
IMPLEMENTING A RELIABLE OVERLAY
MULTICAST PROTOCOL ON WIRELESS

SENSOR NODES

Masterarbeit
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Gabriel Martins Dias
2011

Leiter der Arbeit:
Professor Dr. Torsten Braun

Institut für Informatik und angewandte Mathematik

Contents

Contents i

List of Figures iii

List of Tables vii

1 Introduction 1
1.1 Motivation . 1
1.2 Goal . 3
1.3 Structure of the Thesis . 3

2 Related Work 5
2.1 Wireless Sensor Networks . 5

2.1.1 Wireless Sensor Nodes . 5
2.1.2 Heterogeneous Wireless Sensor Networks 6

2.2 Communication Schemes . 7
2.2.1 Communication Protocol - Internet Protocol 7
2.2.2 Transport Protocols . 7
2.2.3 Routing Schemes . 9

2.3 Hardware . 14
2.4 Contiki Operating System . 15

2.4.1 Characteristics . 16
2.4.2 Protocol Stack . 16
2.4.3 Transport Protocols . 18

3 Sensor Nodes Overlay Multicast Communication (SNOMC) 21
3.1 Node Roles . 21
3.2 Definitions . 22
3.3 Message Types . 23

3.3.1 Default Messages . 23
3.3.2 Notification Messages . 23
3.3.3 Acknowledgements . 24

3.4 Design Models . 24
3.4.1 Receiver-driven vs. Source-driven Mode 25

i

3.4.2 Caching Scheme . 25
3.4.3 Transmission Scheme . 26

3.5 Data structures . 27
3.6 The SNOMC Algorithm . 28

3.6.1 Assumptions . 28
3.6.2 Phases . 28

4 Implementation 37
4.1 SNOMC Implementation in Contiki . 37

4.1.1 Memory Allocation . 38
4.1.2 Transmission Procedure . 40
4.1.3 Receiving Procedure . 43
4.1.4 Pre-defined Values . 43
4.1.5 Additional Details . 46

4.2 UDP and TCP Implementations in Contiki . 48
4.2.1 Application using UDP . 48
4.2.2 Comparing SNOMC and UDP algorithms 50
4.2.3 Application using TCP . 51

5 Evaluation 53
5.1 Scenario . 53
5.2 Test Configuration . 54
5.3 Results . 55

5.3.1 Transmission of a Configuration (20 bytes) 58
5.3.2 Transmission of a Code Update (1000 bytes) 60

6 Conclusions and Future Work 65
6.1 Conclusions . 65
6.2 Future Work . 66

Bibliography 67

ii

List of Figures

1.1 Heterogeneous Network - WSN Management Scenario. 2

2.1 The architecture of a Wireless Sensor Node[1]. 6
2.2 Client-server interaction during a TCP connection. 8
2.3 The TCP header. 9
2.4 Client-server interaction during a UDP transmission. 9
2.5 The UDP header. 9
2.6 Many unicast transmissions. 10
2.7 A broadcast transmission. 11
2.8 A multicast transmission. 12
2.9 Tmote Sky module description. [2] . 15
2.10 TelosB block diagram. [3] . 16
2.11 The protocol stack in Contiki. 17
2.12 TCP and µIP headers of the Contiki’s implementation. 18
2.13 UDP and µIP headers of the Contiki’s implementation. 19

3.1 Nodes have different roles in SNOMC. 22
3.2 Transmission of notification messages using positive acknowledgements. 24
3.3 Message types in SNOMC. 27

(a) Data message type in SNOMC. 27
(b) Start group message type in SNOMC. 27
(c) Finish group message type in SNOMC. 27
(d) Content acknowledgement message type in SNOMC. 27
(e) Positive acknowledgement message type in SNOMC. 27
(f) Start acknowledgement message type in SNOMC. 27

3.4 Flowcharts of the SNOMC’s early phase. 29
(a) Flowchart in the source node. 29
(b) Flowchart in other nodes. 29

3.5 Sequence diagram of the early phase. 29
3.6 Flowchart of the transmission phase in the source node. 30
3.7 Flowchart of the transmission phase in nodes that do not cache any fragment. . 31
3.8 Flowchart of the transmission phase caching the fragments and using the first

forward approach. 31

iii

3.9 Flowchart of the transmission phase caching the fragments and using the first
check approach. 32

3.10 Flowchart of the transmission phase in the receiving node. 32
3.11 Sequence diagram of the transmission phase first forwarding the fragments. . . 33
3.12 Sequence diagram of the transmission phase first checking the fragments. . . . 33
3.13 Sequence diagram of the transmission phase first forwarding the fragments. . . 33
3.14 Sequence diagram of the transmission phase first checking the fragments. . . . 34
3.15 Flowcharts of the SNOMC’s final phase. 36

(a) Flowchart in the source node. 36
(b) Flowchart in other nodes. 36

3.16 Sequence diagram of the final phase. 36

4.1 Protocol stack with SNOMC. 37
4.2 Snapshot of the memory consumption. 40
4.3 Flowchart of the UDP application’s algorithms. 49

(a) Flowchart in the source node. 49
(b) Flowchart in receiving nodes. 49

4.4 Sequence diagram of the UDP implementation. 49
4.5 The scenario used to compare the algorithms. 50
4.6 Minimum number of transmissions used to transmit one fragment. 50
4.7 UDP implementation doing a transmission to one branch without packet losses. 51
4.8 Flowchart of the TCP application’s algorithms. 52

(a) Flowchart in the source node. 52
(b) Flowchart in receiving nodes. 52

4.9 Sequence diagram of the TCP implementation. 52

5.1 Distribution of the nodes inside the building. 54
5.2 Time to transmit 20 bytes in the 2-nodes scenario. 57

(a) With TCP measurements. 57
(b) Without TCP measurements. 57

5.3 Numbers observed after transmitting 20 bytes in the 2-nodes scenario. 58
(a) Percentage of packet losses. 58
(b) Average number of transmissions. 58

5.4 Time to transmit 20 bytes in the 6-nodes scenario. 59
(a) With TCP measurements. 59
(b) Without TCP measurements. 59

5.5 Numbers observed after transmitting 20 bytes in the 6-nodes scenario. 59
(a) Percentage of packet losses. 59
(b) Average number of transmissions. 59

5.6 Time to transmit 1000 bytes in the 2-nodes scenario. 60
(a) With TCP measurements. 60
(b) Without TCP measurements. 60

5.7 Numbers observed after transmitting 1000 bytes in the 2-nodes scenario. 61
(a) Percentage of packet losses. 61

iv

(b) Average number of transmissions. 61
5.8 Time to transmit 1000 bytes in the 6-nodes scenario. 62
5.9 Numbers observed after transmitting 1000 bytes in the 6-nodes scenario. 62

(a) Percentage of packet losses. 62
(b) Average number of transmissions. 62

v

List of Tables

4.1 Comparing UDP and TCP in Contiki. 38

5.1 Comparing SNOMC transmissions in the 2-nodes scenario (ideal case). 56
5.2 Comparing UDP transmissions in the 2-nodes scenario (ideal case). 56
5.3 Comparing SNOMC transmissions in the 6-nodes scenario (ideal case). 57
5.4 Comparing UDP transmissions in the 6-nodes scenario (ideal case). 57

vii

Acknowledgment

First I would like to give my special thanks for all support I received during the development of
this work.

Thank you Prof. Dr. Torsten Braun for the opportunity to be in the research group Computer
Networks and Distributed Systems. I also would like to express my profound gratitude to Gerald
Wagenknecht who supported me during the course of my diploma, helped me with technical and
theoretical orientations, and sacrificed a lot of his spare-time proof-reading my thesis several
times in order to achieve the best results. My special thanks go to Markus Anwander for all of
the technical hints which helped me improve the implementation performance and to become
familiar with Contiki.

Finally, I would like to thank my parents, Orlando and Maria Lucia Dias, for their unwaver-
ing support as well as all of my friends that encouraged me to write this thesis.

ix

Chapter 1

Introduction

1.1 Motivation

Wireless sensor networks[4] (WSNs) are deployed in all kinds of environments. They are com-
posed mostly of simple wireless sensor nodes, which offer very limited memory and may not
have high energy consumption because their source power use to be common batteries rather
than electric power. Since these nodes do not have high computational capacity, they are usually
used to collect data from the environment and transmit them to a computer placed inside the
network.

WSNs can be used for various applications in many areas such as monitoring building
structures[5]. In these scenarios, the wireless sensor nodes are responsible for detecting vibra-
tions, temperature and humidity, and transmitting the data to a central computer. Their software
may work over a middleware in order to not be distracted by low-level abstractions, maintain-
ability and code reuse. The software requirements of these applications combine two different
challenges: they must run for long periods of time and transmit a large amount of collected data.

Even though these most common software requirements are also applicable to military
applications[6], there are some new specific requirements in these environments such as security
and quality of service to be supported by the WSNs. The different priorities in these environ-
ments include large-scale networks, self-configuration, network connectivity and maintenance,
in addition to energy consumption. The WSNs may also work with well-defined topology and
hierarchy strategies on its nodes. The communication between these wireless sensor nodes must
save time as well as network bandwidth.

The cases above exemplify general uses of the WSNs with nodes deployed and distributed
non-uniformly among a determined area. This configuration brings about a new issue: Occa-
sionally the wireless sensor nodes may have their software maintained and updated in order to
fix bugs or to change business models according to the collected data or environmental changes.

Compared to the transmission of the collected data, management tasks have more demanding
requirements. For data collection, the data is transmitted from one or many sensor nodes to one
base station, usually with a low data rate and not necessarily in a reliable way. Management of
wireless sensor nodes requires reliable transmissions and has “bursty” traffic, because of the size
of the updates. Therefore, the large number of extra messages transmitted by the nodes through
the established connections can become a problem.

1

IEEE
802.11

Internet

IEEE
802.3

management
station

management
station

mesh
node

sensor
nodes

Figure 1.1: Heterogeneous Network - WSN Management Scenario.

Software updates can be done using either User Datagram Protocol[7] (UDP) or Transmis-
sion Control Protocol[8] (TCP) as transport protocols. The former produces less overload on the
network and is unreliable, while the latter provides trustworthy connections with the disadvan-
tage of a significant increase in the number of messages.

These protocols are standard solutions on the Internet and are capable of providing unicast
and multicast communications between two or more points. The unicast option is not feasible in
large wireless networks due to the many redundant connections during the transmission. On the
other hand, multicast communication can be a solution so that one computer can communicate
with a group of other nodes without transmitting the same message more than once. Unfortu-
nately, in order to avoid problems like network flooding and denial-of-service attacks that can
interrupt the network traffic, IP Multicast has not been widely deployed in the global Internet
and is not really usable by end-users.

However, the multicast functionality can be implemented at the application level; this con-
cept is called Application Level Multicast[9] (ALM) or just Overlay Multicast. In this approach,
the nodes can transmit data to the others using groups based on the multicast communication
but organized by the application. Thus, the routers do not interfere even if the messages go to
different sub-networks, because it is based on the Peer-to-Peer[10] (P2P) paradigm.

Large networks may contain different hardware architectures integrating with each other as
shown in Figure 1.1. Computers and also wireless mesh nodes can improve communication
in order to avoid problems such as network congestion. The main focus is to increase network
productivity by keeping nodes saving computational time to connect and to transmit data through
the network.

This type of heterogeneous network requires a common way to transmit data over transpar-
ent connections. Internet Protocol[11] (IP) and IP-equivalent (such as µIP[12]) are the most
used implementations to interconnect them. Since the nodes can easily communicate despite
their hardware restrictions, they will transmit their data without worrying about the neighbours’
technologies. As a result, the network will be scalable and will perform as well as the simpler
configurations.

2

1.2 Goal

The main goals of this thesis are to implement, optimize, and evaluate the Sensor Nodes Overlay
Multicast Communication[13] (SNOMC) protocol’s performance in a real-world WSN.

SNOMC provides end-to-end reliable overlay multicast communication within a manage-
ment station and its many nodes. The amount of transmitted data may vary from a few bytes
(such as configuration changing) to large contents (in case of code updates, for example). For
data transmission to be successful, redundant unicast connections must be avoided in order to
prevent a big overload on the network during the transmission period. The protocol is reliable,
which means that if a host starts to receive data, it will receive the whole content and the proto-
col must handle packet losses and out-of-order delivering problems that might occur during the
transmission. It would be a problem if the receiver did not receive either new configurations or
software updates transmitted by the management station.

Another important aspect is the scalability. The protocol must deliver good performance
with a large number of participating nodes as well as with a smaller number of transmissions.

1.3 Structure of the Thesis

Chapter 2 contains an explanation of WSNs, including their environmental requirements and
specifications. After this overview, the nodes’ hardware and software characteristics are pre-
sented. Some research done in the past and previously used solutions are also described. Chapter
3 contains details about SNOMC with diagrams and figures for further explanation. The imple-
mentations of SNOMC and two other versions that use UDP and TCP as transport protocols
are shown in Chapter 4. Chapter 5 describes test scenarios, and obtained results are evaluated.
Finally, Chapter 6 presents conclusions and an outlook to future work.

3

Chapter 2

Related Work

2.1 Wireless Sensor Networks

A Wireless Sensor Network[4] (WSN) is composed of wireless sensor nodes and computers.
Extra devices can be added in order to improve performance and reduce energy consumption in
the nodes. The following sections describe the nodes and details about the WSNs’ architectures.

2.1.1 Wireless Sensor Nodes

In recent years, small embedded systems have become popular in certain industries, military
forces[6] and for environmental monitoring[5]. They are characterized by a low level of power
consumption, portable size, and low cost. Their physical constraints do not prevent them from
being self-sufficient and part of a larger network.

Usually, it is possible to configure and replace necessary components such as the flash mem-
ory and the radio processor according to the application requirements. The embedded micropro-
cessor has some basic functionalities. To manage data collected by the sensors, perform power
management algorithms, interface the sensor data to the physical radio layer and manage the
radio network protocol are typical examples of these functionalities[14].

Figure 2.1 shows a wireless sensor node’s architecture. Besides the processing units, it may
be possible to see one or more sensors used to detect environmental changes like humidity,
temperature, and even movements. Since these nodes have limited memory capacity, their main
function is to collect data and forward it to either a real computer, a server, or a mesh node.
Furthermore, one of the most important requirements for any wireless sensor node is to minimize
the power consumption of the devices. In comparison with other basic hardware, a radio system
consumes a large amount of battery power and requires good management algorithms to give
the nodes a long lifetime.

The wireless sensor nodes present an event-driven architecture model and the algorithms
have to handle the sensed events and process the corresponding collected data. The idea is to
minimize the power consumed by the device and, to make this possible, the embedded micro-
processor may be capable of managing radio power, sensors and any other hardware attached to
the node.

5

Location Finding Unit Mobilizer

Processor

Storage

TransceiverAnalog-Digital
ConverterSensors

Power Unit Power Generator

Application
depending

units

Figure 2.1: The architecture of a Wireless Sensor Node[1].

2.1.2 Heterogeneous Wireless Sensor Networks

Usually, wireless sensor nodes have limited transmission power and require multi-hop paths to
establish a communication inside a WSN. As a consequence of this, many packets must be sent
through the network, and problems such as collisions and interferences can cause many packet
losses.

In order to improve these connections, wireless mesh nodes are used to divide large networks
into smaller WSNs[15]. Thus, there are fewer hops inside the networks and less transmissions
are required to establish connections. These networks with different node types are called het-
erogeneous networks and can be handled as simple WSNs from the programmer’s perspective.

In some cases, wireless mesh nodes may be added and removed during the system operation,
and no extra administrative procedure has to be executed in order to configure them. They only
need a communication interface to realize this functionality and to increase the quality of the
links, as well as their messages’ throughput.

Figure 1.1 shows different device types deployed in the heterogeneous networks. Different
wireless sensor node’s architectures, wireless mesh nodes, and computers can be observed. In-
side this system, the differences between the machines must be transparent at the application
level. From the communication point of view, it is feasible by working over the TCP or UDP
layers, but it also has to consider the limited resources from the simple nodes.

Eventually, the software of the nodes located in the heterogeneous networks has to be up-
dated in order to fix defects, increment the functionalities or even change the behaviour of the
nodes. In this scenario, such management tasks are controlled by the management station and
the mesh nodes act as a communication gateway between the different sensor sub-networks. To
establish a communication venue between the management station and the sensor nodes there
are three main possibilities: unicast, broadcast, and multicast communication.

6

2.2 Communication Schemes

Wireless sensor nodes have limited options for establishing a communication channel between
themselves or other devices. In this section, transport and communication protocols are de-
scribed, as well as the positive and negative aspects of each option.

2.2.1 Communication Protocol - Internet Protocol

The Internet Protocol[11] (IP) is the most used communication protocol and the standard on the
Internet Protocol Suite[16]. It is responsible for addressing hosts and routing sent packets from
a source host to the destination host, even if they are on different IP networks.

IP layer provides best effort delivery. Therefore, there is no guarantee about the proper
delivery of the datagrams and the reliability of the service. Thus, some errors such as data
corruption, lost data packets, duplicate delivery, and out-of-order packet delivery may occur in
this scenario.

2.2.2 Transport Protocols

Transmission Control Protocol (TCP)

As discussed above, IP does not provide any kind of reliability and TCP[8] was developed in
order to cover this problem at the transport layer. To achieve this, TCP adapts to properties of
the network (according to different locations, topologies and hierarchies) and is robust (using
retransmissions, packet reordering and acknowledgement schemes) in the face of many kinds of
failures that may occur at the lower layers.

The basic and ideal client-server interaction is shown in the Figure 2.2 and can be described
as:

1. Client establishes a connection by sending a synchronize (SYN) packet.

2. Server answers the SYN packet with an acknowledgement (ACK) packet.

3. Client completes the three-way handshake with an ACK. Connection established.

4. Client sends the request. May be multiple packets.

5. Client finishes the request. It sends a final (FIN) packet to indicate that it is done sending.

6. Server acknowledges the request with an ACK packet and the FIN packet.

7. Server answers the request with a reply.

8. Server sends a FIN packet to indicate that it is done answering.

9. Client answers the received FIN packet and closes the connection.

10. Server closes the connection.

7

Client Server

ACK(SYN)
request

FIN

ACK(request+FIN)

SYN, ACK(SYN)

SYN

reply

FIN

ACK(FIN)

1

2

3

4

5

6

7

8

9

10

Figure 2.2: Client-server interaction during a TCP connection.

In order to have a reliable connection, server and client hosts have to store some information
about the current connections such as the acknowledgement sequence number. This brings high
memory costs to TCP against the limited memory capacity of these wireless sensor nodes.

According to the Internet standard, the TCP header has at least 20 bytes of length (see Figure
2.3). From those, some 32-bit words are required to send the basic information such as sequence
and acknowledgement numbers. Besides this, all Internet hosts must accept TCP segments of
556 bytes[17]. These characteristics are good examples of the incompatibility of the pure-TCP
with most of the wireless sensor nodes, which work with a 16-bit processor and may not send
more than 128 bytes on each radio transmission.

User Datagram Protocol (UDP)

With UDP[7], each packet is unique and no information about it is stored in the node after its
transmission. The protocol does not control if it has been already delivered to the application
and IP problems (for example data corruption and lost data packets) may have an impact on the
the application. Figure 2.4 shows that the connection is stateless and the hosts do not store any
information about the packets after they are delivered to the upper layer.

UDP is a simple transport protocol, which basically adds a small header to the IP content in
order to identify the ports used to do the communication, to define the length of the package and
to insert a checksum validation, as shown in Figure 2.5. The goal is to deliver the message to

8

Source port Destination port

Sequence number

Acknowledgement number

Window sizeTCP
lenght

F
I
N

S
Y
N

R
S
T

P
S
H

A
C
K

U
R
G

TCP checksum Urgent pointer

Options (0 or more 32-bit words)

Data (optional)

32 Bits

Figure 2.3: The TCP header.

Client Server

DATA
1

Figure 2.4: Client-server interaction during a UDP transmission.

the application that is listening to the destination port if no corruptions have occurred. Although
this protocol is unreliable and does not provide any fragmentation mechanism, it only delivers
the content to the application layer if there is no corrupted data in the datagram.

2.2.3 Routing Schemes

Unicast

The unicast connection is the simplest way to keep a private communication with any other
device inside the network. Information about the flows (shown in Figure 2.6) is stored in packet
headers, which makes it possible to identify the source and receiver nodes.

In a large network with numerous wireless sensor nodes, management tasks such as software
updates can take a long time if done using unicast connections. Usually, in a software update
routine, many nodes must receive the content. If unicast connections are used, this procedure
creates one new connection to each receiver and the same content is sent many times through
the network. However, this is very inefficient and consumes resources such as bandwidth and

Source port Destination port

UDP checksumUDP length

32 Bits

Figure 2.5: The UDP header.

9

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

0 1 2 3 4 5

Figure 2.6: Many unicast transmissions.

energy. The complexity of a transmission using unicast is

O(receivers× numberofhops×messages)

It is even possible to save energy and avoid unnecessary transmissions by reducing this order
of growth and, consequently, the power consumption.

Broadcast

Broadcast transmission is the simplest way of doing large scale transmissions. By using this, the
sender distributes one data packet without defining a specific receiver and any device positioned
in the transmission’s range may get the content.

Many Ethernet networks support the broadcast inside a sub-network. This is required by
some configuration protocols like Address Resolution Protocol[18] (ARP) and Dynamic Host
Configuration Protocol[19] (DHCP). However, the routers do not allow the broadcast of mes-
sages from other networks to avoid network overload and Denial of Service[20] (DoS) attacks.
This reduces using coverage of this scheme in such cases.

In general, there are three drawbacks to this scheme:

• In the management tasks, most of the sensor nodes might be out of the source’s transmis-
sion range and will not receive the updates. This can be solved by using some kind of
forwarding, which is done by the other nodes located inside the network.

• It is not possible to select which nodes are going to receive the content and the updates
may be addressed for some specific nodes in the network. For example, if the system has
to update only the software of nodes located in one part of the network. To handle this, a
feature is needed to define which nodes will receive the data.

10

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

0 1 2 3 4 5

Figure 2.7: A broadcast transmission.

• In an ad hoc network, a host might rebroadcast the message upon receiving a broadcast
message for the first time, if the network is not covered by other nodes. This problem
or a bad behaviour of a node may arise on a high load of redundant broadcasts, heavy
contention and large numbers of collisions. It is called broadcast storm[21] and can cause
inoperability of the network. For instance, some hosts may experience starvation or in the
case of wireless sensor nodes, run out of battery. There are some techniques to reduce
this effect, but they can be unfeasible to the network due to nodes limitations and required
storage space.

Multicast

Multicast is a communication scheme (shown in Figure 2.8) used to transmit data from one node
to many recipients. This type of communication is an efficient way to disseminate data to a
determined group of receivers interested in the transmission.

As well as broadcast communication, with multicast it is possible to transmit data from one
to many receivers. On the other hand, unicast and multicast enable the sender to identify who is
going to receive the messages.

On the Internet, the multicast paradigm has been implemented in the form of IP Multicast.
Interested receivers send an Internet Group Management Protocol[22] (IGMP) group join mes-
sage, the routers process these messages according to the IP Multicast Routing protocol used
(PIM-SM[23], PIM-DM[24], etc.) and build the distribution tree among them. A sender now
only sends an UDP Multicast packet to the group’s address and the routers in the network then
distribute the data according to the multicast tree, which has been set-up before.

Hence, multicast communication may reduce the number of transmitted packets, save energy
and improve the management of Wireless Sensor Networks (WSNs).

11

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

0 1 2 3 4 5

Figure 2.8: A multicast transmission.

Although IP Multicast has been available for a while on the Internet, it has not been widely
deployed today due to different reasons (configuration, ISP agreements, etc). Besides this lim-
itation in the Internet devices, the actual implementation of IP for embedded systems does not
offer either support to send and receive joining messages (IGMP) or to receive non-local multi-
cast packets.

Overlay Multicast

Overlay Multicast is nothing more than the multicast communication scheme implemented on
the application layer. This kind of application enables the use of limited hardware without
support to IP Multicast. These protocols can also use routing algorithms to define which nodes
will forward the data before they are delivered to the receivers.

In this approach, the node application is responsible for the multicast functionalities. Be-
cause of this, the overlay multicast also depends on the application layer to provide an efficient
overlay for data transmissions across networks.

In the end, the biggest advantage offered by these implementations is the delivery reliability.
Other goals, such as low power consumption and absence of redundant messages, can also be
achieved depending on the protocol.

Multicast Protocols for WSNs

There have been numerous research studies conducted regarding Multicast in WSNs. Some
examples are:

Very Lightweight Mobile Multicast (VLM2)
VLM2[25] uses a data-driven approach and fits well in mobile networks.

12

The main advantage of this protocol is the small size of the code and the headers used in
the packets’ transmissions. It basically constructs a multicast tree according to the nodes
position by using flooding messages. To achieve this, the nodes must send a periodic
SUBSCRIBE message to join a group and receive the messages from it. Each transmit-
ted message may travel through a different path because all nodes forward the received
message.

The absence of the reliability is the main drawback of this protocol in the scenario of
management tasks. This means it is not possible to send a code update because some of
the nodes might not receive it and this could cause bad results later. The large amount
of transmitted packets (due to the flooding scheme) and the necessary memory to cache
information about the received packets are also relevant negative points to be observed.

Adaptive Demand-driven Multicast Routing (ADMR)
The original version of this protocol has been developed for Mobile Ad hoc Networks
(MANET), which have mobile devices as nodes. The difference is the larger amount of
available memory, lower bandwidth restrictions, and less energy consumption constraints
provided by those devices. Due to these aspects, ADMR[26] supports the WSNs with
some adaptations.

This algorithm has a route discovery phase, when the nodes transmit flooding messages
and get the network status. After this, the nodes run an algorithm and determine the costs
of each path according to some variables, for example, the link quality between two nodes.
Later, the nodes prune routes and get the best paths to each node in the network.

The main advantage of this algorithm is to provide the best path between the source and
the receivers, which may also consider weights assigned to links between the nodes. On
the other hand, the algorithm requires large amounts of memory to store the link quality
of all connections and at the preparing phases the nodes spend much time flooding the
network and computing the best paths. These procedures may also be done periodically
and might be an expensive overhead due to the WSN limitations. ADMR is not a reliable
protocol. This means it does not provide any kind of confirmation to ensure the packets’
reception.

Grid Multicast Protocol (GMP)
GMP works on the geographical position of the wireless sensor nodes. In order to be
energy efficient, this approach routes the data from the source node to the multicast desti-
nation using the path with the shortest geographic distance. The main assumption is that
the energy consumption is related to the number of hops between a pair of nodes.

A grid shape is used to define the nodes’ positions inside the network. However, in real-
world scenarios the nodes may be positioned in random places and a virtual grid is con-
structed over them.

Positive aspects of this algorithm are:

• The consideration of hop count in order to create less overload in the network during
the multicast transmissions.

13

• The algorithm is local. The nodes do not need to know the whole network structure.

• It does not require maintenance of the multicast routing tables in the intermediate
nodes.

On the other hand, this protocol does not specify any kind of reliability to the transmis-
sions since the focus is mainly on how to define a routing to use the IP Multicast. There-
fore, it does not provide reliability using UDP transmissions and because of this it cannot
be a solution for management tasks if used with IP Multicast.

Geographic Multicast Routing (GMR)
As GMP, the GMR[27] protocol uses position information of the nodes to define routing
tables during multicast transmissions. The constructed routes avoid broadcast flooding
and reduce power consumption by using as few nodes as possible to forward the data.

To achieve these goals, the protocol uses the “new heuristic neighbour selection”. This
heuristic creates a relationship between the number of selected forwarding nodes, the
number of possible forwarding (adjacent) nodes, the sum of distances from source to the
destinations, and the sum of distances from forwarders to the destinations.

In comparison with GMP, the simulation of the GMR protocol implementation provided
better results over a variety of networking scenarios. However, the algorithm is not lo-
cal and requires the sending of extra messages through the network. In conclusion, the
algorithm can provide good routes to forward the data, but it does not specify how the
transmissions can be done. Furthermore, it works over IP Multicast without reliable trans-
mission and does not fit with the management’s requirements.

2.3 Hardware

Currently, there are different types of wireless sensor nodes able to provide the necessary hard-
ware platform to join sensor sub-networks. They are able to consume minimal power, and have
a high data rate while communicating with each other. The hardware differences are not visible
for the application layer since the necessary features can be used by the software.

An operating system that can be installed on the different architectures is the solution to pro-
vide transparent access from the application layer to the sensors, USB ports, display connection,
and so on. The nodes TelosB, MicaZ, MSB, and BTNodes have similar architectures and are all
supported by powerful operating systems such as Contiki (will be described in Section 2.4). In
this work, the model of the wireless sensor nodes is TelosB.

As shown in Figures 2.9 and 2.10 the Tmote Sky and TelosB are equipped with:

Wireless transceiver
A Chipcon CC2420 radio is used for the wireless transmissions. It has 250kbps data rate,
and 2.4GHz radio. Moreover, it is IEEE 802.15.4 compliant and provides reliable wireless
communication.

Microcontroller
The microcontroller is a MSP430 Texas Instruments with 8MHz clock, 10kB of RAM,

14

Figure 2.9: Tmote Sky module description. [2]

and 48kB of flash memory. The 16-bit RISC processor features programming capabilities
and extremely low active and sleep current consumption: It stays on sleep mode for the
majority of the time, wakes up as fast as possible to process, then returns to sleep mode
again.

Integrated on-board antenna
The internal antenna may attain 50-meter range indoors and 125-meter range outdoors.

Integrated humidity, temperature, and light sensors
The sensors are optional. If present, they may be directly mounted on the node module
and have low power consumption.

USB connector
In order to provide a programming and data collection interface, there is an USB connector
on the nodes.

2.4 Contiki Operating System

Contiki[28] is a small size operating system designed specially to fit with the wireless sensor
nodes, better meeting the physical constraints and environment interaction requirements. More-
over, in order to integrate WSNs with IP networks, Contiki provides IP connectivity in a compact
version of the Internet Protocol, called µIP[12].

15

Figure 2.10: TelosB block diagram. [3]

2.4.1 Characteristics

The strengths can be summarized in:

• Presence of multi-thread processing, which is implemented using a hybrid model to
handle the processes.

• An event-driven kernel where pre-emptive multi-threading uses an application library,
which is optionally linked with programs that explicitly require it.

• A set of libraries, which can be loaded to the devices’ memory according to the applica-
tion requisites.

• Only one stack to buffer the data in the memory management

Computers can directly interact with Contiki nodes using a Web browser, UDP and TCP
transmissions, or a text-based shell interface over serial line. The text-based shell provides spe-
cial commands for wireless sensor network interaction and looks like a standard shell command.
This module can be removed from the image in order to reduce memory consumption.

2.4.2 Protocol Stack

Since the requisites of the WSNs and the hardware architecture of the wireless sensor nodes are
unlike those in typical networks, the protocol stack of the nodes usually does not have the same
structure. Figure 2.11 shows the Contiki’s implementation stack protocol, where the lowest

16

CC2420

NULLMAC

RIME

μIP

TCPUDP

APP

CXMAC

Figure 2.11: The protocol stack in Contiki.

levels are responsible for handling the radio connections, and due to the hardware limitations, a
simplified version of the Internet Protocol called µIP is used.

The µIP layer implements the basic operations and supports the most common transport
protocols: UDP and TCP. Furthermore, with some small changes it is possible to extend the
implementation according to the needs of the application.

The communication is done by the Rime[29] stack. Rime is a radio networking stack im-
plemented in Contiki and it is responsible for providing the necessary connection between two
sensor nodes. At this layer level, Contiki is able to handle protocols such as reliable data collec-
tion, best-effort network flooding, multi-hop bulk data transfer and data dissemination.

The µIP packets rely on the Rime implementation and are tunnelled over multi-hop routing.

µIP[12] is an embedded version of the IP and can be used with 8- and 16-bit microcon-
trollers, such as TelosB. Its architecture was specially developed to handle the hardware con-
straints of the wireless sensor nodes. Thus, it has small code size and low memory consumption.
The low available memory space also forced the code to be tightly coupled, removing the clear
separation between two different layers.

Some Internet protocols are available on µIP such as ARP[18], SLIP[30], IP[11], UDP[7],
ICMP[31] and TCP[8]. Despite the low memory availability, the TCP/IP implementation at-
tends all RFC requirements affected by host-to-host communication and supports flow control,
fragment reassembly, and retransmission time-out estimation.

By having use of this set of protocols, useful applications such as web servers, web clients,
SMTP clients, Telnet servers and DNS hostname resolvers can be deployed on the wireless sen-
sor nodes. Hence, common devices can communicate with them because of the IP compatibility
provided by µIP.

Finally, the implementation supports broadcast communication as well as transmitting mul-
ticast packets with some restrictions: It is neither possible to send join messages to multicast
groups (IGMP) nor to receive non-local multicast packets.

17

Source port Destination port

Sequence number Acknowledgement number

Window size

TCP lenght Flags TCP checksum

Urgent pointer

32 Bits

VHL Length

IP Id

TOS

IP offset

TTL IP checksumProto

Source IP address

Destination IP address

Figure 2.12: TCP and µIP headers of the Contiki’s implementation.

2.4.3 Transport Protocols

TCP

Contiki offers an implementation of the Transmission Control Protocol (TCP) over the µIP (IP-
equivalent) layer. The main feature of the TCP connections is to be reliable. This brings some
extra costs to the application because of the number of control messages and extra bytes located
on their headers to check the integrity of the data, for example.

As shown in Figure 2.12, there are 16 control bytes and they are used as a congestion con-
troller, to identify the participants of the connection, to check the fragmentation and to detect
transmission errors. On the other hand, there are some limitations due to the constraints of avail-
able space and some mechanisms to deliver the packets to the application are not implemented,
for instance, the soft error reporting mechanism and dynamically configurable type-of-service
bits for TCP connections[16]. After some research, the authors from Contiki discovered that
usually these functionalities are not used by the applications and this would not cause a big
impact in the real world[12].

UDP

The simplicity of the UDP[7] turns it into a good option on embedded systems. The UDP
implementation in Contiki has basically the same header of the Internet standards as shown in
Figure 2.13: It includes the source and destination ports, the checksum and 16 bits to store the
package length.

As discussed before, UDP is connectionless and does not transmit extra packets as TCP
does. Thus, UDP was chosen to develop this project because of the following reasons:

• The reliability and fragmentation controls are done by SNOMC on the application layer,
it is not necessarily a redundant reliability in the lower layers.

• Its header is smaller. Hence, there is more space to transmit the content and it is possible
to avoid unnecessary traffic by appending more bytes of content on each transmission.

18

32 Bits

VHL Length

IP Id

TOS

IP offset

TTL IP checksumProto

Source IP address

Destination IP address

Source port Destination port

UDP checksumUDP length

Figure 2.13: UDP and µIP headers of the Contiki’s implementation.

19

Chapter 3

Sensor Nodes Overlay Multicast
Communication (SNOMC)

As discussed previously, reliability and low energy consumption are the most important require-
ments on management tasks such as code updates. In these scenarios, multicast communication
appears to be the solution that best fits to the WSNs’ constraints. Sensor Nodes Overlay Multi-
cast Communication[13] (SNOMC) protocol proposes a solution for these problems. The main
objective is to provide a reliable multicast communication based on Overlay Multicast instead
of IP Multicast.

In the subsequent sections details concerning this protocol are explained and discussed.

3.1 Node Roles

In order to accomplish the requirements, nodes have different roles inside a SNOMC transmis-
sion (see Figure 3.1). In this section each role is described along with the nodes’ behaviour
during the transmission.

The source node is unique in a group. It is responsible for all administrative tasks: to start
the group, cache the whole content, transmit the data and finish the group after the user request.

Usually, more than one node receives the data and transmits it to the application by SNOMC.
These are called receiving nodes. They must have enough space to receive the data so it is
available for the application after the end of the transmission.

Forwarding nodes are responsible for receiving data and forwarding them to their next hop
in the group. They operate as a bridge between two nodes and can also cache data to reduce the
number of end-to-end retransmissions in case of packet losses. This mechanism depends on the
implemented model (see Section 3.4).

According to the routing table, a node may have more than one neighbour, which will for-
ward the content. These type of nodes are called branching nodes and they can replicate the
received data and transmit them to two or more nodes.

21

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

0 1 2 3 4 5

source node

branching node

receiving node

forwarding node

Figure 3.1: Nodes have different roles in SNOMC.

3.2 Definitions

SNOMC uses specific definitions in its description. Detailed explanations of these terms are
given in this section.

A group is composed by one source node and at least one receiving node. Each group has a
unique number identification and the source node has a list with the identification of the nodes
that will receive the transmissions.

The smallest pieces of data transmitted to the nodes are the fragments. They may not contain
many bytes due to the size limit of the transmissions done by the nodes. For example, each radio
transmission supports a maximum data payload of 128 bytes and some of these bytes are used
in the header sections of the lower layers protocols.

A content is a set of data without fixed length that is going to be transmitted to the receiving
nodes. If the content has a large amount of data, this sequence will be split into small fragments
to be transmitted in a single UDP packet. During the transmission phase (see Section 3.6.2),
the source node may transmit one or more contents to the nodes but each content transmission
cannot start before the successful delivery of older transmissions in the same group.

SNOMC does not use positive acknowledgments for each transmitted fragment (see Section
3.3). The detection of packet losses is done as follows: After receiving a fragment, the node
starts a timer. This timer expires after an interval greater than the time required to receive all
transmitted fragments. Thus, if there is one or more missing fragments in the transmission,
the node will detect them after a while, before transmitting a negative acknowledgment to the
source. This waiting interval is called negative time-out.

If all fragments from a content are missed, the node cannot take notice concerning the trans-
mission. Consequently, the source will never receive a response notifying it of the losses. To
avoid this problem, sender nodes start a timer called content time-out, after the last fragment

22

transmission.
The interval of the content time-out has to be larger than the time elapsed while the system

transmits the whole content to all nodes, including the fragments retransmission. Failing this,
unnecessary and expensive retransmissions will occur.

If the content time-out expires, the whole content is retransmitted. As soon as the node has
received feedbacks (either a negative acknowledgment or a content acknowledgment) from each
neighbour, this timer can be stopped.

3.3 Message Types

In order to provide reliability and fragmentation, SNOMC uses special types of messages to
control the data flow over the nodes. The subsequent sections detail the range of message types
used by SNOMC.

3.3.1 Default Messages

Default messages are used with the standard operations, to start and finish a group and to carry
the content, for example. The direction of their transmission is always from the source to the
receivers.

The start group message is used to notify the nodes about the group existence. In the source-
driven mode, this is the most complex message type because it contains identification from every
node reachable by the node that is receiving it. Hence, the sender must generate different start
group messages to each neighbour. The content is filled after the node checks the routing table
and is sure about the reception of the message by one neighbour.

On the other hand, in the receiver-driven mode, the start group message is very simple and
has only the group number and the source identification to notify the nodes about the transmis-
sion. The nodes that want to receive the transmission must join the group afterwards by sending
a join group message with its identification and the group number to the source node.

Each data message carries one fragment from the content. In its header some information
such as content identification, number of fragments in the whole content and fragment num-
ber are described. All fragments are transmitted using the same message format even when a
fragment is being retransmitted.

At the end of the content transmission, the source node may close the group with a single
message. The finish group message will notify all participants and they will not receive any
further data from the respective transmission.

3.3.2 Notification Messages

Usually, notifications are transmitted in the opposite direction from the data. They are used to
control whether the nodes have to retransmit packets or not.

A content acknowledgment is used to notify the sender about the successful delivery of the
content to the neighbours in one direction. Since the node has received a content acknowledg-
ment from each neighbour, a new one is generated and transmitted to the relative source node.

23

Source node Receiver node

notification n

positive ACK

notification n

notification n+1

positive ACK

Figure 3.2: Transmission of notification messages using positive acknowledgements.

If a receiving node has no neighbours to which to forward the data, a content acknowledgement
is generated at the end of the content reception. After the transmission of the content acknowl-
edgement, the memory is released, if the node has any data on its cache.

Start group acknowledgment is very similar to the content acknowledgment but it is used
to notify the nodes about the end of the early phase (see Section 3.6.2). Every receiving node
must transmit a start group acknowledgment. Since the source node has received start group
acknowledgments from all receiving nodes, it can be sure that all nodes were notified about the
transmission and then start the data transmission.

The notification messages are retransmitted until the node receives a position acknowledge-
ment from its neighbours, as shown in Figure 3.2.

3.3.3 Acknowledgements

As described before, the positive acknowledgments are not sent to confirm every received frag-
ment. They are only used to inform about the reception of notification messages. As they are
crucial to keeping the system working, these messages have higher priority and are transmitted
before any other message type placed in the transmission queue. Since the node has received a
positive acknowledgment from its neighbour, it stops to retransmit the notification message.

SNOMC uses negative acknowledgments to notify the nodes about packet losses. It carries
the missing fragment numbers, in order to avoid the retransmission of the entire content.

3.4 Design Models

As multicast protocols can be used in numerous scenarios, the options of design models depend
on the resources availability, environment, data relevance and others. These decisions must be

24

done according to the applications functionalities and hardware constraints.
This section describes different design models, which can be combined according to the

transmission requirements.

3.4.1 Receiver-driven vs. Source-driven Mode

There are two approaches to designing multicast communication. One of them is called receiver-
driven because during the start up phase the receiving nodes must inform the source node about
the desire for receiving the transmitted data. To do this, nodes use control messages to inform
about group joining and data availability.

The second approach is called source-driven. In this approach, the source node must have
extra storage space to load a list with all receiving nodes. This list can be set before the beginning
of the transmission with an user interaction or in a configuration file, for example. Although the
source node stores which neighbours must receive its transmissions in both approaches, only in
the source-driven mode all receiving nodes must be known before the start of the transmission.

So far, the source-driven approach has been chosen in order to fulfil the use cases require-
ments. Both in software updates and in configuration tasks, the source node has knowledge
about which nodes will receive the contents as well as the control about adding and removing
new receivers. For future works, the receiver-driven approach can be considered.

3.4.2 Caching Scheme

Depending on the network characteristics, nodes may have less space to cache data. This differ-
ence depends mainly on the size of the WSN and on the physical limitations of the nodes such
as memory size.

Caching only in the Source Node

This is the simplest implementation of the algorithm and uses less resources in the non-receiving
nodes. The data is cached only in the source node until it has been successfully delivered to all
receiving nodes. Moreover, the primary objective is to avoid unnecessary memory allocation at
the intermediate nodes. The cache policy works as follows:

• In the source node all data is cached until it has been successfully delivered to all re-
ceiving nodes, because this node is responsible for retransmitting them as many times as
needed.

• In forwarding nodes each packet is only forwarded. Hence, only one packet can be
buffered during a short time interval between its reception and the respective forwarding.

• In branching nodes, similar to the rule above, packets are only forwarded and not cached.
The difference is the time interval size while the packet stays at the node. It is larger
because these nodes have to forward the data to multiple nodes. After the transmission,
the packet is not stored in the memory any more.

25

• In receiving nodes received data is cached. It requires a buffer equal or greater than the
transmitted content. With this, SNOMC assures the delivery of the whole content to the
application with no fragmentation.

Forwarding and branching nodes do not consume space to cache the whole transmitted data.
Consequently, packet losses have high costs to the system because retransmitted messages must
travel among the whole path between the source and receiving nodes.

Caching in Every Node

This approach caches all the data in every intermediate node. Memory is released as soon as
the node has received confirmation from its neighbours, which have received the data success-
fully. One drawback of this approach is that it buffers the content in every node used in the
transmission, even if they are not participating in that group. However, because the fragments
are cached on every node, a packet loss can be detected earlier than in other cases, resulting in a
faster transmission.

Caching in Branching Nodes

Caching in branching nodes is an intermediate solution between the two prior policies. The idea
is to cache the data only in branching nodes because they must forward the data to more than
one neighbour and packet losses have a bigger impact on the network. Furthermore, there are at
least two nodes to notify a branching node about packet losses and this can overload the network
and consume more battery than the necessary.

3.4.3 Transmission Scheme

Using the caching in every node policy, there are two ways to transmit the data through the
intermediate nodes. The main difference is that in one approach only the receiving nodes may
transmit negative acknowledgements and in the other one any node can do it.

Moreover, both schemes require each node to know the number of hops to the farthest one.

First Forward

In this approach, after receiving a fragment a node caches it and forwards to its neighbours.
Thus, the intermediate nodes do not detect packet losses and consequently they never generate
negative acknowledgements. It could result in a large number of messages being transmitted at
the same time through the nodes.

All negative acknowledgements are generated by the receiving nodes. After receiving a
negative acknowledgement, an intermediate node first checks if the fragment is cached in it. If
yes, the node retransmits the fragment. Otherwise, it forwards the negative acknowledgement.

The main drawback is the occasional propagation of the packet loss to all descendant nodes.

26

content_id
1 byte 1 byte 1 byte 2 byte

data
SNOMC_PAYLOAD_SIZE

frag_no frag_length no_of_frags

type time_stamp group_id
1 byte 2 byte 1 byte

(a) Data message type in SNOMC.

type time_stamp group_id
1 byte 2 byte 1 byte

source_id
2 byte

receiver_list_size
1 byte

deep_back_size
1 byte

receiver_list
LIST_LENGTH

(b) Start group message type in SNOMC.

type time_stamp group_id
1 byte 2 byte 1 byte

source_id
2 byte

(c) Finish group message type in SNOMC.

type time_stamp group_id
1 byte 2 byte 1 byte

source_id
2 byte

content_id
2 byte

(d) Content acknowledgement message type in SNOMC.

type time_stamp group_id
1 byte 2 byte 1 byte

time_stamp_ack
2 byte

(e) Positive acknowledgement message type in SNOMC.

type time_stamp group_id
1 byte 2 byte 1 byte

group_id
1 byte

deep_size
1 byte

combine_pack
1 byte

timestamp_ack
2 byte

(f) Start acknowledgement message type in SNOMC.

Figure 3.3: Message types in SNOMC.

First Check

In order to improve the scheme described above, the nodes can check the fragments’ reception
before forwarding them. With this, a packet loss can be detected before the content is transmit-
ted to the next nodes and the respective negative acknowledgements are generated even by the
intermediate nodes.

A node starts to forward a content only if all fragments are cached in it. This reduces the
number of transmitted messages through the network because there is no error propagation. On
the other hand, this approach may increase the time to transmit all fragments if no packet is lost.

3.5 Data structures

Basically, SNOMC uses seven different message types as described in Section 3.3. The imple-
mented structures share a common header with the type of the message, a timestamp and the

27

group identification. The message types are as shown in Figure 3.3.
In the receiving nodes, start acknowledgements are transmitted after the start group message

has been positively acknowledged. Moreover, each receiving node does not have any informa-
tion about other nodes that will transmit and receive messages from the same sender. Because
of this, the probability of collision caused by two transmissions at the same time is very high.
Thus, in order to avoid packet losses, the implementation can combine two message types and
reduce the network load to produce better results.

3.6 The SNOMC Algorithm

This section describes the SNOMC algorithm behaviour. Expected configurations and working
phases are detailed with diagrams illustrating possible states and interactions between the nodes
in a group.

3.6.1 Assumptions

Some configurations and constants are meant to be available such as the groups’ topology, rout-
ing tables and connections with the neighbours.

In the source-driven approach, the source node must know which nodes will be part of a
group before it starts the transmission. As soon as it has started this group, no more participants
can join the transmission.

SNOMC is not aware of the routing algorithm. However, a routing table must be defined
before the beginning of the transmission and it does not change until the group transmissions
are finished. This means the routes are static and the nodes can store their relative positions
inside the group; The source node is the one which is transmitting data to the group. The
group members are relative on each node: They are the neighbours that are going to receive the
transmission from that node. Occasionally, a node may receive the data only to forward to the
receiving nodes.

If one or more nodes are not reachable before the beginning of the transmission, to provide a
reliable transmission the nodes will continue attempting to transmit until the other nodes confirm
delivery.

3.6.2 Phases

SNOMC is composed of three phases: early phase, transmission phase and final phase. Each
one is clearly defined by a set of possible states, defined as pre and post conditions and are
described here. In order to illustrate the procedures letters are used in the processes’ descriptions
and mapped into the flowcharts.

Early Phase

The early phase (see Figure 3.5, Figure 3.4) happens whenever the user decides to build a group
and notifies the source node. In this phase no content is transmitted, but the participant nodes
are notified about the group and their respective function.

28

Has received from
all neighbors?

Start Group

Send "Start Group"
to neighbors

Wait for event

Receive
"Start Group ACK"

yes

Wait for event

no

Source NodeA

C

(a) Flowchart in the source node.

Has received from
all neighbors?

Receive
"Start Group"

Send "Start Group"
to neighbors

Wait for event

Receive
"Start Group ACK"

yes

Wait for event

no

Forwarding Node

Branching Node

Receiving Node

B

C

(b) Flowchart in other nodes.

Figure 3.4: Flowcharts of the SNOMC’s early phase.

Source node Branching node Receiver node 1 Receiver node 2User
start group

start group
positive ACK

start group
positive ACK

start group
positive ACK

start group ACK
positive ACK

start group ACK
positive ACK

start group ACK
positive ACK

Forwarding node

start group
positive ACK

Figure 3.5: Sequence diagram of the early phase.

29

Has received from
all neighbors?

Send content

Buffer fragment

Receive
"NACK"

Receive
"Content ACK"

yes Wait for event

no

Source NodeD G

Send "Content ACK"
to itself

Forward fragment

Has received
feedback from all

neighbors?

F
Timeout to

resend
content

Start timer
to resend

no

yes

Content
transmitted

I

Figure 3.6: Flowchart of the transmission phase in the source node.

Source Node
After receiving the user request [A], it will prepare the start messages and transmit to
the respective neighbours. Each neighbour must confirm the delivery with a positive ac-
knowledgment, read the content and transmit new start group messages to its neighbours,
if applicable.

Other Nodes
If a node receives the start group message [B] and does not have to forward it to any other
node, it transmits a start group acknowledgment back to the sender. Otherwise, the node
will wait to receive confirmation from each neighbour [C] and transmit only one start
group acknowledgment back to the relative sender in order to confirm that all nodes in
that direction have already been notified about the transmission.

This procedure goes forward until the source node receives confirmation from each neigh-
bour and finishes the early phase. Then it will be ready for the transmission of the content.

Transmission Phase

In the transmission phase, the source node transmits the content to the nodes, which have already
received a start message during the previous phase and are ready to receive the data (see Figures
3.6, 3.7, 3.8 and 3.9).

Finally, the transmission phase can be used to transmit as many contents as the user wants.
Since a content has been successfully transmitted, the source may start transmitting a new one.

Source Node
After receiving the content from the application [D] (see Figure 3.6), the source node will

30

Receive
"Content ACK"

Receive
"NACK"

yes

no

G

Has received
feedback from all

neighbors?

F

Combine missing
fragments from

different NACKS

Forwarding Node

Branching Node

Send "Content ACK"
to source

Receive
fragment

Forward fragment

Wait for event Send "NACK"
to source

E

Content
transmitted

Figure 3.7: Flowchart of the transmission phase in nodes that do not cache any fragment.

Has received from
all neighbors?

Receive
fragment

Buffer fragment

Timeout to
resend content

Receive
"Content ACK"

I

G

Forward fragment

Has received
feedback from all

neighbors?

Start timer
to resend

no

yes

Has received
all fragments?

Send "Content ACK"
to itself

Wait for event

Has received
all fragments?

Receive
"NACK"

Timeout to check
packet loss

SEND "NACK" with
missing fragments

Is receiver
node?

Start timer to
check packet loss

yes

no

noyes

yes

no

yes

no

E F H Forwarding Node

Branching Node

cache every
cache branching node

Content
transmitted

Figure 3.8: Flowchart of the transmission phase caching the fragments and using the first forward ap-
proach.

31

Has received from
all neighbors?

Receive
fragment

Buffer fragment

Timeout to
resend content

Receive
"Content ACK"

I

G

Has received
feedback from all

neighbors?

Start timer
to resend

yes

Has received
all fragments?

Send "Content ACK"
to itself

Wait for event

Receive
"NACK"

Timeout to check
packet loss

Send "NACK" with
missing fragments

Start timer to
check packet loss

no

yes

no

yes

no

E

F

H

Branching Node

Forward fragment

cache every
cache branching node

Content
transmitted

Forwarding Node

Figure 3.9: Flowchart of the transmission phase caching the fragments and using the first check approach.

Timeout to
check packet

losses
Receive

"Content ACK"

no

yes

GH

Send "Content ACK"
to source

Deliver content to
the application

Receive
fragment

Buffer fragment

Wait for event

E

Has received
feedback from all

neighbors?

Has received
all fragments?

Send NACK with
missed fragments

Start timer to
check packet

losses

Send "Content ACK"
to itself

yes

no

Receiving Node

Figure 3.10: Flowchart of the transmission phase in the receiving node.

32

Source node Branching node Receiver node 1 Receiver node 2User
send (group_id, content)

fragment

content ACK
positive ACK

content ACK
positive ACK

content ACK
positive ACK

Forwarding node

fragment
fragment fragment

content ACK
positive ACK

loop for each fragment

Figure 3.11: Sequence diagram of the transmission phase first forwarding the fragments.

Source node Branching node Receiver node 1 Receiver node 2User
send (group_id, content)

fragment

content ACK
positive ACK

loop for each fragment

loop for each fragment

content ACK
positive ACK

content ACK
positive ACK

fragment

Forwarding node

fragment
loop for each fragment

fragment

content ACK
positive ACK

Figure 3.12: Sequence diagram of the transmission phase first checking the fragments.

Source node Branching node Receiver node 1 Receiver node 2User
send (group_id, content)

fragment

content ACK
positive ACK

content ACK
positive ACK

content ACK
positive ACK

Forwarding node

fragment
fragment

fragment
fragment

NACK
NACK

fragment

NACK

fragment
fragmentfragment

NACK

content ACK
positive ACK

loop for each missed fragment

fragmentfragment

Figure 3.13: Sequence diagram of the transmission phase first forwarding the fragments.

33

Source node Branching node Receiver node 1 Receiver node 2User
send (group_id, content)

fragment

content ACK
positive ACK

loop for each fragment

loop for each fragment

content ACK
positive ACK

content ACK
positive ACK

fragment

Forwarding node

fragment
loop for each fragment

fragment

content ACK
positive ACK

NACK

loop for each missed fragment

fragmentfragment

Figure 3.14: Sequence diagram of the transmission phase first checking the fragments.

split it into small fragments and transmit them. The transmission procedure works as fol-
lows: after fetching the next fragment, the source node transmits it to all neighbours with
a delay between two transmissions (see Section 4.1.4). This procedure repeats for all frag-
ments of the content and the interval depends on the used cache policy and transmission
scheme.

After the transmission, it waits either for a negative acknowledgment to retransmit missing
fragments or a content acknowledgment to finish the transmission. If none of these are
received the source retransmits the whole content again after the content time-out has
expired [I].

When an application tries to transmit data, SNOMC may return a negative answer consid-
ering the available space to cache the data.

Forwarding Nodes

The forwarding nodes have different behaviours according to the implemented approach:

• Cache in all nodes with first check approach - a node does not start forwarding the
data before it is sure about the successful reception of all fragments transmitted so
far [E], which implies the use of negative acknowledgements to detect packet losses
(see Figures 3.9, 3.12 and 3.14).

• Other approaches - as soon as the node has received the fragment [E], it caches
the data (if necessary) and forwards it to the neighbours. Thus, this node does not
generate negative acknowledgements. It combines the received negative acknowl-
edgements and forwards only one message to the source, if the missing fragments
cannot be found in its cache (see Figures 3.8, 3.11 and 3.13).

If the forwarding node caches the data (according to the caching policy):

34

• It caches every fragment from a content until a content acknowledgement has been
received from all neighbours.

• It has to ensure that its neighbour will receive the content. Thus, after the transmis-
sion of the last fragment, it waits for a feedback from the node which has received the
data (it can be either a negative acknowledgment or a content acknowledgment) to
finish the transmission and send a content acknowledgement to the sender. If none of
these are received, the node retransmits the content again after the content time-out
has expired [I].

Occasionally, the forwarding node can have no available space to store the info about the
fragment. Thus, it drops the packet and the sender will detect it as a packet loss and will
do its retransmission afterwards.

Branching Nodes

As well as the forwarding nodes, the behaviour of the branching nodes depends on the
implementation:

• Cache in all nodes with first forward approach and cache only in the source node -
the node receives every fragment [E]. If necessary, it caches them before forward-
ing to the neighbours. It does not generate negative acknowledgements to notify
the source about packet losses. Therefore, it combines received notifications and
forwards them to the source (see Figures 3.8, 3.11 and 3.13).

• Other approaches - the node does not forward the fragments before checking if the
whole content has been received [E]. Then, if there are missing fragments it will
generate negative acknowledgements to notify the source about the packet losses
and retransmit the whole content to the neighbours if no feedback is received (see
Figures 3.9, 3.12 and 3.14).

If the branching node has to cache the data:

• Every fragment from a content is cached until a content acknowledgement has been
received from all neighbours.

• The node waits for either a negative acknowledgment or a content acknowledgment
from its neighbours to finish the transmission and send a content acknowledgement
to the sender. If no feedback has been received, the node retransmits all fragments
after the content time-out has expired [I].

An improvement in the branching nodes is to use broadcast messages to transmit the
fragments to their neighbours. Since the nodes already know about the group’s existence,
they can filter the messages that they want to receive. This simple change can avoid many
transmissions over the network during the procedure. The packet retransmission after
a negative acknowledgment can also use broadcast communication in order to avoid the
transmission of the same fragments to different nodes.

35

Occasionally, as in the forwarding nodes, a branching node can have no available space
to store the info about the fragment. Thus, it drops the packet and the sender will detect it
as a packet loss and will do its retransmission afterwards.

Receiving Nodes

The receiving nodes cache the whole content until all fragments have been received. This
prevents the application from receiving the fragments out of order (see Figure 3.10).

After receiving all fragments of a content, receiving nodes only transmit a content ac-
knowledgment to the source and wait for new messages from it. If one or more fragments
are missing, a negative acknowledgement is generated by the receiving nodes after the
negative time-out has expired [H].

If the receiving node does not have space to cache a received fragment, it drops the packet
and waits for the retransmission later.

Final Phase

Finish Group

Send "Finish Group"
to neighbors

Group
finished

Source Node

J

(a) Flowchart in the source node.

Receive
"Finish Group"

Send "Finish Group"
to neighbors

Group
finished

K

Forwarding Node

Branching Node

Receiving Node

(b) Flowchart in other nodes.

Figure 3.15: Flowcharts of the SNOMC’s final phase.

Figure 3.15 shows the final phase. After the early phase, the source node will receive the
request to finish the group [J] and if a content is still being transmitted, it marks the connection
to finish later. Alternatively, it transmits a finish group message to its neighbours [K].

SNOMC may not notify the application about the success of this operation.

Source node Branching node Receiver node 1 Receiver node 2User
finish group

finish group
positive ACK

finish group
positive ACK

finish group
positive ACK

Forwarding node

finish group
positive ACK

Figure 3.16: Sequence diagram of the final phase.

36

Chapter 4

Implementation

The main goal of this thesis is to implement and compare the SNOMC protocol with other
solutions in a real-world environment. In order to provide essential data for this, some algorithms
were implemented and tested. In this chapter, the implementations are described step-by-step
starting with an improved version of SNOMC, an algorithm using UDP as transport protocol
and the last one, using pure TCP from the source to the receivers.

4.1 SNOMC Implementation in Contiki

After initial observations on the first version of SNOMC[13], some improvements could be
integrated according to the necessary changes. In this final implementation the protocol works
on the application layer and can be used by any other application.

Figure 4.1 shows the protocol stack of this implementation, with SNOMC working on top
of UDP, on the application layer. Table 4.1 compares UDP and TCP implementations in Contiki
and shows what the worst problem with TCP is: In order to provide some features such as
reliability and fragmentation, its header consumes more space than the UDP header (see Figures
2.12 and 2.13). Because these features are implemented in SNOMC, UDP appears to be the best

CC2420

NULLMAC

RIME

μIP

TCPUDP

APP

CXMAC

SNOMC

Figure 4.1: Protocol stack with SNOMC.

37

UDP TCP
Header length 8 bytes 16 bytes
Header length (with IP) 28 bytes 36 bytes
Reliability no yes
Fragmentation no yes
Broadcast yes no
Payload length 100 bytes 92 bytes

Table 4.1: Comparing UDP and TCP in Contiki.

choice: It has more space to transmit the data in addition to providing broadcast communication,
which improves the scalability of the implementation.

4.1.1 Memory Allocation

Contiki provides a way to dynamically allocate memory using a fixed number of pre-defined
memory blocks, but this implementation does not use it in order to avoid out of memory problem
during high load periods.

Memory is allocated during the application start up and the size of the caches are pre-defined
using constants and might be changed before its compilation.

Groups - The groups’ users and IDs are stored in the source node. The implementation has a
pre-defined number of available places to store this information and the source node loads
the groups to transmit data later. The following information is used for both active and
non-active groups:

• Group ID - 1 byte with the group identification.

• Source ID - 1 byte with the identification of the group owner.

• Participants’ list - pre-defined number of bytes with the participating nodes.

• Size - 1 byte with the number of participants of this group.

The active groups have some extra information to be stored:

• Is branching? - 1 byte to identify if this is a branching node.

• Is participant? - 1 byte to identify if this node is a participant of this group.

• To finish? - 1 byte to flag the end of the group’s transmissions.

• Last content ID - 2 bytes with the identification of the last content received.

• Sent content ID - 2 bytes with the identification of the last content successfully
transmitted.

• Start acknowledgements to receive - 1 byte with the number of missing start ac-
knowledgements.

38

• Received start acknowledgements’ list - list of nodes that have already transmit-
ted a start acknowledgement to this one. The maximum length is the number of
participants in a group.

• Clock time - 2 bytes with the time at the beginning of the transmission. Used for
statistical purposes.

• Distance from source - 1 byte with the distance to the source node.

The first 3 bytes can be combined in one flag with 1 byte in order to reduce memory
consumption.

Contents - Each content has its own aggregated information, which is used during the trans-
mission to control received content acknowledgements, for example. The implementation
has two available positions. This means that two groups can transmit a message to their
nodes at the same time using nodes that participate on both of them.

• Is used? - 1 byte to identify if this space is occupied.

• Content ID - 2 bytes with the identification of the content.

• Group ID - 1 byte with the identification of the group.

• Clock time - 2 bytes with the time at the beginning of the transmission. Used for
statistical purposes.

• Total of fragments - 1 byte with the total number of fragments in this content.

• Received fragments - an array structure to identify which fragments were already
received. The maximum length is the size of the fragments cache.

• Pointer to the fragment - 1 byte with a pointer to the fragment in memory.

• Nodes list - an array structure to store the nodes that will receive this content. The
maximum size is the number of group participants.

• Number of nodes - 1 byte with the number of nodes to receive the data.

• Negative acknowledgement’s timer - 10 bytes with a timer to transmit a negative
acknowledgement to the source node.

• Received content acknowledgements’ list - nodes that have already transmitted a
start acknowledgement to this one.

• Number of received content acknowledgements - 1 byte.

• Content timer - 10 bytes with a timer to retransmit the data to the neighbours.

• Has delivered to the application? - 1 byte to identify if this content was already
delivered to the application.

• Is forwarded? - 1 byte to identify if this content is cached on this node or just
forwarded.

39

group 1 group n...

...

data data data data data data data data data data data

content buffer

content list

groups

Figure 4.2: Snapshot of the memory consumption.

Data - There is an array to store all fragments received by SNOMC. Therefore, a content may
occupy as many free spaces as it needs. For example, if the array has a total of 10 free
spaces, the node can buffer one content with up to 10 fragments, or two contents that
together have 10 or less fragments. It may be a content with 9 fragments and the other
with only one. By doing this, a content may be larger than the other and both will be
cached at the same time, with less risk of running out of memory. Another positive aspect
of this approach is that the fragments do not have to be duplicated before being transmitted
because any function can directly read from this cache. The size of this cache may change
and the structure of each element is as follows:

• Is used? - 1 byte to identify if this space is occupied.

• Length - 1 byte to store the length of the fragment.

• Content - the fragment.

Figure 4.2 shows how SNOMC allocates the memory. Basically, a group can have zero or
more contents to be transmitted. On each content it is possible to find data fragments of the
message. In the case where the node does not have to cache the data, the program will have only
the part above the dashed line.

4.1.2 Transmission Procedure

Section 2.4 explains that Contiki was specially developed for wireless sensor nodes. One of the
improvements of this operating system is that it has an event-driven kernel. Taking advantage
of this feature, the implementation uses timers and events (such as packet reception) to compute
and transmit to the nodes.

40

Caches

The transmission procedure uses 3 different caches: one for the notification messages, another
for the received negative acknowledgements, and a third one for the data. If the node receives
a message that requires it to cache any data, the status of caches will be verified and a positive
acknowledgement is transmitted only if there is enough space to compute a response.

For notification messages, the cache works as a list where new items are added at the end.
Having done this, if two nodes transmit notification messages (such as a content acknowledge-
ment and a finish group message) at the same time to each other a deadlock could happen. Thus,
in order to avoid this problem, positive acknowledgements are pushed onto the beginning of the
list, providing higher priority to them.

Each notification cache item has the following structure:

• Content type - 1 byte to set the type of the notification.

• Recipients list - the recipients’ identifications.

• Recipients list size - 1 byte with the list length.

• Next recipient - 1 byte to flag who is the next recipient.

• Content - the complete notification message.

• Was transmitted? - 1 byte to identify if this message was already transmitted.

• Is used? - 1 byte to identify if this space is occupied.

The last 2 bytes can be combined in one flag with 1 byte in order to reduce memory con-
sumption.

The nodes have a pre-defined number of spaces to cache notification messages. The larger
these caches are, the fewer packets will be dropped at the reception and the network overload
can be avoided.

The data cache has space to store a data packet and its content. Therefore, it also has nec-
essary information to transmit one or more fragments to the nodes. The cache has only one
element with the following structure:

• Content ID - 2 bytes.

• Data Packet - the complete data packet.

• Recipient - 2 bytes with the intermediate recipient, if unicast.

• Fragments - an array structure with the number of all fragments to be transmitted.

• Number of Fragments - 1 byte.

• Next fragment - 1 byte with the position of the next fragment.

• Is used? - 1 byte to identify if this space is occupied.

41

• Is broadcast? - 1 byte to identify if the transmission will use broadcast or not.

The last 2 bytes can be combined in one flag with 1 byte in order to reduce memory con-
sumption.

When SNOMC fills this cache to transmit a fragment, it also sets the data packet with the next
fragment to be transmitted. After this, the transmission procedure prepares the next fragment (if
applicable) and waits for the respective time-out to transmit it.

Even if the node does not cache the data, it will require extra cache space for the received
negative acknowledgements. The node stores them in a First In First Out (FIFO) list and com-
putes them just before transmitting the content again. When the node has to read the negative
acknowledgement and retransmit the missing fragments, it fills the data cache according to the
receiver information and transmits the requested fragments using the data cache describe above.

Priorities

Each node has only one procedure that transmits the packets and a timer to control it. In order
to make sure that the interval between two consecutive transmissions is large enough to avoid
collisions and network congestion, the procedure is only called when the timer is expired.

The nodes transmit the messages according to the following priority order:

1. Positive Acknowledgements - If the node receives a notification message, it must transmit
a positive acknowledgement to avoid network congestion. If a node is transmitting a no-
tification message and starts receiving another notification message (that is not a positive
acknowledgement) from the receiver, both will be subject to starvation because they will
never receive a positive acknowledgement and stop transmitting the current notifications.

2. Notification messages - As described in Section 3.3.2, notification messages are used to
control the network and avoid high load on the nodes.

3. Fragments

4. Negative Acknowledgements - They are the last because missing fragments may be re-
ceived after its creation and before its transmission.

Timers

As one of the requirements for wireless sensor nodes is to avoid high energy consumption, it
would not make sense to use infinite loops to transmit the data. Instead of this, the transmitting
procedure is activated by timers, which are set on demand. These intervals are chosen according
to the type of the last transmitted message.

If the node transmits a fragment, no positive acknowledgement is required before the next
one is sent. This does not happen when a notification message is transmitted, as shown in Figure
3.2. Thus, after transmitting the notification message, the node must wait for a larger interval
before doing the next transmission because it requires instant confirmation.

42

Moreover, each content has two different timers. The first one is used to control negative
acknowledgement transmissions and the other one fires the retransmission procedure. It is im-
portant to remember that according to the cache policy, some fragment transmissions will take
longer than a one-hop transmission.

The timer to retransmit the content depends on the number of hops from the farthest node
achieved by the node’s neighbours and has its countdown started as soon as the last fragment
has been transmitted. This timer is disabled whenever the node receives any feedback (either a
negative acknowledgement or a content acknowledgement) from each neighbour.

Both content acknowledgements and negative acknowledgements are enough to make sure
that the neighbour was notified about the transmission and will ask for lost packets, if necessary.

As described above, every node that caches data does not start to retransmit the fragments
before the whole content is received. Thus, only one of these two timers is active at a time in a
node.

4.1.3 Receiving Procedure

Every received packet has its timestamp checked in a local cache. In this cache, the node stores
the last received timestamp as well as the source identification. If the node has already received
the packet, it is discarded. Except data messages and negative acknowledgements, all other
messages are positively acknowledged after their reception.

Data messages are received and, according to the cache policy, the node presents different
behaviours.

Notification messages, with the exception of content acknowledgements, are transmitted im-
mediately after their creation, without any delay. The transmission interval between two notifi-
cations is set large enough to receive a response before the next message is transmitted, and this
is only achieved if the source node does not add any delay before transmitting a message back.

4.1.4 Pre-defined Values

The implementation uses constant values set according to the hardware constraints and the trans-
mission requirements. These values are:

Routing table size
The routing table has at least the number of nodes in the network less one. As in the tests
6 nodes were used, the implementation requires a 5-position array in each node.

Number of groups
The number of groups. The tests used 2 groups, then the value was set to 2.

Maximum group size
This value depends on the number of nodes to receive the data. As in the tests 6 nodes
were used, the implementation requires a 5-position array in each node.

Notification cache size
This value has to be set according to the number of nodes. There is no minimum value,

43

but with a small size many packets might be dropped and the network will be overloaded.
The implementation uses 5.

Received negative acknowledgements cache size
This value depends on the group structure and it is under the same rule as the notification
cache. There is no minimum value, but with a small size many packets might be dropped
and the network will be overloaded. The implementation uses 3.

Received timestamps cache size
The number of received timestamps depends on the number of nodes. It does not have a
minimum value, because the implementation uses the least recently used (LRU) algorithm
if the number of spaces is not enough.

Payload size
Length of the data fragments. This value may change if other protocols are chosen, be-
cause they may not have the same header length. The implementation uses 56 bytes.

Size of contents cache
The larger this value is, the more simultaneous transmissions are supported. If only one
group transmission is done at a time, it can be 1. The value was set to 1 in the implemen-
tation.

Size of fragments cache
The number of fragments may depend on the transmission. It was set to 19.

String buffer length
This is used as a support to transmit the message to the application. The implementation
uses 1045 bytes.

The MAC protocol used in the implementation was Null MAC. According to Contiki’s doc-
umentation, this is a MAC protocol implementation that does not do anything. By default, it
is configured to not provide collision avoidance, collision detection or channel access control.
On the other hand, interval times between two transmissions are defined by the application and
do not have to consider big variations due to MAC layer computation. Therefore, transmissions
might be faster.

The smallest time unit in Contiki is a clock tick, generated by the processor. According to
Contiki’s source code, in the MSP430 microcontroller each second takes 128 ticks.

Because of this, the transmission procedure (explained on Section 4.1.2) and receiving pro-
cedure (explained on Section 4.1.3) are totally dependent on the timers used in the application.
To set these values some experiments had to be done first and analysing the debugging logs (see
Section 4.1.5), it was possible to infer that each transmission takes around 3 ticks.

As the data packets do not require any instant acknowledgement, the transmission interval
between two data packets can be set based directly on this value. Thus, for the notification
messages that require positive acknowledgements (see Figure 3.2), the interval between two
transmissions has to be larger than 9 ticks (3 ticks to transmit, 3 ticks for computation time at
the receiver, 3 ticks to receive a feedback).

44

In order to avoid collisions and keep the implementation scalable, some timers need to have
a random delay added to them. For example, content acknowledgements could be transmitted at
the same time by two different nodes and cause collisions.

Other timer values were derived from these and some of them can be calculated on the fly:

Maximum delay between two fragment transmissions
Depending on the adopted approach, the delay between two fragments may be different.
If the neighbours are going to check the fragments before forwarding, than the interval
between two transmissions can be only 3 ticks as described above. In other approaches, if
the neighbours do not check the whole content before forwarding, the delay may be

t = 3×# of hops to the farthest node

Maximum delay between two notification transmissions
Collisions between positive acknowledgements and notification messages might happen
if the interval is the same at the two nodes. This delay reduces this problem during the
transmissions. The value was set to 5 ticks.

Maximum delay to content acknowledgement transmissions
Because of the broadcast transmissions, some nodes may receive the last content fragment
at the same time. After it has been received, a content acknowledgement is transmitted and
many collisions might occur if no delay is used. This delay is bigger than the delay usu-
ally added to the transmission procedure if the next packet in the queue is a notification
message. The maximum delay to content acknowledgement transmissions in this imple-
mentation is 17 ticks.

Delay before retransmitting the whole content
If a node does not receive any fragment from a content, it cannot transmit a negative
acknowledgement to the source node. Thus, it is not possible to detect the packet losses
and the content cannot be delivered. To avoid this scenario, the source node retransmits
the content after an interval if no feedback has been received.

For this timer, the transmissions require an interval proportional to the number of hops be-
tween the node and the farthest node accessible from one of its neighbours. The distances
in hops from each node to the farthest node is retrieved during early phase and stored with
the group information.

If the fragments are cached on every node: Assuming that packet losses can occur dur-
ing the transmission and they will be retransmitted after a negative acknowledgement, the
value used is 3 times the notification interval (10 clock ticks). The result (30 clock ticks)
is multiplied by the distance explained above and by the number of content fragments.

t = 3× notification interval × # of hops to the farthest node

If some of the nodes do not cache the fragments: The difference is that the nodes do
not have to wait while the whole content is forwarded but only one fragment because the
nodes without cache just forward the fragments (as described in Section 3.6.2).

45

Delay before transmitting a negative acknowledgement
As described before, negative acknowledgements should wait until the last fragment has
been transmitted, even with eventual packet losses. The value used on each node is pro-
portional to the number of hops to the nearest node with data cache, which is retrieved
during the early phase. In order to optimize it, the number of fragments that the node may
still receive is also used.

t = K × # of hops to the nearest caching node × # of fragments to receive

The fixed constant (K) is 30 ticks.

After the first negative acknowledgement, this value is set using:

t = J × # of hops to the last cache

And the fixed constant (J) is 40 ticks.

4.1.5 Additional Details

Debugging

In order to track the behaviour of the algorithm and check its correctness, a macro was created
to print debug messages. Each debug line contains the local timestamp, the node identification,
and a string. Different messages were set according to the place where it was used.

Due to memory restrictions, it is not possible to turn on all debug messages at the same time.
However, once the algorithm was running as expected, the debug messages could be turned off,
because the nodes used to waste relevant time to print them in the screen.

A positive aspect of the debugging facility is that by using the SLIP[30] tool provided by the
nodes, it was possible to merge all messages, generate logs and check the transmissions. This
helped to adjust timers and delays as well as improve the mechanisms of SNOMC.

Interface with Computer

As described in Section 2.3, Tmote Sky and TelosB nodes provide an USB interface to transmit
the software images from a computer. Section 2.4 explains that Contiki has a module with a
shell command that provides an interface between the computer and the node. This module was
deactivated in order to reduce the image size and leave space to other modules such as µIP.

Instead of the shell interface, the computer interacts with the nodes using a TCP connection
on the port 2802 (generic). The developed interface provides complete access to the nodes’
resources and functionalities such as to start and finish groups, transmit contents, reset nodes
and fetch their log data.

Using a SLIP connection, the source node prints on the screen the time spent to start groups
and transmit contents. These times are measured as follows: When the source node receives the
command to start a group or transmit a content, it stores the actual timestamp. When it receives
the last start acknowledgement or the last content acknowledgement it prints the time difference
(in ticks).

46

Transmission Logging

Every node stores a data structure with the number of received and transmitted packets. The
counters are increased according to the packet type and can be either fetched from a TCP con-
nection or printed on the screen using the “user button” in the nodes.

The output generated by this tool looks like the following example:

+- Received log from 0.1 --------+
| Type: RECEIVED packets |
+---------------------------------------+
| START_GROUP messages:0 |
| FINISH_GROUP messages: 0 |
| DATA messages: 0 |
| PACK messages: 96 |
| NACK messages: 19 |
| JOIN messages: 0 |
| UNJOIN messages: 0 |
| CONTENT_ACK messages:50 |
| START_ACK messages: 51 |
+---------------------------------------+
| Total: 216 |
+---------------------------------------+
| DATA for this node: 0 |
| 0 bytes |
+---------------------------------------+

+- Received log from 0.1 --------+
| Type: SENT packets |
+---------------------------------------+
| START_GROUP messages:55 |
| FINISH_GROUP messages: 56 |
| DATA messages: 934 |
| PACK messages: 101 |
| NACK messages: 0 |
| JOIN messages: 0 |
| UNJOIN messages: 0 |
| CONTENT_ACK messages:0 |
| START_ACK messages: 0 |
+---------------------------------------+
| Total: 1146 |
+---------------------------------------+

Using the logs from each node it is possible to combine them and calculate relevant informa-
tion such as percentage of packet losses, number of messages during the transmission, number

47

of retransmissions and others.

Changes in Contiki

In the default implementation of Contiki, the broadcast messages are not transmitted to all nodes
but only to the gateway. The Rime [29] implementation redirects the broadcast packets to the
gateway node and it is responsible for handling these packets.

Since Contiki is open source and allows changes to its contents, the broadcast functionality
was changed to work as described in Section 2.2.3: Transmitted messages are received by all
neighbours and the application drops the packets that came from an unexpected node, which is
not responsible to transmit content to it. The nodes do not rebroadcast the received messages,
avoiding the broadcast storm [21] problem.

4.2 UDP and TCP Implementations in Contiki

Since the idea of this work is to compare SNOMC with existing solutions, applications using
UDP and TCP as transport layer were implemented too. With them, the same tests could be run
and results compared.

UDP and TCP protocol implementations are placed over the µIP layer and the routing algo-
rithm is placed in a lower layer. Therefore, a static routing table is configured in the µIP layer
and makes the packets to use always the same route from the source to the receivers without any
change on application level.

4.2.1 Application using UDP

The idea of this implementation is to create a simple solution using UDP that does the data
transmission in a reliable way. Figure 4.3 shows a flowchart with the sequence of steps in
the application at source and receiving nodes. The interaction between the nodes during the
transmissions is shown in Figure 4.4.

This application works basically by transmitting the data for one receiver at a time. The
source node receives the message from the application [A]. If the content is bigger than the
maximum payload size, the application splits it into small fragments and transmits them one by
one. For each received packet [B], the receiving node transmits an acknowledgement and waits
for the next one, if existing. Only after transmitting all data to a receiver, the source node starts
to transmit the same content to the next one in the list.

In order to provide fragmentation and reliability, the application inserts a header on each
message. This header contains 1 byte to identify if the message is a positive acknowledgement
or a content fragment, 2 bytes for the content identification, 1 byte with the number of fragments
to be sent and 1 byte with the actual fragment number. Each fragment’s length is 60 bytes.

In this implementation, the receiving nodes transmit an acknowledgement for each fragment
received, different from SNOMC (as explained in Section 3.3.2). Thus, the source node trans-
mits a fragment and waits for an interval. This interval is adaptive and is set as the time spent
to receive the last acknowledgement plus a small delay (1 clock tick). The results in Chapter 5

48

Send content

Receive
"Positive ACK"

yes

no

Source NodeA

Set next receiver

Has more
fragments to

send?

C

Content sent

Has more
receivers?

no

yes

Split content
into fragments

Set next fragment

Send fragment

Random waitRemove
fragment

(a) Flowchart in the source node.

Receive
content

Deliver to
application

yes

no

B

Has received
all fragments?

Wait for
next fragment

Receiving Node

Send
"Positive ACK"

(b) Flowchart in receiving nodes.

Figure 4.3: Flowchart of the UDP application’s algorithms.

Source node Receiver node 1 Receiver node 2User
content

fragment
loop for each fragment

positive ACK

fragment
loop for each fragment

positive ACK

Figure 4.4: Sequence diagram of the UDP implementation.

49

...
Figure 4.5: The scenario used to compare the algorithms.

 0

 200

 400

 600

 800

 1000

 1200

 1400

30 60 90 120 150

m
in

im
u
m

 n
u
m

b
e
r

o
f
tr

a
n
s
m

is
s
io

n
s

number of receiving nodes

Minimum number of transmissions in SNOMC and UDP

SNOMC
UDP

Figure 4.6: Minimum number of transmissions used to transmit one fragment.

show that there are almost no packet losses. It means that the intervals were enough to receive
the acknowledgements when the fragment has been successfully delivered.

If the source node receives an acknowledgement before the end of this interval [C], it trans-
mits the next fragment instantly. Otherwise, it retransmits the same fragment and waits for
a new time interval once more. Whenever the last acknowledgement is received, the time is
printed out as well as the number of transmitted messages. For each receiving node in the group,
all fragments from a content must be transmitted through the nodes.

This implementation uses Null MAC protocol as well as the SNOMC’s one (already de-
scribed in Section 4.1.4).

4.2.2 Comparing SNOMC and UDP algorithms

Figure 4.5 shows a fixed structure with the source node, two forwarding nodes and a branching
node. The diagram in Figure 4.6 shows the minimum number of transmissions used to transmit
a small content (with one fragment).

From the left to right hand side in the axis, each point represents the minimum number of
transmissions after adding a new branch with three receiving nodes to the structure.

50

Source node Branching node Receiver node 1 Receiver node 2Forwarding node 1 Receiver node 3Forwarding node 2

Data Data Data Data
positive ACKpositive ACKpositive ACKpositive ACK

Data Data Data Data

positive ACKpositive ACKpositive ACKpositive ACK

Data
positive ACK

Data Data Data Data

positive ACKpositive ACKpositive ACKpositive ACK

Data

positive ACK
Data

positive ACK

Figure 4.7: UDP implementation doing a transmission to one branch without packet losses.

For each new branch with three nodes, at least 26 new transmissions are done in SNOMC
(11 during the early phase, 9 during the transmission phase and 6 during the final phase). In
contrast, UDP requires a minimum of 30 new transmissions for each added branch, as shown in
Figure 4.7.

According to the diagram shown in Figure 4.6, UDP requires less transmissions than
SNOMC if the WSN has less than 15 nodes. However, the number of transmitted messages
increases faster if more nodes are added to the network.

4.2.3 Application using TCP

As the TCP protocol implementation provides fragmentation and reliability, the application can
strictly transmit the content and the control will be given back to it only after the TCP acknowl-
edgements have been received.

Figures 4.8 and 4.9 show the simplicity of this algorithm. The application just pays attention
to the messages to be transmitted. The reliability is guaranteed by the transmission protocol and
exchanged messages between the nodes at the application level can be identified in Figure 4.4.

This implementation does not require any kind of header in the application messages because
of the TCP features. Every message is transmitted over the socket connection and no extra
adjusts such as timers have to be done.

51

Send content

Wait for
"TCP ACK"

Source Node

Send message

(a) Flowchart in the source node.

Receive
content

Wait for
content

Deliver to
application

Receiving Node

(b) Flowchart in receiving nodes.

Figure 4.8: Flowchart of the TCP application’s algorithms.

Source node Receiver node 1 Receiver node 2User
content

content
TCP ACK

content
TCP ACK

Figure 4.9: Sequence diagram of the TCP implementation.

52

Chapter 5

Evaluation

This chapter describes the tests done with the implementations presented before. The idea of
the tests was to create a real-world WSN to simulate management tasks such as transmission of
small configurations (20 bytes) and software updates (1000 bytes).

5.1 Scenario

Tests were done in the building of the Institute of Computer Science and Applied Mathematics
in the University of Bern. In this building, many wireless networks are available as well as a
test-bed with wireless sensor nodes and wireless mesh nodes establishing wireless transmissions.
Moreover, walls, closed doors, and GSM networks are part of this environment. These aspects
are relevant because parallel transmissions can cause interference and packet collisions in the
transmission.

As discussed before, there are many possible scenarios in the real world where the WSNs
are deployed, from military applications to environment monitoring. To create a real-world
environment, six nodes were distributed inside the building with a distance between 4 and 8
meters to each direct neighbour. They were distributed at the same floor in the building as
shown in Figure 5.1.

One of these nodes (the source node) was connected to a desktop computer with a Virtual
Machine with Linux and each node was identified with a number and each line represents con-
nectivity between two of them. The node number 1 is always the source node connected to the
computer and transmitting data to the nodes using the interface.

The tests are performed in two scenarios: One with two nodes and other one with six nodes.

1. With two nodes:

• node 1 acts as source node

• node 2 acts as receiver node

2. With six nodes:

• node 1 acts as source node

53

1

2

3

4

5

6

4.46m

7.83m

6.32m

6.34m

6.04m

Figure 5.1: Distribution of the nodes inside the building.

• node 2 acts as forwarding node

• node 3 acts as branching node

• nodes 4, 5 and 6 act as receiver node

To transmit the data to 3 receiving nodes, SNOMC uses branching nodes and forwarding
nodes. With them, the 3 different caching schemes can be implemented, tested and the results
are also compared in the next section.

5.2 Test Configuration

As SNOMC was created to be used in management tasks, the tests simulate typical management
operations: configuration set up and software update.

In real-world applications, nodes collect data and transmit only the meaningful information
to the sink node. After a while, the meaning of the data can change and new thresholds may
be set. The tests simulate this transmission with 20 bytes to change the configuration of the
receiving nodes.

Software updates can be done for some different reasons such as bug fixing, changes in the
business models, etc.. An update may have around 700 bytes for a software with around 45KB
[32]. For the tests, the computer simulated this update transmitting 1000 bytes to all receiving
nodes.

54

5.3 Results

This section presents the results of the experiments described above. First, the tests with 20 bytes
(simulation of a configuration changing) are shown and later the simulation of a transmission of
a code update, with 1000 bytes.

Each test has been performed 50 times. The 50 observed values were sampled and presented
in a boxplot in two different ways. The first one considers only the time spent to transmit
the content to the nodes and the other one considers the time spent to start the group before
transmitting the content (early phase) too. With these, it is possible to have a concrete idea
about the variation of the observed times.

In order to have an idea about the energy consumption in the nodes, for each implementation
a diagram with the total of transmissions (including packet retransmissions) and the percentage
of packet losses are also shown. The percentage of packet losses was calculated as the relation
between the total of done transmissions (including retransmissions) and the number of received
messages:

% of packet losses =
of lost packets

of lost packets+# of received packets

Each column in the diagrams represents a different combination of design models (as dis-
cussed in Section 3.4). Some columns do not consider all phases of the algorithm. The labels
are described below:

SNOMC
SNOMC with no forwarding nodes and branching nodes, there is no cache policy in this
case. Here, only the transmission phase (see Section 3.6.2) is considered.

SNOMC with early phase
SNOMC with no forwarding nodes and branching nodes as the previous one, but consid-
ering the early phase (see Section 3.6.2).

SNOMC Every
SNOMC with cache in every node (see Section 3.4.2). It uses the first forward approach
(see Section 3.4.3). Here only the transmission phase is considered.

SNOMC Every with early phase
SNOMC with cache in every node. It uses the first forward approach. The results pre-
sented consider also the early phase.

SNOMC Every first check
SNOMC with cache in every node, using the first check approach (see Section 3.4.3). In
this case, only the transmission phase is considered.

SNOMC Every first check with early phase
SNOMC with cache in every node, using the first check approach. The results presented
consider also the early phase.

55

20 bytes 1000 bytes
Early phase

Start group messages 1 1
Start group acknowledgements 1 1
Positive acknowledgements 1 1

Transmission phase
Data messages 1 18
Content acknowledgements 1 1
Positive acknowledgements 1 1

Final phase
Finish group messages 1 1
Positive acknowledgements 1 1

Total 8 25

Table 5.1: Comparing SNOMC transmissions in the 2-nodes scenario (ideal case).

20 bytes 1000 bytes
Data messages 1 17
Positive acknowledgements 1 17
Total 2 34

Table 5.2: Comparing UDP transmissions in the 2-nodes scenario (ideal case).

SNOMC Branch
SNOMC with cache in branching nodes (see Section 3.4.2). In this case, only the trans-
mission phase is considered.

SNOMC Branch with early phase
SNOMC with cache in branching nodes, considering the early and the transmission
phases.

SNOMC Source
SNOMC with caching only in the source node (see Section 3.4.2). In this case, only the
transmission phase is considered.

SNOMC Source with early phase
SNOMC with caching only in the source node considering the early and the transmission
phases.

Tables 5.1, 5.2, 5.3, and 5.4 compare the minimum number of transmissions of the imple-
mentations. To calculate these values, eventual packet losses were not considered.

56

20 bytes 1000 bytes
Early phase

Start group messages 5 5
Start group acknowledgements 5 5
Positive acknowledgements 7 7

Transmission phase
Data messages 3 54
Content acknowledgements 5 5
Positive acknowledgements 5 5

Final phase
Finish group messages 5 5
Positive acknowledgements 5 5

Total 40 91

Table 5.3: Comparing SNOMC transmissions in the 6-nodes scenario (ideal case).

20 bytes 1000 bytes
Data messages 9 174
Positive acknowledgements 9 174
Total 18 348

Table 5.4: Comparing UDP transmissions in the 6-nodes scenario (ideal case).

 0

 1

 2

 3

 4

 5

 6

 7

SNOMC SNOMC
with

early phase

UDP TCP

ti
m

e
 [
s
]

Scenario with 2 nodes, 20 bytes

(a) With TCP measurements.

 0

 0.05

 0.1

 0.15

 0.2

SNOMC SNOMC
with

early phase

UDP

ti
m

e
 [
s
]

Scenario with 2 nodes, 20 bytes

(b) Without TCP measurements.

Figure 5.2: Time to transmit 20 bytes in the 2-nodes scenario.

57

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

SNOMC
with

early phase

UDP TCP

%
 o

f
p
a
c
k
e
t
lo

s
s

Scenario with 2 nodes, 20 bytes

(a) Percentage of packet losses.

 0

 2

 4

 6

 8

 10

 12

 14

SNOMC
with

early phase

UDP TCP

a
v
e
ra

g
e
 n

o
.
o
f
tr

a
n
s
m

is
s
io

n
s

Scenario with 2 nodes, 20 bytes

(b) Average number of transmissions.

Figure 5.3: Numbers observed after transmitting 20 bytes in the 2-nodes scenario.

5.3.1 Transmission of a Configuration (20 bytes)

Scenario with 2 Nodes

In the first test, the source node transmits 20 bytes to one node. Figure 5.2(a) shows results
comparing SNOMC, UDP and TCP.

Figure 5.3(b) shows a large variance between the observed transmission times using the TCP
implementation: The lowest time is 0.49 seconds and the highest is 7 seconds. The big difference
between the times can be explained by the high percentage of packet losses (see Figure 5.3(a)),
which represents the high number of retransmissions done in order to provide reliability (see
Figure 5.3(b)).

As TCP has a result much worse than the others, Figure 5.2(b) shows the results of SNOMC
and UDP in a new diagram with new intervals better fitting to them.

According to these diagrams, SNOMC is a better solution when compared to TCP, but it
is worse than UDP. SNOMC has a small number of packet losses (see Figure 5.3(a)) but the
average number of transmissions is around 20% larger than the number of messages used by the
UDP implementation. This difference was predicted in Tables 5.1 and 5.2 and happens because
of the messages transmitted during the early and final phases.

Scenario with 6 Nodes

The transmission of 20 bytes to 3 receivers in the scenario with 6 nodes was done in this test. In
this case, TCP and UDP have to transmit the same content three times.

Figure 5.4(a) shows the four caching approaches of SNOMC, UDP, and TCP results. In these
tests, the average number of messages transmitted in TCP is larger than in UDP and SNOMC
implementations as in the 2-nodes scenario. The difference now is the larger percentage of
packet losses of the TCP implementation, which explains the big variance in the Figure 5.4(a).

Figure 5.4(b) shows the results comparing SNOMC approaches with UDP in a new diagram
with new intervals fitting better with them.

58

 0

 5

 10

 15

 20

 25

 30

 35

SNOMC
Every

SNOMC
Every
with

early phase

SNOMC
Every
first

check

SNOMC
Every
first

check
with

early phase

SNOMC
Branch

SNOMC
Branch

with
early phase

SNOMC
Source

SNOMC
Source

with
early phase

UDP TCP

ti
m

e
 [
s
]

Scenario with 6 nodes, 20 bytes

(a) With TCP measurements.

 0

 0.5

 1

 1.5

 2

 2.5

SNOMC
Every

SNOMC
Every
with

early phase

SNOMC
Every
first

check

SNOMC
Every
first

check
with

early phase

SNOMC
Branch

SNOMC
Branch

with
early phase

SNOMC
Source

SNOMC
Source

with
early phase

UDP

ti
m

e
 [
s
]

Scenario with 6 nodes, 20 bytes

(b) Without TCP measurements.

Figure 5.4: Time to transmit 20 bytes in the 6-nodes scenario.

 0

 5

 10

 15

 20

 25

 30

 35

 40

SNOMC
with
early

phase

SNOMC
Every
first

check
with
early

phase

SNOMC
Branch

with
early

phase

SNOMC
Source

with
early

phase

UDP TCP

%
 o

f
p
a
c
k
e
t
lo

s
s

Scenario with 6 nodes, 20 bytes

(a) Percentage of packet losses.

 20

 40

 60

 80

 100

 120

SNOMC
with
early

phase

SNOMC
Every
first

check
with
early

phase

SNOMC
Branch

with
early

phase

SNOMC
Source

with
early

phase

UDP TCP

a
v
e
ra

g
e
 n

o
.
o
f
tr

a
n
s
m

is
s
io

n
s

Scenario with 6 nodes, 20 bytes

(b) Average number of transmissions.

Figure 5.5: Numbers observed after transmitting 20 bytes in the 6-nodes scenario.

59

According to these diagrams, SNOMC is a better solution when compared with TCP, but not
if compared with UDP.

For this kind of small amount of data and low number of receiving nodes, SNOMC does
not seem to be the best solution. This happens mainly because the early phase takes relatively
long time in comparison with the transmission phase. Using any SNOMC implementation, it is
expected a minimum of 40 transmissions (see Table 5.3) and using the UDP implementation, it
is expected a minimum of 18 transmissions (see Table 5.4).

Comparing SNOMC with UDP, Figure 5.5(a) shows the percentage of packet losses in the
implementations. UDP has a lower percentage of packet losses (0.65%) than SNOMC imple-
mentations (9.06%, 9.81%, 9.70%, and 10.64%). This also explains why the average number of
transmitted messages (see Figure 5.5(b)) is smaller than in SNOMC implementations: UDP has
transmitted around 18.5 messages per content, while SNOMC has used more than 50 transmis-
sions for each content.

However, according to the diagrams in Section 4.2.2, these results were expected with small
number of receiving nodes. According to them, SNOMC will probably provide better results if
more nodes are added to the WSN.

Considering only the SNOMC implementations, the one using cache in every node and the
first check approach is the best. This can be explained because of the small number of fragments
and packet losses, which do not require many retransmissions. Analysing the timing results for
early and transmission phases, SNOMC Every has a difference of 0.42 seconds from the highest
to the lowest values. The variance in SNOMC Every first check is 2.05 seconds, in SNOMC
Branch it is 0.91 seconds, and in SNOMC Source it is 0.86 seconds.

These results show that SNOMC implementation takes almost the same time than UDP to
transmit the content, but there is an overhead to notify the groups about the group transmission
(early phase), which turns it into an expensive choice for this configuration.

5.3.2 Transmission of a Code Update (1000 bytes)

Scenario with 2 Nodes

 0

 2

 4

 6

 8

 10

 12

 14

SNOMC SNOMC
with

early phase

UDP TCP

ti
m

e
 [
s
]

Scenario with 2 nodes, 1000 bytes

(a) With TCP measurements.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

SNOMC SNOMC
with

early phase

UDP

ti
m

e
 [
s
]

Scenario with 2 nodes, 1000 bytes

(b) Without TCP measurements.

Figure 5.6: Time to transmit 1000 bytes in the 2-nodes scenario.

60

 0

 2

 4

 6

 8

 10

SNOMC
with

early phase

UDP TCP

%
 o

f
p
a
c
k
e
t
lo

s
s

Scenario with 2 nodes, 1000 bytes

(a) Percentage of packet losses.

 0

 10

 20

 30

 40

 50

 60

SNOMC
with

early phase

UDP TCP

a
v
e
ra

g
e
 n

o
.
o
f
tr

a
n
s
m

is
s
io

n
s

Scenario with 2 nodes, 1000 bytes

(b) Average number of transmissions.

Figure 5.7: Numbers observed after transmitting 1000 bytes in the 2-nodes scenario.

The large amount of data requires many transmissions from the source node to the receiver
node. Figure 5.6(a) shows the high number of transmissions due to the reliability offered by
TCP.

The best result using TCP takes around 4 times more time than the worst results from
SNOMC and UDP implementations. The TCP implementation has more packet losses (6.85%)
than the other implementations (UDP has 0.02% and SNOMC has 4.2%), as shown in Figure
5.7(a). This large amount of packet losses implies many retransmissions and a large number
of messages (see Figure 5.7(b)). The result is a big variance between the observed times: The
highest value is 122 times bigger than the lowest one.

Even using UDP transmissions in SNOMC, the percentage of packet losses is bigger than
in the UDP implementation. This difference can be explained because some transmissions can
be delayed by environment interferences and the timers used by SNOMC had not been set large
enough to avoid few unnecessary retransmissions, which generates some packet collisions.

Removing TCP from the diagram, it is possible to see the difference between SNOMC and
UDP in Figure 5.6(b).

In this case, the relation between the early phase and the transmission phase in SNOMC is
not as big as in last tests. Moreover, the longest transmission in SNOMC took only 2.2 times
more than the fastest one and most of the transmissions were not more than 1.6 times worse than
the best one.

UDP is a faster solution for the 20-bytes transmission case, but SNOMC scales better and
requires less transmissions in this scenario. This can be seen in Figure 5.7(b): SNOMC trans-
mitted less messages than the UDP implementation.

Scenario with 6 Nodes

The TCP implementation was not able to finish the whole transmission. After some attempts,
the content with 1000 bytes was never delivered to the receivers. Thus, it was not possible to
display the respective data in the diagram.

According to the Figure 5.8, the early phase is relatively short in comparison with the time

61

 0

 1

 2

 3

 4

 5

 6

 7

 8

SNOMC
Every

SNOMC
Every
with

early phase

SNOMC
Every
first

check

SNOMC
Every
first

check
with

early phase

SNOMC
Branch

SNOMC
Branch

with
early phase

SNOMC
Source

SNOMC
Source

with
early phase

UDP

ti
m

e
 [
s
]

Scenario with 6 nodes, 1000 bytes

Figure 5.8: Time to transmit 1000 bytes in the 6-nodes scenario.

 0

 5

 10

 15

 20

 25

SNOMC
with
early

phase

SNOMC
Every
first

check
with
early

phase

SNOMC
Branch

with
early

phase

SNOMC
Source

with
early phase

UDP

%
 o

f
p
a
c
k
e
t
lo

s
s

Scenario with 6 nodes, 1000 bytes

(a) Percentage of packet losses.

 0

 50

 100

 150

 200

 250

 300

 350

 400

SNOMC
with
early

phase

SNOMC
Every
first

check
with
early

phase

SNOMC
Branch

with
early

phase

SNOMC
Source

with
early

phase

UDP

a
v
e
ra

g
e
 n

o
.
o
f
tr

a
n
s
m

is
s
io

n
s

Scenario with 6 nodes, 1000 bytes

(b) Average number of transmissions.

Figure 5.9: Numbers observed after transmitting 1000 bytes in the 6-nodes scenario.

62

used to transmit the content. Even with them, SNOMC presents results around 1.5 times better
than UDP.

Tables 5.3 and 5.4 show the minimum number of transmissions in SNOMC and UDP. After
checking the values, it is possible to predict that SNOMC implementations may have larger
percentage of packet losses than the UDP implementation without doing as many transmissions
as it does. It depends on how many transmissions are required to handle a packet loss.

SNOMC implementations transmit around 3 times less messages than UDP. The main reason
for this is because SNOMC uses unicast and also broadcast transmissions, which avoids many
redundant transmissions. In the actual scenario, SNOMC can combine 3 transmissions in one
using broadcast.

This big difference in the number of transmissions is relevant to the transmission time and
may have an impact on the nodes’ energy consumption.

The percentage of packet losses is very low in UDP (4.11%), as shown in Figure 5.9(a).
Therefore, although SNOMC has a larger number of packet losses in SNOMC, it is not enough
to make more transmissions than in UDP, as shown in Figure 5.9(b).

Moreover, even though each SNOMC implementation uses UDP transmissions, there are
relevant differences between their percentage of packet losses.

SNOMC implementation with cache in the branching nodes has 22.14% of packet losses,
which represents up to three times more than the other SNOMC approaches. In the forwarding
nodes, the fragments are received and forwarded, because have not been cached. Whenever a
fragment is received by a branching node, it waits to receive the whole content before starting
to forward it (as described in Section 3.4.2). By doing this, it is harder for the source node to
predict how long the transmission will take if some packets are lost. Therefore, timers used in
the source node may have different consequences:

• Timers large enough to avoid unnecessary packet retransmissions, but this would increase
the time to retransmit a content, if a fragment was lost.

• Unnecessary retransmissions may cause packet collisions and increase the number of
packet losses.

In these tests, the timers are set to detect packet losses earlier. As result of this, the nodes
make some unnecessary packet retransmissions generating a larger percentage of packet losses
and a big variance between the fastest and the slowest content transmissions, as shown in Figure
5.8. Moreover, Figure 5.9(b) shows that the average number of transmissions in the SNOMC
Branch implementation is larger than in the others.

Figure 5.9(a) shows that the SNOMC implementation using cache only in the source
node has less packet losses (7.25%) than the other SNOMC approaches (12.64%, 8.54%, and
22.14%). This happens because it is easier to detect packet losses and avoid packet collisions
caused by unnecessary retransmissions. Only the source node is responsible for making retrans-
missions in a group, which requires more packet transmissions to be done. This is why Figure
5.9(b) shows that this approach still has as many transmissions as the other SNOMC implemen-
tations.

Differences between the four implementations of SNOMC cannot be distinguished using
only the times used to transmit the contents. If either branching or forwarding nodes do not

63

have space to cache the fragments, the cache policy can be changed without a big performance
decrease.

Number of messages can be considered, but the implementations do not present big dif-
ferences. SNOMC Source has the lowest number of transmissions: Around 112.6 messages.
SNOMC Branch has the highest number of transmissions and has transmitted around 140.36
messages (25% more). This represents 150% less messages than the UDP implementation.

Supposing branching and the forwarding nodes have space to cache the data, there are two
SNOMC implementations with similar results to be used: cache in all nodes with first check and
cache in source node. However, the small difference between the shortest and the longest times
illustrates the stability and scalability of the cache in all nodes approach.

64

Chapter 6

Conclusions and Future Work

This chapter explains the conclusions about the observed results, the relevance of the improve-
ments and some points which can be studied in future work.

6.1 Conclusions

The chosen scenarios provided a real-world impact over the application, with concurrent trans-
missions and much interference, causing packet losses and requiring the reliability’s functional-
ity of the applications.

For transmissions only between two nodes, SNOMC spent more time than UDP. The number
of transmitted messages is larger if the content has only 20 bytes. Thus, it is possible to predict
that the number of messages increases exponentially if more nodes are added to the WSN. This
value increases according to the number of hops between the source node and the receiving
nodes. Despite this occurrence, SNOMC has been able to add new receivers without network
overload because of the use of broadcast transmissions and caching strategies. Based upon these
results, it is possible to suggest that SNOMC is also a good option for the transmission of small
amounts of data to more than three nodes.

If a large amount of data has to be sent, SNOMC is the best option. It always uses less trans-
missions than the UDP and TCP implementations, and in the 6-nodes scenario the transmissions
are also faster than UDP.

After the tests’ results and analysis, SNOMC can be considered a good solution to transmit
large amounts of data to groups of nodes in a WSN. As predicted in the description section,
SNOMC may avoid many connections, energy consumption and messages transmissions.

A comparison between SNOMC and TCP resulted in much better results with SNOMC.
TCP provides the same functionalities as SNOMC such as fragmentation and reliability, but the
high number of control messages turns it into a non-feasible option in this scenario.

SNOMC is a self-adaptive implementation, because the timer values used by the nodes to
transmit the packets depend upon the distance between two caching nodes (as described in Sec-
tion 4.1.2). This quality is also explicitly shown when the nodes use the same implementation
to transmit 20 and 1000 bytes, which is not feasible using UDP and TCP applications.

65

6.2 Future Work

SNOMC brings up some points which may be the focus of future work. This section presents
some ideas which may improve the results obtained thus far and are offered as ideas for the next
steps.

• The actual version consumes too much memory space from the nodes and does not allow
a big application to be deployed. Due to this size, some extra functionalities could not be
used such as the shell provided by Contiki. Without the shell utility, it was not possible
to deploy the implementation in TARWIS [33] and use its command interface to test the
implementation. The clean interface of TARWIS, may make it possible to easily test
scenarios with more than six nodes. Future work may consider to make changes in the
code in order to generate a compact image and do the tests in TARWIS.

• Another point to be observed in SNOMC is the header size. For example, the data mes-
sage type consumes 9 bytes and has only 56 bytes free for the data content. A smaller
header would imply larger data fragments and lower number of messages used in a group
transmission.

• On the medium access layer, the option used was the Null MAC. For future works, other
MAC protocols like X-MAC or BEAM [34] may work better without having to depend
upon the pre-defined timers’ values to avoid congestion and collisions between two trans-
missions. These MAC protocols allows the calculation of how much energy can be saved
using SNOMC.

• So far, the biggest restriction of SNOMC is the absence of procedures to create routes
between source node and receiving nodes. Future works may consider the idea to combine
SNOMC with one of the algorithms presented in Section 2.2.3 (VLM2, ADMR, GMP,
GMR) to discover the routes used by SNOMC.

• Finally, SNOMC may be compared to other implementations such as Flooding, Directed
Diffusion [35] (DD) and Multi-point relay [36] (MPR). These approaches are used to
disseminate the data to many receivers and are often used in real-world implementations.

66

Bibliography

[1] A. Munir and A. Gordon-ross, “Optimization approaches in wireless sensor networks,” in
Sustainable Wireless Sensor Networks. InTech, 2010, pp. 313–338.

[2] Tmote Sky Datasheet, Nov. 2006. [Online]. Available: http://www.sentilla.com/files/pdf/
eol/tmote-sky-datasheet.pdf

[3] TelosB Datasheet. [Online]. Available: www.willow.co.uk/TelosB Datasheet.pdf

[4] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor networks:
a survey,” Computer Networks, vol. 38, no. 4, pp. 393–422, 2002. [Online]. Available:
http://dx.doi.org/10.1016/S1389-1286(01)00302-4

[5] M. Ceriotti, L. Mottola, G. P. Picco, A. L. Murphy, S. Gunǎ, M. Corrà, M. Pozzi, D. Zonta,
and P. Zanon, “Monitoring heritage buildings with wireless sensor networks: The torre
aquila deployment,” in In Proc. of the 8th ACM/IEEE Int. Conf. on Information Processing
in Sensor Networks (IPSN). Best Paper Award, 2009.

[6] S. H. Lee, S. Lee, H. Song, and H. S. Lee, “Wireless sensor network design
for tactical military applications: remote large-scale environments,” in Proceedings
of the 28th IEEE conference on Military communications, ser. MILCOM’09.
Piscataway, NJ, USA: IEEE Press, 2009, pp. 911–917. [Online]. Available: http:
//portal.acm.org/citation.cfm?id=1856821.1856955

[7] J. Postel, “User Datagram Protocol,” RFC 768 (Standard), Internet Engineering Task
Force, August 1980. [Online]. Available: http://www.ietf.org/rfc/rfc768.txt

[8] V. Cerf, Y. Dalal, and C. Sunshine, “Specification of Internet Transmission Control
Program,” RFC 675, Internet Engineering Task Force, December 1974. [Online].
Available: http://www.ietf.org/rfc/rfc675.txt

[9] M. Hosseini, D. Ahmed, S. Shirmohammadi, and N. Georganas, “A Survey of Application-
Layer Multicast Protocols,” IEEE Communications Surveys & Tutorials, vol. 9, no. 3, pp.
58–74, 2007. [Online]. Available: http://dx.doi.org/10.1109/COMST.2007.4317616

[10] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, “A survey and comparison
of peer-to-peer overlay network schemes,” IEEE Communications Surveys and Tutorials,
vol. 7, pp. 72–93, 2005.

67

http://www.sentilla.com/files/pdf/eol/tmote-sky-datasheet.pdf
http://www.sentilla.com/files/pdf/eol/tmote-sky-datasheet.pdf
www.willow.co.uk/TelosB_Datasheet.pdf
http://dx.doi.org/10.1016/S1389-1286(01)00302-4
http://portal.acm.org/citation.cfm?id=1856821.1856955
http://portal.acm.org/citation.cfm?id=1856821.1856955
http://www.ietf.org/rfc/rfc768.txt
http://www.ietf.org/rfc/rfc675.txt
http://dx.doi.org/10.1109/COMST.2007.4317616

[11] “Rfc 791 internet protocol - darpa inernet programm, protocol specification,” Internet En-
gineering Task Force, September 1981.

[12] A. Dunkels, “The uIP Embedded TCP/IP Stack The uIP 1.0 Reference Manual,” 2006.

[13] G. Wagenknecht, M. Anwander, M. Brogle, and T. Braun, “Reliable multicast in wireless
sensor networks,” in FGSNâ08, 2008, pp. 69–72.

[14] J. S. Wilson, Sensor Technology Handbook, J. S. Wilson, Ed. Newnes, 2005.

[15] G. Wagenknecht, M. Anwander, T. Braun, T. Staub, J. Matheka, and S. Morgenthaler,
“MARWIS: A Management Platform for Heterogeneous Wireless Sensor Networks,”
2008, pp. 177–188. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-68807-5 15

[16] R. Braden, “Rfc 1122 requirements for internet hosts - communication layers,” Internet
Engineering Task Force, October 1989. [Online]. Available: http://tools.ietf.org/html/
rfc1122

[17] A. Tanenbaum, Computer Networks, 4th ed. Prentice Hall Professional Technical Refer-
ence, 2002.

[18] D. Plummer, “Ethernet Address Resolution Protocol: Or Converting Network Protocol
Addresses to 48.bit Ethernet Address for Transmission on Ethernet Hardware,” RFC 826
(Standard), Internet Engineering Task Force, Nov. 1982, updated by RFCs 5227, 5494.
[Online]. Available: http://www.ietf.org/rfc/rfc826.txt

[19] R. Droms, “Dynamic Host Configuration Protocol,” RFC 2131 (Draft Standard), Internet
Engineering Task Force, Mar. 1997, updated by RFCs 3396, 4361, 5494. [Online].
Available: http://www.ietf.org/rfc/rfc2131.txt

[20] M. Handley, E. Rescorla, and IAB, “Internet Denial-of-Service Considerations,” RFC
4732 (Informational), Internet Engineering Task Force, Dec. 2006. [Online]. Available:
http://www.ietf.org/rfc/rfc4732.txt

[21] Y.-C. Tseng, S.-Y. Ni, Y.-S. Chen, and J.-P. Sheu, “The broadcast storm problem in a
mobile ad hoc network,” Wirel. Netw., vol. 8, no. 2/3, pp. 153–167, 2002.

[22] H. Holbrook, B. Cain, and B. Haberman, “Using Internet Group Management Protocol
Version 3 (IGMPv3) and Multicast Listener Discovery Protocol Version 2 (MLDv2) for
Source-Specific Multicast,” RFC 4604 (Proposed Standard), Internet Engineering Task
Force, August 2006. [Online]. Available: http://www.ietf.org/rfc/rfc4604.txt

[23] B. Fenner, M. Handley, H. Holbrook, and I. Kouvelas, “Protocol Independent Multicast
- Sparse Mode (PIM-SM): Protocol Specification (Revised),” RFC 4601 (Proposed
Standard), Internet Engineering Task Force, Aug. 2006, updated by RFCs 5059, 5796.
[Online]. Available: http://www.ietf.org/rfc/rfc4601.txt

68

http://dx.doi.org/10.1007/978-3-540-68807-5_15
http://tools.ietf.org/html/rfc1122
http://tools.ietf.org/html/rfc1122
http://www.ietf.org/rfc/rfc826.txt
http://www.ietf.org/rfc/rfc2131.txt
http://www.ietf.org/rfc/rfc4732.txt
http://www.ietf.org/rfc/rfc4604.txt
http://www.ietf.org/rfc/rfc4601.txt

[24] A. Adams, J. Nicholas, and W. Siadak, “Protocol Independent Multicast - Dense
Mode (PIM-DM): Protocol Specification (Revised),” RFC 3973 (Experimental), Internet
Engineering Task Force, Jan. 2005. [Online]. Available: http://www.ietf.org/rfc/rfc3973.txt

[25] A. Sheth, B. Shucker, and R. Han, “Vlm2: A very lightweight mobile multicast system for
wireless sensor networks,” in IEEE Wireless Communications and Networking Conference
(WCNC) 2003, 2003, pp. 1936–1941.

[26] B. rong Chen, K. kumar Muniswamy-reddy, and M. Welsh, “Ad-hoc multicast routing on
resource-limited sensor nodes,” in in Proceedings of the 2nd International Workshop on
Multi-hop Ad. ACM Press, 2006, pp. 87–94.

[27] J. A. Sanchez, P. M. Ruiz, and I. Stojmenovic, “GMR: Geographic multicast routing for
wireless sensor networks,” in Proceedings of the 3rd Annual IEEE Conference on Sensor
and Ad Hoc Communications and Networks (SECON), vol. 1, 2006, pp. 20–29.

[28] A. Dunkels, “Contiki: Bringing ip to sensor networks.” ERCIM News, vol. 2009,
no. 76, 2009. [Online]. Available: http://dblp.uni-trier.de/db/journals/ercim/ercim2009.
html#Dunkels09

[29] ——, “Rime — a lightweight layered communication stack for sensor networks,”
in Proceedings of the European Conference on Wireless Sensor Networks (EWSN),
Poster/Demo session, Delft, The Netherlands, Jan. 2007. [Online]. Available:
http://www.sics.se/∼adam/dunkels07rime.pdf

[30] J. Romkey, “Nonstandard for transmission of IP datagrams over serial lines: SLIP,”
RFC 1055 (Standard), Internet Engineering Task Force, June 1988. [Online]. Available:
http://www.ietf.org/rfc/rfc1055.txt

[31] J. Postel, “Internet Control Message Protocol,” RFC 792 (Standard), Internet
Engineering Task Force, Sept. 1981, updated by RFCs 950, 4884. [Online]. Available:
http://www.ietf.org/rfc/rfc792.txt

[32] T. Stathopoulos, J. Heidemann, and D. Estrin, “A remote code update mechanism for
wireless sensor networks,” Los Angeles, CA, USA, Tech. Rep., 2003. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.5.4326

[33] P. Hurni, G. Wagenknecht, M. Anwander, and T. Braun, “A testbed management architec-
ture for wireless sensor network testbeds (tarwis),” in 7th European Conference on Wireless
Sensor Networks (EWSN), Feb. 2010, pp. 33–35.

[34] M. Anwander, G. Wagenknecht, T. Braun, and K. Dolfus, “Beam: A burst-aware energy-
efficient adaptive mac protocol for wireless sensor networks,” in 7th International Confer-
ence on Networked Sensing Systems, June 2010, pp. 195–202.

[35] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva, “Directed
diffusion for wireless sensor networking,” IEEE/ACM Trans. Netw., vol. 11, pp. 2–16,
February 2003. [Online]. Available: http://dx.doi.org/10.1109/TNET.2002.808417

69

http://www.ietf.org/rfc/rfc3973.txt
http://dblp.uni-trier.de/db/journals/ercim/ercim2009.html#Dunkels09
http://dblp.uni-trier.de/db/journals/ercim/ercim2009.html#Dunkels09
http://www.sics.se/~adam/dunkels07rime.pdf
http://www.ietf.org/rfc/rfc1055.txt
http://www.ietf.org/rfc/rfc792.txt
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.5.4326
http://dx.doi.org/10.1109/TNET.2002.808417

[36] Y. Faheem and S. Boudjit, “Sn-mpr: A multi-point relay based routing protocol for
wireless sensor networks,” in Proceedings of the 2010 IEEE/ACM Int’l Conference on
Green Computing and Communications & Int’l Conference on Cyber, Physical and
Social Computing, ser. GREENCOM-CPSCOM ’10. Washington, DC, USA: IEEE
Computer Society, 2010, pp. 761–767. [Online]. Available: http://dx.doi.org/10.1109/
GreenCom-CPSCom.2010.139

70

http://dx.doi.org/10.1109/GreenCom-CPSCom.2010.139
http://dx.doi.org/10.1109/GreenCom-CPSCom.2010.139

	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Goal
	Structure of the Thesis

	Related Work
	Wireless Sensor Networks
	Wireless Sensor Nodes
	Heterogeneous Wireless Sensor Networks

	Communication Schemes
	Communication Protocol - Internet Protocol
	Transport Protocols
	Routing Schemes

	Hardware
	Contiki Operating System
	Characteristics
	Protocol Stack
	Transport Protocols

	Sensor Nodes Overlay Multicast Communication (SNOMC)
	Node Roles
	Definitions
	Message Types
	Default Messages
	Notification Messages
	Acknowledgements

	Design Models
	Receiver-driven vs. Source-driven Mode
	Caching Scheme
	Transmission Scheme

	Data structures
	The SNOMC Algorithm
	Assumptions
	Phases

	Implementation
	SNOMC Implementation in Contiki
	Memory Allocation
	Transmission Procedure
	Receiving Procedure
	Pre-defined Values
	Additional Details

	UDP and TCP Implementations in Contiki
	Application using UDP
	Comparing SNOMC and UDP algorithms
	Application using TCP

	Evaluation
	Scenario
	Test Configuration
	Results
	Transmission of a Configuration (20 bytes)
	Transmission of a Code Update (1000 bytes)

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

