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Chapter 1

Abstract

Development of mobile indoor applications and services based on WiFi technology is a growing
area nowadays. Several applications and services such as localisation of persons, video con-
ference, data sharing, etc., could benefit greatly from Line-Of-Sight (LOS) signal propagation.
However, in indoor environments, the presence of multiple blockages such as floor, walls, ceil-
ing, etc. increases the problem of multipath effects. It is commonly known that the attenuation
of Non-Line-Of-Sight (NLOS) signal propagation deteriorates the communication link. Lack of
LOS is actually one of the main causes of poor quality on wireless services. Therefore, LOS
awareness could act as a primitive to deal with the adverse impacts of NLOS propagation. For
example, let’s consider a typical indoor environment with some wireless services provided by
several Access Points (AP). In case that a Mobile Node (MN) is connected to AP1 with LOS
conditions, a LOS model is required by AP1 to provide a high quality of service. Later on, the
MN moves to another position with NLOS connection and AP1 should apply a specific NLOS
model to keep high quality service. This would be available with LOS awareness mechanisms.

Indoor localisation systems are another example of applications that could take advantage of
LOS-awareness. Indoor localisation techniques are prone to multipath effects, which introduces
significant errors in the positioning estimation process. Typically, indoor localisation techniques
can be divided into range-based and range-free techniques [1]. This work especially focuses on
range-based localisation techniques. A typical range-based localisation technique is lateration.
The ranging process consists of establishing a relationship between some parameters of the state
of the communication link and the propagation distance. Typically, distance estimation has been
performed with Received Signal Strength Information (RSSI) which is an indicator of the signal
strength at the receiver side. However, in indoor environments, the distance estimation based on
RSSI is easily affected by multipath effects. They contribute to most of the estimations errors in
current systems. Therefore, it is valuable to find a technique to mitigate multipath effects. Chan-
nel State Information (CSI) is an indicator of the link state in Orthogonal Frequency Division
Multiplexing (OFDM) systems. CSI contains amplitude and phase information at subcarrier
level. The recently exposed Physical Layer CSI on commercial WiFi devices exposes multipath
channel features at the granularity of OFDM subcarriers [2].
By processing CSI, we conduct some experiments to establish LOS-awareness as a pivotal prim-
itive to enhance the accuracy in indoor the localisation technique. Under the premise that phase
and amplitude behavior are different in LOS and NLOS conditions, we build a decision machine
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learning model to predict LOS/NLOS conditions. The model is based on features of the com-
munication link extracted from the CSI. Then, LOS-awareness is introduced in the localisation
process. This work deals with some experiments related to improvement the indoor positioning
accuracy by taking advantage of the LOS awareness. Experiment results show that positioning
accuracy is improved by introducing LOS-awareness as part of the localisation technique.
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Chapter 2

Introduction

Currently, indoor localisation techniques have received an increasing focus due to the grow-
ing wireless mobile applications and services provided in indoor scenarios. These techniques
provide a new layer of automation named automatic object location detection. It is possible to
mention some examples of these kinds of applications and services like advertising of free park-
ing, location based audio explanation in museums, targeted advertising to provide location based
marketing, localisation in a disaster area, etc. Important progress in indoor localisation systems
has been made in the recent years. However, indoor localization remains still challenging nowa-
days mainly because of the impossibility of the off-the-shelf (COTS) WiFi devices to provide a
fine-grained channel information value to estimate the propagation distance between the target
and Anchor Nodes (ANs). Another challenge in indoor positioning is the error induced by mul-
tipath effects and non-line-of-sight (NLOS) conditions. It makes it even more difficult to relate
the channel information with the propagation distances between the target and Anchor Nodes
(AN). Actually the lack of line-of-sight (LOS) propagation is one reason for poor performance
in indoor positioning[2].

2.1 Motivation

Since access to indoor wireless technology is widely available nowadays, there is a growing
demand for precise positioning in wireless networks. However, the ability to locate objects
and people in indoor environments remains challenging. There are many indoor wireless
applications waiting for an accurate technical solution. Therefore, improvements in indoor
positioning have led to a growing interest in the opportunities for businesses in this area.
Localisation is an essential module of many indoor wireless applications, nowadays many
application requirements are locating or real-time tracking, thus, the demand for precise indoor
localisation services has become in a prerequisite in some markets. The poor performance of
the dominant positioning technologies –such as GPS– has increased the attention of researchers
to investigate techniques to improve the accuracy in indoor positioning systems. Thus, this
work is focused in exploring some features of the communication link to create mechanisms
to enhance the accuracy of the indoor positioning techniques. We argue that it is possible to
improve the location accuracy in indoor scenarios by including (LOS/NLOS) awareness into
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the positioning process.

Awareness of LOS/NLOS conditions becomes into an important property not only for loca-
tion based applications and services in indoor environments, but also for overcoming the adverse
impact of NLOS transmissions in any kind of wireless services. For example with the knowledge
of LOS/NLOS the transmitter could tune the power or the data rate to achieve a more reliable
communication. Another example of the use of LOS/NLOS identification is improving the ac-
curacy in the location estimation in indoor positioning systems. Awareness of LOS/NLOS could
be a crucial factor to take the most reliable information to determine the location of a device in
indoor environments. LOS/NLOS identification could become a prerequisite for an accurate in-
door localisation system. Although many researches have been done, LOS/NLOS identification
remains still challenging.

2.2 Overview and Contributions

In this work we argue that a good way to enhance the accuracy of indoor localisation is intro-
ducing LOS-awareness in the process. Therefore, this work targets in designing an enhanced
LOS/NLOS awareness mechanism based on some features of the communication link to design
a robust indoor positioning algorithm against the multipath effect. In Orthogonal Frequency
Division Multiplexing (OFDM) systems, data are modulated on multiple subcarriers in different
frequencies and transmitted simultaneously. By combining multiple antennas at the transmit-
ter side and multiple antennas at the receiver side, OFDM systems increase the spectral effi-
ciency and link reliability. This technology is named Multiple Input Multiple Output (MIMO).
In OFDM, Channel State Information (CSI) is a fined-grained value which represents the state
of the channel at subcarrier level. Based on CSI, we present a model to enhance the prediction
rate of LOS and NLOS recognition and by introducing LOS-awareness we improve the accuracy
of the localisation method. By processing CSI, it is possible to decrease the impact of multipath
effects for the positioning process[3]. The localisation model presented in this work falls into
the category of range-based approaches.
The main contributions of this work can be summarized in three general processes. The first
process determines LOS/NLOS conditions in the signal propagation based on CSI features. The
second process performs the ranging method intended to obtain the distance between ANs and
the MN. This process is also based on CSI features. The third process executes the range-based
localisation algorithm to estimate the position of the MN. We propose to build a LOS/NLOS
identification method by combining a machine learning approach and two features derived from
CSI. The ranging method mitigates the influence of multipath effects, by processing CSI in the
time domain. Initially, CSI is a value depicted in the frequency domain. It can be converted
into Channel Impulse Response (CIR) in the time domain by applying the Inverse Fast Fourier
Transform (IFFT). Therefore, to mitigate multipath effects, the ranging method should select the
signal with the strongest power in CIR. After ranging and LOS/NLOS identification, a weighted
least square algorithm is adopted based on LOS/NLOS identification results to locate the target
object.

The general contributions of this work are as follows:
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• The use of the PHY layer information of WiFi and machine learning algorithms to iden-
tify LOS transmitted signals. Our proposed model combines phases and signal power as
features to built a robust model for LOS identification. In this work we adopted Support
Vector Machine (SVM) to build the classifier.

• The application of different localisation models based on the LOS/NLOS identification.
The awareness of LOS and NLOS propagation is a pivotal primitive to improve the accu-
racy in the localisation algorithm.

• The implementation of the proposed network-based localisation system in commercial
802.11 Network Interface Cards (NICs). With a driver modification, information of the
Physical layer can be revealed on off-the-shelf NICs. In this work we are using the Intel
WiFi Link 5300 wireless card.

• Experimental results demonstrate that the proposed system improves the localisation ac-
curacy compared to the corresponding LLS-based approach.

2.3 Structure of this Work

The rest of this document is organized as follows. Chapter 3 presents the previous works related
with LOS identification and indoor positioning systems. This Chapter introduces indoor posi-
tioning systems based on Received Signal Strength (RSS), which is the most common approach
used nowadays for positioning in indoor environments. Chapter 3 also presents a novel posi-
tioning approach based on CSI named FILA[3]. Two approaches for LOS/NLOS identification
in radio-frequency transmissions are also included in this Chapter as related works. The first
LOS/NLOS identification approach is based on RSSI taken from the MAC layer and processed
by machine learning algorithms[4]. The second approach detailed in [2] uses the capability
of the off-the-shelf WiFi devices of capturing CSI from the physical layer in the widely used
OFDM systems. Chapter 3 also presents a theoretical basis necessary to understand this work.
Some preliminary concepts related to the IEEE 802.11 standard are reviewed. Additionally, the
LOS/NLOS identification method, the machine learning approach, the ranging and trilateration
methods used in this work are also introduced in this chapter.
Chapter 4 presents the LOS/NLOS identification and the positioning methods. The LOS/NLOS
identification method explores the behavior of the phases and amplitudes of radio-frequency
(RF) signals. From measurements of the propagation link in LOS and NLOS conditions, we
build a decision model with SVM. This Chapter also presents the procedure to define the posi-
tioning method in our localisation system based on LOS awareness.
Chapter 5 presents details of the implementation of the components of our localisation system.
Chapter 6 shows the environment set up and the evaluation results of the experiments performed
to test our localisation model. In addition, this Chapter also presents the evaluation of our pro-
posed LOS/NLOS identification method as a fundamental component of the positioning system.
Chapter 7 concludes this work.
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Chapter 3

Related Work and Theoretical Background

Indoor positioning systems have acquired special attention due to the growing number of
location-based applications and services. Although Global Positioning System (GPS) works
with high accuracy in outdoor scenarios, it is well known that GPS is not suitable for indoor
scenarios due to the disability of GPS signal to penetrate in-building materials [3]. Therefore,
attention is mainly focused on WiFi-based localization systems due to its open access and low
cost properties.

In this chapter we present some preliminary knowledge about PHY and MAC layer of the
IEEE 802.11n standard. In addition, it is also necessary to introduce certain related work in
regards to indoor positioning approaches and LOS/NLOS identification methods. The machine
learning algorithm, the ranging and trilateration methods used in this work are also presented in
this chapter.

3.1 IEEE 802.11n preliminary

IEEE 802.11n is a further development of the IEEE 802.11-2007 standard including many en-
hancements that improve wireless LAN reliability and throughput. This amendment aims to
improve the physical layer rate transmission defining High Throughput (HT) options. MAC
layer transmissions achieve 100 Mbps as maximum data rate transmission. Despite the afore-
mentioned improvements, IEEE 802.11n maintains compatibility with IEEE WLAN legacy so-
lutions defined in standards 802.11a/b/g.

3.1.1 Physical Layer in IEEE 802.11n

Advanced signal processing and modulation techniques have been adopted in the Physical layer
to take advantage of the ability to receive and/or transmit simultaneously through multiple an-
tennas in MIMO techniques. In OFDM systems, data are modulated over multiple subcarriers
in different frequencies and transmitted simultaneously. The main characteristic of OFDM is
that multiple data can be simultaneously transmitted over parallel subchannels in the frequency
domain.
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Orthogonal Frequency Division Multiplexing (OFDM)

OFDM is a digital multi-carrier modulation method for wideband wireless communication.
OFDM is widely used in IEEE 802.11 a/g/n [3]. The main characteristic of OFDM is that
multiple data can be simultaneously transmitted over parallel sub-channels in the frequency do-
main.

Channel State Information CSI

Channel State Information is a value that represents the state of the channel in terms of phase and
amplitude for each subcarrier in the frequency domain. Unlike to RSS, which only has one value
per packet, CSI defines multiple fine-grained values from the physical layer (one per subcarrier)
to estimate the state of the channel. CSI mathematically can be represented in each subcarrier
as:

H(fk) = |H(fk)|ej
6 H(fk) (3.1)

H(fk) represents the CSI value at the subcarrier level with frequency fk. |H(fk)| denotes
the amplitude and 6 H(fk) the phase in this subcarrier. CSI describes how a signal propagates
between the transmitter and the receiver device in both amplitude and phase. CSI also reveals
the combined effect of scattering, fading and power decay with distance over the received signal
[3] .

3.1.2 MAC Layer in IEEE 802.11n

More efficient use of the available bandwidth is implemented in the MAC layer. Two improve-
ments in the MAC layer are Block Acknowledgment and Frame Aggregation. Frame Aggre-
gation can aggregate different upper layer payloads to one MAC layer payload and reduces the
MAC layer overhead. RSS is a measurement of the power present in a received radio signal.
Because of multipath effects, RSS is the average of the signal power received through different
paths at a specific location.

3.2 Indoor Positioning Systems Using RSSI

Many works to deal with the problem of localization have been done until now. The most
common approaches are based on Received Signal Strength Information (RSSI), which can be
adopted to compute the distance between a sender and a receiver device. Power level decreases
when the distance increases according to propagation loss model [3]. Indoor fingerprinting
positioning systems typically are based on RSSI [5]. This kind of systems typically have two
main phases: Off-line/training phase and online phase. In offline phase, values of RSSI are
collected from distinct known locations. These locations and their RSSI values constitute the
Reference Points (RP). RPs are used to determine the position for an unknown location taken
in the online phase of the system. In online positioning phase, RSSI values are collected from
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an unknown location, which is named the Test Point (TP). Through some algorithms and based
on RPs obtained in the training phase, the location of the TP is derived. The positioning phase
could use the k-nearest neighbour algorithm to select the k-nearest RPs based on Euclidean
distance. Furthermore, localisation algorithms use either probabilistic or deterministic methods
to perform positioning [5].

Authors of [3] pointed out that a simple relationship between received signal power and
the distance between the transmitter and receiver cannot be established in indoor environments.
They claim that the use of RSSI in indoor positioning systems is not suitable because of two
principal aspects: First, RSSI is not a fine-grained value. Therefore, it is difficult to obtain
accurate values from RSSI. Second, RSSI is easily affected by multipath effects. This effect is
even more severe in indoor environments due to the presence of different kinds of in-buildings
materials. Because of RSSI values are easily affected by multipath effects, some approaches
based on more stable values have been proposed. One of these approaches are indoor positioning
systems based on Channel State Information (CSI).

3.3 Indoor Positioning Systems Using CSI

In Orthogonal Frequency Division Multiplexing (OFDM) systems, Channel State Information
estimates the channel at subcarrier level. CSI contains information about the transmission chan-
nel by subcarrier per each transmitted packet. Therefore, it is possible to obtain multiple CSI
measurements at one time in contrast to RSSI. FILA [3] uses the fine-grained information at-
tached from CSI in OFDM at subcarrier level to propose a novel localisation system for indoor
environments. The main contribution in FILA is the use of the PHY layer information (CSI) to
improve indoor localisation performance. Results of FILA demonstrate that this approach over-
comes traditional RSSI-based methods. Evaluations of FILA were implemented in commercial
802.11 wireless cards, specifically Intel 5300 wireless card. CSI data information is gathered
through an open CSI tool program by installing a modified driver for this wireless card. After
collecting CSI from 30 subcarriers, FILA consists of three steps:

1. CSI Processing: The objective of this step is to reduce the error introduced by multipath
fading and shadowing. High positioning accuracy depends on the effective reduction of
outliers and noise from CSI. In order to reduce the estimation error, FILA proposes a
multipath mitigation mechanism to distinguish LOS signals in time domain. CSI repre-
sents the channel response in the frequency domain. CIR, which is the channel response
in time domain, can be obtained by applying Inverse Fast Fourier Transform (IFFT) on
CSI. FILA filters out the Channel Impulse Response (CIR) whose power are smaller than
50% of the LOS connection. After that CSI in frequency domain is re-obtained through
applying FFT. In FILA the effective CSI is obtained also exploiting frequency diversity to
compensate the small-scale fading effect. Effective CSI is calculated as follows:

CSIeff =
1

K

K∑
k=1

fk
f0
|Ak|, kε(−15, 15), (3.2)
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f0 is the central frequency, fk is the frequency of the subcarrier k, and |Ak| is the ampli-
tude in that subcarrier.

2. Calibration Phase: The goal of this step is to derive the distance relation receiver-
transmitter based on CSI. The proposed model to related the effective CSI (CSIeff ) with
distance is as follow:

d =
1

4π

[(
c

f0 × |CSIeff |

)2

× σ

] 1
n

, (3.3)

c is the wave velocity, σ is the environment factor, and n is the path loss fading exponent.
Both path loss fading exponent n and σ depend on the environment. Both environment
factor n and σ must be calibrated for each AP. In this case FILA implements a training
supervised algorithm to do so.

3. Localisation: The objective of this step is by applying trilateration method to estimate
the position of the target object. Based on distances between the target object and anchor
nodes (AN), the position of the target object is determined by applying a simple trilater-
ation algorithm. Distance between anchor nodes and target object is easily obtained by
using the effective CSI values with a suitable propagation model and the coordinates of
each AN. The Linear Least Squeare (LLS) method is applied to establish the coordinates
of the target object as the center of the reference range intersection.

The accuracy of FILA is determined by comparing it with the corresponding RSSI-based ap-
proach. Authors claim that FILA outperforms the corresponding RSSI-based approach by
around three times.

3.4 Linear Least Square(LLS)

The basic idea of this technique is to determine the position (x, y) of the target object that
minimizes the sum of the squared errors in the set of the estimated distances [6]. Asuming that
(xi, yi) is the position of the ithAN with i = 1, 2, 3, ..., N where N is the number of ANs. Then,
the distance between the transmitter node and the anchor node i can be expressed as follows,

d2i = (xi − x)2 + (yi − y)2 (3.4)

If we define the origin of coordinates at the anchor node i = 1. Thus, for i > 1 we have,

d2i − d21 = x2i +−2xxi + y2i − 2yyi (3.5)
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Expressing Equation 3.4 in matrix form:


2x2 2y2
. .
. .
. .

2xN 2yN


[
x
y

]
=


x22 + y22 − d22 + d21

.

.

.
x2N + y2N − d2N + d21

 (3.6)

Therefore, the problem can be formulated as,

H ∗ x = b̃ (3.7)

where H =


2x2 2y2
. .
. .
. .

2xN 2yN

, x =

[
x
y

]
and b̃ is a vector given by:

b̃ =


x22 + y22 − d̃22 + d̃21

.

.

.

x2N + y2N − d̃2N + d̃21

 (3.8)

where d̃i is the estimated distance with some noise.
Therefore, the position of the target object can be calculated as the least-squeares solution of this
equation as follows,

x̂ = (HTH)−1HT b̃ (3.9)

Same weight is given to all estimated distances. The positioning error depends on the accu-
racy of the estimated distances.

3.5 Support Vector Machine (SVM)

The general problem of machine learning is to search a, usually very large, space of potential
hypotheses to determine the one that will best fit the data and any prior knowledge [7]. If the
data is labeled, then the problem is one of supervised learning. If the data is not labeled, then
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the problem is one of unsupervised learning. The set of data often is named training set.

The Support Vector Machine(SVM) is a training algorithm for learning classification and
regression rules from data [7]. SVM is commonly applied to make predictions based on previ-
ously labeled examples. SVM is an example of inductive inference application specifically of
supervised learning. Given a training set, SVM builds a model that assigns the new example into
one category or other. If there are only two possible categories, the process in called a binary
classification.

The SVM model has the aim to represent the samples as points in space. The support vector
machine algorithm constructs a set of hyperplanes in multidimensional space to separate the
training set by categories. The goal of SVM is to produce a separation in the feature space such
that subsequent observations can be automatically classified into separate groups. Therefore,
an observation is classified depending upon which side of the separating hyperplanes it lies on.
Figure 3.1 illustrates a graphical example where the discriminant is a linear function. Figure 3.2
illustrates a graphical example where the discriminant is a nonlinear function.

Figure 3.1: Separation of p-dimensional space, linear separation
.
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Figure 3.2: Separation of p-dimensional space, nonlinear separation
.

SVM is especially useful when there is not a linear discriminant in the training set. SVM
maximizes the margin around the separating hyperplane. The idea of SVM is to gain linearly
separation by mapping the data to a higher dimensional space. Considering a data training set
where the discriminant function is nonlinear as shown in Figure 3.2, there is a mapping function
Φ into the feature space such that the data training set becomes linearly separable. Function Φ
is called kernel. There are infinite number of separating hyperplanes. However, SVM looks for
the hyperplane that is farthest from any training observation. The problem of finding the optimal
hyperplane is an optimization problem.

Figure 3.3: (a) Original data training. (b) Mapped data training.
.

The aim of SVM is to create a model based on the training data, which is capable of predict-
ing the target values of the test data given the test data attributes.
Considering a training set of instance-label pairs (xi, yi), i = 1, ..., l where xi ⊂ Rn and
y ⊂ 1,−1, the SVM requires the solution of the following optimization problem,
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min
w,b,ξ

1

2
wTw + C

l∑
i=1

ξi subject to yi(w
Tφ(xi) + b) ≥ 1− ξi, ξ ≥ 0. (3.10)

Training vectors xi are mapped into a higher dimensional space by the function Φ. SVM
finds a linear separating hyperplane with the maximal margin in this dimensional space. C > 0
is the penalty parameter of the error term. The function K(xi, xj) ≡ Φ(xi)

TΦ(xj) is named the
kernel function. Some of the basic kernel functions are as follows,

1. Linear: k(xi, xj) = xTi xj .

2. Polynomial: k(xi, xj) = (γxTi xj + r)d, γ > 0

3. Radial basis function (RBF): k(xi, xj) = exp(−γ||xi − xj ||2), γ > 0.

4. Sigmoid: k(xi, xj) = tanh(γxTi xj + r).

γ, r, d are parameters of the kernel[8] .

3.6 LOS/NLOS Identification Using CSI

Awareness of LOS and NLOS conditions constitute an important key to deal with the adverse
impact of NLOS propagation over wireless services and applications. For example, having
NLOS/LOS awareness, different model parameters in transmissions could be applied to main-
tain high quality services. There is a work dealing with CSI to create a LOS/NLOS identifi-
cation method. This method named PhaseU is presented in [2]. PhaseU attempts to build a
scheme for LOS/NLOS identification in both static and mobile scenarios with commercial WiFi
devices. However, in case of a mobile scenario, the phase variance may be overshadowed due
to LOS/NLOS propagation. Therefore, to extend PhaseU to mobile scenarios, it is necessary to
add a motion detection module based on inertial sensors. CSI is collected within static moments
detected by the motion detection module. PhaseU explores features of CSI on commodity off-
the-shelf (COTS) WiFi devices.
Phase information after an appropriate sanitization and integration process is an excellent indica-
tor to determine different behavior between LOS and NLOS signal propagation[2]. Specifically,
PhaseU proposes that phase differences, over two antennas behave differently in LOS and NLOS
conditions[2]. However, the raw phase information obtained with the CSI tool provided by the
modified driver of the wireless card is not directly usable due to the great level of randomness
that these measurements involve. The main insights and contributions of PhaseU are:

1. PhaseU is the first work that uses PHY layer information of WiFi to establish LOS and
NLOS identification in multipath dense indoor scenarios.

2. PhaseU applies phase differences over antennas as a new feature to distinguish LOS and
NLOS propagation signal.
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3. PhaseU is implemented on commodity WiFi devices. Experiments in different indoors
scenarios show that LOS and NLOS detection rate achieves around 95 and 80 percent
respectively.

PhaseU uses the properties of the phase difference over two antennas in MIMO technology
to predict LOS and NLOS conditions. However, the raw phase information obtained with the
CSI tool provided by the modified driver of the wireless card is not directly usable due to the
great level of randomness that these measurements involve.

3.6.1 Exploring Phase Features

NLOS paths typically involve more reflections than LOS transmissions. This leads to the fact
that the spatial randomness of LOS and NLOS differs. Randomness behaviour typically is mani-
fested in amplitudes and phases of the signal. Not only NLOS conditions determine the random-
ness in received amplitudes but propagation distance and other factors like obstacle blockage
are responsible for attenuation of signal amplitudes. However, phase shifts change periodically
over propagation distances making the phase a robust feature in contrast to amplitude signals.
It is impossible to obtain true phases from commodity wireless devices, and therefore PhaseU
recommends to perform a linear transformation on raw phases to eliminate the timing offset π1
and the unknown phase offset π2 at the receiver side. For LOS/NLOS identification PhaseU
employs variance of the calibrated phase as feature.

3.6.2 Measurement of Phase Variances

Unfortunately, variance of the calibrated phase is not enough to perform an effective discrimina-
tion over LOS and NLOS conditions but it is possible to note that the phase variance in NLOS
tends to be larger in LOS. Despite no clear gap can be found, this characteristic leads to explore
more conspicuous phase difference in space and frequency diversity.

1. Leveraging Space Diversity. The idea is to exploit the key feature in IEEE 802.11n/ac
MIMO to increase the variance difference in NLOS and LOS by considering variance of
phase difference over a pair of antennas. The measured phase difference between two
antennas is defined as follows:

4φ̂i = 4φi − 2π
ki
N
4δ +4β, (3.11)

4φ = φi,1 − φi,2 is the difference of the true phase, 4δ = δ1 − δ2 is the difference of
timing offset and4β = β1 − β2 is the constant phase difference, which is unknown. The
phase difference caused by different timing offsets is close to zero and therefore it is neg-
ligible in4φ̂i. It is possible to obtain the same4β at different time by shifting the phase
difference to be zero mean[2]. For scattering scenarios and antenna sizes larger than a half
WiFi wavelength, received signals at different antennas should be independent. Then an
important inference can be done, the variances of phase difference of two antennas is the
sum of the individual variances at each antenna [2].
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σ24φ̂i
= σ2φi,1 + σ2φi,2 (3.12)

Authors of PhaseU argue that to identify LOS and NLOS conditions, variance of phase
difference over two antennas is a suitable feature on commodity WiFi devices.

2. Enhancement via Frequency Diversity. The idea is to incorporate spectral signatures to
strengthen the feature used to identify LOS and NLOS signal propagation. Frequency
diversity is exploited by the fact that signals have diverse fading behaviour with different
frequencies and signals attenuate differently across the frequency band when penetrating
blockages. However, weak LOS and NLOS signals induce a large variance whereas strong
NLOS and LOS signals induce small variances.
PhaseU proposes to build a frequency-selected feature based on variance of phase dif-
ference as metric to distinguish NLOS and LOS signal propagation, this metric is called
p-factor.

ρ =

∑n
i=1 σ

2
4φ̂i
|H(fi)|∑n

j=1 |H(fj)|
, (3.13)

|H(fi)| is the mean amplitude of a pair of antennas at the subcarrier i, p-factor incor-
porates frequency and space diversity. CSI information collected from commodity de-
vices can contain outlier values, and therefore a filter is adopted to eliminate these values.
PhaseU uses Hampel identifier [9] for this task.

3.6.3 LOS/NLOS Identification

By calculating the variance of phase difference of a set of samples, a binary hypothesis test can
be established to test LOS and NLOS conditions.

p < : pth, LOSconditions

p > : pth, NLOSconditions

pth is a pre-defined threshold. In addition the use of more than two antennas can yield to improve
the accuracy by extending the hypothesis test using the median of p-factors on different antenna
pair combinations.

med(pi,j) ≤ : pth, i 6= j, LOSconditions

med(pi,j) > : pth, i 6= jNLOSconditions,
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pi,j denotes p-factor in any pair of antennas i, j.

PhaseU is extended to mobile scenarios by introducing inertial sensors, which determine
moveless moments to take samples and perform this LOS/NLOS method identification. Authors
of PhaseU argue that to identify LOS and NLOS conditions, variance of phase difference over
two antennas is a suitable feature on commodity WiFi devices. PhaseU experiments show that
the method attains a LOS rate of 94.35% with false alarms of 5.91% using 500 packets. Detec-
tion rates of 91.61% and 89.978% are achieved even using 10 packets. Time required to process
PhaseU is highly influenced by the number of packets. Authors claim that PhaseU can perform
accurate LOS identification in 1 second when 10 packets are used.

3.7 LOS/NLOS Identification Using RSS

This subsection summarizes the technique named Identification and Mitigation of Non-line-of-
sight conditions Using Received Signal Strength[4]. The approach explores features from RSS
to build an effective technique in NLOS/LOS discrimination.
The NLOS identification technique in [4] is based on RSS measurements in WiFi networks.
This approach uses a specific machine learning algorithm (Support Vector Machine). Based on
beforehand taken measurements the method tries to characterize the transmissions on distinct
conditions to establish the difference between LOS and NLOS.

3.7.1 NLOS Feature Extraction

The aim of this task is to extract typical features from collected RSS samples. Proposed features
include the mean, the standard deviation, Kurtosis, the Rician K factor and x2 goodness of fit
test parameters. Hypothesis testing of this approach is defined as follows:

H1 : α ≤ αt, LOSconditions
H1 : α > αt, NLOSconditions.

Hypothesis is tested by both mentioned machine learning approaches. The features used to
build the model are: Mean (µ), standard deviation (σ), Skewness (ς), Rician K factor, Goodness
of fit parameter (X2). Mean µ and the standard deviation σ alone are not enough to distinguish
NLOS conditions. However, combined with other features these values can help to identify
NLOS conditions [4]. RSS measurements tend to follow a Rayleigh distribution in NLOS [4].
Skewness (ς) measures the asymmetry of the probability distribution. LOS measurements should
be more symmetrical than NLOS samples [4]. The Rician K factor is defined as the ratio be-
tween the power in the direct path and the power in other scattered paths. In NLOS, Rician K
factor is expected to be zero. The (X2) Goodness of fit parameter shows the distance between
the RSS measurement and the underlying distribution. The problem with using this variable is
that its value depends on the number of samples.
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3.7.2 Machine Learning Approaches

The Support Vector Machine (SVM) algorithm is chosen as supervised machine algorithm
method. This classifier can be used also as a regressor to estimate dependent variables. The
SVM approach is also suitable for potential use in mobile devices because of the high level of
quality in generalization and the easy training process.

Different indoor environments must be considered in the training phase of the classifier
algorithm. Accuracy of NLOS/LOS identification techniques can be affected easily by external
interferences included people walking around and other signals. Despite people cannot block
the LOS signal, people can alter the received WiFi signal, which leads to the variation of the
measurement distribution. Interference produced by walking people was considered by taking
two categories of samples in [4]. The first category was taken during nights and weekends
without people around. The second group was collected during office hours with many people
walking around the corridors and offices. To identify NLOS conditions the classifier is fed
with a set of features (discussed in previous sub section) as input. Output results will be the
corresponding classification of the set of features. This approach has an overall misclassification
rate of 0.0909 using the best feature set ( σ, κr, x2). The average distance estimation error is of
2.84m [4].

3.8 Ranging

Range-based algorithms use location metrics such as Time of Arrival (ToA), Time Difference
of Arrival (TDoA), RSS to derive the propagation distance. In this section we refer the ranging
method proposed in [1]. The mentioned ranging approach is based on RSS, which is calcu-
lated from CSI. It is converted to the time domain by applying the Inverse Fast Fourier Trans-
form (IFFT) to obtain Channel Impulse Response (CIR). The signal from LOS propagation path
should have the strongest power among the other received signals. Therefore, the impact of
NLOS propagation can be mitigated by selecting the path with the maximal power. The power
estimation is as follows,

RSS = 10 ∗ log10[max(|h(t)|)2], (3.14)

|h(t)| is the amplitude of CIR over 64 samples. If there is no LOS path, the strongest power
is selected. This measurement should correspond to the shortest NLOS propagation.
RSS should be converted to propagation distance based on a certain model. However, in indoor
environments traditional models are not accurate enough . In [1] a nonlinear regression (NLR)
model is proposed to relate the propagation distance with the RSS value. The model is as follows,

d̂i = αi ∗ eβi∗RSSi (3.15)
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d̂i is the estimated distance between the receiver and the ith transmitter. α and β are param-
eters whose value must be determined from some initial measurements.

FromK training positions where the pairs (dij , RSSij) are known at the jth training position
from the ith Anchor Node. We can apply a nonlinear least square criterion in which the sum of
squared residuals should be minimized [1] as,

argmin
αi,βi

K∑
j=1

(αi ∗ eβi∗RSSij − dij)2. (3.16)
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Chapter 4

Trilateration Algorithm with Weighted
Least Square Based on an Enhanced
LOS/NLOS Awareness Method

Mobile indoor applications and services based on WiFi technology is a growing area nowadays.
The proliferation of wireless technologies has fostered an interest in location-based applications
and services. Thereby, localisation systems for indoor scenarios become an interesting area of
research.
It is well known that in indoor scenarios multipath effects is severe due to the reflection and
block of the walls. In range-based indoor positioning system, multipath effects introduce er-
rors in the ranging estimation process due to the signals transmitted in NLOS conditions are
attenuated. Therefore, in indoor scenarios, finding a model to deal with multipath effects should
improve the accuracy in positioning indoor systems.
This Chapter presents the most important contributions in which this work is especially focused.
These contributions are the LOS/NLOS identification approach that is based on machine learn-
ing technology and the positioning trilateration model based on LOS awareness.

4.1 SVM for LOS/NLOS identification

Awareness of LOS and NLOS conditions constitutes an important key to deal with the adverse
impacts of NLOS propagation over wireless services and applications. In this work, we propose
to use LOS/NLOS awareness to improve localisation results.

Based on PhaseU [2], we propose to integrate more features of CSI, e.g., power, to im-
prove the LOS/NLOS identification rate. To integrate these different features, machine learning
algorithms are good candidates.

The variance of phase difference over two antennas proves to be a good feature for LOS
identification on commodity devices [2]. However, in our experiments we noted that there is not
a clear difference in the behavior of pFactor in LOS and NLOS conditions, as shown in Figure
4.1.
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Figure 4.1: pFactor in LOS and NLOS conditions

We argue that the signal power is another good feature for LOS/NLOS prediction. The
presence of obstacles blocks the LOS path of the wireless signals. These blockades make
significant difference on the determination of the location [4]. It is well known that for a given
distance the RSS in LOS conditions can be stronger than the RSS in NLOS conditions. As
expected, in our experiments, we observe that RSS tends to be higher in LOS than NLOS
conditions, as shown in Figure 4.2. Therefore, we argue that RSS could be also a good indicator
from LOS/NLOS conditions.

22



0 2 4 6 8 10 12 14 16 18 20
−15

−10

−5

0

5

10

15

20
RSSI with CSI

position group

R
S

S
I [

dB
]

 

 
LOS
NLOS

Figure 4.2: RSS in LOS and NLOS conditions

We propose to improve the LOS/NLOS identification rate by combining pFactor and RSS
to predict LOS/NLOS conditions. These patterns and their corresponding labels are used as
input for the Support Vector Machine algorithm. As we have two features, the training pattern
can be represented in a 2D space, as shown in Figure 4.3. The component in x axis corresponds
to the value of the pFactor and the y component corresponds to RSS.
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Figure 4.3: 2D space representation

We expected to have larger values of pFactor for NLOS conditions because of the random
behavior caused by the multi-path effect. NLOS signals should have smaller RSS because the
presence of blockages in NLOS propagation.
By applying SVM, we represent the training data set in a 2D space. Each point represents one
training pattern. The blue points belong to LOS and the red points belong to NLOS. Many
classifiers could define many separating boundaries as show in Figure 4.4. However, SVM
selects the separating line which produces the largest margin between the two classes.
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Figure 4.4: Discriminant function

The margin is the distance of the separation line to the closest points of each class. If the
discriminant function is linear, the predicted class can be calculated using a function as follows,

f(x) = wx+ b (4.1)

where x is the training or test pattern, w refers to as the weight vector, b is the bias term. As
we have two features –pFactor and RSS–, the discriminant function should be as follows,

f(x) = w1x1 + w2x2 + b (4.2)

The training process of SVM provides the estimates values for w1, w2 and b.
If the discriminant is a nonlinear function, the process should be the same as explained above,
but considering the corresponding nonlinear function.

Recall that the feature pFactor is calculated from the variance of the phase difference over
two antennas in MIMO technology and RSS is obtained from the CIR by applying IFFT. The
processes to calculate both of these features were explained in Chapter 3.
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A classification task often involves separating data into training and testing sets. The training
set is defined with 20 positions in LOS and 20 in NLOS conditions. Instances of the training
set are created with pFactor and RSS as attributes. The testing data set is created with 10
positions in LOS and 10 in NLOS conditions. The proposed procedure is described in Algorithm
1. The process described in Algorithm 1 is repeated for each AN in the network-based system.
Usually the classification process involves testing the decision model. Therefore, we proved
the performance of the decision model with the testing dataset. These preliminary results are
presented in Chapter 6.

Algorithm 1 LOS/NLOS Identification method
INPUT: Positions in LOS and NLOS to train the decision model
OUTPUT: SVM decision model for LOS/NLOS classification

for all Positions in LOS do
Extract CSI {From Physical layer}
Process pFactor {Variance of the phase difference over two antennas}
Process RSS {Based on NRL model}
Make new instance=pFactor, RSS, LOS {Define instance for the position to the training
set}
Add new instance of the class LOS to TRAINING SET

end for
for all Positions in LOS do

Extract CSI {From binary files}
Process pFactor {Variance of the phase difference over two antennas}
Process RSS {Based on NRL model} {Transform data to the format of SVM}
Make new instance=(pFactor,RSS,NLOS) {Define instance for the position to the train-
ing set}
Add new instance of the class NLOS to TRAINING SET

end for
Generate SVM decision model{LIBSVM Library for SVM MATLAB }
return SVM decision model

4.2 Trilateration Weightd Least Square (WLS) Based on LOS
Awareness

Once all propagation distances between the transmitter and the receiver nodes have been esti-
mated, a positioning algorithm must be applied in order to determine the position of the target
object. The Weighted Least Square algorithm is proposed to weight ranges to different ANs
based on certain parameter that indicates the level of confidence of the measurement. Since RSS
does not linearly depend on the distance between the nodes, the same error in the RSS mea-
surement will produce larger errors in the distance estimation when the distance between the
nodes is larger[6]. Therefore, WLS is robust to the errors present on distance estimations. By
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given larger weights to those estimated distances that are supposed to have grater accuracy, it is
expected to improve the positioning results. Equation 3.7 can be solved by applying a weighted
least square estimator as follows,

x̂ = (HTS−1H)−1HTS−1b̃ (4.3)

where S is the covariance matrix of vector b̃. Assuming that the distance measurements d̃ito
different reference nodes are independent and as xi and yi are constants, the matrix S can be
calculated of Equation 3.8:

S =



V ar(d̃21) + V ar(d̃22) V ar(d̃21) ... V ar(d̃1
2
)

V ar(d̃1
2
) V ar(d̃21) + V ar(d̃23) ... V ar(d̃1

2
)

. . . .

. . . .

. . . .

V ar(d̃21) V ar(d̃1
2
) ... V ar(d̃21) + V ar(d̃2N )


(4.4)

where V ar stands for variance. The terms of the covariance matrix S can be calculated as,

V ar(d̃2i ) = E
[
d̃4i
]
− (E

[
d̃2i
]
)2 (4.5)

Assuming that the channel is lognormal, then the estimated distance d̃i is a random variable
defined by

d̃i = di.10
N(0,σ)
10η = 10

N(log10di,
σ

10η
)

= e
N(log10di,

σ
10η

)ln10
= e

N(lndi),
σln10
10η (4.6)

that is, d̃i is a lognormal random variable with parameters µd = lndi and σd = σ. ln1010η .
The k-th moment of a lognormal random variable of parameters (µd, σd) is given by µk =

ek.µd+
k2σ2d

2 . Therefore,

E
[
d̃4i

]
= exp(4µd + 8σ2d) (4.7)

E
[
d̃2i

]
= exp(2µd + 2σ2d) (4.8)
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Substituting these values into Equation 4.5, we obtain the following expression for the terms of
the covariance matrix S

V ar(d̃2i ) = E
[
d̃4i

]
− (Ed̃2i )

2 = exp(4µd).(exp(8σ
2
d)− exp(4σ2d)) (4.9)

It is important to notice that µd depends on the propagation distance di. Therefore, in order
to use Equation 4.3 in a real deployment, it is necessary to approximate the real distance di by
the estimated distance d̃i. As the value of σd is constant, that is, it is the same for every distance
estimation, the factor exp(8σ2d)− exp(4σ2d) can be taken out from matrix S as a common factor
and, therefore, its value does not affect the estimated position according to Equation 4.3. The
parameter σ of the channel model does not need to be estimated in order to apply this positioning
technique. Consequently, the covariance matrix can be calculated as follows,

V ar(d2i ) = d̃4i (4.10)

The range-based distance estimation calculated from the RSS is easily affected in indoor
scenarios. How to deal with NLOS propagation effects is a big challenge and important issue in
this kind of environments. However, awareness of LOS/NLOS conditions could permit adopting
different models to mitigate the influence of NLOS propagation.

The aim of the trilateration method of this work is to apply the WLS or LLS based on LOS
awareness. WLS is applied if LOS conditions were determined in only one AN. Otherwise, LLS
algorithm is used to determine the position of the target object. In this section we present the
weighting assignment process used to build the matrix S in the WLS algorithm.

Distances determined under LOS conditions take larger weights, whereas, distances esti-
mated under NLOS conditions take equal weights. The total weight must sum 100%, this per-
centage is divided between the distance calculated under LOS and distances in NLOS conditions.
Figure 4.5 illustrates an example of the weighting distribution process. Larger weight will be
given to the distance whose propagation path is identified under LOS conditions. Due to the
setup of the environments that we use in our experiments, tested positions have only one AN
with LOS.

(a) Weight distribution with 4 ANs (b) Weight distribution with 5 ANs

Figure 4.5: Weight distribution.
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Chapter 5

Network-based Localisation System

We have built up a network-based indoor positioning system, which integrates our proposed
LOS/NLOS identification method, ranging methods, and positioning algorithms, as shown in
Figure 5.1. In this topology, there are a transmitter node and several fixed measuring nodes which
receive the signal of the transmitter. The information from all measuring nodes are collected,
and one centroid server computes the location of the transmitter. The topology is called remote
positioning system [10].

Figure 5.1: TestBed Diagram.

The location of the MN is estimated at the Centroid Server side. Localisation of the MN is
derived by processing CSI collected by ANs.
The contributions of this work are reflected on the functionality of the hardware and software
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components. Figure 5.2 illustrates a general idea of the proposed positioning system.

Figure 5.2: System Overview

The process begins with the extraction of CSI from the Physical layer. Then, CSI is used
to determine LOS/NLOS conditions and the distances between the MN and the ANs. After-
wards, the trilateration method is executed with the results –LOS identification and distances
estimations– of the aforementioned two previous processes. The following subsections describe
the implementation and functionality of each component in the network-based localisation sys-
tem.

The network-based localisation system comprises different components, which have
different functionality. Each component consists of hardware and software elements. In this
subsection we first give an overview of the system architecture. As fundamental software
component in our implementation, we use the CSI tool provided by the creator of the modified
driver of the wireless card. The CSI tool is available in [11]. Figure 5.3 shows a detailed design
of the system architecture.
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Figure 5.3: System Architecture overview.

5.1 Component Interaction

We have seen an overview of the hardware and software implementation of the main components
of the network-based localization system. The aim of this section is to illustrate the interaction
of the components described in ?? in the whole system. Figure 5.4 illustrates the interaction
between the components in the system.
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Figure 5.4: Components interaction in network-based localisation system.

Figure 5.4 presents the general workflow in the localization system. First, the MN sends a
set of 300 packets in injection mode for each position. Second, the Anchor Nodes are listening
for incoming packets in monitor mode. If the received packet is identified, the AN generates
a binary file containing the payload and CSI. The broadcast packet is identified by the MAC
address of the MN. ANs aggregate their own identification inside the binary file previous to send
it to the Collector Server. The communication between Anchor Nodes and Collector Server is
made by Ethernet sockets. The aim of the Collector Server is to keep organized all the binary
files received from the ANs in the system. The Centroid Server uses the information collected
in the Collector Server and derive the position of the MN by performing the process described
in subsection 5.5.

5.2 Mobile Node

The Mobile Node is the device whose position is derived. The Mobile Node sends a sequence
of packets in broadcast mode. In our experiments, we have defined 300 packets at each position.
The payload of the packet contains an identification code. This code is a sequence of the
packet and the position number from which the packet is sent. These packets are received by
ANs. The information of wireless link propagation is registered at the AN side. Because of
requirements of the modified wireless card driver, the transmission must be done in injection
mode. Otherwise, CSI is not registered at the receiver side. Therefore, MN must be able to send
broadcast wireless packets in injection mode. Hence, the MN must be equipped with a suitable
WiFi network card and software capable to generate the mentioned packets.
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5.2.1 Hardware Elements of the Mobile Node

An Acer laptop is used as Mobile Node. The original wireless card of the laptop is replaced
by an Intel 5300 Wireless card. The Intel WiFi 5300 wireless card is part of the family of
IEEE 802.11a/b/g/n wireless network adapters that operate in both the 2.4 GHz and 5.0 GHz
band. These adapters can deliver up to 450 Mbps via features such as MIMO technology. By
installing a modified driver we are able to send broadcast packets in injection mode. Table 5.1
presents an overview of the hardware elements of the Mobile Node.

Element Description
CPU Intel Core i3
Memory 4 GB
Model Acer Laptop
Wireless Card Intel WiFi 5300 wireless card

Table 5.1: Overview of the hardware elements of the Mobile Node

Figure 5.5: Intel WiFi 5300 wireless card

5.2.2 Software Elements of The Mobile Node

As mentioned before, it is necessary to install a custom modified driver and open source Linux
wireless drivers. All the software and installation instructions are included in [11]. Table (5.2)
presents the software elements of MN.
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Element Description
Operating System Linux Ubuntu 12.0.4
Wireless Card Driver Modified driver for Intel WiFi 5300 wireless card.
Configuration script Linux script to establish the transmission parameters.
Sender C program to send broadcast packets in injection mode.
LORCON library IEEE 802.11 packet injection library.

Table 5.2: Overview of the hardware elements of the Mobile Node

The Loss Of Radio CONnectivity library (LORCON) is used by the sender program. The
core of the functionality was taken from the script randompackets.c provided by [11]. How-
ever, we have personalized this program adding the following functionalities:

• Sequences of packets. A sequence of packets are sent per position, in our experiment we
have defined 300 packets.

• Personalized payloads. Each packet is identified by a sequence number and a position
description. This information is saved in the payload of the packet.

5.3 Anchor Node

The Anchor Node (AN) is stationary at a fixed location whose coordinates are pre-known at the
centroid server. ANs are responsible for listening and collecting incoming packets. ANs must
be capable of working in monitor mode. CSI is obtained for each incoming packet and saved in
the file system. After that, CSI and payload are sent to the Collector Server as binary file.

5.3.1 Hardware Elements of the Anchor Node

Several ASUS easy-PC (ePC) are used as ANs. The original wireless cards of these devices are
replaced by Intel 5300 Wireless card. Intel 5300 wireless card allows the AN to work in monitor
mode. Transmission channel and injection mode must be configured before the transmission.
CSI is registered for each enabled antenna of the wireless card. Table 5.3 presents the hardware
elements of the AN.
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Element Description
Device Asus eeebox personal computer.
CPU Atom N270.
Memory 1 GB.
Model Asus eeebox
Hard Disk 160 GB.
Wireless Card Intel WiFi 5300 wireless card
Antennas Three external wireless antennas
Ethernet Interface Ethernet interface to enable the communication

with the Collector Server.

Table 5.3: Overview of the hardware elements of Anchor Nodes

To take advantage of the MIMO technology, three external antennas were adapted to each
AN.

(a) Original Asus eeebox (b) Anchor Node

Figure 5.6: Anchor Node.

5.3.2 Software Elements of the Anchor Node

The main function of an AN is to listen for incoming packets. When the incoming packet is
identified, CSI is registered with the payload of the packet in a binary file. Each AN adds its
own identification code into the binary file. Once the binary file has been created, it is sent via
Ethernet to the Collector Server. Table 5.4 presents software elements of the AN.
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Element Description
Operating System Linux 10.0.4
Listening C program to listen for incoming packets.
Log to file C program to register CSI and payload information

into a binary file.
Send collector C program to send binary file to the Collector server.
Wireless Card Driver Modified driver for Intel WiFi 5300 wireless card.

Table 5.4: Overview of software elements of Anchor Nodes

The driver installation instructions for the wireless card are available in [11]. There are two
main goals to be performed by AN. The first goal is to listening and register incoming packets
and the second goal is to send the registered information to the collector server. The core of
these functionalities is taken from the script log to file.c provided by the CSI tool. However,
we have included some additional processes necessary for our experiments. The additional
functionalities we added are as follows:

• Record of identified packets. The program reads the payload and the MAC address in-
cluded in the packet to identify the transmitter. If the transmitter is recognized by the AN,
CSI and payload are saved in a binary file. As the wireless card works in monitor mode,
the original program registers all the packets present in the environment. This is a waste
of hard disk space.

• Record of payload. Payload content is included in the binary file.

• Sending information to the collector server. Once the binary file has been generated, it is
sent to the collector server. This process is implemented by the use of Ethernet sockets.

5.4 Collector Server

The Collector Server is responsible for receiving and registering binary files sent by ANs. The
Collector Server maintains an active Ethernet link with all ANs. Received binary files are saved
in the file system of the Collector Server. All the information related with a position is gathered
in the Collector Server. Table 5.5 presents hardware elements of the Collector Server. Table 5.6
presents the software elements of the Collector Server.
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Element Description
CPU Intel Atom D410
Memory 1 GB
Model Asus eeebox EB1007
Hard Disk 250 GB
Ethernet Interface Ethernet interface.

Table 5.5: Overview of the hardware elements of the Collector Server

Element Description
Operating System Linux Ubuntu 12.0.4
Receive program C program to listen for incoming binary files.

Table 5.6: Overview of the software elements of the Collector Server

The main aim of the Collector Server is to receive and organize the information of the posi-
tions. The program for receiving is an Ethernet socket based application.

5.5 Centroid Server

The Centroid Server (CS) contains all the functionality to determine the position of MN. These
programs are implemented in Matlab, C and C++ languages. Table 5.7 presents the hardware
elements of the Centroid Server. Table 5.8 presents the software elements of the Centroid Server.

Element Description
CPU Intel core i5
Memory 8 GB.
Model VIO Sony laptop.
Hard Disk 500 GB.

Table 5.7: Overview of the hardware elements of the Centroid Server
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Element Description
Operating System Virtual Linux Ubuntu 12.0.4
LOS/NLOS identification Module Matlab program to identify

LOS and NLOS conditions.
Ranging Module Matlab program to convert the power

to distance.
Positioning Module Matlab program to implent LLS and

WLS trilateration algorithms.
CSI and Payload Reader C program to extract CSI and payload

information from the binary files.
Receiver C++ program to receive binary files from ANs.

Table 5.8: Overview of software elements of the Centroid Server

All the functionality to derive the position of the MN is implemented in the Centroid Server
as follows,

• Extracting CSI from the binary files.

• Performing PhaseU method and NLR model to obtain pFactor andRSS features respec-
tively.

• Performing the machine learning classification model to determine LOS/NLOS condi-
tions.

The functionality of the Ranging Module is implemented based on the method proposed in
[1]. The main aim of the Positioning Module is to apply the most suitable trilateration algorithm
based on the awareness of LOS/NLOS. Implementation details of this module are illustrated in
Chapter 4 as one of the main contributions of this work.
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Chapter 6

Evaluation

6.1 LOS/NLOS Identification Method

6.1.1 Measurement Setup

In order to provide a series of optimal measurements, the physical environment must be pre-
pared. All measurements were taken in the third floor of the Institute of Computer Science
(INF) of the University of Bern. All positions coordinates were defined along the third floor
inside the area covered by the ANs.
To test the performance of the network-based localization system, two scenarios were built. The
first scenario is with four ANs and the second scenario is with five ANs. Figure 6.1 shows the
ANs positions for the first scenario.

Figure 6.1: Position of Anchor Nodes, Scenario 1.

The coordinates for the ANs in the first scenario can be seen in the Appendix A.
Figure 6.2 presents the ANs positions for the second scenario.
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Figure 6.2: Coordinates of Anchor Nodes, Scenario 2

The coordinates for the ANs in the second scenario can be seen in the Appendix A. The
position of AN1 was defined as the origin of coordinates.

Figure 6.3 shows the distribution of the positions along the third floor of INF building.

Figure 6.3: Position distribution along third floor of INF building.

40



As mentioned in Chapter 4, process of building a decision model usually involves two stages.
The first one is related to a training process, which uses the training data set. In the second stage,
the model must be tested. The testing set is used for this task. The training set is defined with
20 positions in LOS and 20 in NLOS conditions. Instances of the training set are created with
pFactor and RSS as attributes. The testing data set is created with 10 positions in LOS and
10 in NLOS conditions. The training and testing data set are created with positions in LOS and
NLOS along the third floor of INF building. Figure 6.4 illustrates an example of the distribution
of the positions used to build the decision LOS/NLOS model for AN1. The blue points are
positions in LOS conditions and black points are positions in NLOS conditions. Positions used
to build the decision model are independent of the positions used to test the whole network-based
localization system. Evaluation results of the decision model are presented in the following
subsection.

Figure 6.4: Coordinates of Anchor Nodes, scenario 2

6.1.2 Training Process

As mentioned in Chapter 4, our proposed LOS/NLOS identification model is based on SVM.
Two features –pFatcor and RSS– are taken from CSI to build the decision model. We have
mentioned in previous sections that two scenarios of the network-based localisation system were
built for our experiments. These two environments allow to test the performance of the localiza-
tion system in two different conditions. The first scenario includes 4 ANs. The second scenario
incorporates one more AN with respect to scenario 1, in total in scenario 2 there are 5 ANs. The
position of the ANs are not the same from one scenario 1 with respect to scenario 2 because these
two environments were implemented in different weekends. However, experiment and learning
measurements in each case were taken at the same date. This subsection presents the learning
process of the LOS/NLOS identification model in each scenario.
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LOS/NLOS Identification Training Process, Scenario 1

This subsection presents the values of pFactor and RSS used to construct the training data for
LOS/NLOS identification in each AN. Figure 6.5 illustrates the pFactor values obtained from
the training data set in LOS and NLOS conditions for AN1 in Scenario 1.
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Figure 6.5: Training dataset pFactor, Scenario 1.

Signals transmitted under NLOS conditions often behave more randomly because of multi-
path effects. This behavior is manifested in the amplitudes and the phases which characterize
the propagation signal. In Figure 6.5 we can see that there is not a very clear difference between
pFactor in LOS and NLOS conditions in this scenario. However, as expected pFactor under
NLOS tends to be larger than pFactor determined with data in LOS conditions. Figure 6.6
shows the median of RSS value obtained from the training data set for AN1 in Scenario 1. RSS
is a measurement of the power present in a received radio signal. In this case, it is possible to
observe a clear difference between RSS obtained from LOS and RSS calculated from NLOS
conditions. After defining pFactor and RSS, the next step is to feed the SVM algorithm to
build the decision model. We test the model using a testing dataset which contains 10 instances
of positions in LOS conditions and 10 instances of positions in NLOS conditions. Figure 6.7
shows the median of RSS value obtained from the testing data set for the each AN in scenario 1.
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Figure 6.6: Training dataset RSS, Scenario 1.
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Figure 6.7: Testing data set pFactor, scenario 1.

As expected, pFactor obtained from the testing dataset tends to be higher in NLOS con-
ditions. However, it is not possible to define a clear gap between LOS and NLOS. Figure 6.8
shows the median of RSS value obtained from the testing dataset in scenario 1.
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Figure 6.8: Testing dataset RSS, scenario 1.

Propagation signals in LOS tend to be more powerful than signals transmitted in NLOS con-
ditions. Therefore, as expected in the testing dataset, RSS tends to be larger in LOS conditions
than NLOS conditions.
Both pFactor and RSS values are very sensitive to environment conditions. Therefore, the
complete learning and testing processes were made independently for each AN.
In this section we show the results of the testing process computed for the AN1, but results of
the remaining ANs can be reviewed in the Appendix B. Table 6.1 presents the prediction rate
results for AN1 under LOS conditions.
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Position pFactor RSS Real Class Predicted Class
1 0.4066 16.2579 LOS LOS
2 0.4430 9.9916 LOS LOS
3 0.3853 17.5826 LOS LOS
4 0.3375 12.6210 LOS LOS
5 0.3429 14.4841 LOS LOS
6 0.4091 15.1494 LOS LOS
7 0.5742 9.6436 LOS LOS
8 0.3782 13.1863 LOS LOS
9 0.3535 15.0594 LOS LOS
10 0.4779 8.5947 LOS LOS

Table 6.1: Prediction results of LOS conditions Anchor Node EP001, scenario 1

LOS identification error rate in AN1 is 0/10. All instances in the testing dataset were cor-
rectly classified. However, it is interesting to analyze what could happen in the case of using only
PhaseU as LOS/NLOS identifier. In the case of AN1, we can define a threshold for pFactor
with a value of 0.4. Therefore, values above the threshold are classified as NLOS, whereas val-
ues below the threshold are classified as LOS. The number of instances correctly classified is 4
over 10 tested instances. Thus, the identification error rate is 6/10. Our proposed LOS/NLOS
identification method improves the correct classification rate by 60%. However, it is necessary
to emphasize that the error rate in PhaseU is very sensitive to the selected threshold value.
Table 6.2 shows the results of the proposed LOS/NLOS identification method for the AN1 under
NLOS conditions in scenario 1.
Identification NLOS error rate in AN1 is 0/10. All instances of the testing dataset were cor-
rectly classified. We make the same comparison between PhaseU method and our proposed
LOS/NLOS identification approach. As the threshold was defined with a value of 0.4. Then the
number of instances correctly classified is 9 and the error rate is 1/10. The proposed LOS/NLOS
identification method improves the correct classification rate by 10%. These result values con-
firm that the prediction accuracy is quite sensitive to the threshold in PhaseU. Result details of
the remaining ANs are presented in the Appendix C.
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Position pFactor RSS Real Class Predicted Class
1 0.4895 2.2386 NLOS NLOS
2 0.4599 3.0139 NLOS NLOS
3 0.4006 3.0961 NLOS NLOS
4 0.4126 3.6061 NLOS NLOS
5 0.4127 4.6618 NLOS NLOS
6 0.5005 -4.6885 NLOS NLOS
7 0.5292 -7.8512 NLOS NLOS
8 0.5478 -6.7766 NLOS NLOS
9 0.4595 2.5356 NLOS NLOS
10 0.4051 5.6846 NLOS NLOS

Table 6.2: Prediction results of NLOS conditions AN 1, scenario 1

Figure 6.9 presents an overview of LOS/NLOS identification rate error of our SVM method
and PhaseU method for all ANs in Scenario 1. The success of LOS identification methods
depends on the environments conditions. The error identification rate remains almost constant
in all ANs. However, the error rate in NLOS identification for AN1 seems to be different. It
could be because of the presence of interferences on the environment at the moment of taking
measurements. It is important to recall that ANs were placed in different rooms. Therefore, it is
possible to have different environment conditions for each AN.
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(a) LOS training error

(b) NLOS training error

Figure 6.9: Training LOS/NLOS error, scenario 1.

LOS/NLOS Identification Training Process, Scenario 2

Learning and testing process were also performed independently for each AN in the scenario
2. Figure 6.10 presents pFactor obtained from the training dataset in LOS and NLOS condi-
tions for scenario 2 for AN1. It is not possible to observe a clear difference between pFactor
calculated from the training data set in LOS and NLOS conditions. Similar to the scenario 1,
pFactor under NLOS tends to be larger than pFactor determined with data in LOS conditions.
However, the pFactor behavior seems more randomly in this scenario than scenario 1.
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Figure 6.10: Training dataset pFactor, scenario 2.

49



0 5 10 15 20
−10

−5

0

5

10

15

20
RSSI with CSI

position group

R
S

S
I [

dB
]

 

 
LOS
NLOS

Figure 6.11: Training dataset RSS, scenario 2.

Figure 6.11 shows the median of RSS value obtained from the training dataset for AN1 in
scenario 2. AS expected, RSS value tends to be higher in LOS propagation signals. After de-
fined pFactor andRSS, the next step is to feed SVM algorithm to build the decision model. We
test the model using a testing dataset which contains 10 instances of positions in LOS conditions
and 10 instances of positions in NLOS conditions. Figure 6.12 shows the median of RSS value
obtained from the testing dataset for AN1 in scenario 2.
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Figure 6.12: Testing dataset pFactor, scenario 2.

As expected, pFactor tends to be larger in NLOS conditions. However, it is not possible to
define a clear gap between the pFactor determined from the testing dataset in LOS conditions
and the pFactor determined for NLOS propagation signals. Figure 6.13 shows the median of
RSS obtained from the testing ind sedataset for AN in scenario 2.
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Figure 6.13: Testing dataset RSS, scenario 2.

Table 6.3 presents the prediction rate results measured in the AN1 under LOS conditions in
the scenario 2.

The learning and the testing processes were made independently for each AN. In this section
we show the results of the testing process computed for AN1. Results of the remaining ANs can
be reviewed in the Appendix C. In APPPPP
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Position pFactor RSS Real Class Predicted Class
1 0.3861 17.2208 LOS LOS
2 0.3452 14.9713 LOS LOS
3 0.3737 15.4204 LOS LOS
4 0.4825 4.2096 LOS NLOS
5 0.1323 9.0947 LOS LOS
6 0.5473 12.9134 LOS LOS
7 0.4528 12.0574 LOS LOS
8 0.3986 15.3281 LOS LOS
9 0.3156 11.9755 LOS LOS
10 0.4748 12.7501 LOS LOS

Table 6.3: Prediction results of LOS conditions AN1, scenario 2

The identification LOS error rate in AN1 is 1/10. The number of instances correctly classi-
fied is 9 over 10 instances that are included in the testing dataset.
We compare the error rate that we have in the case of use only PhaseU as LOS/NLOS identifier.
In the case of AN1, we can define a value for the threshold in 0.42. Recall that values above
the threshold are classified as NLOS, whereas values below the threshold are classified as LOS.
Taking into account this value of the threshold, the number of instances correctly classified is 6
over 10. Thus, the identification error rate is 4/10. Therefore, the proposed LOS/NLOS identifi-
cation method improves the correct classification rate by 30%. The identification LOS rate error
in AN1 is 1/10. Table 6.4 shows the prediction rate results for AN1 under NLOS conditions.
Identification NLOS error rate in AN1 is 2/10. The number of instances correctly classified is 9
over 10. We make the same comparison between PhaseU method and our proposed LOS/NLOS
identification approach. As the threshold was defined with a value of 0.42, the number of in-
stances correctly classified is 5 and the error rate is 5/10. Our proposed LOS/NLOS identifi-
cation method improves the correct classification rate by 30%. These result values confirm that
the prediction accuracy is quite sensitive to the selected threshold in PhaseU. The details of the
results of the proposed LOS/NLOS identification algorithm for the remaining ANs are included
in the Appendix C.
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Position pFactor RSS Real Class Predicted Class
1 0.5223 1.2713 NLOS NLOS
2 0.4930 5.4188 NLOS NLOS
3 0.2704 9.6111 NLOS LOS
4 0.3512 10.2709 NLOS LOS
5 0.4072 7.3642 NLOS NLOS
6 0.4666 -2.1361 NLOS NLOS
7 0.5236 -5.2197 NLOS NLOS
8 0.4100 7.3473 NLOS NLOS
9 0.4698 7.2329 NLOS NLOS
10 0.3684 0.5435 NLOS NLOS

Table 6.4: Prediction results of NLOS conditions AN1, scenario 2

Figure 6.14 presents an overview of LOS/NLOS identification rate error of our SVM method
and PhaseU method for all ANs in the scenario 2.
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(a) LOS training error

(b) NLOS training error

Figure 6.14: Training LOS/NLOS error, scenario 2.

6.1.3 LOS/NLOS Identification Results

This evaluation is made independently for LOS and NLOS conditions. The total error is es-
tablished by the sum of the number of misclassified instances in each AN divided by the total
amount of tested instances in each AN.

Evaluation of the LOS/NLOS Identification Method, Scenario 1

In this section we present the performance results of our proposed LOS/NLOS identification
algorithm performed for the 50 positions defined in scenario 1.
The Figure 6.15 illustrates the total error in the LOS/NLOS identification method in scenario
1. As depicted in Figure 6.15, our method has 8% of error in contrast with 27% of error of
PhaseU method in LOS identification. In NLOS identification, our method has 18% and PhaseU
53%. It is very clear that our LOS/NLOS identification method produces better performance
than PhaseU in scenario 1.
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(a) LOS error, scenario 1

(b) NLOS error, scenario 1

Figure 6.15: LOS/NLOS identification error, scenario 1

LOS/NLOS Identification Method, Scenario 2

Figure 6.16 depicts the total error in the LOS/NLOS identification method in scenario 2. Figure
6.16 shows a 10% of misclassified instances in our SVM-based method and PhaseU presents
24% of error. In NLOS conditions, the error of the SVM-based method is 20% and PhaseU is
44% . It is also clear that our LOS/NLOS identification method produces better performance
than PhaseU in scenario 2.
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(a) LOS error, scenario 2

(b) NLOS error, scenario 2

Figure 6.16: LOS/NLOS identification errors, scenario 2

6.2 Positioning Method

6.2.1 Measurement Setup

The measurement setup is the same for positioning and the LOS/NLOS identification method.
All measurements were taken in the third floor of The Institute of Computer Science (INF) of the
University of Bern. We have defined two scenarios as Figures 6.1 and ?? show. The coordinates
for the Anchor Nodes in the first scenario can be seen in the Appendix A.

6.2.2 Training for Ranging

The implementation of the ranging method is based on the approach proposed in [1]. This
method defines a training phase whose aim is to determine the necessary parameters to establish
the relationship between the propagation distance and the signal power in indoor scenarios.

The ranging process defines the necessary parameters to relate RSS with distance between
the transmitter and receiver node. These parameters are used in the positioning trilateration
model to improve the accuracy in the estimation of the position of the target object. The goal
of the training stage in the ranging method is to define the parameters α and β for ANs in
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our network-based localisation system. Parameters α and β are defined from a set of initial
measurements.

The dataset with the initial measurements was defined with 25 positions. The RSS value
is calculated by applying Equation 3.14. α and β parameters are obtained by performing the
nonlinear least square criterion as mention in the previous sections. The training process is
performed independently in each scenario.
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In our implementation, α and β values are obtained by applying the function fit of Matlab.
The model is specified by equation 3.15.

Table 6.5 presents the data used to train the AN1 in the scenario 1. The data used to train the
remaining ANs are included in the Appendix D.

Position Distance RSS
1 7.5096 15.1494
2 10.8053 9.6436
3 5.8424 16.0532
4 0.2319 15.0594
5 8.0333 8.5947
6 13.3249 2.2386
7 12.6631 -1.8748
8 16.0185 3.0139
9 10.3766 7.9529
10 11.8611 6.9070
11 11.6347 7.3613
12 11.2207 3.6061
13 13.5880 6.1225
14 13.3159 -0.9890
15 18.0728 0.1683
16 20.5053 -4.6885
17 17.6812 -2.2648
18 19.0669 -5.7301
19 15.4724 -2.1298
20 18.2547 -7.8512
21 15.1134 -9.4845
22 10.4429 4.9845
23 13.6416 1.5059
24 14.5634 -3.5596
25 10.1259 5.6846

Table 6.5: Distance and RSS values for AN1, scenario 1

Figure 6.17 and Table 6.6 illustrate the results of the ranging training process for AN1 in
scenario 1.
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Figure 6.17: NLR Model, scenario 1.

Alpha (α) Beta (β)
AN1 13.94 -0.03946
AN2 9.164 -0.066214
AN3 10.01 -0.03923
AN4 8.513 -0.04485

Table 6.6: Alpha and Beta parameters, scenario 1.

The number of initial positions to determine α and β parameters in scenario 2 is 32. We
increased the number of initial measurements because of the presence of one additional ANs
with respect to scenario 1.
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Table 6.7 presents the dataset used to train the AN1 in the scenario 2. The complete table
and the data used to train the remaining ANs are included in the appendix E.

Position Distance RSS
1 7.5835 15.2697
2 7.9012 15.0216
3 8.6804 12.9134
4 6.2345 15.3281
5 5.0940 16.5555
6 4.5858 15.9260
7 0.6239 15.2211
8 2.3042 11.9755
9 4.2696 12.8807
10 6.2569 4.1600
11 8.2504 12.7501
12 10.3070 9.6111
13 9.6288 11.7421
14 9.3377 8.9707
15 12.3339 -0.9109
16 11.7731 10.2709
17 11.5363 6.4645
18 18.0157 -1.3712
19 19.1751 -7.1585
20 20.4647 -9.1050
21 16.3721 -2.1361
22 17.6399 -3.8751
23 19.0338 -5.2625
24 11.9634 3.6416
25 13.6324 5.6294
26 15.3806 -1.1714
27 10.9089 7.2329
28 12.7171 10.0751
29 14.5754 0.3746
30 10.1431 5.4701
31 12.0666 0.3184
32 14.0115 2.1344

Table 6.7: Distance and RSS values for AN1, scenario 2

Figure 6.18 and Table 6.8 illustrate the results of the ranging training process in scenario 2.
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Figure 6.18: NLR Model, scenario 2.

Alpha (α) Beta (β)
AN1 14.04 0.04945
AN2 10.58 -0.04717
AN3 12.49 -0.04395
AN4 11.27 -0.0375
AN5 8.865 -0.05198

Table 6.8: Alpha and Beta parameters, scenario 2

6.2.3 Positioning Results

The aim of this subsection is to present the results of various measurements and to evaluate
them. As it was mentioned in previous subsections, two scenarios were used to conduct our
experiments. The measurements results of these two scenarios are discussed in the following
subsections. We collected data over various space including the corridor and some rooms of the
third floor in the Institute of Computer Science (INF) of the University of Bern.
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This subsection presents the results of the entire network-based positioning system. The posi-
tioning approach is applied based on results of the LOS/NLOS identification procedure. There-
fore, it is clear that the proposed LOS/NLOS identification method is a fundamental component
of the whole positioning system. In this chapter, we included the evaluation of the module of
LOS/NLOS identification as essential element of the proposed positioning system.

We determine the derived position error with respect to the real position. The error is com-
puted as follows:

Errorpos =
√

(xest − xreal) + (yest − yreal). (6.1)

Errorpos is the error in position pos. xest is the estimated value for position pos in the axis.
xreal is the real value of the position pos in the axis X . yest is the estimated value for position
pos in the axis. yreal is the real value of the position pos in the axis Y .

We first report the overall performance of the network-based localisation system and then
we compare the results with the corresponding system based on LLS without LOS/NLOS recog-
nition.

As mentioned in previous chapters, two different scenarios were defined to test the localisa-
tion system. There are two specific differences between these two scenarios. The first difference
is the number of ANs. The second difference is the position of the ANs. Since experiments
were made in different weekends, positions of ANs were slightly varied.

This section is divided into two subsections. The first subsection presents the measurements
and results taken from the scenario 1 and the second subsection shows the results of the scenario
2.

Results of the Localisation System in Scenario 1.

The localisation system was evaluated for the 50 positions defined along the third floor of The
Institute of Computer Science (INF) of the University of Bern. We take the LLS-based local-
isation system as baseline to assess the effectiveness of our proposed WLS-based localisation
approach.

The position accuracy of the proposed WLS method achieves 2.86m for the mean error,
5.83m for the maximal error and 0.2m for the minimal error. The position accuracy of the LLS
method achieves 3.1585m for the mean error, 8.03m for the maximal error and 0.203m for the
minimal error. As we can see, our positioning approach improves the LLS-based positioning
system.

Figure 6.19 illustrates the Cumulative Distributed Functions (CDFs) of the positioning error
for WLS-based and LLS-based systems.
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Figure 6.19: Positioning Errors Scenario 1

The WLS-based model improves the positioning mean error by 0.29m compared with LLS-
based model. However, we can see that the accuracy improvement is not high. It is because of
the definition of a static weight assignment model. As future work, it could be worth to think
about a new model to assign the weights in a dynamic manner. Based on LOS/NLOS identifi-
cation, we can find the LOS connection, which provides a more reliable ranging estimation. By
assigning larger weight to LOS, our proposed WLS outperforms LLS. Based on the LOS/NLOS
identification method, we can find the LOS connection. By assigning larger weight to LOS, our
WLS-based method outperforms LLS-based method.

Results of the Localisation System in Scenario 2.

In scenario 2, we faced nearly the same set-up as in scenario 1. As we have mentioned in
previous chapters, the difference between these two scenarios is the number of Anchor Nodes
used in the network-based system. To test the performance of the network-based system, we
have chosen 50 positions distributed along the third floor of the Institute of Computer Science
(INF) of the University of Bern.
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We take the LLS-based localisation system as baseline to assess the effectiveness of our
proposed WLS-based localisation approach.

The position accuracy of the proposed WLS method achieves 2.39m for the mean error,
4.83m for the maximal error and 0.32m for the minimal error. The position accuracy of the
LLS method achieves 2.55m for the mean error, 5.65m for the maximal error and 0.33m for the
minimal error. As we can see, our positioning approach overcomes the LLS-based positioning
system. Figure 6.20 indicates the CDFs of the positioning error for WLS-based and LLS-based
systems in Scenario 2.
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Figure 6.20: Positioning Errors Scenario 2

Although the improvement of WLS-based approach is not high with respect to LLS-based
method, experiment results demonstrate that the positioning accuracy is improved by introducing
LOS/NLOS identification as a pivotal key of the localisation system. However, the performance
of the WLS-based method can be enhanced by introducing a dynamic and more effective model
to assign weights in the WLS trilateration algorithm.

As expected, the positioning mean error decreases in scenario 2 with respect to scenario 1
because of the additional AN. However, accuracy of the LOS/NLOS identification algorithm
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seems affected by the presence of an additional AN. This issue is produced because LOS condi-
tions are detected for more than one AN.
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Chapter 7

Conclusions

In this work we use the recently exposed PHY layer channel state information (CSI) on com-
mercial WiFi devices to identify the LOS and NLOS connection and further design indoor posi-
tioning algorithms. The results of our experiments have demonstrated that the phase of a radio
frequency signal after an appropriate sanitization can be used as indicator for LOS/NLOS con-
ditions. However, it is not possible to establish a clear difference between propagated signal in
LOS and propagated signal in NLOS conditions.

Our LOS/NLOS identification approach overcomes the PhaseU by adopting a SVM method
to combine the phase and porwer features of CSI. The experiments results show that LOS iden-
tification error rate is 8% and NLOS identification rate is 18% in Scenario 1, in which the error
rate of PhaseU in LOS identification is 27% and the error rate in NLOS identification is 53%. In
scenario 2 this trend is maintained. We determined for our proposed approach an error rate of
10% for LOS identification and 20% for NLOS identification, whereas the error rate of PhaseU
for LOS identification is 24% and 44% of NLOS identification. Therefore, it is very clear that
our classification SVN-based model overcomes PhaseU taken as baseline in our experimental
environments. However, it is important to highlight that the performance mentioned in [2] was
not achieved in our experiments. One possible reason is that the performance of PhaseU depends
on the testing environment.

Regarding the localisation model, in scenario 1, the WLS-based method has a mean error
of 2.86m and LLS-based method 3.15m. In scenario 2, the WLS-based method error is 2.39m
and the error of the LLS-based method is 2.55m. Although, the improvement of the WLS-based
approach is not high with respect to the LLS-based method, experiment results demonstrate
that the positioning accuracy is improved by introducing LOS/NLOS identification as a pivotal
key of the localisation system. The performance of the WLS-based method can be enhanced
by introducing a dynamic and more effective model to assign weights in the WLS trilateration
algorithm.

CSI captured from commercial devices is very prone to random noise and environmental
conditions. Phase difference over two antennas behaves differently in LOS and NLOS con-
ditions. Nevertheless, it is difficult to find a clear difference between LOS/NLOS. Therefore,
in this work, we have proposed LOS/NLOS identification using the difference of variance of
phases over two antennas measured in pFactor and RSS as features to build a machine learn-
ing decision model to predict LOS/NLOS conditions. Our experiment results demonstrate that
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the accuracy in LOS/NLOS prediction is improved with respect to the baseline method.
As general conclusion it is possible to mention that awareness of LOS and NLOS propa-

gation is a key to deal with the NLOS effect and, it could also be used as pivotal primitive to
improve the accuracy of indoor localisation systems.

Appendix
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Appendix A

Measurement Setup

A.1 Anchor Nodes Coordinates, Scenario 1

Anchor Node X coordinate Y Coordinate
EP001 0 0
EP002 13.25 12.36
EP003 5.53 12.93
EP004 10.18 2.98

Table A.1: Coordinates of Anchor Nodes, Scenario 1

A.2 Anchor Nodes Coordinates, Scenario 2

Anchor Node X coordinate Y Coordinate
EP001 0 0
EP002 13.76 13.54
EP003 3.72 15.03
EP004 12.77 0.48
EP005 9.68 1.61

Table A.2: Coordinates of Anchor Nodes Scenario 2
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Appendix B

LOS/NLOS Identification Results,
Scenario 1

B.1 Anchor Node EP002

Position pFactor RSS Real Class Predicted Class
1 0.4065 16.5827 LOS LOS
2 0.3093 15.3533 LOS LOS
3 0.4760 9.1677 LOS NLOS
4 0.4329 13.7938 LOS LOS
5 0.2734 15.0418 LOS LOS
6 0.4435 15.9851 LOS LOS
7 0.1275 16.3632 LOS LOS
8 0.3958 10.2041 LOS LOS
9 0.4733 12.4376 LOS LOS
10 0.3328 10.2790 LOS LOS

Table B.1: Prediction results of LOS conditions AN EP002, Scenario 1
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Position pFactor RSS Real Class Predicted Class
1 0.4039 -5.0273 NLOS NLOS
2 0.4986 -4.1537 NLOS NLOS
3 0.3993 11.0786 NLOS LOS
4 0.3539 11.7734 NLOS LOS
5 0.2900 2.3205 NLOS NLOS
6 0.5233 -6.2916 NLOS NLOS
7 0.3128 14.3842 NLOS LOS
8 0.3726 12.3941 NLOS LOS
9 0.5572 4.8612 NLOS LOS
10 0.3618 5.5507 NLOS NLOS

Table B.2: Prediction results of NLOS conditions AN EP002, scenario 1
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B.2 Anchor Node EP003

Position pFactor RSS Real Class Predicted Class
1 0.4065 16.5827 LOS LOS
1 0.3737 13.3330 LOS LOS
2 0.4540 14.1299 LOS LOS
3 0.4126 14.0536 LOS LOS
4 0.4917 15.1337 LOS LOS
5 0.4511 10.9056 LOS LOS
6 0.3072 14.6648 LOS LOS
7 0.3377 12.8410 LOS LOS
8 0.4504 9.7648 LOS NLOS
9 0.3698 11.7605 LOS LOS
10 0.5078 10.1873 LOS NLOS

Table B.3: Prediction results of LOS conditions AN EP003, scenario 1

Position pFactor RSS Real Class Predicted Class
1 0.3089 0.8282 NLOS NLOS
2 0.5029 -0.1889 NLOS NLOS
3 0.4130 3.3882 NLOS NLOS
4 0.3792 -2.2299 NLOS NLOS
5 0.4455 -0.2680 NLOS NLOS
6 0.5423 0.1242 NLOS NLOS
7 0.5562 -10.4974 NLOS NLOS
8 0.4979 6.1552 NLOS NLOS
9 0.4031 13.2914 NLOS LOS
10 0.4706 9.9235 NLOS NLOS

Table B.4: Prediction results of NLOS conditions AN EP003, scenario 1
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B.3 Anchor Node EP004

Position pFactor RSS Real Class Predicted Class
1 0.3892 17.0723 LOS LOS
2 0.3166 14.2336 LOS LOS
3 0.4077 16.2187 LOS LOS
4 0.3801 15.9718 LOS LOS
5 0.3644 16.9275 LOS LOS
6 0.3779 16.6467 LOS LOS
7 0.4089 15.5295 LOS LOS
8 0.3542 16.7976 LOS LOS
9 0.4095 14.5893 LOS LOS
10 0.4524 12.0825 LOS LOS

Table B.5: Prediction results of LOS conditions AN EP004, scenario 1

Position pFactor RSS Real Class Predicted Class
1 0.3650 14.7378 NLOS LOS
2 0.4147 11.2151 NLOS NLOS
3 0.3255 7.5663 NLOS NLOS
4 0.2691 6.5473 NLOS NLOS
5 0.4207 13.6404 NLOS LOS
6 0.5269 -6.7618 NLOS NLOS
7 0.5027 3.1597 NLOS NLOS
8 0.3579 6.0085 NLOS NLOS
9 0.5060 -6.2742 NLOS NLOS
10 0.6010 -6.1368 NLOS NLOS

Table B.6: Prediction results of NLOS conditions AN EP004, scenario 1
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Appendix C

LOS/NLOS Identifiaction Results,
Scenario 2

C.1 Anchor Node EP002

Position pFactor RSS Real Class Predicted Class
1 0.0683 17.2479 LOS LOS
2 0.4328 11.7895 LOS LOS
3 0.3676 16.7744 LOS LOS
4 0.1895 15.4406 LOS LOS
5 0.3802 11.0266 LOS NLOS
6 0.4167 16.7774 LOS LOS
7 0.4340 14.1389 LOS LOS
8 0.4010 12.6456 LOS LOS
9 0.4104 16.6731 LOS LOS
10 0.4014 16.2942 LOS LOS

Table C.1: Prediction results of LOS conditions AN EP002, scenario 2
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Position pFactor RSS Real Class Predicted Class
1 0.4795 3.7733 NLOS NLOS
2 0.5053 -6.1425 NLOS NLOS
3 0.4862 -7.9494 NLOS NLOS
4 0.4652 9.0115 NLOS NLOS
5 0.4740 8.1351 NLOS NLOS
6 0.4302 -1.9927 NLOS NLOS
7 0.3574 14.1967 NLOS LOS
8 0.4820 0.2823 NLOS NLOS
9 0.4276 1.2093 NLOS NLOS
10 0.4195 4.2046 NLOS NLOS

Table C.2: Prediction results of NLOS conditions AN EP002, scenario 2
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C.2 Anchor Node EP003

Position pFactor RSS Real Class Predicted Class
1 0.4175 14.6812 LOS LOS
2 0.4339 16.7138 LOS LOS
3 0.4657 12.4725 LOS LOS
4 0.3572 16.9675 LOS LOS
5 0.4990 15.4832 LOS LOS
6 0.3554 8.8442 LOS NLOS
7 0.4945 15.1752 LOS LOS
8 0.3608 10.1621 LOS LOS
9 0.3551 13.6633 LOS LOS
10 0.4842 15.7754 LOS LOS

Table C.3: Prediction results of LOS conditions AN EP003, scenario 2

Position pFactor RSS Real Class Predicted Class
1 0.4692 1.1328 NLOS NLOS
2 0.4453 8.6185 NLOS NLOS
3 0.5330 7.3849 NLOS NLOS
4 0.3524 6.7569 NLOS NLOS
5 0.3426 0.5615 NLOS NLOS
6 0.5024 -3.9320 NLOS NLOS
7 0.5095 -8.8994 NLOS NLOS
8 0.3005 4.2571 NLOS NLOS
9 0.4436 6.3328 NLOS NLOS
10 0.4705 13.6598 NLOS LOS

Table C.4: Prediction results of NLOS conditions AN EP003, scenario 2
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C.3 Anchor Node EP004

Position pFactor RSS Real Class Predicted Class
1 0.5549 17.3607 LOS LOS
2 0.4034 16.4134 LOS LO
3 0.6680 16.2567 LOS LOS
4 0.4580 9.1949 LOS LOS
5 0.3375 16.4552 LOS LOS
6 0.3486 10.3088 LOS LOS
7 0.3493 12.3628 LOS LOS
8 0.4146 16.6684 LOS LOS
9 0.5285 16.4211 LOS LOS
10 0.3326 11.7745 LOS LOS

Table C.5: Prediction results of LOS conditions AN EP004, scenario 2

Position pFactor RSS Real Class Predicted Class
1 0.4335 8.1405 NLOS LOS
2 0.4563 9.0919 NLOS LOS
3 0.4130 3.6698 NLOS NLOS
4 0.4392 10.6637 NLOS LOS
5 0.3793 11.6272 NLOS LOS
6 0.5178 9.0834 NLOS LOS
7 0.4951 0.0395 NLOS NLOS
8 0.3244 0.2371 NLOS NLOS
9 0.4951 -7.1307 NLOS NLOS
10 0.4593 -5.4882 NLOS NLOS

Table C.6: Prediction results of NLOS conditions AN EP004, scenario 2
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C.4 Anchor Node EP005

Position pFactor RSS Real Class Predicted Class
1 0.4498 11.6508 LOS LOS
2 0.3809 12.9085 LOS LOS
3 0.2289 10.3693 LOS LOS
4 0.4460 14.4277 LOS LOS
5 0.3690 15.2660 LOS LOS
6 0.2780 12.0843 LOS LOS
7 1.0689 -1.3620 LOS LOS
8 0.4983 14.0694 LOS LOS
9 0.4763 8.0570 LOS NLOS
10 0.7125 4.2163 LOS NLOS

Table C.7: Prediction results of LOS conditions AN EP005, Scenario 2

Position pFactor RSS Real Class Predicted Class
1 0.6529 6.5322 NLOS NLOS
2 0.7087 14.7861 NLOS LOS
3 0.5697 5.5299 NLOS NLOS
4 0.6711 8.4637 NLOS NLOS
5 0.4664 14.6564 NLOS LOS
6 0.6266 -1.6593 NLOS NLOS
7 0.6208 -3.4773 NLOS NLOS
8 0.6372 -0.4605 NLOS NLOS
9 0.5815 -4.8595 NLOS NLOS
10 0.5229 -6.7699 NLOS NLOS

Table C.8: Prediction results of NLOS conditions AN EP005, Scenario 2
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Ranging Parameters, Scenario 1.

D.1 Anchor Node EP002

Position Distance RSS
1 12.3372 -7.1854
2 7.3188 14.2154
3 12.2925 -2.7460
4 17.9417 -5.0273
5 13.2055 -7.1576
6 6.7413 7.4662
7 5.6396 11.7734
8 4.6952 15.5833
9 8.8923 -0.2695
10 10.1600 2.8382
11 12.1386 2.7123
12 11.7126 -4.6632
13 9.5301 -2.4610
14 11.5301 -6.0487
15 3.2920 13.9905
16 2.4078 12.4376
17 0.6303 13.6879
18 1.3701 10.2790
19 2.8992 14.3842
20 1.8345 7.4462
21 3.7730 12.3941
22 7.7348 4.0529
23 6.1634 0.4923
24 8.2187 5.5507
25 10.4818 -1.8573

Table D.1: Distance and RSS values for AN EP002, Scenario 1
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D.2 Anchor Node EP003

Position Distance RSS
1 6.6888 5.7134
2 6.2241 11.8736
3 8.8284 10.5486
4 13.8398 -0.1889
5 12.9437 7.0724
6 9.7000 3.6944
7 6.8768 6.8784
8 9.9644 -0.2680
9 9.4430 -6.5044
10 12.2299 -0.8126
11 13.9989 0.1242
12 13.3583 -7.6530
13 12.7369 -7.9180
14 14.3745 -10.4974
15 10.2142 -2.9465
16 9.7329 6.1552
17 7.7929 4.9590
18 7.7414 11.0274
19 7.2450 9.5612
20 6.5490 9.2923
21 4.1761 9.9235
22 5.5362 9.7648
23 2.0616 13.2191
24 0.8062 17.0245
25 4.0804 14.9737

Table D.2: Distance and RSS values for AN EP003, Scenario 1
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D.3 Anchor Node EP004

Position Distance RSS
1 9.1916 5.7727
2 4.7629 16.5087
3 6.2757 14.4885
4 10.5159 10.6819
5 3.4907 7.9718
6 3.3144 14.4213
7 4.7524 13.6142
8 6.1143 6.5473
9 1.5443 13.7262
10 1.5890 14.0780
11 3.0208 13.0338
12 2.3754 13.4975
13 3.1136 13.6404
14 3.7808 8.9332
15 8.4300 3.4901
16 11.8771 -3.5224
17 9.2663 -1.3391
18 11.1743 -0.0215
19 6.9989 3.1597
20 10.9080 4.8620
21 8.7741 7.3557
22 5.5610 -0.8929
23 9.1720 -5.2327
24 11.7866 -6.2742
25 9.6915 -7.1286

Table D.3: Distance and RSS values for AN EP004, scenario 1
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Ranging Parameters, Scenario 2.

E.1 Anchor Node EP002

Position Distance RSS
1 14.7845 3.7733
2 12.9793 -8.1285
3 11.2402 -5.9551
4 13.0806 -8.4397
5 14.6021 -1.7672
6 16.2278 -8.6884
7 18.7356 -6.6648
8 17.3465 -12.7139
9 16.0867 -7.9494
10 14.9887 -4.2579
11 14.0905 -6.6870
12 10.1750 -2.1053
13 12.0071 0.4711
14 13.8856 -1.0359
15 9.4275 0.9793
16 11.3806 -1.5755
17 13.3476 5.1983
18 4.0018 15.7738
19 2.2304 16.9188
20 1.3909 16.6731
21 3.8124 17.5258
22 1.8694 16.2942
23 0.6742 17.3778
24 7.7584 0.2823
25 6.9823 2.5544
26 6.7315 9.8986
27 9.5453 0.0934
28 8.9259 1.5232
29 8.7311 4.7820
30 11.4032 1.0524
31 10.8900 2.2208
32 10.7309 4.4041

Table E.1: Distance and RSS values for AN EP002, scenario 2
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E.2 Anchor Node EP003

Position Distance RSS
1 8.2269 1.1328
2 7.5975 5.4058
3 7.4674 8.6903
4 10.4624 8.5991
5 10.5557 5.5765
6 11.0174 4.9900
7 14.8655 2.9904
8 14.5266 0.1665
9 14.4590 7.3849
10 14.6664 5.9100
11 15.1375 6.7569
12 12.0372 -2.1226
13 13.8382 -5.0322
14 15.6874 -3.7201
15 13.2068 -3.9320
16 14.8667 -7.3379
17 16.6018 -6.5454
18 12.5599 7.5843
19 11.8638 4.2571
20 11.4783 5.6309
21 10.7755 4.1673
22 9.9554 7.1272
23 9.4927 6.3328
24 6.2912 16.7950
25 4.7094 14.2440
26 3.5747 14.0133
27 5.5080 14.1382
28 3.5970 15.3934
29 1.8811 11.5944
30 5.3943 16.8019
31 3.4203 16.2596
32 1.5161 13.9320

Table E.2: Distance and RSS values for AN EP003, scenario 2
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E.3 Anchor Node EP004

Position Distance RSS
1 14.4105 8.1405
2 12.7083 9.4071
3 11.1059 9.5037
4 9.4732 7.8791
5 11.3094 3.1640
6 13.1932 2.3424
7 12.5404 3.6698
8 10.5405 2.8472
9 8.5406 3.3188
10 6.5408 10.6637
11 4.5411 13.0838
12 5.2003 11.6272
13 3.9298 14.2186
14 3.4415 16.1192
15 4.0924 14.3308
16 2.2688 6.3771
17 1.2440 15.8031
18 9.5948 9.0834
19 11.5438 3.8601
20 13.5078 3.4407
21 9.3070 7.0209
22 11.3057 -0.9295
23 13.3049 -2.6977
24 10.8438 -6.7482
25 12.5852 -5.7773
26 14.3940 -7.0964
27 12.0228 -1.2571
28 13.6142 -5.4882
29 15.3019 -7.9810
30 13.3980 -5.8196
31 14.8428 -8.5258
32 16.4045 -8.2847

Table E.3: Distance and RSS values for AN EP004, scenario 2
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E.4 Anchor Node EP005

Position Distance RSS
1 11.1778 6.5322
2 9.5469 7.5761
3 8.0835 8.6897
4 6.2067 14.4541
5 8.0202 7.6952
6 9.9057 5.5299
7 9.5060 0.7410
8 7.5209 4.1356
9 5.5465 15.5983
10 3.6005 8.4637
11 1.7786 8.5895
12 2.7920 8.0570
13 0.8458 16.0475
14 1.2788 15.1316
15 3.3310 6.4113
16 2.0038 16.6155
17 2.2216 4.2163
18 9.8210 -3.2065
19 11.5383 -6.973
20 13.3346 -2.2180
21 8.8686 -0.0563
22 10.7393 -3.8678
23 12.6496 -1.6593
24 8.4940 1.4429
25 10.4129 -6.6576
26 12.3575 -7.7654
27 9.3138 -4.8595
28 11.0918 -3.4015
29 12.9347 -4.8447
30 10.4569 -3.7831
31 12.0676 -6.3521
32 13.7807 -6.7699

Table E.4: Distance and RSS values for AN EP005, scenario 2
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Appendix F

Position coordinates

Position X coordinate Y coordiante
1 0.2300 7.5800
2 2.2300 7.5800
3 4.2300 7.5800
4 6.2300 7.5800
5 8.2300 7.5800
6 8.2300 4.5800
7 6.2300 4.5800
8 4.2300 4.5800
9 2.2300 4.5800
10 0.2300 4.5800
11 0.2300 0.5800
12 2.2300 0.5800
13 4.2300 0.5800
14 6.2300 0.5800
15 8.2300 0.5800
16 9.9300 5.7800
17 11.9300 5.7800
18 13.9300 5.7800
19 9.9300 7.7800
20 11.9300 7.7800
21 13.9300 7.7800
22 9.3300 4.3800
23 9.3300 2.3800
24 9.3300 0.3800
25 11.5300 4.3800
26 11.5300 2.3800
27 11.5300 0.3800
28 11.0900 0.8800
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Position X coordinate Y coordiante
29 11.0900 2.8800
30 13.1900 2.8800
31 13.1900 0.8800
32 15.1300 9.7800
33 15.1300 11.7800
34 15.1300 13.7800
35 13.1300 9.7800
36 13.1300 11.7800
37 13.1300 13.7800
38 11.9300 9.7800
39 11.9300 11.7800
40 11.9300 13.7800
41 9.4300 9.7800
42 9.4300 11.7800
43 9.4300 13.7800
44 7.0300 7.6800
45 7.0300 9.6800
46 7.0300 11.6800
47 7.0300 13.6800
48 5.0300 9.6800
49 5.0300 11.6800
50 5.0300 13.6800
51 3.0300 9.6800
52 3.0300 11.6800
53 3.0300 13.6800

Table F.1: Positions coordinates (meters).
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Appendix G

Positioning Results

G.1 WLS-Based System, scenario 1

Position X coordinate Y coordinate Derived X Derived Y WLS AN with LOS
1 0.0300 7.2300 5.3618 4.8547 yes EP002
2 2.0300 7.2300 3.1149 5.4745 yes EP002
3 4.0300 7.2300 3.0995 5.5161 no -
4 6.0300 7.2300 5.8472 6.1253 no -
5 8.0300 7.2300 7.9743 7.0349 no -
6 8.0300 4.2300 4.9897 5.3697 no -
7 6.0300 4.2300 5.6144 6.2553 no -
8 4.0300 4.2300 4.9953 5.8553 no -
9 2.0300 4.2300 5.0278 5.1375 no -
10 0.0300 4.2300 4.0514 5.3819 yes EP002
11 2.0300 0.2300 5.2326 4.6418 yes EP002
12 4.0300 0.2300 5.3402 5.5185 yes EP002
13 6.0300 0.2300 7.0453 4.8716 no -
14 10.0300 5.7300 8.4924 5.8678 no -
15 12.0300 5.7300 10.5485 7.1733 yes EP006
16 14.0300 5.7300 11.3738 6.0263 yes EP003
17 10.0300 7.7300 12.4236 8.7940 no -
18 12.0300 7.7300 7.4890 4.8617 yes EP002
19 14.0300 7.7300 11.8778 7.2677 yes EP003
20 9.4300 4.3300 9.3171 3.6166 yes EP006
21 9.4300 2.3300 8.7770 6.1229 yes EP006
22 9.4300 0.3300 10.0422 3.1138 yes EP006
23 11.6300 4.3300 9.5434 2.2166 no -
24 11.6300 2.3300 8.9382 5.6280 yes EP006
25 11.1900 0.8300 10.5627 2.0304 yes EP006
26 11.1900 2.8300 10.6571 0.1082 yes EP006
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Position X coordinate Y coordinate Derived X Derived Y WLS AN with LOS
27 13.2900 2.8300 9.9865 2.6343 yes EP006
28 13.2900 0.8300 12.4326 2.3008 no -
29 15.2300 9.7300 13.0484 7.4499 yes EP003
30 15.2300 11.7300 10.9185 11.5250 yes EP003
31 15.2300 13.7300 11.3130 11.9294 yes EP003
32 13.2300 9.7300 10.4155 11.1093 yes EP003
33 13.2300 11.7300 11.1067 10.5980 yes EP003
34 13.2300 13.7300 12.4904 12.1450 no -
35 12.0300 9.7300 10.9798 10.1822 yes EP003
36 12.0300 11.7300 12.1166 10.0301 no -
37 12.0300 13.7300 15.2949 12.1017 no -
38 9.5300 9.7300 13.6130 10.1816 yes EP003
39 9.5300 11.7300 14.4887 11.5755 yes EP003
40 9.5300 13.7300 13.1479 10.6905 no -
41 7.1300 7.6300 6.2697 9.0638 no -
42 7.1300 9.6300 4.2193 9.0303 yes EP004
43 7.1300 11.6300 5.6293 10.9328 yes EP004
44 7.1300 13.6300 7.7373 13.1604 yes EP004
45 5.1300 9.6300 5.9211 10.6992 no -
46 5.1300 11.6300 4.6758 9.2776 yes EP004
47 5.1300 13.6300 8.0857 13.3084 yes EP004
48 3.1300 9.6300 3.0114 10.5597 yes EP004
49 3.1300 11.6300 7.1666 12.6234 no -
50 3.1300 13.6300 5.9520 11.7057 yes EP004

Table G.1: Positioning results of WLS-based scenario 1.
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G.2 LLS-Based System, scenario 1

Position X coordinate Y coordinate Derived X Derived Y
1 0.0300 7.2300 5.3618 4.8547
2 2.0300 7.2300 3.1150 5.4742
3 4.0300 7.2300 3.0997 5.5158
4 6.0300 7.2300 5.8474 6.1250
5 8.0300 7.2300 7.9745 7.0346
6 8.0300 4.2300 4.9898 5.3695
7 6.0300 4.2300 5.6146 6.2550
8 4.0300 4.2300 4.9955 5.8550
9 2.0300 4.2300 5.0279 5.1373
10 0.0300 4.2300 4.0515 5.3817
11 2.0300 0.2300 5.2327 4.6417
12 4.0300 0.2300 5.3403 5.5183
13 6.0300 0.2300 7.0452 4.8717
14 10.0300 5.7300 8.4925 5.8676
15 12.0300 5.7300 10.5984 7.0584
16 14.0300 5.7300 9.3203 5.1644
17 10.0300 7.7300 12.4238 8.7937
18 12.0300 7.7300 7.4890 4.8616
19 14.0300 7.7300 10.4077 6.6505
20 9.4300 4.3300 9.7124 2.7048
21 9.4300 2.3300 8.9343 5.7602
22 9.4300 0.3300 9.6131 4.1027
23 11.6300 4.3300 9.5428 2.2175
24 11.6300 2.3300 9.2039 5.0154
25 11.1900 0.8300 10.3183 2.5935
26 11.1900 2.8300 10.3990 0.7024
27 13.2900 2.8300 10.1812 2.1851
28 13.2900 0.8300 12.4315 2.3024
29 15.2300 9.7300 11.6014 6.8427
30 15.2300 11.7300 8.8451 10.6544
31 15.2300 13.7300 11.1412 11.8570
32 13.2300 9.7300 9.6330 10.7804
33 13.2300 11.7300 10.4632 10.3275
34 13.2300 13.7300 12.4906 12.1447
35 12.0300 9.7300 11.0682 10.2189
36 12.0300 11.7300 12.1168 10.0298
37 12.0300 13.7300 15.2951 12.1014
38 9.5300 9.7300 15.4302 10.9441
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Position X coordinate Y coordinate Derived X Derived Y
39 9.5300 11.7300 17.4878 12.8342
40 9.5300 13.7300 13.1481 10.6902
41 7.1300 7.6300 6.2699 9.0635
42 7.1300 9.6300 4.6231 8.8344
43 7.1300 11.6300 5.3537 11.0661
44 7.1300 13.6300 6.5838 13.7191
45 5.1300 9.6300 5.9213 10.6988
46 5.1300 11.6300 3.8682 9.6687
47 5.1300 13.6300 8.0519 13.3245
48 3.1300 9.6300 2.3600 10.8751
49 3.1300 11.6300 7.1668 12.6231
50 3.1300 13.6300 6.1299 11.6192

Table G.2: Positioning results of LLS-based scenario 1
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G.3 WLS-Based System, scenario 2

Position X coordinate Y coordinate Derived X Derived Y WLS AN with LOS
1 2.2300 7.5800 4.3131 3.8415 no -
2 4.2300 7.5800 4.8853 5.0452 no -
3 6.2300 7.5800 5.2060 4.8255 no -
4 8.2300 7.5800 6.3136 6.0994 no -
5 8.2300 4.5800 4.8240 5.2176 no -
6 6.2300 4.5800 5.3531 5.8164 no -
7 4.2300 4.5800 4.0712 4.2932 no -
8 2.2300 4.5800 4.2342 5.4500 yes EP002
9 0.2300 4.5800 3.0376 4.1939 yes EP002
10 2.2300 0.5800 3.2138 1.8992 yes EP002
11 4.2300 0.5800 4.0812 4.7487 no -
12 6.2300 0.5800 7.8882 4.9319 yes EP005
13 8.2300 0.5800 5.2397 4.3833 no -
14 9.9300 5.7800 7.0757 5.7358 yes EP002
15 11.9300 5.7800 11.5078 6.6901 yes EP005
16 13.9300 5.7800 11.0652 6.6910 yes EP005
17 9.9300 7.7800 12.2365 8.8337 no -
18 11.9300 7.7800 10.1427 5.2348 yes EP005
10 13.9300 7.7800 12.8823 7.4025 no -
20 9.3300 4.3800 7.4835 3.0506 no -
21 9.3300 2.3800 8.2786 1.5302 no -
22 9.3300 0.3800 8.6482 2.2316 no -
23 11.5300 4.3800 12.9847 4.7005 yes EP005
24 11.5300 2.3800 8.2330 0.5309 no -
25 11.5300 0.3800 10.9102 3.3120 yes EP005
26 11.0900 0.8800 12.6227 3.2371 yes EP005
27 11.0900 2.8800 9.2228 0.8720 no -
28 13.1900 2.8800 10.3039 -0.2276 no -
29 13.1900 0.8800 9.3633 1.1102 no -
30 15.1300 9.7800 11.2127 9.8672 no -
31 15.1300 11.7800 14.6998 11.6618 yes EP003
32 15.1300 13.7800 16.1408 11.4229 yes EP003
33 13.1300 9.7800 12.4037 9.3943 yes EP003
34 13.1300 11.7800 11.5811 11.5996 yes EP003
35 13.1300 13.7800 12.4488 11.8142 yes EP003
36 11.9300 9.7800 11.7371 11.0847 yes EP003
37 11.9300 11.7800 12.6123 12.2625 yes EP003
38 11.9300 13.7800 12.2075 11.4177 yes EP003
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Position X coordinate Y coordinate Derived X Derived Y WLS AN with LOS
39 9.4300 9.7800 11.4655 10.3524 yes EP003
40 9.4300 11.7800 10.7149 10.9848 yes EP003
41 7.0300 7.6800 6.3678 8.3538 yes EP004
42 7.0300 9.6800 4.3033 10.1047 yes EP004
43 7.0300 11.6800 4.2038 10.2268 yes EP004
44 7.0300 13.6800 7.2763 12.7475 yes EP004
45 5.0300 9.6800 4.1956 9.0856 yes EP004
46 5.0300 11.6800 2.0837 9.4928 no -
47 5.0300 13.6800 6.2445 11.4035 yes EP004
48 3.0300 9.6800 3.9129 10.0751 yes EP004
49 3.0300 11.6800 5.0292 12.1366 yes EP004
50 3.0300 13.6800 5.0275 11.4533 yes EP004

Table G.3: Positioning results of WLS-based scenario 2
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G.4 LLS-Based System, Scenario 2

Position X coordinate Y coordinate Derived X Derived Y
1 2.2300 7.5800 4.3131 3.8415
2 4.2300 7.5800 4.8853 5.0452
3 6.2300 7.5800 5.2060 4.8255
4 8.2300 7.5800 6.3136 6.0994
5 8.2300 4.5800 4.8240 5.2176
6 6.2300 4.5800 5.3531 5.8164
7 4.2300 4.5800 4.0712 4.2932
8 2.2300 4.5800 4.2342 5.4500
9 0.2300 4.5800 3.0376 4.1939
10 0.2300 0.5800 3.5147 4.3206
11 2.2300 0.5800 3.2138 1.8992
12 6.2300 0.5800 8.0825 5.9241
13 8.2300 0.5800 5.2397 4.3833
14 9.9300 5.7800 7.0757 5.7358
15 11.9300 5.7800 11.2464 6.5891
16 13.9300 5.7800 11.4106 6.5050
17 9.9300 7.7800 12.2365 8.8337
18 11.9300 7.7800 9.5510 4.1169
10 13.9300 7.7800 12.8823 7.4025
20 9.3300 4.3800 7.4835 3.0506
21 9.3300 2.3800 8.2786 1.5302
22 9.3300 0.3800 8.6482 2.2316
23 11.5300 4.3800 13.0942 4.6155
24 11.5300 2.3800 8.2330 0.5309
25 11.5300 0.3800 10.0128 1.9286
26 11.0900 0.8800 12.3247 2.8121
27 11.0900 2.8800 9.2228 0.8720
28 13.1900 2.8800 10.3039 -0.2276
29 13.1900 0.8800 9.3633 1.1102
30 15.1300 9.7800 11.2127 9.8672
31 15.1300 11.7800 16.1520 12.6168
32 15.1300 13.7800 19.8616 13.7365
33 13.1300 9.7800 12.3751 9.3878
34 13.1300 11.7800 11.8125 11.7459
35 13.1300 13.7800 13.3222 12.3255
36 11.9300 9.7800 13.5665 12.1927
37 11.9300 11.7800 13.8820 13.0454
38 11.9300 13.7800 13.4414 12.1894

99



Position X coordinate Y coordinate Derived X Derived Y
39 9.4300 9.7800 12.5555 11.0181
40 9.4300 11.7800 10.7953 11.0329
41 9.4300 13.7800 16.0556 13.9765
42 7.0300 7.6800 5.1119 8.6888
43 7.0300 11.6800 2.8471 10.4778
44 7.0300 13.6800 6.2992 12.9547
45 5.0300 9.6800 3.6771 9.0297
46 5.0300 11.6800 2.0837 9.4928
47 5.0300 13.6800 5.4436 11.7717
48 3.0300 9.6800 3.2910 10.2829
49 3.0300 11.6800 4.5834 12.3386
50 3.0300 13.6800 3.7141 11.8394

Table G.4: Positioning results of WLS-based scenario 2
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Appendix H

Positioning Error

H.1 WLS-based and LLS-based positon error, scenario 1

Position Error WLS Error LLS
1 5.8370 5.8370
2 2.0637 2.0640
3 1.9502 1.9504
4 1.1197 1.1200
5 0.2029 0.2031
6 3.2469 3.2467
7 2.0675 2.0672
8 1.8903 1.8902
9 3.1321 3.1322

10 4.1831 4.1832
11 5.4517 5.4516
12 5.4484 5.4482
13 4.7513 4.7514
14 1.5438 1.5436
15 2.0683 1.9530
16 2.6727 4.7435
17 2.6194 2.6195
18 5.3710 5.3711
19 2.2013 3.7797
20 0.7223 1.6496
21 3.8487 3.4658
22 2.8503 3.7771
23 2.9699 2.9697
24 4.2571 3.6190
25 1.3544 1.9672
26 2.7735 2.2699
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Position Error WLS Error LLS
27 3.3093 3.1750
28 1.7025 1.7044
29 3.1557 4.6372
30 4.3164 6.4749
31 4.3110 4.4974
32 3.1343 3.7472
33 2.4062 3.1020
34 1.7491 1.7493
35 1.1434 1.0789
36 1.7021 1.7024
37 3.6484 3.6487
38 4.1079 6.0238
39 4.9611 8.0340
40 4.7252 4.7256
41 1.6721 1.6717
42 2.9718 2.6301
43 1.6547 1.8637
44 0.7677 0.5534
45 1.3300 1.3298
46 2.3958 2.3321
47 2.9731 2.9378
48 0.9372 1.4640
49 4.1570 4.1572
50 3.4156 3.6115

Table H.1: Error WLS-based and LLS-based System
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H.2 WLS-based and LLS-based positon error, scenario 2

Position Error WLS Error LLS
1 4.2797 4.2797
2 2.6181 2.6181
3 2.9387 2.9387
4 2.4217 2.4217
5 3.4652 3.4652
6 1.5158 1.5158
7 0.3278 0.3278
8 2.1849 2.1849
9 2.8340 2.8340

10 1.6456 1.6456
11 4.1714 4.1714
12 4.6571 5.6561
13 4.8381 4.8381
14 2.8546 2.8546
15 1.0033 1.0592
16 3.0062 2.6216
17 2.5358 2.5358
18 3.1101 4.3678
19 1.1136 1.1136
20 2.2753 2.2753
21 1.3519 1.3519
22 1.9731 1.9731
23 1.4896 1.5818
24 3.7801 3.7801
25 2.9968 2.1680
26 2.8116 2.2929
27 2.7420 2.7420
28 4.2411 4.2411
29 3.8336 3.8336
30 3.9183 3.9183
31 0.4461 1.3209
32 2.5647 4.7318
33 0.8224 0.8507
34 1.5594 1.3179
35 2.0805 1.4671
36 1.3189 2.9153
37 0.8357 2.3263
38 2.3785 2.1942
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Position Error WLS Error LLS
39 2.1145 3.3618
40 1.5111 1.5563
41 0.9447 2.1672
42 2.7596 2.6765
43 3.1779 4.3522
44 0.9645 1.0296
45 1.0245 1.5011
46 3.6694 3.6694
47 2.5802 1.9526
48 0.9673 0.6570
49 2.0507 1.6872
50 2.9914 1.9636

Table H.2: Error WLS-based and LLS-based System in Scenario 2.
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