. Before we can configure the
interfaces, we have to load the ’sundance’ kernel module for the network adapter (modprobe
sundance). The module name depends on the hardware you use and can be different with
another network adapter. To make sure that it is loaded during every boot up, you have to add
the module name in /etc/modules (echo "sundance" >> /etc/modules). Again we
set the IP addresses in the /etc/network/interfaces file.

Interface Gateway Subnet mask IP address
eth0 130.92.66.1 255.255.255.0 130.92.66.165 (gridlab06)

130.92.66.166 (gridlab07)
eth1 - 255.255.255.0 10.1.0.1
eth2 - 255.255.255.0 10.2.0.1
eth3 - 255.255.255.0 10.3.0.1

Table 3.3: IP addresses of the portal server interfaces

3.4 Disable Direct Root Login

Because several administrative users might have the root password, we cannot distinguish with
hindsight which person did which tasks with these rights. Therefore we disable the direct
root login. Like that every administrator has to login with his personal user account first and
switch with the su command to the root user. This is logged and can be traced down later
when some security issues should arise. To disable root login on the terminals, change the
/etc/pam.d/passwd as follows:

Disallows root logins except on tty’s listed in /etc/securetty
(Replaces the ‘CONSOLE’ setting from login.defs)
auth requisite pam_securetty.so

Listing 3.2: /etc/pam.d/passwd (section of interest)

8

Further you have to make sure that the /etc/securetty file is empty. To disable root login over
SSH set in the /etc/ssh/sshd config:

PermitRootLogin no

Listing 3.3: /etc/ssh/sshd config (section of interest)

9

Chapter 4

Module Installation

This chapter describes the individual configurations that have done on the different machines
to run the VITELS ’IP Security’ module. The first part is a brief overview over the module
elements, followed by a section about the host setup and a section about the portal server setup.
At the end the module is, except of the router reset, ready to work. In this documentation only
the installation and configuration of the module dependent scripts and program are discussed.
This does not include the Web server and Web portal configuration.

4.1 Module Overview

The script layer of the module consists of different scripts for the following tasks:

Login Redirection - The student can access the machines and routers with his Web browser.
Therefor a Java applet called Mindterm [11] is started on the student’s machine which
makes an SSH connection to the portal server. Depending on the machine the student
wants to log in, the connection is made to a different user account. The portal server
then redirects the login of this user to the appropriate host or router. If the student logs
in on host1 the connection is made with the user host1 who gets redirected via SSH to
the machine host1. It is the same procedure with the routers, but unlike the hosts, the
redirection is managed over the serial terminal emulation Minicom [12].

Figure 4.1: IP Security Module: Device Access Overview

11

Session Administration Script - For the authentication between Mindterm and the device
users on the portal server, onetime passwords are generated by a script that is regularly
run over a cronjob. It checks the current user in the reservation table and compares it with
the lastly logged in user. If they do not match each other a new password is generated.
Further it is responsible that the hosts and routers are in a clean state before a new user
starts to solve the module.

Router Reset Script - It is a script that the user can access from the Web portal. It hard resets
the routers to bring them back into the initial state. For more details check chapter 5
’Router Reset with help of a TFTP Server’.

4.2 Host Configuration

This section treats the specific configurations for the module on the machines host1 to host3.

4.2.1 User Configuration

On every machine (host1-3) a normal user for the remote login via SSH is needed. They are
created with the following command (example for host1):

groupadd host1

useradd -g host1 -d /home/host1 -s /bin/bash -c ’IP Security Lab User’ -m

host1

This has to be repeated on the other two hosts with the appropriate users host2 and host3.

4.2.2 SSH Configuration

The above created users do not log in via a normal password authentication, but via the public
key authentication provided by the SSH protocol version 2. Make sure that it is properly
configured in the /etc/ssh/sshd config:

RSAAuthentication no
PubkeyAuthentication yes
AuthorizedKeysFile %h/.ssh/authorized_keys

Listing 4.1: /etc/ssh/sshd config (section of interest)

For the public key authentication configuration take a look at the subsection 4.3.3 ’Create
Authentication Key Pair for SSH Remote Login’.

To make the SSH login a bit fancier and more informative than the Debian standard lo-
gin, we change the /etc/motd file to show the operating system and the current machine to the
user:

12

W E L C O M E O N H O S T 1

The operating system is Debian GNU/Linux

Listing 4.2: /etc/motd (from host1)

Because we do not need the information about the last login from the portal server, we turn it
off in the /etc/ssh/sshd config file:

PrintLastLog no

Listing 4.3: /etc/ssh/sshd config (section of interest)

Do not forget to restart the SSH daemon after changes in the /etc/ssh/sshd config.

4.2.3 Additional Software

To use the hosts for network performance measuring and traffic sniffing we need specific
software on certain machines.

NetPIPE
NetPIPE is used as bandwidth benchmarking tool. It is needed on the hosts 1 and 3:

apt-get install netpipe-tcp

TCPDUMP
For traffic sniffing we use TCPDUMP. Because it modifies the way how a network interface is
working, it is able to transparently capture every packet passing the interface, it can normally
only be invoked by the root user. To make it usable for normal users, we have to make it
accessible from the normal user’s execution path and set the setuid bit. This allows every user
to run it with root privilege. It only has to be installed on host2:

apt-get install tcpdump

ln -s /usr/sbin/tcpdump /usr/bin/tcpdump

chmod u+s /usr/sbin/tcpdump

Telnet-Daemon
For establishing a telnet connection in the hands-on session, a telnet server is needed. ’telnetd’
is the corresponding daemon which is started by inetd (Internet service daemon) [13]. inetd
is a helper network daemon that starts the appropriate service when a connection to it is
requested. In this case it starts telnetd when there is a connection request on port 23. On a De-
bian system inetd is installed and configured by default. On host1 and host3 we only have to run:

apt-get install telnetd

13

No manual configuration is needed here. The necessary line in the /etc/inetd.conf file
was already added by the telnetd installation procedure. The telnet client was installed with the
basic Debian installation before.

4.3 Portal Server Configuration

This section describes how to configure the module portal machine. Because this machine is
kind of a hub for all the services and users, the changes were more extensive compared to the
other network hosts.

4.3.1 User Configuration

For every device, that we want to access over a console (router1, router2, host1, host2, host3),
we have to add a user. To follow the exact commands see subsection 4.2.1 ’User Configuration’.

4.3.2 SSH Configuration

Like on the other hosts, we also change the default message which appears after a successful
login. Except the system administrator all the users, that see this message, will be module users
who will be redirected to the appropriate device. We provide some useful information for them.
The /etc/motd is changed like this:

W E L C O M E T O T H E V I T E L S
___ ___ ___ ___ ___ _ _ ___ ___ _______ __

|_ _| _ ___/ __| __/ __| | | | _ _ _|_ _\ \ / /
| || _/_____ \ _| (__| |_| | /| | | | \ V /

|___|_| |___/______|___/|_|____| |_| |_|

M O D U L E

You’re logged in on gridlab06.unibe.ch and you are going
to be redirected to the selected target device.

**

Listing 4.4: /etc/motd (from gridlab06)

Here is no need for information about the last login either. Again we prevent SSH from printing
this message:

PrintLastLog no

Listing 4.5: /etc/ssh/sshd config (section of interest)

To provide the login via the Mindterm applet, you have to make sure that you enable ’Passwor-
dAuthentication’ in /etc/ssh/sshd config like this:

14

Change to yes to enable tunnelled clear text passwords
PasswordAuthentication yes

Listing 4.6: /etc/ssh/sshd config (section of interest)

4.3.3 Create Authentication Key Pair for SSH Remote Login

It has already been said in the overview, that in case a certain user logs into the portal server he
gets redirected to the appropriate device. For the host users this means that they get a shell of
their host when logging in on the portal server. For a passwordless authentication between the
portal server and the hosts, we create private-/public-key pairs. This has to be done on the portal
server with all the affected users (host1-3, router1-2). For example run the following command
with user host1 on gridlab06:

ssh-keygen -t dsa

When you get asked for a key name or a pass phrase, just press enter. We do not need a
special input there. Afterwards we have to copy the content of the generated public key file
id dsa.pub into the /home/host1/.ssh/authorized keys file of host1. The private key is left on
the portal server. This user now can log in from the portal server to his host without further
authentication. Repeat this procedure for the three user-host combinations.

4.3.4 Login Redirection

To redirect the users to their corresponding device we change the default login shell /bin/bash
to a redirection script. This is done in the /etc/passwd file. For changes in this critical file it
is recommended to use the vipw command. It uses the default editor given by the $EDITOR
system variable and performs a syntax check before saving and closing the passwd file.

host1:x:1011:1002:IP Security Lab User:/home/host1:/bin/host1
host2:x:1012:1003:IP Security Lab User:/home/host2:/bin/host2
host3:x:1013:1004:IP Security Lab User:/home/host3:/bin/host3
router1:x:1014:1005:IP Security Lab User:/home/router1:/bin/router1
router2:x:1015:1006:IP Security Lab User:/home/router2:/bin/router2

Listing 4.7: /etc/passwd (section of interest)

Now the login shells are /bin/hostX or /bin/routerX. These are scripts which open a new SSH or
Minicom connection to the targeted device. For a host user it looks like this:

#!/bin/bash
is called when user host1 logs into gridlab06.unibe.ch
user is redirected to host1@host1 (needs authorized ssh keypair)

ssh host1
exit

Listing 4.8: /bin/host1

15

The router users are accordingly redirected to the routers. The occurring /root/namekill script is
going to be discussed in the next subsection:

#!/bin/bash
filename: /bin/router1
real tty connected to router1

first: kill the existing jobs
sudo /root/namekill $USER minicom

second: wait until minicom has shut down
sleep 6s

third: start new minicom connection
/usr/bin/minicom -C /home/router1/minicom.log ttyS0
exit

Listing 4.9: /bin/router1

All the mentioned scripts have the permissions 755 what means that they are executable for all
the users, but only writable by the root user.

4.3.5 The namekill Script

The small Perl script /root/namekill (see Appendix C.4) kills specific processes of a user given
as argument. This script is used because of the following reasons:

• Mindterm does not quit the SSH connections until it gets closed. Therefore a SSH con-
nection with an open Minicom would remain established when you close the Mindterm
window without exiting the login first. Because Minicom locks the serial terminal to
the router we cannot access the still locked serial port anymore. As you can see in the
/bin/routerX script above, namekill is used to shut down the remaining Minicom jobs
before it establishes a new connection.

• There is a session administration script /root/update shadow ldap.cnds.unibe.ch ssl.pl
(see next subsection for details) that uses namekill for killing all the remaining jobs
of a module user when he has logged out and finished the exercise on the module.

This script should only be executable by the user root. Like that we can control who else can
execute it using sudo [14]. sudo allows us to give root permission to some users for executing
specific programs while logging it. This is an advantage compared to the suid-bit where
everybody can unrestrictedly run the privileged program. The installation is simple:

apt-get install sudo

To configure the permissions we have to edit the /etc/sudoers file and add the following
entries:

16

the routers can kill their minicom sessions
router1 gridlab06=NOPASSWD: /root/namekill
router2 gridlab06=NOPASSWD: /root/namekill

Listing 4.10: /etc/sudoers (section of interest)

This gives the users ’router1’ and ’router2’ the right to execute /root/namekill without password
authentication from the current machine (in this case ’gridlab06’).

4.3.6 The Session Administration Script

The s c r i p t d e s c r i b e d i n t h i s s u b s e c t i o n became o b s o l e t e a f t e r some Web p o r t a l changes
i n August 2006 . I t i s on ly ment ioned f o r t h e sake o f c o m p l e t e n e s s .

The script /root/update shadow ldap.cnds.unibe.ch ssl.pl (see Appendix C.5) is the main part
of the module user management. Its permissions (700) only allow the user root to execute it.
It checks the name of the student who has currently reserved a time slot for the module via
an external LDAP server and writes it in the /etc/current user file. After every user change it
generates with help of the password generator library PwGenLib.pm a new password for the
Mindterm to portal server authentication and updates the password’s hash in the /etc/shadow
file. To provide the password to the Web portal it is saved in plaintext in /etc/current pw. When
a new module user now wants to log in, the Web portal looks for the password in /etc/current pw
and includes it as parameter for the Mindterm applet.

The script is ran every minute by a cron job. Add in /etc/crontab:

check for current user every minute and update shadow if necessary

* * * * * root /root/update_shadow_ldap.cnds.unibe.ch_ssl.pl \
>> /root/update_shadow.log 2>&1

Listing 4.12: /etc/crontab (section of interest)

To access the LDAP server, an additional Perl-LDAP module is used. Further it needs the
mentioned files. ’dummy’ is the default user when nobody is logged in on the portal:

apt-get install libnet-ldap-perl

echo "dummy" > /etc/current name

touch /etc/current pw

chmod 644 /etc/current name /etc/current pw

The mentioned PwGenLib.pm (see Appendix C.9) has to be in the same directory as the
script. In our case this is /root. It does not have to be executable so the permissions are 644.

4.3.7 Encrypted LDAP Querying

The s c r i p t d e s c r i b e d i n t h i s s u b s e c t i o n became o b s o l e t e a f t e r some Web p o r t a l changes
i n August 2006 . I t i s on ly ment ioned f o r t h e sake o f c o m p l e t e n e s s .

17

The session administration script connects to the LDAP server through an untrusted network.
To protect the transmitted information, the connection should be encrypted. With Stunnel [15]
we can wrap any plaintext connection into a SSL encrypted connection.

apt-get install stunnel

The update shadow ldap.cnds.unibe.ch ssl.pl script makes the LDAP connection to lo-
calhost port 636. Stunnel encrypts and forwards the data it receives on port 636 to the
remote LDAP server. To setup the secure tunnel we need another small script called
/usr/local/bin/stunnel ldap.sh:

#!/bin/bash
redirects and encrypts LDAP connection on localhost to LDAP server

/usr/sbin/stunnel -c -d 636 -r ldap.cnds.unibe.ch:636

Listing 4.14: /usr/local/bin/stunnel ldap.sh

It is initialised by cron with the following entry in the /etc/crontab:

@reboot root /usr/local/bin/stunnel_ldap.sh

Listing 4.15: /etc/crontab (section of interest)

4.3.8 Module Reset Script

For resetting the hosts and the routers if the user of the module changes, a small script is
evoked from update shadow ldap.cnds.unibe.ch ssl.pl. It deletes the log files in the user’s home
directories on the three hosts and resets the routers. The script called module reset.sh is placed
with permissions 744 in the /root directory:

#!/bin/bash
script to reset the hosts and routers
29.11.2005 by reto gantenbein <gantenbe@iam.unibe.ch>

empty the home directories of the hosts
for USER in "host1" "host2" "host3"
do

sudo -u $USER ssh $USER@$USER rm -rf /home/$USER/*
sudo -u $USER ssh $USER@$USER rm /home/$USER/.bash_history

done

reset routers
for ROUTER in "router1" "router2"
do

/var/php_safe_mode_bin/pw_reset.pl $ROUTER
done

exit 0

Listing 4.16: /root/module reset.sh

18

4.3.9 Serial Port Configuration

The module portal machine has a total of three serial ports. Two of them are used for the router
consoles and one for switching the relay on which the router’s power supplies are connected.

Debian has a package called ’setserial’ that is used to set the configuration information
associated with the serial port including which I/O-port and what IRQ a particular serial port
allocates. Install it with:

apt-get install setserial

Its configuration file is /etc/serial.conf. It contains the assignments of the hardware serial
ports to the serial terminal devices (ttyS). If you do not know the IRQs and ports of the
connectors, keep your eyes open on the system startup or consult them with:

dmesg | grep ttyS

At the end the file should look similar to this:

/etc/serial.conf
serial port configuration file
/dev/ttyS0 uart 16550A port 0x3f8 irq 4 baud_base 115200 spd_normal skip_test
/dev/ttyS1 uart 16550A port 0x8400 irq 10 baud_base 115200 spd_normal skip_test
/dev/ttyS2 uart 16550A port 0x8000 irq 10 baud_base 115200 spd_normal skip_test

Listing 4.17: /etc/serial.conf

To assign this information on every boot up, ’setserial’ has to be added to the system initialisa-
tion:

ln -s ../init.d/setserial /etc/rc2.d/S12setserial

4.3.10 Minicom Configuration

As stated in the overview (section 4.1) the redirection to the hosts is done using SSH. For the
routers we need a different approach because their network interfaces are not configured at
the beginning. We have to access them with the terminal emulation program Minicom which
connects to the routers over the serial line:

apt-get install minicom

The connections can be configured by starting Minicom with the -s option. A menu
with all required parameters will appear. The configuration of each device should be saved in
a separate configuration file. Its name depends on the terminal it is used for (e.g. /etc/mini-
com/minirc.ttyS0 for /dev/ttyS0) and should look like this:

19

Machine-generated file - use "minicom -s" to change parameters.
pr port /dev/ttyS0
pu baudrate 9600
pu bits 8
pu parity N
pu stopbits 1
pu scriptprog /usr/bin/runscript
pu minit ˜ˆM˜
pu mreset
pu updir /tftpboot

Listing 4.18: /etc/minicom/minirc.ttyS0

Because the router users (router1, router2) use the serial port terminals (ttyS0 and ttyS1), which
are owned by the ’dialout’ group, they have to be added to it. This changes were made in the
/etc/group file. We can use the command vigr that works similar like the previously discussed
vipw:

dialout:x:20:router1,router2

Listing 4.19: /etc/group (section of interest)

4.3.11 Mail System Configuration

A decent linux installation should also have a running mail system. While our laboratory hosts
are not connected to a mail server and no installed service really needs a mail system, that looks
different on our portal server. Especially for monitoring and alerting purpose, it is important
that a service is able to send mails. On the other hand it is not really necessary that our server
can also receive mails. Therefore the preinstalled mail transfer agent Exim [16] is overkill for
our needs. We can remove it and install ssmtp [17] instead.

apt-get remove exim4 && apt-get install ssmtp

The advantage of ssmtp is the small configuration file (/etc/ssmtp/ssmtp.conf). It is very clear
and quickly filled with the appropriate values. First we have to enter an email address which will
receives the system mails to the root user. The other important value is the mailhub variable.
Inside the university network ubecx.unibe.ch can be used. The other values are printed in the
configuration file below.

#
Config file for sSMTP sendmail
#
The person who gets all mail for userids < 1000
Make this empty to disable rewriting.
root=gantenbe@iam.unibe.ch

The place where the mail goes. The actual machine name is required no
MX records are consulted. Commonly mailhosts are named mail.domain.com
mailhub=ubecx.unibe.ch

20

Where will the mail seem to come from?
rewriteDomain=unibe.ch

The full hostname
hostname=gridlab07.unibe.ch

Are users allowed to set their own From: address?
YES - Allow the user to specify their own From: address
NO - Use the system generated From: address
FromLineOverride=YES

Listing 4.20: /etc/ssmtp/ssmtp.conf

Another advantage of ssmtp is that it can be invoked like the widely used mail transfer agent
Sendmail [18]. To use ssmtp with the normal mail command we have to delete the symlink
/usr/sbin/sendmail -> exim4 and replace it with a corresponding symlink to the ssmtp binary.

rm /usr/sbin/sendmail

ln -s /usr/sbin/ssmtp /usr/sbin/sendmail

4.4 Testing the Setup

4.4.1 Manual Testing

The most important parts of our module should work now. The login redirection can be tested
by running su host1 or su router1 on the module portal machine. Therewith we execute
the script /bin/host1 or /bin/router1 and we should get a terminal of the corresponding device.

The session administration script cannot be tested independently of the Web portal. To
check its functions, reserve a time slot in the module scheduling system and then try to log in
on the Web portal. If it does not work instantly check the log files described in the section 7.2
’Troubleshooting Problems’.

4.4.2 Monitoring Script

For monitoring the basic module functionality, there is a small bash script. It checks if the hosts
are still alive, if the Web server and the SSH daemon is still running and accepting connections.
With the ALERT MAIL and CC MAIL variables at the beginning you can specify who receives
an alert mail if one of the mentioned hosts/services is not reachable.

#!/bin/bash

Script to test basic ’IP Security’ module services
Reto Gantenbein (gantenbe@iam.unibe.ch)

LOGFILE=/root/module_status.log

21

ALERT_MAIL=gantenbe@iam.unibe.ch
CC_MAIL=bernoull@iam.unibe.ch

#
Test Hosts
#
for HOST in host1 host2 host3 ; do

ping -c1 $HOST >> /dev/null 2>&1
if [$? -eq 1] ; then

echo "$HOST does not respond!" >> $LOGFILE
fi

done

#
Test Apache2
#
APACHE_PID=$(pidof apache2)
APACHE_PORT=$(netstat -napt | grep 0.0.0.0:443)

if [-z "$APACHE_PID" -o -z "$APACHE_PORT"] ; then
echo "Apache2 is not running properly!" >> $LOGFILE

fi

#
Test SSH
#
SSH_PID=$(pidof sshd)
SSH_PORT=$(netstat -napt | grep 0.0.0.0:22)

if [-z "$SSH_PID" -o -z "$SSH_PORT"] ; then
echo "SSH is not running properly!" >> $LOGFILE

fi

#
Send alert mail
#
if [-f $LOGFILE] ; then

mail -s "$HOSTNAME.unibe.ch: IP-Security Module Alert" -c $CC_MAIL $ALERT_MAIL \
< $LOGFILE
rm $LOGFILE

fi

Listing 4.21: /root/module test.sh

To let it run every hour, a symlink in /etc/cron.hourly/ is created:

ln -s ../../root/module test.sh /etc/cron.hourly/module test.sh

It is only a small script for very basic monitoring. Unfortunately the SSH connections to the
hosts and the Minicom connection are not tested. But it is already quite helpful to be notified if
something is not working properly.

4.4.3 Logwatch

Finally also the general operating system functionality should be monitored. That can be done
by Logwatch [19]. It is a Perl script for monitoring the system log files. It can send a daily
report of the happenings on the system to the administrator. The installation is simple like

22

always:

apt-get install logwatch

Its configuration /etc/logwatch/conf/logwatch.conf does not need any changes to produce mean-
ingful reports. For generating a first report Logwatch can be invoked with the root user
with logwatch. For receiving daily reports, Logwatch starts itself with the small script
/etc/cron.daily/00logwatch which is installed by default.

23

Chapter 5

Router Reset with help of a TFTP Server

5.1 Overview

To configure the routers, the students need full administrator permissions. We can activate the
privileged mode by typing enable on the router console. On a productive router this would
normally be protected by a password authentication. With the gained rights people have the
possibility to set an administrator password, to delete files on the router flash memory, to change
configuration registers and much more. Without proper reset this can lead to an inoperative
router for the following user. Therefore a solution was created to reset the routers to an initial
state. They will be hard reset by a power switching relay card and all original configurations
have to be restored during system startup. The original producer of the ’IP Security’ module
Stefan Zimmerli wrote a script and two helper libraries for this task. There is the RelaisLib.pm
(see Appendix C.10) which is responsible for controlling the serial line relay. The RouterLib.pm
(see Appendix C.11) is used for sending commands to the router console and for locking the
routers during the reset. The actual reset script, which is accessed by the Web portal, is the
pw reset.pl (see Appendix C.12) and coordinates the router reset steps. It initiates the locking,
the power supply switching and the configuration steps to prepare the router for next use.

Figure 5.1: Reset Activation Overview

With the approach of Stefan Zimmerli the routers are lost when somebody intentionally or
unintentionally deletes the router’s IOS (Cisco’s Router Operating System). In such a case the

25

module maintainer has to manually restore the IOS on the router with help of a PCMCIA flash
card and a backup copy of the image. Another disadvantage of his approach is that the students
first have to perform some manual resetting tasks to ensure a clean environment. Obviously,
this is not a very comfortable solution for the module maintainer and the students.

Therefore a new approach should improve the situation. Fortunately there is an easy so-
lution. On every router reset a fresh IOS image that overwrites the entire router memory can be
loaded from a TFTP server. Therewith it is also possible to choose from different IOS versions
with variable features. However this solution can only be implemented on one of our two
modules because only the ROMmon (for explanation see section 5.3 ’Router Reset in Detail’)
of the Cisco 2600 routers support an instant loading of an IOS over the network.

5.2 What is TFTP?

TFTP (Trivial File Transfer Protocol) was first defined in 1980 and is as the name suggests a
very simple file transfer protocol. Because of its simplicity, it is first of all used for booting
diskless computer systems from centralised operating system image sources. Its specification
can be found in the RFC 1350.

The transport protocol TFTP uses UDP on the server side port 69. The only possible
messages that can be sent with TFTP are RRQ (read request), WRQ (write request), ACK
(acknowledgement) and DATA (data packets). Therefore the possibilities are limited to read
from or write to a remote server. In comparison to FTP, TFTP does not support directory listing,
authentication, compression or encryption mechanisms. Further the maximal file size cannot
exceed 32 MB.

TFTP File Transfer (example):

1. The initiating host A sends a RRQ to the server B containing the filename and the transfer
mode (ASCII or binary).

2. The server B answers with an ACK and the requested file is delivered within DATA pack-
ets. The destination host A confirms every received DATA packet with a numbered ACK.

3. B sends a last DATA packet containing less than a full size block of data to signal the end
of file. If the file size is an exact multiple of the block size, the last DATA packet contains
0 bytes of data.

5.3 Router Reset in Detail

To understand the detailed reset cycle and the upcoming script changes, the steps of the resetting
task of the pw reset.pl script, with help of the RouterLib.pm, will be explained now:

1. A command to interrupt the power connection to the routers is sent to the relay card. After
a short moment the power supply is switched on again.

26

2. The routers first try to load a basic command line system called ROMmon (ROM moni-
tor). Before it starts to initialise the IOS, the boot up is interrupted by a BREAK signal
(pulse break on). Therewith we can force the router to stay in the ROMmon mode.

3. In the ROMmon we set some register values by sending confreg 0x2142. This
means, that the router should boot the default ROM software when he cannot boot from
the network (0x2000). It should not be possible to interrupt the next boot up by sending
a BREAK signal (0x0100). The IOS initialisation should not take care of the earlier cre-
ated configuration files (0x0040). The last value 0x0002 is only used in the Cisco 3600
setup and means that the ROMmon should start the IOS image previously defined with
the boot system command.

4. The routers are reset again and start with the new register settings. On the Cisco 3600 setup
the IOS is loaded now. The Cisco 2600 routers go into ROMmon mode again because we
did not set an IOS to load. There the RouterLib.pm then configures a network interface
and a fresh IOS image is loaded from the TFTP server. The image overwrites the whole
router memory. So we do not have to care about configuration files of the previous user.
After the new IOS is initialised the Cisco 2600 routers are ready to use by the module
user.

5. The running IOS on the Cisco 3600 routers still cannot be used after boot up. We first
have to ensure that old configuration files cannot be accessed by a new user. Therefore we
overwrite the startup configuration ’startup-config’, that was created by the previous user,
by the yet unconfigured system state accessible under ’running-config’. Only after a next
reload we can give console access to the module user.

5.4 Reset Script Changes

The original script by Stefan Zimmerli uses for both router types the same complicated approach
described in the previous section for the Cisco 3600 routers. To give an impression how this is
coded, the corresponding section is listed below:

$myport->pulse_break_on(1000);

send_router_command($myport,"confreg 0x2142\n",1);
send_router_command($myport,"reset\n",106);

send_router_command($myport,"no\n",2);
send_router_command($myport,"\r",2);
send_router_command($myport,"\r",2);

send_router_command($myport,"enable\n",1);

send_router_command($myport,"configure\n",1);
send_router_command($myport,"terminal\n",1);
send_router_command($myport,"config-register 0x2102\n",1);
send_router_command($myport,"exit\n",1);
send_router_command($myport,"copy running-config startup-config\n",1);
send_router_command($myport,"startup-config\n",12);

27

send_router_command($myport,"reload\n",1);
send_router_command($myport,"\n",106);
send_router_command($myport,"\r",2);

Listing 5.1: /usr/share/perl5/RouterLib.pm (Cisco 3600 reset)

The new setup realised with the Cisco 2600 routers, now retrieves a file called currentIOS over
the ROMmon TFTP client tftpdnld. currentIOS is a symlink in the /tftpboot folder of the
portal server pointing to an applicable image. Make sure that this symlink always provides a
matching IOS file.

$myport->pulse_break_on(1000);

send_router_command($myport,"confreg 0x2140\n",1);
send_router_command($myport,"reset\n",10);

if ($myrouter eq $RouterLib::ROUTER1) {
send_router_command($myport,"IP_ADDRESS=10.2.0.10\n",1);

} else {
send_router_command($myport,"IP_ADDRESS=10.2.0.20\n",1);

}

send_router_command($myport,"IP_SUBNET_MASK=255.255.255.0\n",1);
send_router_command($myport,"DEFAULT_GATEWAY=10.2.0.1\n",1);
send_router_command($myport,"TFTP_SERVER=10.2.0.1\n",1);
send_router_command($myport,"TFTP_FILE=currentIOS\n",1);
send_router_command($myport,"tftpdnld\n",2);
send_router_command($myport,"yes\n",170);
send_router_command($myport,"boot flash:currentIOS\n",80);
send_router_command($myport,"no\n",1);

Listing 5.2: /usr/share/perl5/RouterLib.pm (Cisco 2600 reset)

We also thought about changing the Cisco 3600 bootstrapping to make it less error-prone. Un-
fortunately their ROMmon version only support an IOS restore from an external data source over
the serial line. It uses the XMODEM [20] file transfer protocol. Such an approach is not suitable
for our use because the small bandwidth of the serial line delays a restore about three-quarters
of an hour (experienced value).

5.5 Installing the Router Reset Script

In chapter 5.3 we already saw how the reset mechanism works, now we have to put the
scripts into the right places. The basic libraries, RouterLib.pm and RelaisLib.pm, are found in
/usr/share/perl5 which should be in the path of the Perl interpreter. They need the permissions
644. Because the RelaisLib.pm requires the Perl extension Device:SerialPort, it must be
installed with:

apt-get install libdevice-serial-port

For security reasons the PHP interpreter of the Web server should normally not be al-
lowed to execute normal programs on the machine. Therefore we create as user root a seperate

28

directory with the needed programs that have to be accessed by the Web site.

mkdir /var/php safe mode bin

First of all the pw reset.pl script is placed in there. It should not be allowed to reset the
routers for every user therefore the permissions are 700 with owner root. Via sudo we give the
Web server the necessary permissions to execute the script. Once more we have to edit the
/etc/sudoers file. The attached line means that the user ’www-data’, which is the user the Web
server runs as, can execute /var/php safe mode bin/pw reset.pl from the local machine (in this
case ’gridlab06’) without password authentication:

Apache user (www-data) can execute pw_reset.pl without authentication
www-data gridlab07=NOPASSWD: /var/php_safe_mode_bin/pw_reset.pl

Listing 5.3: /etc/sudoers (section of interest)

5.6 TFTP Server Configuration

The portal server has to run a TFTP file server where the routers can get their IOS images from.
For this task we install the very powerful and flexible TFTP daemon [21] from the OpenBSD
project. In Debian the concerning package is called ’tftpd-hpa’. For testing purpose also a tftp
client is installed.

apt-get install tftp tftpd-hpa

Such as the Telnet service the TFTP daemon can be started over the inet daemon. Therefore the
following line has to be added in the /etc/inetd.conf :

#:BOOT: Tftp service is provided primarily for booting. Most sites
run this only on machines acting as "boot servers."
tftp dgram udp wait root /usr/sbin/tcpd /usr/sbin/in.tftpd \
-u tftpd -s /tftpboot -a 10.2.0.1:69

Listing 5.4: /etc/inetd.conf (section of interest)

The -u <username> argument specifies the user name which the service will run as. For
security reasons we create a special user ’tftpd’:

useradd -g users -d /tftpboot -s /bin/false tftpd

The -s <directory> argument sets the file directory to /tftpboot which requires reading
and writing permissions for everybody:

mkdir /tftpboot && chmod 777 /tftpboot

chown tftpd:users /tftpboot

29

Now we only have to store our router IOS in the /tftpboot folder. Like mentioned before
the Cisco 2600 routers are configured that they load an IOS called currentIOS. It is possible to
store different IOS versions into this folder and just create a symlink called currentIOS to the
desired IOS version. Maybe it would be eligible to have the possibility to change this symlink
from an interface of the coming version of the Web portal. Like that different IOS versions
could be used at the same time. Our TFTP daemon is also able to receive files. If you want to
enable this feature you have to add -c in the command line of the /etc/inetd.conf .

5.7 Manual Restore of a Router IOS over a TFTP Server

Unfortunately the Cisco 3600 routers do not provide a direct access to a TFTP server from the
ROMmon mode. We can only download a new IOS image over TFTP within an already running
IOS. The following steps have to be followed to do so:

Router# enable

Router# show flash:

Directory of flash:

1 -rw- 13843376 <no date> c3620-jk9s-mz.122-23e.bin

16777216 bytes total (2933776 bytes free)

Router# delete flash:c3620-jk9s-mz.122-23e.bin

Router# copy tftp://10.1.0.1/c3620-js56i-mz.121-5.T9.bin flash:

Destination filename [c3620-js56i-mz.121-5.T9.bin]?

Accessing tftp://10.1.0.1/c3620-js56i-mz.121-5.T9.bin...

Erase flash: before copying? [confirm]

Erasing the flash filesystem will remove all files! Continue? [confirm]

Erasing device... eee

Erase of flash: complete

Loading c3620-js56i-mz.121-5.T9.bin from 10.1.0.1 (via FastEthernet0/1): !!!

[OK - 13063896 bytes]

Verifying checksum... OK (0x704F)

13063896 bytes copied in 117.912 secs (110794 bytes/sec)

Router# reload

30

Chapter 6

Module Content

For solving the hands-on session a modern Web browser (e.g. Firefox, Safari) with a working
Java support is required. Also the Web site certificate signed by the SWITCH certificate
authority [2] has to be (temporary) accepted. Because there are only a limited number of
laboratory environments, every student first has to reserve a time slot in which he has access
to the laboratory network. During his time slot, he can enter the portal site of the module and
therein open Java Web applet terminals to the devices. Fig. 6.1 shows the laboratory network
topology:

Figure 6.1: Laboratory Network Topology

31

We will go now trough every exercise of this hands-on session with a detailed explanation.
Before you can start with configuring the routers, you have to make sure, according to the given
instructions, that they are in a fully reset state. On the module which has the Cisco 2600 routers
(IPSec01) we have implemented a new way of resetting the routers where this step is dispensable
(see chapter 5). We will follow exactly the given instructions given by the hands-on session Web
site.

6.1 Hands-On Session

6.1.1 Basic Router Configuration

Instruction: ”First of all log into both Cisco routers and erase the current config.”

Router>enable

Router#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

Router(config)#erase startup-config

Router(config)#reload

With enable we enter the privileged mode of the router. In a normal environment you
have to provide a password at this point, but not with this laboratory routers. configure
terminal then changes the prompt from query to configuration mode. After erasing the
configuration, we reload the router to make sure that it is in a clean state.

Instruction: ”The next step is to give the routers a host name and to configure their in-
terfaces identically as shown in the laboratory configuration.”

The interface <if-name> command selects the interface for which the following
configuration commands are applied. You can exit this mode again with exit. The identifiers
of the interfaces may vary from router to router depending on the used network devices. They
can be showed by running show interfaces in the query mode.

Router(config)#hostname router1

router1(config)#interface FastEthernet0/1

router1(config-if)#ip address 10.1.0.10 255.255.255.0

router1(config-if)#no shutdown

router1(config-if)#exit

9w1d: %LINK-3-UPDOWN: Interface FastEthernet0/1, changed state to up

9w1d: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0,

changed up

router1(config)#interface FastEthernet0/0

router1(config-if)#ip address 10.2.0.10 255.255.255.0

router1(config-if)#no shutdown

32

router1(config-if)#exit

9w1d: %LINK-3-UPDOWN: Interface FastEthernet0/0, changed state to up

9w1d: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/1,

changed up

Now we already configured and activated both interfaces on the router.

6.1.2 Setting up Routing Information Protocol (RIP)

Instruction: ”After you have configured the interfaces, set up the IP routing. Use RIP version 2
for routing.”

router1(config)#router rip

router1(config-router)#network 10.2.0.0

router1(config-router)#neighbor 10.2.0.20

router1(config-router)#version 2

router1(config-router)#exit

router rip enables a RIP routing process which changes the prompt into the routing
configuration mode. With network <ip-network> we associate the network where the
RIP routing is active, and with neighbor <ip> we define the unicast receiver of our rout-
ing information. In this case it is the second router. Normally RIP would be a broadcast protocol.

The same steps have to be performed with adopted IP addresses on the second router.
Now every network device should be reachable by any other network device. We will test this
in the next step.

6.1.3 Testing RIP

Instruction: ”Ping every host in your net, from host to host and from router to host”

Here is an example output:

host1@host1:∼$ ping -c3 host2

PING host2 (10.2.0.100) 56(84) bytes of data.

64 bytes from host2 (10.2.0.100): icmp seq=1 ttl=63 time=0.719 ms

64 bytes from host2 (10.2.0.100): icmp seq=2 ttl=63 time=0.733 ms

64 bytes from host2 (10.2.0.100): icmp seq=3 ttl=63 time=0.695 ms

--- host2 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2000ms

rtt min/avg/max/mdev = 0.695/0.715/0.733/0.034 ms

33

Instruction: ”Retry but use the command ’debug ip packet’ first.”

router1#debug ip packet

IP packet debugging is on

5w4d: IP: s=10.1.0.100 (FastEthernet0/1), d=10.3.0.100 (FastEthernet0/0),

g=10.2.0.20, len 84, forward

After switching on the IP packet debugging on the router, all passing IP packets are be-
ing listed on the router console. The above listing shows an ICMP ping packet from host1 to
host3. We can see the source IP address of the packet, the source interface on the router, the
destination IP address of the packet, the destination interface on the router, the next hop IP
address, the packet size and the packet rule (in this case ’forward’). To switch the debugging
off again, the previously given command has to be prefixed with no. Most features on Cisco
routers can be disabled again like this:

router1#no debug ip packet

IP packet debugging is off

Instruction: ”Use traceroute to examine your connections.”

host1@host1:∼$ traceroute host2

traceroute to host2 (10.2.0.100), 30 hops max, 38 byte packets

1 router1 0 (10.1.0.10) 2.089 ms 1.025 ms 1.025 ms

2 host2 (10.2.0.100) 0.791 ms 0.718 ms 0.722 ms

host1@host1:∼$ traceroute host3

traceroute to host3 (10.3.0.100), 30 hops max, 38 byte packets

1 router1 0 (10.1.0.10) 1.013 ms 1.074 ms 0.956 ms

2 router2 0 (10.2.0.20) 2.381 ms 1.458 ms 1.334 ms

3 host3 (10.3.0.100) 1.974 ms 1.169 ms 1.133 ms

The packets from host1 to host2 only pass one router while the packets to host3 have to pass
both routers. Now we can be sure that all traffic successfully arrives at the desired host.

Instruction: ”Use NetPIPE (the command is: ’NPtcp’) to measure the bandwidth from Host 1
to Host 3”

NetPIPE [3] is used on host1 and host3. On the target machine it has to be started as sink with
no argument and on the sender machine as traffic generator with the target host as argument.
With -o <filename> we can generate a log file of the measuring for future reference.

host3@host3:∼$ NPtcp
Send and receive buffers are 16384 and 87380 bytes
(A bug in Linux doubles the requested buffer sizes)

34

host1@host1:∼$ NPtcp -h host3 -o netpipe1.stats

Sending output to netpipe1.stats

Send and receive buffers are 16384 and 87380 bytes

(A bug in Linux doubles the requested buffer sizes)

Now starting the main loop

0: 1 bytes 203 times --> 0.02 Mbps in 479.03 usec

1: 2 bytes 208 times --> 0.03 Mbps in 477.51 usec

2: 3 bytes 209 times --> 0.05 Mbps in 479.06 usec

...

72: 24573 bytes 3 times --> 7.07 Mbps in 26533.16 usec

73: 24579 bytes 3 times --> 7.11 Mbps in 26358.85 usec

74: 32765 bytes 3 times --> 6.79 Mbps in 36839.49 usec

The bandwidth settles down at around 7 Mbps. The reason of this nowadays low value are the
limiting Ethernet hubs (10 Mbps) which are installed between the routers and the hosts. The
absolute value is not really important here. We only need it for further comparison in a later
exercise.

Instruction: ”Make a telnet session between Host 1 and Host 3 and try to sniff the password
using TCPDUMP on Host 2.”

Because the network devices are connected through hubs, host2 can receive the whole network
traffic. A hub always forwards an incoming frame to all ports, except the incoming. This means
that all the traffic sent between the routers is also received by host2. There TCPDUMP [4]
can be used to log the interesting traffic between host1 and host3 which send their traffic also
between the routers. It is an easy task to sniff a password from telnet because all data, also
the password, is sent in plain text. To convince ourselves of this large security issue we will
visualise these interesting packets now. First we set a filter to only log the needed packets sent
from host3 to host1 and on port 23. Then we start TCPDUMP on host2. With the argument -F
<filename> we specify the previously defined filter and with -w <filename> we create
again a capture file. Finally we can try to log in from host3 to host1 via telnet. You will not
achieve to successfully log in on host1 because the password is unknown. But the latter is also
not the aim of this exercise. We are only interested in what host2 receives when we enter the
imaginary password.

host2@host2:∼$ echo ’port 23 and src host 10.3.0.100 and
dst host 10.1.0.100’ > tcpdump.filter

host2@host2:∼$ tcpdump -F tcpdump.filter -w tcpdump1.log
tcpdump: listening on eth0, link-type EN10MB (Ethernet), capture size 96
bytes
44 packets captured
44 packets received by filter
0 packets dropped by kernel

35

host3@host3:∼$ telnet host1

Trying 10.1.0.100...

Connected to host1.

Escape character is ’]̂’.

Debian GNU/Linux 3.1 host1

host1 login: host1

Password: reto

Login incorrect

The log file with the captured packets can also be analyzed with TCPDUMP. The option -XX
prints the entire packet, including the link level header, in ASCII and hexadecimal notation.
Thanks to the filter, it is not a heavy task anymore to identify the packets containing the
password. To have a closer look at them they are printed below.

host2@host2:∼$ tcpdump -r tcpdump1.log -XX

...

00:16:44.955352 IP host3.33180 > host1.telnet: P 83:84(1) ack 110 win 5840

<nop,nop,timestamp 1840889587 1029094214>

0x0000: 00d0 5865 f560 00d0 5865 f540 0800 4510 ..Xe.‘..Xe.@..E.

0x0010: 0035 7272 4000 3f06 b475 0a03 0064 0a01 .5rr@.?..u...d..

0x0020: 0064 819c 0017 744f ecd4 7dc7 040c 8018 .d....tO..}.....
0x0030: 16d0 5923 0000 0101 080a 6db9 bef3 3d56 ..Y#......m...=V

0x0040: bb46 72 .Fr

00:16:45.043059 IP host3.33180 > host1.telnet: P 84:85(1) ack 110 win 5840

<nop,nop,timestamp 1840889675 1029095076>

0x0000: 00d0 5865 f560 00d0 5865 f540 0800 4510 ..Xe.‘..Xe.@..E.

0x0010: 0035 7273 4000 3f06 b474 0a03 0064 0a01 .5rs@.?..t...d..

0x0020: 0064 819c 0017 744f ecd5 7dc7 040c 8018 .d....tO..}.....
0x0030: 16d0 4e6c 0000 0101 080a 6db9 bf4b 3d56 ..Nl......m..K=V

0x0040: bea4 65 ..e

00:16:45.115746 IP host3.33180 > host1.telnet: P 85:86(1) ack 110 win 5840

<nop,nop,timestamp 1840889748 1029095123>

0x0000: 00d0 5865 f560 00d0 5865 f540 0800 4510 ..Xe.‘..Xe.@..E.

0x0010: 0035 7274 4000 3f06 b473 0a03 0064 0a01 .5rt@.?..s...d..

0x0020: 0064 819c 0017 744f ecd6 7dc7 040c 8018 .d....tO..}.....
0x0030: 16d0 49f3 0000 0101 080a 6db9 bf94 3d56 ..I.......m...=V

0x0040: bed3 74 ..t

00:16:45.251787 IP host3.33180 > host1.telnet: P 86:87(1) ack 110 win 5840

<nop,nop,timestamp 1840889884 1029095196>

0x0000: 00d0 5865 f560 00d0 5865 f540 0800 4510 ..Xe.‘..Xe.@..E.

0x0010: 0035 7275 4000 3f06 b472 0a03 0064 0a01 .5ru@.?..r...d..

0x0020: 0064 819c 0017 744f ecd7 7dc7 040c 8018 .d....tO..}.....

36

0x0030: 16d0 4821 0000 0101 080a 6db9 c01c 3d56 ..H!......m...=V

0x0040: bf1c 6f ..o

Let us have a closer look at the first packet. We see it fully printed in hexadecimal and ASCII
notation. Now we have to remember how a network packet is assembled. At the beginning
there is a 14 bytes long Ethernet header. The first 48 bits are the destination MAC address
(00:d0:58:65:f5:60), followed by 48 bits of the source MAC address (00:d0:58:65:f5:40). They
are nearly the same because they both belong to Cisco routers. The next 16 bits (0x0800) name
the used layer 2 protocol which is in this case IPv4. Then there are 20 bytes of the Internet Proto-
col header. It is split up into 4 bits (0x4) version information (version 4), 4 bits (0x5) header size
information (20 bytes), 8 bits (0x10) type of service, 16 bits (0x0035) total package length (53
bytes), 16 bits (0x7272) identification number (29298), 16 bits (0x4000) fragmentation informa-
tion, 8 bits (0x3f) time to live value (63), 8 bits (0x06) layer 3 protocol information (TCP) and a
16-bit header checksum. As next there is a 32-byte TCP header. It consists of two times 16 bits
source (0x0a030064 = 10.3.0.100) and destination (0x0a010064 = 10.1.0.100) IP addresses, two
times 8 bits source (0x819c = 32356) and destination (0x0017 = 23) ports, 32 bits (0x744fecd4)
sequence number, 32 bits (0x7dc7040c) acknowledgement number, 8 bits (0x80) header size
information (32 bytes), 8 bits (0x18) control flags (ACK PSH), 16 bits (0x16d0) window size
(5840), 16 bits (0x274c) checksum and 96 bits options. At the end follows the interesting part
namely the 8-bit (0x72) payload. Translated into ASCII notation it means ’r’, the first character
of the password. When concerning the other packets, we finally see that every character of the
password is separately transmitted in plaintext in the payload of a TCP packet.

6.1.4 Setting up the VPN

We tested the entire installation with no security options enabled. This leads to a quite unsafe
environment when using plaintext protocols (e.g. Telnet, FTP, HTTP). We also saw that the
traffic rate limitation is caused by the unintelligent network equipment (Ethernet hubs). Now we
will enable an encrypted connection between the two routers and will have a look what happens
when we repeat our previous tests. This means we setup a ”safe” virtual private network
between the networks 10.1.0.0 and 10.3.0.0. All traffic through the insecure 10.2.0.0 network
will be encrypted. Again we follow the instructions in the VITELS module:

Instruction: ”Create DSS keys on the routers.”

On both routers a DSS key has to be generated with the crypto key generate dss
<keyname> command. Here they are called cisco2600-1 on router1 and cisco2600-2 on
router2.

router1(config)#crypto key generate dss cisco2600-1

Generating DSS keys

[OK]

router2(config)#crypto key generate dss cisco2600-2

37

Generating DSS keys

[OK]

Instruction: ”Exchange the DSS keys.”

With the crypto key exchange dss command we can exchange our previously gener-
ated DSS keys. Therefor one router has to be assigned to have the passive role what means that
it is listening for key exchange requests. The other router afterwards initiates the key exchange.

router2(config)#crypto key exchange dss passive

Enter escape character to abort if connection does not complete.

Wait for connection from peer[confirm]

Waiting

Public key for cisco2600-1:

Serial Number 593CA972

Fingerprint C9F6 7255 FF19 D7BD D8BD

Add this public key to the configuration? [yes/no]: yes

Send peer a key in return[confirm]

Which one?

cisco2600-2? [yes]: yes

Public key for cisco2600-2:

Serial Number B39FD8CE

Fingerprint 21F9 665A 34A3 CA3F 92BD

router1(config)#crypto key exchange dss 10.2.0.20 cisco2600-1

Public key for cisco2600-1:

Serial Number 593CA972

Fingerprint C9F6 7255 FF19 D7BD D8BD

Wait for peer to send a key[confirm]

Waiting

Public key for cisco2600-2:

Serial Number B39FD8CE

Fingerprint 21F9 665A 34A3 CA3F 92BD

Add this public key to the configuration? [yes/no]: yes

Both routers know now both keys. Like this they are able to encrypt and decrypt the traffic to
and from the other router.

38

Instruction: ”Configure the routers to encrypt both TCP and UDP traffic between the two
subnet 10.1.0.0/24 and 10.3.0.0/24. Make sure the routers use DES (Data Encryption Standard)
algorithm with a Cipher Feedback Modus (CFB) of 64 bit.”

First a crypto access list has to be created. It is used to define which IP packets will be encrypted
and which will not. The command ip access-list extended <id> creates and enters
the access list configuration mode. permit <protocol> <source> <destination>
allows to define which traffic we want to allow in our VPN. With deny we could also prevent
some hosts from sending or receiving encrypted traffic. Because we do not have a rule for the
10.2.0.0 subnet all traffic from and to this subnet will not be encrypted.

router1(config)#ip access-list extended 100

router1(config-ext-nacl)#permit tcp 10.1.0.0 0.0.0.255 10.3.0.0 0.0.0.255

router1(config-ext-nacl)#permit udp 10.1.0.0 0.0.0.255 10.3.0.0 0.0.0.255

router1(config-ext-nacl)#exit

Next a crypto map has to be defined. Like with many commands before crypto map
<name> <seq number> creates such a crypto map and enters the configuration mode. It
combines the encryption algorithm (set algorithm <algorithm>) and the connection
peer (set peer <peer key>) with the previously defined access list (match address
<access list id>). According to the instruction we choose the DES algorithm with a 64
bit cypher feedback.

router1(config)#crypto map router1 map 1

% NOTE: This new crypto map will remain disabled until a peer

and a valid access list have been configured.

router1(config-crypto-map)#set algorithm des cfb-64

router1(config-crypto-map)#match address 100

router1(config-crypto-map)#set peer cisco2600-2

router1(config-crypto-map)#exit

The last step in the VPN configuration is to apply the crypto map to an interface. Certainly the
interface which is connected with the other router, alternatively the 10.2.0.0 subnet, has to be
chosen.

router1(config)#interface FastEthernet0/0

router1(config-if)#crypto map router1 map

router1(config-if)#exit

To finish the entire procedure the steps to define the access list and crypto map and to apply the
crypto map has to be repeated on router2 with the corresponding argument changes.

39

6.1.5 Testing the VPN

All the previous tests from the subsection 6.2.3 ’Testing RIP’ should be repeated and compared
with the earlier results. After we made sure that all the connections are still working, we can
start with the bandwidth measurement. The commands are exactly the same like before:

host3@host3:∼$ NPtcp
Send and receive buffers are 16384 and 87380 bytes
(A bug in Linux doubles the requested buffer sizes)

host1@host1:∼$ NPtcp -h host3 -o netpipe2.stats

Sending output to netpipe2.stats

Send and receive buffers are 16384 and 87380 bytes

(A bug in Linux doubles the requested buffer sizes)

Now starting the main loop

0: 1 bytes 73 times --> 0.01 Mbps in 1362.54 usec

1: 2 bytes 73 times --> 0.01 Mbps in 1362.99 usec

2: 3 bytes 73 times --> 0.02 Mbps in 1369.00 usec

3: 4 bytes 48 times --> 0.02 Mbps in 1373.42 usec

4: 6 bytes 54 times --> 0.03 Mbps in 1368.28 usec

...

72: 24579 bytes 3 times --> 1.61 Mbps in 116243.01 usec

73: 32765 bytes 3 times --> 1.66 Mbps in 150463.83 usec

74: 32768 bytes 3 times --> 1.65 Mbps in 151219.49 usec

75: 32771 bytes 3 times --> 1.65 Mbps in 151217.33 usec

With enabled encryption the routers now have to decrypt and encrypt a part of the traffic which
is obviously not supported by special encryption hardware. Therefore the routers have to use
their processors for these steps, significantly reducing the available bandwidth.

A second time we capture the login traffic between hosts1 and host3. The encryption tunnel
does not prevent host2 from receiving the packets. But we understand the difference to the
original setup by analysing the captured packet content and look for the sent password:

host2@host2:∼$ tcpdump -r tcpdump2.log -XX

...

00:50:19.915449 IP 10.3.0.100.33184 > 10.1.0.100.telnet: P 83:84(1) ack 110

win 5840 <nop,nop,timestamp 2102141193 1290346684>

0x0000: 00d0 5865 f560 00d0 5865 f540 0800 4510 ..Xe.‘..Xe.@..E.

0x0010: 0035 c4b8 4000 3f06 622f 0a03 0064 0a01 .5..@.?.b/...d..

0x0020: 0064 81a0 0017 482c d275 5228 66c9 8018 .d....H,.uR(f...

0x0030: 16d0 77d2 0000 0101 080a 7d4c 2109 4ce9 ..w.......}L!.L.
0x0040: 20bc 28 ..(

40

00:50:19.979765 IP 10.3.0.100.33184 > 10.1.0.100.telnet: P 84:85(1) ack

110 win 5840 <nop,nop,timestamp 2102141257 1290347497>

0x0000: 00d0 5865 f560 00d0 5865 f540 0800 4510 ..Xe.‘..Xe.@..E.

0x0010: 0035 c4b9 4000 3f06 622e 0a03 0064 0a01 .5..@.?.b....d..

0x0020: 0064 81a0 0017 482c d276 5228 66c9 8018 .d....H,.vR(f...

0x0030: 16d0 8164 0000 0101 080a 7d4c 2149 4ce9 ...d......}L!IL.
0x0040: 23e9 8c #..

00:50:20.236527 IP 10.3.0.100.33184 > 10.1.0.100.telnet: P 85:86(1) ack 110

win 5840 <nop,nop,timestamp 2102141514 1290347521>

0x0000: 00d0 5865 f560 00d0 5865 f540 0800 4510 ..Xe.‘..Xe.@..E.

0x0010: 0035 c4ba 4000 3f06 622d 0a03 0064 0a01 .5..@.?.b-...d..

0x0020: 0064 81a0 0017 482c d277 5228 66c9 8018 .d....H,.wR(f...

0x0030: 16d0 714a 0000 0101 080a 7d4c 224a 4ce9 ..qJ......}L"JL.
0x0040: 2401 0b $..

00:50:20.427154 IP 10.3.0.100.33184 > 10.1.0.100.telnet: P 86:87(1) ack 110

win 5840 <nop,nop,timestamp 2102141705 1290347778>

0x0000: 00d0 5865 f560 00d0 5865 f540 0800 4510 ..Xe.‘..Xe.@..E.

0x0010: 0035 c4bb 4000 3f06 622c 0a03 0064 0a01 .5..@.?.b,...d..

0x0020: 0064 81a0 0017 482c d278 5228 66c9 8018 .d....H,.xR(f...

0x0030: 16d0 7489 0000 0101 080a 7d4c 2309 4ce9 ..t.......}L#.L.
0x0040: 2502 71 %.q

This Cisco DSS encryption does not use an authentication or encryption technique from IPSec
(like AH or ESP). Therefore the Ethernet, IP and TCP header are still the same like with the
unencrypted connection. Only the payload of the packets of the defined transport protocols (in
our case TCP and UDP) is encrypted. We used the same password ’reto’ in this try again, but
now, the values in the data field are encrypted and thus meaningless for us.

6.2 Conclusion

We have configured two Cisco routers to fit in our network, sniffed a password from plain traffic
and compared the bandwidth of an encrypted and an unencrypted connection. The traffic rate is
fallen from 7 Mbps to only around 1.7 Mbps because additional computation, namely encryption
and decryption, has to be done by the router processors. On the other hand our transfered content
could not be extracted anymore. Unfortunately even this encryption method does not give us a
hundred percent security because the limited key length of 56 bit allows only a total number of
256 possible keys. When we consider that a brute force attack would be able to check 1012 keys
per second we would only need 20 hours to break the key. A modern Apple dual G5 2 GHz
system already reaches the computation power of 3 ∗ 106 keys per second.

41

Chapter 7

Practical Experience

As teaching assistant in the Computer Networks lecture I was supervising the practical use
of this VITELS module. During a couple of weeks about sixty students had to work with the
newly migrated setup. Both installations, the one with the Cisco 2600 routers and the TFTP
bootstrapping and the other with the Cisco 3600 routers and the original bootstrapping, run
actually quite smooth. We did not find any problems concerning the new setup. Nonetheless
there are a few weaknesses in the design of the whole script layer.

7.1 Issues in practical use

• The delayed synchronisation between the logged-in users and the password generation,
invoked by cron, is not very suitable (see subsection 4.3.6). It can lead to temporary
’Authentication failed’ responses to a recently logged-in module user.

• The reset of the router is not instantly reported to the module user. Because the current
Web portal cannot process incoming messages, the current status of the reset activity
cannot be communicated to the user. The upcoming new Web portal will hopefully take
care of this.

• The used Mindterm Java applet for connecting to the device terminals does not run very
smoothly on all platforms. This was the point where the biggest number of users reported
some problems. When the SSH connection unexpectedly aborts, the applet stays in a state
where it is not possible anymore to properly use or quit it. Only a restart of the Web
browser can make Mindterm run again. Also it does not interpret magic keys (e.g. to quit
Minicom) sent by the keyboard. A solution could be to officially provide the temporary
password by the Web portal. Already now it is possible to get the password from the Web
site’s source code, but this is not very convenient for most of the users. The password
would allow the users to log in via an ordinary terminal application and take advantage of
their more comfortable handling. Further a transfer of configuration and log files via scp
would be possible too. At the moment this is still done by simply copy and paste the file
content to and from the Mindterm console.

43

7.2 Troubleshooting Problems

The scripts and application described in section 4.4 ’Testing the Setup’ help to notify the
module administrator when problems occur. To track down system errors and bugs it is
further useful to check up the log files. For general issues with the Linux system the ordinary
log files in /var/log/ should be consulted. The most important files on a Debian system
are /var/log/messages for kernel related feedback, /var/log/syslog for userspace application
messages and /var/log/auth.log for authentication failures.

The terminal emulation Minicom writes its log file to /root/minicom.log. It should be
checked during problems concerning the connection between the portal server and the routers.

Also the script for the user authentication and session handling (see section 4.3.6) is able to
output some logging and debugging information. It creates a log file /root/update shadow.log.
The script defines a variable $debug that should be changed to ”0” to enable additional task by
task output:

my $debug = "0"

Listing 7.1: /root/update shadow ldap.cnds.unibe.ch ssl.pl (section of interest)

With all this information it should easily be possible to find any system issues and detect its
originators.

44

References

[1] Thomas Spreng: IP Security Module for VITELS, Informatikprojekt RVS, 2003

[2] SWITCH PKI: http://www.switch.ch/pki/

[3] NetPIPE: http://www.scl.ameslab.gov/netpipe/

[4] TCPDUMP: http://www.tcpdump.org/

[5] Xen: http://www.cl.cam.ac.uk/Research/SRG/netos/xen/

[6] User-Mode Linux: http://user-mode-linux.sourceforge.net/

[7] Conrad Electronics: http://www.conrad.ch/

[8] Extended 3 Filesystem: http://www.redhat.com/support/wpapers/redhat/ext3/

[9] XFS: http://oss.sgi.com/projects/xfs/

[10] GRUB: http://www.gnu.org/software/grub/

[11] MindTerm: http://www.appgate.com/products/80 MindTerm/

[12] Minicom: http://alioth.debian.org/projects/minicom/

[13] Inetd: http://www.linuxfibel.de/inetd.htm

[14] sudo: http://www.courtesan.com/sudo/

[15] Stunnel: http://www.stunnel.org/

[16] Exim: http://www.exim.org/

[17] ssmtp: http://packages.qa.debian.org/s/ssmtp.html

[18] Sendmail: http://www.sendmail.org/

[19] Logwatch: http://www2.logwatch.org:8080/

[20] XMODEM: http://www.techfest.com/hardware/modem/xymodem.htm

[21] tftpd-hpa: http://packages.qa.debian.org/t/tftp-hpa.html

45

Appendix A

Bibliography

• David Jud, Drei Module für angewandtes Lernen von Computernetzwerken, 2001/2003
(http://www.iam.unibe.ch/%7Ervs/research/pub files/Ju03.pdf)

• Weyland Attila, Vitels Hands-On Session Setup, 2004
(http://www.vitels.ch/doc/vitels hands on setup.pdf)

• Zimmerli Stefan, Internetportal für Computernetze-Praktika, Diplomarbeit 2002
(http://www.iam.unibe.ch/˜szimmer/diplomarbeit stefan zimmerli.pdf)

• Debian GNU/Linux Installation Guide
(http://www.debian.org/releases/stable/i386/)

• Software Configuration Guide for Cisco 2600 Series, Cisco 3600 Series and Cisco 3700
Series Router
(http://www.cisco.com/application/pdf/en/us/guest/products/ps259/c2001/ccmigration 09186a00801f6f6b.pdf)

• IP Routing
(http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/12cgcr/np1 c/1cprt1/1crip.pdf)

• IPSec Network Security
(http://www.cisco.com/univercd/cc/td/doc/product/software/ios113ed/113t/113t 3/ipsec.pdf)

• Configuring Network Data Encryption with Router Authentication
(http://www.cisco.com/univercd/cc/td/doc/product/software/ios112/112cg cr/2cbook/2cencryp.pdf)

• Cisco Encryption Technology Commands
(http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/12cgcr/secur r/srprt4/srencryp.pdf)

• Cisco 2600 and 3600 Hints and Tricks
(ID 12817, http://www.cisco.com/warp/public/701/59.pdf)

• Virtual Configuration Register
(http://www.cisco.com/univercd/cc/td/doc/product/access/acs fix/cis3000/c3k2him/20586.pdf)

47

• Booting Commands
(http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/12cgcr/fun r/frprt2/frreboot.pdf)

• ROMmon Recovery for the Cisco 3600 and 3700 Series Router
(ID 15080, http://www.cisco.com/warp/public/130/recovery c3600.pdf)

• How to Choose a Cisco IOS Software Release
(ID 15071, http://www.cisco.com/warp/public/130/choosing ios.pdf)

• Loading Cisco IOS Software
(http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/relnote/fprn/loadswfp.pdf)

• TFTP Server Selection & Use
(ID 48700, http://www.cisco.com/warp/public/63/tftp-server.pdf)

• How to Download a Software Image to a Cisco 2600 through TFTP Using tftpdnld
ROMmon Command
(ID 12714, http://www.cisco.com/warp/public/471/76.pdf)

• Xmodem Console Download Procedure Using ROMmon
(ID 15085, http://www.cisco.com/warp/public/130/xmodem generic.pdf)

48

Appendix B

Linux Configuration Files

B.1 /etc/fstab

1 # /etc/fstab: static file system information.
2 #
3 # <file system> <mount point> <type> <options> <dump><pass>
4 /dev/hda1 /boot ext3 noauto 0 2
5 /dev/hda2 none swap sw 0 0
6 /dev/hda3 / xfs defaults 0 1
7 /dev/hda5 /var xfs defaults 0 2
8 /dev/hda6 /backup xfs noauto 0 2
9

10 /dev/hdb /media/cdrom0 iso9660 ro,user,noauto 0 0
11

12 proc /proc proc defaults 0 0

Listing B.1: /etc/fstab

B.2 /etc/hosts

1 127.0.0.1 localhost.localdomain localhost
2

3 10.1.0.100 host1 host1
4

5 10.1.0.10 router1_0 router1_0
6 10.2.0.10 router1_1 router1_1
7

8 10.2.0.100 host2 host2
9

10 10.2.0.20 router2_0 router2_0
11 10.3.0.20 router2_1 router2_1
12

13 10.3.0.100 host3 host3
14

15 10.1.0.1 gridlab06.unibe.ch gridlab06

Listing B.2: /etc/hosts

49

Appendix C

Portal Server Custom Scripts

C.1 Overview

C.2 /bin/host1 . 49
C.3 /bin/router1 . 50
C.4 /root/namekill . 50
C.5 /root/update shadow ldap.cnds.unibe.ch ssl.pl . 51
C.6 /usr/local/bin/stunnel ldap.sh . 54
C.7 /root/module reset.sh . 54
C.8 /root/module test.sh . 55
C.9 /root/PwGenLib.pm . 56
C.10 /usr/share/perl5/RelaisLib.pm . 59
C.11 /usr/share/perl5/RouterLib.pm . 63
C.12 /var/php safe mode bin/pw reset.pl . 67

C.2 /bin/host1

1 #!/bin/bash
2 # is called when user host1 logs into gridlab06.unibe.ch
3 # user is redirected to host1@host1 (needs authorized ssh keypair)
4

5 ssh host1
6 exit

Listing C.1: /bin/host1

51

C.3 /bin/router1

1 #!/bin/bash
2 # filename: /bin/router1
3 # real tty connected to router1
4

5 # first: kill the existing jobs
6 sudo /root/namekill $USER minicom
7

8 # second: wait until minicom has shut down
9 sleep 6s

10

11 # third: start new minicom connection
12 /usr/bin/minicom -C /home/router1/minicom.log ttyS0
13 exit

Listing C.2: /bin/router1

C.4 /root/namekill

1 #!/usr/bin/perl
2

3 use strict;
4

5 &usage unless (@ARGV == 2);
6

7 my $signal = ’TERM’;
8 if (@ARGV > 2) {
9 $signal = shift @ARGV;

10 }
11

12 my $user = shift @ARGV;
13 my $name = shift @ARGV;
14

15 my @tasks = ‘ps -u $user‘;
16 foreach (@tasks) {
17 if (/ˆ\s*(\S+).*$name/) {
18 kill $signal, $1;
19 }
20 }
21

22

23 sub usage {
24 print "Usage: $0 [signal] user taskname\n\n";
25 exit 1;
26 }

Listing C.3: /root/namekill

52

C.5 /root/update shadow ldap.cnds.unibe.ch ssl.pl

1 #!/usr/bin/perl
2

3 # This perl script should be run as a cron job. It reads a
4 # module’s current user and - if the user changed - it updates
5 # the shadow file, kills the old session and resets the hosts
6 # and routers.
7 #
8 # author: Thomas Jampen <jampen@iam.unibe.ch>
9 # created: 20020203

10 # modified: 20020501
11 # modified: 20030515 stefan zimmerli <szimmer@iam.unibe.ch>
12 # changed ldap settings to work over stunnel
13 # modified: 20030621 stefan zimmerli <szimmer@iam.unibe.ch>
14 # commented getting password from ldap
15 # included functions from PwGenLib to generate a onetime-password
16 # and to check user changes by saving the currentuser into
17 # /etc/current_user
18 # modified: 20050808 reto gantenbein <gantenbe@iam.unibe.ch>
19 # removed needless users cisco2600 and cisco3600 from %users
20 # modified: 20051129 reto gantenbein <gantenbe@iam.unibe.ch>
21 # added lines for resetting module (module_reset.sh)
22

23 use strict;
24 use Net::LDAP qw(:all);
25 require PwGenLib;
26

27 # variable definitions
28 # ====================
29

30 my $host = "localhost";
31 my $port = "636";
32 my $basedn = "ou=Modules,o=VITELS,c=CH";
33 my $binddn = "uid=labportal,ou=Staff,o=VITELS,c=CH";
34 my $bindpw = "l3s3r3cht";
35

36 my $dummydn = "uid=dummy,ou=users,o=Universitaet Bern,c=CH";
37 # ipsec inf_vitels
38 my $mid = "6";
39 my %users = ("host1", "host1", "host2", "host2", "host3", "host3",
40 "router1", "router1", "router2", "router2");
41 my $debug= "1";
42 #my $debug= "0";
43

44

45 # connect to the LDAP server
46 # ==========================
47 print "Connecting to the server\n" if $debug;
48 my $ldap = Net::LDAP->new("$host:$port") or die "$@";
49

50

51 # bind
52 # ====
53 my $bind = $ldap->bind($binddn, password => "$bindpw", version => 3);
54 unless ($bind)
55 {
56 die "Unable to bind to server!\n";
57 }

53

58

59

60 # check module’s current user
61 # ===========================
62 my $search = $ldap->search(base => "mid=$mid,$basedn",
63 scope => "sub",
64 deref => "find",
65 filter => "(uid=*)",
66 attrs => ("uid", "userpassword"));
67

68 my @users = $search->entries;
69 my $user;
70

71 foreach $user (@users)
72 {
73 my $user_attr;
74 my $current_user;
75 my $current_pwd;
76 my $pwd;
77 my $pwd_len;
78 my @line;
79

80 # search for the attributes ’uid’, ’userpassword’
81 # we need them later
82 foreach $user_attr ($user->attributes)
83 {
84 if ($user_attr eq "uid")
85 {
86 $current_user = $user->get_value($user_attr);
87 print "current_user= $current_user\n" if $debug;
88 }
89 }
90

91 # get the saved current user
92 open(USER_OLD,"</etc/current_user")
93 || die "Unable to read current_user file!";
94 my $last_user= "";
95 my $line= <USER_OLD>;
96 close (USER_OLD);
97 my $len= length($line);
98 print "line=$line,len=$len\n" if $debug;
99 $last_user= substr($line,0,$len-1);

100

101 print "last_user= $last_user\n" if $debug;
102

103 # still the same user is current user -> do nothing
104 #
105 if ($last_user eq $current_user)
106 {
107 print ":$last_user: EQ :$current_user:\n" if $debug;
108 }
109

110 # the current user has changed -> save uid and kill processes
111 #
112 else
113 {
114 print ":$last_user: NOT EQ :$current_user:\n" if $debug;
115

116 open(USER_NEW,">/etc/current_user")
117 || die "Unable to read current_user file!";
118 print USER_NEW $current_user,"\n";
119 close (USER_NEW);

54

120

121 print "get new password\n" if $debug;
122 # get a onetime password
123 my $plainpw= &PwGenLib::generate_password;
124 print "plain:",$plainpw,"\n" if $debug;
125

126 # make a md5hash out of the password
127 my $md5pw= &PwGenLib::make_md5_password($plainpw);
128 print "md5pw:",$md5pw,"\n" if $debug;
129

130 # save the plain password (we will read it from the php portal frontend)
131 &PwGenLib::write_plain_password($plainpw);
132 # save the md5-password into /etc/shadow
133 &PwGenLib::write_shadow_password($md5pw);
134 print "new passwords written\n" if $debug;
135

136 # kill processes of the previous user
137 foreach (keys(%users))
138 {
139 print "killing $_\n" if $debug;
140 ‘/root/namekill $_ $users{$_}‘;
141 }
142

143 print "reset hosts" if $debug;
144 # reset hosts
145 ‘/root/module_reset.sh‘;
146

147 print "backup shadow file\n" if $debug;
148 # backup old shadow file and replace with new version
149

150 my $backup_shadow_command=
151 "cp ".$PwGenLib::SHADOW_FILE." ".$PwGenLib::SHADOW_FILE.".OLD";
152

153 my $move_new_shadow_command=
154 "mv ".$PwGenLib::SHADOW_FILE.".NEW ".$PwGenLib::SHADOW_FILE;
155

156 my $set_permissions_command=
157 "chgrp shadow ".$PwGenLib::SHADOW_FILE." && "
158 ."chmod 640 ".$PwGenLib::SHADOW_FILE." && "
159 ."chmod 600 ".$PwGenLib::SHADOW_FILE.".OLD";
160

161 ‘$backup_shadow_command‘;
162 ‘$move_new_shadow_command‘;
163 ‘$set_permissions_command‘;
164 }
165 }
166

167

168 # disconnect
169 # ==========
170 $ldap->unbind;
171

172 print "disconnect from server\n" if $debug;
173

174 exit 0;

Listing C.4: /root/update shadow ldap.cnds.unibe.ch ssl.pl

55

C.6 /usr/local/bin/stunnel ldap.sh

1 #!/bin/bash
2 # redirects and encrypts LDAP connection on localhost to LDAP server
3

4 /usr/sbin/stunnel -c -d 636 -r ldap.cnds.unibe.ch:636

Listing C.5: /usr/local/bin/stunnel ldap.sh

C.7 /root/module reset.sh

1 #!/bin/bash
2 # script to reset the hosts and routers
3 # 29.11.2005 by reto gantenbein <gantenbe@iam.unibe.ch>
4

5 # empty the home directories of the hosts
6 for USER in "host1" "host2" "host3"
7 do
8 sudo -u $USER ssh $USER@$USER rm -rf /home/$USER/*
9 sudo -u $USER ssh $USER@$USER rm /home/$USER/.bash_history

10 done
11

12 # reset routers
13 for ROUTER in "router1" "router2"
14 do
15 /var/php_safe_mode_bin/pw_reset.pl $ROUTER
16 done
17

18 exit 0

Listing C.6: /root/module reset.sh

56

C.8 /root/module test.sh

1 #!/bin/bash
2

3 # Script to test basic ’IP Security’ module services
4 # Reto Gantenbein (gantenbe@iam.unibe.ch)
5

6 LOGFILE=/root/module_status.log
7 ALERT_MAIL=gantenbe@iam.unibe.ch
8 CC_MAIL=bernoull@iam.unibe.ch
9

10 #
11 # Test Hosts
12 #
13 for HOST in host1 host2 host3 ; do
14 ping -c1 $HOST >> /dev/null 2>&1
15 if [$? -eq 1] ; then
16 echo "$HOST does not respond!" >> $LOGFILE
17 fi
18 done
19

20 #
21 # Test Apache2
22 #
23 APACHE_PID=$(pidof apache2)
24 APACHE_PORT=$(netstat -napt | grep 0.0.0.0:443)
25

26 if [-z "$APACHE_PID" -o -z "$APACHE_PORT"] ; then
27 echo "Apache2 is not running properly!" >> $LOGFILE
28 fi
29

30 #
31 # Test SSH
32 #
33 SSH_PID=$(pidof sshd)
34 SSH_PORT=$(netstat -napt | grep 0.0.0.0:22)
35

36 if [-z "$SSH_PID" -o -z "$SSH_PORT"] ; then
37 echo "SSH is not running properly!" >> $LOGFILE
38 fi
39

40 #
41 # Send alert mail
42 #
43 if [-f $LOGFILE] ; then
44 mail -s "$HOSTNAME.unibe.ch: IP-Security Module Alert" -c $CC_MAIL $ALERT_MAIL \
45 < $LOGFILE
46 rm $LOGFILE
47 fi

Listing C.7: /root/module test.sh

57

C.9 /root/PwGenLib.pm

1 ##
2 #
3 # gateway for a remote laboratory
4 #
5 # file: PwGenLib.pm
6 #
7 # purpose:
8 #
9 #

10 # depends:
11 #
12 # author: stefanzimmerli.com, software@stefanzimmerli.com
13 #
14 # version:
15 # 01 01-03-2003 steffu initial version (quick hack)
16 # 02 10-03-2003 steffu implemented generate_password
17 # 03 30-03-2003 steffu implemented make_md5_password,write_plain_password
18 # 04 05-04-2003 steffu implemented write_shadow_password
19 # 05 21-06-2003 steffu did a lot of testing. found some bugs in the
20 # generate password function
21 # 06 23-06-2003 steffu fixed the bugs. everything ist working!
22 #
23 ##
24

25 package PwGenLib;
26 use strict;
27

28 $PwGenLib::VERSION="PwGenLib V0.6";
29 $PwGenLib::PWLENGTH=8;
30 @PwGenLib::CHARS=(’A’..’Z’,’a’..’z’,’0’..’9’);
31 $PwGenLib::CURRENT_PLAIN_PW_FILE="/etc/current_pw";
32 $PwGenLib::CURRENT_USER_FILE="/etc/current_user";
33 $PwGenLib::SHADOW_FILE="/etc/shadow";
34 @PwGenLib::USERS=(’host1’,’host2’,’host3’,’cisco2600’,
35 ’cisco3600’,’router1’,’router2’);
36

37

38 ##
39 sub write_shadow_password
40 {
41 my $_password= shift;
42 #print "md5pw:",$_password,"\n";
43 #print "users",@PwGenLib::USERS,"\n";
44

45 open(SHADOW_OLD,$PwGenLib::SHADOW_FILE) or
46 die "cannot open file $PwGenLib::SHADOW_FILE!";
47

48 open(SHADOW_NEW,">".$PwGenLib::SHADOW_FILE.".NEW") or
49 die "cannot open file $PwGenLib::SHADOW_FILE.NEW";
50

51 while (my $_line=<SHADOW_OLD>)
52 {
53 #print "ORIG$_line";
54 # search for uid and pw
55 # uid : pw :number:zero:number:number:::
56 $_line=˜/([\w-]+)\:(.+?)(\:\d+\:0\:\d+:\d+\:\:\:)$/;
57 my $_user= $1;

58

58 my $_pw = $2;
59 my $_rest= $3;
60

61 #print "NEW $_user $_pw$_rest\n";
62

63 if (grep(/$_user/,@PwGenLib::USERS) > 0)
64 {
65 #print "labuser found:",$_user,",pw:",$_pw,"\n";
66 print SHADOW_NEW "$_user:$_password$_rest","\n";
67 }
68 else
69 {
70 #print "system user found:",$_user,",pw:",$_pw,"\n";
71 print SHADOW_NEW "$_user:$_pw$_rest","\n";
72 }
73 }
74

75 close (SHADOW_NEW);
76 close (SHADOW_OLD);
77 }
78

79 ##
80 sub write_plain_password
81 {
82 my $_password= shift;
83

84 open(PLAINPW, ">".$PwGenLib::CURRENT_PLAIN_PW_FILE) or
85 die "cannot open file $PwGenLib::CURRENT_PLAIN_PW_FILE!";
86

87 print PLAINPW $_password;
88

89 close(PLAINPW);
90 }
91

92 ##
93 sub make_md5_password
94 {
95 my $_plain_password= shift;
96 my $_salt= "\$1\$";
97 for (my $i=0;$i<4;$i++)
98 {
99 $_salt.= $PwGenLib::CHARS[rand(scalar(@PwGenLib::CHARS)-1)];

100

101 }
102 #print "salt:",$_salt, "\n";
103 #print "plain:",$_plain_password, "\n";
104

105 my $_md5_password= crypt($_plain_password,$_salt);
106

107 return $_md5_password;
108 }
109

110 ##
111 sub get_version
112 {
113 return $PwGenLib::VERSION;
114 }
115

116 ##
117 sub generate_password
118 {
119

59

120 my $_password= ’’;
121

122 #print scalar(@PwGenLib::CHARS),"\n";
123 for (my $i=0;$i<$PwGenLib::PWLENGTH;$i++)
124 {
125 $_password.= $PwGenLib::CHARS[rand(scalar(@PwGenLib::CHARS)-1)];
126

127 }
128 return $_password;
129 }
130

131 ##
132 1;

Listing C.8: /root/PwGenLib.pm

60

C.10 /usr/share/perl5/RelaisLib.pm

1 ##
2 #
3 # gateway for a remote laboratory
4 #
5 #
6 # file: RelaisLib.pm
7 #
8 # purpose: simple perl api to control the serial line 8-port relais card from
9 # conrad. with this api we will powercycle our two cisco routers to

10 # delete the set passwords on our cisco routers
11 #
12 # depends: on the module Device:SerialPort
13 #
14 # author: stefan.zimmerli@iam.unibe.ch
15 #
16 # version:
17 # 01 03-07-2002 steffu initial version (quick hack)
18 # 02 04-07-2002 steffu wrote first subroutines
19 # 03 06-07-2002 steffu made tests, added more subs
20 # 04 06-07-2002 steffu finished and tested the card api
21 # 05 06-07-2002 steffu wrote subs to powercycle the routers.
22 # 06 08-09-2002 steffu made two files relais_lib_XY.pl and relais_test_01.pl
23 # problem: reading the card status gave not what
24 # i set before...
25 # 07 18-09-2002 steffu made package RelaisLib in file RelaisLib.pm
26 # 08 20-09-2002 steffu did a lot of testing to solve those package scope
27 # problems now reading the card status gives what
28 # i set before
29 #
30 ##
31

32 package RelaisLib;
33

34 use strict;
35 use Device::SerialPort qw(:PARAM :STAT 0.07);
36

37 $RelaisLib::RELAIS_CARD_SERIAL_DEVICE= "/dev/ttyS2";
38 $RelaisLib::NOP = 0;
39 $RelaisLib::INIT = 1;
40 $RelaisLib::GET = 2;
41 $RelaisLib::SET = 3;
42 $RelaisLib::ADDR = 1;
43 $RelaisLib::POWER_OFF= 0;
44 $RelaisLib::POWER_ON = 1;
45

46 # debugging/logging of the library functions to standard output
47 # 0: logging, 1: no logging
48 # set them here OR in the perl program that uses this library!
49 #
50 #$RelaisLib::NODEBUG= 0;
51 $RelaisLib::NODEBUG= 1;
52

53 ##
54 sub get_relais_status
55 {
56 # input: tty got from relaiscard_tty_open
57 # output: relais status in decimal (0: all relais off, 1: relais 0 on,

61

58 # 2: relais 1 on, 255: all relais on)
59

60 my $mytty = shift;
61

62 #print "\n==== INIT CARD ====\n";
63 RelaisLib::relaiscard_send_command($mytty, $RelaisLib::ADDR,
64 $RelaisLib::INIT,0);
65 sleep (1);
66

67 #print "\n==== GET PORT STATUS ====\n";
68 my @portstatus= RelaisLib::relaiscard_send_command($mytty,
69 $RelaisLib::ADDR, $RelaisLib::GET,0);
70

71 #print "port status=$portstatus[2]\n";
72 $portstatus[2];
73 }
74

75 ##
76 sub router_power
77 {
78 # input: tty, router_number($C2600,$C3600), power($POWER_OFF,$POWER_ON)
79 # output: 1 if ok, 0 otherwise
80 print "---- sub router_power starts ----\n" unless $RelaisLib::NODEBUG;
81

82 my ($mytty,$myrouter_number,$mypower_status)= @_;
83 my @answer= relaiscard_send_command($mytty, $RelaisLib::ADDR,
84 $RelaisLib::GET,0);
85

86 #print "port status of the relais card: $answer[2]\n";
87 print "---- sub router_power ends ----\n" unless $RelaisLib::NODEBUG;
88 }
89

90 ##
91 sub relaiscard_send_command
92 {
93 # input: tty,card_address,command,parameter
94 # output: decoded answer frame from relaiscard
95

96 print "---- sub relaiscard_send_command starts ----\n"
97 unless $RelaisLib::NODEBUG;
98 my ($mytty,$card_address,$command,$parameter)= @_;
99

100 my @answer= 0;
101

102 my $data= encode_frame($command,$card_address,$parameter);
103 my $count_out= $mytty->write($data);
104 warn "write failed\n" unless ($count_out);
105 warn "write incomplete\n" if ($count_out != length($data));
106

107 sleep(1);
108 my ($count_in,$input)= $mytty->read(4);
109 if (check_frame($input))
110 {
111 @answer= decode_frame($input);
112 print "frame bytes \tsent\treceived\n" unless $RelaisLib::NODEBUG;
113 print "command \t$command\t$answer[0]\n" unless $RelaisLib::NODEBUG;
114 print "cardaddr\t$card_address\t$answer[1]\n"
115 unless $RelaisLib::NODEBUG;
116 print "data\t\t$parameter\t$answer[2]\n" unless $RelaisLib::NODEBUG;
117 }
118

119 if ($command==$RelaisLib::INIT)

62

120 {
121 my ($count_in_init,$input_init)= $mytty->read(4);
122 if (check_frame($input_init))
123 {
124 my @second_init_frame= decode_frame($input_init);
125 #print "second init frame @second_init_frame\n";
126 }
127 }
128

129 print "---- sub relaiscard_send_command ends ----\n"
130 unless $RelaisLib::NODEBUG;
131

132 @answer;
133 }
134

135 ##
136 sub relaiscard_tty_close
137 {
138 # input: the port handle got from relaiscard_tty_open
139 # output: void
140

141 my $myport= shift(@_);
142 $myport->close || die "failed to close $!\n";
143 undef $myport;
144 }
145

146 ##
147 sub relaiscard_tty_open
148 {
149 # input: the serial device where the relais card is attached to
150 # (/dev/ttyS2)
151 # output: the port handle
152

153 my $device= shift;
154 my $myport= new Device::SerialPort($device)
155 || die "cant open $device $!\n";
156 $myport->user_msg("ON");
157 $myport->databits(8);
158 $myport->baudrate(19200);
159 $myport->parity("none");
160 $myport->stopbits(1);
161 $myport->write_settings || undef $myport;
162

163 $myport;
164 }
165

166 ##
167 sub encode_frame
168 {
169 # input: three integers
170 # output: four-byte-string with checksum
171

172 print "---- sub encode_frame starts ----\n" unless $RelaisLib::NODEBUG;
173

174 my($byte0,$byte1,$byte2)= @_;
175 my $checksum = $byte0 ˆ $byte1 ˆ$byte2;
176

177 my $frame= pack("CCCC",$byte0,$byte1,$byte2,$checksum);
178

179 print "encoded data=($byte0/$byte1/$byte2/$checksum),
180 packed data=<$frame>\n" unless $RelaisLib::NODEBUG;
181

63

182 print "---- sub encode_frame ends ----\n" unless $RelaisLib::NODEBUG;
183

184 $frame;
185 }
186

187 ##
188 sub decode_frame
189 {
190 # input: four-byte-string with checksum
191 # output: array with three integers (command, address, data)
192

193 my($frame)= shift (@_);
194 my($frame_length)= length($frame);
195

196 #print "---- sub decode_frame starts ----\n" unless $RelaisLib::NODEBUG;
197 #print "frame=$frame, length=$frame_length\n" unless $RelaisLib::NODEBUG;
198 my @data= unpack("CCCC",$frame);
199

200 #print "@data\n" unless $RelaisLib::NODEBUG;
201 #print "---- sub decode_frame ends ----\n" unless $RelaisLib::NODEBUG;
202 @data;
203 }
204

205 ##
206 sub check_frame
207 {
208 # input: four-byte-string with checksum
209 # output: 1 if checksum is ok
210 # 0 otherwise
211 my($in_frame)= shift (@_);
212 my($frame_length)= length($in_frame);
213

214 my @frame= unpack("CCCC",$in_frame);
215

216 if (($frame[0] ˆ $frame[1] ˆ $frame[2]) == $frame[3])
217 {
218 #print "frame ok\n" unless $RelaisLib::NODEBUG;
219 return 1;
220 }
221 else
222 {
223 #print "frame NOT ok\n" unless $RelaisLib::NODEBUG;
224 return 0;
225 }
226 }
227

228 ##
229

230 1;

Listing C.9: /usr/share/perl5/RelaisLib.pm

64

C.11 /usr/share/perl5/RouterLib.pm

1 ##
2 #
3 # gateway for a remote laboratory
4 #
5 # file: RouterLib.pm
6 #
7 # purpose: provides helper functions to send commands to the routers
8 # over the serial line
9 #

10 # depends: on the module Device:SerialPort
11 #
12 # author: stefan.zimmerli@iam.unibe.ch
13 #
14 # history:
15 # 01 15-10-2002 Stefan Zimmerli
16 # 02 11-08-2005 Reto Gantenbein <gantenbe@iam.unibe.ch>
17 # -> added bootstrapping from tftp (cisco2600)
18 #
19 ##
20

21 package RouterLib;
22 require RelaisLib;
23

24 use Device::SerialPort qw(:PARAM :STAT 0.07);
25

26 $RouterLib::LOCKFILE_PATH= ’/tmp/’;
27 $RouterLib::MAX_TIME= 360;
28 $RouterLib::ROUTER1_DEVICE= "/dev/ttyS0";
29 $RouterLib::ROUTER2_DEVICE= "/dev/ttyS1";
30 $RouterLib::ROUTER1_OFF = 254;
31 $RouterLib::ROUTER1_ON = 1;
32 $RouterLib::ROUTER2_OFF = 253;
33 $RouterLib::ROUTER2_ON = 2;
34 $RouterLib::ROUTER1 = "router1";
35 $RouterLib::ROUTER2 = "router2";
36 $RouterLib::ROUTER1_TYP = "cisco3600";
37 $RouterLib::ROUTER2_TYP = "cisco3600";
38

39 sub create_lockfile
40 {
41 my $mylockfile= $RouterLib::LOCKFILE_PATH;
42 $mylockfile.= shift;
43 print "create: lockfile=$mylockfile\n" unless $RouterLib::NODEBUG;
44 open (LOCKFILE,">".$mylockfile)
45 or die "can not make lockfile $mylockfile: $!\n";
46 close (LOCKFILE);
47 }
48

49 sub delete_lockfile
50 {
51 my $mylockfile= $RouterLib::LOCKFILE_PATH;
52 $mylockfile.= shift;
53 print "delete: lockfile=$mylockfile\n" unless $RouterLib::NODEBUG;
54 unlink($mylockfile) or die "can not unlink lockfile $mylockfile: $!\n";
55

56 }
57

65

58 sub exist_lockfile
59 {
60 my $mylockfile= $RouterLib::LOCKFILE_PATH;
61 $mylockfile.= shift;
62 print "exist: lockfile=$mylockfile\n" unless $RouterLib::NODEBUG;
63 return (-e $mylockfile);
64 }
65

66 sub is_lockfile_new
67 {
68 my $mylockfile= $RouterLib::LOCKFILE_PATH;
69 $mylockfile.= shift;
70 print "is new: lockfile=$mylockfile\n" unless $RouterLib::NODEBUG;
71 my @mylockfile_stats= stat($mylockfile);
72 if ((time-$mylockfile_stats[9]) < $RouterLib::MAX_TIME) {
73 return 1;
74 } else {
75 return 0;
76 }
77 }
78

79 sub send_router_command
80 {
81 # input: port (got from "new Device::SerialPort($cisco2600_device)"),
82 # command string
83 # time to sleep in seconds after sending command
84 # output: void
85

86 my $_port= shift;
87 my $_command= shift;
88 my $_time= shift;
89 print "command=$_command\n sending it and wait $_time seconds..."
90 unless $RouterLib::NODEBUG;
91 my $_count_out= $_port->write($_command);
92 warn "write failed\n" unless ($_count_out);
93 warn "write incomplete\n" if ($_count_out != length($_command));
94 sleep($_time);
95 print "done\n\n" unless $RouterLib::NODEBUG;
96 }
97

98 sub reset_router
99 {

100 my $myrouter= shift;
101 print "reset router $myrouter\n" unless $RouterLib::NODEBUG;
102

103 my $tty= RelaisLib::relaiscard_tty_open(
104 $RelaisLib::RELAIS_CARD_SERIAL_DEVICE);
105

106 my $status= RelaisLib::get_relais_status($tty);
107 my $myport= ’’;
108

109 # powercycle device of router ONE
110 if ($myrouter eq $RouterLib::ROUTER1) {
111

112 my $new_status= $status & $RouterLib::ROUTER1_OFF;
113 RelaisLib::relaiscard_send_command($tty, $RelaisLib::ADDR,
114 $RelaisLib::SET, $new_status);
115 sleep(2);
116

117 my $power_on = $new_status | $RouterLib::ROUTER1_ON;
118

119 RelaisLib::relaiscard_send_command($tty, $RelaisLib::ADDR,

66

120 $RelaisLib::SET, $power_on);
121

122 RelaisLib::relaiscard_tty_close($tty);
123 sleep(13);
124

125 $myport= new Device::SerialPort($RouterLib::ROUTER1_DEVICE)
126 || die "cant open $RouterLib::ROUTER1_DEVICE $!\n";
127

128 $reset_type=$RouterLib::ROUTER1_TYP;
129 }
130

131 # powercycle device of router TWO
132 if ($myrouter eq $RouterLib::ROUTER2) {
133

134 my $new_status= $status & $RouterLib::ROUTER2_OFF;
135

136 RelaisLib::relaiscard_send_command($tty, $RelaisLib::ADDR,
137 $RelaisLib::SET, $new_status);
138 sleep(2);
139

140 my $power_on = $new_status | $RouterLib::ROUTER2_ON;
141

142 RelaisLib::relaiscard_send_command($tty, $RelaisLib::ADDR,
143 $RelaisLib::SET, $power_on);
144

145 RelaisLib::relaiscard_tty_close($tty);
146

147 sleep(16);
148

149 $myport= new Device::SerialPort($RouterLib::ROUTER2_DEVICE)
150 || die "cant open $RouterLib::ROUTER2_DEVICE $!\n";
151

152 $reset_type=$RouterLib::ROUTER2_TYP;
153 }
154

155 if ($reset_type eq "cisco2600") {
156

157 # scripts for cisco2600
158 $myport->user_msg("ON");
159 $myport->databits(8);
160 $myport->baudrate(9600);
161 $myport->parity("none");
162 $myport->stopbits(1);
163 $myport->write_settings || undef $myport;
164

165 $myport->pulse_break_on(1000);
166

167 send_router_command($myport,"confreg 0x2140\n",1);
168 send_router_command($myport,"reset\n",10);
169

170 if ($myrouter eq $RouterLib::ROUTER1) {
171 send_router_command($myport,"IP_ADDRESS=10.2.0.10\n",1);
172 } else {
173 send_router_command($myport,"IP_ADDRESS=10.2.0.20\n",1);
174 }
175

176 send_router_command($myport,"IP_SUBNET_MASK=255.255.255.0\n",1);
177 send_router_command($myport,"DEFAULT_GATEWAY=10.2.0.1\n",1);
178 send_router_command($myport,"TFTP_SERVER=10.2.0.1\n",1);
179 send_router_command($myport,"TFTP_FILE=currentIOS\n",1);
180 send_router_command($myport,"tftpdnld\n",2);
181 send_router_command($myport,"yes\n",170);

67

182 send_router_command($myport,"boot flash:currentIOS\n",80);
183 send_router_command($myport,"no\n",1);
184 }
185

186 if ($reset_type eq "cisco3600") {
187

188 # scripts for cisco3600
189 $myport->user_msg("ON");
190 $myport->databits(8);
191 $myport->baudrate(9600);
192 $myport->parity("none");
193 $myport->stopbits(1);
194 $myport->write_settings || undef $myport;
195

196 sleep(5);
197 $myport->pulse_break_on(1000);
198

199 # resetting the router old fashion way
200 send_router_command($myport,"confreg 0x2142\n",1);
201 send_router_command($myport,"reset\n",100);
202 send_router_command($myport,"no\n",2);
203 send_router_command($myport,"\r",2);
204 send_router_command($myport,"\r",2);
205 send_router_command($myport,"enable\n",1);
206 send_router_command($myport,"configure\n",1);
207 send_router_command($myport,"terminal\n",1);
208 send_router_command($myport,"config-register 0x2102\n",1);
209 send_router_command($myport,"exit\n",1);
210 send_router_command($myport,"copy running-config startup-config\n",1);
211 send_router_command($myport,"startup-config\n",1);
212 send_router_command($myport,"reload\n",1);
213 send_router_command($myport,"\n",120);
214 send_router_command($myport,"\r",1);
215 }
216

217 $myport->close || die "failed to close $device";
218 undef $myport;
219 }
220

221 1;

Listing C.10: /usr/share/perl5/RouterLib.pm

68

C.12 /var/php safe mode bin/pw reset.pl

1 #!/usr/bin/perl
2

3 use Sys::Syslog;
4 require RelaisLib;
5 require RouterLib;
6

7 $RelaisLib::NODEBUG= 1;
8 $RouterLib::NODEBUG= 1;
9

10 openlog(’pw_reset ’,’pid’,’syslog’);
11

12 my $router= shift;
13 my $RouterResetCmd= ’’;
14 my $lockfile= ’’;
15

16 syslog(’debug’,"pw_reset.pl start");
17 syslog(’debug’,"input=$router\n");
18

19 if (($router eq $RouterLib::ROUTER1) || ($router eq $RouterLib::ROUTER2)) {
20

21 syslog(’debug’,"router=$router\n");
22

23 $lockfile= $router;
24

25 if (RouterLib::exist_lockfile($lockfile))
26 {
27 syslog(’debug’,"lockfile $lockfile exists\n");
28

29 if (RouterLib::is_lockfile_new($lockfile))
30 {
31 syslog(’debug’,"lockfile $lockfile is new. reset in progress!\n");
32 }
33 else
34 {
35 syslog(’debug’,"2 lockfile $lockfile old deleting it\n");
36 RouterLib::delete_lockfile($lockfile);
37

38 syslog(’debug’,"2 creating lockfile $lockfile\n");
39 RouterLib::create_lockfile($lockfile);
40

41 syslog(’debug’,"2 performing reset\n");
42 RouterLib::reset_router($router);
43 syslog(’debug’,"2 reset done\n");
44

45 syslog(’debug’,"2 deleting lockfile $lockfile\n");
46 RouterLib::delete_lockfile($lockfile);
47 }
48

49 }
50 else
51 {
52 syslog(’debug’,"1 creating lockfile $lockfile\n");
53 RouterLib::create_lockfile($lockfile);
54

55 syslog(’debug’,"1 performing reset\n");
56 RouterLib::reset_router($router);
57 syslog(’debug’,"1 reset done\n");

69

58

59 syslog(’debug’,"1 deleting lockfile $lockfile\n");
60 RouterLib::delete_lockfile($lockfile);
61 }
62 }
63

64 syslog(’debug’,"pw_reset done");
65 closelog;

Listing C.11: /var/php safe mode bin/pw reset.pl

70

	Contents
	Introduction
	Document Structure
	Text Formatting

	Vitels
	Vitels IP Security Module

	Hardware Installation
	Requirements
	Architecture

	Linux Installation
	Basic Installation
	Additional Software Installation
	Network Configuration
	Hosts
	Portal Server

	Disable Direct Root Login

	Module Installation
	Module Overview
	Host Configuration
	User Configuration
	SSH Configuration
	Additional Software

	Portal Server Configuration
	User Configuration
	SSH Configuration
	Create Authentication Key Pair for SSH Remote Login
	Login Redirection
	The namekill Script
	The Session Administration Script
	Encrypted LDAP Querying
	Module Reset Script
	Serial Port Configuration
	Minicom Configuration
	Mail System Configuration

	Testing the Setup
	Manual Testing
	Monitoring Script
	Logwatch

	Router Reset with help of a TFTP Server
	Overview
	What is TFTP?
	Router Reset in Detail
	Reset Script Changes
	Installing the Router Reset Script
	TFTP Server Configuration
	Manual Restore of a Router IOS over a TFTP Server

	Module Content
	Hands-On Session
	Basic Router Configuration
	Setting up Routing Information Protocol (RIP)
	Testing RIP
	Setting up the VPN
	Testing the VPN

	Conclusion

	Practical Experience
	Issues in practical use
	Troubleshooting Problems

	References
	Bibliography
	Linux Configuration Files
	/etc/fstab
	/etc/hosts

	Portal Server Custom Scripts
	Overview
	/bin/host1
	/bin/router1
	/root/namekill
	/root/update_shadow_ldap.cnds.unibe.ch_ssl.pl
	/usr/local/bin/stunnel_ldap.sh
	/root/module_reset.sh
	/root/module_test.sh
	/root/PwGenLib.pm
	/usr/share/perl5/RelaisLib.pm
	/usr/share/perl5/RouterLib.pm
	/var/php_safe_mode_bin/pw_reset.pl

