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Abstract

Faculty of Science

Institute of Computer Science (INF)

B.Sc. of Computer Science

Bachelor thesis: FOV prediction based on neural networks for 360◦

video streaming

Christoph Nötzli

With 360◦ videos it is possible for the user to select the field of view (FOV) by
changing the orientation of the smart phone or virtual reality glasses. Sending and
receiving full 360◦ videos requires a large bandwidth. One approach to reducing
the bandwidth is to only transmit the part of the video at full quality that is in
the user’s FOV. This, however, requires accurately predicting the FOV in a short
amount of time. A new way to do so is the focus of this bachelor thesis. We
implemented a Madgwick filter that estimates the orientation of a mobile phone
and two neural networks with different approaches that predict the upcoming FOV
with the help of the orientation and sensor data of the mobile device. Based on
two videos we gathered data for training and evaluating the networks. The results
show that the targeted values regarding calculation time were met and the error
rate at 2s prediction time is under 10%. For short-term predictions (under 0.5s)
the false negative error is less than 1%. With this approach it is possible to save
more than 50% of the bandwidth with the respective error rate. We provide a new
way of predicting the FOV that could be an alternative to state-of-the-art regression
algorithms and may even allow live streaming.
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1. Introduction

With 360◦ videos it is possible to view a video in all directions from the position
of the camera. 360◦ videos offer the possibility to watch videos interactively. The
videos are watched either with virtual reality (VR) devices or smartphones. With
the orientation of the device the user determines which part of the video is shown
on the screen. 360◦ videos are produced by special camera setups. Several cameras
film in an arrangement that covers the full 360◦ range and then the images are
stitched together. 360◦ videos are increasingly popular in art, documentaries and
social media. In 2017, Facebook announced that more than 1 million 360◦ videos
have been uploaded to the social media platform [11]. Vimeo already offers the
possibility to upload and stream 360◦ videos in a quality of up to 8k resolution [12].

Figure 1.1.: Field of view [1]

1.1. Motivation

There are several challenges with 360◦ videos that need to be considered. One of
them is the efficient delivery of the image material through a network. If the whole
360◦ image has to be delivered, it requires high bandwidth for the end user as well as
the content provider. For example, for HD quality (quality displayed on the screen)
400Mbps and for 4k even a bandwidth of 1Gbps is necessary [13]. In addition, there
are requirements for the latency. A movement of the smartphone must result in
a movement of the image with the smallest delay possible. If the latency between
movement and image shifting becomes too large, the delay will be noticeable for the
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user. For the latency an ideal value would be 7ms. Currently more realistic values
for local systems are close to or slightly below 20ms [13].

Different approaches for a more efficient delivery of the videos exist. One approach
is to send the parts in the user’s field of view (FOV) with as little quality loss as
possible. The parts outside of the field of view are not sent at all or are delivered in
lower quality. The videos are divided into tiles (subsets of all the pixels) and either
only individual tiles or tiles of different quality are delivered to the user.

To save network bandwidth with such an approach, it is necessary to send infor-
mation about the orientation to the server that provides the image material. Time
passes between sending the orientation and receiving the next image material. In 5G
networks this latency is between 20 and 30ms [14]. When using edge servers these
latencies go down to 10-20ms [15]. The latencies are expected to be even lower in
the future.

In this work we assume latencies of 10ms or higher. To compensate for latencies,
we have to predict the user’s future FOV. For this reason we aim to compute the
predictions in under 10ms. The predictions must be highly accurate, otherwise the
quality of experience (QoE) for the user declines. Regression algorithms achieve at
a latency of 0.5s an accuracy of up to 97% [16]. Longer-term predictions are rather
difficult, because at 2s state-of-the-art approaches only achieve an accuracy of 72%
(predictions in this case are accurate if they differ less than 10◦ from the actual
angle) [16]. Previous work on such approaches measured 60-80% bandwidth savings
with the respective error rates [16, 17].

The goal of this bachelor thesis is to investigate whether machine learning can be
leveraged to improve predictions about the user’s FOV. The used neural networks
are kept small enough so that they meet the latency requirements.

1.2. Contributions

To fulfill the goals we implement a Madgwick filter that estimates the orientation of
a smartphone [6]. The orientation is needed to display the correct part of the video
and also serves as an input for the neural networks.

Further we implement and evaluate two different approaches of neural networks.
One neural network approach estimates the orientation of the mobile phone. The
second neural network approach directly predicts the tiles that will be used in the
future.

To validate the neural networks we had to collect data. We collected data of five
users in two small studies where the users watched a drone flight video and a short
movie [18, 19]. In the first study, data was collected in average every 100 ms to test
the validity of the approach. In the second study, data was then collected in an
average interval of 10 ms to fulfill our latency requirements.

1.3. Structure

This thesis has the following structure. First, we introduce how 360◦ videos are
displayed on phones, introduce quaternions and show how neural networks are con-
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structed (Chapter 2). In Chapter 3, we introduce the system components of this
work. These include the Madgwick filter, which estimates the orientation of a mo-
bile phone, and the neural networks, which predict the FOV of a user. In a third
step, the implementation of the Android application and the neural networks are
described in more detail (Chapter 4). In Chapter 5, we introduce the evaluation
methods and evaluate the two different approaches of neural networks. Further-
more, we discuss the results and give some advice for improvements. In Chapter 6
we conclude and present ideas for further research projects.





2. Theoretical Background

In this chapter, we explain the basics of the algorithms used in our work. We discuss
how 360◦ videos are displayed, how the orientation of an object can be represented,
and how neural networks work.

2.1. Displaying 360◦ video

An important task of computer graphics is to render three-dimensional scenes and to
display them on screens. Objects can be placed in the three-dimensional scene and
a virtual camera defines from which direction the scene is viewed (Figure 2.1) [2].

Figure 2.1.: Left: Three-dimensional scene with objects (blue) and the frustum
of the camera (red) [2], right: Three-dimensional scene rendered on
screen [2]

The objects are defined by vertices. These vertices are defined relative to the
center of the object. A first matrix moves all vertices from the center of the objects
to their respective places in the three-dimensional scene i.e. the model coordinates
are converted to world coordinates (Figure 2.2) [2].
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Figure 2.2.: Model to world transformation [2]

In a second step a virtual camera is placed in the three-dimensional scene. The
camera determines from where the scene is viewed. A second matrix is used to
display the objects from the camera’s perspective (Figure 2.3) [2]. This matrix is
called the view matrix.

Figure 2.3.: World to camera transformation [2]

With the help of a third matrix, it is determined how the objects are displayed
on the screen of the viewing device (Figure 2.4) [2]. This is done with the help of
the aspect ratio of the screen and the distance of the objects to the camera. The
so-called projection matrix projects the objects onto the screen of the mobile phone:

Figure 2.4.: Camera to homogeneous transformation [2]
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When displaying 360◦ videos, the video is projected into a sphere. It is necessary
to render the video, which is streamed in two dimensions, into the three-dimensional
sphere. The image is not projected on the outside but on the inside of the sphere.
The most commonly used projection is the equirectangular projection [20]. The
two-dimensional image is distorted in a way that when it is projected into a sphere
the image appears no longer distorted. The two-dimensional image is, therefore,
more distorted at the top and bottom than in the middle of the frame. Figure 2.5
illustrates the projection.

Figure 2.5.: Projection of a two dimensional image onto a sphere [3]

Since this sphere never moves and is always at the same place of the three-
dimensional scene, the model matrix is constant. The center of the sphere is always
at the point [0, 0, 0] of the world. In a second step the camera is placed in the center
of the sphere. By changing the orientation of the mobile phone this view matrix is
adjusted. This changes the orientation of the virtual camera and thus the image
section. The view matrix can be described by four vectors: The up-, forward-, right-,
and position-vector. The up-, forward- and right-vector determine the orientation
of the virtual camera and the position-vector the position in the world of the virtual
camera in our three-dimensional scene:

V =


rightx upx forwardx positionx

righty upy forwardy positiony

rightz upz forwardz positionz

0 0 0 1

 (2.1.0.1)

In our case the camera is always placed in the middle of the sphere and does not
change the position. The position-vector is therefore always [0, 0, 0] and the view
matrix consists only of the other three vectors:

V =


rightx upx forwardx 0
righty upy forwardy 0
rightz upz forwardz 0

0 0 0 1

 (2.1.0.2)

Section 3.1.4 describes how we determine the three remaining vectors with the
help of the orientation of the mobile phone.
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Since neither the aspect ratio of the screen of the mobile phone nor the distance
to the sphere changes, the projection matrix remains constant as well.

2.2. Theory for Orientation Estimation

Orientations of objects can be represented differently. This chapter explains Euler
angles, why they are not suited for the application, and what quaternions are.

2.2.1. Euler Angles

Euler described in the 18th century rotations in the following theorem [21]:

In whatever way a sphere is turned about its centre, it is always possible to assign
a diameter, whose direction in the translated state agrees with that of the initial state.

In other words, if two coordinate systems are orthonormal there always exists
a rotation that turns one coordinate system into the direction of the second one
[4]. The angles between the two coordinate systems can be described with three
parameters called Euler angles.

Sequences Depending on the sequence used to describe the rotation, Euler angles
can have different values. This is why it is important to define the sequence used.

Sequences that can be used are the aerospace (z-y-x) and the orbit (z-x-z) se-
quences [4]. Some sequences use the same axis twice and other sequences use each
axis once.

Figure 2.6.: Aerospace sequence [4]

For example for the aerospace sequence the axes would be defined: x-axis φ (roll),
y-axis θ (pitch) and z-axis ψ (yaw), as illustrated in Figure 2.6.
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Gimbal lock Euler angles have a drawback compared to the representation with
quaternions (Section 2.2.2). Euler angles can suffer from gimbal lock. With the first
rotation around the y-axis (aerospace sequence) the orientation of the x- and z-axis
is changed [22]. If they end up parallel they rotate around the same axis and one
degree of freedom is lost [22]. This could be prevented by changing the rotation
sequence. But in every sequence we risk to end up in a gimbal lock.

2.2.2. Quaternions

Complex numbers usually only have two dimensions, where a is the real and b the
imaginary part:

z = a+ bi (2.2.2.1)

A Quaternion extends complex numbers to four dimensions, one real part and
imaginary parts bi+ cj + dk [4]:

q = a+ bi+ cj + dk (2.2.2.2)

Quaternions can also have different sequences. This thesis uses the Hamilton
representation: [4]:

i2 = j2 = k2 = ijk = −1 (2.2.2.3)

ij = −ji = k (2.2.2.4)

jk = −kj = i (2.2.2.5)

ki = −ik = j (2.2.2.6)

If q Equation (2.2.2.2) is our quaternion, the complex conjugate of a quaternion
is [4]:

q∗ = a− bi− cj − dk (2.2.2.7)

The product of two quaternions is defined in the following equation [4]:

q × p = (q1 + q2i+ q3j + q4k)(p1 + p2i+ p3j + p4k) =

q1p1 − q2p2 − q3p3 − q4p4
+(q1p2 + q2p1 + q3p4 − q4p3)i
+(q1p3 − q2p4 + q3p1 + q4p2)j

+(q1p4 + q2p3 − q3p2 + q4p1)k

(2.2.2.8)

Quaternions can be used to represent the orientation in a three-dimensional space
of an object relative to an other object [6]. Quaternions can be used to rotate a
vector [4] around a certain axis. The vector that is rotated first needs to be extended
with a 0 at the first position. The vector then can be rotated with the standard
quaternion multiplication v [4]:
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w = q × v × q∗,


0
wx

wy

wz

 =


q1
q2
q3
q4

×


0
vx
vy
vz

×

q1
−q2
−q3
−q4

 (2.2.2.9)

wx

wy

wz

 =

2vx(1
2
− q23 − q24) + 2vy(q1q4 + q2q3) + 2vz(q2q4 − q1q3)

2vx(q2q3 − q1q4) + 2vy(
1
2
− q22 + q24) + 2vz(q1q2 + q3q4)

2vx(q1q3 + q2q4) + 2vy(q3q4 − q1q2) + 2vz(
1
2
− q22 − q23)

 (2.2.2.10)

2.3. Neural Networks

In this section we show the components of neural networks and how neural networks
are constructed.

2.3.1. Neurons

Neurons are the building blocks of a neural network. This section (2.3.1) describes
the architecture of a neuron as shown in Figure 2.7.

Figure 2.7.: Image of an artificial neuron

This is a simple version of a neuron and other variations exist. A neuron has
one or many inputs x1, . . . , xn [23]. The inputs are multiplied with the weights
w1, . . . , wn [23]. After multiplying the inputs with the weights the inputs are added
together. This value is then manipulated with an activation function f(a) [23].
Neurons can have different activation functions. Figure 2.8-2.10 show examples of
common activation functions.
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Linear [23]
f(a) = a (2.3.1.1)

Figure 2.8.: Linear activation function

Sigmoid [23]
f(a) = tanh(a) (2.3.1.2)

Figure 2.9.: Sigmoid activation function

ReLU (Rectified Linear Unit) [24]

f(a) =

{
a a ≥ 0

0 a < 0
(2.3.1.3)

Figure 2.10.: Rectified linear unit activation function
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Output After these steps we get a new value, the output y [23]. This value can
either be used as an input for another neuron or as an output of the neural network.

2.3.2. Neural Networks

A neural network is a collection of connected neurons. The neurons are arranged
in so-called layers. A distinction is made between three different layers as shown in
Figure 2.11.

Figure 2.11.: Simple neural network with labeled layers [5]

Input layer The raw data (e.g. sensor data) is transferred to the input layer [5].

Hidden layer These are the layers where the calculations take place [5]. It is possible
to have multiple hidden layers in a network.

Output layer The output layer gives a result for a given input [5].

Only fully-connected layers are used in this project. This means that each neuron
is connected to each neuron in the next layer.
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2.3.3. Training and Evaluation

Two independent data sets are used for training and evaluation of the neural net-
works. For the training of an artificial neural network a loss function is determined
first. A neural network tries to minimize the loss during training by adjusting the
weights between the individual neurons. In this bachelor thesis two different loss
functions were used. The neural network approach that predicts the quaternion
tries to solve a regression problem. In this case we use the mean squared error as a
loss function. The second neural network approach that predicts the tiles solves a
classification problem and uses the binary cross entropy loss function:

Mean squared error We use the average of the squared error to get the loss value [25].

MSE =
1

n

n∑
i=1

(yexpected − ypredicted)2 (2.3.3.1)

Binary cross entropy The binary cross entropy loss function assumes that the indi-
vidual outputs can only be 1 or 0 [26]. The binary cross entropy loss function
computes the loss between the predicted and actual value [26].

With the second data set the neural networks can be evaluated. The data sets
are used to check how well the neural networks perform on data that they have not
been directly trained on.





3. System Components

This chapter explains the individual components of the work. In a first part it
explains how an Android application estimates the orientation of a mobile device.
Then it describes the two different variants of neural networks that we investigated.

3.1. Android Application

The Android application has the task to estimate the orientation of a smart phone.
This task serves two purposes: On one hand the estimation is used to display the
correct part of the video on the screen and on the other hand the orientation is
used as input data to train the neural networks. The Figure 3.1 describes how the
orientation estimation is structured.

Figure 3.1.: Overview of the orientation estimation algorithm

First, the application applies a low-pass filter to the accelerometer and magne-
tometer data (Chapter 3.1.2). The reason for the filtering is that both sensors are
susceptible to noise. Then the data from the accelerometer, gyroscope and magne-
tometer are passed to the Madgwick filter. This filter estimates the orientation and
returns it in the form of a quaternion (Chapter 3.1.3) [6]. Since the output data is
only an estimate, we apply another low-pass filter to the quaternions.
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3.1.1. Sensors

For the two studies we use a mobile phone as a measurement unit. Modern mobile
phones have several different sensors of which we use the accelerometer, magnetome-
ter and gyroscope.

3.1.1.1. Accelerometer

The accelerometer is a sensor that measures the acceleration of the mobile phone in
three axes. When measuring the acceleration it is possible to differentiate between
two components, the linear acceleration and the gravitational acceleration. In this
study only the gravitational part of the acceleration is needed. The gravitational
part can be isolated by low-pass filtering (Chapter 3.1.2) the raw accelerometer-
sensor data.

3.1.1.2. Magnetometer

The magnetometer is able to measure the magnetic field in three axes. The mag-
netometer is a sensor that is exposed to noise. Especially inside of buildings the
magnetic field can be influenced by different materials and electric fields. To com-
pensate for short term noise changes (Chapter 3.1.2) the data of this sensor is also
low-pass filtered.

3.1.1.3. Gyroscope

This sensor measures the angular velocity on three axes. For the orientation esti-
mation the gyroscope data is integrated to get the angular position.
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3.1.2. Low-pass filters

The goal of low-pass-filters is to filter out the components with high frequencies
from a signal. Signals with high frequencies can be noise or in the case of the
accelerometer the linear part of the acceleration [6]. An often used low-pass-filter in
digital signal processing is the recursive moving average filter [27]. In the following,
we briefly describe common choices.

3.1.2.1. Simple moving average filter

If xn is the current data point and xn−1...xn−(m−1) are the last data points and m is
the number of data points, y is the output [27]:

yn =
xn + xn−1 + . . .+ xn−(m−1)

m
(3.1.2.1)

yn =
1

m

m−1∑
i=0

xn−i (3.1.2.2)

3.1.2.2. Recursive moving average filter

The recursive moving average filter adds one or multiple outputs of the past yn−1, . . . , yn−(p−1)
to the filter:

yn =
xn + xn−1 + . . .+ xn−(m−1)

m
+
yn−1 + . . .+ yn−p

p
(3.1.2.3)

yn =
1

m

m−1∑
i=0

xn−i +
1

p

p∑
j=1

yn−j (3.1.2.4)

3.1.2.3. Weighted moving average filter

With weights w1, . . . , wm it is possible to give the values different importance.

yn =
w0xn + w1xn−1 + . . .+ wm−1xn−(m−1)

w1 + . . .+ wm−1
(3.1.2.5)

yn =
1

w1 + . . .+ wm−1

m−1∑
i=0

wixn−i (3.1.2.6)

3.1.2.4. Weighted recursive moving average filter

The filter that is used in this Bachelor thesis is a combination of the weighted and
the recursive filter. In this case α is our weight with a value between 0 and 1 [28].

y0 = xn (3.1.2.7)

yn = αyn−1 + (1− α)xn (3.1.2.8)
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The low-pass filters of the accelerometer and magnetometer use an α of 0.95 and
the filter after the Madgwick filter uses an α of 0.99.

3.1.3. Madgwick filter

Today, orientation estimation is usually done with Kalman filters [6]. However,
Kalman filters that are used for orientation estimation need high sampling rates
because of their linear regression iterations and have a high computational load
because of their large state vectors that describe the rotational kinematics [6]. The
Madgwick filter addresses these issues by using an analytically derived and optimised
gradient descent algorithm to make the filter work at low sampling rates [6].

The Figure 3.2 shows an overview of the calculations of the Madgwick filter [6].

Figure 3.2.: Overview of the madgwick algorithm [6]

The Madgwick filter estimates the orientation twice, once with the gyroscope and
a second time with the accelerometer and magnetometer. To get the advantages of
all three sensors the estimations are fused into one quaternion.
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3.1.3.1. Coordinate System

Orientations of objects are always relative to an other object. This is why it is
necessary express the orientation of an object with two coordinate systems i.e. a
reference system and a second coordinate system. The fixed coordinate system arises
from the properties of the earth. The z-axis of the coordinate system points to the
direction of gravity and the x-axis points to the magnetic north pole of the earth.
The y-axis is orthogonal to these axes, it’s direction is east. The Figure 3.3 shows
the coordinate system of the earth.

Figure 3.3.: The coordinate system of the earth [7]

The second coordinate system is of the mobile device and is explained in figure
3.5.
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3.1.3.2. Orientation of the Sensors

The standard axes (phone in portrait mode) of the sensors are defined in Figure 3.4.

Figure 3.4.: The coordinate system in portrait mode [8]

In the application we change the definition of this coordinate system because we
define the standard position in landscape mode instead of the portrait mode. To
change the definition it is necessary to change the definition of the x- and y-axis.
This is illustrated in the Section 3.1.3.2.

Mode x, y and z-axis of exported data

Portrait (0◦) x, y, z
Landscape (90◦) y, -x, z
Inverse portrait (180◦) -x, -y, z
Inverse landscape (270◦) -y, x, z

Table 3.1.: We use the portrait mode in the android application
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The coordinate system that is used in the application is defined in Figure 3.5.

Figure 3.5.: The coordinate system in landscape mode [8]

3.1.3.3. Orientation Estimation with the Gyroscope

The gyroscope measures the angular velocity. To estimate the orientation with the
gyroscope the values need to be integrated. The integration delivers the angular
position of the smart phone. First the vector of the gyroscope needs to be ex-
tended with a fourth dimension in the first position to be able to use the quaternion
multiplication (Equation (2.2.2.8)) [6]:

ωt = [0, ωx, ωy, ωz] (3.1.3.1)

The integration is done with the help of the trapezoidal rule [29, 6]:

qω,t = (0.5qt−1 × ωt)∆t (3.1.3.2)

The integrated value is then added to the quaternion of the last time step [6]:

qt = qt−1 + qω,t (3.1.3.3)

The quaternion 3.1.3.3 is the estimated angular position / orientation estimation.
The problem with only using the gyroscope for the orientation estimation is that
the orientation has a drift. The drift arises through the measurement errors of the
gyroscope [6]. The measurement error is integrated as well. The errors are added
up in every time step of the integration and lead to the drift of the orientation
estimation. The drift can be compensated with a second orientation estimation
with different sensors (Section 3.1.3.4).
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3.1.3.4. Orientation Estimation with Accelerometer and Magnetometer

For this orientation estimation first the coordinate systems need to be defined. The
used systems are described in chapter 3.1.3.1. The three dimensional vectors of the
sensors need to be extended with a zero at the first position. In the general case,
q is the resulting quaternion, d the reference direction of the earth frame and s the
measured values of the sensor frame [6]:

q = [q1, q2, q3, q4] (3.1.3.4)

d = [0, dx, dy, dz] (3.1.3.5)

s = [0, sx, sy, sz] (3.1.3.6)

The Madgwick-filter uses the gradient descent method to calculate the orienta-
tion estimation with the accelerometer and the magnetometer. The gradient can
be calculated by multiplying the Jacobian matrix J with the object function f in
equation 3.1.3.7 [6]:

f(q, d, s) = q × d× q∗ − s

=


0

2dx(1
2
− q23 − q24) + 2dy(q1q4 + q2q3) + 2dz(q2q4 − q1q3)− sx

2dx(q2q3 − q1q4) + 2dy(
1
2
− q22 + q24) + 2dz(q1q2 + q3q4)− sy

2dx(q1q3 + q2q4) + 2dy(q3q4 − q1q2) + 2dz(
1
2
− q22 − q23)− sz



J(q, d) =


0 0

2dyq4 − 2dzq3 2dyq4 − 2dzq3
−2dxq4 + 2dzq2 2dxq3 − 4dyq2 + 2dzq1
2dxq3 − 2dyq2 2dxq4 − 2dyq1 − 4dzq2

0 0
−4dxq3 + 2dyq2 − 2dzq1 −4dxq4 + 2dyq1 + 2dzq2

2dxq2 + 2dzq4 −2dxq1 − 4dyq4 + 2dzq3
2dxq+2dyq4 − 4dzq3 2dxq2 + 2dyq3



The gradient is then defined in the following equation [6]:

∆f(q, d, s) = J(q, d)f(q, d, s) (3.1.3.7)
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3.1.3.5. Orientation Estimation with the Accelerometer

According to the description of the accelerometer in chapter 3.1.1 it is necessary to
replace the earth and sensor frame of the general equations with the gravitational
vectors. The gravity/earth frame has only a component on the z-axis g and the
sensor frame is the low-pass-filtered acceleration measured with the accelerometer.
With these definitions it is possible to define our objective function and Jacobian
matrix [6]:

g = [0, 0, 0, 1] (3.1.3.8)

a = [0, ax, ay, az] (3.1.3.9)

fg(q, a) =

2(q2q4 − q1q3)− ax
2(q1q2 + q3q4)− ay
2(1

2
− q22 − q23)− az

 (3.1.3.10)

Jg(q) =

−2q3 2q4 −2q1 2q2
2q2 2q1 2q4 2q3
0 −4q2 −4q3 0

 (3.1.3.11)
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3.1.3.6. Orientation Estimation with the Magnetometer

The same procedure as in chapter 3.1.3.5 is used with the magnetometer measure-
ments. The magnetic field of the earth does not only have the whole resulting value
on one axis. The inclination of the magnetic field of the earth is changing with the
latitude. This leads to a horizontal component (z-axis) in the earth frame b [6].

b = [0, bx, 0, bz] (3.1.3.12)

m = [0,mx,my,mz] (3.1.3.13)

Figure 3.6.: Varying inclination with latitude [9]

To get the vector b the measured values of the low-pass-filtered magnetometer m
is first rotated by the last estimated quaternion [6]:

ht = [0 hx hy hz] = qt−1 ×mt × q∗t−1 (3.1.3.14)

The horizontal component is then moved on to the x-axis [6]:

bt =
[
0
√
h2x + h2y 0 hz

]
(3.1.3.15)
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With the calculated vector b it is again possible to replace the earth and sensor
frame of the general equation with the magnetic vector values. The Jacobian matrix
can be defined with the help of the objective function [6]:

fb(q, b,m) =

2bx(0.5− q23 − q24) + 2bz(q2q4 − q1q3)−mx

2bx(q2q3 − q1q4) + 2bz(q1q2 + q3q4)−my

2bx(q1q3 + q2q4) + 2bz(0.5− q22 − q23)−mz

 (3.1.3.16)

Jb(q, b) =

 −2bzq3 2bzq4 −4bxq3 − 2bzq1 −4bxq4 + 2bzq2
−2bxq4 + 2bzq2 2bxq3 + 2bzq1 2bxq2 + 2bzq4 −2bxq1 + 2bzq3

2bxq3 2bxq4 − 4bzq2 2bxq1 − 4bzq3 2bxq2


(3.1.3.17)

3.1.3.7. Combining Accelerometer and Magnetometer

The orientation cannot be determined by measuring the gravity or the magnetic field
alone, because only one axis of the coordinate system is fixed by each measurement
(gravity shows the direction of the z-axis of the coordinate system). Therefore, the
objective function and the Jacobian matrix of the accelerometer and the magne-
tometer need to be combined [6]:

fg,b(q, a, b,m) =

[
fg(q, a)
fb(q, b,m)

]
(3.1.3.18)

JT
g,b(q, b) =

[
JT
g (q)

JT
b , (b, b)

]
(3.1.3.19)

By combining the two functions/matrices we get a unique orientation of the sen-
sor [6].

3.1.3.8. Sensor Fusion

In the last step the two orientation estimations are combined. The gyroscope mea-
surements qω,t are corrected with the estimated direction of the error ∇f

‖∇f‖ and the

value of the error β [6]. The error (β = 0.9) was decided by trial and error because
there was no information about the error of the gyroscope of the mobile device.

q̇t = qω,t − β
∇f
‖∇f‖

(3.1.3.20)

qt = qt−1 + q̇t∆t (3.1.3.21)
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3.1.4. Changing the View Matrix with Quaternions

In order for a video to be displayed correctly in the Android application, the view
matrix (Section 2.1) can be adjusted by the quaternions calculated by the Madgwick
filter. The quaternion is converted into a rotation matrix. The columns of the
rotation matrix equal the three vectors that have to be calculated for the view
matrix [30]:

rightx upx forwardx
righty upy forwardy
rightz upz forwardz

 =

−(1− (2q23 + 2q24)) 2(q2q3 − q1q4) 2(q2q4 + q1q3)
−(2(q2q3 + q1q4)) 1− 2(q22 + q24) 2(q3q4 − q1q2)
−(2(q2q4 − q1q3)) 2(q3q4 + q1q2) 1− 2(q21 + q23)


(3.1.4.1)

The negation in the right vector is caused by the orientation of the axes of the
coordinate system. A negative sign leads to a right-handed and a positive sign to a
left-handed coordinate system.

Figure 3.7.: Left-handed (left) and right-handed (right) coordinate system [10]

In this work a right-handed coordinate system is used.
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3.1.5. Extracting Tiles from Quaternions

The vectors of the view matrix (Section 2.1) are used to find the FOV on the two-
dimensional video frame. The center of the FOV is in the opposite direction of the
forward vector. In other words, the forward vector points into the opposite direction
of the virtual camera of the three-dimensional scene. With the following formulas
and the knowledge that the we use an equirectangular projection (Section 2.1), it is
possible to find the center of the FOV on the two-dimensional video frame [31]:

x =
π − arctan(forwardy/forwardx)

2π
(3.1.5.1)

y =
arccos(forwardz)

π
(3.1.5.2)

The FOV angle is the angle that decides how much of the sphere is displayed on
the phone. This angle is hard coded in the application. The angle that is displayed
in the Android application on the long side of the phone is 70◦ (The FOV angle
was determined by trial and error). With the aspect ratio of the smart phone, it
is possible to calculate the angle on the short side of the phone. With the right-
and the up-vector the front-vector is step wise rotated by these angles. With the
equations 3.1.5.1 and 3.1.5.2 the points on the two dimensional frame are calculated
again. For the rotation of the three vectors again a quaternion is used. A rotation
around the right-vector by the angle β:

qrotation = [cos(β), sin(β) ∗ rightx, sin(β) ∗ righty, sin(β) ∗ rightz] (3.1.5.3)

The new vectors are then rotated. The rotation is defined by the following equa-
tions:

forwardnew = qrotation × forward× q∗rotation (3.1.5.4)

rightnew = qrotation × right× q∗rotation (3.1.5.5)

upnew = qrotation × up× q∗rotation (3.1.5.6)

The coordinates of the two dimensional FOV are then linked to a tile. First, the
two-dimensional image is divided into tiles. Then the calculated x- and y-coordinate
are assigned to the respective tiles. The tiles that are in the FOV are the tiles that
need to be predicted.
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3.2. Neural Networks

In this section, we present the neural networks that we used. The first neural network
approach predicts the quaternions and the second approaches predicts the tiles that
are used in the future directly. Further, we describe the hyperparameters of the
networks (number of layers/nodes and loss-functions). The training and evaluations
are described in Section 4.4 and Section 5.1.

3.2.1. Input Layer

For both networks, we used the data listed in Table 4.1 as input parameters. We
used the quaternion (4 inputs), the accelerometer (3 inputs), the magnetometer (3
inputs) and the gyroscope (3 inputs) as input values (In total 13 values). But not
only the data from the current point in time was used, but also sensor data and
orientation estimation from the past. The data points 100ms, 200ms, 300ms and
400ms before the actual timestamp were also used as an input. Because each data
point has 13 input values and 5 data points were used as input parameters, the
input layer has 65 nodes.

3.2.2. Predicting the Quaternion

This prediction was inspired by neural networks in robotics [32]. The neural network
is based on Frigeni’s work [32]. We started out with the same hyperparameters and
then adjusted them by trial and error by adding more or less nodes/layers. The
loss function that is used for this neural network is the mean squared error. The
resulting network has three hidden layers and each hidden layer has two hundred
nodes. The output layer has four nodes because the network predicts a quaternion
that consists of four values. The resulting layers are described in Section 3.2.2 and
Figure 3.8.

Layer Nodes Activation function

Input layer 65
Hidden layer 1 200 ReLU
Hidden layer 2 200 ReLU
Hidden layer 3 200 ReLU
Output layer 4 Sigmoid

Table 3.2.: Layers for predicting the orientation estimation
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Figure 3.8.: Neural network for predicting the quaternion

3.2.3. Predicting the Image Tiles

The prediction of which tiles will be used in the future is a classic classification
problem. In this case the outputs of the network are the individual tiles and can
have a value of 0 and 1. If the value is 1, the tile is predicted to be in the FOV
of the user. This is a good fit for the binary cross entropy loss function. This
neural network is based on classical classification problems [33]. We first guessed
the hyperparameters of the network and then improved it by trial and error. The
resulting layers are described in Section 3.2.3 and Figure 3.9.

Layer Nodes Activation function

Input layer 65
Hidden layer 1 1000 ReLU
Hidden layer 2 1000 ReLU
Hidden layer 3 500 ReLU
Hidden layer 4 250 ReLU
Output layer Number of tiles Sigmoid

Table 3.3.: Layers for predicting the used tiles

Figure 3.9.: Neural network for predicting the used tiles.





4. Implementation

The implementation of this thesis consists of three components. Figure 4.1 shows
the parts of this thesis and how they are connected.

Figure 4.1.: Overview of the parts of the thesis

The first part consists of an Android application [34]. The application has two
purposes. On one hand it is possible to watch a local 360◦ video with the Android
application and on the other hand the application exports the data described in
table 4.1, which is used for the training and evaluation of the neural networks. For
both purposes, the application has to estimate the orientation of the smartphone.

In a second part we train the neural networks with the data stored that was
exported in part the first part. For this purpose, we divide the data into a training
and an evaluation data set. Then we save the trained networks.

In the last part we test the neural networks with the evaluation data sets. We
evaluate the bandwidth savings and the compliance with the latency. We discuss
the results in Chapter 5.
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4.1. Devices and Software

The following devices were used to implement this work:

• For the Android application we used a Google Pixel 3a

– OS: Android 10

– CPU: Qualcomm SDM670 Snapdragon 670

– RAM: 4GB

• A Dell XPS 13 9370 notebook was used for the training and evaluation of the
neural networks

– OS: Ubuntu 18.04 LTS

– CPU: Intel Core i7-8550U CPU 1.80 GHz × 8

– RAM: 16 GB

The software was developed with the following tools:

• PyCharm with Python version 3.6 was used for the development of neural
networks [35, 36]

• Android Studio with the API level 27 (Android 8.1) for the development of
the Android application [34]

4.2. Android Application

When opening the Android application a local 360◦ video is loaded and played. To
render 360◦ videos, we extended a sample project provided by Facebook [37].

At a high level, the application is structured as follows. The accelerometer, gyro-
scope and magnetometer are initialized. The class DataCollector collects the data
of the sensors when they update their values. Both the values of the accelerometer
and the values of the magnetometer are low-pass filtered before they are passed
to the DataCollector. If the gyroscope sends new values to the DataCollector, the
Madgwick filter recalculates the orientation of the mobile device (Section 3.1.3).
The quaternion calculated by the Madgwick filter is then low pass filtered as well.

This new calculated quaternion is stored in the DataCollector. The class that
renders the 360◦ video onto the sphere gets the quaternion for every frame of the
video. The view matrix is then adapted with the new value of the quaternion and
the correct part of the video is displayed (Section 3.1.4).
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The measured and calculated data is exported as well. Each data point contains
the values in Table 4.1.

Measured / Calculated value Column in CSV

Timestamp in ms timestamp
Low-pass filtered Quaternion w average q w
Low-pass filtered Quaternion x average q x
Low-pass filtered Quaternion y average q y
Low-pass filtered Quaternion z average q z
Low-pass filtered Accelerometer x-axis in m/s2 acc x
Low-pass filtered Accelerometer y-axis in m/s2 acc y
Low-pass filtered Accelerometer z-axis in m/s2 acc z
Gyroscope x-axis in rad/s gyro x
Gyroscope y-axis in rad/s gyro y
Gyroscope z-axis in rad/s gyro z
Low-pass filtered Magnetometer x-axis in µT mag x
Low-pass filtered Magnetometer y-axis in µT mag y
Low-pass filtered Magnetometer z-axis in µT mag z

Table 4.1.: Data recorded by the Android application. Only the values used as features for
training the neural networks are listed.

The values are exported when a certain amount of time passed after the last data
point was exported. In our case the time between the data points is in average 10
or 100ms.
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4.3. Experiment

For this work, data was collected in two studies. The data was collected to train
and evaluate the neural networks. In the first study one data point was exported
from the Android application in average every 100ms and in the second study one
data point was exported in average every 10ms. We recruited five subjects for each
study. Different people were used for the two studies.

We handed the participants an Android mobile phone (Section 4.1). We instructed
the users that by changing the position of the mobile phone they can see a different
section of the 360◦ video.

Figure 4.2.: Putting the phone in a different position brings a different section of
the 360◦ video into view

In the first video, a drone flight in Thailand [19], the participants were instructed
to look at the landscape by changing the orientation of the mobile phone. The video
is 31 seconds long and was repeated after reaching the end. The participants were
instructed to have a look at the landscape into all directions and to get used to the
handling of the Android application. When they had seen enough of the landscape
they stopped the application. The users usually watched 2-3 minutes.

In a second part of the study, the participants watched a different 360◦ video, the
short film ”The invisible man” [18]. We did not instruct the participants to look in
a specific direction. After finishing the video they stopped the Android application.

The number of data points and the average and standard deviation of the time
between the data points, that were gathered in the two studies for the training and
the evaluation of the neural networks, is summarized in Table 4.2.

Data set Interval data #data points Interval data #data points
points training for training points evaluation for evaluation

First data set (100± 3.2)ms 19205 (100± 3.2)ms 12273
Second data set (10.2± 1.6)ms 281291 (10± 1.5)ms 72140

Table 4.2.: Number of data points and time between the data points for training and evaluation
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4.4. Training of Neural Networks

The neural networks are implemented in Python with the Tensorflow framework [38].
We implemented two different neural networks that predict the parts of the video
that are used. The first approach tries to predict the orientation of the smart phone
and the second approach predicts the tiles directly.

The training of the neural networks proceeds shown in Figure 4.3. In a first part
the data is read in, then the data is processed and the inputs are generated. Then,
first the outputs for the prediction of quaternions are generated, the neural networks
are trained and stored. Then the outputs for the prediction of tiles are generated,
the neural networks are trained and stored. The scripts nn.py and nn10milli.py
(Appendix A) are used for the training of neural networks. In the following section
the procedure is explained in more detail.

Figure 4.3.: Overview of the parts for training the neural networks
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Step 1: The training data is imported. Each CSV file stored in a specific folder
is read in line by line. The FOV is determined directly for each data point (line
in the CSV). This is done with the method described in section 3.1.5. The data is
processed directly, so that the FOV for each data point has to be determined only
once. After determining the FOV, the tiles that would be used for this data point
are determined. We compute the results for 4, 16, 36, 64, and 100 tiles and store
them in the data point.

Step 2: The input arrays for the neural networks are generated. Since for the
input not only the data point with the current timestamp is used, an array with
several data points is required. Consider a data point di. The first data set has
in average one data point every 100ms in the CSV files. The last four data points
are also used as an input, i.e. di−1, di−2, di−3 and di−4. For the second data set
with data points in average every 10ms, the same time interval was used for the
additional input data. In this case di−10, di−20, di−30 and di−40 were also used for
the input array.

Step 3: The output arrays for the case that the neural networks the quaternion
predictions. For this purpose arrays with quaternions of data points of a point with a
later timestamp are created. For each data point several output arrays are generated
to evaluate different prediction times. For the first data set, the quaternions are
predicted in 0.5s, 1s and 2s. This means that one array is created with di+5, one
with di+10 and one with di+20. For the second record, more prediction times are
considered: 10ms, 20ms, 50ms, 0.1s, 0.2s, 0.5s, 1s, 2s. This means that one output
array is created for each di+1, di+2, di+5, di+10, di+20, di+50, di+100, di+200.

Step 4: The neural networks with the approach to predict the quaternions are
trained. For both data sets a neural network is created for each prediction time.
For the training the input array from step 2 and the output arrays from step 3
are used. The training of the neural network has always 20 epochs. An epoch is
when the neural network is trained with the whole training data set once. After the
training the neural networks are saved.

Step 5: The output arrays for the neural networks that predict the tiles are gen-
erated. For both datasets arrays are generated for the same prediction times as in
step 3. However, instead of arrays with quaternions, arrays with the results for 4,
16, 36, 64, 100 tiles are generated.

Step 6: The neural networks that predict the image tiles are trained. For both
data sets a neural network is created for each prediction time. For the training the
input array from step 2 and the output arrays from step 3 are used. In this case the
training of the neural network has always 20 epoches as well. The neural networks
are saved as well.



5. Evaluation

In this chapter the evaluation methods of the neural networks are shown. Further-
more the results are described and presented. Finally the results are reviewed in a
discussion.

5.1. Evaluation of Neural Networks

By evaluating the neural networks it is possible to find out how accurately a neural
network can predict the image tiles that will be used in the future. In this section
it is explained in more detail how the two different approaches of neural networks
were tested.
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5.1.1. Evaluation of Prediction Quaternion

For the evaluation of neural networks that predict the quaternions the scripts evalu-
ation.py and evaluation10milli.py are used (Appendix A: evaluation.py for the first
dataset and evaluation10milli.py for the second data set). The following steps are
performed for the evaluation of the neural networks that predict the quaternions:

Figure 5.1.: Steps in the evaluation of predicting a quaternion

Step 1-3: These steps are performed like steps 1-3 in the training of neruonal
networks (Section 4.4). Instead of the training data, the evaluation data is imported,
processed and converted to input and output arrays.

Step 4: Import of the neural networks. The evaluation.py script imports the net-
works generated with the first data set and the evaluation100milli.py script imports
the networks generated with the first data set (Appendix A).
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Step 5: The imported networks from step 4 are then used to make a prediction
with the given inputs from the evaluation data. First an input Ii is passed to the
neural network and the network calculates a prediction pi in form of a quaternion.
This quaternion can then be converted to the predicted tiles tpi as described in
section 3.1.5. The prediction was created by the data point di. Thus it is possible
to compare the predicted tiles from the input Ii with the expected tiles of the data
points texpected,i+5 or texpected,i+10 or texpected,i+20 (first data set) imported in step 1.

Step 6: The last step is generating the evaluation parameters described in sec-
tion 5.2

5.1.2. Evaluation of Prediction Image Tiles

The scripts for evaluating the neural networks that predict the image tiles are evalu-
ationTiles.py and evaluationTiles10milli.py (Appendix A, evaluationTiles.py for the
first dataset and evaluationTiles10milli.py for the second data set). The evaluation
of neural networks that predict the image tiles differs only in step 3, 4 and 5 form
the evaluation in section 5.1.1.

Step 1-2 and 6: Same steps as in section 5.1.1

Step 3: Step 3 equals Step 5 of the training of the neural networks (Section 4.4).

Step 4: Import of neural networks. This time the networks are imported that
predict the image tiles instead of the networks that predict the quaternions.

Step 5: Again the networks are used to make a prediction with the help of the
inputs from the evaluation data. In this case the tiles tpi are predicted directly by
the neural networks. These values are then again compared to the expected values.

5.2. Evaluation Parameters

In this section, the individual tables columns of the results are explained in more
detail.

5.2.1. Number of Tiles

The number of tiles value (# Tiles) tells into how many tiles the video is divided
into. If the number of tiles is 4 the image is divided into 2x2 tiles. If the number of
tiles equals 100 then the frame is divided into 10x10 tiles.

5.2.2. Prediction

The prediction time (Prediction) is the average and standard deviation of the time
between the input value and the predicted value of the training data set (Prediction
Training) as well as the evaluation data set (Prediction Evaluation).
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5.2.3. FOV angles

The FOV angles tell us with which angle the networks were trained and evaluated.
The first value is the training angle and the second value is the evaluation angle. To
improve the results of the networks it is necessary to make a compromise between
bandwidth and error. The network can be trained with a larger FOV angle than the
one that is displayed on the screen of the user. More bandwidth is needed because
more parts of the video are sent to the user, but this should also lead to less false
negatives and therefore a better QoE for the user. We trained the neural networks
with 90◦ or 70◦ FOV angle. The neural networks were always evaluated with an
FOV angle of 70◦. In the table, the networks that were trained with 90◦ are labeled
in column ”FOV angle” with 90, 70. The networks that were trained and evaluated
with the same angle are labeled with 70, 70.

5.2.4. Error determination

In the evaluation, we differentiate between the following labels:

True positives (TP) are tiles that are predicted to be inside the FOV and that are
in fact inside the FOV.

True negatives (TN) are tiles that are predicted to be outside the FOV and that
are in fact outside the FOV.

False positives (FP) are tiles that are predicted to be inside the FOV, but are in
fact outside the FOV.

False negatives (FN) are tiles that are predicted to be outside the FOV, but are
in fact inside the FOV.

Figure 5.2 visualizes the different labels. The blue rectangle is the FOV, the red
squares are predicted to be outside of the FOV and the green squares are predicted
to be inside the FOV.

Figure 5.2.: FOV (blue), TP = True positives, TN = True negatives, FP = False
positives, FN = False negatives
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5.2.5. Errors

The number of errors (#Errors) includes both tiles that were incorrectly predicted
and tiles that were incorrectly not predicted. The errors are the total of the false
negatives and the false positives.

Errors =
FP + FN

TP + FP + FN + TN
(5.2.5.1)

5.2.6. Accuracy

The accuracy describes the correct labeled tiles in the whole set of tiles [39]. But
accuracy is only a good measure if the counts of false negatives and false positives
are close [39].

Accuracy =
TP + TN

TP + FP + FN + TN
(5.2.6.1)

5.2.7. Recall

The recall measurements are used if the false negatives are unaccepted [39]. This
measurement is good when there are more false positives then false negatives [39].

Recall =
TP

TP + FN
(5.2.7.1)

5.2.8. Number of Predicted Tiles

The number of the predicted tiles (#Predicted) tells us how many tiles are predicted
to be in the FOV. If a video would be streamed the used bandwidth compared to
the whole frame would be the number of predicted tiles.

#Predicted =
TP + FP

TP + FP + FN + TN
(5.2.8.1)

With the number of predicted tiles we can then calculate the theoretical band-
width savings. We assume that only the predicted tiles are transmitted to the user.
This means that the saved bandwidth consists of the non-predicted tiles and is
calculated in Equation (5.2.8.2).

BandwidthSavings = 1−#Predicted =
TN + FN

TP + FP + FN + TN
(5.2.8.2)

5.2.9. Time of the Neural Network Predictions

The time of neural network predictions (Time) is the average time the neural net-
works need to predict the quaternions or image tiles.
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5.3. Results Prediction Quaternion

5.3.1. Results of First Data Set (Data point in average every
100ms)

#Tiles Prediction Prediction FOV angle #Errors #FP #FN Accuracy Recall #Predicted Time
Train Eval Train, Eval

4 0.5s±4ms 0.5s±5ms 70, 70 7.2% 4.1% 3.0% 92.8% 95.8% 73.4% 0.4ms
16 0.5s±4ms 0.5s±5ms 70, 70 5.2% 3.5% 1.7% 94.8% 95.1% 35.8% 0.4ms
36 0.5s±4ms 0.5s±5ms 70, 70 4.7% 2.1% 2.6% 95.3% 92.3% 32.4% 0.6ms
64 0.5s±4ms 0.5s±5ms 70, 70 3.7% 2.0% 1.7% 96.3% 93.8% 27.4% 0.4ms

100 0.5s±4ms 0.5s±5ms 70, 70 4.0% 2.2% 1.8% 96.0% 92.6% 24.8% 0.4ms
4 1s±5ms 1s±7ms 70, 70 14.0% 9.6% 4.4% 86.0% 94.0% 77.6% 0.4ms

16 1s±5ms 1s±7ms 70, 70 9.0% 5.8% 3.2% 91.0% 90.6% 36.5% 0.4ms
36 1s±5ms 1s±7ms 70, 70 8.2% 4.4% 3.8% 91.8% 88.4% 33.4% 0.4ms
64 1s±5ms 1s±7ms 70, 70 6.9% 3.6% 3.3% 93.1% 88.0% 27.4% 0.4ms

100 1s±5ms 1s±7ms 70, 70 7.1% 3.7% 3.4% 92.9% 85.8% 24.6% 0.4ms
4 2s±7ms 2s±10ms 70, 70 19.5% 12.0% 7.5% 80.5% 89.7% 79.4% 0.4ms

16 2s±7ms 2s±10ms 70, 70 15.5% 9.8% 5.7% 84.5% 83.1% 37.9% 0.4ms
36 2s±7ms 2s±10ms 70, 70 14.1% 7.2% 6.9% 85.9% 79.0% 33.1% 0.4ms
64 2s±7ms 2s±10ms 70, 70 12.1% 6.3% 5.8% 87.9% 78.7% 27.6% 0.4ms

100 2s±7ms 2s±10ms 70, 70 12.2% 6.4% 5.8% 87.8% 76.1% 24.9% 0.4ms
4 0.5s±4ms 0.5s±5ms 90, 70 27.5% 27.5% 0.0% 72.5% 100.0% 99.8% 0.4ms

16 0.5s±4ms 0.5s±5ms 90, 70 24.0% 23.9% 0.1% 75.9% 99.8% 57.8% 0.4ms
36 0.5s±4ms 0.5s±5ms 90, 70 13.6% 13.5% 0.1% 86.4% 99.8% 46.3% 0.4ms
64 0.5s±4ms 0.5s±5ms 90, 70 12.3% 12.2% 0.1% 87.7% 99.8% 39.2% 0.4ms

100 0.5s±4ms 0.5s±5ms 90, 70 12.7% 12.6% 0.1% 87.3% 99.7% 37.0% 0.4ms
4 1s±5ms 1s±7ms 90, 70 27.5% 27.4% 0.1% 72.5% 99.9% 99.7% 0.4ms

16 1s±5ms 1s±7ms 90, 70 28.1% 27.5% 0.6% 71.9% 98.3% 60.9% 0.4ms
36 1s±5ms 1s±7ms 90, 70 14.9% 14.2% 0.7% 85.1% 97.9% 46.4% 0.4ms
64 1s±5ms 1s±7ms 90, 70 14.9% 14.2% 0.7% 85.1% 97.4% 40.6% 0.4ms

100 1s±5ms 1s±7ms 90, 70 14.1% 13.4% 0.7% 85.9% 96.9% 37.0% 0.4ms
4 2s±7ms 2s±10ms 90, 70 27.6% 27.5% 0.1% 72.4% 99.9% 99.8% 0.4ms

16 2s±7ms 2s±10ms 90, 70 31.1% 28.7% 2.4% 68.9% 93.0% 60.3% 0.4ms
36 2s±7ms 2s±10ms 90, 70 19.3% 16.7% 2.6% 80.7% 91.3% 46.9% 0.4ms
64 2s±7ms 2s±10ms 90, 70 18.6% 16.0% 2.6% 81.4% 90.4% 40.4% 0.4ms

100 2s±7ms 2s±10ms 90, 70 18.1% 15.5% 2.6% 81.9% 89.4% 37.3% 0.4ms

Table 5.1.: Quaternion prediction with first data set (Data point in average every 100ms)
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5.3.2. Results of Second Data Set (Data point in average every
10ms)

#Tiles Prediction Prediction FOV angle #Errors #FP #FN Accuracy Recall #Predicted Time
Train Eval Train, Eval

4 (10 ± 2)ms (10 ± 2)ms 70, 70 1.2% 0.7% 0.5% 98.8% 99.4% 86.5% 0.4ms
16 (10 ± 2)ms (10 ± 2)ms 70, 70 1.7% 0.8% 0.9% 98.3% 98.2% 50.0% 0.4ms
36 (10 ± 2)ms (10 ± 2)ms 70, 70 1.8% 0.9% 0.8% 98.2% 97.8% 40.9% 0.4ms
64 (10 ± 2)ms (10 ± 2)ms 70, 70 1.7% 0.8% 0.9% 98.3% 97.5% 35.0% 0.4ms

100 (10 ± 2)ms (10 ± 2)ms 70, 70 1.8% 0.9% 0.9% 98.2% 97.2% 32.0% 0.4ms
4 (20 ± 2)ms (20 ± 2)ms 70, 70 1.4% 0.8% 0.6% 98.5% 99.3% 86.6% 0.6ms

16 (20 ± 2)ms (20 ± 2)ms 70, 70 1.8% 0.9% 0.9% 98.2% 98.2% 50.1% 0.6ms
36 (20 ± 2)ms (20 ± 2)ms 70, 70 1.8% 0.9% 0.9% 98.2% 97.8% 40.8% 0.6ms
64 (20 ± 2)ms (20 ± 2)ms 70, 70 1.7% 0.8% 0.9% 98.3% 97.5% 35.0% 0.6ms

100 (20 ± 2)ms (20 ± 2)ms 70, 70 1.7% 0.8% 0.9% 98.3% 97.2% 32.0% 0.6ms
4 (51 ± 4)ms (51 ± 3)ms 70, 70 1.3% 0.6% 0.7% 98.7% 99.2% 86.4% 0.6ms

16 (51 ± 4)ms (51 ± 3)ms 70, 70 1.8% 0.9% 0.9% 98.2% 98.1% 50.0% 0.6ms
36 (51 ± 4)ms (51 ± 3)ms 70, 70 1.9% 0.9% 1.0% 98.1% 97.7% 40.8% 0.6ms
64 (51 ± 4)ms (51 ± 3)ms 70, 70 1.8% 0.9% 0.9% 98.2% 97.4% 35.1% 0.6ms

100 (51 ± 4)ms (51 ± 3)ms 70, 70 1.8% 0.9% 0.9% 98.2% 97.2% 32.1% 0.6ms
4 0.1s±5ms 0.1s±5ms 70, 70 1.5% 0.8% 0.7% 98.5% 99.2% 86.6% 0.6ms

16 0.1s±5ms 0.1s±5ms 70, 70 1.9% 0.9% 1.0% 98.1% 98.0% 50.1% 0.6ms
36 0.1s±5ms 0.1s±5ms 70, 70 2.1% 1.1% 1.0% 97.9% 97.5% 40.8% 0.6ms
64 0.1s±5ms 0.1s±5ms 70, 70 2.0% 1.0% 1.0% 98.0% 97.2% 35.1% 0.6ms

100 0.1s±5ms 0.1s±5ms 70, 70 2.0% 1.0% 1.0% 98.0% 96.9% 32.1% 0.6ms
4 0.2s±7ms 0.2s±7ms 70, 70 1.6% 0.9% 0.7% 98.4% 99.2% 86.7% 0.6ms

16 0.2s±7ms 0.2s±7ms 70, 70 2.2% 1.1% 1.1% 97.8% 97.8% 50.1% 0.6ms
36 0.2s±7ms 0.2s±7ms 70, 70 2.3% 1.1% 1.2% 97.6% 97.0% 40.7% 0.6ms
64 0.2s±7ms 0.2s±7ms 70, 70 2.2% 1.1% 1.1% 97.8% 96.8% 35.0% 0.6ms

100 0.2s±7ms 0.2s±7ms 70, 70 2.3% 1.1% 1.2% 97.7% 96.4% 32.0% 0.6ms
4 0.5s±12ms 0.5s±12ms 70, 70 4.3% 2.3% 2.0% 95.7% 97.7% 86.8% 0.6ms

16 0.5s±12ms 0.5s±12ms 70, 70 6.1% 3.0% 3.1% 93.9% 93.7% 50.0% 0.6ms
36 0.5s±12ms 0.5s±12ms 70, 70 6.2% 3.0% 3.2% 93.8% 92.3% 40.7% 0.6ms
64 0.5s±12ms 0.5s±12ms 70, 70 6.0% 3.0% 3.0% 94.0% 91.4% 35.0% 0.6ms

100 0.5s±12ms 0.5s±12ms 70, 70 6.0% 3.0% 3.0% 94.0% 90.5% 32.0% 0.6ms
4 1s±17ms 1s±16ms 70, 70 10.8% 6.2% 4.6% 89.2% 94.7% 88.0% 0.6ms

16 1s±17ms 1s±16ms 70, 70 15.7% 8.0% 7.7% 84.3% 84.6% 50.4% 0.6ms
36 1s±17ms 1s±16ms 70, 70 15.7% 7.8% 7.9% 84.3% 80.6% 40.6% 0.6ms
64 1s±17ms 1s±16ms 70, 70 15.0% 7.5% 7.5% 85.0% 78.6% 35.1% 0.6ms

100 1s±17ms 1s±16ms 70, 70 14.8% 7.3% 7.5% 85.2% 76.7% 32.0% 0.6ms
4 2s±25ms 2s±22ms 70, 70 18.7% 9.8% 8.9% 81.2% 89.7% 87.4% 0.6ms

16 2s±25ms 2s±22ms 70, 70 32.3% 16.7% 15.6% 67.7% 68.9% 51.2% 0.6ms
36 2s±25ms 2s±22ms 70, 70 31.9% 15.7% 16.2% 68.1% 60.3% 40.3% 0.6ms
64 2s±25ms 2s±22ms 70, 70 30.8% 15.2% 15.6% 69.2% 55.7% 34.8% 0.6ms

100 2s±25ms 2s±22ms 70, 70 29.8% 14.6% 15.2% 70.2% 52.7% 31.6% 0.6ms
4 (10 ± 2)ms (10 ± 2)ms 90, 70 10.6% 10.6% 0.0% 89.4% 100.0% 97.1% 0.4ms

16 (10 ± 2)ms (10 ± 2)ms 90, 70 17.5% 17.5% 0.002% 82.5% 100.0% 67.7% 0.4ms
36 (10 ± 2)ms (10 ± 2)ms 90, 70 15.5% 15.5% 0.003% 84.5% 100.0% 56.3% 0.4ms
64 (10 ± 2)ms (10 ± 2)ms 90, 70 15.6% 15.6% 0.003% 84.4% 100.0% 50.7% 0.4ms

100 (10 ± 2)ms (10 ± 2)ms 90, 70 15.2% 15.2% 0.003% 84.8% 100.0% 47.3% 0.4ms
4 (20 ± 2)ms (20 ± 2)ms 90, 70 10.7% 10.7% 0.008% 89.3% 100.0% 97.1% 0.7ms

16 (20 ± 2)ms (20 ± 2)ms 90, 70 17.7% 17.7% 0.005% 82.3% 100.0% 67.8% 0.7ms
36 (20 ± 2)ms (20 ± 2)ms 90, 70 15.5% 15.5% 0.009% 84.5% 100.0% 56.3% 0.7ms
64 (20 ± 2)ms (20 ± 2)ms 90, 70 15.6% 15.6% 0.008% 84.4% 100.0% 50.7% 0.7ms

100 (20 ± 2)ms (20 ± 2)ms 90, 70 15.2% 15.2% 0.008% 84.8% 100.0% 47.3% 0.7ms
4 (51 ± 4)ms (51 ± 3)ms 90, 70 10.6% 10.6% 0.0% 89.4% 100.0% 97.0% 0.6ms

16 (51 ± 4)ms (51 ± 3)ms 90, 70 17.7% 17.7% 0.004% 82.3% 100.0% 67.8% 0.6ms
36 (51 ± 4)ms (51 ± 3)ms 90, 70 15.6% 15.6% 0.008% 84.4% 100.0% 56.3% 0.6ms
64 (51 ± 4)ms (51 ± 3)ms 90, 70 15.6% 15.6% 0.008% 84.4% 100.0% 50.7% 0.6ms

100 (51 ± 4)ms (51 ± 3)ms 90, 70 15.2% 15.2% 0.008% 84.8% 100.0% 47.3% 0.6ms
4 0.1s±5ms 0.1s±5ms 90, 70 10.7% 10.6% 0.009% 89.3% 100.0% 97.1% 0.6ms

16 0.1s±5ms 0.1s±5ms 90, 70 17.7% 17.7% 0.01% 82.3% 100.0% 67.8% 0.6ms
36 0.1s±5ms 0.1s±5ms 90, 70 15.5% 15.5% 0.01% 84.5% 100.0% 56.3% 0.6ms
64 0.1s±5ms 0.1s±5ms 90, 70 15.6% 15.6% 0.01% 84.4% 100.0% 50.7% 0.6ms

100 0.1s±5ms 0.1s±5ms 90, 70 15.2% 15.2% 0.01% 84.8% 100.0% 47.3% 0.6ms
4 0.2s±7ms 0.2s±7ms 90, 70 10.7% 10.6% 0.01% 89.3% 100.0% 97.0% 0.6ms

16 0.2s±7ms 0.2s±7ms 90, 70 17.7% 17.7% 0.03% 82.3% 99.9% 67.8% 0.6ms
36 0.2s±7ms 0.2s±7ms 90, 70 15.5% 15.4% 0.03% 84.5% 99.9% 56.2% 0.6ms
64 0.2s±7ms 0.2s±7ms 90, 70 15.6% 15.6% 0.03% 84.4% 99.9% 50.7% 0.6ms

100 0.2s±7ms 0.2s±7ms 90, 70 15.2% 15.2% 0.03% 84.8% 99.9% 47.2% 0.6ms
4 0.5s±12ms 0.5s±12ms 90, 70 10.8% 10.7% 0.1% 89.2% 99.9% 97.1% 0.7ms

16 0.5s±12ms 0.5s±12ms 90, 70 18.1% 17.9% 0.2% 81.9% 99.7% 67.8% 0.7ms
36 0.5s±12ms 0.5s±12ms 90, 70 16.0% 15.7% 0.3% 84.0% 99.3% 56.2% 0.7ms
64 0.5s±12ms 0.5s±12ms 90, 70 16.2% 15.9% 0.3% 83.8% 99.1% 50.6% 0.7ms

100 0.5s±12ms 0.5s±12ms 90, 70 15.8% 15.5% 0.3% 84.2% 99.0% 47.2% 0.7ms
4 1s±17ms 1s±16ms 90, 70 11.8% 11.1% 0.7% 88.2% 99.2% 96.9% 0.6ms

16 1s±17ms 1s±16ms 90, 70 22.9% 20.4% 2.5% 77.1% 95.0% 68.1% 0.6ms
36 1s±17ms 1s±16ms 90, 70 21.4% 18.5% 2.9% 78.6% 93.0% 56.5% 0.6ms
64 1s±17ms 1s±16ms 90, 70 21.4% 18.5% 2.9% 78.6% 91.7% 50.7% 0.6ms

100 1s±17ms 1s±16ms 90, 70 21.1% 18.1% 3.0% 78.9% 90.7% 47.2% 0.6ms
4 2s±25ms 2s±22ms 90, 70 14.7% 12.5% 2.2% 85.3% 97.5% 96.8% 0.6ms

16 2s±25ms 2s±22ms 90, 70 35.6% 27.0% 8.7% 64.4% 82.7% 68.4% 0.6ms
36 2s±25ms 2s±22ms 90, 70 35.3% 25.6% 9.7% 64.7% 76.1% 56.6% 0.6ms
64 2s±25ms 2s±22ms 90, 70 35.1% 25.3% 9.8% 64.9% 71.9% 50.5% 0.6ms

100 2s±25ms 2s±22ms 90, 70 34.4% 24.6% 9.8% 65.5% 69.4% 46.9% 0.6ms

Table 5.2.: Quaternion prediction with second data set (Data point in average every 10ms)
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5.4. Results Prediction Image Tiles

5.4.1. Results of First Data Set (Data point in average every
100ms)

#Tiles Prediction Prediction FOV angle #Errors #FP #FN Accuracy Recall #Predicted Time
Train Eval Train, Eval

4 0.5s±4ms 0.5s±5ms 70, 70 8.5% 6.5% 2.0% 91.5% 97.2% 76.7% 1.0ms
16 0.5s±4ms 0.5s±5ms 70, 70 4.6% 3.0% 1.6% 95.4% 95.2% 35.3% 1.0ms
36 0.5s±4ms 0.5s±5ms 70, 70 4.6% 2.4% 2.2% 95.4% 93.3% 33.0% 1.0ms
64 0.5s±4ms 0.5s±5ms 70, 70 3.5% 1.7% 1.8% 96.5% 93.3% 27.0% 1.0ms

100 0.5s±4ms 0.5s±5ms 70, 70 4.5% 2.1% 2.4% 95.5% 90.1% 24.0% 0.9ms
4 1s±5ms 1s±7ms 70, 70 15.1% 10.7% 4.4% 84.9% 94.0% 78.7% 1.1ms

16 1s±5ms 1s±7ms 70, 70 7.2% 3.6% 3.6% 92.8% 89.4% 34.0% 1.0ms
36 1s±5ms 1s±7ms 70, 70 8.1% 3.7% 4.4% 91.9% 86.6% 32.2% 1.0ms
64 1s±5ms 1s±7ms 70, 70 5.5% 2.5% 3.0% 94.5% 89.0% 26.6% 1.0ms

100 1s±5ms 1s±7ms 70, 70 6.6% 3.1% 3.5% 93.4% 85.7% 24.0% 0.9ms
4 2s±7ms 2s±10ms 70, 70 19.2% 11.4% 7.8% 80.8% 89.2% 75.9% 1.0ms

16 2s±7ms 2s±10ms 70, 70 13.0% 7.2% 5.8% 87.0% 82.9% 35.2% 1.0ms
36 2s±7ms 2s±10ms 70, 70 12.3% 5.1% 7.2% 87.7% 78.1% 30.8% 1.0ms
64 2s±7ms 2s±10ms 70, 70 9.2% 3.9% 5.3% 90.8% 80.4% 25.6% 0.9ms

100 2s±7ms 2s±10ms 70, 70 10.0% 4.3% 5.7% 90.0% 76.6% 23.0% 0.9ms
4 0.5s±4ms 0.5s±5ms 90, 70 27.7% 27.7% 0.0% 72.3% 100.0% 100.0% 1.1ms

16 0.5s±4ms 0.5s±5ms 90, 70 25.8% 25.8% 0.04% 74.2% 99.9% 59.6% 1.0ms
36 0.5s±4ms 0.5s±5ms 90, 70 13.9% 13.8% 0.1% 86.1% 99.7% 46.5% 1.0ms
64 0.5s±4ms 0.5s±5ms 90, 70 12.7% 12.6% 0.1% 87.3% 99.6% 39.6% 1.0ms

100 0.5s±4ms 0.5s±5ms 90, 70 13.1% 12.9% 0.2% 86.9% 99.3% 37.1% 0.9ms
4 1s±5ms 1s±7ms 90, 70 27.7% 27.7% 0.0% 72.3% 100.0% 100.0% 1.0ms

16 1s±5ms 1s±7ms 90, 70 26.6% 26.1% 0.5% 73.4% 98.6% 59.6% 1.0ms
36 1s±5ms 1s±7ms 90, 70 14.5% 13.9% 0.6% 85.5% 98.3% 46.2% 1.0ms
64 1s±5ms 1s±7ms 90, 70 13.5% 12.9% 0.6% 86.5% 97.7% 39.3% 1.0ms

100 1s±5ms 1s±7ms 90, 70 13.7% 13.0% 0.7% 86.3% 97.2% 36.7% 0.9ms
4 2s±7ms 2s±10ms 90, 70 27.7% 27.7% 0.0% 72.3% 100.0% 100.0% 1.1ms

16 2s±7ms 2s±10ms 90, 70 29.2% 27.6% 1.6% 70.7% 95.2% 59.9% 1.0ms
36 2s±7ms 2s±10ms 90, 70 17.5% 15.5% 2.0% 82.5% 93.9% 46.3% 1.0ms
64 2s±7ms 2s±10ms 90, 70 16.0% 13.8% 2.2% 84.0% 92.0% 38.7% 1.0ms

100 2s±7ms 2s±10ms 90, 70 15.8% 13.7% 2.1% 84.2% 91.4% 36.0% 0.9ms

Table 5.3.: Tile prediction with first data set (Data point in average every 100ms)
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5.4.2. Results of Second Data Set (Data point in average every
10ms)

#Tiles Prediction Prediction FOV angle #Errors #FP #FN Accuracy Recall #Predicted Time
Train Eval Train, Eval

4 (10 ± 2)ms (10 ± 2)ms 70, 70 2.5% 1.2% 1.3% 97.5% 98.6% 86.4% 1.2ms
16 (10 ± 2)ms (10 ± 2)ms 70, 70 2.4% 1.2% 1.2% 97.6% 97.6% 50.1% 1.2ms
36 (10 ± 2)ms (10 ± 2)ms 70, 70 2.5% 1.2% 1.3% 97.5% 96.9% 40.7% 1.2ms
64 (10 ± 2)ms (10 ± 2)ms 70, 70 2.6% 1.3% 1.3% 97.4% 96.2% 35.0% 1.2ms

100 (10 ± 2)ms (10 ± 2)ms 70, 70 2.8% 1.4% 1.4% 97.2% 95.7% 32.1% 1.1ms
4 (20 ± 2)ms (20 ± 2)ms 70, 70 2.3% 1.0% 1.3% 97.7% 98.5% 86.1% 1.2ms

16 (20 ± 2)ms (20 ± 2)ms 70, 70 2.6% 1.3% 1.3% 97.4% 97.5% 50.2% 1.2ms
36 (20 ± 2)ms (20 ± 2)ms 70, 70 2.5% 1.3% 1.2% 97.5% 97.0% 40.8% 1.1ms
64 (20 ± 2)ms (20 ± 2)ms 70, 70 2.6% 1.4% 1.2% 97.4% 96.5% 35.2% 1.2ms

100 (20 ± 2)ms (20 ± 2)ms 70, 70 2.9% 1.5% 1.4% 97.1% 95.5% 32.1% 1.1ms
4 (51 ± 4)ms (51 ± 3)ms 70, 70 2.6% 1.4% 1.2% 97.4% 98.7% 86.7% 1.2ms

16 (51 ± 4)ms (51 ± 3)ms 70, 70 2.5% 1.3% 1.2% 97.5% 97.5% 50.1% 1.3ms
36 (51 ± 4)ms (51 ± 3)ms 70, 70 2.6% 1.3% 1.3% 97.4% 96.9% 40.8% 1.2ms
64 (51 ± 4)ms (51 ± 3)ms 70, 70 2.7% 1.4% 1.3% 97.3% 96.3% 35.1% 1.2ms

100 (51 ± 4)ms (51 ± 3)ms 70, 70 2.9% 1.5% 1.4% 97.1% 95.7% 32.2% 1.1ms
4 0.1s±5ms 0.1s±5ms 70, 70 2.5% 1.4% 1.1% 97.5% 98.7% 86.8% 1.2ms

16 0.1s±5ms 0.1s±5ms 70, 70 2.6% 1.3% 1.3% 97.4% 97.4% 50.2% 1.2ms
36 0.1s±5ms 0.1s±5ms 70, 70 2.7% 1.3% 1.4% 97.3% 96.6% 40.8% 1.2ms
64 0.1s±5ms 0.1s±5ms 70, 70 2.8% 1.5% 1.3% 97.2% 96.3% 35.3% 1.2ms

100 0.1s±5ms 0.1s±5ms 70, 70 3.0% 1.6% 1.4% 97.0% 95.5% 32.2% 1.1ms
4 0.2s±7ms 0.2s±7ms 70, 70 3.2% 1.3% 1.9% 96.8% 97.8% 85.4% 1.3ms

16 0.2s±7ms 0.2s±7ms 70, 70 2.8% 1.5% 1.3% 97.2% 97.3% 50.3% 1.2ms
36 0.2s±7ms 0.2s±7ms 70, 70 3.1% 1.6% 1.5% 96.9% 96.4% 40.9% 1.2ms
64 0.2s±7ms 0.2s±7ms 70, 70 3.1% 1.6% 1.5% 96.9% 95.6% 35.1% 1.2ms

100 0.2s±7ms 0.2s±7ms 70, 70 3.4% 1.7% 1.7% 96.6% 94.8% 32.1% 1.1ms
4 0.5s±12ms 0.5s±12ms 70, 70 5.4% 2.8% 2.6% 94.6% 94.6% 86.6% 1.2ms

16 0.5s±12ms 0.5s±12ms 70, 70 6.0% 2.9% 3.1% 94.0% 93.7% 49.9% 1.2ms
36 0.5s±12ms 0.5s±12ms 70, 70 6.0% 2.9% 3.1% 94.0% 92.4% 40.6% 1.2ms
64 0.5s±12ms 0.5s±12ms 70, 70 5.8% 2.9% 2.9% 94.2% 91.7% 35.1% 1.2ms

100 0.5s±12ms 0.5s±12ms 70, 70 5.9% 2.9% 3.0% 94.1% 90.5% 31.9% 1.1ms
4 1s±17ms 1s±16ms 70, 70 11.0% 6.3% 4.7% 89.0% 94.6% 88.1% 1.2ms

16 1s±17ms 1s±16ms 70, 70 15.3% 8.2% 7.1% 84.7% 85.8% 51.2% 1.2ms
36 1s±17ms 1s±16ms 70, 70 15.2% 7.6% 7.6% 84.8% 81.4% 40.8% 1.2ms
64 1s±17ms 1s±16ms 70, 70 14.0% 6.8% 7.2% 86.0% 79.4% 34.6% 1.2ms

100 1s±17ms 1s±16ms 70, 70 13.8% 6.8% 7.0% 86.2% 78.1% 31.8% 1.1ms
4 2s±25ms 2s±22ms 70, 70 18.2% 10.7% 7.5% 81.8% 91.3% 89.7% 1.2ms

16 2s±25ms 2s±22ms 70, 70 31.1% 15.1% 16.0% 68.9% 68.1% 49.3% 1.2ms
36 2s±25ms 2s±22ms 70, 70 31.6% 14.9% 16.7% 68.4% 59.1% 39.1% 1.2ms
64 2s±25ms 2s±22ms 70, 70 29.5% 13.9% 15.6% 70.5% 55.5% 33.4% 1.2ms

100 2s±25ms 2s±22ms 70, 70 28.5% 12.8% 15.7% 71.5% 51.2% 29.2% 1.1ms
4 (10 ± 2)ms (10 ± 2)ms 90, 70 11.2% 11.2% 0.04% 88.8% 100.0% 97.5% 1.2ms

16 (10 ± 2)ms (10 ± 2)ms 90, 70 17.8% 17.8% 0.05% 82.2% 99.9% 67.8% 1.2ms
36 (10 ± 2)ms (10 ± 2)ms 90, 70 15.7% 15.7% 0.1% 84.3% 99.9% 56.4% 1.3ms
64 (10 ± 2)ms (10 ± 2)ms 90, 70 15.8% 15.7% 0.1% 84.2% 99.9% 50.8% 1.2ms

100 (10 ± 2)ms (10 ± 2)ms 90, 70 15.5% 15.4% 0.1% 84.5% 99.8% 47.4% 1.2ms
4 (20 ± 2)ms (20 ± 2)ms 90, 70 10.9% 10.9% 0.04% 89.1% 100.0% 97.3% 1.2ms

16 (20 ± 2)ms (20 ± 2)ms 90, 70 17.8% 17.8% 0.05% 82.2% 99.9% 67.9% 1.1ms
36 (20 ± 2)ms (20 ± 2)ms 90, 70 15.7% 15.7% 0.04% 84.3% 99.9% 56.4% 1.2ms
64 (20 ± 2)ms (20 ± 2)ms 90, 70 15.8% 15.8% 0.05% 84.2% 99.9% 50.8% 1.3ms

100 (20 ± 2)ms (20 ± 2)ms 90, 70 15.4% 15.4% 0.05% 84.6% 99.8% 47.4% 1.1ms
4 (51 ± 4)ms (51 ± 3)ms 90, 70 11.1% 11.1% 0.04% 88.9% 100.0% 97.4% 1.2ms

16 (51 ± 4)ms (51 ± 3)ms 90, 70 17.8% 17.7% 0.1% 82.2% 99.9% 67.8% 1.2ms
36 (51 ± 4)ms (51 ± 3)ms 90, 70 15.7% 15.7% 0.04% 84.3% 99.9% 56.4% 1.2ms
64 (51 ± 4)ms (51 ± 3)ms 90, 70 15.8% 15.7% 0.1% 84.2% 99.8% 50.8% 1.3ms

100 (51 ± 4)ms (51 ± 3)ms 90, 70 15.5% 15.4% 0.05% 84.5% 99.8% 47.5% 1.1ms
4 0.1s±5ms 0.1s±5ms 90, 70 11.1% 11.1% 0.04% 88.9% 100.0% 97.5% 1.2ms

16 0.1s±5ms 0.1s±5ms 90, 70 17.7% 17.6% 0.1% 82.3% 99.9% 67.7% 1.2ms
36 0.1s±5ms 0.1s±5ms 90, 70 15.9% 15.8% 0.1% 84.1% 99.9% 56.5% 1.2ms
64 0.1s±5ms 0.1s±5ms 90, 70 15.8% 15.7% 0.1% 84.2% 99.8% 50.8% 1.3ms

100 0.1s±5ms 0.1s±5ms 90, 70 15.5% 15.4% 0.1% 84.5% 99.8% 47.5% 1.1ms
4 0.2s±7ms 0.2s±7ms 90, 70 11.1% 11.1% 0.03% 88.9% 100.0% 97.5% 1.2ms

16 0.2s±7ms 0.2s±7ms 90, 70 17.7% 17.6% 0.1% 82.3% 99.8% 67.7% 1.2ms
36 0.2s±7ms 0.2s±7ms 90, 70 15.7% 15.6% 0.1% 84.3% 99.8% 56.3% 1.2ms
64 0.2s±7ms 0.2s±7ms 90, 70 16.0% 15.9% 0.1% 84.0% 99.8% 50.9% 1.3ms

100 0.2s±7ms 0.2s±7ms 90, 70 15.6% 15.5% 0.1% 84.4% 99.8% 47.5% 1.1ms
4 0.5s±12ms 0.5s±12ms 90, 70 10.7% 10.6% 0.1% 89.3% 99.9% 96.9% 1.2ms

16 0.5s±12ms 0.5s±12ms 90, 70 18.2% 18.0% 0.2% 81.8% 99.6% 67.9% 1.2ms
36 0.5s±12ms 0.5s±12ms 90, 70 16.2% 16.0% 0.2% 83.8% 99.5% 56.6% 1.2ms
64 0.5s±12ms 0.5s±12ms 90, 70 16.3% 16.1% 0.2% 83.7% 99.4% 51.0% 1.2ms

100 0.5s±12ms 0.5s±12ms 90, 70 15.9% 15.7% 0.2% 84.0% 99.3% 47.5% 1.1ms
4 1s±17ms 1s±16ms 90, 70 12.4% 11.9% 0.5% 87.6% 99.4% 97.8% 1.2ms

16 1s±17ms 1s±16ms 90, 70 22.6% 20.5% 2.1% 77.4% 95.7% 68.5% 1.2ms
36 1s±17ms 1s±16ms 90, 70 20.8% 18.4% 2.4% 79.2% 94.0% 56.7% 1.2ms
64 1s±17ms 1s±16ms 90, 70 20.8% 18.3% 2.5% 79.2% 92.8% 50.8% 1.2ms

100 1s±17ms 1s±16ms 90, 70 20.0% 17.6% 2.4% 80.0% 92.4% 47.2% 1.1ms
4 2s±25ms 2s±22ms 90, 70 14.2% 12.9% 1.3% 85.8% 98.5% 98.0% 1.3ms

16 2s±25ms 2s±22ms 90, 70 35.0% 26.6% 8.4% 65.0% 83.2% 68.3% 1.2ms
36 2s±25ms 2s±22ms 90, 70 34.4% 25.1% 9.3% 65.6% 77.2% 56.7% 1.2ms
64 2s±25ms 2s±22ms 90, 70 33.9% 24.4% 9.5% 66.1% 72.9% 50.0% 1.2ms

100 2s±25ms 2s±22ms 90, 70 33.7% 24.1% 9.5% 66.3% 70.3% 46.7% 1.1ms

Table 5.4.: Tile prediction with second data set (Data point in average every 10ms)
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5.5. Discussion

Overall, the results are as expected. With increasing prediction time, the errors in-
crease. If more tiles are used, the bandwidth savings increase, because less additional
image material is transmitted. In this section we discuss the results.

5.5.1. Videos

The selection of videos is important for the two studies that we describe in sec-
tion 4.3. If the videos have a focus in one direction, some tiles are used much more
often than others. One of the test videos ”The invisible man” [18], a short movie,
has this problem. The actions in the video are limited mainly in one direction. In
the second video, a drone flight [19], there were multiple interesting spots spread
over the whole video. In a larger study one would have to pay attention to find
various types of videos. Additionally, more videos would have to be used to prevent
the neural networks from training the videos instead of a generic solution. In future
work it could be interesting to take the data of the video itself into account.

5.5.2. Data Sets

Figure 5.3 shows that some tiles were used more often than others. If a tile is darker
it was looked at more often in the studies then the lighter ones. This can have a
impact on the training of the neural networks.

Figure 5.3.: Distribution of looked at tiles (100 tiles, first data set), darker tiles were
viewed more often
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The second data set with an average interval of 10ms has more data points. But
when looking at the distribution of the expected tiles we see a bias again. Figure 5.4
shows that some tiles were used more often than others. Again the tiles that are
darker were looked at more often in the studies then the lighter ones. This leads
to a bias for single tiles when training the networks. For further studies it would
be useful to use data with less bias. This could again bring significant changes into
play.

Figure 5.4.: Distribution of looked at tiles (100 tiles, second data set), darker tiles
were viewed more often

5.5.3. Prediction

The prediction times are far below the requirements. Predicting the quaternions (sec-
tion 3.2.2) takes less time than predicting the tiles (section 3.2.3). The calculations
for the prediction on the laptop section 4.1 takes 0.4ms to 0.7ms. These numbers
are expected to be lower when running the evaluation on a server, because servers
usually have more resources. The numbers are far below the limit of the targeted
value of 10ms. This gives the possibility to extend the network in future studies and
thus to make better predictions.

Also the prediction of the tiles (section 3.2.2) is below the target value of 10ms [13].
The calculations take between 0.9ms and 1.3ms. Therefore, it is possible to extend
the neural network in this variant as well. The measurements suggest that the
latency is constant for the prediction of the tiles and quaternions. The real time
calculations allow to use these two algorithms also for live streaming.

Due to false negative predictions it could happen, that tiles in the FOV are missing
and therefore lower the QoE for the user. The countermeasure to lower the risk for
false negatives is increasing the FOV angle for the training of the neural networks.

5.5.4. Bandwidth Savings (# Predicted)

The number of predicted (#Predicted) shows us how many tiles of the total number
of tiles would be streamed in a streaming scenario. The calculations for the band-
width savings are described in Section 5.2.8. The bandwidth savings for 100 tiles are
between 53% and 77%. The two approaches of neural networks show similar results.
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The bandwidth savings are higher for the first data set with an average 100ms in-
terval. Some probable causes are discussed in section 5.5.2. The bandwidth savings
for this approach are between 63% and 77%. For the second data set with more
data points, the bandwidth savings for 100 tiles are between 53% and 68%. For
both data sets the bandwidth savings decrease when predicting with a higher FOV
angle. This is in line with expectations, because with a higher FOV angle more tiles
are needed and therefore less bandwidth is saved. In future work it makes sense to
find out whether the bandwidth savings will decrease further with larger and more
diverse data sets.

5.5.5. Comparison

Both types of neural networks (predicting the quaternion and predicting the image
tiles) show a total error of up to 35% at a prediction time of 2s, but it should be
noted that in the FOV range there is only a maximum error of 16.7%. The total
error is thus close to a solution with linear regression(accuracy of 72%) [16]. The
error of interest to the user (false negatives 16.7%) is much lower. Both neural
networks show similar results. The first data set with an average interval of 100ms
shows slightly better results in terms of errors. When training with a higher FOV
angle, the false negatives are 2.6% with a prediction time of 2s. In the second data
set the false negatives are up to 10% with a prediction time of 2s. For short term
predictions up to 0.5s the neural networks have less then 1% false negative errors.
The recall value is used if there should be as few false negatives as possible. The
networks that were trained with a 90◦ and evaluated with a 70◦ FOV anlge show
that the recall value is higher than if you train and evaluate with the same FOV
angle. When the training FOV angle is 20◦ higher the first data set shows recall
values over 88% even with a prediction time of 2s. When the training FOV angle is
20◦ higher the second data set shows values over 70%. The accuracy stays for both
data sets over 65%. With a larger data set it would be good to find out if the errors
increase or stay constant on a certain level.

5.5.6. Madgwick Filter

The Madgwick filter is not accurate enough when using it for calculating the view
matrix for displaying the video, because when holding the phone in a stable position
the image shakes. The quaternions are unstable even with the low-pass filter. The
image fluctuates when the phone is held still due to these instabilities. Additionally,
a slight delay is noticeable when turning the smart phone. This is due to the low-
pass filter. To make a better prediction about the FOV, it may be beneficial to use
the orientation estimation implemented in Android which uses an extended Kalman
filter [40]. The application is implemented in a way that allows to swap out the
orientation estimation easily. In addition, two threads could be used to calculate
the orientation estimation and the rendering of the image separately.
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5.5.7. Neural Networks

Both neural networks can still be optimized. Since the computation times are far
below the required latencies, the neural networks can be enlarged or other compo-
nents can be added. The calculation time, QoE and bandwidth savings must be
traded off. In a larger study with more diverse data, it would also be interesting to
find out whether one network shows significantly better results than the other.

In this thesis the hyperparameters (number of hidden layers, number of nodes
in the layers, ...) were chosen by trial and error. This means that there was no
algorithm to improve the neural networks. This could be improved in further imple-
mentations with a grid or random search approach to tweak the hyperparameters.





6. Conclusion

6.1. Summary

Streaming 360◦ videos is a challenge as it requires a high bandwidth. In addition
there are latency requirements. If the latency is too high, a delay between the
movement of the mobile phone and the shifting of the field of view is noticeable and
reduces the QoE.

In our work we follow the approach that viewers of a 360◦ video only need to receive
the parts of the image that are within their FOV. To know in which direction they
are looking we have implemented a Madgwick filter that calculates the orientation
of a smart phone. Subsequently, we have collected, with the help of two videos,
data for the training and evaluation of two neural networks in two small studies to
predict the movements of the viewing device.

The results show that the selection of videos is important because they have an
influence on the data sets. In both data sets we can see a bias of tiles, because one of
the videos had the focus of action mainly in one direction. The experiments showed
that the Madgwick filter is not suitable to use it for changing the view matrix. The
filter is to instable and should be replaced with a different orientation estimation.

The results of the prediction time and the error rates seem promising. The predic-
tion time is below the target value of 10ms. The quaternions are predicted in 0.4ms
to 0.7ms and the tiles in 0.9ms and 1.3ms. The error rate at 2s prediction time is
under 10%. For short-term predictions (under 0.5s) the false negative error is less
than 1%. Our experiments suggest that our approach could save more than 50% of
the bandwidth with the respective error while maintaining a good user experience.

These results need confirmation in a larger setting, as the current data set is small
with limited diversity.
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6.2. Future Work

The first future work suggestion is a prototype, that streams 360◦ videos from an
edge server to an Android client. It would be interesting to tweak the hyperparame-
ters of the neural networks with a grid or random search instead of a trial and error
approach. This would either improve the performance or the accuracy of the neural
networks. Further it is important to confirm the results in bigger settings with more
participants and more various types of 360◦ videos. This would help to validate if
a generic approach for streaming 360◦ videos is feasible. An additional possibility
is to extend the input of the neural networks with the video material. This could
improve the accuracy of the neural networks. The last suggestion is to exchange
the Madgwick filter with another orientation estimation algorithm like a Kalman
filter. Especially for a prototype it is important that the orientation estimation is
as accurate as possible.
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A. Git repositories

• https://gitlab.com/cnoetzli/sensorprediction

• https://gitlab.com/cnoetzli/neuralnetwork
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