
Secure Communication: a New Application for
Active Networks

Manuel Günter, Marc Brogle and Torsten Braun

IAM-00-007

July 2000

1

.

2

Abstract

SplitPath is a new application for the easy, well-known and provably se-
cure One-time pad encryption scheme. Two problems hinder the One-time
pad scheme from being applied in the area of secure data communication:
the random generation and the distribution of this random data. SplitPath
exploits the flexibility of code mobility in active networks to address these
problems. Especially the random generation is studied in more detail.

CR Categories and Subject Descriptors:C.2.0 [Computer-Communication
Networks]: General; C.2.4 [Computer-Communication Networks]: Distributed
Systems; C.2.6 [Computer-Communication Networks]: Internetworking.

General Terms: Security, Experimentation.

Keywords: Active networking, intelligent networks, code mobility, ran-
dom generation, one-time pad, cryptography.

3

1 Introduction

A wide variety of encryption algorithms is in daily use to protect data communi-
cations. Good encryption algorithms base on a complex theoretical foundation,
which is sometimes secret. The average user can only guess the strength of an al-
gorithm by looking at governmental regulations for the key length of the algorithm
(no regulations means bad algorithm). Nevertheless, none of the commercial en-
cryption algorithms offers perfect security. New analysis methods or hidden back
doors may always come to daylight. However, there exists a well-known algorithm
which is very simple and perfectly secure: the One-time pad [Sch96]. Here is how
it works. Assume you have a bit stringP of n bits (P; pi 2 f0; 1g; i 2 0::n) which
you want to encrypt. For that purpose you take a string of equally distributed and
independent random bitsR; ri 2 f0; 1g; i 2 0::n and xor (addition modulo 2) it
bit-wise withP , resulting in the ciphertextC; ci = ri�pi. To decryptC,R is xor-
ed toC again. This works becauseri�(ri�pi) = pi. After the decryptionR must
be destroyed. It is assumed that onceR is generated, it is used for encryption and
decryptiononly once. That’s why the scheme is called One-time pad. Under these
assumptions the algorithm is provably secure. It is impossible to gain any knowl-
edge ofP without knowingR, becauseevery possible plaintextcould have lead to
a given ciphertext. Furthermore, in contrary to commercial encryption algorithms,
the One-time pad needs only one very light-weight operation (xor) for encryption
and decryption. However, the One-time pad is not practical for secure data com-
munication for the following reasons: (1) It needs a bit-streamR of true random
values with the same length as the message. (2) The receiver and the sender must
both possess the sameR. How canR securely get there?

This paper presents an approach using active networking [CBZS98, TSS+97]
to address both problems. An active network consists of active (programmable)
network nodes. The data packets that are transmitted through an active network can
contain code that the active nodes execute. Active networking is an instance of the
mobile agents paradigm tailored to networking needs. Active network packets (also
called capsules) access the networking functionalities of the nodes (e.g. forwarding
and routing) and change these functionalities for packets or classes of packets.

This paper presents how (for a given application scenario) active networking
enables us to use the One-time pad with its provable security and light-weightedness
for secure data communication.

In section 2 we present the basic idea how to address the distribution of the
random (problem 2). Section 3 describes how to generate the necessary random
(problem 1) and what the pitfalls are. An existing implementation using the well-
known active networking tool ANTS [WGT98] is presented in section 4. Section
5 presents performance measurements and section 6 concludes.

4

2 Distribution of Keys and Data

We said that with enough good random bits available, we can create an uncrack-
able bit stream using the One-time pad. However, the receiver must also possess
the random bits. A straight-forward solution is to first deliver the random bits in
a secure manner and later transmit the data. The sender could, for example, hand
a magnetic storage tape to the receiver, containing the random bits. This is a se-
cure but not very flexible application of the One-time pad. The use of a secure
communication medium1 allows the communicating parties to communicate later
using an insecure communication medium. But even if the medium for sending the
random is not secure, the scheme still works as long as no attacker has access to
both random and message bits. This principle is e.g. used when encryption keys
for data communication are exchanged using the postal service or the telephone
system. The SplitPath idea goes one step further. The random bits (interpreted as
the key) and the cipher text bits (plaintext xor-ed with the random bits) are sent
along at the same time on the same media buton different paths. In general this
scenario is not secure any more, since an attacker can eavesdrop both the random
string and the encrypted message and thus easily decrypt the original message. In a
network with centralised management at least the network provider will always be
able to do this. However, if the network is partitioned in autonomous sub-networks
(domains), as for example the Internet is, and if the two paths are entirely in differ-
ent domains, an attacker will have significantly more trouble. Thus, the application
of SplitPath has the following prerequisites:

� SplitPath traffic enters the untrusted networks only in split form (either ran-
dom bits or xor-bits).

� The paths of corresponding random bits and xor-bits never involve the same
distrusted network.

� The distrusted networks do not trust each other.

These prerequisites limit the application scenario of SplitPath, but there are
cases where the prerequisites are met. For example in the Internet some commer-
cial network providers compete with each other and offer redundant paths. Also,
physical networks using different technologies (e.g. optical networks and satellite
links) provide an application platform for SplitPath. Furthermore, the geographical
location of-, and the relation between some nations can provide an ideal applica-
tion scenario for the SplitPath scheme. The generic situation is depicted in figure
1.

1Assuming that the physical delivery of the magnetic tape is secure.

5

Manuel H. Guenter

Manuel H. Guenter

Trusted subnetTrusted subnet

Xor data packet

Random data packet

Pure data packet

Merge pointSplit point

Distrust

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

Distrusted networks

Distrusted networks

Figure 1: The application scenario for SplitPath.

We distinguish between the sender, the receiver, a split point and a merge-
point. Obviously, the split- and merge point needs to be located on a trustworthy
site. Depending on the sender, receiver and the network topology the ideal location
of these points varies, thus their implementation cannot be preconfigured in few
network nodes. Active networking brings the flexibility we need here. With active
networking the data packets can dynamically setup their private split (merge) func-
tionality in the nodes which are appropriate for them. No router configurations are
necessary. SplitPath capsules contain code that dynamically implements the split
and merge capabilities and controls the routing of the packets. These mechanisms
are described in section 4.

The next section shows how active networking can also help us getting the
‘good’ random bits which are needed in the split point.

3 Generating Random

For SplitPath, like for most crypto-systems, the availability of high quality random
material is crucial. The random bits must be independent and equally distributed in
order to be unpredictable. However, it is not easy to acquire such random in a com-
puting environment. Real random values can solely be created by real world inter-
action. Examples are: mechanical random devices (e.g. lottery machines, dices),
physical random (e.g. radioactive decay) and human behaviour (e.g. keyboard in-
terrupt times). Multiprocessing and networking devices can also be a source of
random bits [Wob98].

Here’s an example (adapted from the UNIX security tool SATAN [FV93] which
uses the current process and network status to generate random bits:
(ps -el & netstat -na & netstat -s & ls -lLRt /dev & w) | md5

6

Note that the Message Digest 5 (MD5) [IETF RFC 1321] secure hash algorithm
is used to scramble the text output of the other programs into a 16 byte sequence.

In SplitPath, we propose to use unpredictable traffic characteristics as seen in
networking devices and generate random bits with them. Active networking allows
the capsule to use itsownvarying queueing times within the network. The capsule,
being autonomous, can keep information about its creation time and ask the nodes
on its way about the local time. Note, that clock skew is actually good for the
random generation because it introduces another factor of incertitude.

The idea is that by traveling through the net each capsule generates random bits
for its own use. However, e.g. an IP packet can contain 64 KBytes of data. It needs
the same amount of random bits for applying the One-time pad.

3.1 Quantity and Quality of SplitPath Random

The quantity of random bits gained by network performance measurement is lim-
ited. This is a problem but we have many options to cope with the situation:

� Limit the payload of the capsule. Programmable capsules can fragment
themselves to smaller payload sizes. This produces more packets and thus
more random data per payload byte. It also adds bandwidth overhead. Note
however, that congestion eases the production of random bits, since it in-
volves a lot of non-predictable behaviour (see also section 5).

� Generate more random bits by sending empty packets. When capsules can
store data in nodes (see section 4) then we can use the idle time to send
packets without payload that store their performance statistics in the split-
node. Later, when real payload is transported, the capsule can use the stored
information to generate random.

� Multi-hop random generation. If the capsule executes at several nodes be-
fore the split node, it can calculate its performance statistics there, too. The
capsule takes the gained random bits with it and uses them at the split node.
Care must be taken when distilling random bits from several nodes, because
they are probably not completely independent.

These options do not affect the strength of the One-time pad, but they limit the
effective throughput of data. Another approach is to use a pseudo-random function
[Sch96]. This function uses the collected random data as a seed and generates
a bit sequence of arbitrary length that can be used to xor the data. However, by
’stretching’ the random bits like that, we give up the perfect security of the One-
time pad. The next subsection contains a detailed analysis.

7

3.2 Pitfalls of Stretching Random Bits

When less random bits than message bits are available, we need a functionf (the
pseudo random generator) that uses the available random bits to generate bits to
replace the missing random bits. The generated bits should be equally distributed.
The functionf cannot be assumed to be secret. This is problematic, since we loose
the provable security of the One-time pad. In this section we outline a possible at-
tack given such anf and knowledge about the syntactical structure of the encrypted
message. Then we describe how to rule out this attack.

The assumptions and the attack. Let’s assume thatf works block-wise and
stretches the random bits by factorb to encrypt all data bits in the block. E.g. if
b = 2, one random bit is extended to generate 2 pseudo-random bits which then are
used to generate the One-time pad. Assume, that the data bits (clear text) encode
language-specific digits usingl bits per digit (e.g. l = 8 for one ASCII byte).
Furthermore, bep the average probability that arandomlanguage-specific digit in
the message data stream is syntactically correct. E.g. in the ASCII string ‘What
is the next lette_’, not all letters can be appended, so thep for ASCII encoded
English language is obviously smaller than 1. These assumptions given, an attacker
can break the ‘stretched random’ One-time pad by a brute-force attack. Here is a
stupid2 version of an attacking algorithm. (1) choose a search depthd (additional
search depth may help attacking). (2) For all bit-combinations ofdl bits do: (2.1)
extend the bits with the stretching functionf . (2.2) Apply the One-time pad to the
ciphertext. (2.3) Apply a syntactical check to the result. If the check is okay then
(2.4) output the result, consume the ciphertext bits and go to (1). (3) Output that
the cracking has failed.

Example. Assume that an attacker can sniff the One-time pad output7wØ=:Þ?/
(8 bytes), of which he knows that it encodes ASCII text (l = 8). He knows the
functionf and also that the encryption usedb = 8. Thus, the sender expanded one
(unknown) byte of true random to eight bytes and xor-ed them to the (unknown)
plaintext. The attacker uses the presented algorithm withd = 1. The algorithm
generates all bit-combinations of 8 bits (all byte values), expands them withf

(sinceb = 8 this produces 8 bytes) and xor-s the result to the ciphertex (decryption
try). Then it applies a simple dictionary check. Here’s what the output of our
prototypical implementation of the cracking algorithm looks like (? represents a
non-ASCII byte value):

??u???hw ??u???h? ??u????x ??u????? ??u??nix ??u??ni? ??u??n?y ??u??n??
a ?d‘?cr a ?d‘?c? a ?d‘??s a ?d‘??? a ?d‘uds a ?d‘ud? a ?d‘u?t a ?d‘u??
a ?d??ds a ?d??d? a ?d???t a ?d???? a ?d?ret a ?d?re? a ?d?r?u a ?d?r??
a ??c?ds a ??c?d? a ??c??t a ??c??? a ??cret a ??cre? a ??cr?u a ??cr??

2An improved version would also contain backtracking.

8

a ????et a ????e? a ?????u a ?????? a ???sfu a ???sf? a ???s?v a ???s??
a sec?ds a sec?d? a sec??t a sec??? a secret ***Check ok!***

The original message is revealed to be ’a secret’.

Analysis. The success of this algorithm is determined by the fact, that in case the
stretching off produces a meaningful result, the result must be the cleartext data.
This assumption is not necessarily true. The following analysis shall bring more
clarity. Step (2) generates all value-combinations ofdl bits. By applyingf to these
bits we getbdl bits, which encodedb message specific digits. The probability that
these digits are meaningful ispdb. Therefore, the expected number of meaningful
textsE, that the algorithm produces in the iteration of (2) is:

E = 2dlpdb = 2d(l+blog2(p)) (1)

If this number is significantly smaller than 1, we can be sure that a meaningful
decryption try (step 2.4) reallyis the clear text and not just occurred by chance. If
the number is significantly higher than 1, the decryption try can as well be correct
by pure hazard. Note, that forb = 1 (pure One-time pad), the formula reflects the
mean number ofall syntactically correct texts of that length. We can also see that
the search depthd only helps cracking, if the terml + blog2(p) is smaller than 0.
Let us assume, that the data carry bytes sol = 8. Thus the brute force attack is
possible ifb > �8=log2(p). In the English language, there are only an average of
two letters appendable to English text. If the text is encoded in ASCII this leads
to p � 1=128. We can now apply the formula to see what the maximum secure
stretching factorb in that case is:b < �8=log2(1=128) = 8=7. This means, that at
least 7 true random bits must be used to encrypt 8 bits of an English ASCII encoded
text message, in order to avoid the possibility of a brute force attack. We can also
come to this result by following the information theoretical approach [Sha49].

Information theoretical analysis. In [Hel77] Hellman showed that the expected
numberP of different keys that will decipher a ciphertext message to some intelli-
gible plaintext of lengthn (in the same language as the original plaintext) is given
by the following formula:

P = 2
H(K)�nD

� 1 (2)

H(K) is the entropy of the crypto-system used,n is the number of digits sent
andD is the redundancy of the coding of the plaintext message (e.g. ASCII en-
coded English text).

P is basically the same asE in our previous calculation, but it deals also with
the fact, that there must be one intelligible plaintext (the original one), which boils
down to the -1 in this formula. Without this, we are now going to show that the

9

equations (1) and (2) are equivalent. Since we use an equally distributed keyspace
(the seeds are random)H(K) is equal to the key length in bits3. However, our
seed bits are generated per packet thus the number of key bits (and thusH(K)) is
dependent on the number of bytes sent (n). The stretching factorb of the previous
calculation is useful here, since we can express the key length for a message of
lengthn as follows: H(K) = nl=b (as before,l is the number of bits used to
encode a digit). Thus we get:

P = 2
nl=b�nD

� 1 = 2
n(l=b�D)

� 1

Then,n is the number of encrypted digits. Using the parameters of the first ap-
proach this is the search depth multiplied with the stretching factor:n = db.

P = 2
db(l=b�D)

� 1 = 2
d(l�bD)

� 1

Finally, we need to transform the redundancyD which is the number of bits which
is not really used to encode a digit. The number of bits used to encode a digit is
l, but onlyp2l digits are appendable on the average (assumption of the previous
paragraph). Therefore, onlylog2(p2l) = l + log2(p) are necessary to encode a
digit. So the redundancy isD = l � (l + log2(p)) = �log2(p). By substitution
of D we have now reduced the formula (2) to (1) (except of the substraction of the
one know solution):

P = 2d(l�b(�log2(p)) � 1 = 2d(l+blog2(p)) � 1

Random expansion in practice. We have shown that when we want to ’stretch’
the random data by larger factors we can not rely any more on the perfect secrecy
of the One-time pad. A brute-force attack is then theoretically possible. Instead,
we have to carefully design the pseudo-random generator (thef function). First of
all, the seed length must be large. We propose 128 bits. The previous paragraph
showed that a brute attack in principle will lead to the decryption of the packets
since in the worst case there is only one random bit per packet. For IP packetsb

can therefore become as large as219. However, in practice the attack will not be
successful, because there are too many bit combinations to try (an average of2127).
If a million computers would each apply a billion decryption tries per second the
average search would still last about 5*1015 years.

Second, the pseudo random generator should resist cryptanalysis. Many such
generators exist and are used for so-called stream ciphers [Sch96]. Using SplitPath
with expanded random is very similar to using a stream cipher in that both xor

3The formula was deduced with a fixed key length in mind.

10

the plaintext with a secure pseudo random bit stream. However, SplitPath differs
from stream ciphers in that it uses the pseudo random generator only at the sender
side. Furthermore, the flexibility of an active network platform allows SplitPath
to dynamically change the generator used, even during an ongoing communica-
tion. Finally, the seed of the generator is updated frequently (as soon as enough
random bits have been collected by the capsules), and the seed is random. This is
different from e.g. the stream cipher A5 (used for mobile telephony) which uses a
preconfigured seed.

4 Implementing SplitPath in an Active Network

4.1 Implementing SplitPath with the Active Node Transfer System
ANTS

We implemented the SplitPath application using the active node transfer system
ANTS [WGT98]. ANTS is a Java based toolkit for setting up active networking
testbeds. ANTS defines active nodes, which are Java programs possibly running
on different machines. The nodes execute ANTS capsules and forward them over
TCP/IP. ANTS defines a Java classCapsule . The class contains the method
evaluate which is called each time the capsule arrives at a node. New capsule
classes can implement new behaviour by overriding theevaluate method. The
node offers services to the capsule such as the local time, forwarding of the capsule
and a private soft-state object store (callednode cache). Collaborating capsules can
be grouped to protocols. Capsules of the same protocol can leave messages for each
other using the node cache. We defined such a protocol to implement the SplitPath
concept as presented in section 2 by introducing three new capsule subclasses.

� ThePathfinder capsule marks nodes as splitting or merging points and
sets up the split paths using the node caches. Note that several split and
merge points can be set up per communication.

� The Normal capsule is the plaintext message carrier. It checks if it is on
a splitting point. If not, it normally forwards itself towards the destination.
If it is on a splitting point, it applies the One-time pad computation to its
payload. This results in twoSplitted capsules, one carrying the random
bits, the other the xor-ed data in the payload. TheNormal capsule tells
the node to forward the two newly producedSplitted capsules instead of
itself, thereby using the information that was setup by thePathfinder .

� The Splitted carries the encrypted- or the random data along a seper-
ate path. It forwards itself using the information that was setup by the

11

Pathfinder . It checks if it has arrived on a merge point. If so, it checks
if its split twin has already arrived. In that case it xor-s their contents (de-
cryption) and creates anNormal capsule out of the result. If the twin is not
there, it stores itself on the node cache to wait for it.

Applications and Interfaces. We wrote two applications that send and interact
with the implemented capsules. The first application provides a graphical inter-
face which allows the user to dynamically set up split and merge points using the
Pathfinder . Furthermore, the user can enter and send text data using theNor-
mal capsule. We also extended the nodes with a sniffing functionality. Such ‘spy
nodes’ log capsule data to validate and visualise the SplitPath encryption. Figure
2 shows the application window (top) with two spy nodes and the receiver node
(bottom). The received and the sniffed data is displayed in the status bar of the
windows.

We implemented a second application which transfers a file (optionally several
times) in order to test the performance by generating load.

Due to space limitations we cannot go into further details. Those are available
in [Bro00]. However, we have to get a closer look at the collection of random bits
because the random generation is crucial for the security of SplitPath.

4.2 Random Generation and the Application of the One-time pad

In order to be able to send large packets, we decided to use pseudo random gen-
erators to extend the collected random bits (see section 3). EachNormal capsule
contains its creation time. When arriving at a split node, it uses this time and the
node’s current time to calculate the delay it has so far. It stores the last few bits as
random seed. The number of bits is configurable and depends on the clock reso-
lution. Unfortunately, the Java system clock resolution used by ANTS is bound to
one millisecond and the delay is in the order of few milliseconds. Therefore, we
used only the least significant bit. Thus, every packet stores one random bit in the
split node (using the node cache). This bit can be considered as random, since it is
influenced by the speed and current usage of computing and networking resources.
As said before, the chosen seed length is 128 bits. So for every 128th capsule a
complete seed is available. This capsule uses the seed to store a new random gen-
erator in the node cache. The next capsules use the generator for their encryption,
until enough fresh random has been collected to install a generator with the new
seed (key refreshing). For the bootstrapping we foresee two schemes. Either 128
empty packets are sent, or a (less secure) seed is used that can be generated by the
first packet.

12

Figure 2: The graphical user interface.

13

We have implemented two random generators. The first one is based on the se-
cure one-way hash function MD54. The seed is stored in a byte array of 16 bytes.
Furthermore, there is an output buffer of 16 bytes containing the MD5 hash value
of the seed buffer. The generator delivers 8 bytes of the output buffer as pseudo-
random values. Then, the seed is transformed and the output buffer is updated
(MD5 hash). The ’one-way’ property of MD5 assures that an attacker cannot re-
construct the seed. Thanks to the avalanche property of MD5 the transformed seed
produces an entirely different hash. Our seed transformation is equivalent to the
increment of a long integer (8 bytes) by one. Thus, the seed only repeats after
264 transformations. Long before that SplitPath will replace the seed with freshly
gathered random values. We think that for the presented reasons this pseudo ran-
dom generator is reasonably secure. However, since we are not cryptographers, we
implemented also the pseudo random generator of RC4. RC4 is a stream cipher de-
veloped by RSADSI. It is used in applications of e.g. Lotus, Oracle and Netscape
(for details see [Wob98]).

5 Evaluation of SplitPath

In order to evaluate SplitPath we ran the implementation on our institute network.
Six ANTS nodes were set up on six different machines (sender, receiver, a split and
a merge node and two sniffers; see figure 3). The split node ran on a SPARCstation
5/170. The encrypted capsules ran over two different subnets and were merged
in a machine of a third subnet. The subnets are 100 Mbps Ethernets. We used the
aforementioned file transfer application to generate load. Our interest was focussed
on the quality of the encryption. We measured this by collecting all generated seeds
and apply statistical tests. Furthermore, we applied statistical tests to the MD5
pseudo random generator presented in the previous section.

In order to test the quality of the MD5 random generator, we initialised it with
all seed bytes set to zero. Then we fed its output into a framework for statistical
tests. Testing with samples of 40 MByte size, the produced data succeeded the
byte frequency test, the run test [Knu81] and the Anderson-Darling test [IETF RFC
2330]. This is no prove that the generated pseudo-random bits are of high quality,
but it shows that they are not flawed.

Seed generation. We evaluated the generated seed bytes using statistical tests.
For example we analysed 3K seed bytes (192 complete seeds, protecting 24576
packets). The seeds pass the byte frequency test (�2 test on the distribution of the
measured byte values [Knu81]). The byte frequency of this set is shown in figure

4ANTS includes the Message Digest 5 (MD5) [IETF RFC 1321] functionality.

14

Manuel H. Guenter Manuel H. Guenter

Distrusted subnet

Trusted subnet

Distrusted subnet

Sender

Trusted subnet

Receiver

Split point Merge point

Sniffer

Sniffer

Figure 3: The network topology for the evaluation.

5 (left), where the number of occurrences of each byte value (0-255) is counted.
Unfortunately, we also experienced seed generation that was not uniformly dis-
tributed in situations with low load. Figure 5 (right) shows the value of each seed
byte (interpreted as 2-complement) as it was created in time.

2

4

6

8

10

12

14

16

18

20

22

0 50 100 150 200 250 300

N
r

of
 o

cc
ur

en
ce

Byte value

Byte value histogram

Byte frequency

-100

-50

0

50

100

0 200 400 600 800 1000 1200 1400

S
ee

d
by

te
 v

al
ue

Bytes

Value of generated seed bytes

Figure 4: Good seed (left), bad seed (right).

We see some concentrations of byte values especially around the value 0. Our
investigation revealed three reasons that come together to form this effect. (1)
The coarse resolution of Java’s clock. (2) ANTS does not send one capsule per
packet, and the packet code is not send within the capsule, but dynamically loaded
and cached. Thus, consecutive capsules are handled immediately after each other
without delaying I/O operations. (3) The local network used has very low delay
and jitter.

These problems are not discouraging because normally they do not all come
together and there are also countermeasures. By introducing congestion we could

15

show that given realistic wide area delays as studied e.g. for the Internet [EM99],
the seeds will be equally distributed. Also, SplitPath does not necessarily rely on
one single random source (the network jitter). We also foresee the exploitation of
additional random sources offered by active networking e.g. execution times of
capsules or properties of the node cache. Finally, we can once again exploit the
fact that the capsules are programmable. The procedure for collecting seed values
can easily be extended to contain statistical methods to test the seed before it is
used. So if for some unforeseen reason the seed is not good enough, the capsule
uses the old random generator a little longer until more random bits are collected.
Also, methods described in [Sch96] can be used by the capsule to distill random
from biased random bits.

6 Conclusion

In this paper we presented SplitPath, a new application for the well-known and
provably secure One-time pad encryption scheme. SplitPath uses the ability of ac-
tive networks and the trust relations in heterogeneous networks to solve the two
problems which otherwise render the One-time pad scheme useless: the random
generation and the distribution of this random data. SplitPath can dynamically set
up and use disjunct paths through network domains that do not collaborate, such
as competitive network providers or countries. Encrypted data and random data is
forwarded on different paths. The One-time pad assures that only when both data
sets are available, the data can be decrypted again. With the active networking of
SplitPath the decryption can be done at the receiver of the data or at a merging point
in a trusted domain of the active network. Active networking not only allows Split-
Path to dynamically set up the One-time pad splitting inside of the network, it also
helps to collect good random. This can be very useful for other crypto-systems,
too. SplitPath implements data capsules that use the network delays that they ex-
perience as initialisation for the random generation. With SplitPath we present an
application in a (albeit specific) environment which cannot be implemented using
conventional ‘passive’ networking, thus we promote the future study and (hope-
fully) deployment of active networking.

References

[Bro00] Marc Brogle. Active networking with ANTS.
http://www.brogle.com/marc/uni/ants/ants.php, March 2000. Stu-
dent project.

16

[CBZS98] K. Calvert, S. Bhattacharjee, E. Zegura, and J. Sterbenz. Directions in
active networks.IEEE Communications, 36(10), October 1998.

[EM99] Tamas Elteto and Sandor Molnar. On the distribution of round-trip
delays in TCP/IP Networks. InProceedings of the 24th Conference on
Local Computer Networks LCN’99, pages p.172–181. IEEE Computer
Society, October 1999.

[FV93] Dan Farmer and Wietse Venema. Improving the security of your site
by breaking into it. ftp://ftp.porcupine.org/pub/security/admin-guide-
to-cracking.101.Z, 1993.

[Hel77] M. E. Hellman. An extension to the shannon theory approach to cryp-
tography. IEEE Transactions on Information Theory, IT-23(3):p. 289–
294, May 1977.

[Knu81] D. E. Knuth.The art of computer programming, volume 2 Seminumer-
ical Algorithms. Addison-Wesley, 2 edition, 1981.

[Sch96] B. Schneier.Applied Cryptography. John Wiley and Son, 1996.

[Sha49] C. E. Shannon. Communication theory of secrecy systems.Bell System
Technical Journal, 28(4):p. 656–715, 1949.

[TSS+97] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J. Wetherall, and
G. J. Minden. A survey of active network research.IEEE Communica-
tions Magazine, 35(1):80–86, January 1997.

[WGT98] D. Wetherall, J. Guttag, and D. L. Tennenhouse. ANTS: A toolkit for
building and dynamically deploying network protocols. InIEEE OPE-
NARCH ’98, April 1998. San Francisco.

[Wob98] Reinhard Wobst.Abenteuer Kryptologie. Addison-Wesley, 1998.

17

