
UNIVERSITY OF BERN

BACHELOR THESIS

Cloud-Based Indoor Positioning –
ESP32 Client

Handed in by

Stefan SERENA

Supervisor

PROFESSOR DR. TORSTEN BRAUN

Communication and Distributed Systems
Institute of Computer Science

September 16, 2018

http://www.unibe.ch
http://www.cds.unibe.ch
http://www.inf.unibe.ch/

iii

UNIVERSITY OF BERN

Faculty of Science
Institute of Computer Science

Bachelor of Science in Computer Science

Cloud-Based Indoor Positioning – ESP32 Client

by Stefan SERENA

Abstract

Due to the growing ubiquity of context aware applications, indoor po-
sitioning has become an important research topic. With potential localiza-
tion clients becoming increasingly widespread, running the required cal-
culations locally is becoming ever more difficult to maintain. This thesis
demonstrates an implementation and evaluation for a cloud-based solu-
tion. It presents a simple and efficient indoor positioning server, as well as a
minimal client capable of uploading ranging- as well as IMU (Inertial Mea-
surement Unit) data. In addition, various approaches to improve ranging
accuracy are evaluated: WiFi range-based approaches are often used and
convert the measured radio signal strength into range values, which indi-
cate the distance between the target mobile device and a radio transceiver.
This process is called ranging. However, non-static environmental condi-
tions in indoor scenarios lead to unpredictable fluctuation in WiFi signals.
These fluctuations introduce errors in the localization process. Regression
techniques are often used to relate measured radio signal parameters (e.g.
Received Signal Strength) into range values. This work suggests that a dy-
namic selection of regression models and training locations yields a sub-
stantially increased accuracy, compared to a predefined, static alternative.
Moreover, the sampling rate required for accurate real-time measurements
is proportional to the speed of the target. Through combination of one
ESP32 and two ESP8266 microcontrollers, 2.5 Hz were achieved. How-
ever, due to variations of signal measurements between WiFi controllers,
this concept scales only in specific circumstances.

Acknowledgements
I would like to thank Jose Carrera and Zhongliang Zhao for supervising
this thesis and their support on various occasions during my work on this
thesis.

HTTP://WWW.UNIBE.CH
http://www.philnat.unibe.ch/
http://www.inf.unibe.ch/

v

Contents

Abstract iii

Acknowledgements iii

1 Introduction 1
1.1 Cloud-based Indoor Positioning 1
1.2 Motivation . 2
1.3 Contributions . 2
1.4 Overview . 3

2 Theoretical Background 5
2.1 Task Scheduling on Multiprocessing Systems 5

2.1.1 Asynchronous and Non-Blocking Task Scheduling . 5
2.1.2 Load Balancing . 5

2.2 Data Transmission Strategies Between Servers and Clients . 6
2.2.1 Communication Protocol 6
2.2.2 Data Format . 7

2.3 Signal Propagation Models 7
2.3.1 Signal Propagation . 7
2.3.2 Regression Models for Multipath Propagation 7

Quality Assessment 8
2.4 Network Discovery Frequency 8
2.5 Related Work . 9

3 Architecture 11
3.1 Server: Cloud Storage and Processing 11

3.1.1 Interface . 11
3.1.2 Storage . 11
3.1.3 Processing . 14

General Overview . 14
Ranging . 14

3.2 Clients . 14
3.2.1 Display of Calculated Positions 14
3.2.2 ESP32 . 15

4 System Implementation 17
4.1 Server Configuration . 17

4.1.1 Hardware . 17
4.1.2 Software . 17

Initial Configuration 17
Database Implementation 18
Communication . 19
Data Flow . 20
Ranging . 22

vi

Load Balancing . 23
Measuring Execution Time 24

4.2 ESP32 Microcontroller as Client 24
4.2.1 Setup . 24

Hardware . 24
Softare . 25

4.2.2 WiFi Network Scanning: Sampling Rate 27
Reliability . 27
Performance . 28

4.3 Communication Technology: WebSocket 28

5 Evaluation 29
5.1 Server . 29

5.1.1 Data Transmission: WebSocket Performance 29
5.2 Ranging Accuracy . 31

5.2.1 Experimental Setup . 31
Data Acquisition . 31
Data Processing . 31
Ranging Optimization at lower TL counts 33

5.2.2 Experimental Results 33
5.2.3 Testing Points . 37

5.3 WiFi Sampling Rate . 38

6 Conclusion 41
6.1 Summary . 41
6.2 Future Work . 42

Bibliography 43

vii

List of Figures

3.1 Architecture of the cloud-based indoor positioning system . 12
3.2 Administration interface to update environmental data . . . 13
3.3 Setup of the ESP32 ranging client 15

4.1 Database schema . 19
4.2 Data Flow Time Diagram . 20
4.3 Schematic overview of port forwarding during load balancing 23

5.1 Throughput of WebSocket at various chunk sizes 30
5.2 Floorplan of the testing environment 32
5.3 Average error vs. number of locations for each regression

model . 35
5.4 CDF for 10 and 40 training locations 36
5.5 Average, minimum and composite error vs. number of loca-

tions for the exponential regression model 37
5.6 Testing Points: Difference in error between a dynamic and a

static set . 38

ix

List of Tables

5.1 WebSocket throughput for concurrent connections 30
5.2 Ranging: Performance vs number of locations 34
5.3 Ranging: Composite minima 35
5.4 Ranging: Improvement of composite minima over static model 35

xi

List of Abbreviations

GPS Global Positioning System
AN Anchor Node
MN Mobile Node
RSSI Received Signal Strength Indicator
LOS Line of Sight
NLOS Non Line of Sight
PDR Pedestrian Dead Reckoning
IMU Inertial Measurement Unit
TL Training Location
TP Testing Point
CDF Cumulative Distribution Function
TBTT Target Beacon Transmission Time

1

Chapter 1

Introduction

1.1 Cloud-based Indoor Positioning

The rapid growth and ubiquity of context aware applications made indoor
localization an important research topic. While the Global Positioning Sys-
tem (GPS) is an attractive technology to perform positioning for the outdoor
environment[1], it is not a suitable indoor solution due to the limitations of
signal propagation through walls. Hence, a multitude of alternative tech-
nologies such as magnetic positioning[2], ultrasonic signal processing[3] or
WiFi[4] have been proposed, each with their own set of advantages and
problems.

This thesis is part of a joint collaboration with contributions in the con-
text of cloud-based indoor positioning solutions. More specifically, we pre-
sent and evaluate a centralized server for the computationally involving
aspects of indoor localization, and introduce various clients, which gather
data and optionally display the results from the server.

Our positioning solution features a combination of WiFi ranging as well
as pedestrian dead reckoning (PDR). One advantage of this approach is its
accessibility, largely due to the widespread availability of both types of sen-
sor, most prominently in smart phones. However, either approach is not
without disadvantages. While PDR sensor readings from an accelerome-
ter, gyroscope and magnetometer might feature small errors for short inter-
vals, these individual errors are aggregated and therefore grow over time.
WiFi range-based approaches, by contrast, convert the measured radio sig-
nal strength into range values, which indicate the distance between the tar-
get mobile device and a radio transceiver. Unfortunately, Received Signal
Strength Indicator (RSSI) readings suffer from multipath propagation and
unpredictable fluctuations due to non-static environmental conditions.

A particle filter was used to fuse information from the PDR sensor read-
ings and range-based localization to provide indoor positions. This is done
by "computing or approximating the posterior distribution for the state vec-
tor given all available observation at that time."[5] This takes advantage of
the strengths of both approaches while correcting their respective weak-
nesses.

This work in particular focuses on the following aspects:

• It traces and evaluates the basic configuration of a server optimized
to provide cloud-based positioning services, as well as the interface
between server and clients. Offloading the computationally involv-
ing aspects to the server renders indoor positioning accessible to an
increased number of mobile devices.

2 Chapter 1. Introduction

• It demonstrates novel ways to both, increase the accuracy of ranging
as well as decrease the time required for the training process. This is
achieved by using an optimized subset of training locations to build
anchor node specific ranging models.

• It presents a client-implementation of an ESP32 microcontroller with
multiple WiFi interfaces connected.

• It evaluates the feasibility of combining multiple WiFi interfaces for
high-speed ranging.

1.2 Motivation

Historically, the complexity required to compute an indoor position based
on raw data was often performed on the data-gathering device[6]. The re-
dundancy of implementing and supporting the same algorithms on var-
ious platforms renders this approach difficult to maintain. We suggest a
cloud-based solution with strict separation of concerns: while the compu-
tationally involving aspects are accomplished by an optimized server, the
responsibilities of client devices can be limited to the gathering and up-
loading of data. With the computational efforts offloaded, this approach
allows many more low-powered devices to be used for indoor positioning,
thereby creating new opportunities and flexibility for projects where cost or
size matters.

Due to the non line of sight (NLOS) propagation caused by walls and
other objects, RSSI (Received Signal Strength Indicator) values cannot di-
rectly be converted to distance. Instead, regression is used to obtain a prop-
agation model to relate RSSI readings to distances. However, optimizing
these regressions tends to involve a lengthy training process. To boost re-
gression accuracy and reduce the training effort at the same time, we stud-
ied the characteristics of various models in relation to the particular training
set and specific access points.

Commonly, the configuration of WiFi networks requires about 2 sec-
onds for a full network discovery (see 2.4 for details). This leads to a sam-
pling rate of 0.5 Hz or less, which is not enough for real-time ranging of
moving targets, particularly if smoothing of the data through means such as
the Hampel- or Median filter is to be performed. To increase the sampling
rate, a combination of one ESP32[7] and two ESP8266[8] microcontrollers
with built-in WiFi microchips were used. We assessed their sampling rate
in terms of speed as well as accuracy and evaluated potential complications.

1.3 Contributions

This work presents a cloud-based localization system which employs clients
for data acquisition, and provides means to output computed positions
through a web interface. We implemented and tested a working prototype.
This lead to the following contributions:

• We provide a simple and efficient server setup to act as a foundation
for a cloud-based indoor positioning system.

1.4. Overview 3

• We demonstrate that a dynamic selection of regression models and
training locations yields a substantially improved ranging accuracy,
compared to a predefined, static alternative, even at a considerably
reduced training effort.

• We present a C++ based implementation of a minimal client based
around the ESP32 microcontroller, capable of uploading ranging- as
well as IMU (Inertial Measurement Unit) data.

• We show that combining various WiFi interfaces to increase the WiFi
sampling rate is a sensible approach only under specific circumstances.

1.4 Overview

The structure of this thesis is as follows: Chapter 2 reviews the theoreti-
cal background required to follow the presentation of the various compo-
nents of the proposed cloud-based indoor positioning system in chapter 3.
Whereas chapter 4 delineates details of our test implementation, chapter 5
shows our evaluation results. Finally, chapter 6 summarizes our findings
and concludes with an outlook to possible future work.

5

Chapter 2

Theoretical Background

The theoretical background covered in this section is required to under-
stand the following chapters. It covers aspects related to the server con-
figuration, information about each phase of the ranging process, as well as
implementation details of an ESP32-client.

2.1 Task Scheduling on Multiprocessing Systems

For a cloud-based solution to scale well, managing CPU resources is essen-
tial. This section considers means to efficiently schedule tasks on one CPU
core, as well as balance the total load over multiple cores.

2.1.1 Asynchronous and Non-Blocking Task Scheduling

Many servers, traditional web-servers included, are fundamentally state-
less; they create and destroy one connection per request and instantly forget
about the client[9]. Not only is this approach inherently flawed for our use
case where states persist over extended periods of time, it is also very ineffi-
cient for continuous, fast-paced transmissions. In order to partly overcome
this, one full thread can be assigned to each user. However, due to it mostly
being idle, this can be very expensive. An alternative approach, partly pop-
ularized by Node.js[10], is to provide a single-threaded event loop where
every client is placed on[11]. This mandates that application code must be
asynchronous and non-blocking whenever possible, so as to not obstruct
other clients.

The terms "asynchronous" and "blocking" are often used interchange-
ably. However, whereas "blocking" refers to a function waiting for some-
thing to happen before returning, as is often the case with network or disk
I/O, "asynchronous" functions return before they are finished[12]. Care has
to be taken that the only blocking functions are those of the CPU performing
computations related to localization, and even those should be optimized
as far as possible.

2.1.2 Load Balancing

With the computationally heavy aspects being offloaded to the server, load
will at some point become too much for one core, or CPU. The possibility
to add load balancing is therefore a crucial requirement. Many different
configurations are being used, but one common strategy is to create various
instances of the server which may run under different IP addresses and/or
ports and place them behind a load balancer to provide a unified point of

6 Chapter 2. Theoretical Background

access for clients. The responsibility of a load balancer is to manage the
"efficient utilization of parallel computer systems" by partitioning the job
"over the system in an optimal or near optimal fashion"[13]. It supports
various mechanisms to assign tasks to servers, such as round-robin, least-
connected, or a user-provided functions.

Some computer-language interpreters employ a global interpreter lock
(GIL) to synchronize the execution of threads. It guarantees that non thread-
safe code cannot be shared with other threads and increases the speed of
single-threaded programs. However, it creates a significant barrier to paral-
lelism, which can be circumvented only by spawning multiple processes.[14]

2.2 Data Transmission Strategies Between Servers and
Clients

To find a suitable strategy for data transmission, two partly related aspects
have to be considered: the communication protocol as well as the data for-
mat. Please see 4.1.2 for information about our specific implementation.

2.2.1 Communication Protocol

Many possibilities exist for client-server-communication. A selection has to
be based on the following three considerations:

1. Reliability: If a certain amount of data corruption is acceptable, UDP
might be an option[15]. TCP, on the other hand, guarantees reliable
delivery of data. Many text-based data formats require reliable deliv-
ery or they cannot be read.

2. Real-time, full-duplex communication: Both, UDP and TCP support
real-time, full-duplex communication[16]. However, a survey of the
available options indicated that many more solutions exist based on
TCP.

3. Ease of implementation: Particularly when building for as many dif-
ferent platforms as possible, solutions must be easy to implement and
therefore standardized.

WebSocket, built on top of TCP and used by this work, is currently the
de facto standard for true full-duplex communication, supported by many
platforms[17]. It uses the HTTP upgrade header to change from the HTTP
to the WebSocket protocol, and adds minimal framing on top of TCP to
accomplish the following:

• Support multiple services on one port and multiple host names on
one IP address.

• Remove length limits imposed by TCP.

• Add a web origin-based security model for browsers.

• Include an additional closing handshake which works in the presence
of proxies.

2.3. Signal Propagation Models 7

2.2.2 Data Format

Several factors have to be considered when selecting a suitable data serial-
ization format to transmit data between clients and server:

• Purpose: Many formats are created to serve a particular use case.

• Size: The message size is proportional to the auxiliary characters/bits
required for data separation. Fewer bits result in an enhanced perfor-
mance.

• Readability: A human-readable data format can facilitate the manip-
ulation and debugging of data.

• Popularity: Particularly when building for as many different plat-
forms as possible, solutions should be easy to implement. This re-
quires a clear standard.

While there is a plethora of available options[18], this work uses JSON
(JavaScript Object Notation)[19]. It encodes numbers, strings, booleans,
arrays and objects into human-readable text consisting of attribute-value
pairs. It is very common, has little overhead, and is built into the core of
many language interpreters.

2.3 Signal Propagation Models

2.3.1 Signal Propagation

Ranging in our context denotes the process of deriving a range based on
RSSI readings. Anchor Nodes (AN), in this case WiFi access points, which
are placed throughout the floor, send out a low powered signal, which is
received by a Mobile Node (MN) such as a smart phone. The strength of
this signal decreases with distance. This process is predictable in a pure
line of sight (LOS) situation such as an open field. Consequently, the range
between MN and any given AN can immediately be computed.[20]

Walls and other non line of sight situations (NLOS) however cause the
signal to behave unpredictably[21]. Multipath-propagation, caused by sig-
nal absorption, reflection and diffraction, is often modeled by using regres-
sion.

2.3.2 Regression Models for Multipath Propagation

Regression establishes relationships between variables[22]. The aim is to
find an equation which maps measured RSSI (independent variable) to a
range (dependent variable) as accurately as possible. Many different mod-
els exist and the best model for any specific purpose is often not directly
evident.

This work evaluated the general characteristics of five regression mod-
els:

• Linear: d = αx+ β

• Exponential: d = α ∗ eβx

8 Chapter 2. Theoretical Background

• Power: d = α ∗ xβ

• Quadratic polynomial: d = α+ βx+ γx2

• Cubic polynomial: d = α+ βx+ γx2 + δx3

were d represents the range between the target object and access point, x
is the RSSI measured at each training position. α, β, γ and δ are environ-
mental variables to be determined in the regression process. Note that all
models except the linear one are forms of nonlinear regression with varying
properties[23].

Quality Assessment

Regression requires RSSI values from various known locations to be mea-
sured. This process results in tuples consisting of location, as well as signal
strength and distance in relation to each AN. These tuples can be used for
both, creation as well as evaluation of regression models (cf. section 5.2.3).
It is evident that the distribution of tuples among these two purposes af-
fects the quality of the regression model as well as its evaluation. In order
to distinguish their function, tuples used for creating a model are called
Training Locations (TLs), whereas those for evaluating models are called
Testing Points (TPs).

2.4 Network Discovery Frequency

Assessing the RSSIs for all ANs in a network commonly takes about 2 sec-
onds[24]. While this may be enough for non-moving objects, a higher fre-
quency is required the faster an object moves. This is particularly true if
algorithms such as the Hampel- or Median filter are used to remove out-
liers. The Hampel-filter, for instance, works by considering the previous
n (typically 4-6) samples, removing those samples differing considerably
from the mean and averaging the rest[25]. Therefore, a sampling rate of 0.5
Hz quickly leads to out-of-date positions.

The slow network discovery frequency is due to the fact that accord-
ing to the IEEE802.11 specification[24], RSSI information is attached specif-
ically to beacon frames. Beacons are sent at an interval defined as the Tar-
get Beacon Transmission Time (TBTT), which by most manufacturers is set
to 102ms. However, if the wireless medium is busy, the AN will have to
contend for access to the medium[26]. It is therefore a sensible approach of
most MN drivers to listen for slightly over 100ms on one channel and repeat
this process for every channel available – 11 to 14 for a 2.4 GHz network,
depending on the geographical location[27].

There are thus three major options to considerably increase ranging fre-
quency:

1. Limit all ANs to one channel. This will allow a single MN to achieve
a frequency of close to 10 Hz, which constitutes a hard limit.

2. Change the TBTT to a value smaller than 102ms.

3. Employ more than one MN concurrently. Each one could for instance
be assigned a specific set of channels to query.

2.5. Related Work 9

Even though a combination of option 1 and 2 would be expected to
accelerate network discovery considerably, this is often not possible due to
additional network requirements. This thesis therefore focuses on option 3,
which is implemented by means of one ESP32[7] and two ESP8266[8] WiFi
controllers.

2.5 Related Work

Task Scheduling on Multiprocessing Systems. Due to the importance of
efficient task scheduling on multiprocessing systems, many papers offering
a multitude of solutions for various environments have been written[28].
The subject of event loops however, popularized largely by Node.js[29],
lags behind. Still, [30] suggests that Node.js with its event-driven model
compares favorably to IIS, which represents a traditional web server. This
is true particularly for I/O driven applications.

WebSocket Performance. More work has been done in regard to Web-
Socket performance, which is compared mainly to its closest but older com-
petitor, long-polling, as well as raw TCP sockets. [31] claims a 500-1000x re-
duction in unnecessary network traffic and a 3x reduction in latency, com-
pared to long-polling. Less dramatic, but still profound improvements
of WebSocket over long-polling were found by [32], citing up to 2.5x less
overhead per packet, and 48x more round trips per second. [33] claims a
dramatic reduction of network bandwidth by eliminating the unnecessary
HTTP header data, whereas [34] asserts a reduction in header data from
kilobytes to 2 bytes. When compared to data transmission through a TCP
socket, [35] found performance penalties of up to 5x with respect to proto-
col overhead, as well as up to 3x with respect to payload delivery delay and
throughput, respectively. This is contested by [36]. While the overhead in
regard to handshaking is indicated as up to 3.7x compared to raw TCP, it is
only around 1% for general traffic.

Indoor Positioning. Indoor positioning has been investigated for a long
time. A multitude of technologies have been proposed, each with their
own set of advantages and problems. According to [37], any solution will
be a trade-off between accuracy, precision, complexity, robustness, scalabil-
ity and cost. [38] and [39] rely on RFID signal strength readings, which [39]
claims to result in a 50 percentile error distance of around 1 m. [40] suggests
GSM based fingerprinting and achieves a median accuracy of 5 meters by
not only relying on the 6 strongest cells traditionally used in the GSM stan-
dard, but additional cells that are strong enough to be detected, but too
weak to be used for efficient communication. Ultra-wideband technology
is used by [41] and [42] to overcome some of the limitations of other tech-
nologies and achieve a very high indoor location accuracy of 20 cm. [43]
and [44] suggest Bluetooth-based indoor positioning and achieve an error
of 3.4 m and 3.76 m, respectively.

Because of its ubiquity, using WiFi radio signals for indoor positioning
has been studied extensively. Commonly used parameters for target local-
ization are RSSI[45] and time information[46]. Fingerprinting is often used
because of its robustness to multipath propagation[6] and can achieve an

10 Chapter 2. Theoretical Background

80-percentile error of 2 m[47] or even less than 1 m with a 72% probability
and less than 2.6 m with a 95% probability by using a neural network based
classifier[48]. Range-based methods on the other hand, which convert RSS
values to distance and locate the target based on techniques such as latera-
tion, require much less training effort, compared to fingerprinting[49].

To eliminate the ranging error, caused particularly because of multipath
effects, regression analysis is often used. Whereas [50] and [51] rely on lin-
ear regression, [52] finds that an exponential model yields optimal results.

Not much work has been done on the subject of increasing the WiFi
sampling rates. However, by studying the influence of beacon frames trans-
mitted at 1 Mbps, [53] finds that their effect on network performance is
negligible.

11

Chapter 3

Architecture

Chapter 2 presented a theoretical background which will now find practi-
cal application. In this chapter, a centralized, cloud-based localization sys-
tem is proposed, which accepts and manages connections from various de-
vices. Further, a MN is being presented as a means to increase sampling
frequency. Figure 3.1 shows the relevant architecture.

Clients, in this context, are portable devices capable of gathering data
required for the computation of a position and/or displaying computed
locations. This raw data is sent to the server, which is in charge of data
storage and well as data processing. The position found can optionally be
sent back to the client for display.

3.1 Server: Cloud Storage and Processing

The server is divided into three sections: Interface, Storage and Processing
(cf. Figure 3.1).

3.1.1 Interface

Communication between clients and server is handled by a WebSocket im-
plementation. Optionally, basic flow control can be enabled, which causes
the server to respond to every transmission, expecting the client to hold fur-
ther transmissions until successful reception of its response. The response
of the server consists of an integer transmitted from the client; the client is
expected to resend the original message if no response was received from
the server for a defined period of time.

3.1.2 Storage

The server handles and stores three types of data:

1. Experiment Data is the raw data uploaded from clients (see 4.1.2 for
details). It is forwarded to the ranging and rotation algorithms for
processing.

2. System Data consists of environmental variables required for the rang-
ing and rotation algorithms to function. It is composed of the follow-
ing information:

• The location and its GPS position. GPS coordinates can be
transmitted from the client during initialization as a method to
identify the active location of the client.

12 Chapter 3. Architecture

Clients

WebSocket

Server

Experiment Data

System Data

User Data

Particle FilterRotations

Ranging

Storage Processing

Interface

Data Collection and Display Data Collection Data Display

iOS Android ESP32 Browser

FIGURE 3.1: Architecture of the cloud-based indoor posi-
tioning system.

3.1. Server: Cloud Storage and Processing 13

FIGURE 3.2: Administration interface to update environ-
mental data

• The ANs of the active location and their position. The ANs
can be used during the initialization process as another means to
identify the active client location. This works by comparing all
ANs visible to the client to those stored for that particular loca-
tion. During the training phase, the position of the ANs is used
to derive the distances to the TL, which constitute the dependent
variable of the regression. During the testing phase, the position
is required as the origin of the computed range.

• The client specific regression model for each AN at any given
location. Specifically, this data consists of the environmental
variables α, β, γ and δ derived at during the regression process.
It is used during the recall phase to acquire the distance between
AN and MN based on RSSI values.

• The TLs and their position. This information is used only dur-
ing the training process, together with the ANs, and constitutes
the dependent variable of the regression.

• The signal strengths measured from any given TL. This infor-
mation is used only during the training process and forms the
independent variable of the regression.

This data can be managed through an administration interface that
is exposed through a regular web server running on a port different
from the one used for WebSocket (see Figure 3.2).

3. User Data includes the raw data sent by the clients as well as the
corresponding calculated positions. This information allows a track
to be replayed at a later time. Architecturally, user data differs from
experiment data in that user data is stored permanently, whereas ex-
periment data is merely forwarded to the appropriate methods for
processing.

14 Chapter 3. Architecture

3.1.3 Processing

General Overview

Ranging and Rotations depend on both, experiment data and system data.
While the ranging algorithm returns ranges to each access point, Rotations
return a vector indicating the relative movement of the MN. Lastly, this
information is consumed by the particle filter to derive the most likely po-
sition of the MN. This position is stored for each user and, if required, can
be sent back through the WebSocket connection to be displayed in real time.

This means that every time the server receives new data from a con-
nected client, the following primary steps are placed on the event loop:

1. Perform rotation update if rotation data was received

2. Perform ranging update if ranging data was received

3. Perform localization update with particle filter

4. Return location to client

Consequently, it is mandatory for these algorithms to perform efficiently
so as to not block other clients.

Additionally, a few auxiliary processes for session management or data
storage are implemented. Because WebSocket does not always send a for-
mal command to terminate the connection[17], the server checks for inac-
tive connections once a minute. Both their raw data as well as computed
positions are then stored in a persistent database and removed from mem-
ory. This database access could be offloaded to a dedicated database server,
and therefore scales easily if required.

Ranging

Due to this work being a joint project, the rotation update and particle filter
are described elsewhere. Ranging is performed in two separate steps:

Training. Before indoor positioning is possible, suitable regression mod-
els are created for each AN of any given location (cf. sections 2.3.2 and
5.2.1). In this case, only the ranging module is called and no positions are
calculated by the particle filter.

Localization. To compute the range in respect to various ANs, the regres-
sion models created during the training phase are applied to the RSSI data
received from the clients. These ranges are then forwarded to the particle
filter, which calculates the indoor position.

3.2 Clients

3.2.1 Display of Calculated Positions

Positions can be displayed by means of a web server exposed on a port dif-
ferent from the one used for the WebSocket connection. This setup allows
for much flexibility, because the position of any MN can be displayed in

3.2. Clients 15

ESP8266

ESP32

MPU9250

Wi-Fi

IMU
(Accelerometer, Gyroscope,
Magnetometer)

FIGURE 3.3: Setup of the ESP32 ranging client

any web browser by passing its identity during the connection. Real-time
updates are broadcast to the browser through WebSocket.

3.2.2 ESP32

This work attempts to combine RSSI data and accelerometer, gyroscope and
magnetometer readings to determine the position of a MN. System on a
chip (SoC) microcontrollers were used, because they allow for much flex-
ibility in connecting additional modules. In particular, a ESP32[7] served
as a controller, to which two ESP8266s[8] and one MPU9250[54] were con-
nected to acquire WiFi-, and inertial measurement data, respectively (see
section 4.2 for implementation details).

This work attempts to increase sampling frequency by employing more
than one MN concurrently. Effective ranging relies on as much of an un-
ambiguous relationship between signal strength and distance as possible.
This implies that all RSSI values gathered from a set position should be as
similar as possible. In order to avoid errors because of varying calibrations
between models, only the two ESP8266s were used for data acquisition,
whereas the WiFi controller built into the ESP32 was used for communi-
cation with the server. The two ESP8266s were positioned approximately
one cm apart, were equally aligned, and their orientation was locked. The
ESP32 served as a controller, managing the flow of data between connected
devices and the server. Figure 3.3 illustrates this setup.

It is evident that no real time location can be displayed with this setup.
However, monitors could be connected to an ESP32. Alternatively, any
browser on another device can be coupled with the ESP32 to display the
position in real time (cf. 3.2.1).

17

Chapter 4

System Implementation

This chapters details the implementation of the system outlined in chapter
3. See [55] and [56] for code access.

4.1 Server Configuration

There are two aspects to the server: Hardware and Software

4.1.1 Hardware

The server instance has the following specifications:

• Processor: Intel Xeon E312xx @ 2.5 GHz

• Cores: 4

• Memory: 8 GB

• HD: 80 GB

4.1.2 Software

After a listing of existing software packages installed for the initial config-
uration, this section will detail various core aspects of the implementation
of the indoor positioning system.

Initial Configuration

Initially, the server was configured as follows:

• OpenStack was used as a virtualization platform[57].

• Ubuntu 16.4 was used as operating system.

• Python 3.6 was the programming language used for the implementa-
tion. No code was directly written in any other language.

• Tornado 4.5.2 was used as web framework and asynchronous net-
working library.

• SQLite 3.11.0 was used for persistent data storage.

• Peewee 2.10.2 was used as ORM (object-relational mapping).

• Nginx 1.10.3 was used as a load balancer.

18 Chapter 4. System Implementation

Database Implementation

All data was saved in an SQLite database because of its simplicity and
responsiveness for few users. Peewee, which maps object manipulations
in Python to database queries, supports SQLite, MySQL as well as Post-
greSQL. Changing database server would therefore be easy, should require-
ments change.

Data model Please refer to Figure 4.1 in respect to the following section.
What follows is a short introduction to the relevant components:

• Location: Contains basic information about each location.

– name: Name of the location

– gps_latitude, gps_longitude: GPS coordinates can be transmit-
ted from the client during initialization as a method to identify
the active location.

– map_display, map_grid: Contains the file extension of the im-
ages of the floor plan for display and grid calculation.

– map_orientation: In degrees from north. Used for rotations.

– map_width, map_scale_start_x, map_scale_start_y, map_scale_end_x,
map_scale_end_y: Whereas map_scale_* defines two points on
the map, map_width expresses the distance in cm between them.
Used for conversion between pixel and cm.

• RangingDevice: Contanis information about ANs.

– identifier: MAC-address for WiFi access points. Has to match
string sent by MNs.

– signal_strength: RSSI-values for WiFi access points. Used for
regression.

– position_x, position_y: Defines position on the map.

– type: Typically "bluetooth" or "wifi".

– location_id: Foreign key. Indicates location the AN belongs to.

• RangingLocation: Contains information about TLs/TPs.

– position_x, position_y: Defines position on the map.

– location_id: Foreign key. Indicates location the TL/TP belongs
to.

• RangingModel: Contains information about the regression model.

– name: Name of the regression model.

– client_id: Foreign key: Regression models are specific to clients.

– ranging_device_id: Foreign key: Regression models are specific
to ANs.

– data: Contains the model-specific variables α, β, γ or δ as a JSON
string.

4.1. Server Configuration 19

Client

id int

identifier varchar

RangingModel

id int

name varchar

client_id int

ranging_device_id int

data text

RangingData

id int

ranging_device_id int

ranging_location_id int

client_id int
RangingLocation

id int

position_x int

position_y int

location_id id

RangingDevice

id int

identifier varchar

signal_strengh decimal

position_x int

position_y int

type varchar

location_id id

Track

timestamp int

measurement text

positions text

client int

location int

Location

id int

name varchar

gps_latitude decimal

gps_longitude decimal

map_display varchar

map_grid varchar

map_orientation decimal

map_width decimal

map_scale_start_x int

map_scale_start_y int

map_scale_end_x int

map_scale_end_y int

FIGURE 4.1: Database schema

• RangingData: Contains the signal strength measured during the train-
ing process (see 5.2.1 for more information).

– ranging_device_id: Foreign key: Ranging data is specific to ANs.

– ranging_location_id: Foreign key: Ranging data is specific to
TLs.

– client_id: Foreign key: Ranging data is specific to clients.

• Client: Contains information about the MN.

– identifier: Unique identifier of the client transmitted during ini-
tialization and used to identify the MN in the administration
area.

• Track: Contains information on MN data uploads.

– timestamp: Unix timestamp to denote the time of the capure.
Seconds since epoch.

– measurement: Contains raw data in JSON format.

– positions: Contains computed positions in JSON format.

– client: Foreign key to MN.

– location: Foreign key to location.

Communication

Tornado[58] was used to provide both, a general web server as well as a
WebSocket server. There are various existing Python-based server imple-
mentations with capabilities required for this project to choose from. A
decision for Tornado was based on the following reasons:

• It has a relatively small footprint and aligns well with our needs.

20 Chapter 4. System Implementation

Server

Client Transmitting

Init: Location

Init: Websocket

Init: Self

Off

Saving client data

Processing

Init: Location / client

Init: Websocket

Idle

1. WebSocket
control
messages 3. Location/client

initialization

5. Experiment
Data

min. 60 sec

2. Confirmation
control

messages

4. Location
listening

instructions

FIGURE 4.2: Data Flow Time Diagram

• It provides stable implementations of booth, a general web server as
well as a WebSocket server, both of which are required.

• It scored high when comparing the speed of various frameworks.

• It is an active project with regular updates.

• It is well documented.

• It supports load balancing, and can easily be combined with a third
party load balancer.

Data Flow

The controller ensures that uploaded data is handled appropriately. This
section will introduce the basic communication scheme between client and
server. Please compare Figure 4.2 for the following explanation.

When a MN connects for the first time, it can optionally transmit a num-
ber of minimal WebSocket messages which are instantly returned by the
server (cf. 1. and 2. in Figure 4.2). This is to ensure that the channel is ready
before the client is expected to send an initialization message, shown below
(cf. 3. in Figure 4.2). Find inline comments for documentation.

{
// Type: Init
"t": "i",

// Data from here
"d": {

"location": {

// Option 1: Location to be determined by ANs found
"type": "wifi",

4.1. Server Configuration 21

// Two ANs found
"devices": ["abc", "def"]

// Option 2: Location to be determined by GPS
"type": "gps",

// GPS position of MN
"latitude": 46.897382,
"longitude": 6.325643

},

// Identifier of MN
"upload_id": "abc_123",

// This MN will upload raw track data
// ("download" is for those devices displaying positions
// through the browser)
"type": "upload",

// This MN supports both, wifi and bluetooth
"capabilities": ["wifi", "bluetooth"]

}
}

If the controller is capable of determining the location of the MN, it will
respond with a message containing the ANs to listen to (cf. 4. in Figure 4.2):

{
"t": "i",
"d": {

// Listen to "def" and "abc" WiFi access points.
"wifi": ["def", "abc"],

// Equivalent for bluetooth.
"bluetooth": ["ghi", "jkl"]

}
}

Both, client and server are now ready to transmit raw data updates (cf.
5. in Figure 4.2):

{
// Type is "Data"
"t": "d",

// Optional, used for flow control, is being returned to sender
"c": 123,
"d": [

{
// Timestamp. Precision: milliseconds
"t": 20171018205530567,

22 Chapter 4. System Implementation

// Accelerometer, gyroscope and magnetometer data
"a": [0.12, 1.23, 2.34],
"g": [3.45, 4.56, 5.67],
"m": [6.78, 7.89, 8.90],

// Ranging data
"r": {

"abc": [40, 41, 42.3],
"def": [50, 49.8]

}
},
{...}

}]
}

Not all data is required during transmission. For each transmission, the
controller does these things:

1. Save measurements for later use.

2. If IMU-data was submitted: Send data to rotation algorithm. Returns
vector.

3. If ranging-data was submitted: Send data to ranging algorithm. Re-
turns distances to ANs.

4. Send results to particle filter. Returns position.

5. Save calculated position for later use.

6. If display clients are connected: Send calculated position to them
through WebSocket (not part of this thesis).

Ranging

The central aspect of the ranging process is in the application of various re-
gression models. To this end, every model is implemented as its own class,
which extends another class Regression, containing general helper methods.
The most relevant are:

• get_data. Aggregates and returns the data gathered during the train-
ing phase to create regression models.

• get_regression_data. Returns environmental variables for one partic-
ular regression model.

The model classes themselves also contain two principal methods:

• compute_data. Computes the environmental variables of the regres-
sion model based on data received from get_data.

• get_distance. Computes the range to one AN based on signal strength
and the variables received from get_regression_data.

4.1. Server Configuration 23

Nginx: Port 7000

Load Balancer

Tornado: Port 8000

Tornado: Port 8001

Tornado: Port 8002

WebSocket

FIGURE 4.3: Schematic overview of port forwarding during
load balancing

Whereas the data flow indicated above is the same for training as well as
localization, the internal routing is not. The data uploaded from the client
is sent to compute_data whenever the training process is started through the
administration area (cf. section 5.2.1 for further details). Otherwise, it is
sent to get_distance.

Load Balancing

Tornado provides a built in load balancer which is easy to enable for ba-
sic deployments[59]. However, due to the Python GIL (Global Interpreter
Lock), taking advantage of multi-CPU machines is possible only if multiple
Python processes are run[14]. Each process will be exposed on a different
address/port. Consequently, a load balancer like Nginx[60] is required to
present one common address and port to outside users. See Figure 4.3.

What follows is a listing of the most relevant components of a suitable
Nginx configuration. Please see inline comments for further information.
Note that in order to achieve compatibility with HTTP, WebSocket uses the
HTTP Upgrade header to be activated. This handshake expects at least two
additional headers, seen at the bottom of the configuration[61].

http {

Enumerate all the Tornado servers
upstream frontends {

server 127.0.0.1:8000;
server 127.0.0.1:8001;
server 127.0.0.1:8002;

}

Set the variable $connection_update to be in compliance
with the WebSocket standard.
map $http_upgrade $connection_upgrade {

default upgrade;
’’ close;

}

24 Chapter 4. System Implementation

server {

Listen to port 7000
listen 7000;

location / {

Sets addresses of proxied servers
proxy_pass http://frontends;

Use of WebSocket requires HTTP version 1.1 or higher
proxy_http_version 1.1;

Set WebSocket upgrade headers
proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection $connection_upgrade;

}
}

}

Measuring Execution Time

To measure execution time of the computationally heavy aspects of this ar-
chitecture within Python, the time.perf_counter() method is used be-
cause it is the most precise timer for short periods and is capable to measure
microseconds[62]. These aspects include steps 1 to 3 from 3.1.3 as well as
various minor administrative processes like session management. With this
being a joint project, the rotation update and particle filter was not yet im-
plemented at the time of this writing and could therefore not be measured.
Any benchmarks therefore apply only to the ranging update as well as all
auxiliary functions of the server.

4.2 ESP32 Microcontroller as Client

This section first details the setup of the ESP32 with its connected devices,
followed by a description of the implementation of the evaluations in re-
gard to its reliability and performance.

4.2.1 Setup

Hardware

The ESP32 used has the following specifications:

• Processor: Dual-core Tensilica LX6 microprocessor @ 240MHz.

• SRAM: 520kB

• Flash memory: 4MB

• WiFi: Integrated 802.11 BGN transceiver

4.2. ESP32 Microcontroller as Client 25

• Connectivity: 28 GPIO, 4 x SPI, 2 x I2C, 3 x UART (among others not
used here)

Through these interfaces, multiple external WiFi controllers can be con-
nected, to be controlled by the ESP32. Development boards also feature a
USB interface to simplify transferring the compiled code from a PC.

The connected ESP8266-01 WiFi-controllers have the following specifica-
tions:

• WiFi: 802.11 BGN transceiver

• Flash memory: 1MB

• Connectivity: UART

The connected Grove IMU 9DOF v2.0 has the following specifications:

• Connectivity: I2C, SPI

• Capabilities:

– Gyroscope: 3-axis with range of ±250°/sec, ±500°/sec, ±1000°/sec
and ±2000°/sec.

– Accelerometer: 3-axis with range of ±2g, ±4g, ±8g and ±16g.

– Magnetometer: 3-axis.

Softare

The ESP32 exposes an integrated API to be used through C. Due to the ubiq-
uity of the Arduino framework, an integration from Espressif Systems, the
developer of the ESP32, and most notably the availability of many libraries
covering a vast amount of use cases, many use the Arduino IDE to program
for the ESP32.

Libraries The following libraries were used to implement various aspects
of the ESP32:

• WiFi: WiFi for ESP32[63]

• WebSocket: Websocket client for Arduino, with fast data send[64]

• UART: HardwareSerial for ESP32[63]

• MPU9250: MPU9250_asukiaaa[65]

• JSON: ArduinoJson[66]

• Queue: QueueList Library for Arduino[67]

• Time: Time for ESP32[63]

Even though the entire implementation is close to 1,500 lines in length,
the two main functions provide a good overview over the basic setup. Please
note the inline comments.

26 Chapter 4. System Implementation

// This function is executed only once upon powering on the ESP32
void setup() {

// Initialize various debugging functions
debugInit();

// Establish connection to server.
// Includes WiFi-connection, server-connection and upgrade
// to WebSocket.
// All functions are synchronous.
serverConnectionEstablish();

// Retrieves time from NTP server.
timeConfig();

// Initializes I2C connection for MPU9250
imuInit();

// Initializes serial connection to ESP8266s
rangingInit();

}

// The loop function is constantly executed.
// All containing functions are anynchronous and keep track of
// their own state.
void loop() {

// Use connectionStatus to keep track of status
if (connectionStatus == WEBSOCKET_INITIALIZED) {

// Send a few empty messages and expect response
// to ensure that connection is indeed online.
bool websocketReady = serverCommunicationWebsocketStart();
if (websocketReady) connectionStatus = WEBSOCKET_READY;

}
else if (connectionStatus == WEBSOCKET_READY) {

// Put the ESP8266s in station mode
rangingResetDevices();

}
else if (connectionStatus == RANGING_DEVICES_READY) {

// Find WiFi access points in area for autodetection of location
rangingFindAccessPoints();

}
else if (connectionStatus == SERVER_CONNECTION_INIT) {

// Send list of access points to server and wait for response
serverCommunicationInitProcess();

}

4.2. ESP32 Microcontroller as Client 27

else if (connectionStatus == FIND_CHANNELS) {

// Find specific access points after first response from server,
// or update channels in case of change.
rangingFindAccessPoints();

}
else if (connectionStatus == READY) {

// Get current IMU data
if (!rangingMeasurements) {

imuUpdate();
}

// Get current ranging data
rangingUpdateProcess();

// Send gathered data to server
serverCommunicationProcess();

}
}

While these functions may be executed several hundred times every
second, internal timers are used to limit activities to a predefined interval.
Typically, imuUpdate() and serverCommunicationProcess() is allowed to run
10 times per second, whereas rangingUpdateProcess() is executed as often as
possible to minimize the delays related to the beacon frames (cf. 2.4 for
details).

Synchronization between the two ESP8266 happens through an internal
variable which keeps track of the last access point queried. Whenever one
of the WiFi-controllers is free, this variable is increased by one, or reset to
zero, thereby instructing it to query the subsequent AN.

4.2.2 WiFi Network Scanning: Sampling Rate

Being that performance is useless without reliability, both aspects will be
evaluated:

Reliability

There are various concerns when using multiple WiFi interfaces:

1. Even though they are the same hardware model, they might not be
calibrated the same way.

2. Even though they are positioned as similarly as possible, the differ-
ence might suffice to return divergent data.

3. Because they are positioned as closely as possible, interference might
distort the quality of the data.

To test for these potential problems, the WiFi-controller of the ESP32
was disabled and data between one location and one access point in a static
environment was gathered with both devices separately, as well as with

28 Chapter 4. System Implementation

both of them combined. The duration for each test was approximately 5
minutes. Divergent averages between both devices would indicate problem
one or two, while high deviations in any of the individual data sets would
point to problem three.

Performance

Espressif Systems, the creator of the ESP8266 WiFi controller, provides an
AT instruction set[68] to control its various aspects. There are two distinct
options to list signal strengths:

1. Detect all available access points

2. Detect a single access point, given a specific SSID, MAC-address and
channel

In our particular testing environment, only 6 of the approximately 20
ANs were to be considered. Based on the theory presented in section 2.4
and with channels being flexible, it is to be expected that the second option
would perform better. However, because channel numbers can change at
arbitrary intervals, it is necessary to periodically update channel numbers
by using option 1.

4.3 Communication Technology: WebSocket

For the rotational updates to function well, approximately 10 measurements
from the accelerometer, gyroscope and magnetometer should be transmit-
ted to the server every second. Efficiency, particularly of the communica-
tion interface, is therefore an important consideration.

To assess the behavior or the WebSocket interface under load, bench-
marks for various message sizes as well as various numbers of concurrent
connections were run. The focus of this test was on the capabilities of the
server, not the network. Therefore, both, client and server were run on the
same computer, powered by an AMD Ryzen 1600x CPU @ 3.6 GHz with six
cores and 16 GB of memory. A browser-based WebSocket client, capable of
initiating up to 250 concurrent WebSocket connections, was used to simu-
late mobile nodes. It was executed within Chrome version 67. This test was
not executed on the default server described above, because only terminal
access was available which renders running Chrome impossible.

To evaluate whether the message size would affect overall throughput,
100,000 bytes were split into chunks of 50, 100, 300, 500 and 1000 bytes
respectively. These chunks were then transmitted sequentially and the time
needed was measured. Similarly, to establish the scalability of the interface,
10, 100 as well as 250 concurrent connections to the server were opened,
each of which sending 1,000,000 bytes. Ideally, the total time required was
to be strictly proportional to the amount of concurrent connections.

29

Chapter 5

Evaluation

This chapter presents the evaluation of the testing environment introduced
in the two previous chapters.

5.1 Server

With the computationally heavy aspects being offloaded to a server, a quick
processing time is important because it directly translates to the number of
clients that can be served. As indicated in 4.1.2, only the ranging update
as well as time required for auxiliary functions (see 3.1.3) could be mea-
sured. Average processing time for one request was 0.000099 seconds, or
approximately 0.01 ms. This implies that 100,000 clients could be served
from one thread, irrespective of the WebSocket performance. However, this
number will undoubtedly decrease as the rotation update and particle filter
are implemented.

5.1.1 Data Transmission: WebSocket Performance

This section measures the maximum number of concurrent WebSocket con-
nections one thread can handle. Due to the assumption that WebSocket
performance might be affected by message size, the average size for our
use case was first evaluated to be approximately 293 characters per mes-
sage (see 4.1.2). Even though UTF8 supports variable length encoding, 1
byte covers all characters used in our case. 300 bytes per message is there-
fore a good approximation.

On the basis that some modifications to the message format used would
have been possible, various message sizes around the 300 byte mark were
evaluated for their efficiency. However, the results (see Figure 5.1) show
that very little could be gained by adjusting for throughput, partly because
message size would not heavily affect it, and partly because at 11.25 sec-
onds for 100,000 characters, 300 byte chunks were surpassed only slightly
in speed.

When evaluating the effects of concurrency, each connection would send
1,000,000 bytes in chunks of 300 bytes. The results indicate that at least up
to 250 concurrent connections, concurrency does not affect throughput. Ta-
ble 5.1 shows that it takes approximately 0.12 ms to send one message. It
follows that at 10 messages per second, approximately 800 concurrent con-
nections could be handled per server (1sec

0.00012sec/message∗10messages/sec = 833).
Even though this only amounts to 2.5 MB/sec, whether or not a locally re-
stricted wireless network would be able to sustain this rate with over 800
simultaneously connected clients, is doubtful[69].

30 Chapter 5. Evaluation

FIGURE 5.1: Time required to send 100,000 bytes in various
chunk sizes through a WebSocket connection.

TABLE 5.1: WebSocket throughput for concurrent connec-
tions

Concurrent connections 10 100 250

Time total (ms) 4,264 38,960 100,778
Time per message (ms) 0.12792 0.11688 0.1209336

5.2. Ranging Accuracy 31

All this suggests that the actual WiFi implementation is likely the major
bottleneck, followed by the Tornado WebSocket implementation and lastly
by the computational power of the server itself (which may be subject to
change).

5.2 Ranging Accuracy

5.2.1 Experimental Setup

To assess whether or not ranging accuracy could be enhanced, two steps
were performed:

• Acquire TLs from various positions throughout the testing area.

• Process the data to determine the optimal regression model.

Data Acquisition

Experiments were conducted in an office area of nine separate rooms on 288
m2, located at the Institute of Computer Science at the University of Bern
(see Figure 5.2). 2880 samples from 48 predefined locations, each consisting
of RSSI values to six WiFi access points, were gathered in around one hour.
At each location, readings to each of the six ANs were collected at four
directions, each 90 degrees offset from the other, in order to minimize the
effect of the subject conducting the measurements. While the two ESP8266
micro-controllers were used to gather the data, the WiFi controller of the
ESP32 was used to simultaneously communicate with the server.

Data Processing

To find the optimal regression model, data was evaluated in three steps. All
computations were performed with Python.

Step 1. Evaluate general characteristics of regression models: The gen-
eral characteristics of all five regression models were evaluated, which in-
cluded behavior at lower TL counts. Given that any number of TLs could be
selected from the 48 locations measured, the process was as followed for ev-
ery model: For each number of TLs between 5 and 40, 1000 combinations of
TLs were randomly chosen to create a regression model. To assess the error
of the model at every iteration, the measured signal strengths from various
TPs (see 5.2.3 for information on their selection) were applied to the respec-
tive regression model. The differences between the resulting ranges and the
equivalent ground truth ranges were averaged to derive the error of one it-
eration. Eventually, all iteration errors were again averaged to derive the
median error for any particular TL count for one regression model. This
represents the expected error when statically creating a regression model
based on all collected TLs. Thus:

Error per iteration:

ei =

∑t
j=1 |d̂j − dj |

J
,

32 Chapter 5. Evaluation

FIGURE 5.2: Floorplan of the testing environment. Blue
dots denote WiFi access points, red dots locations at which

samples were taken.

5.2. Ranging Accuracy 33

where ei is the error of one iteration, i is the index of the iteration, j is the
index of a testing location, J is the amount of testing locations, dj is the
ground truth and d̂j is the estimated range.

The median error for one particular TL count is the average of all itera-
tion errors:

e =

∑I
i=1 ei
I

,

where e is the median error for one particular TL count and I is the number
of iterations per TL count.

In addition to the median error for any TL count, the data from the
individual iterations reveals different behaviors in respect to the standard
deviation as well as distances between MN and AN. This data served as
baseline to compare step 2 and 3 (see below) against.

Step 2. Evaluate optimized selection of TLs: The assumption that a spe-
cific, optimized selection of TLs might produce a regression model with a
higher accuracy than a random set of TLs, even at a much higher count, lies
at the foundation of step 2. To assess this assumption, step 1 was repeated,
again for various combinations of TLs. However, instead of calculating the
average, the one with the minimum error and, therefore, optimal accuracy
was selected. The gain of this process was assessed by comparing this min-
imum to the average error from step 1.

Step 3. Produce composite minimum: To determine whether the error
could be reduced further by assigning individual regression models to ac-
cess points, the respective minimum error for each access point out of all
TL counts was computed by extending step 2. This process resulted in a
composite minimum with optimized models per access point. It served as
final, optimized error and, therefore, provided optimal accuracy.

Ranging Optimization at lower TL counts

Up to this point, this process assumed the availability of 48 TLs, from which
any set resulting in an optimized, minimal error could be chosen. However,
for it to be beneficial in reducing the training effort, the final, composite
error should yield substantially improved results, even at much lower total
TL counts. Therefore, to ascertain that this process does not depend on
a high number of total TLs, the computations were repeated for sets with
fewer than 48 total locations.

5.2.2 Experimental Results

Figure 5.3 shows the average error by number of TLs used to create the re-
gression. Whereas the power model is the most stable overall, it is slightly
surpassed by the polynomial models at high numbers of locations. The ex-
ponential model surpasses the linear model only slightly and is otherwise
inferior in these tests[49]. The best average error at 40 locations is 135cm,
achieved by both polynomial models. The abysmal error of over 3 m of

34 Chapter 5. Evaluation

TABLE 5.2: Performance vs number of locations

Configuration Avg. error 50% Acc. 90% Acc. S.D.

Linear, 10 TL 158cm 130cm 331cm 131cm
Linear, 20 TL 149cm 125cm 312cm 117cm
Linear, 30 TL 146cm 124cm 308cm 114cm
Linear, 40 TL 145cm 123cm 308cm 112cm
Exponential, 10 TL 159cm 126cm 336cm 135cm
Exponential, 20 TL 148cm 119cm 316cm 148cm
Exponential, 30 TL 145cm 115cm 311cm 119cm
Exponential, 40 TL 144cm 114cm 311cm 117cm
Power, 10 TL 148cm 122cm 313cm 119cm
Power, 20 TL 140cm 116cm 296cm 111cm
Power, 30 TL 137cm 114cm 293cm 108cm
Power, 40 TL 136cm 113cm 294cm 107cm
Poly2, 10 TL 172cm 129cm 351cm 218cm
Poly2, 20 TL 143cm 118cm 304cm 117cm
Poly2, 30 TL 137cm 115cm 294cm 110cm
Poly2, 40 TL 135cm 115cm 290cm 108cm
Poly3, 10 TL 324cm 137cm 422cm 2001cm
Poly3, 20 TL 155cm 118cm 316cm 211cm
Poly3, 30 TL 140cm 115cm 297cm 129cm
Poly3, 40 TL 135cm 114cm 289cm 110cm

the third degree polynomial model (and, to a lesser extend, of the second
degree polynomial model) is due to huge outliers, as demonstrated by the
cumulative distribution function (CDF) in Figure 5.4; the standard devia-
tion of the third degree polynomial model is 11278 cm at 5 location, 372 cm
at 10 locations, 63 cm at 15 locations and 18 cm at 20 locations respectively.
This increased standard deviation affects the average much more than the
mean. Please refer to table 5.2 for more details.

Figure 5.5 exemplarily contrasts the average errors from step 1 with the
minimum error from step 2 and the composite minimum from step 3 for the
exponential model. It demonstrates that a search for the optimal combina-
tion of TLs (step two) can yield substantial gains, particularly in the absence
of many TLs. This general behavior is the same for other regression models.

Table 5.3 lists the minimum error for each access point based on an eval-
uation of all regression models and TL counts. While the polynomial mod-
els have a large standard deviation at lower TL counts, their flexibility ap-
pears to be an asset, provided that optimization processes are performed.
Step 3 reduces the error by 4 cm to 131cm, compared to the best model at a
TL count of 40.

Steps two and three are noticeable particularly at lower total TL counts.
Note that this process does not depend on a high number of total TLs to
choose the optimal combination of TLs from. The composite minimum is
133.37 cm for 10 locations, 132.25 cm for 20 and 132.04 cm for 30 locations
respectively. Table 5.4 shows the improvement of the composite minimum
over the static application of any given regression model for various TL
counts, and therefore the final contribution of this approach. Since only

5.2. Ranging Accuracy 35

Locations

FIGURE 5.3: Average error vs. number of locations for each
regression model.

TABLE 5.3: Composite minima

Access Point Model TLs Minimum Value

1 Poly3 8 137.08 cm
2 Poly2 37 116.67 cm
3 Poly3 19 127.56 cm
4 Poly2 30 155.85 cm
5 Poly3 40 120.16 cm
6 Poly2 35 130.54 cm

Average 131.31 cm

TABLE 5.4: Improvements of composite minima over static
model

TL Count Linear Exponential Power Poly2 Poly3

10 25cm 26cm 15cm 39cm 191cm
20 17cm 16cm 8cm 11cm 23cm
30 14cm 13cm 5cm 5cm 8cm
40 14cm 13cm 5cm 4cm 4cm

10 locations are required for almost optimal results, the training effort can
substantially be minimized.

36 Chapter 5. Evaluation

0 100000 200000 300000 400000 500000
Error (cm)

0.0

0.2

0.4

0.6

0.8

1.0
CD

F
(%

)

CDF Ranging Error: 10

linear
exponential
power
poly2
poly3

0 500 1000 1500 2000 2500
Error (cm)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(%
)

CDF Ranging Error: 40

linear
exponential
power
poly2
poly3

FIGURE 5.4: CDF for 10 and 40 TLs and all regression mod-
els. Note the varying scale of the error.

5.2. Ranging Accuracy 37

4 8 12 16 20 24 28 32 36 40
Locations

136

144

152

160

168

176

184
Er

ro
r (

cm
)

Average
Minimum
Composite Minimum

FIGURE 5.5: Average, minimum and composite error vs.
number of locations for the exponential regression model.

5.2.3 Testing Points

To produce an error e, a set of TPs is required. Given that a fixed set of total
locations is available, the question of differentiation between TLs and TPs
arises, because the choice of TPs will ultimately affect the computation of
the error e. To find an optimal set, three approaches were considered:

1. Use a dynamic set of TPs consisting of those locations not used as TLs.

2. Define a fixed (over all TL counts) set of TPs never to be used as TLs.

3. Always use all 48 locations as TPs.

The quality of a regression can only be evaluated by comparison with
a set of known locations, which is the premise of all three options. This
implies that no external yardstick is available to objectively compare these
three options. Therefore, the expectation is that properties would emerge
by simply applying every option, which would make a reasonable case for
certain conclusions.

To find the optimal set of testing points (TP), experiments described
above were run for all three configurations. The following reasons indicate
that the third approach, using all 48 locations as TPs, is preferable:

• Whereas the minimum error e of approach 1 is 10cm smaller than ap-
proach 3 for the non-polynomial models at low TL counts, the gap
increases to 27-30 cm at higher TL counts (see Figure 5.6), returning
an absolute error of approximately 100 cm. These unrealistic charac-
teristics confirm that it gets progressively easier to find combinations
with minimum errors for ever decreasing amounts of TPs. Therefore,
static selections of TPs are preferable.

• The experimental results for approach 2 and 3 are similar.

38 Chapter 5. Evaluation

FIGURE 5.6: The error between a dynamic set of TPs not
used as TLs and a static selection of TPs grows as the TL

count increases.

• Approach 3 enables us to utilize all locations as TLs, whereas ap-
proach 2 is restricted by those not used as TPs. Having a bigger
dataset increases its predictive powers. A higher number of TPs will
always render a more complete assessment.

• The purpose of the TPs is in evaluating the regression model, not the
TLs. Therefore, the argument that this process be responsible for pre-
determining the outcome is no more true than it would be when ap-
plied to the coefficient of determination r2 to express the "fit" of a
regression.

The results in this thesis thus rely on method 3, or all 48 TPs, for er-
ror assessment. While not completely without possible reproach, method 2
could also be criticized for presenting too incomplete an assessment. Gath-
ering even more samples from additional locations would indeed mitigate
this critique because of even more accurate results; it would do nothing,
however, to remedy the fundamental problem of not having a flawless way
to evaluate the regression models.

5.3 WiFi Sampling Rate

Every WiFi interface requires approximately 2.3 seconds to measure the en-
tire WiFi landscape, which includes approximately 20 ANs. Because only 6
ANs are relevant, this translates to 383ms per AN. By contrast, measuring
the signal strength of one individual AN takes around 130 ms. With one

5.3. WiFi Sampling Rate 39

sample consisting of six such readings, one ESP8266 requires 780 ms per
sample and therefore provides 1.28 samples / sec. Consequently, the sam-
pling rate of both ESP8266 is about 2.5 samples / sec. This is in agreement
with the theory presented in 2.4.

Whereas the standard deviation for both interfaces individually was rel-
atively small at 0.6 and 1.0 dBm, their averages differed by 3.44 dBm at
-40.95 and -37.51 dBm, respectively. This data suggests a problem due to
their offset positions or different calibrations. With both devices active con-
currently, the average signal strength is -39.43 dBm and the deviation is
2.35 dBm. This average is only 0.2 dBm from the average of the individual
results, at -39.23 dBm, and can therefore be explained by their individual
differences; thus, there are likely no problems due to interference.

These tests could be resumed with more WiFi devices to gain a more
complete picture. However, a difference of 3.44 dBm, coupled with the un-
predictability of this behavior, suggests, that combining several WiFi con-
trollers is generally no sensible method to achieve higher sampling rates. It
follows, however, that by assigning each WiFi-interface to a specific and un-
changing set of ANs, the process of regression would automatically correct
for this difference.

41

Chapter 6

Conclusion

6.1 Summary

In this thesis, we presented and evaluated four core aspects of a centralized,
server-based indoor positioning system:

• Server performance.

• WebSocket as a protocol for real-time exchange of positioning data.

• Sampling accuracy when dynamically evaluating training data.

• WiFi ranging with multiple radio interfaces to enhance the sampling
rate.

Server performance While current results will have to be adjusted based
on the implementation of the rotation update and particle filter, they cur-
rently suggest that approximately 100,000 simultaneous clients could be han-
dled per core, which is many more than any other aspect of the system.
With sophisticated load balancing, implemented in combination with Ng-
inx, this can be scaled as required.

WebSocket as a protocol for real-time exchange of positioning data. Web-
Socket was chosen as a communication protocol, not least because of its low
overhead in full-duplex communication. Given our average message size
of 300 bytes and a target of 10 messages per second for real-time updates,
it was concluded that the server could handle approximately 800 concurrent
connections. While this amounts to only 2.4 MB/sec in actual data, whether
or not the WiFi network would be able to sustain this transfer rate for this
many simultaneous connections is questionable. The WebSocket protocol
fulfills its purpose; any potential bottleneck would likely be due to other
factors.

Sampling accuracy when dynamically evaluating training data. A dy-
namic selection of both, training locations as well as AN specific ranging
model was used to enhance the sampling accuracy. The result was an op-
timized average error of 131.31 cm. Compared to the exponential ranging
model, this constitutes an improvement of approximately 13 cm at 30 TLs,
or 26 cm at 10 TL. Remarkably, the total amount of TLs does not fundamen-
tally affect this result, resulting in an even larger improvement at low TL
counts.

42 Chapter 6. Conclusion

WiFi ranging with multiple radio interfaces to enhance the sampling rate.
With one sample consisting of 6 individual, sequential readings to WiFi ac-
cess points, one WiFi interface is capable of approximately 1.25 samples per
second in our testing environment. This could be multiplied by connect-
ing multiple WiFi interfaces to the ESP32, up to a theoretical limit of about
10hz. However, experiments have shown that this will result in different
RSSI values being returned from each interface, thus skewing the final data.
Whether this is due to different sensor calibrations, or to their slightly offset
position, is unclear. The benefit and scalability of this approach is therefore
rendered questionable, unless a set attribution of WiFi-interfaces to ANs is
possible.

6.2 Future Work

It seems reasonable to assume that more sophisticated machine learning al-
gorithms might be better prepared to deal with the irregularities of multipath-
effects than relatively simple regression models. This would also provide a
basis for more advanced algorithms such as floor-detection, which simple
regression is unable to provide.

43

Bibliography

[1] Krzysztof W. Kolodziej and Johan Hjelm. Local Positioning Systems.
1st ed. Taylor & Francis, May 2006.

[2] J. Song et al. “Improved indoor position estimation algorithm based
on geo-magnetism intensity”. In: 2014 International Conference on In-
door Positioning and Indoor Navigation (IPIN). Oct. 2014, pp. 741–744.
DOI: 10.1109/IPIN.2014.7275555.

[3] Y. Itagaki, A. Suzuki, and T. Iyota. “Indoor positioning for moving ob-
jects using a hardware device with spread spectrum ultrasonic waves”.
In: 2012 International Conference on Indoor Positioning and Indoor Nav-
igation (IPIN). Nov. 2012, pp. 1–6. DOI: 10 . 1109 / IPIN . 2012 .
6418850.

[4] Jose Luis V. Carrera et al. “Discriminative Learning-based Smartphone
Indoor Localization”. In: CoRR abs/1804.03961 (2018). arXiv: 1804.
03961. URL: http://arxiv.org/abs/1804.03961.

[5] F. Gustafsson. “Particle filter theory and practice with positioning ap-
plications”. In: IEEE Aerospace and Electronic Systems Magazine 25.7
(July 2010), pp. 53–82. ISSN: 0885-8985. DOI: 10.1109/MAES.2010.
5546308.

[6] José Luis Carrera et al. “A Real-time Indoor Tracking System in Smart-
phones”. In: Proceedings of the 19th ACM International Conference on
Modeling, Analysis and Simulation of Wireless and Mobile Systems (2016),
pp. 292–301.

[7] ESP32. https://www.sparkfun.com/products/13907. Ac-
cessed June 8, 2018.

[8] ESP8266. https://www.espressif.com/en/products/hardware/
esp8266ex/overview. Accessed June 8, 2018.

[9] V. Pimentel and B. G. Nickerson. “Communicating and Displaying
Real-Time Data with WebSocket”. In: IEEE Internet Computing 16.4
(July 2012), pp. 45–53. ISSN: 1089-7801. DOI: 10.1109/MIC.2012.
64.

[10] The Node.js Event Loop, Timers, and process.nextTick(). https://nodejs.
org/en/docs/guides/event-loop-timers-and-nexttick.
Accessed August 28, 2018.

[11] L. P. Chitra and R. Satapathy. “Performance comparison and evalu-
ation of Node.js and traditional web server (IIS)”. In: 2017 Interna-
tional Conference on Algorithms, Methodology, Models and Applications
in Emerging Technologies (ICAMMAET). Feb. 2017, pp. 1–4. DOI: 10.
1109/ICAMMAET.2017.8186633.

https://doi.org/10.1109/IPIN.2014.7275555
https://doi.org/10.1109/IPIN.2012.6418850
https://doi.org/10.1109/IPIN.2012.6418850
http://arxiv.org/abs/1804.03961
http://arxiv.org/abs/1804.03961
http://arxiv.org/abs/1804.03961
https://doi.org/10.1109/MAES.2010.5546308
https://doi.org/10.1109/MAES.2010.5546308
https://www.sparkfun.com/products/13907
https://www.espressif.com/en/products/hardware/esp8266ex/overview
https://www.espressif.com/en/products/hardware/esp8266ex/overview
https://doi.org/10.1109/MIC.2012.64
https://doi.org/10.1109/MIC.2012.64
https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick
https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick
https://doi.org/10.1109/ICAMMAET.2017.8186633
https://doi.org/10.1109/ICAMMAET.2017.8186633

44 BIBLIOGRAPHY

[12] I/O Concept – Blocking/Non-Blocking VS Sync/Async. https://blogs.
msdn.microsoft.com/csliu/2009/08/27/io-concept-
blockingnon-blocking-vs-syncasync/. Accessed August 2,
2018.

[13] M.A. Iqbal, J.H. Saltz, and S.H. Bokhart. Performance tradeoffs in static
and dynamic load balancing strategies. Mar. 1986.

[14] GlobalInterpreterLock. https://wiki.python.org/moin/GlobalInterpreterLock.
Accessed August 7, 2018.

[15] User Datagram Protocol. https://tools.ietf.org/html/rfc768.
Accessed August 26, 2018.

[16] Transmission Control Protocol. https://tools.ietf.org/html/
rfc793. Accessed August 26, 2018.

[17] I. Fette and A. Melnikov. The WebSocket Protocol. Internet Engineering
Task Force (IETF). Dec. 2011.

[18] Wikipedia: Comparison of data serialization formats. https://en.wikipedia.
org/wiki/Comparison_of_data_serialization_formats.
Accessed August 26, 2018.

[19] The JavaScript Object Notation (JSON) Data Interchange Format. https:
//tools.ietf.org/html/rfc8259. Accessed August 26, 2018.

[20] J. Koo and H. Cha. “Localizing WiFi Access Points Using Signal Strength”.
In: IEEE Communications Letters 15.2 (Feb. 2011), pp. 187–189. ISSN:
1089-7798. DOI: 10.1109/LCOMM.2011.121410.101379.

[21] C. Feng et al. “Compressive Sensing Based Positioning Using RSS
of WLAN Access Points”. In: 2010 Proceedings IEEE INFOCOM. Mar.
2010, pp. 1–9. DOI: 10.1109/INFCOM.2010.5461981.

[22] Wikipedia: Regression analysis. https : / / en . wikipedia . org /
wiki/Regression_analysis. Accessed August 5, 2018.

[23] Wikipedia: Nonlinear regression. https://en.wikipedia.org/
wiki/Nonlinear_regression. Accessed August 5, 2018.

[24] IEEE Std 802.11-2016. http://standards.ieee.org/findstds/
standard/802.11-2016.html. Accessed August 2, 2018.

[25] Hampel Filter. https://www.mathworks.com/help/dsp/ref/
hampelfilter.html. Accessed August 5, 2018.

[26] William Stallings. Data and Computer Communications. 10th ed. Pear-
son Education Inc., 2014, pp. 404–412.

[27] Wikipedia: List of WLAN channels. https://en.wikipedia.org/
wiki/List_of_WLAN_channels. Accessed August 3, 2018.

[28] D. Jain and S. C. Jain. “Load balancing real-time periodic task schedul-
ing algorithm for multiprocessor enviornment”. In: 2015 International
Conference on Circuits, Power and Computing Technologies [ICCPCT-2015].
Mar. 2015, pp. 1–5. DOI: 10.1109/ICCPCT.2015.7159407.

[29] X. Gu, L. Yang, and S. Wu. “A real-time stream system based on
node.js”. In: 2014 11th International Computer Conference on Wavelet
Actiev Media Technology and Information Processing(ICCWAMTIP). Dec.
2014, pp. 479–482. DOI: 10.1109/ICCWAMTIP.2014.7073454.

https://blogs.msdn.microsoft.com/csliu/2009/08/27/io-concept-blockingnon-blocking-vs-syncasync/
https://blogs.msdn.microsoft.com/csliu/2009/08/27/io-concept-blockingnon-blocking-vs-syncasync/
https://blogs.msdn.microsoft.com/csliu/2009/08/27/io-concept-blockingnon-blocking-vs-syncasync/
https://wiki.python.org/moin/GlobalInterpreterLock
https://tools.ietf.org/html/rfc768
https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc793
https://en.wikipedia.org/wiki/Comparison_of_data_serialization_formats
https://en.wikipedia.org/wiki/Comparison_of_data_serialization_formats
https://tools.ietf.org/html/rfc8259
https://tools.ietf.org/html/rfc8259
https://doi.org/10.1109/LCOMM.2011.121410.101379
https://doi.org/10.1109/INFCOM.2010.5461981
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Nonlinear_regression
https://en.wikipedia.org/wiki/Nonlinear_regression
http://standards.ieee.org/findstds/standard/802.11-2016.html
http://standards.ieee.org/findstds/standard/802.11-2016.html
https://www.mathworks.com/help/dsp/ref/hampelfilter.html
https://www.mathworks.com/help/dsp/ref/hampelfilter.html
https://en.wikipedia.org/wiki/List_of_WLAN_channels
https://en.wikipedia.org/wiki/List_of_WLAN_channels
https://doi.org/10.1109/ICCPCT.2015.7159407
https://doi.org/10.1109/ICCWAMTIP.2014.7073454

BIBLIOGRAPHY 45

[30] L. P. Chitra and R. Satapathy. “Performance comparison and evalu-
ation of Node.js and traditional web server (IIS)”. In: 2017 Interna-
tional Conference on Algorithms, Methodology, Models and Applications
in Emerging Technologies (ICAMMAET). Feb. 2017, pp. 1–4. DOI: 10.
1109/ICAMMAET.2017.8186633.

[31] HTML5 WebSocket: A Quantum Leap in Scalability for the Web. https:
//websocket.org/quantum.html. Accessed September 11, 2018.

[32] Markku Laine and Kalle Säilä. Performance Evaluation of XMPP on the
Web. Apr. 2012.

[33] Amir Almasi and Yohanes Kuma. Evaluation of WebSocket Communi-
cation in Enterprise Architecture. June 2013.

[34] Peter Lubbers, Frank Salim, and Brian Albers. “Pro HTML5 Program-
ming”. In: Apress, 2011, p. 137.

[35] S. Agarwal. “Real-time web application roadblock: Performance penalty
of HTML sockets”. In: 2012 IEEE International Conference on Communi-
cations (ICC). June 2012, pp. 1225–1229. DOI: 10.1109/ICC.2012.
6364271.

[36] D. Skvorc, M. Horvat, and S. Srbljic. “Performance evaluation of Web-
socket protocol for implementation of full-duplex web streams”. In:
2014 37th International Convention on Information and Communication
Technology, Electronics and Microelectronics (MIPRO). May 2014, pp. 1003–
1008. DOI: 10.1109/MIPRO.2014.6859715.

[37] H. Liu et al. “Survey of Wireless Indoor Positioning Techniques and
Systems”. In: IEEE Transactions on Systems, Man, and Cybernetics, Part
C (Applications and Reviews) 37.6 (Nov. 2007), pp. 1067–1080. ISSN:
1094-6977. DOI: 10.1109/TSMCC.2007.905750.

[38] Jeffrey Hightower, Gaetano Borriello, and Roy Want. “SpotON: An
Indoor 3D Location Sensing Technology Based on RF Signal Strength”.
In: UW CSE Technical Report #2000-02-02 (Feb. 2000).

[39] Lionel M. Ni et al. “LANDMARC: Indoor Location Sensing Using Ac-
tive RFID”. In: Wireless Networks 10.6 (Nov. 2004), pp. 701–710. ISSN:
1572-8196. DOI: 10.1023/B:WINE.0000044029.06344.dd. URL:
https://doi.org/10.1023/B:WINE.0000044029.06344.dd.

[40] Veljo Otsason et al. “Accurate GSM Indoor Localization”. In: UbiComp
2005: Ubiquitous Computing. Ed. by Michael Beigl et al. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2005, pp. 141–158. ISBN: 978-3-540-
31941-2.

[41] S. Gezici et al. “Localization via ultra-wideband radios: a look at posi-
tioning aspects for future sensor networks”. In: IEEE Signal Processing
Magazine 22.4 (July 2005), pp. 70–84. ISSN: 1053-5888. DOI: 10.1109/
MSP.2005.1458289.

[42] R. J. Fontana. “Recent system applications of short-pulse ultra-wideband
(UWB) technology”. In: IEEE Transactions on Microwave Theory and
Techniques 52.9 (Sept. 2004), pp. 2087–2104. ISSN: 0018-9480. DOI: 10.
1109/TMTT.2004.834186.

https://doi.org/10.1109/ICAMMAET.2017.8186633
https://doi.org/10.1109/ICAMMAET.2017.8186633
https://websocket.org/quantum.html
https://websocket.org/quantum.html
https://doi.org/10.1109/ICC.2012.6364271
https://doi.org/10.1109/ICC.2012.6364271
https://doi.org/10.1109/MIPRO.2014.6859715
https://doi.org/10.1109/TSMCC.2007.905750
https://doi.org/10.1023/B:WINE.0000044029.06344.dd
https://doi.org/10.1023/B:WINE.0000044029.06344.dd
https://doi.org/10.1109/MSP.2005.1458289
https://doi.org/10.1109/MSP.2005.1458289
https://doi.org/10.1109/TMTT.2004.834186
https://doi.org/10.1109/TMTT.2004.834186

46 BIBLIOGRAPHY

[43] J. Hallberg, M. Nilsson, and K. Synnes. “Positioning with Bluetooth”.
In: 10th International Conference on Telecommunications, 2003. ICT 2003.
Vol. 2. Feb. 2003, 954–958 vol.2. DOI: 10.1109/ICTEL.2003.1191568.

[44] A. Kotanen et al. “Experiments on local positioning with Bluetooth”.
In: Proceedings ITCC 2003. International Conference on Information Tech-
nology: Coding and Computing. Apr. 2003, pp. 297–303. DOI: 10.1109/
ITCC.2003.1197544.

[45] M. Youssef and A. Agrawala. “The horus wlan location determina-
tion system”. In: Proceedings of the International Conference on Mobile
Systems, Applications, and Services (MobiSys05). 2005, pp. 205–218.

[46] Z. Li, T. Braun, and D. C. Dimitrova. “A time-based passive source
localization system for narrow-band signal”. In: 2015 IEEE Interna-
tional Conference on Communications (ICC). June 2015, pp. 4599–4605.
DOI: 10.1109/ICC.2015.7249048.

[47] Hongbo Liu et al. “Push the Limit of WiFi Based Localization for
Smartphones”. In: Proceedings of the 18th Annual International Confer-
ence on Mobile Computing and Networking. Mobicom ’12. ACM, 2012,
pp. 305–316. ISBN: 978-1-4503-1159-5. DOI: 10 . 1145 / 2348543 .
2348581. URL: http://doi.acm.org/10.1145/2348543.
2348581.

[48] S. Saha et al. “Location determination of a mobile device using IEEE
802.11b access point signals”. In: 2003 IEEE Wireless Communications
and Networking, 2003. WCNC 2003. Vol. 3. Mar. 2003, 1987–1992 vol.3.
DOI: 10.1109/WCNC.2003.1200692.

[49] Zan Li, Torsten Braun, and Desislava C. Dimitrova. “A passive WiFi
source localization system based on fine-grained power-based tri-
lateration”. In: 2015 IEEE 16th International Symposium on A World
of Wireless, Mobile and Multimedia Networks (WoWMoM). June 2015,
pp. 1–9. DOI: 10.1109/WoWMoM.2015.7158147.

[50] Zhu Minghui and Zhang Huiqing. “Research on model of indoor dis-
tance measurement based on receiving signal strength”. In: 2010 In-
ternational Conference On Computer Design and Applications. Vol. 5. June
2010, pp. V5–54–V5–58. DOI: 10.1109/ICCDA.2010.5540847.

[51] Kaibi Zhang, Yangchuan Zhang, and Subo Wan. “Research of RSSI in-
door ranging algorithm based on Gaussian - Kalman linear filtering”.
In: 2016 IEEE Advanced Information Management, Communicates, Elec-
tronic and Automation Control Conference (IMCEC). Oct. 2016, pp. 1628–
1632. DOI: 10.1109/IMCEC.2016.7867493.

[52] Z. Li and T. Braun. “Passively Track WiFi Users With an Enhanced
Particle Filter Using Power-Based Ranging”. In: IEEE Transactions on
Wireless Communications 16.11 (Nov. 2017), pp. 7305–7318. ISSN: 1536-
1276. DOI: 10.1109/TWC.2017.2746598.

[53] E. Lopez-Aguilera, J. Casademont, and J. Cotrina. “IEEE 802.11g per-
formance in presence of beacon control frames”. In: 2004 IEEE 15th
International Symposium on Personal, Indoor and Mobile Radio Communi-
cations (IEEE Cat. No.04TH8754). Vol. 1. Sept. 2004, 318–322 Vol.1. DOI:
10.1109/PIMRC.2004.1370886.

https://doi.org/10.1109/ICTEL.2003.1191568
https://doi.org/10.1109/ITCC.2003.1197544
https://doi.org/10.1109/ITCC.2003.1197544
https://doi.org/10.1109/ICC.2015.7249048
https://doi.org/10.1145/2348543.2348581
https://doi.org/10.1145/2348543.2348581
http://doi.acm.org/10.1145/2348543.2348581
http://doi.acm.org/10.1145/2348543.2348581
https://doi.org/10.1109/WCNC.2003.1200692
https://doi.org/10.1109/WoWMoM.2015.7158147
https://doi.org/10.1109/ICCDA.2010.5540847
https://doi.org/10.1109/IMCEC.2016.7867493
https://doi.org/10.1109/TWC.2017.2746598
https://doi.org/10.1109/PIMRC.2004.1370886

BIBLIOGRAPHY 47

[54] MPU9250. https://www.invensense.com/products/motion-
tracking/9-axis/mpu-9250. Accessed September 13, 2018.

[55] Bitbucket: Server Code. https://bitbucket.org/indoorpositioning/
localization. Accessed August 28, 2018.

[56] Bitbucket: ESP32 Code. https://bitbucket.org/indoorpositioning/
esp32. Accessed August 28, 2018.

[57] OpenStack. https://www.openstack.org/. Accessed August 5,
2018.

[58] Tornado Web Server. http://www.tornadoweb.org. Accessed
September 11, 2018.

[59] Tornado: Running and Deploying. http://www.tornadoweb.org/
en/stable/guide/running.html. Accessed August 5, 2018.

[60] Using nginx as HTTP load balancer. http://nginx.org/en/docs/
http/load_balancing.html. Accessed August 5, 2018.

[61] The WebSocket Protocol. https://tools.ietf.org/html/rfc6455.
Accessed August 5, 2018.

[62] PEP 418 – Add monotonic time, performance counter, and process time
functions. https://legacy.python.org/dev/peps/pep-
0418/. Accessed August 3, 2018.

[63] Github: Arduino core for the ESP32. https://github.com/espressif/
arduino-esp32. Accessed August 5, 2018.

[64] Github: Websocket client for Arduino, with fast data send. https://
github.com/bhagman/Arduino-Websocket-Fast. Accessed
August 5, 2018.

[65] Github: A library for arduino to read value of MPU9250. https : / /
github.com/asukiaaa/MPU9250_asukiaaa. Accessed August
5, 2018.

[66] ArduinoJson. https://arduinojson.org/. Accessed August 5,
2018.

[67] QueueList Library For Arduino. https://playground.arduino.
cc/Code/QueueList. Accessed August 5, 2018.

[68] ESP8266 AT Instruction Set. https : / / www . espressif . com /
sites/default/files/documentation/4a-esp8266_at_
instruction_set_en.pdf. 2018 (accessed June 8, 2018).

[69] Fred Halsall. Computer Networking and the Internet. 5th ed. Pearson
Education Limited, 2005, pp. 240–252.

https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250
https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250
https://bitbucket.org/indoorpositioning/localization
https://bitbucket.org/indoorpositioning/localization
https://bitbucket.org/indoorpositioning/esp32
https://bitbucket.org/indoorpositioning/esp32
https://www.openstack.org/
http://www.tornadoweb.org
http://www.tornadoweb.org/en/stable/guide/running.html
http://www.tornadoweb.org/en/stable/guide/running.html
http://nginx.org/en/docs/http/load_balancing.html
http://nginx.org/en/docs/http/load_balancing.html
https://tools.ietf.org/html/rfc6455
https://legacy.python.org/dev/peps/pep-0418/
https://legacy.python.org/dev/peps/pep-0418/
https://github.com/espressif/arduino-esp32
https://github.com/espressif/arduino-esp32
https://github.com/bhagman/Arduino-Websocket-Fast
https://github.com/bhagman/Arduino-Websocket-Fast
https://github.com/asukiaaa/MPU9250_asukiaaa
https://github.com/asukiaaa/MPU9250_asukiaaa
https://arduinojson.org/
https://playground.arduino.cc/Code/QueueList
https://playground.arduino.cc/Code/QueueList
https://www.espressif.com/sites/default/files/documentation/4a-esp8266_at_instruction_set_en.pdf
https://www.espressif.com/sites/default/files/documentation/4a-esp8266_at_instruction_set_en.pdf
https://www.espressif.com/sites/default/files/documentation/4a-esp8266_at_instruction_set_en.pdf

	Abstract
	Acknowledgements
	Introduction
	Cloud-based Indoor Positioning
	Motivation
	Contributions
	Overview

	Theoretical Background
	Task Scheduling on Multiprocessing Systems
	Asynchronous and Non-Blocking Task Scheduling
	Load Balancing

	Data Transmission Strategies Between Servers and Clients
	Communication Protocol
	Data Format

	Signal Propagation Models
	Signal Propagation
	Regression Models for Multipath Propagation
	Quality Assessment

	Network Discovery Frequency
	Related Work

	Architecture
	Server: Cloud Storage and Processing
	Interface
	Storage
	Processing
	General Overview
	Ranging

	Clients
	Display of Calculated Positions
	ESP32

	System Implementation
	Server Configuration
	Hardware
	Software
	Initial Configuration
	Database Implementation
	Communication
	Data Flow
	Ranging
	Load Balancing
	Measuring Execution Time

	ESP32 Microcontroller as Client
	Setup
	Hardware
	Softare

	WiFi Network Scanning: Sampling Rate
	Reliability
	Performance

	Communication Technology: WebSocket

	Evaluation
	Server
	Data Transmission: WebSocket Performance

	Ranging Accuracy
	Experimental Setup
	Data Acquisition
	Data Processing
	Ranging Optimization at lower TL counts

	Experimental Results
	Testing Points

	WiFi Sampling Rate

	Conclusion
	Summary
	Future Work

	Bibliography

