
Design and Implementation of a Conversion Service for
Content Centric Networking

Master Thesis

by

Elham Cheriki

under the guidance of

Prof. T. Braun
and

Prof. L. Mueller

Department of Electrical Engineering
Bern University of Applied Science

and
Institute of Computer Science and Applied Mathematics

University of Bern

January 2012

Contents

Contents i

List of Figures ii

1 Summary 1

2 About CCNx 2
2.1 Introduction . 2
2.2 CCN Components . 3

2.2.1 CCNx . 3
2.2.2 Name . 3
2.2.3 Node . 3
2.2.4 Type of Messages . 3
2.2.5 Data Structure . 4

2.3 Processing Interest Messages . 4
2.4 Processing Content Objects . 4
2.5 An Example of Exchanging Messages . 4

3 Content and Service Centric Networking 6
3.1 Content Centric Networking (CCN) . 6
3.2 Service Centric Networking (SCN) . 7
3.3 Project Vision . 8

4 Evaluation of Different Design Approaches 9
4.1 Design Issues . 9
4.2 Options for Implementation . 9
4.3 Approach 1: Implementation of Service in ccnd 10

4.3.1 Advantages . 10
4.3.2 Disadvantages . 11

4.4 Approach 2: Service at Publisher Side . 11
4.4.1 Advantages . 11
4.4.2 Disadvantages . 12

4.5 Approach 3: Service as Separate Application 12
4.5.1 Advantages . 12
4.5.2 Disadvantages . 13

4.6 Selected Design . 13

i

5 Implementation of the Conversion Service 15
5.1 Conversion Service Process . 15
5.2 Modification of CCNx to Implement the Conversion Service 17
5.3 Challenges and Solutions . 19

6 Detailed Analysis of the Conversion Service Concept 21
6.1 An Example . 21
6.2 Scenarios . 21

6.2.1 Topology . 22
6.2.2 Scenario 1 . 22
6.2.3 Scenario 2a . 25
6.2.4 Scenario 2b . 26
6.2.5 Scenario 3 . 27

7 Experimental Evaluation 29
7.1 Setup . 29

7.1.1 Topology . 29
7.2 Different Experiments . 31

7.2.1 Test Case 1- A . 33
7.2.2 Test Case 1- B . 37
7.2.3 Test Case 2 . 40
7.2.4 Test Case 3 . 41

8 Conclusions and Outlook 42
8.1 Conclusions . 42
8.2 Outlook . 42

Appendix 43

A Manuals 44
A.1 ccngetfile . 44
A.2 ccnputfile . 44
A.3 ccnfileproxy . 45
A.4 ccn_repo . 45

B Source Code 46
B.1 Request a file . 46
B.2 Repository . 46
B.3 Putfile . 46

Bibliography 46

ii

List of Figures

4.1 Approach 1: Implementation of Service in ccnd 10
4.2 Approach 2: Service at Publisher Side . 12
4.3 Approach 3: Service as Separate Application 13

5.1 Service Conversion Operation . 17
5.2 Conventional Repository Process . 18
5.3 Modified Repository Process and Implemented Conversion Process . . . 18

6.1 Conventional Downloading . 22
6.2 Topology . 22
6.3 Scenario 1 . 25
6.4 Scenario 2a . 26
6.5 Scenario 2b . 27
6.6 Scenario 3 . 28

7.1 Topology . 29
7.2 Scenario E3 . 32
7.3 Scenario E4 . 32
7.4 Scenario E5 . 33
7.5 Test Case 1- A- Step 1 . 34
7.6 Test Case 1- A- Step 2 . 34
7.7 Test Case 1- A- Step 3 . 35
7.8 Test Case 1- A- Step 4 . 36
7.9 Test Case 1- A- Step 5 . 36
7.10 Test Case 1- B- Step 1 . 37
7.11 Test Case 1- B- Step 2 . 38
7.12 Test Case 1- B- Step 3 . 38
7.13 Test Case 1- B- Step 4 . 39
7.14 Test Case 1- B- Step 5-1 . 40
7.15 Test Case 1- B- Step 5-2 . 40

iii

Chapter 1

Summary

Content Centric Networking (also content-based networking, data-oriented network-
ing or named data networking) is an alternative approach to the Internet architecture
of computer networks. Its founding principle is that a communication network should
allow a user to focus on the data he or she needs, rather than having to reference a spe-
cific, physical location where that data is to be retrieved from. This stems from the fact
that the vast majority of current Internet usage (a "high 90% level of traffic") consists
of data being disseminated from a source to a number of users. [1]

Content Centric networking comes with potential for a wide range of benefits such as
content caching to reduce traffic and improve delivery speed, simpler configuration of
network devices, and building security into the network at the data level. However,
the change of communication paradigm may pose problems for certain types of net-
work activities, for instance for real-time multimedia applications, but recent research
indicates these applications are feasible.[1]

While CCN strongly focuses on content retrieval, the Future Internet is expected to
provide a more general support of services. Content delivery is merely one exam-
ple of a service; other examples are content generation and manipulation as well as
general processing services. A service-centric networking (SCN) scheme as an exten-
sion of CCN which considers both content and service as key design elements has been
proposed in [11]. SCN could support a variety of services including file storage and re-
trieval, audio/video streaming and recording, processing of stored images and video,
on-line shopping, location-based services, cloud computing, and tele-communication
services. [11]

This master thesis, tries a new Internet architecture, Content Centric Networking and
emphasizes on strengths of CCN. It is implementing a demonstration for SCN based
on the open source software, CCNx as a proof of the concept. The example service sup-
ports image conversion . The demonstration will show the advantages of CCN/SCN
in such an application scenario.

1

Chapter 2

About CCNx

2.1 Introduction

The following content is an overview of CCN. For more information refer to [2]. The
current Internet was invented in the 1960’s and 70’s. The aim of the creation of the
Internet was to share the resources because at that time resources were expensive.
The idea of sharing resources led to the creation of a communication model based on
connections between two hosts.

After 50 years of the creation of the Internet, the technology was evolving and com-
puters and resources became cheaper. Nowadays the Internet serves many services to
clients based on the communication model between two hosts. The need for data and
content is increasing and the current Internet can not serve the increasing request of
the clients for content efficiently.

Therefore the future Internet has to evolve to a communication model based on con-
tent. The current Internet is still speaking the language of connections between two
machines. Most clients are concerned only about data and content and they do not
care where the data is stored. They care about the data not the name of the host that it
is stored on. The clients value the Internet because of what to get, from not where to
get it.

Today’s Internet has some limitations which is hoped in the future Internet these lim-
itation would be solved.

Some of the limitation that the current Internet has:

• Scalability: The number of IP addresses is limited.

• Security: TCP/IP suffers from lack of security.

• Delay: In real time communication because of limitations in bandwidth and traf-
fic, there is a delay.

A uniform solution to these limitations is to replace the current communication model,
which is based on host names, to a communication model based on content names.
The Content Centric Networking was introduced by Parc institute by V. Jacobson [9].
CCN brings some benefits compared to the current Internet, which are as following:

2

• Security: CCN signs the data itself and then sends it over the network

• Simplicity: it is simple and robust

• Fast: reduces traffic between servers

• Distributes the contents efficiently

2.2 CCN Components

Some of the most important CCN components are listed below:

2.2.1 CCNx

CCNx is a protocol for the communication model of CCN, which is built on named
data. CCNx delivers named data content instead of connections from hosts to other
hosts. Every packet will be cached at any CCNx router, which leads to a very efficient
use of the network when a group of clients is interested in the same content. For
example if one client requests a data packet for the first time, the data will be cached
in all routers on the way to the client and if another client requests exactly the same
content, the content will be delivered from the nearest router.

Now applications run the CCNx protocol on top of UDP to take advantage of the
existing IP layer. CCNx supports a wide range of applications. CCNX is implemented
for the communication between applications and it is intended to be integrated into
the application layer rather than being a separate layer.

2.2.2 Name

In CCNx, names are very important, because the contents is looked up by the name,
regardless of the address of any machine that is involved. Names in CCNx are human
readable and CCNx uses the same principles as an IP address, like net, subnet, etc. to
find the longest match in the network. Names in CCNx are hierarchically structured
and do not have any fixed length.

2.2.3 Node

In the CCNx network, there is an entity called node that implements forwarding and
buffering.

2.2.4 Type of Messages

There are two types of messages in CCNx:

• Interest Message is used to request data.

3

• Content Object is used to respond to the Interest message.

2.2.5 Data Structure

A node in CCNx contains three data structures [9]:

• Content Store (CS) is a buffer memory that keeps the retrieval Content Object by
longest match lookup on names.

• Pending Interest Table (PIT) keeps track of Interests forwarded upstream toward
content source so that returned data can be sent downstream to its requester.

• Forwarding Information Base (FIB) is used to forward Interest packets toward po-
tential source of matching data.

2.3 Processing Interest Messages

An Interest message is processed according to the following procedure. First when
a node receives an Interest message, it will look up the Interest message in the CS.
If there is a Content Object matching the Interest message, the Content Object will
be transmitted to the source of the Interest message. Second, If no match is found
in the CS, the Interest message will be looked up in the PIT. If there is a matching
Interest message in the PIT, it means that another Interest message exactly the same
Interest has already been forwarded and is pending. Then the new Interest message
is discarded. Third, if a match is found in the FIB, it means that an entry was created
in the PIT and the Interest message is transmitted to different destinations to find the
match for an Interest message. If no match is found in the CS, the PIT and the FIB,
it means that there is no way to find the match for an Interest message and it will be
discarded.

2.4 Processing Content Objects

A Content Object is processed according to the following procedure. The first lookup
is executed in the CS. If a match is found in the CS, it means that the new Content
Object is duplicated and the new Content Object will be discarded. The second lookup
will be done in the PIT. If there is a match in the PIT, it means that the Content Object
is transmitted to all clients that requested it. Third, if no match is found in the CS and
the PIT, it means that the content is unsolicited data and it will be discarded.

2.5 An Example of Exchanging Messages

Suppose a client requests a content and sends an Interest message. The Interest mes-
sage is forwarded to available nodes in the network. One of the nodes which has the
match Content will respond to the Interest message and therefore satisfies the request.

4

For each Interest message there is just one Content Object sent back. If one node has
two or more Content Objects which match the Interest message, only one of them will
be sent as a response to the Interest message. The reason for sending only one is to
keep the flow balanced. To select which Content Object has to be picked as a response
to the Interest message, there is a component in the Interest message that determines
which one has to be picked . This is called suppression mechanism.

CCNx is reliable in regards to the transport of messages. To provide reliable delivery,
Interest messages that do not get any responses from other nodes, are resent after a
period of time.

5

Chapter 3

Content and Service Centric
Networking

3.1 Content Centric Networking (CCN)

In the current Internet architecture, the hosts and the network have very different roles.
Hosts generate and consume packets; the network is in charge of delivering those
packets. The Internet architecture has no inherent notion of “content”. In the Internet,
content resides in applications that themselves reside on specific hosts. In order to
access content across the Internet, a host first needs to determine a host that holds (a
copy of) the content of Interest and then it needs to obtain the specific IP address at
which that hosts resides at the time. [8]

In Content Centric Networking, content becomes a first-order element. It is liberated
from the shackles of Internet application silos, and the role of the network changes
from transporting topologically addressed packets between hosts to delivering unique-
ly identifiable content to the hosts requesting it. With this approach, hosts no longer
need to identify which other host stores a copy of the content of Interest; they simply
request a named piece of content from the network and let the network to worry about
where to retrieve it from. [8]

CCN offers these benefits compared to TCP/IP: [10]

• Optimal content distribution

• Painless mobility, wireless, virtualization, ...

• Same scalability and efficiency as TCP/IP

• Simple, secure, robust configuration

• An easy, incremental, evolutionary path

• Much better security

6

3.2 Service Centric Networking (SCN)

For extending Content Centric Networking, in paper [11] it has been proposed to sup-
port general services. Data can not be just retrieved, but also can be processed before
being presented to clients. Names will not be used just for invoking content, but could
be used to invoke services as well. Services and content are two different things and
can be in different locations in network. This Service Content Networking (SCN) pro-
vides explicit addressing for both entities. SCN leverages the concept of the CCN
infrastructure. A client sends an Interest message for the service to be invoked and the
results from the service execution are returned in a Data message.

SCN brings several advantages and benefits compared to conventional services which
are as following:

• In traditional service scenarios, services must be registered by the service provider
at the registry and must be looked up by the client before the service is invoked.
In SCN, the service registration is replaced by an announcing service, that is
available in the underlying CCN infrastructure, i.e., in the CCN routing tables.
It means that in SCN, services will be registered in CCN . As soon as an Interest
message requests one of those services, CCN will forward the Interest to the ser-
vice provid-er and there is no need for any server to be addressed. The service
provider could be anywhere in the network and even in multiple places to more
convince clients.

• As written above, SCN leverages the features of the underlying CCN infrastruc-
ture. For example, when one clients requests a service, data which is provided
by the service can be cached in the routers and can be cached in different nodes.
If some other client requests the same service, it will be loaded from the near-
est router or node and the benefit of caching reduces the network traffic and
response times specially for popular content and services.

• In a conventional service provider network a server must be involved. When a
client requests a service, by contacting the server and considering the location
of the clients, the closest server will be detected. In SCN, services that distribute
routing appropriately can be deployed in multiple locations. Service requests are
routed to the closest server for processing the request independent of the location
of clients.

• In SCN, when taking advantage of CCN infrastructure, the request will be for-
warded to the closest and most appropriate location. With this help, the distance
between server and client will be optimized. When a service or a content has
already been requested and retrieved, they can get cached for a faster second
retreival by the local ccnd where is the closest distance between client and data
content.

SCN could be useful for a variety of services such as file storage and retrieval, au-
dio/video streaming and recording, processing of stored images and video, e-commer-
ce applications like ticket ordering, e-banking, on-line shopping, location-based ser-
vices (gas, food, travel, weather, events etc.), cloud computing, e.g., to instantiate vir-
tual machines and databases as well as telecommunication services.

7

3.3 Project Vision

As we know services provide or execute processing of data. Hence services need data
to process and need some place to store data. Therefore, SCN has to support both data
and services. This means that names could use the same for invoking both data and
service. With this method a client could request a data with the same name scheme as
requesting for a service, e.g: /images.google.com/converting/(service) or /ccnx.org/ccnx.pdf
(data).

This master thesis investigates the new Internet architecture, Content Centric Net-
working and capitalizes on strengths of CCN and is implementing a demonstration
for SCN based on the open source software CCNx as a proof of concept. The demon-
stration will show the advantages of CCN/SCN in such an application scenario. This
application provides an image conversion service for clients such that possible formats
are available to its user clients. Data will be processed by the service provider before
it is presented to clients. The conversion service will prove that names could be used
to invoke data and services in the same way. [3]

The goal of this project is to design a method to invoke a service, which could be
requested by CCN clients with the same name structure as CCN for retrieving data.
This conversion service can provide its data by storing it itself. After this process, it
will cache the data in the routers with help of the CCN infrastructure.

The data will therefore remain in the cache of the routers and can be retrieved by other
clients. Measuring time for retrieval, will prove the advantages of SCN with taking
advantage of CCN.

8

Chapter 4

Evaluation of Different Design
Approaches

In this chapter different approaches are described and evaluated. The most appropri-
ate approach will be selected.

4.1 Design Issues

For the implementation of the service, it is better to consider these characteristics:

1. Deploy the code into an existing infrastructure without having any change in
the current system which is already running on the nodes. For example, TCP/IP
is stable and well-established. CCN has the same characteristics as it can run
over any protocol, including IP. Using an existing model that is compatible with
the conventional infrastructure brings some advantages regarding the ease of the
implementation.

2. The behavior of the deployed service should not depend on the network state.
For example, if a service needs a file in order to process its data, the file needs
to be fetched, then the service can run, then start processing the data contained
within. The service has to give correct results in any situation, independent of
machine state.

3. The end users also need to be aware that the data can be modified by the ser-
vice. This can occur when document format types are changed particularly with
images that quality is important. For example, if a client requests a JPEG format
of a file while the original file is BMP, the conversion service leads to loss in the
quality of the image.

4.2 Options for Implementation

Regarding the properties of the implementation, there are three possibilities as follow-
ing:

9

1. Implementation of service in the ccnd (could be applied to one node or different
nodes)

2. Service at publisher side (e.g: file proxy server)

3. Service as separate application that could be deployed on any node with a run-
ning ccnd

The three different approaches will be outlined, along with their advantages and dis-
advantages in the next section.

4.3 Approach 1: Implementation of Service in ccnd

The ccnd is the software forwarder/router for CCNx and is required for normal CCNx
protocol communication. The typical configuration is to run one ccnd on each host.
The applications running on the host will communicate through the local ccnd, and it
will communicate over attached networks. [2]

The implementation in the ccnd requires the ccnd to provide a conversion service to
the users. It means that we could send an Interest to the local ccnd and the ccnd will
modify the Interest message, which has been forwarded for an image with a specific
format. See Figure 4.1.

For example, in Figure 4.1 a client requests a file PIC.BMP whereas the publisher only
has PIC.JPEG. In this approach the conversion service would be transparent to the
client. It means that the client is not aware of the service. It requests its file from
its local ccnd. As one option to deploy the service in the ccnd is such that the ccnd
removes the format of the file and just look for the file’s name without format.

But this approach has its own advantage and disadvantage as mentioned below:

ccnd_c1

ccnd_sc

ccnd_pb

Middlenode

Publisher

Client1

ccnd_c2

Client2

1
2

3

4

5

6

7

8

9

Local
Hard
Disk

Active Connection

Deactive Connection
Conversion

Figure 4.1: Approach 1: Implementation of Service in ccnd

4.3.1 Advantages

The service implemented by ccnd could be transparent to clients.

10

4.3.2 Disadvantages

1. To allow all the clients within the network to use the service, we must change
all or most ccnd nodes. Since the Interest message will be forwarded to different
ccnds, all of the ccnds have to be able to analyze and understand the Interest
messages. This design will not follow the first design concern about not changing
existing infrastructure.

2. There is no clear way to select an original file. Suppose the publisher has different
files with different formats PIC.JPEG and PIC.GIF. With this solution the ccnd is
not able to decide which file is the original file. It is also possible that these two
files might have different content as they have different formats.

3. Suppose a client requests a file, PIC.BMP, and the the original file is another
format like JPEG. After conversion the client receives the converted file. The
client is not aware of any conversion that have occurred to the file. The user may
be expecting a good original quality file but after conversion the quality of the
original file, PIC.BMP is missing. The service will automatically convert another
file such as PIC.PNG to PIC.BMP without informing anyone in the chain. The
user may be unsatisfied with the converted image quality. But there might be a
solution for this problem. One could also determine and request the quality of
image as a parameter.

4. There are also legal issues involved with the process of changing original files. It
is possible that the publisher does not want another copy of the original image
in another format. This could play an important role in which method is chosen.

4.4 Approach 2: Service at Publisher Side

Using this approach, the conversion service is provided by the publisher. The pub-
lisher has to be modified such that the service code is implemented on the publisher.
The publisher is also responsible for all the requests for all files on its local hard disk.
Suppose a client requests PIC.BMP and the publisher only has PIC.JPEG. The pub-
lisher will announce to the client that the file PIC.BMP is available on its local hard
disk. This file is selected and converted from PIC.JPEG to PIC.BMP. The publisher
forwards the converted file to ccnd_pb then it will be forwarded from the ccnd_pb to
ccnd_c1. See Figure 4.2.

Let’s have a look what are the advantages and disadvantages of this approach:

4.4.1 Advantages

1. With this approach the publisher has full control over the conversion.

2. The publisher is responsible for the content data of the images.

3. The publisher is fully aware of all conversions that are done.

4. The files that are retrieved by the clients are signed by the publisher.

11

ccnd_c1

ccnd_sc

ccnd_pb

Publisher

Client1

ccnd_c2

Client2

1
2 3

4

6

8

9
7

Middlenode

Local
Hard
Disk

5

Active Connection

Deactive Connection

Conversion

Figure 4.2: Approach 2: Service at Publisher Side

4.4.2 Disadvantages

1. The publisher has to be modified. There are many publishers in the network
which are providing original files. With this approach, all publishers have to be
modified to serve the conversion service to all clients, that is not a good solution.

2. Every time a client needs a different file format, the client has to ask again the
publisher. For example, the client first asks for PIC.BMP. After that the client
needs the same file in another format, so it asks for PIC.GIF. Again, the request
will then be forwarded to the publisher. With this method, we cannot take ad-
vantage of the benefits of CCN. The amount of traffic would be neither optimized
nor reduced.

4.5 Approach 3: Service as Separate Application

In this approach, there is a separate service which can be installed on any node. This
service is responsible for everything regardless of its location. This approach will be
explained in details in Chapter 5 and 6.

When this method is used, the client is requesting the original file in the same format
as that the user is requesting. The client will call the conversion service, the name of
the original file, and the required format are in one Interest message. This message
will be forwarded to the conversion service. The conversion service will handle the
Interest message, provides the original file, converts it, and delivers it to the client’s
ccnd. See Figure 4.3.

4.5.1 Advantages

1. In this approach the original file that has to be used for the conversion is clear.
Because the client mentions which file has to be used to convert to the requested
format.

2. The requested format is clear and the client demands the exact file required.

12

ccnd_c1

ccnd_sc

ccnd_pb

Publisher

Client1

ccnd_c2

Client2

1
2 5

6

7

11

12
8

Middlenode

Local
Hard
Disk

Active Connection

Deactive Connection

repository

Service
3

4

9

10

Conversion

Figure 4.3: Approach 3: Service as Separate Application

3. The user will be aware of any conversions and any changing in the quality of
image. There might not be any dissatisfaction because the client itself requested
the conversion.

4. All nodes in the network can use the service without any modification on their
sides. This service can be installed in one node or in multiple nodes.

5. All available sources on the network can be converted.

6. The existing infrastructure of the ccnd will not be modified. With this method
we do not touch any existing infrastructure that is already running.

7. It is easy to add other applications to this service or to change to different services
without affecting the service conversion application.

8. All the advantages of CCNx could be kept with this concept.

9. The source file will be cached by all nodes near the service.

10. Any converted files would also be cached in the network, automatically propa-
gating the cached files.

4.5.2 Disadvantages

1. Only one client is processed at a time. It means if the two clients requests at the
same time, just one of them will be handled and the other client’s request will
be pended. This limitation only exists because the current implementation is a
proof of concept only. If required, t could be easily removed.

2. Clients will receive a file with a signature of the service conversion not with a
signature of publisher.

4.6 Selected Design

When evaluating the advantages and disadvantages of each approach and design con-
cern, it is clear that the third approach benefits from all the advantages of SCN and
brings different possibilities. The most valuable aspect of this approach is the file

13

caching of different formats in the routers. This is done to avoid redirecting requests
to the publisher, thereby reducing unnecessary traffic to the publisher. This allows
the same name to be used to invoke services and data. The implementation of this
approach to the existing infrastructure is detailed in Chapter 5 and 6.

14

Chapter 5

Implementation of the Conversion
Service

5.1 Conversion Service Process

In this section, the different steps of the conversion service are described and shown
in Figure 5.1. The applied changes in source code are also outlined.

In this implementation, the client specifies or requests from its local ccnd, 3 entities in
the Interest message:

• Requesting service conversion

• Required conversion format

• Original or source file with specific format

As an example of an Interest message:

ccnx:/ccnx.org/sc/BMP/ccnx.org/files/PIC.JPEG/

The following steps will be executed in conversion service:

• Step 1
When a client sends this Interest message to its local ccnd, the ccnd forwards
this Interest message to different ccnds in the network. Once this node with the
conversion service receives this Interest message, it divides the Interest messages
to different parts. The conversion service extracts the requested original file’
name /ccnx.org/files/PIC.JPEG and the requested conversion format /BMP/.

1 / / g e t o r i g i n a l f i l e
2 f i n a l S t r i n g format = name . subs t r ing (1 3 , name . indexOf ("/" , 1 6)) ;
3 f i n a l S t r i n g origName = name . subs t r ing (name . indexOf ("/" , 1 6) + 1) ;
4 / / c r e a t e t emporary f i l e
5 f i n a l F i l e tmp = F i l e . createTempFile (" wefwef " , " wefwef ") ;
6 f i n a l F i l e tmpConverted = F i l e . createTempFile (" wefwef " , " wefwef ") ;
7 f i n a l OutputStream tmpStream = new FileOutputStream (tmp) ;

Listing 1: ExtractingFormat.java

15

• Step 2
In this step, the conversion service requests the original file via the local ccnd.
There are now two options regarding the original file: The local ccnd might al-
ready have a cached copy of the original file from a previous request or the ccnd
does not have the file and must now retrieve the original file from the publisher.
After that the ccnd of the conversion service delivers the original file to the con-
version service.

1 / / f i r s t r e t r i e v e f i l e from s o u r c e
2 System . out . p r i n t l n ("STARTING GETFILE " + new Date ()) ;
3 ContentName argName = ContentName . fromURI (" ccnx :// "+origName) ;
4 CCNHandle handle = CCNHandle . open () ;
5 InputStream stream = new CCNFileInputStream (argName , handle) ;
6 byte [] b u f f e r = new byte [2 0 4 8] ;
7 i n t len ;
8 while ((len = stream . read (b u f f e r)) >= 0)
9 tmpStream . wri te (buffer , 0 , len) ;

10 stream . c l o s e () ;
11 tmpStream . f l u s h () ;
12 tmpStream . c l o s e () ;
13 System . out . p r i n t l n ("FINISHED GETFILE " + new Date ()) ;

Listing 2: getFile.java

• Step 3
The conversion service converts the original file to the requested format BMP
specified in step 1.

1 / / c o n v e r t f i l e
2 System . out . p r i n t l n ("STARTING CONVERT " + new Date ()) ;
3 BufferedImage image = ImageIO . read (new Fi le InputStream (tmp)) ;
4 FileOutputStream sso = new FileOutputStream (tmpConverted) ;
5 ImageIO . wri te (image , format , sso) ;
6 sso . c l o s e () ;
7 System . out . p r i n t l n ("FINISHED CONVERT " + new Date ()) ;

Listing 3: ConvertFile.java

• Step 4
The conversion service executes a ccnputfile (see appendix A) and calls this
method to upload the converted file to its own repository. Calling this method,
ccnputfile, causes an upload of the file via the ccnd to the repository of the con-
version service. It means that the contents of the converted file first will be trans-
fered to the ccnd of the conversion service, then to the repository.

1 System . out . p r i n t l n ("STARTING UPLOAD " + new Date ()) ;
2 c c n p u t f i l e put = new c c n p u t f i l e () ;
3 put . wri te (new S t r i n g [] { i n t e r e s t . name () . t o S t r i n g () , tmpConverted .
4 getAbsolutePath () . t o S t r i n g () }) ;
5 System . out . p r i n t l n ("FINISHED UPLOAD " + new Date ()) ;

Listing 4: UploadFileToRepository.java

16

repository

Service
1

2
3

4

Parse Interest
Message

Get Original file

Conversion Service

Figure 5.1: Service Conversion Operation

What is a file proxy?
The file proxy provides a read-only view of the directory hierarchy that we point it
at, and generating the necessary content objects. It does not allow writing of files.
The ccnFileProxy is a simple proxy making local files available via CCNx. For more
information refer to appendix A.

What is a repository?
Generically a repository refers to a central place where data is stored and maintained.
A repository can be a place where multiple databases or files are located for distribu-
tion over a network, or a repository can be a location that is directly accessible to the
user without having to travel across a network. [4]

What is a file system?
Computers use particular kinds of file systems to store and organize data on media,
such as a hard drive. Any place that a PC stores data is employing the use of some
type of file system. A file system can be thought of as an index or database containing
the physical location of every piece of data on a hard drive. [5]

5.2 Modification of CCNx to Implement the Conversion
Service

In this project there are some implementations needed in the files LogStructRepoS-
tore.java and ccngetfile.java of the open source CCNx. This new version of CCNx will be
installed only in the node that has the task of the conversion service or on the service
provider side. In the last page, all the modifications are deployed to LogStructRepo-
Store.java. This file has the default task of storing and reading files to and from the
repository. Figure 5.2 shows the conventional process between ccnd and the repos-
itory. Figure 5.3 shows the modified version of process between the ccnd and the
repository for implementation the conversion service.

There are three situations in which the conversion service is not necessary. In the
LogStructRepoStore.java these three condition will be checked in case of receiving an

17

CCN Repository

Not
Found

Return
 file

Has file?CCND
Y N

Figure 5.2: Conventional Repository Process

CCN Repository

Not
Found

Return
 file

Has file?

CCND

Y N

Y N

Service?

Fetch
file

Convert

Upload
 repo

Figure 5.3: Modified Repository Process and Implemented Conversion Process

Interest message. If one of the conditions becomes true, the LogStructRepoStore.java
will be run conventionally. As shown in Figure 5.2, no conversion service is needed.
The three conditions which controls a conversion is required or not, are listed below
(the conversion service is invoked if any of the conditions is true):

1. The conversion service is not requested.

2. There is a write command to the repository.

3. The requested file is cached in the repository.

If the first condition is met, then the Interest message is just a conventional Interest
message for retrieving data without any services. For example, if a client requests
ccnd to retrieve/store a file to/from the repository, then there is no need to execute
the modified part of LogStruRepoStore.java .

The second condition is met when there is a command to write or upload a file to the
repository. In this situation, there is no need for the conversion service to be run. In
CCNx, the command for writing the data content to the repository is added at the end
of the Interest message e.g: /%C1.R.sw/. It means that if an Interest message has at
its end this command, data has to be written or saved in the repository. We need this
condition because there is a synchronized block in the source code. In the synchronized
block, only the first Interest is allowed to enter. Until the original file is retrieved and
converted, the rest of the Interests will not enter to this block. Once the conversion

18

1 f i n a l S t r i n g name = i n t e r e s t . name () . t o S t r i n g () ;
2 System . out . p r i n t l n (" getContent () : " + name) ;
3 S t r i n g base = name ;
4 i f (name . indexOf ("/%") > 0)
5 base = name . subs t r ing (0 , name . indexOf ("/%")) ;
6 t r y {
7 f i n a l Object isCached = _index . get (I n t e r e s t . c o n s t r u c t I n t e r e s t
8 (ContentName . fromURI (base) , null , null , null , null , null) , t h i s) ;
9 i f (! name . s t a r t s W i t h ("/ccnx . org/sc/") || (name . conta ins ("/\%C1 . R . sw/"))

10 || (isCached != null)) {
11 / / d e f a u l t h a n d l i n g
12 System . out . p r i n t l n (" getContent () : d e f a u l t handling f o r : " + name) ;
13 ContentObject co = _index . get (i n t e r e s t , t h i s) ;
14 i f (Log . isLoggable (Log . FAC_REPO, Level . FINE))
15 Log . f i n e (Log . FAC_REPO, " Looking f o r : " + i n t e r e s t . name () +
16 (co == null ? " : Didn ’ t f ind i t " : " : Found i t ")) ;
17 return co ;
18 }

Listing 5: Conditions.java

service wants to upload the file into the repository, the uploading command which is
/%C1.R.sw/ will be added at the end of the Interest message. The source code is shown
in Listing 7.

What is synchronized block?
The Java synchronized keyword is an essential tool in concurrent programming in
Java. Its overall purpose is to only allow one thread at a time into a particular section of
code thus allowing us to protect, for example, variables or data from being corrupted
by simultaneous modifications from different threads. At its simplest level, a block of
code that is marked as synchronized in Java tells the JVM: only let one thread in here
at a time. [6]

The third condition is met when the converted file is already cached. For example, if
the client requests a file and then a second client requests exactly the same file. In this
situation, the converted file will be already in the cache of all ccnds and there is no
need for the conversion service. Only the part of the source code needed to read the
data from the repository will be executed, Figure 5.2, since the converted files will be
stored in the repository after the conversion service is run.

5.3 Challenges and Solutions

There were some challenges and improvements that lead to faster performance and
better results. The challenges and improvement are listed below.

• The first challenge involved the conversion service. It took a lot of time for large
files to convert, and since the conversion time for larger files was larger than
the timeout, the Interest message was discarded before the conversion was com-
pleted. On the client side, in ccngetfile, Listing 6, there is a change in the timeout
variable since the default variable was set to 10 seconds in the CCNx code. The
timeout variable is the maximum amount of time for which the Interest will be
waiting to get an answer from the ccnd. After expiry, the Interest message will
be discarded. Then the client can not retrieve any data contents. So the experi-
mental timeout for first Interest is set from default value, that is 10 seconds to 60
seconds.

19

• On the publisher side, ccnfileproxy was first used (Appendix A), but ccnfileproxy
creates the content objects from the file in the file system as requested. The sign-
ing takes place at this time with the user’s key. But if files are stored in the
repository, the retrieval time is much faster than using the fileproxy. The reasons
for which it is faster is related to the signing requirements. In the repository, the
contents of the file is only signed once. However, in ccnfileproxy, the file needs
to be signed for each request, resulting in a slower process.

The ccn repository stores content objects as they are received from a client, in
the on-the-wire format, so the content has already been signed. This means that
there is very little work to do when responding back with those content objects.
The signatures are therefore those of the original client, not the repository. That’s
why using the files which are stored in the repository at the publisher is much
faster than using ccnfileproxy. The evaluation test is done using the repository
but we can not control the publisher. It is not our choice to take the file from the
repository or via the file proxy, but the decision of the publisher.

• In the first implementation of the conversion service, the converted file was
stored with the help of file proxy, but after getting aware of the poor perfor-
mance, the conversion service now uses a repository to save the converted files.
If another client asks for the same file, the requested file is already saved in the
repository of the conversion service.

20

Chapter 6

Detailed Analysis of the Conversion
Service Concept

In this chapter we discuss three scenarios which can show how the conversion service
works in different situations. First, there is an example which shows conventional
downloading of a file. After that we compare it with different scenarios of the conver-
sion service.

6.1 An Example

To clarify how clients download a file with using CCNx protocol, it is better to have an
example with the related command lines and figures to show clearly how the process
of forwarding Interest messages and data contents works. See Figure 6.1.

The publisher first has to register to ccnd with this command and assign where ccnd
can find files. Files are in the home documents directory and this directory will be
registered as ccnx:/ccnx.org/files/.

./ccnfileproxy ∼/Documents/ ccnx:/ccnx.org/files/

The client has to run the ccngetfile command to get the file PIC.PNG through CCNx
with the following command and to save in another file named PIC1.PNG.

./ccngetfile ccnx:/ccnx.org/files/ PIC1.PNG

6.2 Scenarios

In this section, we define different scenarios. In the first scenario, we suppose none
of the nodes have the requested file and the original file has to be loaded from the
publisher. In the second scenario, we suppose that the original file is already cached

21

publisher

client

1 2

Figure 6.1: Conventional Downloading

in the ccnd of the conversion service and the client asks the same conversion service.
In the last scenario, the client asks for another format of the same original file.

6.2.1 Topology

Our topology consists of 4 types of node:

• Publisher

• Client1

• Client2

• Middlenode which has the conversion service

publisher

client2

middlenode service

client1

Figure 6.2: Topology

6.2.2 Scenario 1

In this scenario, Figure 6.3, client1 requests the original file, PIC.JPEG and then asks
for the BMP format from its local ccnd. As outlined in the last chapter, this Interest
message will be forwarded to the connected ccnds in the network. The node with the
conversion service registered itself to ccnd under the name of ccnx:/ccnx.org/sc/. It
will receive this Interest message and the conversion service parses this Interest mes-
sage into different parts or names to specify different parameters of the conversion
service. The first part, ccnx:/ccnx.org/sc/, is requesting a conversion services which
helped to receive this Interest message by the conversion service. The second part,
/JPEG/, specifies which format is requested. The third part, ccnx.org/files/PIC.BMP,

22

determines which file should be fetched as the original file.

./ccngetfile ccnx:/ccnx.org/sc/JPEG/ccnx.org/files/PIC.BMP

The first Interest message will be received by ccnd of client1. If the ccnd of client1 does
not have this file, it will forward the Interest message to the ccnd of the middlenode.
The Interest message starts with ccnx:/ccnx.org/sc/, thus one of the If conditions,
mentioned in section 5.2, is requesting for the conversion service.

In the conversion service, the Interest message, ccnx:/ccnx.org/sc/JPEG/ccnx.org/
files/PIC.BMP is parsed into two parts: the first part, ccnx:/ccnx.org/sc/JPEG/ is re-
questing the conversion services, which helped to receive the Interest message by the
conversion service; The second part of Interest, ccnx.org/files/PIC.BMP, is not yet
fulfilled since the service conversion does not yet have the file, PIC.BMP. The conver-
sion service then forwards the second part of the Interest to the connected ccnd. As
defined in section 5.1, the original file is available in the publisher under the the name
of /ccnx.org/files/PIC.BMP. The Interest message will therefore be forwarded to the
ccnd of the publisher. The Publisher will send the PIC.BMP from its local hard disk to
its ccnd. The ccnd of the publisher will then send PIC.BMP to the ccnd of the middlen-
ode. Once the conversion service fetches the complete file, the ccnd of the middlenode
will send it to the conversion service. The conversion service will start to convert BMP
to JPEG.

Following the completion of the conversion, the conversion service automatically runs
ccnputfile. The ccnputfile makes a request to ccnd of the middlenode to put PIC.JPEG
in the repository of the conversion services via the ccnd. During uploading of the
file to the repository via ccnd, the ccnd of the middlenode retrieves contents of the
converted file. The Interest messages are answered and ccnd starts to give the data
to the client. Hence the client retrieves the converted version, the PIC.JPEG during
upload.

These steps are shown below as well in Figure 6.3.

1. Client1 first sends an Interest message to his own local ccnd:

./ccngetfile ccnx:/ccnx.org/sc/JPEG/ccnx.org/files/PIC.BMP PIC.JPEG

2. The ccnd of client1 does not have this file and forwards it to the nearest ccnd,
which is the ccnd of the middlenode.

./ccngetfile ccnx:/ccnx.org/sc/JPEG/ccnx.org/files/PIC.BMP PIC.JPEG

3. As the conversion service is registered with the name of ccnx:/ccnx.org/sc/ in
the ccnd, the Interest message will match to this name and will be forwarded to
the conversion service.

./ccngetfile ccnx:/ccnx.org/sc/JPEG/ccnx.org/files/PIC.BMP PIC.JPEG

23

4. The conversion service receives the Interest message. It divides the Interest mes-
sage into different parts. The first part requests the conversion service, which is
already done and the second part is the requested format /JPEG/. the third part
of the Interest message, which is /ccnx.org/files/PIC.BMP will be considered
as the requested of the original file.The conversion service forwards to the ccnd
of middlenode to get the original file.

5. The ccnd of the middlenode will search for a match among the nearest ccnd,
which has the original file. As the publisher has registered its file under the
name of ccnx:/ccnx.org/files/PIC.BMP, the ccnd of middlenode will send it to
the ccnd of the publisher.

6. The ccnd of the publisher will send the Interest message to the publisher. The
publisher could be a repository or a file proxy. As we defined in section 6.1, the
original file is under the name of ccnx:/ccnx.org/files/PIC.BMP. The publisher
retrieves the file from the underlying data store.

7. The publisher sends the original file to its ccnd.

8. The ccnd of the publisher will send PIC.BMP to the ccnd of the middlenode, be-
cause the conversion service requested this file from the ccnd of the middlenode.

9. The ccnd of the middlenode delivers the original file to the conversion service.

10. Once the conversion service gets the whole file, it starts to convert. After the
conversion, the conversion service starts to upload the file via the ccnd of the
middlenode.

11. The ccnd of the middlenode forwards the request of uploading to the repository
and starts to upload the converted file to the repository.

12. During uploading to the repository, ccnd has partially the converted file, PIC.JPEG
and starts giving the file to the ccnd of the client, because it is requesting this file
and the Interests are pending for retrieval. The ccnd of middlenode will send the
PIC.JPEG to client1.

Here it is necessary to mention that from the client, several Interest messages will be
sent to the ccnd of the client and further to other available ccnds. The implementation
of the conversion service will allow just the first Interest message to proceed into the
conversion service. Other Interest messages will be pending until the conversion is
finished and the upload starts. For more details refer to chapter 5.

Now after these steps we look at each node, which files it has:

• publisher: PIC.BMP

• ccnd_pb: PIC.BMP

• ccnd_sc: PIC.JPEG and PIC.BMP

• conversion service repository: PIC.JPEG

• ccnd_c1: PIC.JPEG

• client1: PIC.JPEG

24

ccnd_c1

ccnd_sc

ccnd_pb

Publisher

Client1

ccnd_c2

Client2

1
2 5

6

7

11

12
8

Middlenode

Local
Hard
Disk

Active Connection

Deactive Connection

repository

Service
3

4

9

10

Conversion

Figure 6.3: Scenario 1

6.2.3 Scenario 2a

Assumption: The state is continuing from scenario 1. In this scenario, client2 requests
the same file, PIC.JPEG and sends this request to its ccnd. The following steps will
happen. See Figure 6.4.

./ccngetfile ccnx:/ccnx.org/sc/JPEG/ccnx.org/files/PIC.BMP PIC.JPEG

Now we follow these steps again what happens in CCN:

1. Client2 first sends an Interest message to its own local ccnd:

./ccngetfile ccnx:/ccnx.org/sc/JPEG/ccnx.org/files/PIC.BMP PIC.JPEG

2. The ccnd of client2 does not have this file and it forwards it to nearest ccnd which
is the ccnd of the middlenode.

./ccngetfile ccnx:/ccnx.org/sc/JPEG/ccnx.org/files/PIC.BMP PIC.JPEG

3. Since PIC.JPEG was cached through ccnd_sc in the last scenario, the converted
file is in the cache of the ccnd of the middlenode, see Figure 6.4. So ccnd_sc will
send back PIC.JPEG to the ccnd of client2.

4. The ccnd_c1 will send the converted file to client2.

25

ccnd_c1

ccnd_sc

ccnd_pb

Publisher

Client1

ccnd_c2

Client2

Middlenode

Local
Hard
Disk

Active Connection

Deactive Connection

repository

Service

1

2

3

4

Figure 6.4: Scenario 2a

6.2.4 Scenario 2b

Assumption: The state is continuing from scenario 1. Client2 requests the same file,
PIC.JPEG but the file is not anymore in the cache of ccnd_sc. The following steps will
occur and are shown below. See Figure 6.5.

1. The client2 first sends an Interest message to its own local ccnd.

./ccngetfile ccnx:/ccnx.org/sc/JPEG/ccnx.org/files/PIC.BMP PIC.JPEG

2. The ccnd of client2 does not have this file and it forwards it to nearest ccnd which
is the ccnd of the middlenode.

./ccngetfile ccnx:/ccnx.org/sc/JPEG/ccnx.org/files/PIC.BMP PIC.JPEG

3. The ccnd of the middlenode does not have the converted file then it sends the
Interest Message to the conversion service.

4. The conversion service receives the Interest message. At first, the conversion
service searches for the converted file which might already exist in its repository
otherwise it will ask the publisher again. In this case, it has the converted version
already, in the repository. It requests the converted file from its repository.

5. The conversion service will send it to the ccnd of the middlenode.

6. The ccnd of the middlenode forwards it to the ccnd of client2.

7. the ccnd of client2 gives the file to client2.

After the scenario 2a and 2b, nodes will have these files:

• ccnd_pb: PIC.BMP

• publisher: PIC.BMP

• ccnd_sc: PIC.JPEG and PIC.BMP

• conversion service repository: PIC.JPEG

• ccnd_c1: PIC.JPEG

26

ccnd_c1

ccnd_sc

ccnd_pb

Publisher

Client1

ccnd_c2

Client2

Middlenode

Local
Hard
Disk

Active Connection

Deactive Connection

repository

Service

1

2

5

6

3

4

Figure 6.5: Scenario 2b

• client1: PIC.JPEG

• ccnd_c2: PIC.JPEG

• client2: PIC.JPEG

6.2.5 Scenario 3

Assumption: The state is continuing from scenario 2. In this scenario we consider that
client2 asks for another format of PIC.JPEG, e.g: PNG. The process is shown below.
See Figure 6.6.

1. Client2 first sends an Interest message to its own local ccnd.

./ccngetfile ccnx:/ccnx.org/sc/PNG/ccnx.org/files/PIC.BMP PIC.PNG

2. The ccnd of client2 does not have any of the files, neither PIC.BMP nor PIC.PNG.
The ccnd of client2 forwards the Interest message to the nearest ccnd which is
the ccnd of the middlenode.

./ccngetfile ccnx:/ccnx.org/sc/PNG/ccnx.org/files/PIC.BMP PIC.PNG

3. From the last scenario, we have the PIC.JPEG in the repository and the original
file PIC.BMP is already cached in ccnd_sc. So the ccnd of the middlenode will
forward the Interest message to the conversion service.

4. The conversion service receives the Interest message and will look for the re-
quested files, PIC.BMP and PIC.PNG in its own repository. Since none of these
files are there, the same procedure is undertaken as in scenario 1. The Interest
message will be forwarded from the repository to the conversion service. The
conversion service will send the request for the original file to the ccnd of the
middlenode.

5. The ccnd of the middlenode has the original file from the first scenario already.
Otherwise, it will fetch the original file from the publisher again, but the ccnd

27

will keep the file in its own cache for a while. The ccnd delivers PIC.JPEG to the
conversion service.

6. Once the conversion service received the whole file, it starts to convert PIC.BMP
to PIC.PNG. After the conversion, the conversion service starts to upload the
file via the ccnd of the middlenode to its own repository. The conversion ser-
vice makes another request to ccnd to put the file to the repository of conversion
service.

7. During uploading to the repository, the ccnd has partially the file, PIC.PNG and
starts to give the file to the ccnd of client2.

8. The ccnd of client2 will send the PIC.PNG to client2.

After this scenario, nodes will have these files:

• ccnd_pb: PIC.BMP

• publisher: PIC.BMP

• ccnd_sc: PIC.JPEG and PIC.BMP and PIC.PNG

• conversion service repository: PIC.JPEG and PIC.PNG

• ccnd_c1: PIC.JPEG

• client1: PIC.JPEG

• ccnd_c2: PIC.JPEG and PIC.PNG

• client2: PIC.JPEG and PIC.PNG

ccnd_c1

ccnd_sc

ccnd_pb

Publisher

Client1

ccnd_c2

Client2

Middlenode

Local
Hard
Disk

Active Connection

Deactive Connection

repository

Service

Conversion

1

2

3
4

5

6

7

8

Figure 6.6: Scenario 3

28

Chapter 7

Experimental Evaluation

We attempt to measure the time required to cache the files with different scenarios in
order to evaluate the performance of the selected approaches. The first section contains
a setup for running CCNx and the conversion service on the network.

7.1 Setup

7.1.1 Topology

The topology consists of 4 nodes which are:

• Publisher

• Client1

• Client2

• Middlenode which has the conversion service

The conversion service is installed in the middlenode, but in reality it can be installed
in any node or even on nodes in the network.

publisher

client2

middlenode service

client1

Figure 7.1: Topology

29

There are some steps required for the setup:

• Step 1:
Starting ccnd on each node.

cd /ccn/bin/ ./ccndstart

• Step 2: Configuration of routing table on each node. Each machine has its own
IP address.

Publisher : 130.92.70.61
Client1 : 130.92.70.62
Client2 : 130.92.70.63
Middlenode: 130.92.70.64

The publisher is connected to the middlenode:

./ccndc add ccnx:/ccnx.org/ udp 130.92.70.64 9695

The middlenode is connected to the client1, the client2, and the publisher:

./ccndc add ccnx:/ccnx.org/ udp 130.92.70.61 9695

./ccndc add ccnx:/ccnx.org/ udp 130.92.70.62 9695

./ccndc add ccnx:/ccnx.org/ udp 130.92.70.63 9695

The client1, just connects to the middlenode:

./ccndc add ccnx:/ccnx.org/ udp 130.92.70.64 9695

The client2, just connects to the middlenode:

./ccndc add ccnx:/ccnx.org/ udp 130.92.70.64 9695

• Step 3:
The publisher is the node which provides the original file. Normally there is no
control from the client over the publisher. The client can not ask the publisher to
put the files in the repository or run the ccnfileproxy. As this topology is built by
us, we decided that the publisher puts the file in its own repository. It would be
possible to use ccnfileproxy as well. The command below starts the repository
with the name of "ccnx_rep". Note that the directory does not need to exist al-
ready.

bin/ccn_repo /ccn_repo

30

This command means that the file, PIC.JPEG is available in the ccnd, under
the name ccnx:/ccnx.org/files/PIC.JPEG. If a request comes with this name
ccnx:/ccnx.org/files/PIC.JPEG then it will read the underlying local directory,
which PIC.JPEG is stored.

./ccnputfile ccnx:/ccnx.org/files/PIC.JPEG PIC.JPEG

• Step 4:
Starting the repository in the middlenode. Be aware that CCNx which is installed
in the middlenode contains the conversion service and is a modified version of
CCNx.

bin/ccn_repo tmp ccn_repo

7.2 Different Experiments

This section shows the measured time in the different experiments. There are different
cases with different scenarios. In the table 7.1 different scenarios are defined. These
scenarios start from top, E1, which takes the shortest time, to E5, which takes longest.
The invocation flow is indicated by the columns from the left to the right. It means that
the converted file first will be looked up in the ccnd of the client and if it is existed, the
converted file will be received from there otherwise it will be looked up in the ccnd
of the conversion service. After that if the converted file is not existed in the ccnd of
the conversion service, it will be looked up in the repository of the conversion service
otherwise the original file and conversion are needed.

In the first scenario, E1, the converted file is received from the ccnd of client. In the
second scenario, E2, the converted file is received from the ccnd of conversion service
to the ccnd of client. In the third scenario, E3, the converted file is received from the
repository of conversion service. In the fourth scenario, E4, the ccnd of conversion ser-
vice has the original file and the conversion service is required. In the fifth scenario,
the original file is only at the publisher and the conversion service is required. These
scenarios are used in the test cases. The last three scenarios, E3, E4, E5 are shown be-
low. See Figures 7.2, 7.3 and 7.4 respectively.

The abbreviations used in 7.1 are the following:

• sn: Scenario

• con: Converted file

• org: Original file

• NT: Network Transfer

31

• SC: Service

• Pub: Publisher

• Y: Yes

• N: No

No ccnd_c ccnd_sc service Publisher Action
sn org con org con converted required Invoked
E1 - Y - - - - - Local
E2 - N - Y - - - NT: SC ->ccnd_c
E3 - N - N Y - - NT: SC ->ccnd_c
E4 - N Y N N Y - NT: SC ->ccnd_c+ Conversion
E5 - N N N N Y Y NT: SC ->ccnd_c+ Conversion+ Pub ->SC

Table 7.1: Defining Different Scenarios

ccnd_c1

ccnd_sc

ccnd_pb

Publisher

Client1

ccnd_c2

Client2

Middlenode

Local
Hard
Disk

Active Connection

Deactive Connection

repository

Service

1

2

3
4

5

6

1- Invoking the converted file from
the repository of the conversion service

Figure 7.2: Scenario E3

ccnd_c1

ccnd_sc

ccnd_pb

Publisher

Client1

ccnd_c2

Client2

Middlenode

Local
Hard
Disk

Active Connection

Deactive Connection

repository

Service

Conversion

1

2

3
4

5

6

7

8

1- Invoking the original file from the
ccnd_sc by the conversion service

2- Conversion
3- Deliver to the ccnd_c2

Figure 7.3: Scenario E4

32

ccnd_c1

ccnd_sc

ccnd_pb

Publisher

Client1

ccnd_c2

Client2

Middlenode

Local
Hard
Disk

Active Connection

Deactive Connection

repository

Service

Conversion

1

2

3
4

9

10

11

12

6
7

5 8

1- Invoking the original file from the
publisher by the conversion service

2- Conversion
3- Deliver to the ccnd_c2

Figure 7.4: Scenario E5

In table 7.2 different test cases are listed. For example if the original file is large and
the converted file is small or vice versa. There are three different sizes (small, medium,
large) for the source file and also the converted file has different sizes (small, medium,
large), There are 9 test cases in total. In this section just some of these test cases are
selected as an experiment.

File Original1 Original2 Original3
Convert1 L-L M-L S-L
Convert2 L-M M-M S-M
Convert3 L-S M-S S-S

Table 7.2: Defining Different Test Cases

The abbreviations used in 7.2 are the following:

• L: Large ->36 Mbytes

• M: Medium ->6 Mbytes

• S: Small ->536 kbytes

7.2.1 Test Case 1- A

This test case is based on conversion from large source file to a small convert file, see
below:

Source: PIC.BMP, size: 36 Mbytes
Convert to: PIC.JPEG, size: 536 kbytes

• Step 1: Client1 requests PIC.BMP. See Figure 7.5.
Time to download= 3min: 06s: 0ms

The contents of the nodes after step 1:

33

– ccnd_pb: PIC.BMP

– publisher: PIC.BMP

– ccnd_sc: PIC.BMP

– ccnd_c1: PIC.JPEG

– client1: PIC.JPEG

ccnd_c1

ccnd_sc

ccnd_pb

Publisher

Client1

ccnd_c2

Client2

1
2 3

4

5

7

8
6

Middlenode

Local
Hard
Disk

Active Connection

Deactive Connection

repository

Service

Figure 7.5: Test Case 1- A- Step 1

• Step 2:
Client2 requests the same file as in step 1. See Figure 7.6.

The contents of the nodes after step 2:

– ccnd_pb: PIC.BMP

– publisher: PIC.BMP

– ccnd_sc: PIC.BMP

– ccnd_c1: PIC.BMP

– client1: PIC.BMP

– ccnd_c2: PIC.BMP

– client2: PIC.BMP

ccnd_c1

ccnd_sc

ccnd_pb

Publisher

Client1

ccnd_c2

Client2

Middlenode

Local
Hard
Disk

Active Connection

Deactive Connection

repository

Service

1

2

3

4

Figure 7.6: Test Case 1- A- Step 2

34

• Step 3:
Client2 asks again for the second time the same file. See Figure 7.7.
Time to download= 0min: 26s: 0ms

The contents of the nodes after step 3 is the same as step 2.

ccnd_c1

ccnd_sc

ccnd_pb

Publisher

Client1

ccnd_c2

Client2

Middlenode

Local
Hard
Disk

Active Connection

Deactive Connection

repository

Service

1

2

Figure 7.7: Test Case 1- A- Step 3

• Step 4:
Now client2 requests the JPG format of PIC.BMP. The original file existed in the
ccnd of the conversion service (scenario E4). See Figure 7.8.
Time to download= 0min: 31s: 06ms

The contents of the nodes after step 4:

– ccnd_pb: PIC.BMP

– publisher: PIC.BMP

– ccnd_sc: PIC.BMP and PIC.JPEG

– conversion service repository: PIC.JPEG

– ccnd_c1: PIC.BMP

– client1: PIC.BMP

– ccnd_c2: PIC.BMP and PIC.JPEG

– client2: PIC.BMP and PIC.JPEG

35

ccnd_c1

ccnd_sc

ccnd_pb

Publisher

Client1

ccnd_c2

Client2

Middlenode

Local
Hard
Disk

Active Connection

Deactive Connection

repository

Service

Conversion

1

2

3
4

5

6

7

8

1- Invoking the original file from the
ccnd_sc by the conversion service

2- Conversion
3- Deliver to the ccnd_c2

Figure 7.8: Test Case 1- A- Step 4

• Step 5:
In this step we can see the advantage of CCNx. Client1 now requests the con-
verted version of the file again. The requested file is PIC.JPG (scenario E2). See
Figure 7.9.
Time to download = 0min: 4s: 2ms
The contents of the nodes after step 5:

– ccnd_pb: PIC.BMP

– publisher: PIC.BMP

– ccnd_sc: PIC.BMP and PIC.JPEG

– conversion service repository: PIC.JPEG

– ccnd_c1: PIC.BMP and PIC.JPEG

– client1: PIC.BMP and PIC.JPEG

– ccnd_c2: PIC.BMP and PIC.JPEG

– client2: PIC.BMP and PIC.JPEG

ccnd_c1

ccnd_sc

ccnd_pb

Publisher

Client1

ccnd_c2

Client2

1
2

3

4
Middlenode

Local
Hard
Disk

Active Connection

Deactive Connection

repository

Service

Figure 7.9: Test Case 1- A- Step 5

36

7.2.2 Test Case 1- B

• Step 1:
First we clear ccnd_sc, ccnd_c1 and ccnd_c2. So they do not have PIC.BMP in their
cache anymore. Client1 requests from ccnd_c1, to provide PIC.JPEG. This time,
the requested file, PIC.JPG is already stored in the repository of the conversion
service. See Figure 7.10.
Time to download= 0min: 04s: 73ms

The contents of the nodes after step 1:

– ccnd_pb: PIC.BMP

– publisher: PIC.BMP

– ccnd_sc: PIC.JPEG

– conversion service repository: PIC.JPEG

– ccnd_c1: PIC.JPEG

– client1: PIC.JPEG

ccnd_c1

ccnd_sc

ccnd_pb

Publisher

Client1

ccnd_c2

Client2

1
2

5

6
Middlenode

Local
Hard
Disk

Active Connection

Deactive Connection

repository

Service3

4

Figure 7.10: Test Case 1- B- Step 1

• Step 2:
Now we want to know how long does it take to get the file from the local ccnd of
client1. So client1 requests the same file, PIC.JPEG, again. We saw from step 1,
that ccnd_c1 has already cached this file. Therefore the retrieval time of the file,
PIC.JPEG is shorter than the retrieval time of the file from the ccnd of another
node (scenario E1). See Figure 7.11.
Time to download= 0min: 02s: 71m

The contents of the nodes after step 2 are the same as step 1.

37

ccnd_c1

ccnd_sc

ccnd_pb

Publisher

Client1

ccnd_c2

Client2

1

2
Middlenode

Local
Hard
Disk

Active Connection

Deactive Connection

repository

Service

Figure 7.11: Test Case 1- B- Step 2

• Step 3:
If client2 requests the same file, PIC.JPEG, this file will be cached in the local ccnd
and the time has to be almost the same as in step 5 (scenario E2). See Figure 7.12.
Time to download= 0min: 03s: 87ms

The contents of the nodes are listed below.

– ccnd_pb: PIC.BMP

– publisher: PIC.BMP

– ccnd_sc: PIC.JPEG

– conversion service repository: PIC.JPEG

– ccnd_c1: PIC.JPEG

– client1: PIC.JPEG

– ccnd_c2: PIC.JPEG

– client2: PIC.JPEG

ccnd_c1

ccnd_sc

ccnd_pb

Publisher

Client1

ccnd_c2

Client2

Middlenode

Local
Hard
Disk

Active Connection

Deactive Connection

repository

Service

1

2

3

4

Figure 7.12: Test Case 1- B- Step 3

• Step 4:
To prove again the correct time for retrieving the file from local ccnd, client2
requests the same file again. It requests the file, PIC.JPEG from its local ccnd_c2.
As in step 2 the ccnd has cached this file already and downloading it is very fast.

38

The resulting time has to be almost the same as in step 1 (scenario E1). See Figure
7.13.
Time to download= 0min: 2s: 54ms

The contents of the nodes are the same as in the last step.

ccnd_c1

ccnd_sc

ccnd_pb

Publisher

Client1

ccnd_c2

Client2

Middlenode

Local
Hard
Disk

Active Connection

Deactive Connection

repository

Service

1

2

Figure 7.13: Test Case 1- B- Step 4

• Step 5:
For another test we clear the repository of the conversion service, ccnd_c1 and
ccnd_c2. But we do not clear the ccnd of the conversion service. So we have
PIC.JPEG in the ccnd_sc and from the last steps we have PIC.JPEG in ccnd_sc. The
ccnd_sc does not have the original file, PIC.BMP anymore. Then, client1 asks for
PIC.JPEG. In fact the ccnd has this file and it takes almost the same result as in
step 5 in test case 1-A and in step 3 in test case 1-B. Client1 will get PIC.JPEG
from the ccnd of the conversion service (scenario E2), see Figure 7.14. But some-
thing else happens. The Interest message is forwarded to the conversion service
and starts to fetch the original file, PIC.BMP from the publisher, converts it and
uploads it to its own repository. While client1 already got the file, the process of
getting the file from the publisher, converting and uploading is continuing. The
reason for this action is that the ccnd of the conversion service do check for the
latest version of the file. Afterwards we have again the original file, PIC.BMP
and the converted version, PIC.JPEG in the repository of the conversion service.
See Figure 7.15.
Time to download from ccnd= 0min: 04s: 0ms
Time to download from publisher, conversion, uploading to repository=
02min: 24s: 0ms

The contents of the nodes are listed below.

– ccnd_pb: PIC.BMP

– publisher: PIC.BMP

– ccnd_sc: PIC.JPEG and PIC.BMP

– conversion service repository: PIC.JPEG

– ccnd_c1: PIC.JPEG

– client1: PIC.JPEG

39

ccnd_c1

ccnd_sc

ccnd_pb

Publisher

Client1

ccnd_c2

Client2

1
2

3

4
Middlenode

Local
Hard
Disk

Active Connection

Deactive Connection

repository

Service

Figure 7.14: Test Case 1- B- Step 5-1

ccnd_c1

ccnd_sc

ccnd_pb

Publisher

Client1

ccnd_c2

Client2

Middlenode

Local
Hard
Disk

Active Connection

Deactive Connection

repository

Service

Conversion

1
2

7

8

3

4

5

6

Figure 7.15: Test Case 1- B- Step 5-2

7.2.3 Test Case 2

Now in this test case, the medium source file is converted to the large file, see below:
Source: PIC.JPEG, size: 6 Mbytes
Convert to: PIC.BMP, size: 36 Mbytes

• The client requests PIC.BMP and this file is not cached anywhere.
Time to download= 01min: 56s: 26ms

• The client requests again the same file.
Time to download= 0min: 26s: 33ms

• Now PIC.BMP exists just in the repository of the conversion service and is not
cached in the ccnd.
Time to download= 02min: 14s: 26ms

• In this step PIC.BMP is also retrieved from the ccnd of the conversion service and
another client requests the same file, PIC.BMP.
Time to download= 01min: 53s: 81ms

For the first time when the file is cached, the converted file will be fetched from the
ccnd of the conversion service, because during uploading the converted file to the
repository of the conversion service, the ccnd of the conversion service will cached the

40

file and then the client can retrieves the converted file from the ccnd of the conversion
service. That’s why for the first time the retrieval time is shorter but when the file is
fetched for the second time, it will be fetched from the repository of the conversion
service. Because the converted file will remain in the repository for long time and the
ccnd of the conversion service does not have in its cache anymore.

7.2.4 Test Case 3

Another test case is converting the small source file to the medium file.
Source: PIC.JPEG, size: 536kbytes
Convert to: PIC.BMP, size: 6Mbytes

• The client requests the PIC.BMP and this file is not cached anywhere.
Time to download= 0min: 11s: 71ms

• The client requests again the same file.
Time to download= 0min: 5s: 15ms

• Now the PIC.BMP just exists in the repository of the conversion service and it is
not cached in the ccnd.
Time to download= 0min: 12s: 19ms

• In this step PIC.BMP is also retrieved from the ccnd of the conversion service and
another client requests the same file, PIC.BMP.
Time to download= 0min: 10s: 38ms.

41

Chapter 8

Conclusions and Outlook

8.1 Conclusions

This thesis investigated Content Centric networking. This project emphasized on the
strengths of CCN in terms of supporting services such as image transfer. In addition
it was shown that data is not just being retrieved, but can be processed before being
presented to the user. The Interest names are not just used for retrieving data, but also
for invoking the service.

The project was tested with different scenarios and test cases to show the performance
and advantages of CCN and SCN. The content distribution to different nodes helped
to reduce and optimize traffic from the publishers. Clients retrieved the requested data
and services much faster than before.

On the other hand, by taking advantage of CCN, we saw that the services also can be
invoked with the same name structure as they are used in CCN.

Also, by deploying services to the different nodes, the traffic to the services can be
reduced, regardless of the location of the services.

The implemented conversion service is able to retrieve the necessary data contents
from the original source from the nearest node in the network.

One of the important advantages of SCN is, that different services can be implemented
easily. For example, we could add different conversion mechanisms with different file
formats by just calling the service with different parameters.

We saw that using Content Centric Networking could be a future mechanism n the
Internet, that brings many benefits compared to the current network infrastructure.

8.2 Outlook

Much future work remains to be done. As already outlined earlier, the implementation
presented in this master thesis is a proof of concept only.

In our approach, we had to increase the timeout on the client side for the first Interest.
A future improvement would be to try to find another approach to handle the timeout

42

problem and avoid changing anything on the client side. With this improvement, all
clients would be able to use the service without any modification of their timeout
values.

Another improvement would be to expand the service to allow multiple clients to be
processed at the same time. With the current design, only one client can be handled
at a time. Because only the first Interest message is allowed to be forwarded and is
being processed and the rest of Interstate messages will be hold unlit the process of
the conversion is finished.

The current upload method to the repository of the conversion service via ccnd is
ccnputfile. This method is not a clean approach and does not perform optimal as well.
In future version the file should uploaded differently.

43

Appendix A

Manuals

For more details refer to the reference [7].

A.1 ccngetfile

NAME:
The ccngetfile retrieve a file published as CCNx content and save it to a local file. A
command-line utility for pulling files out of ccnd or a repository.

SYNOPSIS:
ccngetfile [-unversioned] [-timeout millis] [-as pathToKeystore] [-ac] ccnxname

filename

DESCRIPTION:
The ccngetfile utility retrieves content published under the ccnxname and writes it to
the local file filename. The content must be published as a collection of CCNx Data
in accordance with the naming conventions for segmented streams or files, optionally
unversioned. For the default case of versioned content, ccngetfile will retrieve the lat-
est version available. The ccnxname must be specified using the CCNx URI encoding
syntax. For simple cases of ASCII name components this is just pathname syntax with
/ delimiters.

A.2 ccnputfile

NAME:
ccnputfile - publish a file as CCNx content.

SYNOPSIS:
ccnputfile [-v] [-raw] [-unversioned] [-local] [-timeout millis] [-log LEVEL] [-as

pathToKeystore] [-ac] ccnxname filename|url

44

DESCRIPTION:
The ccnputfile utility publishes a local file filename or url as content with the ccnx-
name. The content is published as a collection of CCNx Data in accordance with
the naming conventions for segmented streams or files, optionally unversioned. For
the default case of versioned content, ccnputfile will publish content with the version
based on the local machine time. The ccnxname must be specified using the CCNx
URI encoding syntax. For simple cases of ASCII name components this is just path-
name syntax with / delimiters. The filename must be the pathname of a local file that
will published under the ccnxname. The url must be a valid url to be published under
a ccnxname.

A.3 ccnfileproxy

DESCRIPTION:
The ccnfileproxy is a file system proxy that makes files on the local system available
over the CCNx network.

For example, if you have a directory /foo in the file system, with the following con-
tents: /foo/bar.txt and /foo/baz/box.txt and you call CCNFileProxy /foo ccnx:/t-
estprefix. Then asking for ccnx:/testprefix/bar.txt would return the file bar.txt
(segmented appropriately), and asking for ccnx:/testprefix/baz/box.txt would re-
turn box.txt. The version for each file is set using the last modified information avail-
able from the file system for the real file (but the file is re-signed every time you ask
for it from this server, so will result in slightly different pieces of content with differ-
ent signatures). The default prefix is ccnx:/, which means asking for ccnx:/bar.txt
would get you bar.txt.

A.4 ccn_repo

NAME:
The ccn_repo is a utility to start, stop and signal Java application CCNx repositories.

SYNOPSIS:
ccn_repo [-memory memory] [-debug portno] [-output output_file] [-debug-daemon

portno] [-profile profile_info] [-suspend] [-noshare] [-debug-flags flags]

<repository_directory> [-log loglevel] [-prefix prefix] [-global <global_pre-

fix>] [-local <localname>] | interactive <repository_directory> | stop <pi-

d> | stopall | signal <name> <pid>]

DESCRIPTION:
The ccn_repo utility starts, stops and signals CCNx Java content object repositories.
This call requires a backend repository_directory to store the content objects to the file
system. Only one repository should run on a single repository_directory at any time.

45

Appendix B

Source Code

B.1 Request a file

See Listing 6.

B.2 Repository

See Listing 7.

B.3 Putfile

See Listing 8.

46

1 package org . ccnx . ccn . u t i l s ;
2
3 import j ava . io . F i l e ;
4 import j ava . io . FileOutputStream ;
5 import j ava . io . IOException ;
6
7 import org . ccnx . ccn . CCNHandle ;
8 import org . ccnx . ccn . conf ig . Configurat ionExcept ion ;
9 import org . ccnx . ccn . io . CCNFileInputStream ;

10 import org . ccnx . ccn . io . CCNInputStream ;
11 import org . ccnx . ccn . protoco l . ContentName ;
12 import org . ccnx . ccn . protoco l . MalformedContentNameStringException ;
13
14 public c l a s s c c n g e t f i l e implements Usage {
15 s t a t i c Usage u = new c c n g e t f i l e () ;
16 public s t a t i c void main (S t r i n g [] args) {
17
18 for (i n t i = 0 ; i < args . length − 2 ; i ++) {
19 i f (! CommonArguments . parseArguments (args , i , u)) {
20 u . usage () ;
21 System . e x i t (1) ;
22 }
23 i f (CommonParameters . s tar tArg > (i + 1))
24 i = CommonParameters . s tar tArg − 1 ;
25 }
26
27 i f (args . length < CommonParameters . s tar tArg + 2) {
28 u . usage () ;
29 System . e x i t (1) ;
30 }
31
32 t r y {
33 i n t reads ize = 1024 ;
34 ContentName argName = ContentName . fromURI (args [CommonParameters . s tar tArg]) ;
35
36 CCNHandle handle = CCNHandle . open () ;
37
38 F i l e t h e F i l e = new F i l e (args [CommonParameters . s tar tArg + 1]) ;
39 i f (t h e F i l e . e x i s t s ()) {
40 System . out . p r i n t l n (" Overwriting f i l e : " + args [CommonParameters . s tar tArg + 1]) ;
41 }
42 FileOutputStream output = new FileOutputStream (t h e F i l e) ;
43
44 long s t a r t t i m e = System . currentTimeMil l i s () ;
45 CCNInputStream input ;
46 i f (CommonParameters . unversioned)
47 input = new CCNInputStream (argName , handle) ;
48 e lse
49 input = new CCNFileInputStream (argName , handle) ;
50
51 ((CCNFileInputStream) input) . a l lowFirs tS lower = t rue ;
52
53 input . setTimeout (1 0 0 0 0) ;
54
55 byte [] b u f f e r = new byte [reads ize] ;
56
57 i n t readcount = 0 ;
58 long r e a d t o t a l = 0 ;
59 / / w h i l e (! i n p u t . e o f ()) {
60 while ((readcount = input . read (b u f f e r)) != −1){
61 / / r e a d c o u n t = i n p u t . r e a d (b u f f e r) ;
62 r e a d t o t a l += readcount ;
63 output . wri te (buffer , 0 , readcount) ;
64 output . f l u s h () ;
65 }
66 i f (CommonParameters . verbose)
67 System . out . p r i n t l n (" c c n g e t f i l e took : " +(System . currentTimeMil l i s () − s t a r t t i m e)+ "ms") ;
68 System . out . p r i n t l n (" Retr ieved content " + args [CommonParameters . s tar tArg + 1] + " got " + r e a d t o t a l + " bytes . ") ;
69 System . e x i t (0) ;
70
71 } catch (Conf igurat ionExcept ion e) {
72 System . out . p r i n t l n (" Configurat ion except ion in c c n g e t f i l e : " + e . getMessage ()) ;
73 e . p r i n t S t a c k T r a c e () ;
74 } catch (MalformedContentNameStringException e) {
75 System . out . p r i n t l n (" Malformed name : " + args [CommonParameters . s tar tArg] + " " + e . getMessage ()) ;
76 e . p r i n t S t a c k T r a c e () ;
77 } catch (IOException e) {
78 System . out . p r i n t l n (" Cannot wri te f i l e or read content . " + e . getMessage ()) ;
79 e . p r i n t S t a c k T r a c e () ;
80 }
81 System . e x i t (1) ;
82 }
83
84 public void usage () {
85 System . out . p r i n t l n (" usage : c c n g e t f i l e [−unversioned] [− t imeout m i l l i s] [−as pathToKeystore] [−ac (a c c e s s c o n t r o l)]
86 <ccnname> <filename >") ;
87 }
88
89 }

Listing 6: ccngetfile.java

47

1 public c l a s s LogStructRepoStore extends Reposi toryStoreBase implements Reposi toryStore , ContentTree . ContentGetter {
2
3
4 public boolean conversion = f a l s e ;
5 public Object lock = new Object () ;
6 public ContentObject getContent (I n t e r e s t i n t e r e s t)
7 throws Reposi toryExcept ion {
8
9 f i n a l S t r i n g name = i n t e r e s t . name () . t o S t r i n g () ;

10 System . out . p r i n t l n (" ### getContent () : " + name) ;
11 S t r i n g base = name ;
12 i f (name . indexOf ("/%") > 0)
13 base = name . subs t r ing (0 , name . indexOf ("/%")) ;
14
15 t r y {
16 f i n a l Object isCached = _index . get (I n t e r e s t . c o n s t r u c t I n t e r e s t (ContentName . fromURI (base) , null , null , null , null , null) ,
17 t h i s) ;
18 i f (! name . s t a r t s W i t h ("/ccnx . org/sc/") || (name . conta ins ("/%C1 . R . sw/")) || (isCached != null)) {
19 / / d e f a u l t h a n d l i n g
20 System . out . p r i n t l n (" ### getContent () : d e f a u l t handling f o r : " + name) ;
21 ContentObject co = _index . get (i n t e r e s t , t h i s) ;
22 i f (Log . isLoggable (Log . FAC_REPO, Level . FINE))
23 Log . f i n e (Log . FAC_REPO, " Looking f o r : " + i n t e r e s t . name () + (co == null ? " : Didn ’ t f ind i t " : " : Found i t ")) ;
24 return co ;
25
26 } e lse {
27
28 i f (conversion) {
29 System . out . p r i n t l n ("DROPPING REQUESTS") ;
30 return null ;
31 }
32
33 t r y {
34 synchronized (lock) {
35
36
37 / / s p e c i a l h a n d l i n g (c o n v e r s i o n s e r v i c e)
38 System . out . p r i n t l n (" getContent () : CONVERSION SERVICE ! ! ! f o r : " + name) ;
39
40 / / r e t u r n a l r e a d y c o n v e r t e d f i l e s
41 t r y {
42 i f (_index . get (I n t e r e s t . c o n s t r u c t I n t e r e s t (ContentName . fromURI (base) , null , null , null , null , null) , t h i s)
43 == null) {
44 System . out . p r i n t l n (" ### getContent () : not yet converted (! ! ! CONVERSION STARTING ! ! !) : " +name) ;
45 / / g e t o r i g i n a l f i l e
46 f i n a l S t r i n g format = name . subs t r ing (1 3 , name . indexOf ("/" , 1 6)) ;
47 f i n a l S t r i n g origName = name . subs t r ing (name . indexOf ("/" , 1 6) + 1) ;
48 / / c r e a t e t emporary f i l e
49 f i n a l F i l e tmp = F i l e . createTempFile (" wefwef " , " wefwef ") ;
50 f i n a l F i l e tmpConverted = F i l e . createTempFile (" wefwef " , " wefwef ") ;
51 f i n a l OutputStream tmpStream = new FileOutputStream (tmp) ;
52 / / f i r s t r e t r i e v e f i l e from s o u r c e
53 System . out . p r i n t l n ("STARTING GETFILE " + new Date ()) ;
54 ContentName argName = ContentName . fromURI (" ccnx :// "+origName) ;
55 CCNHandle handle = CCNHandle . open () ;
56 InputStream stream = new CCNFileInputStream (argName , handle) ;
57 byte [] b u f f e r = new byte [2 0 4 8] ;
58 i n t len ;
59 while ((len = stream . read (b u f f e r)) >= 0)
60 tmpStream . wri te (buffer , 0 , len) ;
61 stream . c l o s e () ;
62 tmpStream . f l u s h () ;
63 tmpStream . c l o s e () ;
64 System . out . p r i n t l n ("FINISHED GETFILE " + new Date ()) ;
65 / / c o n v e r t f i l e
66 System . out . p r i n t l n ("FINISHED CONVERT " + new Date ()) ;
67 BufferedImage image = ImageIO . read (new Fi le InputStream (tmp)) ;
68 FileOutputStream sso = new FileOutputStream (tmpConverted) ;
69 ImageIO . wri te (image , format , sso) ;
70 sso . c l o s e () ;
71 System . out . p r i n t l n ("FINISHED CONVERT " + new Date ()) ;
72 / / put f i l e b a c k t o r e p o s i t o r y
73 System . out . p r i n t l n ("STARTING UPLOAD " + new Date ()) ;
74 c c n p u t f i l e put = new c c n p u t f i l e () ;
75 put . wri te (new S t r i n g [] { i n t e r e s t . name () . t o S t r i n g () , tmpConverted . getAbsolutePath () . t o S t r i n g () }) ;
76 System . out . p r i n t l n ("FINISHED UPLOAD " + new Date ()) ;
77 / / d e l e t e f i l e s
78 tmp . d e l e t e () ;
79 tmpConverted . d e l e t e () ;
80
81 }
82 } catch (Exception e) {
83 throw new RuntimeException (e) ;
84 }
85
86 ContentObject r e s u l t = _index . get (i n t e r e s t , t h i s) ;
87 System . out . p r i n t l n (" ### getContent () : RESULT : " + (r e s u l t != null)) ;
88 return r e s u l t ;
89 }
90 } f i n a l l y {
91 conversion = f a l s e ;
92 }
93
94 }
95 } catch (Exception e) {
96 throw new RuntimeException (e) ;
97 }
98 }

Listing 7: LogStructRepoStore.java
48

1 package org . ccnx . ccn . u t i l s ;
2
3 import j ava . io . IOException ;
4 import j ava . s e c u r i t y . Inval idKeyException ;
5 import j ava . u t i l . logging . Level ;
6
7 import org . ccnx . ccn . CCNHandle ;
8 import org . ccnx . ccn . conf ig . Configurat ionExcept ion ;
9 import org . ccnx . ccn . impl . support . Log ;

10 import org . ccnx . ccn . protoco l . ContentName ;
11 import org . ccnx . ccn . protoco l . MalformedContentNameStringException ;
12 public c l a s s c c n p u t f i l e extends CommonOutput implements Usage {
13 s t a t i c c c n p u t f i l e c c n p u t f i l e = new c c n p u t f i l e () ;
14 public void write (S t r i n g [] args) {
15 Log . s e t D e f a u l t L e v e l (Level .WARNING) ;
16
17 for (i n t i = 0 ; i < args . length − 2 ; i ++) {
18 i f (args [i] . equals ("− l o c a l ")) {
19 CommonParameters . l o c a l = t rue ;
20 } e lse i f (args [i] . equals (("−raw "))) {
21 CommonParameters . rawMode = t rue ;
22 } e lse {
23 i f (! CommonArguments . parseArguments (args , i , c c n p u t f i l e)) {
24 usage () ;
25 }
26 i f (CommonParameters . s tar tArg > i + 1)
27 i = CommonParameters . s tar tArg − 1 ;
28 }
29 i f (CommonParameters . s tar tArg <= i)
30 CommonParameters . s tar tArg = i + 1 ;
31 }
32
33 i f (args . length < CommonParameters . s tar tArg + 2) {
34 usage () ;
35 }
36
37 long s t a r t t i m e = System . currentTimeMil l i s () ;
38 t r y {
39 ContentName argName = ContentName . fromURI (args [CommonParameters . s tar tArg]) ;
40
41 CCNHandle handle = CCNHandle . open () ;
42
43 i f (args . length == (CommonParameters . s tar tArg + 2)) {
44 i f (CommonParameters . verbose)
45 Log . i n f o (" c c n p u t f i l e : put t ing f i l e " + args [CommonParameters . s tar tArg + 1]) ;
46
47 doPut (handle , args [CommonParameters . s tar tArg + 1] , argName) ;
48 System . out . p r i n t l n (" I n s e r t e d f i l e " + args [CommonParameters . s tar tArg + 1] + " . ") ;
49 i f (CommonParameters . verbose)
50 System . out . p r i n t l n (" c c n p u t f i l e took : " +(System . currentTimeMil l i s () − s t a r t t i m e)+ " ms") ;
51
52 return ;
53 } e lse {
54 for (i n t i =CommonParameters . s tar tArg + 1 ; i < args . length ; ++ i) {
55 ContentName nodeName = ContentName . fromURI (argName , args [i]) ;
56 doPut (handle , args [i] , nodeName) ;
57 System . out . p r i n t l n (" I n s e r t e d f i l e " + args [i] + " . ") ;
58 }
59 i f (CommonParameters . verbose)
60 System . out . p r i n t l n (" c c n p u t f i l e took : " +(System . currentTimeMil l i s () − s t a r t t i m e)+ " ms") ;
61
62 return ;
63 }
64 } catch (Conf igurat ionExcept ion e) {
65 System . out . p r i n t l n (" Configurat ion except ion in put : " + e . getMessage ()) ;
66 e . p r i n t S t a c k T r a c e () ;
67 } catch (MalformedContentNameStringException e) {
68 System . out . p r i n t l n (" Malformed name : " + args [CommonParameters . s tar tArg] + " " + e . getMessage ()) ;
69 e . p r i n t S t a c k T r a c e () ;
70 } catch (IOException e) {
71 System . out . p r i n t l n (" Cannot put f i l e . " + e . getMessage ()) ;
72 e . p r i n t S t a c k T r a c e () ;
73 } catch (InvalidKeyException e) {
74 System . out . p r i n t l n (" Cannot publish i n v a l i d key : " + e . getMessage ()) ;
75 e . p r i n t S t a c k T r a c e () ;
76 }
77
78 System . e x i t (1) ;
79 }
80 public void usage () {
81 System . e x i t (1) ;
82 }
83
84 public s t a t i c void main (S t r i n g [] args) {
85 c c n p u t f i l e . wri te (args) ;
86 }
87 }

Listing 8: ccnputfile.java

49

Bibliography

[1] http://en.wikipedia.org/wiki/Content-centric_networking.

[2] http://www.ccnx.org/releases/latest/doc/technical/CCNxProtocol.html.

[3] http://named-data.org/.

[4] http://www.webopedia.com/TERM/R/repository.html.

[5] http://pcsupport.about.com/od/termsf/g/filesystem.htm.

[6] http://www.javamex.com/tutorials/synchronization_concurrency_
synchronized1.shtml.

[7] http://www.ccnx.org/releases/latest/doc/manpages.

[8] S. Arianfar. A transport protocol for content-centric networks. Technical report,
Aalto University, 2010. http://eggert.org/papers/2010-icnp-con-trans.pdf.

[9] V. Jacobson. Networking named content. Technical report, Palo Alto Research
Center, 2009. http://pages.cs.wisc.edu/~akella/CS838/F09/838-Papers/ccn.
pdf.

[10] V. Jacobson. Content centric networking. Technical report, Palo Alto Research
Center, 2010. https://wiki.tools.isoc.org/@api/deki/files/2634//=1.vj.
isoc.mar10.pdf.

[11] M. Hofmann I. Rimac M. Steine M. Varvello T.Braun, V. Hilt. Service-Centric
Networking. Technical report, ICC’11 Workshop on FutureNet IV, Kyoto, Japan,
2011. http://www.planethofmann.com/markus/publications/.

50

http://en.wikipedia.org/wiki/Content-centric_networking
http://www.ccnx.org/releases/latest/doc/technical/CCNxProtocol.html
http://named-data.org/
http://www.webopedia.com/TERM/R/repository.html
http://pcsupport.about.com/od/termsf/g/filesystem.htm
http://www.javamex.com/tutorials/synchronization_concurrency_synchronized1.shtml
http://www.javamex.com/tutorials/synchronization_concurrency_synchronized1.shtml
http://www.ccnx.org/releases/latest/doc/manpages
http://eggert.org/papers/2010-icnp-con-trans.pdf
http://pages.cs.wisc.edu/~akella/CS838/F09/838-Papers/ccn.pdf
http://pages.cs.wisc.edu/~akella/CS838/F09/838-Papers/ccn.pdf
https://wiki.tools.isoc.org/@api/deki/files/2634//=1.vj.isoc.mar10.pdf
https://wiki.tools.isoc.org/@api/deki/files/2634//=1.vj.isoc.mar10.pdf
http://www.planethofmann.com/markus/publications/

	Contents
	List of Figures
	Summary
	About CCNx
	Introduction
	CCN Components
	CCNx
	Name
	Node
	Type of Messages
	Data Structure

	Processing Interest Messages
	Processing Content Objects
	An Example of Exchanging Messages

	 Content and Service Centric Networking
	Content Centric Networking (CCN)
	Service Centric Networking (SCN)
	Project Vision

	Evaluation of Different Design Approaches
	Design Issues
	Options for Implementation
	Approach 1: Implementation of Service in ccnd
	Advantages
	 Disadvantages

	Approach 2: Service at Publisher Side
	Advantages
	Disadvantages

	Approach 3: Service as Separate Application
	 Advantages
	 Disadvantages

	Selected Design

	Implementation of the Conversion Service
	Conversion Service Process
	Modification of CCNx to Implement the Conversion Service
	Challenges and Solutions

	Detailed Analysis of the Conversion Service Concept
	An Example
	Scenarios
	Topology
	Scenario 1
	Scenario 2a
	Scenario 2b
	Scenario 3

	Experimental Evaluation
	Setup
	Topology

	Different Experiments
	Test Case 1- A
	Test Case 1- B
	Test Case 2
	Test Case 3

	Conclusions and Outlook
	Conclusions
	Outlook

	Appendix
	Manuals
	ccngetfile
	ccnputfile
	ccnfileproxy
	ccn_repo

	Source Code
	Request a file
	Repository
	Putfile

	Bibliography

