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Abstract

Managing large-scale wireless sensor networks (WSN) is a non-trivial

task due to the diversity of sensor node types and complex network

topologies. With software-defined networking (SDN), the management

of these complex network topologies can be simplified by the global view

of the SDN controller. In order to send packets from one node to an-

other, a route needs to be installed between these two nodes. However,

it is possible that some sensor nodes on the route fail or are moved away,

and so the route is interrupted. To fix interrupted routes, the current

implementation of [Schärer et al., 2019] drops all existing routes in a cer-

tain interval. After dropping a route, the next time a sensor node wants

to send a packet to another node, it sends a request to the controller

and then the route gets installed again. This approach has two major

drawbacks. First, routes that never change are also dropped with every

interval. This leads to an overhead of control packets. Second, routes

that change more often must wait up to the given interval until they are

updated. This thesis focuses on improving the current implementation

to reduce the control packet overhead and simultaneously reduce the

time for a route to get updated. For this, two new update strategies are

implemented and compared together with the current approach.
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1 Introduction

This thesis focuses on route update strategies in wireless sensor networks

(WSNs) that are based on software-defined networking (SDN). For this, it uses

SDNWise, a framework for SDN based WSNs. SDNWise is a direct deriva-

tion of Openflow. It uses reactive routing to install routes in the network. In

case of a dynamic network, in which nodes might fail or might be moved, it is

necessary to update the routes.

1.1 Motivation

The current implementation to update routes in the WSN is very simple and

limited: Every 60 seconds, each node drops its flow table and so all routes in

the network are dropped. The next time a node needs to send a packet to

another node, it has to send a request to the controller again to install a new

route.

This approach does not consider how dynamic a route is. It can happen that

some routes are very stable and almost never need an update, while other

routes need updates more frequently. In the first case, the disadvantage is a

certain control packet overhead. This leads to a higher power consumption

and to a network overload. In the second case, the disadvantage is a higher

packet loss rate because a route may break and then every packet is lost until

the route is updated.

1.2 Objectives

The goal of this thesis is to find two alternative update strategies, compare

them with the current implementation and then find the most efficient one.

The goals are:

• Defining which properties represent a good update strategy

• Defining and implementing two update strategies

• Comparing all strategies and find the best one
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1.3 Thesis Contributions

The main contribution of this thesis are two new route update strategies for

SDN based WSNs. The first one is a trickle timer, which replaces the current

timer on the nodes in the network. The second one is an implementation on

the controller, which detects necessary route updates and sends them to the

nodes.

Another contribution is the comparison of the different route update strategies

to find the best one. For this, the route update strategies were executed on

different WSNs and then metrics were calculated.

A third contribution is an extension for the neighbor table of the nodes in SD-

NWise. The current neighbor table was not designed for dynamic networks.

The nodes did not remove the corresponding entry after a neighbor had disap-

peared. Because of this, the controller did not receive correct reports from the

nodes. This resulted in a false global view of the controller and so in wrongly

computed routes. This thesis fixes this issue by deleting a neighbor from the

neighbor table after the neighbor did not send a beacon for three times in a

row.

A further contribution is an update of the mobility plugin to the newest version

of Contiki. Contiki is an open source operating system for the Internet of

Things.

1.4 Thesis Structure

This thesis consists of 5 chapters. In chapter 1, an introduction to the subject

of this thesis is given. In chapter 2, the relevant background is explained.

Chapter 2 also shows the related work. In chapter 3, the two main approaches

are presented and explained. Chapter 4 contains the measurements which were

executed to find the best update strategy. Chapter 5 contains a conclusion and

discusses future work.
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2 Background and Literature

This section gives an overview of the related works and explains some of the

used techniques.

2.1 Related Work

There are several papers and projects related to this thesis.

[Galluccio et al., 2015] proposed a SDN framework for WSN which is used in

this thesis. The framework is called SDN-Wise and is explained in more detail

in section 2.4.

[Schärer et al., 2019] proposed a software-defined wireless sensor network

testbed. It is a real-world testbed consisting of sensor nodes which are dis-

tributed over two buildings. The integration of the SDN-Wise framework is

done with TARWIS [Hurni et al., 2011]. This is a testbed management archi-

tecture for real-world WSN testbeds.

[Zumbrunn, 2019] is an SDN-framework for securing IoT networks using ma-

chine learning. It supports automatic attack recognition, attacker identifica-

tion and attack mitigation. It is based on anomaly detection in combination

with machine learning classification and software-defined networking. The at-

tack recognition and mitigation is not just designed for one certain attack, but

rather a more general approach against many different attacks.

[Schärer et al., 2018] is a dynamic traffic aware routing protocol (DTARP) for

wireless sensor networks. It is based on SDN and so it has access to global

topology information for routing decisions. For the routing decisions, DTARP

uses up-to-date traffic information and topology metrics. Its goal is to increase

the overall energy efficiency.

The mobility plugin ([Mobility-Plugin]) was used to simulate the dynamics of

the network.
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2.2 Wireless Sensor Networks (WSN)

A Wireless Sensor Network (WSN) includes a set of spatially dispersed sensors,

which can send and receive information via radio. They can be used to measure

environmental conditions like temperature, sound, humidity, etc. To gather

the recorded information from the sensors, it would be a tedious task to go

to every single node and take the recorded information. This is an important

reason why we connect the sensor nodes to a network. The network can then

be used to send the information to one or more central places. These central

places are linked to the network via so-called sink nodes. Sink nodes are just

like normal sensor nodes, with the difference that they are usually linked to

an outside device or network.

2.3 Software-Defined Networking (SDN)

Software-Defined Networking (SDN) is a networking concept that centralizes

network management. In order to do so, it separates the forwarding process

of network packets (data plane) from the routing process (control plane).

The data plane is the actual network and consists of the network nodes. The

network nodes send their local information as a report to the control plane.

The control plane consists of one or more controllers. These controllers take the

report from the network nodes and create a global view of the whole network.

With the global view, the controllers can compute routes and send them to

the data plane.

2.4 SDN-Wise

SDN-Wise ([Galluccio et al., 2015]) is a software-defined networking solution

for wireless sensor networks. The aim of SDN-WISE is to simplify the man-

agement of the network, the development of novel applications, and the exper-

imentation of new networking solutions ([SDN-Wise]). SDN-Wise is directly

derived from OpenFlow. A major advantage of SDN-Wise compared to Open-

flow is that it has a flexible definition of flow table rules. Each flow table entry
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consists of a window and an action. If a packet matches the window of a flow

table entry, the corresponding action is executed. The action can either be

forwarding, dropping or modifying the packet.

2.4.1 System Overview

This section gives a brief overview of all components used in SDN-Wise.

Figure 2.1: Overview of SDN in WSN

Figure 2.1 shows an example of a network using SDN-Wise. On the data plane,

there are sensor nodes and a sink node. It is also possible to have multiple

sink nodes on the data plane. Each sensor node has a limited transmission

range, so if it needs to send a packet to the sink node and the sink node is not

in its transmission range, other nodes need to forward the packet to the sink

node. The sink node is connected to the control plane, which is responsible

for managing the network.

The data plane can either be simulated with a software or it can consist of

real-world sensor nodes. When simulated nodes are used, the sink node can

be connected with the adaptation layer using TCP/IP. Otherwise, when real-

world nodes are used, the sink node can be connected via USB.
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2.4.2 Sensor Node Firmware

For the sensor nodes, the SDN-Wise framework contains a firmware called

SDN-Wise Contiki. SDN-Wise Contiki is based on Contiki OS and is written

in C. The most important features of this firmware are:

• Main loop for handling internal messages

• Timer loop for sending beacons every few seconds

• Timer loop for sending reports every few seconds

• Packet handler for handling incoming packets

• Flow table for storing flow table entries as windows and actions

• Neighbor table for storing neighbors

This firmware is installed on every node. For the sink, the firmware uses the

same codebase, but there are preprocessor commands in the code to insert or

remove code if the firmware is compiled for the sink. For example, only the

sink node needs to send a RegProxy packet at the start to report its existence

to the controller.

2.4.3 Control Plane Software

The main software of the control plane using SDN-Wise is called SDN-Wise

Java. It is a Java application, which consists of three main parts:

• Adaptation layer

• Flow Visor

• Controller

The adaptation layer is responsible for the interface between SDN-Wise Java

and the sink node. After receiving a packet from the sink, the adaptation layer

forwards it one layer up to the flow visor.

The flow visor is needed when the network uses more than one controller. For

every packet coming from the adaptation layer, the flow visor forwards it to

an appropriate controller. The flow visor also needs to forward packets from

the controller to the adaptation layer.
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The controller stores the global view of the network and calculates new routes

for the sensor nodes. Its main responsibility is to handle packets coming from

the flow visor. After handling a packet, the controller can send packets back

to the flow visor.

It is also possible to use another controller called Open Network Operat-

ing System (ONOS) instead of the built-in controller. ONOS is a publicly

available Network Operating System written in Java ([ONOS]). To commu-

nicate with sink nodes using SDN-Wise Contiki as firmware, SDN-Wise Java

is needed as intermediary. The flow visor of SDN-Wise Java needs to be

configured to forward packets to the ONOS controller instead of the built-in

SDN-Wise Java controller. It is also necessary to start the plugin ”SDN-WISE

Provider” on ONOS in order to setup a connection to SDN-Wise Java ([SDN-

Wise Provider]).

2.4.4 Packet Formats

SDN-Wise is an architecture which uses packets to send data between nodes.

There are eight different packet types in SDN-Wise:

• Data

• Beacon

• Report

• Request

• Response

• OpenPath

• Config

• RegProxy

Each packet contains a header with the same structure for all packets. The

header consists of 10 bytes and the structure is shown in Figure 2.2.

7



Figure 2.2: Header of packets

The entries of the header store the following informations:

LEN The length of the packet

ID The network id

SRC The source address

DST The destination address

TYP The type of the packet

TTL How many hops the packet can take until it gets deleted

NX HOP The address of the next hop

In the following there is a brief summary for each packet type.

Data packet

Figure 2.3: Data packet

The Data packet consists of a header with TYP = 0 and a payload which

contains the data. It can be used to send application specific data.

Beacon packet

Figure 2.4: Beacon packet

The Beacon packet consists of a header with TYP = 1, a distance and the

battery level. Every five seconds, each node sends a Beacon packet to all
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nodes which are close enough to receive it. It is used to tell all neighbors

the own distance from the sink and the battery level. Each neighbor adds or

updates an entry in its neighbor-table after receiving the packet and checks if

the sending node provides a better route towards the sink. If so, the neighbor

changes the variable which indicates the standard next hop.

Report packet

Figure 2.5: Report packet

The Report packet with TYP = 2 is used to send local information to the

controller. As soon as the node knows the next hop towards the sink, it begins

to send Report packets to the sink in a certain interval. This report is used

by the controller to generate a global view of the whole network.

The distance and the battery level is equivalent to the Beacon packet. The

node also reports its neighbors by sending the number of neighbors and for

each neighbor its address and the Received Signal Strenght Indication (RSSI).

Request packet

Figure 2.6: Request packet

The Request packet is used when a node has to handle a packet for which it

cannot find a matching entry in its flow table. It consists of a header with

TYP = 3, the request id and the packet for which there was no flow entry. It

might happen that the unmatched packet is too long to fit into one request.

If this is the case, the Request packet is split into multiple packets. In order
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to support this, every Request packet stores the number of the current part

and the number of parts in total. After generating the Request packet, the

node sends it to the controller and then it’s up to the controller to decide what

to do with the Request packet. The controller used in this thesis calculates a

route and send it back to the requesting node with an OpenPath packet. It

also tries to send the unmatched packet to its destination address shortly after

the OpenPath packet.

Response packet

Figure 2.7: Response packet

The Response packet can be used by the controller to send flow rules to a

single node. It consists of a header with TYP = 4 and the flow rules to install

on the destination node. In order to install a whole route, this packet is very

inefficient, because the controller would have to send Response packets to every

node in the route. To overcome this, there is the OpenPath packet.

OpenPath packet

Figure 2.8: OpenPath packet

The OpenPath packet can be used by the controller to install a complete route

between two nodes. It consists of a header with TYP = 5, the window size,

the windows for the flow entries, and the addresses of the nodes appearing

in the route. To install the route, the packet is sent to the first node on the

route. The first node adds a flow table entry and then forwards the packet to
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the next node on the route. The next node also adds a flow table entry and

forwards the packet to the third node on the route, and so on.

Config packet

Figure 2.9: Config packet

The Config packet is used by the controller to change the configuration of a

node. It consists of a header with TYP = 6 and the id of the configuration

that should be changed. It may also contain parameters which can hold any

information. In most cases the parameters hold the new value for the config-

uration.

RegProxy packet

Figure 2.10: RegProxy packet

The RegProxy packet is used by the sink node to report its existence to the

controller. It consists of a header with TYP = 7, the id and MAC address of

the sink, the physical port, the IP address of the sink and the TCP port of the

sink.
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3 Approaches

This chapter shows the two approaches to improve the current route update

strategy. Figure 3.1 below shows a summary of some possible implementations

and the resulting route update strategies. On the left side of Figure 3.1,

there are implementations that can be made on the nodes. On the right side,

there are implementations that can be made on the controller. The different

implementations on the left side can be combined with the implementations on

the right side. The resulting combinations represent a route update strategy.

Figure 3.1: Approaches summary

The current implementation for updating routes uses a normal timer on the

nodes and no additional implementation on the controller. In Figure 3.1, it is

colored green.

The first new route update strategy, the trickle timer approach, is colored blue.

It uses a trickle timer on the nodes, which is explained in detail in Section 3.1.

The second new route update strategy, the controller approach, is colored

orange. It uses an implementation on the controller that monitors the topology

and updates routes immediately. This approach installs an updated route by

overwriting existing routing entries. It is possible that some parts of the old

route stay in the network, and so it is necessary to continue to use the trickle

timer on the nodes.
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If the old route could be removed completely, for example by sending delete

packets to remove old routing entries, the trickle timer on the nodes would

not be necessary. This approach is colored grey and was not implemented and

tested in this thesis.

3.1 Trickle Timer

One strategy to improve the current route update algorithm is using a trickle

timer. A trickle timer is a timer that increases its interval every time the timer

expires. It is possible to reset the interval to its default value after a certain

event. The original purpose of a trickle timer is to reduce the control traffic

overhead by holding back messages as described in [Lewis et al., 2011]. An

improved trickle timer was proposed by [Goyal and Chand, 2018].

For this route update strategy, a trickle timer is used to replace the normal

timer that drops the whole flow table every 60 seconds. The main idea is to

increase the interval every time the route did not change, and resetting the

timer every time the route changed.

3.1.1 Motivation

The trickle timer has the advantage that its interval is adapted to the route

changing frequency of the nodes. If a node changes its routes often, the interval

will not increase much. If a node has only static routes, the interval will become

bigger. By replacing the current timer with the trickle timer, the expected

changes are:

• Number of requests from the nodes: will decrease

• Time between sending and receiving a packet: will increase

• Packet loss rate: will increase

Note that the trickle timer has the disadvantage that it increases the maximum

of time it takes until a route is updated. This means it may be necessary for a

node to wait more than 60 seconds to get an update. If a node in a route fails,
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the route will remain incomplete and all packets sent over this route are lost

until the trickle timer expires. By increasing the maximum interval time, the

packet loss rate will increase if the minimum interval time stays the same. For

the time between sending and receiving a packet, it is expected that the time

will increase because updating the routes is less frequent. If a better route

appears, it takes more time in average until this route is chosen.

3.1.2 Implementation

As already mentioned, the trickle timer replaces the current timer that drops

all flow table entries every 60 seconds. So each node has its own trickle timer

and if it expires the node drops its flow table.
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Figure 3.2: Trickle Timer

Figure 3.2 shows on the left side the procedure of setting and resetting the

trickle timer. As soon as the timer expires, it checks if the reset variable of

the right procedure is set. If this is the case, the interval of the timer is reset

to its original value. Otherwise, the timer is increased by the step size. The

experiments used as default interval 60 seconds, a step size of 30 seconds and

a maximum interval of 180 seconds.

On the right side, Figure 3.2 shows how the reset variable is set. As soon as a

new flow table entry needs to be installed, it checks if a routing entry with the

same window (destination) already exists. If this is the case and if the action
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(next hop) is different as the entry that needs to be installed, the node knows

that the route has changed. It sets the reset variable to ”1” and the next time

the trickle timer expires, its interval is reset to its original value.

Parameters

The trickle timer used in this thesis has the following parameters:

• Default interval

• Maximum interval

• Step size

The default interval is the interval of the timer at the beginning. It is also used

for resetting the interval if the route has changed. The maximum interval is a

parameter that prevents the interval from becoming too large. The step size

is a fixed amount the interval grows every time the route did not change. In

[Lewis et al., 2011], the interval was doubled every time an increasing of the

timer was necessary. This thesis used a fixed step size to restrain the growing

of the interval. A formula of the function is shown below:

interval = default interval + x ∗ step size

In this formula, x denotes the number of times the timer needed to be increased.

Checking for route changes

It is necessary to keep track of the old flow table entries in order to decide if

routes have changed. A first approach would be to copy the whole flow table

before dropping it and so keep track of two flow tables. However, this leads

to a much higher storage and energy consumption. The disadvantages would

surpass the advantages by far.

The approach used in this thesis is more straightforward. Instead of copying

the flow table before dropping it, the flow table is not dropped at all. To

ensure that old flow table entries are not used anymore for packet handling,

an additional flag ”deprecated” is added to each flow table entry. This flag

indicates that the entry is old and such entries are not used anymore for
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packet handling, but only for the trickle timer. This approach increases the

storage usage as well by inserting a deprecated flag to each entry and by

keeping old entries in the flow table.

3.1.3 Possible Improvements

In this section, some possible improvements for the trickle timer are listed:

Timer per flow table entry

The current trickle timer can only reset the whole flow table instead of single

entries. If there is a node with only static routes except for one route that

changes more often, the trickle timer will not increase much and there will be no

difference to the current approach. A possible solution would be to downgrade

the trickle timer to a normal timer and then skipping the deletion for some

entries. To implement this, the node would have to store more information

per flow table entry. It would be very hard to compare it to the old approach

since it would be necessary to compare storage usage with battery usage and

decide which one is more important.

Another increasing function

The current trickle timer uses a linear function for increasing its interval. How-

ever, it is possible to use any other function to increase the interval. For ex-

ample, the interval could be doubled each time the timer expires. This would

affect the result a lot if the time between ”default interval” and ”maximum

interval” is high. Which function to choose depends on the network structure

and network changing behaviour. By changing the step size, the trickle timer

can be improved, but the overall concept stays the same and the disadvantages

remain.
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3.2 Controller Approach

The current route update algorithm can also be improved or even optimized

by delegating the process of dropping flow table entries to the controller. Since

the controller has a global view of the network, it can check if a node failed

or was moved away and then compute the affected routes. After that, it can

calculate new routes for each affected route and send them to the network.

3.2.1 Motivation

The current approach as well as the trickle timer approach have the disad-

vantage that they may drop flow table entries that are still used. The trickle

timer is able to delay the dropping of the flow table for some nodes, but at the

expense of the packet loss rate. By having a controller with a global view, it

is possible to let the controller handle all route updates.

3.2.2 Implementation

To implement the controller approach, there are two major changes of the

controller necessary. First, the controller has to check for better routes each

time the network structure changes. This is the case if a node reports other

neighbors than in the previous report. So, after getting a report, the controller

checks if the network structure changed and if this is the case it checks for all

affected routes if there is a better route. Second, the controller has to store all

routes after computing it in order to find the affected routes after a network

structure change.

After finding a better route, it is necessary to send the new route to the nodes.

This includes on the one hand the deletion of the old route and on the other

hand the installation of the new route. The installation can be done very easily

by just sending an OpenPath packet similar to answering requests from the

nodes. For the deletion of the routes, there are 3 different possibilities:

• Creating a ”Reverse OpenPath packet”

• Creating a ”Single Deletion packet”
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• Continue to use the trickle timer

Reverse OpenPath Packet

A first idea is to create a new packet type that does the opposite of an Open-

Path packet. Instead of going through all nodes on the path and install the

route, the packet would go through all nodes and uninstall the route. So,

the controller would send a reverse OpenPath packet to the first node on the

route. This packet would remove the specific flow table entry and then send

the packet to the second node, and so on. Unfortunately, this is not possible

since the route will not be complete in most cases. For example, if a node fails

and the controller has to find another route because of that, its not possible

to remove the old route the same way it was installed.

Single Deletion Packet

Another approach to remove the old route is to create a new packet type which

does the opposite of the Response packet. Instead of sending a specific flow

table entry, it would remove a specific flow table entry. This packet type could

then be used to remove flow table entries on an old route one by one. There

are three major drawbacks of this method:

• Many control packets

• Unused routes are not deleted

• Deletion packet may not arrive

The first issue to mention is that in a dynamic network route updates may be

necessary very often. This would lead to many control packets, especially if the

paths are long. So, this approach may cancel out the advantage it gains with

respect to the control packet overhead. Imagine a network with just one route

containing 10 nodes which changes every 5 minutes. The current approach

sends a Request packet every 60 seconds, i.e. 5 Request packets in 5 minutes.

The controller approach with the Single Deletion packet would send every 5

minutes a Single Deletion packet to all nodes, so 10 control packets every 5
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minutes. This means in this case the network would even double the amount

of control packets to maintain the route.

Another drawback of this approach is that unused routes are kept forever on

the nodes. This is difficult to solve, because the controller cannot recognize

which routes are no longer needed. So old routes are kept updated by the

controller, even if they are no longer needed. The best solution would be if the

nodes could drop unused flow table entries themselves as soon as the storage

gets full.

The third issue is that a Deletion packet may not arrive at the node, and since

the node does not know there was a Deletion packet on the way, it cannot

request the packet a second time. From this point on, the controller would

have a wrong global view of the installed routes. Even worse, the wrong flow

table entry would remain on the node. It would be possible to fix this by

sending an Acknowledgement packet from the node to the controller when the

packet arrived, but this would increase the control packet overhead even more.

Continue to use the trickle timer

Installing a new route can be done without even uninstalling the old one. This

is because when a new flow table entry has to be installed on a node, the node

replaces the corresponding old entry (if there is one) with the new entry. The

problem is just that the flow table entries that are not contained in the new

route are not deleted. This matters only if the node with the wrong entry

has to send a packet to the same address. In this case, it sends the packet

according to the wrong entry instead of requesting a new route. To solve

this problem, a trickle timer can be used. In this case, the advantage of this

controller approach remains on reducing the packet loss rate since it updates

the routes immediately. This thesis uses the trickle timer in order to support a

better comparison between the trickle timer without controller approach and

the trickle timer with the controller approach.
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4 Measurements and Evaluation

To compare the three update algorithms, each algorithm was tested on a set

of different network topologies. For this, a simulation tool called ”Cooja”

([Cooja]) was used. Each network was executed for 5 minutes. In total there

were 5 different network topologies, on which one simulation per update al-

gorithm was executed. After executing the simulations, different metrics were

calculated using a python script.

4.1 Simulation Tool

For the simulation of the network, a virtual machine with Contiki was used.

Contiki is an open source operating system for the Internet of Things. It comes

with many different tools, one of them is a simulation tool called ”Cooja”. In

this thesis, Cooja was used to simulate the wireless sensor network. Figure 4.1

shows how it looks.

Figure 4.1: Cooja

The sink node in the simulation is colored yellow. It is connected to the

controller with a TCP connection. In order to simulate the dynamics of the

network, a mobility plugin ([Mobility-Plugin]) was used.
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4.1.1 Mobility Plugin

The mobility plugin is able to move nodes from one position to another at a

given time. The information for all movements is stored in a text file, in which

each line contains the id of the node, the time the movement should occur and

the target position. The movements are executed instantly, so when the time

is reached, the node immediately goes to the target position.

4.2 Topologies

Five different network topologies were used to compare the different update

strategies. A graph for each network and the installed routes after 30 seconds

are shown below.

Network 1

(a) Topology Graph (b) Route 1-5
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Network 2

(a) Topology Graph (b) Route 1-5

Network 3

(a) Topology Graph (b) Route 1-5
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Network 4

(a) Topology Graph (b) Route 1-5

Network 5

(a) Topology Graph (b) Route 1-5

Figures (a) show for each network the wireless sensor network topology as a

graph. This graph indicates which network nodes are able to communicate

with each other. Figures (b) show the route that was installed after the first

packet arrived.

4.3 Metrics and Measurements

This section shows the metrics that were used in order to compare the different

solutions and their results. Depending on the requirements of the system, one
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metric may be more important than others.

For the simulation, node 1 sends a message to node 5 every 10 seconds, starting

after 30 seconds to give the controller some time to build the global view of

the network. Every simulation was executed for 5 minutes, so in total there

were 27 messages sent per simulation.

4.3.1 Number of Request Packets

The first metric used in this thesis is the total number of Request packets

per simulation. This metric was used to measure the network traffic overload

generated by the Request packets.

Figure 4.7: Number of requests in total

Figure 4.7 shows to number of Request packets in total. Because the duration

of every simulation was 5 minutes, the results are directly comparable. In this

figure, it is possible to see that the number of requests was reduced by the

trickle timer. The controller approach was also able to reduce the number of

Request packets. This result is as expected, because both approaches increase

the interval of the timer and so routes stay longer in the network. As long as
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a route exists, no Request packets are necessary and so the total number of

Request packets decreases.

4.3.2 Average Time Between Sending and Receiving a Packet

The second metric used in this thesis is the average time between sending and

receiving a packet. This metric was used to measure ”how updated” the routes

are in general. The more frequent routes get updated, the more likely it is that

the routes are as fast as possible. An assumption for this metric is that the

controller always returns the fastest possible route. If the controller computes

routes according to other criteria, this metric is not useful.

Figure 4.8: Average time between sending and receiving a packet

Figure 4.8 shows the average time between sending and receiving a packet. For

networks 1, 2, 3, the time for each approach is almost identical. For network

4, the time of the controller approach is significantly lower than in the other

approaches. This is because network 4 is designed to just measure the ability

of the update strategy to use a faster route as soon as possible. Network 4

provides a much faster route after 1 minute and so the average time could be
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reduced by approaches which immediately start to use the new route.

4.3.3 Packet Loss Rate

The third metric used in this thesis is the packet loss rate. A formula to

compute the packet loss rate is shown below.

packet loss rate =
#lost packets

#sent packets

This metric was also used to measure ”how updated” the routes are in general.

The more frequent routes get updated, the less likely it is that a routing entry

of a node forwards a packet to a disappeared neighbor and thus the packet gets

lost. In the end, this means a smaller packet loss rate for routing strategies

that update the routes more frequent.

Figure 4.9: Packet Loss Rate

Figure 4.9 shows the packet loss rate of the different approaches. Network

1 and network 2 did not have any lost packages because they are static and

because the measurements were executed in a simulation instead of a real world

testbed. For network 3, the packet loss rate of the trickle timer is higher than
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the current implementation. On the other hand, the packet loss rate of the

controller approach is less than the current approach, because it updates the

routes immediately. For network 4, the packet loss rate of all approaches is not

as expected, because the installed route was never disrupted. So the packet

loss rate should be 0 for all approaches in network 4. For network 5, the packet

loss rate is similar to network 3.
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5 Discussion

In this thesis, two new update strategies were designed and implemented.

The first one was an approach to replace the current timer with a trickle

timer. This update strategy could reduce the network traffic caused by the

Request packets. However, it also increased the maximum time until a route

is updated. This lead to many lost packages. The second update strategy

resolves this problem by an additional implementation at the controller. This

update strategy immediately updates the affected routes after the topology

has changed. Because of that, interrupted routes were updated immediately

and so it was not necessary to wait for the timer to expire.

5.1 Conclusion

The results of the measurements matched the expectations we had for the

update strategies. The trickle timer could reduce the network traffic caused

by the Request packets. It also increased the packet loss rate as expected.

The controller approach has managed to reduce the packet loss rate while

keeping the network traffic as low as with the trickle timer. So there is a clear

advantage of the controller approach compared to the current implementation

and to the trickle timer. It improves the network traffic and the packet loss

rate. The controller approach is also able to reduce the average time between

sending and receiving a packet in some cases.

5.2 Future Work

In the current implementation of the controller approach, the controller does

not delete the old route. This makes it necessary to continue to use the trickle

timer on the nodes. It would be possible to design a new packet type to delete

flow entries on a node and then send a packet of this type to delete the old

route. However, it might be possible that this packet does not arrive, and

so it would be necessary to ensure this packet arrives at the node. An option

might be to use Acknowledgement packets, but this could lead to further issues
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since it may happen that a link works only in one direction. Additionally, the

Delete packets together with the Acknowledgement packets might increase the

network traffic even more than the Request packets. So it would be necessary

to compare the traffic overload generated by the Request packets with the

traffic overload generated by the Delete and Acknowledgement packets.
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