
IP MULTICAST USING QUALITY OF

SERVICE ENABLED OVERLAY

NETWORKS

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Marc Brogle

von Sisseln AG

Leiter der Arbeit:
Professor Dr. Torsten Braun

Institut für Informatik und angewandte Mathematik

IP MULTICAST USING QUALITY OF

SERVICE ENABLED OVERLAY

NETWORKS

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Marc Brogle

von Sisseln AG

Leiter der Arbeit:
Professor Dr. Torsten Braun

Institut für Informatik und angewandte Mathematik

Von der Philosophisch-naturwissenschaftlichen Fakultät angenommen.

Der Dekan:
Bern, 25.05.2010 Prof. Dr. Urs Feller

Abstract

In this thesis, we will present solutions for end users on how to profit from efficient
data transmission and dissemination using multicasting with Quality of Service
(QoS) support. Multicasting is one of the most efficient mechanisms to distribute
data from one sender to multiple receivers concurrently. Since IP Multicasting is
not widely deployed in the Internet today, Overlay Multicast has been introduced
to overcome this limitation. It is often also referred to as Application Layer Multi-
cast (ALM). ALM is though not a standard as IP Multicast is, and many different
ALM protocols targeted for different application scenarios exist. Therefore, we de-
veloped a bridge between IP Multicast and Overlay Multicast, called the Multicast
Middleware. Now, end users can benefit from applications supporting the IP Mul-
ticast API, while still be able to use them through the Internet. This bridging also
maps IP Multicast traffic to unicast packet flows which makes it easier to support
QoS for multicasting. To provide the best service to end users, QoS mechanisms
for ALM protocols are also required. The OM-QoS (Quality of Service for Overlay
Multicast) framework aims to enable QoS for different ALM protocols, facilitating
the creation of QoS supporting multicast trees. We will present protocol depen-
dent as well as protocol independent solutions to support QoS for different ALM
protocols. Finally, we present MCFTP (Multicast File Transfer Protocol), which
enables collaborating data dissemination to profit from the benefits of multicast
distribution. It facilitates using resources available in the network (routers) or at
end systems (for ALM) more efficiently.

Contents

Contents i

List of Figures v

List of Tables xi

1 Introduction 1
1.1 Overview . 1
1.2 Problem Statement . 2
1.3 Quality of Service for Overlay Multicast 3
1.4 Providing IP Multicast Services via P2P / Overlay Networks . . . 4
1.5 Efficient Data Dissemination using Cooperation 5
1.6 Contributions . 6
1.7 Thesis Outline . 7

2 Related Work 9
2.1 Introduction . 9
2.2 Multicasting . 10

2.2.1 Overview . 10
2.2.2 IP Multicast . 10
2.2.3 MBONE . 12
2.2.4 Overlay Multicast . 12
2.2.5 Multicast Applications 14
2.2.6 Communication Restrictions for Multicasting 15

2.3 Peer-to-Peer Networks . 16
2.3.1 Overview . 16
2.3.2 RON . 18
2.3.3 Pastry . 18
2.3.4 Tapestry . 20
2.3.5 CAN . 21
2.3.6 Chord . 23

2.4 Applications of P2P Overlay Networks 24
2.4.1 Overview . 24
2.4.2 Content Distribution Networks 25

i

2.4.3 Slurpie . 26
2.4.4 Bullet . 26
2.4.5 FastReplica . 26
2.4.6 FTP-M . 27
2.4.7 BitTorrent . 27
2.4.8 GridFTP . 28
2.4.9 ALTO . 28

2.5 Application Layer Multicast . 29
2.5.1 Overview . 29
2.5.2 Narada . 31
2.5.3 Scribe . 32
2.5.4 Bayeux . 33
2.5.5 Multicast in CAN . 34
2.5.6 Multicast in Chord . 34
2.5.7 NICE . 36
2.5.8 ZigZag . 38
2.5.9 VRing . 38
2.5.10 Borg . 39
2.5.11 PeerCast . 39
2.5.12 Dr. Multicast . 39

2.6 Extensions and Application Frameworks using ALM 40
2.6.1 Overview . 40
2.6.2 Video on Demand using Multicast 40
2.6.3 Selectcast . 40
2.6.4 Splitstream . 41

2.7 Quality of Service . 41
2.7.1 Overview . 41
2.7.2 Quality of Service in the Internet 42
2.7.3 Quality of Service for P2P/ALM 43

2.8 Conclusion . 47

3 Quality of Service for Overlay Multicast 49
3.1 Introduction . 49
3.2 Architecture and Design of OM-QoS 50

3.2.1 Overview . 50
3.2.2 QoS for Multicast Trees Design Principles 50
3.2.3 Protocol Dependent Approach 53
3.2.4 QoS for Scribe/Pastry 53
3.2.5 QoS for Bayeux . 55
3.2.6 QoS for NICE . 55
3.2.7 QoS for Chord Multicasting 58
3.2.8 Protocol Independent Approach 61

3.3 Evaluation Scenarios for OM-QoS 64
3.3.1 Overview . 64

ii

3.3.2 Scribe/Pastry Evaluation Scenarios 64
3.3.3 Common CAN / NICE / Chord Evaluation Scenarios . . . 65
3.3.4 CAN Evaluation Scenarios 66
3.3.5 NICE Evaluation Scenarios 68
3.3.6 Chord Evaluation Scenarios 70

3.4 Evaluation Results for OM-QoS 71
3.4.1 Overview . 71
3.4.2 Scribe/Pastry Evaluation Results 71
3.4.3 CAN Evaluation Results 71
3.4.4 NICE Evaluation Results 77
3.4.5 Chord Evaluation Results 88
3.4.6 Summary of Evaluation Results 93

3.5 Conclusion . 95

4 Providing IP Multicast Services via P2P / Overlay Networks 97
4.1 Introduction . 97
4.2 Architecture and Design of the Multicast Middleware 98

4.2.1 Overview . 98
4.2.2 Providing an IP Multicast Interface for Standard Applications 99
4.2.3 Mapping IP Multicast Addresses and Messages to ALM . 101
4.2.4 Security and Privacy Considerations when using ALM . . 102

4.3 Implementation of the Multicast Middleware 103
4.3.1 Overview . 103
4.3.2 Using Freepastry for P2P/ALM Topology Management . . 103
4.3.3 Efficient P2P Protocol for Multicast Data Transport 104
4.3.4 Multicast Subscription Handling and Forwarding 105

4.4 Evaluation Scenarios for the Multicast Middleware 106
4.4.1 Overview . 106
4.4.2 Functional Test Evaluation Scenarios 106
4.4.3 Throughput and Loss Evaluation Scenarios 107
4.4.4 Delay and Loss Evaluation Scenarios 109

4.5 Evaluation Results for the Multicast Middleware 114
4.5.1 Overview . 114
4.5.2 Functional Test Evaluation Results 114
4.5.3 Throughput and Loss Evaluation Results 114
4.5.4 Delay and Loss Evaluation Results 116

4.6 Conclusion . 122

5 Efficient Data Dissemination using Cooperation 123
5.1 Introduction . 123
5.2 Architecture and Design of MCFTP 124

5.2.1 Overview . 124
5.2.2 FileDescriptors . 124
5.2.3 FileManagementGroup 124

iii

5.2.4 SendingGroups . 125
5.2.5 Strategies to Determine SendingGroups 127

5.3 Evaluation Scenarios for MCFTP 130
5.3.1 Overview . 130
5.3.2 NS2 Network Simulator Evaluation Scenarios 130
5.3.3 Prototype Implementation Evaluation Scenarios 133

5.4 Evaluation Results for MCFTP 134
5.4.1 Overview . 134
5.4.2 NS2 Network Simulator Evaluation Results 135
5.4.3 Prototype Implementation Evaluation Results 145

5.5 Conclusion . 152

6 Conclusion and Outlook 155
6.1 Conclusion . 155
6.2 Outlook . 157

7 Acronyms 161

Bibliography 165

iv

List of Figures

2.1 IP Multicast Distribution using Routers to Replicate Data 11
2.2 Application Layer Multicast Distribution using End Systems . . . 13
2.3 Routing a Message using Pastry from Node BCD to Node EDE . . 19
2.4 Tapestry Routing from Node 8311 to Node 4985 with Prefix Match-

ing . 20
2.5 Server S Advertises his Object O on Node N using Tapestry 21
2.6 Nodes Joining a CAN . 22
2.7 Routing in CAN . 22
2.8 Example of a Chord P2P Network 24
2.9 Scribe Topic Data Dissemination 33
2.10 Multicasting using Bayeux for Tapestry 33
2.11 Multicasting in CAN . 34
2.12 Multicasting in Chord . 35
2.13 NICE Layers and Clusters . 36
2.14 Optimizing Fan-Out in NICE using ZigZag 38

3.1 QoS Supporting Multicast Tree 51
3.2 QoS Aware Distribution of Peer IDs for Pastry 55
3.3 QoS Support for NICE with Cluster Leaders having Highest QoS

Class . 56
3.4 Problem why QoS does not Work for ZigZag 57
3.5 Reducing Fan-Out with a Delegate and QoS Enabled NICE 57
3.6 QoS Support for Chord Multicasting 59
3.7 Problems with QoS for CAN using Coordinates for QoS Classes . 61
3.8 QoS for CAN with Layers . 62
3.9 Optimizing Layer Hop-Count . 63
3.10 End-to-end Paths Comparison regarding QoS Satisfaction with Hard

QoS and 64 QoS Classes . 72
3.11 Average and Maximum Path Lengths (in Hops) for all End-to-End

Paths . 72
3.12 Multicast Fan-Out in Native CAN and in OM-QoS CAN with Hard

QoS & 64 QoS Classes . 73
(a) Native CAN . 73
(b) OM-QoS CAN . 73

v

3.13 Multicast Hop Count in Native CAN and in OM-QoS CAN with
Hard QoS and 64 QoS Classes 73
(a) Native CAN . 73
(b) OM-QoS CAN . 73

3.14 Percentage of Multicast Messages Received in Native CAN and in
OM-QoS CAN with Hard QoS & 64 QoS Classes 74
(a) Native CAN . 74
(b) OM-QoS CAN . 74

3.15 Node to Root RTT in Native CAN and in OM-QoS CAN with Hard
QoS & 64 QoS Classes . 74
(a) Native CAN . 74
(b) OM-QoS CAN . 74

3.16 Node to Root QoS in Native CAN and in OM-QoS CAN with Hard
QoS & 64 QoS Classes . 75
(a) Native CAN . 75
(b) OM-QoS CAN . 75

3.17 Average Multicast Duplicates per Multicast Message in Native CAN
and in OM-QoS CAN with Hard QoS & 64 QoS Classes 75
(a) Native CAN . 75
(b) OM-QoS CAN . 75

3.18 Time Until a Node has Joined in Native CAN and in OM-QoS
CAN with Hard QoS & 64 QoS Classes 76
(a) Native CAN . 76
(b) OM-QoS CAN . 76

3.19 Time Until a Node has Left in Native CAN and OM-QoS CAN
with Hard QoS & 64 QoS Classes 77
(a) Native CAN . 77
(b) OM-QoS CAN . 77

3.20 Multicast Fan-Out for Native NICE with k = 3, k = 4, and k = 5 78
3.21 Multicast Hop Count for Native NICE with k = 3, k = 4, and k = 5 78
3.22 Node to Root RTT for Native NICE with k = 3, k = 4, and k = 5 79
3.23 Number of Cluster Mates for Native NICE with k = 3, k = 4, and

k = 5 . 79
3.24 Node to Root RTT in Native NICE and in OM-QoS NICE with

Hard QoS % 256 QoS Classes 80
(a) Native NICE . 80
(b) OM-QoS NICE . 80

3.25 Node to Root QoS in Native NICE and in OM-QoS NICE with
Hard QoS & 256 QoS Classes 80
(a) Native NICE . 80
(b) OM-QoS NICE . 80

3.26 Percentage of Multicast Messages Received in OM-QoS NICE with
Soft QoS & 256 QoS Classes . 81

vi

3.27 Number of Cluster Mates in OM-QoS NICE with Soft QoS & 256
QoS Classes . 82

3.28 Rejoin Duration in OM-QoS NICE with Soft QoS & 256 QoS Classes 82
3.29 Node to Root RTT Constraints Fulfilled in OM-QoS NICE with

Soft QoS & 256 QoS Classes . 83
3.30 Multicast Fan-Out in OM-QoS NICE using the Protocol Indepen-

dent Approach with Hard QoS & 32 QoS Classes 84
3.31 Multicast Hop Count in OM-QoS NICE using the Protocol Inde-

pendent Approach with Hard QoS & 32 QoS Classes 84
3.32 Node to Root RTT in OM-QoS NICE using the Protocol Indepen-

dent Approach with Hard QoS & 32 QoS Classes 85
3.33 Number of Cluster Mates in OM-QoS NICE using the Protocol

Independent Approach with Hard QoS & 32 QoS Classes 85
3.34 Node to Root RTT Constraints Fulfilled for Normal Join and for

RTT Constraints Aware Join in OM-QoS using Hard QoS with the
Protocol Dependent Approach 86
(a) OM-QoS NICE, Normal Join 86
(b) OM-QoS NICE, RTT Constraints Aware Join 86

3.35 Node to Root RTT after Join for Normal Join and for RTT Con-
straints Aware Join in OM-QoS using Hard QoS with the Protocol
Dependent Approach . 86
(a) OM-QoS NICE, Normal Join 86
(b) OM-QoS NICE, RTT Constraints Aware Join 86

3.36 Node to Root RTT Difference for Normal Join and for RTT Con-
straints Aware Join in OM-QoS using Hard QoS with the Protocol
Dependent Approach . 87
(a) OM-QoS NICE, Normal Join 87
(b) OM-QoS NICE, RTT Constraints Aware Join 87

3.37 Multicast Fan-Out using Forwarder Driven Multicast for Enhanced
Native Chord and for OM-QoS Chord with Hard QoS & 256 QoS
Classes . 88
(a) Enhanced Native Chord 88
(b) OM-QoS Chord . 88

3.38 Multicast Hop Count using Forwarder Driven Multicast for En-
hanced Native Chord and for OM-QoS Chord with Hard QoS &
256 QoS Classes . 89
(a) Enhanced Native Chord 89
(b) OM-QoS Chord . 89

3.39 Node to Root RTT using Forwarder Driven Multicast for Enhanced
Native Chord and for OM-QoS Chord with Hard QoS & 256 QoS
Classes . 89
(a) Enhanced Native Chord 89
(b) OM-QoS Chord . 89

vii

3.40 Node to Root QoS using Forwarder Driven Multicast for Enhanced
Native Chord and for OM-QoS Chord with Hard QoS & 256 QoS
Classes . 90
(a) Enhanced Native Chord 90
(b) OM-QoS Chord . 90

3.41 Node to Root RTT Constraints Fulfilled using Forwarder Driven
Multicast for Enhanced Native Chord and for OM-QoS Chord with
Hard QoS & 256 QoS Classes 90
(a) Enhanced Native Chord 90
(b) OM-QoS Chord . 90

3.42 Average Multicast Fan-Out using Receiver Driven Multicast for
Chord with Hard QoS Support 91

3.43 Average Multicast Hop Count using Receiver Driven Multicast for
Chord with Hard QoS Support 91

3.44 Average Node to Root RTT using Receiver Driven Multicast for
Chord with Hard QoS Support 92

3.45 Average Node to Root RTT Constraints Fulfilled using Receiver
Driven Multicast for Chord with QoS Support 93

4.1 Packet Flow between Applications and the Multicast Middleware . 101
4.2 Example Message Exchange using our Simple P2P Protocol . . . 105
4.3 P2P Overlay Network Scenario for the Functional Test Evaluation 107
4.4 Scenarios for the Multicast Middleware Throughput and Loss Eval-

uation . 108
4.5 Chain Topology Scenario used for the Delay and Loss Evaluation . 110
4.6 Tree Topology Scenario used for the Delay and Loss Evaluation . 111
4.7 Packet Loss Measured for both Scenarios in Fig. 4.4 115
4.8 Generated and Effectively Achieved Bandwidth for both Scenarios

in Fig 4.4 . 115
4.9 Packet Loss for IP Multicast in Chain Topology of Fig. 4.5 116
4.10 Latency w/o 5% Outliers for IP Multicast in Chain Topology of

Fig. 4.5 . 117
4.11 Packet Loss (P6) for IP Multicast in Tree Topology of Fig. 4.6 . . 117
4.12 Latency w/o 5% Outliers (P6) for IP Multicast in Tree Topology of

Fig. 4.6 . 118
4.13 Packet Loss for the Multicast Middleware in Chain Topology of

Fig. 4.5 . 118
4.14 Latency w/o 5% Outliers for the Multicast Middleware in Chain

Topology of Fig. 4.5 . 119
4.15 Packet Loss (P6) for the Multicast Middleware in Tree Topology

of Fig. 4.6 . 120
4.16 Latency w/o 5% Outliers (P6) for the Multicast Middleware in Tree

Topology of Fig. 4.6 . 120

viii

5.1 FileManagementGroup Communication in cMCFTP 125
5.2 Joining SendingGroups in cMCFTP 126
5.3 Sending and Receiving using SendingGroups in cMCFTP 127
5.4 MCFTP and BitTorrent Download Duration Factor for a 50 MB File 136
5.5 MCFTP and BitTorrent Download Duration Factor for a 100 MB

File . 136
5.6 Impact of Seeders on Download Duration Factor for MCFTP and

BitTorrent in 69 Node Scenarios 137
5.7 Impact of Seeders on Download Duration Factor for MCFTP and

BitTorrent in 304 Node Scenarios 137
5.8 cMCFTP Upload and Download Rates of the FileLeader for a 50 MB

File . 139
5.9 cMCFTP Upload and Download Rates of the FileLeader for a 100 MB

File . 140
5.10 Number of Seeders over Time for MCFTP and BitTorrent with a

100 MB File and 165 Nodes . 140
5.11 Number of Seeders over Time for MCFTP and BitTorrent with a

50 MB File and 511 Nodes . 141
5.12 Bytes Transferred over Time for MCFTP and BitTorrent with a 100

MB File and 165 Nodes . 142
5.13 Bytes Transferred over Time for MCFTP and BitTorrent with a 50

MB File and 511 Nodes . 142
5.14 MCFTP and BitTorrent Download Duration Factor in Overlay En-

vironment for a 50 MB File . 143
5.15 MCFTP and BitTorrent Download Duration Factor in Overlay En-

vironment for a 100 MB File . 144
5.16 Download Duration Factor for BitTorrent, dMCFTP, cMCFTP for

a 8 MB File . 145
5.17 Download Duration Factor for BitTorrent, dMCFTP, cMCFTP for

a 50 MB File . 146
5.18 Impact of Seeders on Download Duration Factor for 20 Nodes . . 147
5.19 Impact of Seeders on Download Duration Factor for 50 Nodes . . 147
5.20 Average Download Bandwidth Usage over Time (BitTorrent, dM-

CFTP, cMCFTP), 8 MB file, 20 Nodes 148
5.21 Average Upload Bandwidth Usage over Time (BitTorrent, dMCFTP,

cMCFTP), 8 MB file, 20 Nodes 149
5.22 Average Download Bandwidth Usage over Time (BitTorrent, dM-

CFTP, cMCFTP), 8 MB file, 50 Nodes 149
5.23 Average Upload Bandwidth Usage over Time (BitTorrent, dMCFTP,

cMCFTP), 8 MB file, 50 Nodes 150
5.24 Number of Seeders Development over Time (BitTorrent, dMCFTP

& cMCFTP with IP Multicast) for 20 Nodes with an 8 MB File . . 151
5.25 Number of Seeders Development over Time (BitTorrent, dMCFTP

with ALM and IP Multicast) for 20 Nodes with a 50 MB File . . . 151

ix

List of Tables

3.1 Parameters used for BRITE . 64
3.2 Delay Properties of Distance Matrices in ms 66
3.3 Random Seeds used for the Evaluations 67
3.4 Common Values Evaluated in Simulation Scenarios for CAN, NICE

and Chord . 67
3.5 Additional Values Evaluated in Simulation Scenarios for CAN . . 68
3.6 Additional Values Evaluated in Simulation Scenarios for NICE . . 69
3.7 Additional Values Evaluated in the Simulation Scenarios for Chord 70
3.8 Summary of Evaluation Results for Scribe/Pastry, CAN, NICE and

Chord . 94

4.1 Traffic Characteristics for the Delay and Loss Evaluation Scenarios 113

xi

Preface

The work presented in this thesis has been performed during my five-years em-
ployment as research and lecture assistant at the Institute of Computer Science
and Applied Mathematics (IAM) of the University of Bern, Switzerland. The re-
search conducted in this work has been partially supported by EuQoS Integrated
Project of the European Union 6th Framework Programme under contract IST FP6
IP 004503.

I would like to thank first my advisor, Prof. Dr. Torsten Braun, head of the Com-
puter Network and Distributed Systems group (RVS), who supervised my work. I
would also like to thank Prof. Dr. Pascal Felber for accepting to read and judge this
work, and both Prof. Dr. Oscar Nierstrasz and Prof. Dr. Edmundo Monteiro, who
were willing to be co-examiners of this work.

Many thanks go to my working colleagues and friends at the institute and in
our research group. It was a great joy to have worked with them in a friendly and
pleasant working environment. In particular, I would like to thank Carlos Anastasi-
ades, Markus Anwander, Thomas Bernoulli, Kirsten Dolfus, Marc Heissenbüttel,
Philipp Hurni, Patrick Lauer, Dragan Milic, Matthias Scheidegger, Marc-Alain
Steinemann, Thomas Staub, Markus Wälchli, Gerald Wagenknecht, Attila Wey-
land, Markus Wulff, and Zhongliang Zhao. I am also very grateful to Dragan
Milic, with whom I shared the office room during the five years of my PhD, who
also worked with me in the EuQoS project, and always was open for discussion
about my ideas and approaches.

I also would like to thank all the students, who contributed to this thesis in
one or more ways. In particular, thanks go to Sebastian Barthlomé, Luca Bet-
tosini, Ulrich Bürgi, Alican Geycasar, Milan Nikolic, Dominic Papritz, and An-
dreas Rüttiman, who performed their bachelor’s and/or master’s thesis with me.
Furthermore, I also like to thank Ruth Bestgen, the secretary of the RVS research
group, for her help and support during all these years. Finally, many thanks go to
Peppo Brambilla, the IAM’s system administrator, for joining our research group
during many lunches and for his patience and support on many system administra-
tion related issues.

I am very grateful to my family and my girlfriend Zora Lazarov, who supported
me in many ways. Furthermore, I would like to thank my friend Raphael Reitmann,
with whom I played squash during many years to compensate for the brain-centric
research.

xiii

Chapter 1

Introduction

1.1 Overview

In this thesis, we are looking for an answer to the following question:

“How can end users benefit from Internet-wide and QoS supporting
multicast services to efficiently disseminate data?”

The answer to this question offers a solution to three basic but connected problems
and is provided by our three main contributions:

• Quality of Service for Overlay Multicast to, e.g., guarantee bandwidth for
best user Quality of Experience (QoE);

• Providing IP Multicast Services via Peer-to-Peer (P2P) / Overlay Networks
to bridge IP Multicast with Application Layer Multicast;

• Efficient Data Dissemination using Cooperation of users to improve overall
data dissemination performance.

Our Quality of Service for Overlay Multicast framework “OM-QoS” aims to en-
able QoS for different ALM protocols. It facilitates the creation of QoS supporting
multicast trees. Therefore, the constructed P2P network and Application Layer
Multicast (ALM) topology also support QoS requirements. We investigated sev-
eral different Overlay Multicast protocols and came up with a series of protocol
dependent as well as protocol independent solutions to support QoS for ALM.

For Providing IP Multicast Services via P2P / Overlay Networks, we devel-
oped a bridge between IP Multicast and Overlay Multicast called the “Multicast
Middleware”. Therefore, end users can use the widely available IP Multicast API
that is supported by many applications. But, at the same time, end users are also
able to benefit from the use of multicasting mechanisms throughout the Internet.
This mapping of IP Multicast traffic to simple unicast packet flows makes it also
easier to support Quality of Service (QoS) for multicasting. Since the unicast con-
nections between the group members are established using a P2P network and are

1

1.2. PROBLEM STATEMENT

known in advance, unicast QoS reservations can be performed easily if the network
supports those.

To support Efficient Data Dissemination using Cooperation, we developed
Multicast File Transfer Protocol “MCFTP”. It enables more efficient usage of re-
sources (of routers and/or end systems), in order to distribute files among interested
users. This is achieved by using multicasting mechanisms to improve overall sys-
tem performance and to reduce bandwidth consumption as well as download time.

1.2 Problem Statement

To distribute data from one sender to multiple receivers efficiently and concur-
rently, multicasting is one of the most appropriate mechanisms. Unfortunately, IP
Multicasting, which would facilitate efficient group based communication in the
Internet, is not widely deployed. Thus, it can not be used by end users in the
Internet today. This is due to multiple reasons [61, 154, 63], which include:

• complex billing agreements between Internet Service Providers (ISP)

• security concerns (Denial of Service attacks, traffic volume control, etc.)

• configuration complexity (IP Multicast intra- and inter-domain routing setup)

• performance considerations (simple and high performance routers vs. com-
plex routers to support IP Multicast)

Application Layer Multicast (ALM), often also referred to as Overlay Multicast,
has been introduced to overcome the limitations of IP Multicast availability. ALM
use Peer-to-Peer (P2P) networks among the group members to distribute the mul-
ticast data.

To give the best service to end users, Quality of Service (QoS) mechanisms for
P2P/ALM networks are desirable to enhance user experience for applications like:

• Internet TV (IPTV)

• real-time multimedia (audio/video) broadcasting and streaming

• Massively Multiplayer Online Games (MMOG)

• Networked Virtual Environments (NVE)

• online collaboration tools

Various approaches [107, 105, 185, 106, 3, 189, 101] have been proposed to support
a certain degree of QoS in P2P/ALM networks. Unfortunately, these approaches
are often limited to improve (hop-by-hop) latencies [3], offering redundant paths,
or selecting local group clusters trying to support bandwidth requirements of users
[185]. Also, these different P2P/ALM protocols with limited QoS support are

2

1.3. QUALITY OF SERVICE FOR OVERLAY MULTICAST

normally only limited to specific application scenarios. Therefore, they are only
working for, e.g., low bandwidth video streaming or delay restricted small-group
collaboration networks. Generally, these solutions lack general QoS support for
multiple QoS aspects in different application scenarios. They are often limited
to provide the best possible service to end users rather than trying to match QoS
requests with appropriate QoS guarantees.

Data dissemination with collaborating users has also become very popular. Bit-
Torrent is one of the most used protocols used for file exchange between users. It
though relies only on unicast connections between the collaborating users. But,
such efficient and not concurrent file distribution mechanisms through the Internet
can also benefit from the multicasting paradigm to improve overall performance.

1.3 Quality of Service for Overlay Multicast

To give the best service to end users, Quality of Service (QoS) mechanisms for
P2P/ALM networks would be desirable. This would enhance user experience for
multimedia applications using P2P/ALM, such as multimedia audio/video (A/V)
streaming, IPTV services, massively multiplayer online games, real-time A/V con-
ferencing, collaboration tools, networked virtual environments, etc.

We offer a solution to this problem by providing the Quality of Service for
Overlay Multicast framework called “OM-QoS”. OM-QoS enables different P2P /
ALM protocols to support QoS. It basically enables the different protocols to build
multicast trees that are QoS aware and are built with a QoS supporting structure.

In order to support QoS for many different P2P/ALM protocols, we analyzed
various protocols, such as Scribe/Pastry, NICE, CAN, Chord, ZigZag, Tapestry.
We designed protocol dependent solutions for Scribe/Pastry, NICE, and Chord, but
also found a protocol independent solution that can be applied to arbitrary P2P
networks. The protocol independent solution has been evaluated using CAN and
NICE, but would work with any other P2P/ALM protocols as well.

To support QoS for P2P/ALM networks, we introduce the concept of QoS
classes, which facilitates aggregation of multiple QoS parameters into one dis-
crete QoS class value. Some restrictions though apply to this concept: it can only
support parameters that are independent of the path length. This means that param-
eters that depend on multiple hops, such as the round trip times (RTT), cannot be
supported by our presented QoS classes. Therefore, we considered RTT require-
ments separate from QoS classes. The node’s RTT requirements together with the
QoS class concept allow us to cover many QoS scenarios, where we can guarantee
bandwidth as well as end-to-end delays.

The results of the evaluations show that OM-QoS indeed enables QoS support
for the presented P2P/ALM protocols. Using OM-QoS, we were able to guarantee
QoS parameters, such as bandwidth or node to root RTT to the individual nodes
participating in the overlay network. This resulted in constructing multicast trees
that support these QoS requirements.

3

1.4. PROVIDING IP MULTICAST SERVICES VIA P2P / OVERLAY
NETWORKS

1.4 Providing IP Multicast Services via P2P / Overlay
Networks

ALM using P2P overlay networks could solve the problem of sparse IP Multicast
support in the Internet. A limitation of this approach is the lack of standardized
interfaces for existing IP Multicast applications. We propose a solution that bridges
ALM and IP Multicast and uses a P2P overlay network to transport multicast data.

Our solution uses an ALM for transporting multicast traffic over the Internet.
At the same time it offers a standard IP Multicast interface to applications on end
systems. This solution is based on the so-called Multicast Middleware. The Mul-
ticast Middleware enables the transparent use of ALM mechanisms for all IP Mul-
ticast enabled applications on end systems. This is achieved by using a virtual
network interface intercepting and forwarding multicast packets to the Multicast
Middleware. For the end system the virtual network interface seems to be a normal
Ethernet device attached to a fully featured Ethernet network with an IP Multicast
router. But in reality our Multicast Middleware provides these services through the
virtual network interface to the end system.

This mechanism can be used for high bandwidth and real time multimedia
streaming using, e.g., the IP Multicast enabled application Video LAN Client (VLC).
Generally, this approach allows end users to benefit from IP Multicast applications
and efficient multicast data dissemination without requiring additional service de-
ployment in the Internet to support IP Multicast.

To transmit the data using Overlay Multicast, we used Freepastry, a freely avail-
able implementation of the Scribe/Pastry ALM/P2P protocols. We implemented
the major part of the Multicast Middleware in a platform independent way (using
JAVA) supporting various operating system platforms, such as Windows, Linux and
Mac OS X. The virtual network interface was provided by using TUN/TAP, which
required only to implement a small operating specific component to communicate
with the Multicast Middleware.

We evaluated the Multicast Middleware regarding many aspects, such as through-
put, latency, loss, etc. Our evaluations show that the Multicast Middleware is a
viable solution for end users to support high-bandwidth and real-time supporting
IP Multicast applications. This includes audio/video streaming, IPTV services,
collaboration tools, massively multiplayer online games, networked virtual envi-
ronments, etc.

Mapping multicast communication to only unicast connections facilitates sup-
porting QoS more easily. The Multicast Middleware can perform QoS reservations
in the underlaying network if these are provided by QoS systems.The mechanisms
presented for Quality of Service for Overlay Multicast using the OM-QoS frame-
work for Scribe/Pastry were integrated to support constructing QoS-enabled mul-
ticast trees.

4

1.5. EFFICIENT DATA DISSEMINATION USING COOPERATION

1.5 Efficient Data Dissemination using Cooperation

There are many different approaches (e.g., Bullet [100], FastReplica [53], Slurpie
[157], BitTorrent [26]) on how data among multiple downloaders / subscribers can
be distributed in an efficient way. The goal is to reduce download time of the
individual downloaders even if the server or provider is overloaded, or if no such
central provider is available at all.

Normally, these approaches rely on the cooperation of the downloaders by re-
distributing their already partially downloaded data. Therefore, users interested in
specific data join a general or dedicated network. Data is then exchanged among
the peers, either with the help of a resource provider outside the P2P network or
completely isolated inside the P2P network.

A very popular protocol to distribute data efficiently is BitTorrent. Users share
their resources to improve overall download performance. But, BitTorrent and
many other solutions use only unicast connections. Therefore, they can not benefit
from the efficiency provided by the multicast paradigm.

To improve resource usage in the network or at the end systems, we developed
MCFTP, a Multicast File Transfer Protocol. Like BitTorrent, files are broken down
into pieces and distributed among peers in the P2P network. But, in contrast to Bit-
Torrent, MCFTP uses multicast communication to distribute the pieces. It supports
either IP Multicast or ALM communication to disseminate the data.

We compared the performance of MCFTP to BitTorrent using the ns2 network
simulator in IP Multicast and Overlay Multicast scenarios. The focus of these eval-
uations was on small to large scale networks. Furthermore, we also implemented a
prototype of MCFTP using JAVA. The prototype implementation based on Freep-
astry was evaluated in a local testbed. It supports IP Multicast as well as Overlay
Multicast in the form of Scribe/Pastry. We compared our prototype implementa-
tion of MCFTP to Azureus, which is a popular BitTorrent client available for many
operating system platforms. The focus of the prototype evaluation was on small
scale networks and to validate a proof of concept implementation of the MCFTP
protocol for the Internet.

The results of the evaluations using the network simulator and using the pro-
totype implementation in a local testbed show that MCFTP is a viable alternative
to BitTorrent for efficient data dissemination using multicasting and collaboration.
MCFTP performs better regarding download times and end system resource usage
in terms of bandwidth. Hence, using multicast for data dissemination not only im-
proves download times but also reduces overall resource usage on routers and/or
end systems by decreasing bandwidth consumption.

5

1.6. CONTRIBUTIONS

1.6 Contributions

We built a framework that enables QoS support for various P2P/ALM protocols
such as Scribe/Pastry, CAN, NICE, Chord, etc. using protocol dependent and
protocol independent solutions. While the protocol dependent approach exploits
specific P2P/ALM protocol features to introduce QoS, the protocol independent
approach can be applied to almost any P2P/ALM in order to enable QoS. Various
QoS parameters, such as bandwidth requirements and RTT constraints are sup-
ported. A particular feature of our solution is the support of QoS classes, which
facilitates combining various QoS parameters into one distinct value. Hence, end
users can now benefit from QoS support for various applications, such as multi-
media streaming, massively multiplayer online games, networked virtual environ-
ments, conferencing, etc. We showed that a majority of the end-to-end paths in a
P2P/ALM network using our framework support the QoS requirements of the indi-
vidual end systems. Our framework only introduces a slight overhead in terms of
multicast hop count, fan-out, node to root RTT, etc.

Furthermore, we built middleware bridging IP Multicast and P2P / ALM. Hence,
end users can benefit from IP Multicast through the Internet, even though their
Internet service providers or the networks along the transmission path might not
support it. A key characteristic of our middleware is that it runs on various oper-
ating systems (Mac OS X, Win32, Linux) and supports high bandwidth applica-
tions with transmission rates above 100 Mbps. With our solution, we can support
different high-bandwidth and delay sensitive scenarios, such as real-time video
broadcasting, IPTV services, massive multiplayer online games, and others. Also,
the Multicast Middleware has been combined with our QoS framework. This en-
ables existing IP Multicast applications to work Internet-wide as well as to support
QoS. Hence, we can now build multicast trees using P2P/ALM to support QoS
requirements and capabilities of end systems while offering the widely used and
standardized IP Multicast API to applications.

Additionally, we designed a multicast based protocol for data dissemination
using cooperation, which allows users to exchange data more efficiently. This pro-
tocol can be used with IP Multicast or P2P/ALM. It has been designed to support
various P2P/ALM protocols. Overall download times are reduced and also the
bandwidth usage in end systems and in routers is decreased compared to traditional
data dissemination protocols. One peculiarity of this protocol is that it can run in
centralized and decentralized modes, which have their individual advantages. A
high degree of optimization can be achieved in the centralized version, where one
entity has the overview of all entities involved in the data dissemination. The de-
centralized version is more scalable and more robust regarding node failures, since
the strategy and algorithms for dissemination are distributed. Finally, using the
previous contributions presented, our protocol can be enhanced to support QoS in
order to further enhance reliability and to optimize loss rates.

6

1.7. THESIS OUTLINE

1.7 Thesis Outline

In Chapter 2, we have a look at related work required to understand this thesis. We
will describe the multicasting paradigm, implementations of multicast, as well as
different Peer-to-Peer and Application Layer Multicast (ALM) protocols. Besides
giving an overview, we focus on the different protocols relevant for this work.

The Quality of Service for Overlay Multicast Framework “OM-QoS” is pre-
sented in Chapter 3. OM-QoS aims to enable QoS guarantees with multiple QoS
aspects (bandwidth, end-to-end delays, loss rate, hop-by-hop jitter, etc.) for var-
ious P2P/ALM networks and application scenarios. First, the structure of QoS
supporting multicast trees are described. Then, the solutions that require some
protocol specific modifications of the P2P/ALM protocols are presented as well as
a protocol independent solution using layers. Our approach is able to support mul-
tiple hop-by-hop dependent QoS parameters aggregated into discrete QoS classes,
while also supporting end-to-end delay requirements in the form of node to root
RTT guarantees. The different approaches of OM-QoS and their application to the
investigated protocols is evaluated using simulations.

There are many different P2P and ALM protocols. Each of the different pro-
tocols may be targeted at certain specific scenarios or use cases. Unfortunately,
no standard for P2P/ALM exists as this is the case for IP Multicast. Therefore, it
would be desirable to be able to profit from both IP Multicast and ALM together
in a combined manner. In Chapter 4, we describe the Multicast Middleware, our
solution for providing IP Multicast services via P2P / Overlay Networks. It fa-
cilitates using the IP Multicast API while data is though transmitted using ALM
mechanisms. This is done in a completely transparent way for applications. The
presented solution enables end users to use IP Multicast functionality through the
Internet without requiring any IP Multicast support by the network and routers.
Hence, users can benefit from widely available applications supporting IP Multi-
cast while not being limited by the lack of a global deployment of IP Multicast.
After a presentation of the design and implementation, we show different eval-
uations that have been performed to determine the performance of the Multicast
Middleware.

Our solution for efficient data dissemination using cooperation with the help
of multicasting called “MCFTP” (Multicast File Transfer Protocol), is presented in
Chapter 5. We first explain how MCFTP works and then compare it to BitTorrent.
MCFTP enables efficient usage of already downloaded sub parts of files for direct
retransmission while also benefiting from the multicast paradigm for efficient net-
work communication. Using a simulator, MCFTP is evaluated and compared with
BitTorrent in terms of performance regarding download time, bandwidth usage,
etc. Also, a prototype implementation is presented, which has been evaluated and
compared with the popular BitTorrent implementation Azureus. The evaluations
have been performed using IP Multicast and Overlay Multicast scenarios. These
scenarios have been evaluated in a local testbed.

Chapter 6 concludes this thesis with a summary, conclusion and outlook.

7

Chapter 2

Related Work

2.1 Introduction

In this Chapter, a general introduction to Multicasting, Overlay Networks, and
Quality of Service (QoS) concepts is given. We focus on topics relevant for bet-
ter understanding this thesis. Overlay Networks are often also called Peer-to-Peer
(P2P) networks. Multicasting using Overlay Networks is often referred to as Over-
lay Multicast or Application Layer Multicast (ALM).

The presented protocols and concepts in this Chapter represent only a subset
of all available related systems. There exists a wide variety of P2P/ALM protocols
and concepts with various characteristics and features. We have chosen the ones
that are important to understand the contributions of this thesis and that represent
mixed characteristics of P2P/ALM concepts and protocols. Some of the presented
protocols have been extended, improved or were used to compare our contributions
with. We also present some early work done in the field of P2P/ALM research.

Multicasting is an efficient mechanism for a sender to distribute data to many
receivers concurrently. Unfortunately, IP Multicast (the multicasting implementa-
tion for the Internet) is not widely available to the end user in the Internet today.

P2P networks solve different problems of classical client-server approaches,
such as scalability, reliability, cost-efficiency and many more. There is no distinc-
tion in P2P networks between servers and clients. Every peer can be server, client
or both at the same time. P2P networks are usually self-organizing which means
that they do not require any special infrastructure support. They also adapt very
well to changing conditions, such as leaving/joining of peers, network failure, etc.

ALM, Overlay Multicast or End-System Multicast offers multicasting func-
tionality to end users independent of the availability of IP Multicast. ALM pro-
tocols often run on-top of existing P2P Overlay Networks, in order to offer an
efficient and reliable multicasting service.

To give the best service to end users, QoS mechanisms for P2P/ALM networks
would be desirable. This enables enhancing user experience for applications such
as IP-TV, multiplayer online games, etc. The introduction of QoS mechanisms for
P2P/ALM networks is one of the goals of this thesis.

9

2.2. MULTICASTING

Section 2.2 gives an overview of the multicasting paradigm and different imple-
mentations, such as IP Multicast and Overlay Multicast. In Section 2.3, we present
an overview of different P2P networks, look at the relevant protocols for this the-
sis, and present some P2P applications in Section 2.4. An ALM overview with a
more detailed analysis of the relevant protocols is given in Section 2.5, and some
ALM applications are presented in Section 2.6. Quality of Service and solutions to
support QoS for P2P/ALM networks are presented in Section 2.7.

2.2 Multicasting

2.2.1 Overview

Multicasting [115] is an efficient mechanism for a sender to distribute, e.g., mul-
timedia data to many receivers concurrently. Multicast communication enables
delivery of data (such as audio or video streams) from one sender to multiple re-
ceivers (a group of hosts interested in receiving the data) with minimal network
overhead. With unicast communication, the sender must send the data separately
to each receiver.

Using the multicast communication paradigm in the Internet, enables replica-
tion of data packets by the transporting routers or in end systems only when needed.
In this way, the network load is minimized – the data flow traverses each link at the
most optimal case only once.

2.2.2 IP Multicast

The Internet Protocol (IP) [133] is designed with built-in support for multicast [60,
72, 48] communication. IP Multicast has been proposed and specified two decades
ago. It reduces network load by eliminating the redundancy of data transfer by
replicating data in routers only when required. It is a concept for efficient n-to-m
data dissemination over IP networks.

Basically in IP Multicast, the sender sends an IP datagram to a so-called group
address. Such an address is a special IP address from a predefined range [6, 91]
reserved for use as multicast group addresses. The IP datagram is forwarded to
all receivers interested in receiving the data by replicating the IP datagram on the
path to the receivers only when needed. Therefore, all hosts, which are interested
in receiving data that is sent to a multicast group address, must subscribe to that
address. An IP packet sent to a multicast group address is forwarded to all sub-
scribed hosts for this group. To achieve this, IP routers in the Internet must have
information over which network interfaces an IP packet with a destination address
of a multicast group has to be forwarded. This information is exchanged between
all IP routers, which may be involved in the forwarding process.

On a global scale, routing information for one multicast group is represented
as a so called multicast tree. The root of a multicast tree is the sender of the corre-
sponding IP Multicast packets. Routers that are involved in transporting multicast

10

2.2. MULTICASTING

traffic are represented as nodes in this multicast tree and receivers are represented
as leaves. Upon reception, routers in this multicast tree replicate IP Multicast pack-
ets to their children nodes. By doing so, IP routers minimize the overall network
load compared to using unicast transmission where the sender sends the same IP
datagram once for each receiver.

Sender

Receiver

Receiver

Receiver

Receiver

ReceiverRouter

RouterRouter Router

Router Router

Router

Router

Sender

Receiver

Receiver

Receiver

Receiver

ReceiverRouter

RouterRouter Router

Router Router

Router

Router

Multicast Packet Flow

Physical Link
P2P Link

Multicast Packet Flow

Physical Link

Figure 2.1: IP Multicast Distribution using Routers to Replicate Data

An example of a typical IP Multicast tree with one sender and multiple re-
ceivers is presented in Fig. 2.1. IP Multicast data is replicated at routers on the
path from the sender to the subscribed end systems. The sender only sends the in-
formation once and routers take care of replicating the information where needed.
There is no redundancy of data transport through the physical network links. In
this way, the network load is minimized compared to unicast transmission. Using
unicast, the sender would have to send the same IP datagram once for each receiver.

Unfortunately, even today, IP Multicast has not been widely deployed in net-
works of commercial Internet service providers (ISPs). Some reasons [61, 154, 63]
for this are:

11

2.2. MULTICASTING

• IP Multicast must be supported by all routers on the path from source to
destination.

• Additional inter-ISP coordination is required (policy issues of inter-domain
routing).

• IP Multicast routing can be very resource intensive.

• Security concerns have to be addressed.

• Charging and inter-provider billing issues have to be solved.

2.2.3 MBONE

As a transition between the Internet without IP Multicast and its full availability to
the end user, the MBONE [64, 147] approach has been proposed. In MBONE, the
Internet is considered as a set of isolated IP Multicast enabled “islands”. These “is-
lands” are interconnected by an overlay network of tunnels. The overlay network
is used to tunnel IP Multicast traffic between MBONE islands over parts of the
Internet that support only unicast traffic. MBONE tunnels are implemented using
the loose source routing (LSRR IP option) or by encapsulating IP Multicast pack-
ets in unicast packets. The drawback of this approach is that those tunnels have to
be set up manually. As a consequence, the tunnel end-points must be permanently
available and require fixed IP addresses.

This prohibits most Internet end users from using MBONE, since usually, end
users are not permanently connected (e.g., using a modem). Normally, end users
also do not have fixed IP addresses assigned when they are using modem, cable or
xDSL connections. Furthermore, most of the typical Internet users can not handle
the administrative overhead and coordination requirements of MBONE.

2.2.4 Overlay Multicast

Since MBONE was not able to provide multicast communication to end user in the
Internet, numerous solutions were proposed to address this problem. The rising
popularity of P2P [10, 108] networks lead to a revival of multicast in the form of
ALM [86], which is often also referred to as Overlay Multicast. ALM mechanisms
use similar methods as IP Multicast for data dissemination, but move the task of
replicating multicast data from routers to end systems.

The advantage of this approach is that ALM mechanisms do not require mul-
ticast support by the routers, the network, nor the operating system. On the other
hand, the replication of data only on end systems is not as efficient as replication
in routers. For example, Fig. 2.2 shows a typical ALM scenario, which uses only
unicast communication between end systems to enable multicast services. In com-
parison to IP Multicast (presented in Fig. 2.1), there is some redundancy of data
that is sent over physical links.

12

2.2. MULTICASTING

Sender

Receiver

Receiver

Receiver

Receiver

ReceiverRouter

RouterRouter Router

Router Router

Router

Router

Sender

Receiver

Receiver

Receiver

Receiver

ReceiverRouter

RouterRouter Router

Router Router

Router

Router

Multicast Packet Flow

Physical Link
P2P Link

Multicast Packet Flow

Physical Link

Figure 2.2: Application Layer Multicast Distribution using End Systems

The reason for this is that replication of data is only done on end systems and
not on routers. Although ALM mechanisms can never achieve the efficiency of IP
Multicast regarding the usage of network resources, they are still much more effi-
cient than unicast communication between a sender and all its receivers. The effi-
ciency of Application Layer Multicast depends on the overlay network construction
and routing. With an optimal overlay topology, Application Layer Multicast can
approximate the efficiency of native IP Multicast.

The advantages of ALM mechanisms are that they are designed to be self-
organizing and fault-tolerant, which make them easier to deploy than MBONE.
This makes ALM mechanisms better candidates for deploying multicast services
to end users. The drawback of using ALM mechanisms is that the protocols used
and APIs are not standardized, which makes application development dependent on
specific ALM protocols. Another drawback is that existing IP Multicast enabled
applications would have to be adapted to the specific API of ALM protocols.

13

2.2. MULTICASTING

2.2.5 Multicast Applications

IP Multicast Applications for Collaboration and Video Streaming

Although IP Multicast is not widely available, there exist numerous applications
using it. With the rise of MBONE, several applications have been introduced to
make use of efficient multicast data distribution. The MBONE video conferencing
tools for example include among others:

• vat (visual audio tool) [169, 170]

• nv (Network video tool) [123]

• vic (video conferencing tool) [171, 172]

• NeVoT (network voice terminal) [120, 121, 151]

• wb (white board) [178]

• INRIA Videoconferencing System (ivs) [93]

Many other IP Multicast applications exist [115]. The Access Grid Project,
for example, offers the Multicast Application Sharing Tool (MAST) [103, 110].
Microsoft research developed the advanced collaboration and interactive distance
learning software called ConferenceXP [56]. This software also uses IP Multicast
to achieve an efficient communication between the collaborating parties. Video
LAN Client (VLC) [174] is an IP Multicast enabled video broadcasting and video
playback tool, which we also used to test and evaluate our Multicast Middleware.

Virtual Environments, Massively Online Multiplayer Games and Collabora-
tion Tools using Overlay Multicast

There are also many other application scenarios, which can benefit from multicas-
ting. These scenarios are though often based on Overlay Multicast, each having
their own application specific optimized multicast implementation.

Such application scenarios include collaboration tools for audio/video confer-
encing and concurrent document editing. An end system multicast protocol for
collaborative virtual environments has been presented in [87]. The authors propose
their own end system multicast protocol for multi-sender virtual teleconference ap-
plications. A controllable audio/video collaboration system based on multicast is
presented in [187, 186]. The presented system has been implemented and applied
on the China education and research network CERNET. Momocomm [117] is an
implementation of a multi-objective optimization based multicast overlay commu-
nication primitive, which can be used for P2P real-time collaboration tools.

Other scenarios could include Network Virtual Environments (NVEs), such as
massively multiplayer online games (MMOGs), where multicast groups could be
formed among party members, local regions in the game, different chat channels,

14

2.2. MULTICASTING

guild members, etc. Multicast reflectors for multiplayer online games have been
proposed in [18]. Furthermore, a general communication architecture, which cov-
ers centralized, distributed and hybrid architectures has been presented in [17].
The architecture uses, depending on the application scenario, either client-server,
P2P or a federated P2P approach. A hybrid MMOG architecture called MM-VISA
(Massively Multiuser VIrtual Simulation Architecture) has been presented in [5].
The virtual world is decomposed into smaller manageable zones, which is then re-
flected into according P2P networks. There are also libraries available to support
scalable P2P NVE applications and MMOGs. VAST [168] is such a light-weight
network library, which is based on a Voronoi-based Overlay Network (VON) as
presented in [89, 88]. But, all these applications normally use their own special-
ized implementation of Overlay Multicast tightly integrated into the applications.
They usually do not use existing multi-purpose ALM frameworks.

2.2.6 Communication Restrictions for Multicasting

Besides the lack of global IP Multicast support, there are further limiting factors
for communication in the Internet. The most severe impact on the communication
limitations come from Firewalls and Network address translators (NATs). These
devices restrict the ability of a host to open connections to hosts in other networks.

Firewalls are network devices that filter portions of network traffic based on
protocol header information and/or data payload of IP packets. They are used to
protect network devices within a private network from intrusions from the Internet.
Firewalls normally limit the ability of hosts in the Internet to connect to hosts
behind them. In some networks, they are also used to prevent communication of
hosts behind the firewall with hosts in the Internet.

Such installations are used as a preventive measure against Trojan horses, In-
ternet worms, etc. This also limits the use of P2P/ALM applications on hosts
behind firewalls, since these applications assume universal connectivity between
hosts. Firewalls also have to handle and take care of the special nature and threats
arising of relaying IP Multicast traffic [73].

The address space of the IP protocol version 4 is limited to 232 addresses. In
addition, there are IP address ranges that cannot be used for end host addresses,
such as the address ranges reserved for private use, the IP Multicast address range,
the network addresses, and the broadcast addresses. To overcome this limitation,
NATs were introduced.

NATs are network devices, which allow a whole private network to appear as
one IP address on the Internet. NATs achieve this by modifying the outgoing traf-
fic to appear to be originating from the same IP address. The incoming traffic is
reverse-mapped to its corresponding destination in the private network. The map-
ping of public IP address port numbers to private address port numbers and the
IP address/port pair is stored inside the NAT. Traffic incoming from the Internet is
translated to the private addressing scheme according to the stored mapping and
forwarded to the private network. In this way, a NAT provides Internet connectiv-

15

2.3. PEER-TO-PEER NETWORKS

ity for all host in a private network using only one public IP address visible from
the Internet. The drawback of using NATs is that P2P/ALM communication is
affected, since end systems behind a NAT are not able to accept any incoming con-
nections. There are several proposals for solving this problem such as UPNP [165].
Nevertheless, no universal solution for this problem is available currently. Another
issue with NATs is that the idea of IP addressing, where each host has a unique
address, is violated. The hosts behind a NAT usually have an IP address from a
range of IP addresses that are reserved for private use (10.0.0.0/8, 192.168.0.0/16
or 172.16.0.0/20). This means that there are potentially many hosts with the same
IP address. This aspect of NATs also subverts different P2P node ID generation
schemes, which assume that every host has a unique IP address.

All communication obstacles presented also apply to IP Multicast. In reality
NATs and firewalls are widespread and restrict the connectivity of the endpoints.
For an in-depth analysis of connectivity restrictions for overlay networks see [76].

In this thesis, we will not consider connection restrictions, because they are
not our main focus. Nevertheless, these problems are nowadays also starting to be
addressed by P2P/ALM networks. Therefore, choosing an ALM for our proposed
solutions in this thesis that addresses the mentioned issues, reduces the impact of
connection restrictions on our presented work.

2.3 Peer-to-Peer Networks

2.3.1 Overview

The use of Peer-to-Peer (P2P) [10, 108] has become very popular over the past few
years. Different Peer-to-Peer (P2P) architectures [9, 143, 188, 136, 161, 160, 185]
exist. Each of them have their own advantages and disadvantages depending on the
application they are targeted at.

The authors of [10] give a survey of Peer-to-Peer content distribution technolo-
gies. A framework for analyzing peer-to-peer content distributing technologies is
presented. It focuses on nonfunctional characteristics like security, scalability, per-
formance, fairness and resource management. Studies about routing mechanisms,
applied distributed object location mechanisms, content replication, caching, mi-
gration and security related issues are also performed in that paper. The security
issues include encryption support, access control, authentication, etc. In the au-
thors perspective, there exist two defining characteristics of Peer-to-Peer architec-
tures. The first is sharing computer resources by direct exchange. The second is
treating instability and variable connectivity as the norm. They propose a classifi-
cation of peer-to-peer applications. This is done in regard of communication and
collaboration, distributed computation, Internet service support, database systems
and also content distribution. Furthermore, they investigate the overlay network
centralization and classify it into purely or partially centralized and hybrid decen-
tralized architectures. Also, the different overlay network structures are classified
into different categories of overlay networks.

16

2.3. PEER-TO-PEER NETWORKS

In [108], a survey and comparison of various P2P overlay networks is pre-
sented. The different overlay network schemes investigated are categorized into
these two groups. The design of the different overlay network protocols is ana-
lyzed regarding various criteria. These include look-up protocol, system param-
eters, routing performance, security, reliability / fault resiliency, and many more.
Their final thoughts are about directions for the future in P2P overlay networking
research. This includes concerns about mapping the virtual topology of P2P net-
works to the underlaying physical network infrastructure. They also plead a case
for introducing some sort of incentive model using economic and game theories for
encouraging peers to collaborate. Also trust and reputation is deemed important for
enabling secured and trustworthy P2P overlay communication.

A Resilient Overlay Network (RON) [9, 139] presented in Section 2.3.2 pro-
vides an architecture to improve robustness and efficiency of communication for
distributed applications. Nodes in RON monitor and probe paths in the overlay
network. By exchanging the monitored and probed information with other RON
nodes, they can decide to either use direct routing offered in the Internet or route
via other RON nodes to reach the destination. Hence, RON supports application-
specific metrics for routing and can provide alternative routes to reach a destination
instead of relying on default routing mechanisms of the Internet.

Pastry [143, 51] presented in Section 2.3.3 is a scalable distributed object loca-
tion and routing substrate for P2P applications. In Pastry, peers assign themselves
a randomly chosen ID when they join the P2P network. To route a message to a
certain Peer, Pastry uses an efficient routing algorithm, which scales logarithmi-
cally with the number of peers in the P2P network. Pastry is self-organizing and
completely decentralized. It also takes peer proximity information (in terms of
end-to-end delay) into account to minimize the distance messages are traveling.

Tapestry [188] is mainly used for distributed data storage. Therefore, it pro-
vides a location and routing infrastructure to peers participating int the overlay
network. Data objects stored at specific locations in the overlay are advertised
and replicated at other peers. Look-up messages to find specific objects are routed
trough the overlay to the closest copy of a stored object. Load at the object’s lo-
cation is reduced due to advertisement caching and object replication. The main
features of Tapestry are self-administration, fault tolerance, and resilience under
load. In Section 2.3.4, more details about Tapestry will be presented.

Content Addressable Networks (CAN) [137, 136] presented in Section 2.3.5
use a virtual d-dimensional Cartesian coordinate space to store key - value pairs.
The space is partitioned into n (number of hosts) zones, which correspond to the
keys. Each node is responsible for managing one part of the coordinate space. The
coordinate space has to be rearranged if new nodes join, existing zones have to be
divided between the new and existing nodes. Changes of zones are propagated to
neighbors (adjacent zones), who update their neighbor sets. Neighbor sets contain
all information about adjacent zones for a host. Routing is greedy using the neigh-
bor closest to the destination as next hop. Multicast is done by sending a message
to all the neighbors of a host with a duplicate suppressing mechanism.

17

2.3. PEER-TO-PEER NETWORKS

Chord [161, 160] is a Distributed Hash Table (DHT) [97] based structured P2P
network. It offers efficient location of the node that stores a desired data item.
Chord uses a distributed look-up protocol for object location. Chord is very scal-
able and simple in its architecture. The communication costs and states maintained
by nodes scale logarithmically regarding the number of Chord nodes. Chord uses
successor lists and finger tables to optimize routing in the overlay network. The
overlay structure is periodically optimized using stabilization, which refreshes or
updates finger table entries and successors incrementally. In Section 2.3.6, more
details about Chord will be presented.

2.3.2 RON

A Resilient Overlay Network (RON) [9, 139] provides a robust and efficient com-
munication architecture for distributed Internet applications by building an overlay
network. RON supports detection and quick recovery (in terms of seconds) from
path outages. To achieve this, RON nodes monitor paths of the overlay network that
they built among themselves. Using this monitoring information, RON nodes can
decide to either route packets directly over the Internet using default Border Gate-
way Protocol (BGP) [138] routing to reach the destination, or by using other RON
nodes circumventing BGP policy routing. This facilitates more efficient / robust
routing and also supporting application-specific routing metrics. RON can bypass
link failures by often only using one intermediate hop. Nodes in RON share the
monitored and probed information among each other. The monitoring and probing
metrics include packet loss rate, available throughput, and latency.

RON nodes are distributed over different routing domains and build an overlay
network in order to forward data on behalf of any pair of RON nodes that wants
to communicate with each other. Because of the nature of the Internet, routing
domains very seldom share interior links and generally have failures independently
of each other. Hence, RON often finds paths between its nodes if the underlying
topology has physical path redundancy, even when BGP fails to do so.

RON includes several components: overlay configuration / maintenance, prob-
ing / outage detection, routing around outages / performance failures, application-
controlled / policy / multi-path routing, data forwarding, BGP interactions, etc.
Applications using RON include resilient VPN, resilient video conferencing, etc.

2.3.3 Pastry

Pastry [143, 51] is a P2P location and routing substrate with a ring structure (one-
dimensional torus). Each peer is identified by a 128 bit long ID. This ID is ran-
domly chosen when joining a Pastry network. The choice of IDs is uniformly
distributed. As a consequence, the choice of the ID neither takes locality nor QoS
requirements into account.

Each Pastry peer has a routing table with the size of (2b − 1) ∗ dlog2bNe + l
entries. The routing tables are organized into dlog2bNe rows with each 2b − 1

18

2.3. PEER-TO-PEER NETWORKS

entries. The entries of row n of a peer’s routing table point to other peers, which
share the same first n digits of their ID with the peer itself. But, the digit at position
n+1 has one of the 2b−1 possible values different from the digit at position n+1 of
the peer’s ID. Each entry in the routing table consists of the destination’s ID and its
corresponding IP address. Additionally, each peer maintains a list of numerically
closest peers (IDs and IP addresses) with l/2 entries for the larger and l/2 entries
for the lower IDs. Locality is taken into account by choosing the closest peer (in
terms the network latency) among candidates for an entry in the routing table. A
message is routed to the closest neighbor found in the peer’s routing table whose
ID matches the messages destination ID prefix.

Routing uses less than dlog2bNe steps on average, where N is the amount
of peers in the pastry Network and b is typically a parameter with the value 4.
Pastry guarantees eventual delivery of a message unless l/2 or more peers with an
adjacent ID fail at the same time, with l, an even number parameter, being typically
16. Routing in Pastry uses Plaxton’s method [132]. Each hop from source to
destination tries to match one or more prefixes of the message’s destination address.
A peer has more information about ID-neighbors (matching many prefixes of the
ID left to right) than about ID-distant peers matching less ID prefixes (left-to-right).
Routing in Pastry is proximity aware. Each hop from source to destination tries to
minimize the intermediate hop-delay. Therefore, the overall end-to-end delay can
be optimized up to a certain degree.

EDE

FFB

FFF

EDC

EAA

DAB

CAB

BFF

AFB

BCD

DBA

AAA

(1)

(2)

(3)

FAD

Figure 2.3: Routing a Message using Pastry from Node BCD to Node EDE

Figure 2.3 shows a simplified example of Pastry’s prefix matching routing
mechanism. In the example we want to route a message from the source BCD

19

2.3. PEER-TO-PEER NETWORKS

to the destination EDE. The source only knows the node EAA, which shares the
first prefix with the destination address EDE. The message is forwarded (1) to this
node, which forwards (2) the message to EDC matching the next prefix of the desti-
nation address in its own routing table. Finally, node EDC delivers (3) the message
to the destination EDE, which it knows directly. If there is no node, with the ID of
a message’s destination address assigned, the node with the ID numerically closest
to the destination address is responsible for message message.

2.3.4 Tapestry

Tapestry [188] is similar to Pastry as described in Section 2.3.3 and uses also prefix
routing as described before with randomly assigned IDs. The prefixes are matched
from right-to-left, whereas Pastry uses left-to-right prefix matching. Figure 2.4
shows a simplified example of Tapestry’s routing mechanism. In the example, a
message is sent from node 8311 to node 4985. On each hop, one additional prefix
is matched (xxx5→ xx85→ x985→ 4985).

1385

7985
4985

8311
5695

Figure 2.4: Tapestry Routing from Node 8311 to Node 4985 with Prefix Matching

Tapestry is mainly used for distributed data storage. An example is shown in
Figure 2.5. A data object O stored at S is advertised sending a publish message
to N (whose ID = hash(O)) using Tapestry’s routing. Intermediate nodes on
the path cache this advertisement. Nodes requiring the location information of
object O can find and contact N . The do this using the hash function hash(O) but
might already get an answer from a node on the path to N caching the requested
information. Caching reduces the load on the look-up node N .

20

2.3. PEER-TO-PEER NETWORKS

cache
(O,S)

cache
(O,S)

N

S

cache
(O,S)

Figure 2.5: Server S Advertises his Object O on Node N using Tapestry

2.3.5 CAN

CAN [137, 136] P2P networks are built using a virtual d-dimensional coordinate
space (d-torus). Each new node joining the CAN P2P network assigns itself some
random coordinates in the virtual space. It then finds an existing node responsible
for the sub-part of the space, in which the new node’s coordinates lay. The node
responsible for that sub-space then splits its sub-part of the space in half and assigns
one half to the new node and keeps the other part to itself. Responsible nodes for
the adjacent zones to the newly created sub-parts (neighbors) are then updated with
the new information.

An example of a join sequence in a 2-dimensional CAN is described in Fig. 2.6.
The first node assigns itself the coordinates (0.8, 0.6). Since no other node is yet
inhabiting the CAN space, this first node becomes responsible for the full coordi-
nate space of CAN [0-1),[0-1). The second node joining the network assigns itself
the coordinates (0.3,0.4). The first node then splits its responsible space in half and
assigns the part, in which the new node’s coordinates are located to the new join-
ing node. Therefore, the second node is now responsible for the zone [0-0.5),[0-1),
whereas the first node now is only responsible for the zone [0.5-1),[0-1). The third
node joining with coordinates (0.2,0.9) triggers the second node to split its zone.
The second node’s new zone is set to [0-0.5),[0-0.5) and the new joining node be-
comes responsible for the zone [0-0.5),[0.5-1). Finally, a fourth node with the coor-
dinates (0.4,0.7) joining CAN becomes responsible for the zone [0.25-0.5),[0.5-1).
The splitting third node is now only responsible for the zone [0-0.25),[0.5-1).

21

2.3. PEER-TO-PEER NETWORKS

2
(0.3,0.4)
[0-.5),[0-1)

1
(0.8,0.6)
[.5-1),[0-1)

2) node 2 joins and
space of 1 is split

3
(0.2,0.9)

[0-.5),[0.5-1)
1

(0.8,0.6)
[0-.5),[0-1)

2
(0.3,0.4)
[0-.5),[0-.5)

3) node 3 joins and
old node 2 splits

2
(0.3,0.4)
[0-.5),[0-.5)

1
(0.8,0.6)
[0-.5),[0-1)

3

4) node 4 joins and
old node 3 splits

4

1
(0.8,0.6)
[0-1),[0-1)

1) node 1 (0.8,0.6) joins
and uses full space

(0.2,0.9)

(0.4,0.7)

[0-.25),[0.5-1)

[.25-.5),[0.5-1)

Figure 2.6: Nodes Joining a CAN

Routing in CAN is very simple. It uses a greedy routing that tries to pass
via the next neighbor closer to the destination coordinates. Figure 2.7(a) shows
a sample routing from node 1 to node 9 with the intermediate hops 6 and 11. In

8 11 9

6 10

3

2

7

sample routing from
node 1 to 9

(a)

5
1

4

8 11 9

10

3

2

7

new node 12 joins
and node 6 splits

(b)

5
1

4

612

Figure 2.7: Routing in CAN

22

2.3. PEER-TO-PEER NETWORKS

this example, node 1 wants to route a message to the coordinates (0.55,0.95). It
looks at its neighbor set (2,3,4,5,6) and finds node 6 being closest to the destination
coordinates, and hence forwards the route request to node 6. Node 6 then consults
its own neighbor set (1,7,10,11) and forwards the route request to node 11, which
would be closest node to the destination coordinates. Finally, node 11 knows that
the destination coordinates of the route request are in the zone, for which its direct
neighbor node 9 is responsible. Therefore, it forwards the message to its final
destination.

Splitting zones always requires that the neighbors are being updated about the
new situation. This is shown in Fig. 2.7(b) with node 12 joining the CAN network.
Node 6 would split its own zone and change its neighbor set to (1,10,11,12). Node
12 would build its own neighbor set (1,6,7,11) and inform nodes 1,7 and 11 about
the changes. Node 7 then replaces its previous neighbor 6 with the new node 12.
Nodes 1 and 11 add node 12 as new neighbor and reduce the responsible zone for
node 6 in its neighbor table accordingly.

Finally, when a node leaves, it has to inform the neighbors and needs to find a
node that can take over its responsible zone. A node might be responsible for more
than one zone at a time and zones might be merged together as well.

2.3.6 Chord

Chord [161, 160] is a distributed hash table (DHT) [97] based structured P2P net-
work. A node that joins a Chord network assigns itself a random ID in the range
from 0 to n, with n typically being 2128. Nodes in Chord have pointers to k succes-
sors. Each node also maintains a so called finger table. There, pointers to log2(n)
nodes are stored to get a better knowledge about nodes distributed over the whole
ID space. Periodically, a so called stabilization is performed which updates and re-
pairs the finger and successor tables incrementally. Using stabilization, nodes can
also confirm that they are the predecessors of their successors. Therefore, stabiliza-
tion helps to keep the Chord ring intact. An example of a simple Chord network is
presented in Fig. 2.8.

Message routing in Chord is simple. A node that wants to send a message to
another node consults its finger table and successor list. If it finds the destination
ID in any of those lists, it can directly forward the message to the destination. If the
destination ID is between its own ID and the ID of the next node in its successor
list, it assumes that there is no existing node at the destination ID. This can hap-
pen if a large ID space is used but only few peers actually participate in a Chord
network. Therefore, it will send the message to its first successor, which would be
responsible for the destination address. Otherwise, a node checks whether it has
an ID entry in its finger table, which is close to the destination ID. The ID in the
finger table also has to be lower than the destination ID. It then sends the message
to that ID found in the finger table for further routing. If no entry has been found
in the finger table, the node forwards the message to its successor being closest to
the destination. Again, the ID of the successor has to be lower than the destina-

23

2.4. APPLICATIONS OF P2P OVERLAY NETWORKS

6

8

12

23
39

45

52

75

29

Routing a Message
from Node 6 to Node 29

via Node 23

Finger Table #6
F1: 6 + 1 ⇒ 8
F1: 6 + 2 ⇒ 8
F1: 6 + 4 ⇒ 12
F1: 6 + 8 ⇒ 23
F1: 6 + 16 ⇒ 23
F1: 6 + 32 ⇒ 39
F1: 6 + 64 ⇒ 75

Figure 2.8: Example of a Chord P2P Network

tion ID. This forwarding process is repeated until the destination itself or the node
responsible for the destination ID is reached.

The authors of [54] offer an experimental implementation of Chord. The Co-
operative File System (CFS) [58] is an efficient and robust peer-to-peer read-only
storage system based on Chord/DHash. Also Java implementations of Chord, such
as Open Chord [125] or Chordless [55] exist.

In [59], an improved Chord model is presented. Nodes are organized into
groups with the aim to enhance look-up efficiency. This should also decrease the
impact of dynamic environments. The extensions also facilitate transmission of a
shared file from multiple nodes simultaneously. This helps to decrease download
times.

2.4 Applications of P2P Overlay Networks

2.4.1 Overview

There are many different applications, extensions, services, and frameworks, which
are built on P2P overlay network structures. They are normally targeted at different
specific application domains or scenarios. Section 2.2.5 already gave an overview
of possible application domains and scenarios for multicasting. Here, we look
at examples not directly related to multicasting. These different approaches are
mainly targeted at efficient file distribution, data dissemination or streaming sce-
narios. Often, they are based on linear or tree topologies as presented in [21].

Content Distribution Networks (CDNs) presented in Section 2.4.2 help to dis-
tribute frequently requested data to strategic key positions in the Internet. The

24

2.4. APPLICATIONS OF P2P OVERLAY NETWORKS

participating reflectors are building an overlay network among themselves to effi-
ciently distribute the required data.

Slurpie presented in Section 2.4.3 is a P2P protocol for bulk data transfer. It
is used to reduce download times for users when downloading large files. A P2P
network is established among the users downloading the same file.

Bullet is used for high-bandwidth data distribution and is presented in Sec-
tion 2.4.4. A P2P mesh structure is used to efficiently disseminate the data from a
single source to multiple receivers.

FastReplica presented in Section 2.4.5 is targeted at efficient and reliable repli-
cation of large files in the Internet. It uses an overlay network to distribute a large
file among typically 10-30 nodes.

FTP-M presented in Section 2.4.6 is used for reliable multicast data file dis-
tribution in scenarios such as distributed backups, web-server mirroring, software
update distribution, etc. It uses overlay structures using TCP-M for parallel data
distribution of files.

BitTorrent builds an overlay structure in the form of a swarm among peers
downloading the same file and is presented in Section 2.4.7. The swarm is normally
coordinated by a tracker, and the peers decide by themselves about which other
peers they want to interacts with.

GridFTP is used for reliable data distribution in high-bandwidth wide-area net-
works. This secure and high-performance protocol is based on FTP, the classical
file transfer protocol of the Internet. More details about GridFTP are presented in
Section 2.4.8.

The Application-Layer Traffic Optimization (ALTO) Working Group presented
in Section 2.4.9 aims to provide solutions for different problems that have to be
faced in P2P systems today. The Working Group presents a P2P communication
protocol for applications and the ALTO servers.

2.4.2 Content Distribution Networks

For providing audio and video broadcasts for typical Internet users, content providers
use content distribution networks (CDNs) [146]. A CDN consists of numerous
hierarchically organized “reflector” hosts, which are receiving the content (audio
and/or video stream) from hosts that are one level below in the hierarchy. Those
“reflector” hosts redistribute the content to hosts one level lower in the hierarchy.
The sending host is the highest host in the hierarchy and receiver hosts are located
on the lowest hierarchy level. The “reflector” hosts are usually geographically dis-
persed all over the Internet to enable the end-user hosts to connect to reflectors,
which are near them (in terms of the network latency).

The use of CDNs requires a substantial investment in infrastructure with costs
rising according to the number of receivers. The communication protocol in CDNs
is usually a proprietary protocol based on TCP or UDP. It requires special servers
and clients for distributing and receiving the video stream.

25

2.4. APPLICATIONS OF P2P OVERLAY NETWORKS

2.4.3 Slurpie

Slurpie [157] is a Peer-to-Peer protocol for bulk data transfer. Slurpie reduces client
download times for large files. It also lowers the load on servers that provide these
files. Slurpie’s design is scalable, easily deployable, adaptive to network conditions
and compatible to existing protocols. The protocol of Slurpie itself is designed to
be able to handle very large numbers of simultaneous clients and additionally low-
ers load on the server’s side. Clients should only use Slurpie’s download mecha-
nisms when their own download time is reduced. Therefore, Slurpie tries to overall
minimize download times needed by clients. Another goal of Slurpie is that it
should be able to deploy it without any special infrastructure support.

Slurpie’s design is also able to adapt to different network conditions. That
means that it adapts its download strategy regarding the amount of available band-
width and free processing resources at clients. It is not depending on changes to be
implemented at the server-side. Slurpie can be used with existing data transfer pro-
tocols including HTTP and FTP. It offers an adaptive downloading strategy, which
increases client’s performance and uses a randomized back-off strategy to control
the load on the server. Slurpie clients improve their downloading performance, if
the size of the participants increases.

2.4.4 Bullet

Bullet [100] is targeting high-bandwidth data distribution using a single source. It
supports data distribution to a large number of receivers. Bullet supports ordinary
file transfers as well as real time streaming of data. It uses an overlay mesh instead
of a tree. This way, it delivers fundamentally higher overall bandwidth accord-
ing the authors of Bullet. This concept of using a mesh also should ensure better
robustness and more reliability compared to traditional tree based structures.

Bullet offers a scalable and distributed algorithm based on self-organizing nodes.
It supports distribution of data in a disjoint manner to the nodes in the overlay net-
work. The receivers are responsible for locating and retrieving the data. They try
to get data from multiple sources, such as the parent and other nodes in the over-
lay tree, in parallel. Bullet’s distribution algorithm sends the to be disseminated
data to different strategic key points in the overlay network. The locating algo-
rithm of Bullet allows nodes to find and recover missing data items easily and fast.
Nodes simultaneously receive data from multiple sources in parallel to speed up
downloads. Therefore, it is not necessary to just find a single source that is able to
provide all the data and which is capable of providing this data at high transmission
rates. Relative to classical tree-based solutions, Bullet reduces the requirement of
performing expensive bandwidth probing to find the optimal data providers.

2.4.5 FastReplica

FastReplica [53] is an algorithm for efficient and reliable replication of large files
in the Internet environment using an overlay network. To distribute a large file

26

2.4. APPLICATIONS OF P2P OVERLAY NETWORKS

among n (n typically between 10-30) nodes, the original file is partitioned into n
sub-files of equal size. Each file partition is sent to a different node in the overlay
network consisting of all nodes interested in the file. Nodes then propagate their
sub-file to the remaining nodes in overlay network. Instead of using n Internet
paths, connecting the original node to the replication group (the overlay network),
FastReplica uses n×n Internet paths. They are within the replication group, where
each path is used for transferring 1/n-th of the file. This way, FastReplica can be
used for replication of large files to a group of nodes.

The use of FastReplica is simple and inexpensive. It does not require any
changes or modifications to the existing Internet infrastructure. Experiments on
a prototype implementation of FastReplica in a wide-area testbed show that Fas-
tReplica significantly reduces file replication time.

2.4.6 FTP-M

FTP-M [118] provides a reliable multicast data file distribution facility. It uses
TCP-M [78], which is a “Multicast” deviate of classical TCP to ensure reliability.
This also facilitates parallel data distribution of files. To fully use the introduced
capabilities, modifications have to be done on the client as well as on the server
side to the ftp-protocol and the applications used. The authors of FTP-M provide a
convenient API as classical FTP enhancements for the BSD platform.

FTP-M offers two modes, classical FTP as well as the FTP-M extended ver-
sion. The authors claim that FTP-M is reliable concerning the multicast data distri-
bution. This is opposed to classical UDP based multicast, which does not guarantee
delivery. FTP-M is mainly targeted for small or medium sized multicast scenarios.
Typical usage scenarios would include distributed backups over the network, web-
server mirroring, and software update distribution in cooperate environments.

2.4.7 BitTorrent

BitTorrent [26, 94, 180] is a P2P file sharing protocol for efficient data distribution
that improves the download time of a file for users. It consists of a tracker and
the downloading peers. The tracker holds information about participating peers in
the swarm (P2P network). This includes how much of a file a peer already has
downloaded and can offer those to other peers for download.

In BitTorrent, a file is split into sub-parts called chunks and has a coordination
file called torrent file. This file stores information about the file (tracker, size,
checksums, etc). Peers interested in a file have to retrieve the corresponding torrent
file. This torrent file provides all the necessary information for nodes to join the
“swarm” for that specific file. A swarm (using a P2P network) is built among the
hosts that are interested in the same file. A tracker is then responsible to manage
the swarm for a specific torrent file. With the help of the tracker, peers search and
find other peers that already have the chunks the searching peer needs. Peers then
exchange the missing chunks among themselves.

27

2.4. APPLICATIONS OF P2P OVERLAY NETWORKS

BitTorrent uses a tit-for-tat strategy to ensure cooperation among peers. A
tracker can manage multiple torrent files. Also, peers can be part of multiple
swarms. But one swarm is always dedicated to a specific file to be downloaded.
There are never multiple files exchanged in one swarm.

2.4.8 GridFTP

GridFTP [7] is a protocol for efficient file transfers in grid environments. It has
been proposed by the GridFTP Working Group [81] under the organization of the
Global Grid Forum [126].

GridFTP extends the classical Internet File Transfer Protocol (FTP) [135] with
new features, such as multi-streamed data transfers, Globus [79] based security,
partial file transfers, authenticated and reusable transmission channels, and com-
mand pipelining. It is targeted at scenarios where huge amounts of data (terabytes)
have to be transmitted efficiently and reliably. It is robust to failures, can parallelize
data transfers (striping), offers extended security mechanisms, can give feedback
to applications during transmission, and is easily extendable, which are all fea-
tures that classical FTP is missing or only poorly supporting for high-bandwidth
transmission in grid environments.

GridFTP uses TCP [134] for data transfers in grid environments. In wide area
networks, the achieved data transfer throughput can fall below the actually avail-
able bandwidth due to the dynamic behavior of TCP. Hence, splitting TCP connec-
tion into segments can improve overall achievable throughput in high-bandwidth
wide-area network environments. In [140], the authors present components to de-
ploy overlay networks that use split-TCP connections in order to improve GridFTP’s
transfer performance. First, they evaluated using emulation which conditions can
benefit most from splitting a TCP connection. Using empirical results, the au-
thors demonstrate a significant performance improvement despite using intermit-
tent, passive throughput observations to determine which proxies to choose.

2.4.9 ALTO

Solutions for different problems have to be faced in P2P systems today. The
Application-Layer Traffic Optimization (ALTO) Working Group [8] aims to de-
sign and specify an ALTO service. This service should provide applications with
information to perform better-than-random initial peer selection. The needs of Bit-
Torrent, tracker-less P2P, and other applications, such as content delivery networks
(CDNs) [146], and mirror selection will also be considered. A client will contact
an ALTO server, of which it will get aware by using an already available discovery
mechanism.

The WG will not propose standards on congestion signaling or avoidance,
neither will it deal with information representing instantaneous network state. It
will focus solely on the communication protocol between applications and ALTO

28

2.5. APPLICATION LAYER MULTICAST

servers. The ALTO services offered by the ALTO server may be not only useful
for P2P environments, but also in client-server environments.

The Working Group released various Internet Drafts. The ALTO requirements
draft [99] looks at various requirements related issues, including ALTO client pro-
tocol requirements, ALTO server discovery, security considerations (high-level,
classification of information disclosure scenarios, security requirements), privacy,
rating criteria (performance-related, charging-related, distance-related), host group
descriptors, and IANA considerations. The Alto protocol draft [98] describes the
protocol, including the protocol structure regarding server capability and services,
the network and cost map, protocol overview and messaging format, use cases,
and IANA and security considerations. They also released another Internet Draft
describing the problem statement, which has been updated to RFC 5693 [152].
It includes the definitions, the problem statement, example use cases (file shar-
ing, cache/mirror selection, live media streaming, real-time communications, dis-
tributed hash tables), various aspects of the problem (provided information, ser-
vice providers and implementation, user privacy, topology hiding, coexistence with
caching), and security considerations. Finally, they will also prepare a draft for the
ALTO discovery mechanism to be submitted as proposed standard.

2.5 Application Layer Multicast

2.5.1 Overview

Different protocols for ALM have been proposed [90, 144, 52, 49, 190, 15, 159,
184, 183].

In [86], different ALM protocols are analyzed and common design goals for
ALM protocols are extracted. The authors look at different important properties
of ALM protocol design, such as application domain, deployment level, group
management, routing mechanisms as well as degree-constraints. They further dif-
ferentiate between mesh-first and tree-first approaches. Different strategies for tree
building and organizing are also explained. Finally different ALM protocols are
compared according to the classifications introduced in the paper.

The authors of [69] look at the performance penalty of ALM over router level
solutions. They compare three overlay multicast protocols regarding latency, band-
width, router degrees, and host degrees. The comparison bases on experiments,
simulations, and theoretical models. They also propose a way to quantify multicast
overlay tree costs, defined as the total number of hops in all overlay links. They
show that the number of hops between parent nodes and children nodes tends to
decrease as the number of nodes in the overlay increases.

Narada [90] uses a two-step approach for building multicast trees in an overlay
network built among end systems. First, a mesh is built that respects application
requirements such as bandwidth or latency. Then, a spanning tree for each source
is built on top of the mesh network. More details about Narada will be presented
in Section 2.5.2.

29

2.5. APPLICATION LAYER MULTICAST

Scribe [144, 52, 49] is a publish / subscribe system, which runs on top of Pastry
and offers ALM functionality. It supports large groups, is fault-tolerant and decen-
tralized. Scribe only provides best-effort reliability guarantees. It balances the
load on nodes to reduce delays and lower the link stress. Scribe will be explained
in more detail in Section 2.5.3.

Bayeux [190] is an ALM protocol that runs on-top of Tapestry. Multicast tree
setup is performed using publish, join and tree messages. Opposite to Scribe/Pastry,
it does not use reverse-path messages for tree setup. Section 2.5.4 will explain
Bayeux in more detail.

CAN [137, 136] uses a flooding based mechanism to support multicast. In
order to reduce the amount of duplicates caused by simple flooding, CAN intro-
duces different duplicate reducing mechanisms, such as distance limits, duplicate
suppression mechanisms and not forwarding messages along certain dimensions.
Multicast in Chord will be described in Section 2.5.5.

Multicast in Chord [161, 160] can be realized using various approaches. The
forwarder driven as well as the receiver driven multicast approach to support mul-
ticast for Chord will be presented in Section 2.5.6. Both approaches have their
advantages and limitations. The forwarder driven approach can be easily imple-
mented while the receiver driven approach is the only one that can be potentially
used to introduce QoS with end-to-end delay guarantees.

NICE [15] is a hierarchically organized Overlay Multicast infrastructure using
clusters and layers. It is locality-aware and tries to optimize latencies between
cluster members. NICE is targeted at low bandwidth scenarios due to the high
multicast fan-out of nodes. NICE will be explained in more detail in Section 2.5.7.

To reduce the fan-out, ZigZag [163], which extends NICE has been introduced.
Basically, it eliminates the requirement for nodes to serve all layers where they are
cluster leaders. Using ZigZag, the multicast fan-out of a cluster leader is indepen-
dent of the numbers of layers. Section 2.5.8 will explain ZigZag in more detail.

VRing [159] uses a virtual ring as an Overlay Network among the multicast
group members. To increase performance, a spare ring is built. More details about
VRing can be found in Section 2.5.9.

Borg [184] is a scalable ALM for data dissemination in P2P networks. It looks
at forward-path and reverse-path forwarding to optimize data transmission. Sec-
tion 2.5.10 presents Borg in more detail.

PeerCast [183] is an effective passive replication scheme offering an efficient
and self-configurable ALM framework. It takes proximity information into ac-
count to optimize data dissemination. More details about PeerCast are given in
Section 2.5.11.

Dr. Multicast [173] is targeted at data centers. It offers policy controlled IP
Multicast support using unicast and IP Multicast connections. Section 2.5.12 will
present more details about Dr. Multicast.

30

2.5. APPLICATION LAYER MULTICAST

2.5.2 Narada

In Narada [90], an overlay network is built directly among end systems in order to
offer multicast functionality. It was one of the first protocols proposed for Overlay
Multicast in end systems that has also been evaluated in the Internet. Narada is
often also referred to as End System Multicast (ESM). Hence, it relies on end sys-
tems to support multicast communication rather than using IP Multicast services
that require infrastructure support. It is also much easier to introduce new fea-
tures and higher level functions regarding, e.g., flow control and reliability on the
application level than trying to deploy new functionality in the network layer (IP
Multicast) which often would result in infrastructure updates. The first evaluations
of Narada / End System Multicast have been performed in simulators as well as
distributed over the Internet using a variety of multicast applications. Narada is
targeted at applications such as virtual classrooms, A/V conferencing, and multi-
player online games, all with typically tens to hundreds of group members.

The efficiency of the overlay network topology in Narada is optimized by end
systems by adapting to dynamic changes in the underlying network and depend-
ing on application performance requirements. The topology is adapted to reduce
redundant transmission and to support certain latency or bandwidth requirements
of end systems. The Narada protocol is fully decentralized and the overlay is self-
managed by the end systems. It is resilient to failures of end systems and to the
dynamics of group memberships. End systems monitor passively and actively the
characteristics of the overlay network links between them. This facilitates quick
adaption of the overlay structure to changing network conditions in order to pro-
vide a reliable and well performing multicasting service.

Multicast trees in Narada are using a two-step setup process. First, a mesh
is built among the end systems. Then, spanning trees are built on top of the mesh
with each source as root of the corresponding spanning tree. This approach enables
multi-source multicasting quite easily and also ensures optimal performance for
multicast distribution from the different sources. The quality of the spanning trees
depends heavily on the quality of the mesh. Hence, links between end systems in
the mesh should be optimized according to the quality requirements of applications
(e.g., bandwidth or latency). To build the trees on top of the mesh, a variant of the
distance vector based algorithm is used. Furthermore, algorithms to build per-
source (reverse) shortest path spanning trees are also applied.

Group management in Narada is shared among the participating end systems.
Since Narada is only target at medium sized groups, the approach of the authors
was to have all end systems be aware of all group members in order to support
a high degree of robustness. These member lists at the end systems need to be
constantly updated due to members joining or leaving. This is handled by sending
periodical refresh messages with monotonically increasing sequence numbers to
the neighbors in the mesh. To avoid mesh partitioning when a group member fails,
group members store the last time they received a refresh message from a neighbor.
After a certain period of time without receiving such messages, the potentially

31

2.5. APPLICATION LAYER MULTICAST

failed group member is probed and either removed from the members list or new
links to the member are added to repair the mesh.

2.5.3 Scribe

Scribe [144, 52, 49] is a publish / subscribe system, which runs on top of Pastry
and offers a scalable and core based ALM infrastructure. Topics can be created
and subscribed to. Every message that is published to a topic is sent to the cor-
responding subscribers. Topics in Scribe are used to provide ALM functionality.
Any Scribe node can join any multicast group (or topic in Scribe’s terminology) at
any time. For each topic, one node is designated to disseminate the topic’s data in
the Pastry network. All multicast traffic for that topic is forwarded to the root node
for dissemination.

Scribe offers best-effort delivery of the multicast data without guaranteeing that
the order of the packets is maintained. Scribe builds on top of Pastry’s routing and
uses reverse-path forwarding trees to multicast messages. Each multicast group is
represented by a topic ID. The host numerically closest to the topic ID becomes the
root of the multicast distribution tree. All multicast messages are directly sent to
this root node, which then multicasts the messages to all group members. To join
a certain topic, a Scribe node sends a join message through the Pastry network. As
explained previously in Section 2.3.3, the message is routed to the root node using
prefix matching. Each Scribe node visited on the path also joins the same topic
and remembers, which direct child nodes have subscribed to this specific topic ID.
If a node already has joined the same topic ID earlier, no additional join message
will be sent towards the root node. Finally, when messages have to be multicast
to all group members subscribed to a specific topic ID, the root node sends the
message to its direct children. These children then relay it to their direct children
respectively. This is repeated until such a node has no more direct children to be
served with the multicast message for the specific topic ID.

Figure 2.9 shows a simplified example of a multicast tree construction with
Scribe. A joining node sends a join message to the topic’s root node using Pastry’s
routing mechanism as previously shown in Fig. 2.3. Nodes on intermediate hops
along the path of the join message add the previous node/hop to the list of receivers
for that topic. A join message is only forwarded further towards the root if the
current intermediate hop is not yet subscribed to that topic. When data for that topic
ID has to be disseminated, the root node forwards the message to all its one-hop
subscribed nodes. These nodes repeat the same process, forwarding the message to
their one-hop subscribers. In the presented example, node BCD wants to join topic
with ID EDE. The same intermediate hops are visited as in the Pastry example
from Fig. 2.3. Therefore, the multicast tree distribution tree for this subscriber is
built using the reverse path of the join message. Other joining hosts (e. g. AFB
and DAB) could send their join message via nodes that are already subscribed to
the topic (e. g. EDC and EAA). These nodes then stop forwarding the join message
towards the root.

32

2.5. APPLICATION LAYER MULTICAST

EDE

FFB

FFF

DAB

CAB

BFF

AFB

BCD

DBA

AAA

FAD

EDC

EAA

Figure 2.9: Scribe Topic Data Dissemination

2.5.4 Bayeux

Bayeux [190] is a source-specific, explicit join multicast facility, which runs on
top of Tapestry. Figure 2.10 shows a simplified example of Bayeux’s multicast
tree creation. The root for a multicast group advertises, using a publish message,

1385 7985

4985

8311

5695

2761

3511
7311

JOIN

TREE

Figure 2.10: Multicasting using Bayeux for Tapestry

that it is the responsible node for this multicast group. Joining nodes send a join
message to the root. The root node answers with a tree message. Each node on the
path from the root to the joining node (for the tree message) saves the forwarding
state< dest, nexthop >. The join messages are always delivered to the root node,

33

2.5. APPLICATION LAYER MULTICAST

which results in higher link stress on the root compared to Scribe presented in
Section 2.5.3. The multicast delivery path (constructed by the tree message) is not
the reverse-path of the join message (as for Scribe).

2.5.5 Multicast in CAN

Multicast support in CAN is straight forward and very simple to implement. It is
a flooding based mechanism, which has been further enhanced in order to avoid
duplicates. Simple flooding in CAN is done by forwarding a multicast message to

! "" #

"$

%

&

'

(
"

)

*"&

!"#$%&'!(()"*+'
,"-.')/$%"01-&!

+,-

#/%-"01!-',"-.')/$%"01-&
!/$$2&!!"(*'#&0.1*"!#!

+.-

! "" #

"$

%

&

'

(
"

)

*"&

Figure 2.11: Multicasting in CAN

all neighbors, except to the neighbor, from which the message has been received as
presented in Fig. 2.11 (a). In order to reduce duplicates, different mechanisms such
as duplicate suppression and space distance limits (presented in [136]), are used.
Also, the number of dimensions used in CAN influences the forwarding behavior
of nodes. By only forwarding messages along certain dimensions, using space
distance limits and duplicate suppression mechanisms, duplicates can be reduced
as presented in Fig. 2.11 (a). Unfortunately, duplicates can be reduced but not
always completely avoided due to the nature of CAN multicasting.

2.5.6 Multicast in Chord

There are two main solutions to support multicast in Chord. The first approach can
be easily implemented and uses a forwarder driven approach, where forwarders
determine which child nodes they have to serve with multicast data. The second
solution is driven by the receivers, which determine and select the parents that have
to forward multicast data to them.

34

2.5. APPLICATION LAYER MULTICAST

Forwarder Driven Multicast in Chord

Multicast in Chord can be done very easily using forwarder driven multicast, which
works as follows. Each node forwards a received multicast message to all its fingers
that are in a certain range. This range is defined by the node from which the
multicast message was received.

An example of multicast using Chord is presented in Fig. 2.12. We assume that
the root of the multicast tree (node 6) is the node with the lowest ID. The root then
sends a multicast message to each finger in its finger table (nodes 8, 12, 23, 39 and
75). A finger specific range information is also sent with each multicast message
to the individual fingers. This tells fingers to which other nodes they still have to
forward the multicast message. Using the range information, node 39, e.g., has
to forward multicast messages only to nodes in the ID range 40 to 74. Therefore,
node 39 forwards multicast messages to nodes 45 and 52. The finger specific range
is adapted by each forwarding node in order to avoid duplicates.

6

8

12

23
39

45

52

75

29

Multicasting a
 Message

from Node 6
to all Nodes

Figure 2.12: Multicasting in Chord

Receiver Driven Multicast in Chord

Using receiver driven multicast, nodes select their multicast parent nodes. This is
opposed to forwarder driven multicast, where child nodes are determined by their
parent nodes. In order to support receiver driven multicast, nodes need to know
a few nodes that could act as their multicast parents and then select one of those
candidates as their actual parent. This can be supported by introducing backward
fingers. A backward finger of a node X points to a node Y, which has X in its finger
or successor table.

35

2.5. APPLICATION LAYER MULTICAST

2.5.7 NICE

Nodes in NICE [15] are arranged in clusters and layers, and are structured hierar-
chically as shown in Fig. 2.13.

a
c

b

d
f

e
g

h

i
j

lk

b e g k

e g

Layer 0

Layer 2

Layer 1

Figure 2.13: NICE Layers and Clusters

Nodes within the same cluster are called cluster mates. Each cluster mate
knows its cluster leader and some or all other cluster mates in the same cluster.
The size of a cluster varies between the lower bound k and the upper bound 3k−1,
with k being a predefined cluster constant larger than zero. These boundaries help
to avoid conflicting maintenance operations, which will be discussed later. One of
the cluster mates within a cluster is determined to be the cluster leader. This cluster
leader is then a member of a cluster of the next higher layer. Cluster leaders are
determined by choosing randomly a node from the so-called graph-theoretic center
of clusters. This graph-theoretic center is determined by calculating the eccentric-
ity for each node. The eccentricity is the maximum distance from the node to any
other node in the cluster. Nodes with minimum eccentricity then build the center of
the cluster. Each layer consists of one or more clusters. They are are ordered from
the bottom layer zero to the top layer n. The top layer consists only of a single
cluster with one cluster member. This is the root of the NICE network.

The structure of NICE is specified with five invariants. They have to be fulfilled
at any time.

1. A node belongs to only a single cluster on each layer.

2. A node located at layer L is also also located at layers L− 1, ..., 0.

3. A node not present in layer L can not be present in any higher layer (L +
i, i ≥ 1).

4. The size of a cluster is between k and 3k − 1, where k is a constant with
k > 0.

36

2.5. APPLICATION LAYER MULTICAST

5. There is a maximum of logkN layers and the highest layer only contains
one node (the root node).

Cluster leaders multicast data among all their cluster mates in all their clusters.
A cluster leader, which would be a member of a cluster in each layer, would have
a very high fan out (depending on the cluster size). Note that for n hosts with
a maximum cluster size of s, the resulting amount of layers would be logs (n).
Therefore a cluster leader could have to serve up to s logs (n) hosts with the mul-
ticast data. The authors of NICE therefore state that it has not been designed for
high bandwidth data transmission.

Joining a NICE Network

A node joining a NICE network has to contact first the root node for that specific
NICE network. It then receives a list of all cluster leaders on the next lower layer.
In the next step, it contacts every reported node and identifies the closest node to
itself in terms of round trip time (RTT). This helps to select the most appropriate
cluster to join. Therefore, nodes that are physically close are grouped together in a
cluster. Afterwards, the joining node sends a new request to the determined closest
node. This process is iteratively repeated until layer 0 is reached. There, the new
node joins the most appropriate cluster.

Leaving a NICE Network

Nodes can leave a NICE network in two ways, gracefully and ungracefully. In the
graceful case, the leaving node announces its departure to its cluster mates before
it really disappears. Other nodes can now react to this situation appropriately and
perform any handovers from the leaving node that might be necessary. If a node
suddenly disappears, then it leaves ungracefully. The cluster leader and the cluster
mates do not recognize the departure of the node directly but only by timeouts and
missing heartbeat messages. In such cases, parts of the NICE network might not
work properly due to invalid states or missing handovers.

Maintenance of a NICE Network

Maintenance of NICE contains several refinement operations to handle the nodes
and the tree structure. Heartbeat messages are used to periodically exchange in-
formation such as the view of a cluster by a node and its RTT to the other cluster
members. The refinement operations might consist of splitting a cluster, merging
two clusters, or to determine a new cluster leader. The refinement operations are
only invoked by a cluster leader when it detects an invalid or not optimized state
in its cluster. Leave and join operations could require the cluster leaders to be
changed.

37

2.5. APPLICATION LAYER MULTICAST

2.5.8 ZigZag

To reduce the high fan-out of NICE presented in Section 2.5.7, an extension of
NICE called ZigZag [163] was introduced.

a
c

b

d
f

e
g

h

i
j

lk

b e g k

e g

Layer x-2, x-3, ..., 0

Layer x

Layer x-1

Figure 2.14: Optimizing Fan-Out in NICE using ZigZag

ZigZag distinguishes between the following instances: subordinates, foreign
heads, foreign subordinates, and foreign clusters. A subordinate ofX is a non-head
peer of a cluster headed by peer X . A foreign head of layer (j − 1) subordinates
is a non-head cluster mate of a peer X at layer j > 0. Layer (j − 1) subordinates
of X are called foreign subordinates of any layer-j cluster mate of X The foreign
cluster of any layer-j cluster mate of X is the layer (j − 1) cluster of X .

Cluster mates in ZigZag only receive messages from foreign cluster heads,
which send multicast data only to foreign subordinates (which are one layer “be-
low” them). A cluster leader H for a host X has in the next higher layer a cluster
mate M, which is a foreign cluster head for host X. As Fig. 2.14 shows, the fan-out
for a cluster head can be reduced using ZigZag. A cluster leader now only has to
serve up to 2s− 2 other hosts, but typically only s− 1 other hosts for a maximum
cluster size s. The fan-out of a cluster leader is now independent of the numbers of
layers. Worst case fan-out for NICE is O(k · logkN) and for ZigZag it is O(k2).

2.5.9 VRing

VRing [159] is an ALM protocol that establishes a virtual ring as an Overlay Net-
work among the multicast group members. This is done in a self-organizing and
distributed manner. To reduce the routing delay in the Overlay Network ring, a
spare ring overlay structure is formed. This helps to improve the connectivity
among group members. The original ring and the spare ring are both used to
forward data packets using a data delivery and duplicate suppression mechanism.
Each connected component has a leader node. The main communication and orga-
nization tasks and building of the Overlay Network are handled by leader nodes.

38

2.5. APPLICATION LAYER MULTICAST

2.5.10 Borg

Borg [184] is a protocol for scalable ALM dissemination in P2P networks. Borg
offers a multicast tree creation methodology, taking both forward-path and reverse-
path-forwarding into account. It parts the way from a multicast sender to a receiver
into two segments. The segment closer to the receiver will build the multicast tree
with reverse-path-forwarding. On the other hand the segment closer to the sender
will choose between forward- or reverse-path-forwarding depending on which one
of them is better. Borg is built on top of a routing substrate like Pastry described in
Section 2.3.3 or Tapestry described in Section 2.3.4.

2.5.11 PeerCast

In [183], an effective passive replication scheme, designed to provide a reliable
multicast service, is presented. PeerCast is an efficient and self-configurable ALM
framework. Peers in the PeerCast Overlay Network act as clients and servers. Peer-
Cast Middleware is divided into two tiers: “P2P Network Management” and “End
System Multicast Management”. The authors focus on the development of an ana-
lytical model to discuss fault tolerance and to present an effective node clustering
technique based on landmarks. This way, PeerCast can cluster end system nodes by
using physical network proximity information for fast multicast group subscription
and efficient data dissemination.

2.5.12 Dr. Multicast

Dr. Multicast [173] (MCMD) is targeted at data centers. According to the authors,
IP Multicast is not widely available in data centers due to various reasons. This
includes the fact that IP Multicast is often perceived as a performance degrading
technology impacting routing and networking hardware efficiency. Furthermore,
the authors claim that IP Multicast applications are often unstable, especially hav-
ing potential problems when the scale of group members increases. Such multicast
storms might even impact normal Internet users, not participating in IP Multicast
group transmissions.

MCMD is a system that maps IP Multicast to a combination of unicast as well
as IP Multicast transmissions. It relies on unicast connections only in case IP Mul-
ticast is not supported in the network. One focus of MCMD is on administrator-
specified acceptable-use policies for multicast usage and support in data centers.
MCMD tries to take the worries from system administrators in order for them to
see IP Multicast not anymore as a threat to their networks. It offers a policy based
system to regulate the usage of IP Multicast on per nodes base (allow-join, allow-
send, allow IP Multicast, max. sending rate, max. join groups) or even on per
network / data center base (max. IP Multicast groups active). In order to enforce
these policies, IP Multicast packets are intercepted before being able to leave a
node (through the network interface). MCMD then applies the policies and either

39

2.6. EXTENSIONS AND APPLICATION FRAMEWORKS USING ALM

sends the packets using IP Multicast or unicast connections using the normal net-
work interface. This also means that applications can use the standard IP Multicast
socket interface, but IP Multicast system calls are intercepted. Multicast groups
are then translated to a set of unicast and IP Multicast addresses.

The MCMD architecture consists of two components:

• A stateless library module (translation of multicast groups, interception of
outgoing multicast messages, and translation of multicast messages to a set
of unicast and multicast destinations)

• An MCMD agent (runs as a daemon process on every node, applies the poli-
cies and access control lists, and stores the mapping tables for IP Multicast
group mappings)

It is important to note that MCMD agents need a designated instance acting as
leader. This is required in order to be able to support centrally governed policies
and access control lists. The library module and MCMD agent run on Linux only.

2.6 Extensions and Application Frameworks using ALM

2.6.1 Overview

In this Section, we present different frameworks and applications that build on-
top and extend ALM networks in order to offer additional overlay services. This
includes an architecture for Video on Demand systems [109] presented in Sec-
tion 2.6.2, Selectcast [24] described in Section 2.6.3, and finally, SplitStream [50]
discussed in Section 2.6.4.

2.6.2 Video on Demand using Multicast

As stated in [109], the main bottleneck of Video on Demand (VoD) services is
the server’s storage I/O and network I/O bandwidth. Using multicast improves the
distribution of a video program to multiple clients, hence leading to better perfor-
mance of a VoD service. The authors critically evaluate and discuss the progress in
developing multicast VoD systems. They also present a concept and architecture
for multicast VoD and then introduce advanced techniques that can be used in mul-
ticast VoD systems. Problems related to multicast VoD services are also analyzed
and evaluated.

2.6.3 Selectcast

Selectcast [24] is a self-repairing multicast overlay routing facility running on top
of the P2P network infrastructure Astrolab. SelectCast uses a subscribe / publish
mechanism to distributed the data. Potential receivers of messages can be defined
by using an SQL like syntax on selected attributes of such potential receiving hosts

40

2.7. QUALITY OF SERVICE

(up-time, latency, throughput, etc). Astrolab has a DNS-like directory service, in
which it organizes its peers. Attributes of leaf domains are readable and writable
whereas the attributes of non-leaf domains are aggregated and summarized from
its child domains.

2.6.4 Splitstream

Splitstream [50] is an ALM system for high-bandwidth data dissemination. Multi-
cast data is split and then distributed over dedicated multicast trees. These different
trees build a so called forest, which is balancing the forwarding load and ensures
a certain degree of fault tolerance. Redundant coding of the data can be combined
with Splitstream to reconstruct the original data if it gets received at a node only
partially. This also helps for cases of node failures and unannounced departures.
Nodes are only participating in a limited degree to forwarding the received data
in respect to their maximal outbound bandwidth and other constraints. Therefore,
Splitstream supports also very well today’s most typical asynchronous end user
Internet connections like xDSL. The implementation of the authors runs on top of
Scribe/Pastry presented in Sections 2.5.3 and 2.3.3. Evaluations have been per-
formed using a simulator and the implementation has also been deployed in the
PlanetLab [131, 129, 130] environment. They show that Splitstream is resilient
to node failures. Additionally, they also show that the traffic load is evenly dis-
tributed over the participating nodes in respect to their bandwidth constraints not
overloading them with forwarding traffic.

2.7 Quality of Service

2.7.1 Overview

In the networking scope, Quality of Service (QoS) enables to support different
priorities for data flows. QoS requirements or guarantees can be modeled using
different parameters, such as:

• delay (time of packet delivery, e.g., in ms)

• jitter (delay variation between packet arrival)

• packet drop probability

• required bandwidth (bit rate)

• error rate (bit errors)

QoS is required if networks are overused and congestion can occur. Especially
time critical applications, such as Voice over IP (VoIP) or real-time multimedia
streaming (IPTV) profit from QoS guarantees. If networks are over-provisioned
and no congestion occurs, then QoS mechanisms might not be needed. On the

41

2.7. QUALITY OF SERVICE

other hand, best-effort networks, such as the current deployment of the Internet, do
not support QoS out of the box.

2.7.2 Quality of Service in the Internet

QoS mechanisms [25, 22], as well as QoS specifications [179, 155] and character-
ization [156] for the Internet have been investigated and proposed already over a
decade ago. But, QoS support in existing networks is still not widely deployed [57].
Also other aspects of QoS and Denial of Service [153] still need further investiga-
tion in order to widely deploy QoS.

DiffServ, IntServ and RSVP

Different approaches on how to support QoS in the Internet exist. Differentiated
services (DiffServ) [22] mark packets according to the type of service they need.
Routers can then decide how to queue those packets depending on the markings.
While DiffServ uses classes to distinguish QoS requirements, integrated services
(IntServ) [25] work on flows, which requires more processing overhead. IntServ
uses a very fine grained model, wheres a DiffServ is using a more coarsely grained
system to perform QoS mechanisms.

To signal QoS requirements, different methods can be used (in-band or out-
of-band signaling). RSVP [1] for example is such an out-of-band QoS signaling
protocol. To reduce signaling overhead, RSVP requests can be aggregated [13].

EuQoS Project

The goal of the EuQoS (End-to-end QoS support over heterogeneous networks)
project [68, 67, 116, 28, 11] is to resolve the required design issues presently asso-
ciated with the delivery of end to end Quality of Service (QoS) service across het-
erogeneous networks. It enables end-to-end QoS in heterogeneous systems through
the Internet, but it has not been deployed. EuQoS only supports QoS for unicast
connections between end-points using DiffServ alike mechanisms as presented in
[116]. The task of the Multicast Middleware is to simplify the QoS provision for
IP Multicast by mapping multicast communication to unicast.

QoS for Multicasting

Introducing QoS for IP Multicast (e.g., using DiffServ-mechanisms) is challenged
with a lot of problems. This is mainly due to the higher complexity of the point-
to-multipoint or multipoint-to-multipoint communication that IP Multicast offers.
Although the DiffServ architecture is highly scalable, its simplicity causes funda-
mental problems when trying to be used to enable QoS for IP Multicast. Any node
can just send spontaneously and asynchronously IP Multicast data to any IP Mul-
ticast group. All paths involved in the distribution then have to be able to provide
the required resources in order to support QoS for the individual receivers. Group

42

2.7. QUALITY OF SERVICE

membership, and therefore also the corresponding distribution paths are highly
dynamic due to nodes joining or leaving the IP Multicast groups. This makes it
especially complex to reserve resources in advance for the potential receivers of IP
Multicast data. Additionally, the participating group members that want to receive
the IP Multicast data can have different QoS requirements. Hence, this has also
implications on the distribution trees.

These different problems are also referred to as reservation sub-tree problem,
heterogeneous multicast groups, and dynamics of any-source multicast. In [23],
these problems are described in more detail and some solutions are presented. In
general, when trying to introduce QoS for IP Multicast a lot of problems have to
be faced and further considerations regarding scalability, deployment, and security
have to be taken into account.

Different approaches exist to cope with the problem of introducing QoS ser-
vices and reliability to overlay networks [107, 105, 95] and multicast routing [182].
Others cope with introducing QoS to the Internet by the means of using overlay
networks [162]. Supporting heterogeneity and congestion control [127] is also a
major requirement for a QoS enabled overlay network.

Denial of Service and QoS

QoS and Denial of Service (DoS) go hand in hand since one requirement of QoS
should also be to provide protection against DoS attacks [153]. Different mecha-
nisms have to be introduced to make an overlay network robust against fundamen-
tal attacks and to ensure reliability in order to support basic QoS requirements.

2.7.3 Quality of Service for P2P/ALM

In order to improve P2P and ALM concepts, Quality of Service (QoS) aspects
should be taken into account, which will be one of the goals of this thesis. Different
approaches, such as QRON [107, 105], mOverlay [185], HostCast [106] and many
others [142, 101, 104, 62, 3, 189] have been introduced to enable different kinds of
QoS functionality in P2P/ALM networks.

QRON

QRON [107, 105] uses Overlay Brokers in each access network. It forms an Over-
lay Service Network for resource allocation and negotiation, overlay routing, topol-
ogy discovery and other functionality. The goal of QRON is to find an overlay path
that satisfies the QoS requests of the involved hosts. But, at the same time, it tries to
balance the overlay traffic among the Overlay Brokers and the links of the Overlay
Service Network. One disadvantage of this approach is the use of Overlay Bro-
kers, which requires additional infrastructure support in each access network, and
therefore is not really an easily deployable solution.

43

2.7. QUALITY OF SERVICE

mOverlay

The authors of mOverlay [185] propose a mechanism for constructing an overlay
network that takes locality of network hosts into account. Peers in the overlay
network are grouped together according their locality. The amount of links be-
tween different groups is limited. The overlay constructed using mOverlay can
significantly reduce the communication needed between end hosts. The mOverlay
approach reduces the average distance between a pair of hosts compared to a ran-
domly connected overlay network. The main focus of mOverlay is on efficiency
in terms of communication costs and on scalability. No infrastructure support is
needed, but a rendez-vous point has to be deployed. But, mOverlay also has some
drawbacks, such as only receiving partially optimal results from the locating pro-
cedure and higher/longer resource usage (long run time to determine locality).

Hostcast

Hostcast [106] uses an overlay tree for data delivery and an overlay mesh for con-
trol and maintenance. Both of these overlays cover all multicast group members.
The data delivery tree is used to disseminate the multicast data. The control mesh
is used to transmit control messages and to perform overlay path measurements.
Based on the mesh, members can gradually adjust their positions in the data deliv-
ery tree to improve their performance. Adjustments performed to the data delivery
tree are also applied to the control mesh. HostCast uses a measurement-based ap-
proach to determine QoS capabilities of paths. According to these measurement,
the data delivery tree is then adjusted to offer the best QoS to multicast group
members. Hostcast uses one-way measurements, where probing packets are only
sent from the root to the children. This requires that all hosts need to have a syn-
chronized group clock, which is a major shortcoming of the presented approach.

Adaptive Routing Mechanisms for QoS-Constrained Media Streams

An adaptive routing mechanisms for QoS-constrained media streams in overlay
networks is presented in [3]. It targets scenarios with scalable overlay topologies to
route real-time media streams between publishers and potentially many thousands
of subscribers. For a certain number of nodes in a distributed system, the optimal
structure to minimize the average distance between any two nodes is calculated.
This structure together with a greedy algorithm that selects paths between nodes
regarding their real-time improves routing latencies by as much as 40%. This in in
comparison to approaches, which do not take physical links costs in terms of delay
into account. Nodes are also dynamically repositioned to improve the probability
of meeting service requirements for the streaming. The presented approach mainly
focuses on improving latency and, up to a certain degree, also link stress, but un-
fortunately does not seem to take bandwidth requirements of nodes into account.

44

2.7. QUALITY OF SERVICE

Case Study of QoS Supporting Group-Conferencing Tool Suite

In [62] a case study of the design and development of a group-conferencing tool
suite is described. This suite is built on top of a JAVA-based overlay network event
dissemination framework named DEEDS. This framework can be extended via ser-
vice template plug-ins to support QoS. Such QoS templates deal with two separate
streams of events. Multi-point streams that are produced by publish-operations,
and unicast streams consisting of feedback events. The paper further describes,
how the framework was used to create a simple but effective distributed solution
using the appropriate QoS templates. These templates were then evaluated using
the built in simulator of DEEDS for 100 backbone nodes during several hours vir-
tual time. Very high packet loss rates of up to 50% were tested to evaluate the
QoS performance in extreme situations. The actual group conference suite was
only evaluated within a limited dissemination network and with a low number of
desktop clients. Hence, the scalability of the presented conferencing suite has not
yet been proved.

QoS in Selfish Overlay Networks

Increasing QoS in selfish overlay networks is discussed in [142]. Since overlay
networks might have selfish nodes that do not want to contribute but only receive
transmitted data, they can have a negative impact on QoS performance. The selfish-
ness ranges from nodes just trying to cooperate enough to stay in the network and
still be served up to nodes that are extremely selfish, so called free-riders. These
free-riders could even refuse to share any of their resources which has an impact on
all other overlay nodes depending on them. The authors propose a game-theoretic
approach to analyze and evaluate selfish nodes in order to increase QoS on average
for all nodes by detecting and excluding free-riders.

The Impact of Uncooperative Nodes on QoS

A similar problem regarding uncooperative nodes and the impact on QoS is dis-
cussed in [104]. A lot of existing overlay networks rely on cooperation of the nodes
in order to optimize the overlay topology. Nodes can behave selfish to achieve bet-
ter QoS or to minimize their forwarding overhead. The authors present a systematic
study on the impact of selfishness in both tree and mesh overlay construction. They
consider multiple QoS parameters for streaming applications. This includes stream
latency, resolution, and continuity. They show that trying to construct a globally
optimal overlay is vulnerable to nodes acting selfish. But they give directions on
how to design an overlay that is both globally optimal and selfish-resistant.

Live Media Service Grid

A live media service Grid (LMSG) is proposed in [189]. The authors present an
extensible middleware architecture for supporting live media applications in a grid

45

2.7. QUALITY OF SERVICE

computing environment. The LMSG service uses service brokers nodes. These
service brokers nodes have to be strategically deployed in the Internet. LMSG the
uses a QoS-satisfied inter-domain overlay multicast algorithm (QIOM). This algo-
rithm organizes service brokers nodes in such way to build a QoS-aware multicast
service trees.

Simulations that have been performed show that QIOM helps to provide QoS-
enabled overlay services while still balancing the overlay traffic among service
brokers nodes. One downside of this approach is the additionally required infras-
tructure support by having to deploy service broker nodes.

Path-aware Overlay Multicast

Path-aware Overlay Multicast [101] investigates a heuristic overlay multicast ap-
proach. This approach is called Topology Aware Grouping (TAG). Using TAG
facilitates exploiting underlying network topology data when constructing overlay
multicast networks.

TAG can be extended to support delay and bandwidth requirements in order to
construct overlays that satisfy certain QoS requirements for end hosts. The authors
compare TAG with delay-first and bandwidth-first Narada/End System Multicast
(ESM) in a variety of simulation configurations.

In more complex scenarios, TAG can produce multicast trees with a high depth.
This increases data forwarding latency which is a major drawback. Also, another
shortcoming of TAG is that paths might need to be computed many times if there
are many nodes in the same domain. The topology discovery procedure then leads
to poor performance.

Evaluation of a Live-Streamed Baseball Game using P2P Multicast

In [4], the authors analyze and evaluate a live-stream P2P multicast distribution
of a baseball game. This multicast session was broadcasted during 4 hours with
overall 120000 receivers. The video was transmitted at a resolution of 640 times
480 pixels with a rate of 759 Kbps.

At the peak time, 60000 peers received the stream concurrently. Totally, 731
Autonomous Systems (AS) in 51 countries were participating in the P2P network.
Around half of the peers received 95% of the media stream correctly. The average
duration of stay was just 106 seconds, and it took a peer around 32 seconds before
they were able to receive the stream. A high increase of peers joining was noticed
towards the end of the baseball game, when everybody wanted to join to see thee
most important part of the game. Joining rates had a maximum at 80 peers per
second, while the leaving maximum rate was at 328 peers per second.

Unfortunately, the authors do not reveal which P2P content distributer per-
formed the broadcast and also only a one-time event was evaluated. This is a major
downside of this evaluation, and makes it hard to see how the gained results can be
applied to P2P multicasting of real-time video in general.

46

2.8. CONCLUSION

2.8 Conclusion

In this Chapter we gave an overview of Peer-to-Peer (P2P) and Application Layer
Multicast (ALM) networking. Using P2P/ALM networks helps to overcome cer-
tain limitations of the client-server architecture as well as to overcome limited
availability of certain services. This is mainly the case for IP Multicasting, which is
not widely deployed, and therefore not available to end users. Using ALM allows
end users to benefit from the multicast paradigm for efficient data dissemination.

Various approaches on how to support Quality of Service (QoS) for ALM ex-
ist. They are though either targeting specific scenarios or protocols and can not
be generally used. These approaches are often limited to just improve hop-by-
hop latencies or trying to offer redundant paths. Also, selecting the right local
group or cluster aims to, e.g., support bandwidth requirements of users. Therefore,
these approaches often have limited QoS support only working for, e.g., low band-
width streaming scenarios or for delay restricted collaboration networks. Existing
approaches lack a general end-to-end QoS support for different application scenar-
ios. Rather than matching QoS requests with appropriate QoS guarantees, these
approaches are limited to just provide best-effort services to end users.

To enable QoS for various P2P/ALM protocols, we designed the OM-QoS
(Quality of Service for Overlay Multicast) framework, which will be presented
in more detail in Chapter 3. Furthermore, we built a bridge between IP Multicast
and ALM called the “Multicast Middleware”, which will be presented in more de-
tail in Chapter 4. Finally, an efficient Multicast File Transfer Protocol (MCFTP),
which offers efficient data dissemination using cooperation, will be presented in
Chapter 5.

47

Chapter 3

Quality of Service for Overlay
Multicast

3.1 Introduction

In this Chapter, we present a flexible and general approach to support Quality of
Service (QoS) for Application Layer Multicast (ALM). We introduce the Quality
of Service for Overlay Multicast (OM-QoS) framework [31, 32, 33, 41, 42, 43,
35, 34, 46, 20, 145, 16], which enables QoS for different Peer-to-Peer (P2P) ALM
protocols.

We present and evaluate OM-QoS applied to Scribe/Pastry (see Sections 2.3.3
and 2.5.3), NICE (see Section 2.5.7), CAN (see Section 2.3.5) and Chord (see
Section 2.3.6) and show that we can guarantee that all paths in the multicast tree
support certain QoS requirements. Using OM-QoS only introduces a slight over-
head in terms of delay, hop-count, packet duplicates, and fan-out.

The OM-QoS principles can be applied to many different P2P/ALM networks,
either using a protocol dependent approach, where we modify the ALM protocol
itself, or using a protocol independent (layered) approach, which does not require
strong modifications of the ALM protocols but rather uses multiple inter-connected
instances of ALM overlay networks in parallel in order to support QoS.

We first focused on how to make Scribe /Pastry QoS aware. This is achieved by
changing Pastry’s ID assignment mechanism. This simple modification does not
require many changes of the Scribe protocol. We implemented this modification in
Freepastry [75] and evaluated it using Freepastry’s integrated simulator mode.

Further OM-QoS solutions are evaluated using OMNet++ [124, 166, 167].
OM-QoS applied to CAN serves as the reference implementation for our proto-
col independent (layered) approach, because there is no obvious protocol specific
solution to enable QoS support. Furthermore, we investigated how OM-QoS can
be applied to NICE and Chord using the protocol dependent and independent ap-
proaches. Finally, using Chord, we implemented a general receiver driven Overlay
Multicast approach that also supports certain delay constraints for a node regard-
ing its path to the multicast tree root node in terms of an upper boundary for the

49

3.2. ARCHITECTURE AND DESIGN OF OM-QOS

RTT. OM-QoS applied to Scribe was only evaluated using Freepastry’s integrated
simulator and not using OMNet++.

In Section 3.2, we describe the architecture and design of OM-QoS. The evalu-
ation scenarios for OM-QoS are presented in Section 3.3. Section 3.4 presents the
evaluation results. A conclusion is given in Section 3.5.

3.2 Architecture and Design of OM-QoS

3.2.1 Overview

OM-QoS aims to be a general solution for introducing QoS capabilities to differ-
ent, mainly structured P2P/ALM architectures and is not limited to DHT [97] like
systems such as Pastry. There are two approaches. The first one uses modifications
of the ALM protocol in order to support QoS. This is called the protocol dependent
approach. The the second one using layers to support ALM protocols that cannot
be easily modified in order to support QoS. This is called the protocol independent
approach or also layered approach.

The protocol dependent approach works for Scribe/Pastry, Bayeux / Tapestry,
NICE, and Chord and might also work for other ALM protocols as well. For
P2P/ALM protocols that cannot be modified easily in order to support QoS, the
layered approach as used for CAN can be applied as a general solution.

We look at scenarios using network provided QoS (hard QoS), where users
get QoS guarantees provided by the underlying network infrastructure. This is for
example the case for Differentiated Services (DiffServ) or EuQoS [68, 67, 116, 28]
mechanisms. Also, we we will look at dynamic environments using measurement
based best-effort QoS (soft QoS), where trees have to adapted periodically if QoS
fails. So, OM-QoS should be able to support both kind of environments.

3.2.2 QoS for Multicast Trees Design Principles

The OM-QoS framework aims to be a self-managing general solution to incorpo-
rate QoS mechanisms into different P2P/ALM protocols. In order to enable QoS
for such systems, the multicast distribution tree has to hold certain properties.

As described in [41, 43], a multicast tree has to be built such that the QoS
requirements or capabilities are monotonically decreasing on all paths from the
multicast root node to the leaf nodes. This the has the following implications to the
multicast tree:

• The root of the multicast tree must be the node with the highest QoS require-
ments.

• Each child node can only have a smaller or equal QoS requirements than its
parent node.

50

3.2. ARCHITECTURE AND DESIGN OF OM-QOS

To manage different QoS parameters, we introduce the concept of QoS classes,
which have a total order (in terms of set theory). This means that for example a
QoS class can be a combination of bandwidth, node uptime and CPU requirements.
We only consider QoS classes, which have the following properties:

• There is a total order relation for all QoS classes.

• All parameters of the QoS classes are independent of link length and the
number of hops in the network.

• The number of QoS classes is finite.

In other words, we require that the QoS classes can be ordered and that they
are independent of path length. There are many possible parameters that can be
combined into a QoS class, such as bandwidth, maximum packet loss, uptime of a
node, hop-by-hop jitter, CPU speed, etc. The nature of the QoS parameters selected
and combined depends heavily on the application.

It is just necessary that all the possible QoS classes defined from such param-
eters must be comparable. Such a QoS aware tree is depicted in Fig. 3.1. The
thicker lines represent higher QoS classes, for example just the bandwidth QoS
parameter (thicker lines = higher bandwidth requirements) or the hop-by-hop jitter
(thicker-lines = less jitter).

monotonically
decreasing

QoS requirements
Root

Leaf

Figure 3.1: QoS Supporting Multicast Tree

Note that in general, there is not always a total order for any possible combi-
nation of such parameters. For certain QoS parameter combinations, the order of
the QoS classes would have to be defined manually. Such an example of having
to manually define QoS classes could occur when combining QoS parameters for

51

3.2. ARCHITECTURE AND DESIGN OF OM-QOS

bandwidth, loss and uptime of a node. The different QoS values for the different
parameters could be combined as follows:

• Bandwidth: 2.0 Mbps and 2.5 Mbps

• Loss: <1% and <2%

• Uptime: >1 min. and >15 min.

There are different combinations possibilities when using these QoS parameters.
Depending on the application, some parameters have to be prioritized over others.
But, this can change even from QoS class to QoS class, and some of the parameters
might even be omitted for certain QoS classes. An example of how to combine the
QoS parameters into QoS classes could be as follows:

• QoS class 1: bandwidth 2.0 Mbps, loss <2%, uptime >1 min.

• QoS class 2: bandwidth 2.0 Mbps, loss <1%, uptime >15 min.

• QoS class 3: bandwidth 2.5 Mbps, loss <2%, uptime >1 min.

• QoS class 4: bandwidth 2.5 Mbps, loss <1%, uptime >1 min.

• QoS class 5: bandwidth 2.5 Mbps, loss <2%, uptime >15 min.

The example presented above omits certain parameter combinations and also prior-
itizes the different QoS parameters differently for certain QoS classes (e.g., when
comparing QoS classes 3 to 5 with 1 and 2). As already mentioned, this is heavily
depending on the application. The same parameters might be combined completely
different for another application, where, e.g., loss might have the highest priority.

Also the QoS parameter for maximum delay is not supported by this concept
of QoS classes, because parameters that are accumulated over many hops, such as
end-to-end delay can not be incorporated into a QoS class. Most P2P networks
already minimize the delay between the participating peers. In order to fully sup-
port delay-related QoS requirements, the end-to-end delay from the root to a leaf
over the in-between hops along the path has to be considered (sum of hop delays).
Therefore, we extend the OM-QoS framework to manage end-to-end delay as an
additional and from the QoS class construct independent parameter, which will be
taken into account when looking for a potential parent in the P2P/ALM network.
This allows a peer to request a QoS class (for example a certain bandwidth) for its
connection and also ask for an upper bound of the delay (in terms of RTT) it will
have to the root of the multicast tree.

The basic idea of OM-QoS is therefore to build QoS-aware multicast trees as
presented, with the root of the tree as the sender (core based tree). Therefore, the
tree construction mechanisms for the protocol dependent and protocol independent
approach of OM-QoS for the investigated P2P/ALM protocols should yield in a
multicast tree as shown in Fig. 3.1.

52

3.2. ARCHITECTURE AND DESIGN OF OM-QOS

3.2.3 Protocol Dependent Approach

We first look at the concept for providing QoS to multicast in structured P2P net-
works using a protocol dependent approach. We show on the example of Scribe /
Pastry how to enforce QoS aware tree construction in a structured P2P network. We
achieve this by modifying the ID assignment method of Pastry based on the QoS
requirements of peers. As a result, the multicast tree holds the QoS (for example
bandwidth) requirements on each of its end-to-end paths. Then we also show how
other protocol dependent modifications enable QoS support for Bayeux / Tapestry,
NICE and Chord.

3.2.4 QoS for Scribe/Pastry

If we analyze Scribe’s normal multicast tree construction (presented in Section 2.5.3),
we can see that the constructed multicast tree does not necessarily hold the proper-
ties of a QoS aware multicast tree as described in Section 3.2.2. The reason for this
is that end-to-end paths from leaves to the root are more or less randomly chosen,
due to random positioning of Pastry (see Section 2.3.3) peers.

Our evaluation in Section 3.4.2 shows that when using Pastry’s default peer ID
assignment, less than 40% of all end-to-end paths hold the previously described
property of QoS aware trees for randomly assigned QoS classes to peers. Because
Pastry’s default ID assignment does not take QoS requirements of peers into ac-
count, multicast trees constructed by Scribe are only by chance holding this prop-
erty. If only one link in an end-to-end path does not hold the property, holding QoS
guarantees for all nodes in the multicast tree below this link is disabled.

To enable QoS for Scribe/Pastry and to enforce the creation of QoS aware
multicast trees as described in Section 3.2.2, the following modifications of Pastry’s
ID assignment method have to be performed:

• For each multicast group exists a dedicated Pastry P2P network. The reason
for this is to have only peers interested in receiving the multicast data as
potential forwarders. In a normal Scribe/Pastry environment, peers will also
have to forward traffic for topics, to which they are not really interested in.

• In this Pastry network exists only one topic. This topic’s ID is the highest
possible topic ID.

• Since the the QoS requirements of a peer can be higher than its QoS capabil-
ities, we choose the QoS class, which corresponds to the minimum of both,
which then is the QoS class for this peer.

• Higher QoS Classes of a peer result in a higher Pastry ID. Therefore, the
peer’s ID is directly proportional to its QoS class value.

• All peers subscribe to the highest possible topic ID. The peer with the highest
QoS class will become the root for this topic / multicast group.

53

3.2. ARCHITECTURE AND DESIGN OF OM-QOS

• The ID space is partitioned into segments (see Fig. 3.2): one segment for
each QoS class. The order of segments depends on the order of the QoS
classes. The lowest QoS class is located in the lowest segment and the high-
est QoS class is located in the highest segment. As previously mentioned,
the assignment of IDs to joining peers depends on their QoS class. The peer
ID is randomly chosen within the corresponding segment of the ID space for
the peer’s QoS class.

There are different possibilities on how large the segments should be, they do
not necessarily have to be all of the same size and can for example decrease in size
towards the root’s ID (highest ID possible). The partitioning strategy has an impact
on the construction of the multicast trees and therefore on how well and evenly the
overall traffic load will be distributed among the participating peers.

These design choices ensure that all the paths from the root to the leaves will
have monotonically decreasing QoS requirements. As shown in Section 2.5.3, the
routing path from a peer with a lower ID to a peer with a higher ID always contains
peers with increasing IDs. Because the root node of the multicast tree has the
highest possible Pastry ID, we enforce that the routing always uses peers with
increasing Pastry IDs for the hops on its path from leaf nodes towards the root
node. By assigning peer IDs proportional to the peer’s QoS class, we enforce a
construction of Scribe multicast trees, which hold the decreasing QoS requirement
property for each end-to-end path from the root to the leaves. For each node that is
passed through on the path from the root node to a leaf node, the QoS requirement
of the intermediate node is the same or lower than of its parent node.

Figure 3.2 shows a Pastry ring with a partitioned space. In this example there
are three different QoS classes, which are not distributed evenly among the ID
space: low QoS, medium QoS, high QoS. The QoS class segments have to be as-
signed in such a way that for each higher QoS class at least one additional digit
(from left to right) matches the topic’s ID compared to the previous lower QoS
class. Depending on their QoS class, peers get an ID from the respective partition
of the ID space. The root node will have the highest possible Pastry ID and there-
fore will also be in the partition for the “high QoS” class. When a peer now sub-
scribes to a Scribe topic, the join message is routed towards the root node (having
the highest ID) and always passes nodes in the same or higher QoS class partition,
and therefore on each hop passes through a peer with a higher ID than itself.

When a Scribe multicast message is now disseminated in this Pastry ring, the
reverse paths for sending the join messages in Fig. 3.2 are used. Then, all paths
from the root node FFF to the leaves will on each hop either pass through hops
with the same or lower QoS requirements than on the previous hops. Therefore,
the previously described property for monotonically decreasing QoS requirements
in the multicast tree is fulfilled.

We will show in the evaluation in Section 3.4.2 that basic properties such as
the average end-to-end path length of Scribe/Pastry are not changed significantly
by introducing the previously mentioned modifications of the Pastry ID assign-

54

3.2. ARCHITECTURE AND DESIGN OF OM-QOS

EDE

FFB

FFF

EDC

DAB

CAB

BFF

AFB

BCD

DBA

AAA

low
QoS

medium
QoS

high
QoS

EAA

FAD

Figure 3.2: QoS Aware Distribution of Peer IDs for Pastry

ment, even though the ID distribution does not follow anymore strictly a normal
distribution.

3.2.5 QoS for Bayeux

To enable QoS aware multicast tree setup with Bayeux (presented in Section 2.5.4),
a similar mechanism can be used as with Scribe. Due to the different prefix match-
ing order and the non-reverse setup (using tree messages instead) of the paths as
has been described in Section 2.5.4, the approach has to be slightly modified com-
pared to Scribe/Pastry as follows: to ensure that all paths from the root to any
group member hold the basic property described in Section 3.2.2, higher QoS re-
quirements of a peer results in more digits matching the root’s ID (right to left).
Also, one dedicated P2P network is used per multicast group. Therefore, nodes
only forward multicast data that they are actually interested in. This would not
be the case for a shared P2P network for multiple multicast groups, where nodes
would have to forward traffic for multicast groups to which they are not actually
subscribed to.

3.2.6 QoS for NICE

To introduce QoS to NICE (presented in Section 2.5.7), we had to take a completely
different approach than for Scribe/Pastry or Bayeux, but at the end only the cluster
leader determining mechanism has to be modified: the cluster leader is determined

55

3.2. ARCHITECTURE AND DESIGN OF OM-QOS

by the highest QoS class inside a cluster (and not the graph-theoretic center using
RTT as metric). An example is shown in Fig. 3.3. Clusters are still built using RTT

3
2

4

2
2

5
5

4

1
2

23

4 5 5 3

5 5

QoS classes 1 (lowest) to 5 (highest)

Figure 3.3: QoS Support for NICE with Cluster Leaders having Highest QoS Class

measurements, and we have five QoS classes between 1 and 5, with QoS class 5 as
the highest one. Cluster leaders are now hosts having the highest QoS class in the
cluster.

The problem of NICE is the high fan-out of nodes acting as cluster leaders in
multiple layers. ZigZag (see Section 2.5.8) reduces the impact of the problem with
the high fan-out in NICE. Unfortunately, the presented approach to enable QoS for
NICE does not work with ZigZag. Figure 3.4 shows that the proposed modification
of NICE does not work with ZigZag, because foreign cluster heads can have lower
QoS classes than some of the hosts in the cluster to which they act as foreign head.

The ZigZag problem sub-path presented in Figure 3.4 shows that the path from
the root to the foreign cluster head in the next lower layer still holds the QoS path
property of monotonically decreasing QoS classes (path built from QoS class 5
to QoS class 3). But, from this cluster leader to the next foreign cluster head in
the next lower layer, the property does not hold anymore (path built from QoS
class 3 to QoS class 4). This is due to the fact that there is no correlation between
the cluster leader determination in a cluster and its foreign cluster’s cluster leader
determination. In order to still reduce the fan-out without having to use ZigZag, a
delegation mechanism can be used.

To reduce the fan-out with QoS support, the delegation mechanism (adding an
additional hop) can be used as follows: cluster leaders delegate message dissemi-
nation for each of their clusters to cluster mates with equal or next lower QoS class
as themselves. This results in a fan-out up to logs (n) for a cluster leader (s = max.
cluster size, n = amount of hosts). One drawback of the delegate mechanism is
though that an additional hop is introduced. Figure 3.5 shows an example with the
delegation mechanism.

56

3.2. ARCHITECTURE AND DESIGN OF OM-QOS

3
2

4

2
2

5
5

4

1
2

23

4 5 5 3

5 5
ZigZag problem

sub-path

problem with foreign clusters having higher QoS classes

Figure 3.4: Problem why QoS does not Work for ZigZag

3
2

4

2
2

5
5

4

1
2

23

4 5 5 3

5 5 delegate

delegation to cluster mate with same or next lower QoS class

Figure 3.5: Reducing Fan-Out with a Delegate and QoS Enabled NICE

Supporting End-to-End Delay Constraints in NICE

To support also end-to-end delay constraints, we introduce end-to-end delay as an
additional parameter. This is independent from the QoS class construct and allows
a peer to request a QoS class (for example a certain bandwidth) for its connection
and also ask for an upper bound of the round trip time (RTT) to the root of the
multicast tree. We call this upper bound node to root RTT constraints.

We only take node to root RTT constraints into account when a node joins the
NICE network. When a node joins a NICE network, it automatically participates
in a multicast distribution tree for that NICE network, and starts receiving and pos-
sibly also forwarding multicast data. We implemented this mechanism to support

57

3.2. ARCHITECTURE AND DESIGN OF OM-QOS

node to root RTT constraints as follows. When a newly joining node measures the
RTT to the potential cluster leaders on each layer, it also asks the potential cluster
leaders on all layers for their current node to root RTT value. The cluster leader
that fulfills the node to root RTT constraint as closely as possible is then selected
for the next iteration. That means the node offering the maximum node to root RTT
that is still below the node to root RTT constraints (with a certain safety margin) is
selected for the next step in the next lower layer. This is continued until we reach
layer 0, where the node joins a cluster that fulfills the node to root RTT constraints.

As an example, we can assume that we have a NICE network with 4 layers. In
the top layer 3, only the root is present in its own cluster. A newly joining node
asks the cluster leader in layer 3 (the root node) for its cluster mates in layer 2.
These cluster mates are cluster leaders of clusters in layer 1 and also at layer 0.
The joining node then measures the RTT to these reported nodes and asks them
for their node to root RTT. Now, the joining node can determine its own node to
root RTT if it would join a cluster of the previously reported nodes. Out of these
previously reported nodes, it selects the node that offers the maximum node to root
RTT below its own node to root RTT constraint. It then contacts the selected node
to ask for that nodes’ cluster mates in layer 1. These reported nodes are cluster
leaders of clusters in layer 0. Then, determining the node to root RTT matching
the node to root RTT constraints are performed again as described before. Finally,
the node joins the cluster in the layer that offers the maximum node to root RTT
just below its own node to root RTT constraints.

3.2.7 QoS for Chord Multicasting

Forwarder Driven Multicast for Chord

Only a simple modification of Chord (presented in Section 2.3.6) is necessary to
enable the previously mentioned creation of QoS aware trees. Nodes in Chord will
have to be ordered by their QoS classes. This means that on the Chord ring, we
will have clockwise monotonically decreasing QoS classes. The higher the ID of a
node the lower is the QoS class of that node (low QoS class = low QoS). We use
a core based tree with the root of the multicast tree as the node with the smallest
Chord ID.

All multicast messages will then be routed using the forwarder driven multicast
approach. A multicast message will always be forwarded in clockwise direction
on the Chord ring. Therefore, it will always be sent to a node having a higher ID,
hence having the same or a lower QoS class.

An example with three QoS classes is shown in Fig. 3.6. The Chord ID space is
split into three partitions. The partition holding the lowest IDs of Chord is reserved
for nodes that require high QoS. The next partition holds nodes with medium QoS
requirements. Finally, nodes that require low QoS are in the partition holding the
highest part of Chord IDs. Since the multicast root is the node with the lowest
Chord ID, multicast data dissemination holds the QoS path properties described

58

3.2. ARCHITECTURE AND DESIGN OF OM-QOS

before. All paths from the root to the leaf nodes have monotonically decreasing
QoS requirements.

6

8

12

23
39

45

52

75

29

high
QoS
class

low
QoS
class

medium
 QoS
class

Figure 3.6: QoS Support for Chord Multicasting

Chord Improvements

In order to support QoS using Chord, we had to make some adjustments and en-
hancements of the original Chord protocol.

By default, Chord is a well functioning and structured P2P network that is
highly scalable. But, when fast changes occur in a Chord network (multiple leaves
and joins for example), multicasting reliability becomes a problem. Since some
nodes might have not yet updated their finger tables and successor lists, some nodes
might not be served with multicast messages. Generally, big gaps could occur in
the multicast distribution. Therefore, we made some optimizations to ensure more
robustness and reliability as follows.

• Improved stabilization: Modification of pointers (fingers or successors)
causes execution of stabilization directly instead of only periodically. There-
fore, errors in the finger and successor tables (invalid pointers) are corrected
earlier.

• Predecessor self discovery: A node is able to search and find its predecessor
by itself. Therefore, stabilization can now rely on a node having up-to-date
and correct predecessor information.

• Self error correction: A node can add one of its fingers as successor if it
does not find a successor. This repairs a broken ring.

59

3.2. ARCHITECTURE AND DESIGN OF OM-QOS

• Improved finger table: Fingers can change their position in the finger table.
Fingers are only deleted if their IDs exceed the nodes’ current Chord ID +
2(fingerindex).

• No duplicate fingers: More distinct fingers facilitates having a more bal-
anced distribution of the multicast tree.

• Backward fingers: Each node maintains a list of nodes, that have an entry
in their finger table pointing to it. This helps to eliminate multicast errors.

• Multicast optimizations: We limited the multicast fan-out (number of nodes
that a multicast parent has to serve with multicast data) of nodes to have an
upper bound for the maximum fan-out and to avoid that too many nodes
directly connect to the root when end-to-end delay QoS requirements have
to be fulfilled. Furthermore, we added additional mechanisms to improve
multicast robustness.

• Improved Multicast routing: Because of the multicast fan-out limitations,
most nodes will have to select receivers from their finger list. Therefore, the
tree is better distributed and the hop count can be decreased.

We required those optimizations in order to support QoS by having a more ro-
bust/reliable Chord version.

Receiver Driven Multicast for Chord

Besides offering QoS using the class construct as described in Section 3.2.2, we
also wanted to support guarantees for the RTT between a multicast receiving node
and the multicast root node. Nodes can have a certain constraint regarding this
so called node to root RTT for multicast messages. Therefore, they would only
connect to a parent node that would support those constraints. When using the
forwarder driven multicast approach, a node is not able to select its own parent
for multicast delivery that would match its node to root RTT constraint. There-
fore, supporting node to root RTT only works with the receiver driven multicast
approach, where children can explicitly chose their multicast parents.

To reduce the overall multicast fan-out of nodes in general as described in
Chapter 3.2.7, we limited the maximum fan-out of a node to 7. This also helps to
avoid that all nodes try to select the root as their parent, which is often the best
candidate to fulfill node to root RTT constraints of nodes. Therefore, a potential
parent can reject a child’s request if it exceeds a certain number of children. As a
consequence, it may take some time to find a parent that satisfies the node to root
RTT and that can still accept new children. During this time, a node is not able to
receive multicast messages.

60

3.2. ARCHITECTURE AND DESIGN OF OM-QOS

3.2.8 Protocol Independent Approach

In the previous sections, we looked at possibilities on how to modify the inter-
nal mechanisms of P2P/ALM protocols in order to support QoS using protocol
dependent OM-QoS mechanisms. However, such approaches are not always pos-
sible, either there are no mechanisms or design changes that could enable protocol-
dependent QoS mechanisms or there is no easy way to modify the code or protocol.

Problems to Support QoS for CAN

As an example we will show how the first idea of an approach to enable QoS for
CAN (presented in Section 2.3.5) will fail.

1
(0.2,0.2)

2
(0.7,0.5)

1) rst join of node 1 and
then join of node 2

1
(0.2,0.2)

2
(0.7,0.5)

3
(0.1, 0.1)

2) new node 3 joins and
old node 1 splits

1
(0.2,0.2)

2
(0.7,0.5)

3

3) new node 4 joins and
old node 3 splits

4

(0.1,0.1)

(0.4,0.4)

1
(0.2,0.2)

2
(0.7,0.5)3

4) routing from root node
 with max. QoS to node 4

4

(0.1,0.1)

(0.4,0.4)

0.7,0.8

0.7,0.7 0.8,0.7

1,10.8,0.8

0.9,0.9

monotonically decreasing
QoS not fullled for 1 to 4

problem on x-axis with nodes 1 & 4

x-axis QoS setup OK x- and y-axis QoS setup OK

Figure 3.7: Problems with QoS for CAN using Coordinates for QoS Classes

Introducing QoS to CAN by mapping QoS classes to initial coordinates does
not work, because the location (zones) of a node can change overtime (zones that
are assigned to nodes move over time). Figure 3.7 shows an example where this ap-
proach fails. The idea is that higher QoS classes result in higher initial coordinates,
so the QoS classes are directly proportional to the initial coordinates of the CAN

61

3.2. ARCHITECTURE AND DESIGN OF OM-QOS

node. The problem is that splitting zones can lead to have hosts with higher QoS
(initial coordinates) being positioned “below” hosts with lower QoS coordinates.
In the example depicted in Fig. 3.7, node 4 (with QoS 0.4,0.4) is placed “below”
node 1 (with QoS 0.2,0.2). The property described in Section 3.2.2 does not hold:
the QoS requirements are not monotonically decreasing for a message being routed
from the root (highest QoS = highest coordinates) to node 4.

QoS for CAN using a Protocol Independent Approach with Layers

To enable QoS for CAN a different approach has to be chosen. This can be
achieved using a layered approach. An example with four QoS classes is shown in
Figure 3.8.

QoS class A (highest) CAN

QoS class D (lowest) CAN QoS class C CAN

S G

QoS class B CAN

G

G

Figure 3.8: QoS for CAN with Layers

Each QoS class has a dedicated CAN (one layer). Hosts having the same QoS
class join the same CAN (same layer). The different layers are interconnected us-
ing gateway nodes, connecting adjacent layers (in terms of QoS) with each other.
The sender S disseminates the multicast data inside its own CAN and then sends
the data to gateway nodes G in the CAN with the next lower and next higher QoS
class. The gateway nodes receiving multicast messages from another CAN dissem-
inate them in their own CAN and send them to the CAN with next higher or lower

62

3.2. ARCHITECTURE AND DESIGN OF OM-QOS

QoS class depending on the initial “direction” (up or down). This approach guar-
antees that the resulting multicast tree in such a layered group of CAN networks
will follow the described property of monotonically decreasing QoS requirements
(from root to leaves). Using layers is the basic idea of the general, but protocol in-
dependent OM-QoS approach works, where for each active QoS class a dedicated
P2P/ALM instance will be created.

Optimizing Hop-Count and Latency for the Layered Approach

To reduce the overall hop-count and latency from the root to a leaf node, the dif-
ferent QoS layers can not only be interconnected by single adjacent steps, but links
can be established jumping over multiple layers as shown in in Fig. 3.9. Normally
a layer would only forward the message to its next adjacent layer, for example layer
n would forward the message to layer n + 1 and then layer n + 1 would forward
the message to layer n+2, and so on. To optimize this behavior, layer n+1 could
also forward the message to layer n+4, therefore reducing the hop count needed to
reach, e.g., layer n+5. If a layer would receive a duplicate multicast message (for
example layer n + 5 would receive the same message from layer n + 1 and layer
n + 4), it would only forward the message once to avoid further duplicates. This
mechanism helps to improve the reliability and latency of inter-layer forwarding,
but introduces some additional duplicates.

n
n+1

n+2
n+3

n+4
n+5

n+6, n+7, ..., n+j

n-i
n-4

n-3
n-2

n-1

Figure 3.9: Optimizing Layer Hop-Count

63

3.3. EVALUATION SCENARIOS FOR OM-QOS

To further optimize the reliability, we introduced backup-links between the
layers as presented in [27]. If a gateway node fails, the adjacent gateway nodes
from the lower or upper layer already have backup links to alternative gateway
nodes ready to takeover the inter-layer transfer of the multicast messages from the
failing node on the fly.

3.3 Evaluation Scenarios for OM-QoS

3.3.1 Overview

In the following Sections, we present the simulation scenarios used to evaluate
OM-QoS applied to different P2P/ALM protocols. First, the scenarios and simu-
lation environment for Scribe/Pastry using Freepastry’s built in simulator are pre-
sented in Section 3.3.2. Section 3.3.3 presented the common scenarios and pa-
rameters for the evaluation using the OMNet++ network simulator. The protocol
specific scenarios and values that were evaluated are presented in Section 3.3.4 for
CAN, Section 3.3.5 for NICE, and finally in Section 3.3.6 for Chord.

3.3.2 Scribe/Pastry Evaluation Scenarios

In order to prove that our OM-QoS approach works, we performed our first evalu-
ations as a proof-of-concept using Freepastry’s built in simulator. The simulations
were performed using a simulation environment with limited resources (regarding
CPU, memory, availability and number of PCs). For our evaluation we generated
network topologies using the BRITE [112, 30] network topology generator. We
varied the number of hosts between 100 and 800 in steps of 100. For each number
of hosts we generated 40 topologies. We used only a limited number of hosts and
topologies due to the limited resources available for performing the simulations.
Each topology was generated using Waxman’s model [177] with the parameters
presented in Table 3.1.

Table 3.1: Parameters used for BRITE

Router model Waxman
α 0.15

β 0.2

Main plane 5000 squares
Inner planes 5000 squares
Node placements random
Growth type incremental
of neighboring nodes 2

64

3.3. EVALUATION SCENARIOS FOR OM-QOS

Each such network topology is converted to a distance matrix by finding the
optimal route (optimizing the number of hops) for each host pair and calculating
the round trip time for that route. Additionally, we assigned to each host a random
QoS class (as a value between 0 and 255).

The generated distance matrix and the QoS classes are then used to construct
a multicast tree using Scribe/Pastry with our proposed ID assignment method and
with the default (random) ID assignment method. The construction of the multicast
tree is performed using the “BasicNetworkSimulator” provided by Freepastry [75].

We evaluated the properties of multicast trees created by Scribe/Pastry using
our modification of the ID assignment of Pastry as described in Section 3.2.4 by
comparing it to the default (random) ID assignment of Pastry. We use hard QoS
scenarios and therefore assume that the underlying network can provide the re-
quired QoS by performing the corresponding QoS reservations as mentioned in
Section 3.2.1.

For each generated multicast tree we evaluated whether the QoS property holds
as described in Section 3.2.2 for all end-to-end paths from the root to each node.
If at least one hop on the path does not hold this property, we would not be able to
guarantee the QoS requirement for that peer and all other nodes below this one in
the multicast tree.

When creating Pastry nodes with the modified ID assignment method, this
value is used to generate the 32 first digits of the Pastry ID. This way we parti-
tion the Pastry ID space into 256 segments of equal size. Nodes with the same QoS
class get placed in the same segment. Therefore, a lower QoS class reflects in a
lower Pastry ID. The lower the Pastry ID is, the further away a node is in terms
of numerical ID proximity from the multicast root node, which gets the highest
possible Pastry ID assigned.

For each end-to-end path we check if the following property holds: each step
on the path towards the root node has to go through a node with higher or same
QoS class value than its preceding node. To verify our proposal, we compare for
how many percent of the end-to-end paths the QoS property holds for the random
and our ID assignment method. To see whether our proposal produces longer end-
to-end paths, we also compare the average and maximum path length for both ID
assignment methods. In terms of implementation, we created a new ID assign-
ment factory using the OM-QoS method, which takes the QoS class of a peer into
account when determining the Pastry ID.

3.3.3 Common CAN / NICE / Chord Evaluation Scenarios

For the evaluations of CAN, NICE and Chord using OMNet++ [124, 166, 167], we
use a simple P2P message based model. We did not use any additional OMNet++
libraries or frameworks, just a basic OMNet++ version 3.3 installation.

The latencies between all the nodes are determined using distance matrices,
defining the latencies for each possible node pair connection. The distance ma-
trices were built using topologies generated by BRITE [112, 30] using the same

65

3.3. EVALUATION SCENARIOS FOR OM-QOS

parameters as for Scribe/Pastry evaluation scenarios presented in Table 3.1 in Sec-
tion 3.3.2. The minimum, maximum and median delay values of the matrices used
for the OMNet++ evaluation scenarios (CAN / NICE / Chord) are depicted in Table
3.2.

Table 3.2: Delay Properties of Distance Matrices in ms

Matrix min RTT (ms) mean RTT (ms) max RTT (ms)
Matrix 0 0.08 22.47 48.44
Matrix 1 0.09 30.35 90.48
Matrix 2 0.05 30.56 94.58
Matrix 3 0.05 29.76 90.23
Matrix 4 0.07 23.26 57.52
Matrix 5 0.09 22.78 51.82
Matrix 6 0.04 22.77 49.24
Matrix 7 0.08 23.27 52.30
Matrix 8 0.05 22.91 53.92
Matrix 9 0.05 23.27 50.83
Matrix 10 0.08 22.47 48.44
Matrix 11 0.05 22.91 54.00
Matrix 12 0.01 23.13 54.17

For each of the scenarios, we looked at various networks ranging with a node
count from 100 to 2000 in steps of 100. Each node step was evaluated using 13
different distance matrices, which we evaluated each with different random seeds
influencing arrival, departure and other random based decisions.

We use the seeds as input for the random number generators (RNG). For our
implementation, we used the Mersenne Twister RNG [111], which has a period of
219937 − 1 and assures the 623-dimensional equidistribution property.

The seeds used for the simulations (CAN / NICE / Chord) are depicted in Ta-
ble 3.3. We either used all 20 random seeds (for CAN) or the first 3 seeds from
the list (for NICE and Chord).

To evaluate the different scenarios for CAN, Chord and NICE, we analyzed
and compared different values. The common values evaluated for CAN, NICE and
Chord are multicast fan-out, multicast hop-count, percentage of multicast received,
node to root QoS and node to root RTT. The meaning of these values is presented
in Table 3.4.

3.3.4 CAN Evaluation Scenarios

We evaluated the application of OM-QoS to CAN using the OMNet++ simulator
as described in Section 3.3.3. Therefore, we implemented the CAN protocol and
made some enhancements to fully support join and leave functionality.

66

3.3. EVALUATION SCENARIOS FOR OM-QOS

Table 3.3: Random Seeds used for the Evaluations

Seed # Value Seed # Value
Seed 1 1768507984 Seed 11 640572720
Seed 2 33648008 Seed 12 1569615780
Seed 3 1082809519 Seed 13 1142429693
Seed 4 703931312 Seed 14 307193866
Seed 5 1856610745 Seed 15 34708029
Seed 6 784675296 Seed 16 97450298
Seed 7 426676692 Seed 17 743126457
Seed 8 1100642647 Seed 18 593716555
Seed 9 1359921031 Seed 19 910097052
Seed 10 1209575029 Seed 20 449294716

Table 3.4: Common Values Evaluated in Simulation Scenarios for CAN, NICE and Chord

Multicast fan-out describes the number of neighbor nodes a node
has to serve with multicast data.

Multicast hop count depicts the number of hops required to reach the
root of the multicast tree.

Percentage of multicast
messages received

describes the percentage of multicast messages
received per node.

Node to root RTT denotes the round trip time (RTT) from a node to
the root of the multicast tree.

Node to root QoS shows the percentage of paths, which fulfill the
QoS requirements of nodes.

We use hard QoS scenarios and therefore assume that the underlying network
can provide the required QoS by performing the corresponding QoS reservations
as mentioned in Section 3.2.1.

Due to the possibility of nodes leaving at any time during the simulation, we
also needed to support temporary key-space assignment as well as zone handover
and merge mechanisms. If the multicast sender leaves the CAN network, its re-
sponsibility to transmit continuously multicast messages has also to be passed to
another CAN node, which then becomes the new multicast root. The CAN proto-
col was implemented in a fully decentralized manner, the network was built and
maintained using only message transmission among nodes. Therefore, it would be
quite simple to modify our solution to also work in real networks.

We analyzed the CAN implementation and our OM-QoS extensions to CAN

67

3.3. EVALUATION SCENARIOS FOR OM-QOS

using various scenarios. We present the results for a scenario consisting of a CAN
network without QoS support, where the nodes have one of 64 possible QoS classes
assigned, in order to verify the QoS properties of the multicast paths for native
CAN. Further, we present the results for a scenarios consisting of an OM-QoS
enabled CAN with one of 64 QoS classes assigned to a node. We also discuss
the results for a scenario with 256 QoS classes in an OM-QoS enabled CAN. All
nodes get their QoS class (out of 64 or 256 possible QoS classes, depending on the
scenario) assigned on startup.

We evaluated all values as shown in Table 3.4 in Section 3.3.3 and additionally
the CAN specific values as presented in Table 3.5.

Table 3.5: Additional Values Evaluated in Simulation Scenarios for CAN

Average multicast duplicates per
multicast message

denotes the average number of duplicated
multicast messages received by a node

Time until a node has joined is the time a node takes to join the CAN
network, this includes finding the node
responsible to split the zone.

Time until a node has left is the time a node takes to gracefully
leave the CAN network, this includes
zone handover and synchronization for
overlapping leaves of neighbor nodes.

The latencies between all the nodes are determined using distance matrices,
defining the latencies for each possible node pair connection as described in Sec-
tion 3.3.3. We used for each scenario all 20 random seeds presented in Table 3.3 in
Section 3.3.3. The random seeds influence different random based decisions, such
as the QoS Class a node has, the departure time of a node, failing QoS require-
ments, etc. Therefore, each scenario consists of 5200 simulations. We removed
1% of the outliers (0.5% of the minimum and maximum values each) for the fig-
ures in the CAN evaluation results presented in Section 3.4.3.

3.3.5 NICE Evaluation Scenarios

Our evaluation of QoS for NICE has been performed using the OMNet++ sim-
ulator as described in Section 3.3.3. We implemented the basic NICE protocol
and made some enhancements to support further reliability, such as handshakes for
cluster-leader transfers, split and merge operations, leaving and root transfers. Our
implementation is fully decentralized, the overlay structure was setup and main-
tained using only message transmission among the NICE nodes.

The QoS aware NICE has been evaluated using hard QoS guarantees offered
by the underlying network and soft QoS as described in Section 3.2.1. Hard QoS

68

3.3. EVALUATION SCENARIOS FOR OM-QOS

could be achieved using, e.g., DiffServ or EuQoS [28] mechanisms. Soft QoS is a
measurement based best-effort QoS. Nodes measure the QoS provided by potential
parents and then select the one supporting the required QoS.

But, QoS capabilities of a node can change over time. This means that some
links between nodes might not support the required QoS anymore after a certain
time. Then, a new parent has to be found. On the link between the node and
the parent, the initially required QoS has to be supported again. The protocol
dependent and independent (layered) OM-QoS approaches were both investigated.

We evaluated all values as shown in Table 3.4 in Section 3.3.3 and additionally
the NICE specific values as presented in Table 3.6.

Table 3.6: Additional Values Evaluated in Simulation Scenarios for NICE

Number of cluster mates measures the number of cluster mates per
cluster leader.

Rejoin duration is the time a node takes to join a new clus-
ter, if its QoS requirements are not fulfilled
in its current cluster.

Node to root RTT constraints
fulfilled

is the percentage of nodes for which NICE
satisfies the given E2E RTT constraint dur-
ing the initial join process.

Node to root RTT after join is the RTT from a node to the multicast root
directly after joining.

Node to root RTT difference is the difference between effectively
achieved node to root RTT and the node to
root RTT constraint after join.

We investigated different scenarios, starting comparing the influence of the k
parameter (described in Section 2.5.7) on certain issues of a native NICE network
without QoS support. Therefore, we looked at the multicast fan-out, multicast hop
count, node to root RTT and number of cluster mates for NICE networks with
k = 3, k = 4 and k = 5. We then compared native NICE and QoS aware NICE
(protocol dependent OM-QoS approach) using k = 5.

Finally, we also looked at the node to root RTT constraints explained in Sec-
tion 3.2.6 that a node might request. We modified the join process to the NICE
network as described in Section 3.2.6. Hence, nodes should have their node to root
RTT below their requested upper bound for that value directly after they entered
the network.

We performed our simulations using various network sizes with a node count
from 100 to 2000 in steps of 100. Each of these steps was evaluated using 13
different distance matrices described in Section 3.3.3 in Table 3.2. For each of the

69

3.3. EVALUATION SCENARIOS FOR OM-QOS

13 different distance matrices, we used the first three random seeds presented in
Table 3.3 in Section 3.3.3. The seeds are influencing the arrival time of nodes,
departure decisions of nodes, QoS classes of nodes, and many other random based
values. Therefore, each scenario consists of 780 simulation runs. We removed 1%
of the outliers (0.5% of the minimum and maximum values each) for the figures
and results of the NICE evaluation presented in Section 3.4.4.

3.3.6 Chord Evaluation Scenarios

To evaluate our approach, we implemented the optimized Chord protocol (see
Section 3.2.7) in the OMNet++ simulator as described in Section 3.3.3. We im-
plemented the Chord protocol based on messages in a completely decentralized
way. With some modifications, our protocol implementation in OMNet++ could
also be used as an implementation of Chord for the Internet. We are assuming
to have hard QoS guarantees offered by the underlying network. This can be
achieved using, e.g., DiffServ or QoS provided by an approach proposed by Eu-
QoS [68, 28, 67, 116] mechanisms. We used the protocol dependent approach of
OM-QoS for Chord.

We also looked at the node to root RTT constraints explained in Section 3.2.6
that a node might request. We consider these constraints for the whole time a node
is in a Chord network. Therefore, if the node to RTT changes for a node (due to
changes occurring further up the multicast tree because of leaving of existing and
joining of new nodes), all nodes attached to its sub-tree are also influenced by that
change and might have to find a new parent. Furthermore, we limited the multicast
fan-out of nodes in Chord to 7, to have a reasonable upper boundary for the fan-out.

We will look at different scenarios for evaluating Chord. First, we compare
forwarder driven multicast performance using our enhanced Chord protocol with
and without QoS class support. Then, we analyze the receiver driven multicast
approach, where we can support also delay guarantees.

We evaluated all values as shown in Table 3.4 in Section 3.3.3 and additionally
the Chord specific values as presented in Table 3.7.

Table 3.7: Additional Values Evaluated in the Simulation Scenarios for Chord

Node to root RTT Constraints
Fulfilled

is the percentage of nodes for which
Chord satisfies the given node to root
RTT constraint.

The scenarios were evaluated using various network sizes. The different net-
works had a node count from 100 to 2000 in steps of 100. Each node step was
evaluated using 13 different distance matrices as described in Section 3.3.3 in Ta-
ble 3.2.

70

3.4. EVALUATION RESULTS FOR OM-QOS

For each of the 13 different distance matrices, we used the first three random
seeds presented in Table 3.3 in Section 3.3.3. Those random seeds influence the
arrival time of nodes, departure decisions of nodes, QoS classes of nodes and other
random based decisions and values. This then leads to a total of 780 simulation runs
per scenario. We removed 1% of the outliers (0.5% of the min. and max. values
each) for the figures and results of the Chord evaluation presented in Section 3.4.5.

3.4 Evaluation Results for OM-QoS

3.4.1 Overview

In the following Sections, we evaluate the OM-QoS enhancements to enable QoS
for different P2P/ALM protocols. First, Section 3.4.2 presents the analysis and
evaluation of Scribe/Pastry using Freepastry’s built-in simulator. The evaluation
results for CAN using the protocol independent (layered) approach is presented in
Section 3.4.3. In Section 3.4.4, the evaluation results for NICE using a protocol
dependent and also the protocol independent approach are presented. Finally, Sec-
tion 3.4.5 presents the evaluation results for Chord, where we also evaluated the
node to root RTT constraints in more detail.

3.4.2 Scribe/Pastry Evaluation Results

As we can see in Fig. 3.10 our modification of the ID assignment always per-
forms better in respect of building QoS aware multicast trees than the random ID
assignment of Pastry. As expected, the property described before holds for every
end-to-end path in the multicast tree created by Scribe when using our method for
assigning IDs.

Figure 3.11 shows that the maximum and average path lengths (in terms of
hop counts in the Pastry P2P network) for the two methods do not significantly
differ, meaning that our modification of the ID assignment method is not worse
than the random ID assignment of Pastry regarding average end-to-end path lengths
in multicast trees.

3.4.3 CAN Evaluation Results

Figures 3.17(a), 3.12(a), 3.13(a), 3.15(a), 3.14(a), 3.16(a), 3.18(a), 3.19(a) show
the simulation results for a native CAN scenario without any QoS support but
where each node gets one of 64 QoS classes assigned at startup. This allows us
to still compare how well CAN by chance would build QoS enabling multicast
trees. All nodes reside in one single CAN consisting of up to 2000 nodes.

In Figures 3.17(b), 3.12(b), 3.13(b), 3.15(b), 3.14(b), 3.16(b), 3.18(b), 3.19(b),
we show the simulation results for an OM-QoS enabled CAN scenario with 64 QoS
classes. For the OM-QoS enabled CAN scenario with 64 QoS classes, we have 64
distinct CAN layers consisting on average of 1.56 to 31.25 nodes per layer (i.e.,

71

3.4. EVALUATION RESULTS FOR OM-QOS

 0

 20

 40

 60

 80

 100

 100 200 300 400 500 600 700 800

P
er

ce
nt

 o
f e

nd
-t

o-
en

d
pa

th
s

w
ith

 s
at

is
ife

d
Q

oS

Number of hosts in Scribe/Pastry

random ID assignment QoS-aware ID assigment

Figure 3.10: End-to-end Paths Comparison regarding QoS Satisfaction with Hard QoS
and 64 QoS Classes

 1

 1.5

 2

 2.5

 3

 3.5

 4

 100 200 300 400 500 600 700 800

E
nd

-t
o-

en
d

pa
th

 le
ng

th

Number of hosts in Scribe/Pastry

random ID assignment QoS-aware ID assigment

Figure 3.11: Average and Maximum Path Lengths (in Hops) for all End-to-End Paths

per QoS class) for a total number of nodes ranging from 100 to 2000 respectively.
We compare the average, minimum and maximum values for the OM-QoS enabled
CAN scenario with the results for the native CAN scenario without QoS support.

72

3.4. EVALUATION RESULTS FOR OM-QOS

Multicast Fan-Out

Figure 3.12 shows the multicast fan-out, the number of direct downstream children
of a node. For the native CAN scenario shown in Fig. 3.12(a), the average fan-out

 0

 5

 10

 15

 20

 200 400 600 800 1000 1200 1400 1600 1800 2000

fa
n
-o

u
t

number of nodes

(a) Native CAN

 0

 5

 10

 15

 20

 200 400 600 800 1000 1200 1400 1600 1800 2000

fa
n
-o

u
t

number of nodes

(b) OM-QoS CAN

Figure 3.12: Multicast Fan-Out in Native CAN and in OM-QoS CAN with Hard QoS &
64 QoS Classes

of 3 per node is very acceptable and remains more or less constant for the different
amount of nodes. As expected, there are also leaf nodes that do not forward any
messages. For the worst case, the maximum fan-out is at 19, which seems to grow
only very slowly for more nodes. Looking at the OM-QoS enabled CAN scenario
shown in Fig. 3.12(b), the average fan-out has been increased by 1 to 2 children.
These additional children are introduced by the inter-layer forwarding mechanism.
The maximum fan-out decreased because of CAN networks with smaller number
of nodes on the different layers, but the average and maximum fan-out values re-
main almost constant when increasing the number of nodes. The minimum fan-out
did not change, because there will always be pure leaf nodes.

Multicast Hop Count

In Fig. 3.13, we present the hop-count of multicast messages. The hop-count on
average grows slowly when there are more nodes in a native CAN, as shown in
Fig. 3.13(a). Minimum and maximum values for the hop-count behave as expected,
with the minimum being more or less constant while the maximum grows steadily
when more nodes are in a CAN. The average hop-count in the OM-QoS enabled

 0

 5

 10

 15

 20

 25

 30

 35

 40

 200 400 600 800 1000 1200 1400 1600 1800 2000

h
o
p
 c

o
u
n
t

number of nodes

(a) Native CAN

 0

 5

 10

 15

 20

 25

 30

 35

 40

 200 400 600 800 1000 1200 1400 1600 1800 2000

h
o
p
 c

o
u
n
t

number of nodes

(b) OM-QoS CAN

Figure 3.13: Multicast Hop Count in Native CAN and in OM-QoS CAN with Hard QoS
and 64 QoS Classes

73

3.4. EVALUATION RESULTS FOR OM-QOS

CAN scenario as shown in Fig. 3.13(b) is generally increased due to inter-layer
forwarding, but behaves now more or less constant due to smaller CAN sizes. This
has a similar effect on the maximum.

Percentage of Multicast Messages Received

In Fig. 3.14, we depict the percentage of received multicast messages. More nodes
in a native CAN result in less multicast messages being successfully delivered to
every node, as can been seen looking at the behavior of the minimum values for
the native CAN scenario presented in Fig. 3.14(a). The range for the average is be-

 0

 20

 40

 60

 80

 100

 200 400 600 800 1000 1200 1400 1600 1800 2000

m
u
lt
ic

a
s
t
re

c
e
iv

e
d
 (

%
)

number of nodes

(a) Native CAN

 0

 20

 40

 60

 80

 100

 200 400 600 800 1000 1200 1400 1600 1800 2000

m
u
lt
ic

a
s
t
re

c
e
iv

e
d
 (

%
)

number of nodes

(b) OM-QoS CAN

Figure 3.14: Percentage of Multicast Messages Received in Native CAN and in OM-QoS
CAN with Hard QoS & 64 QoS Classes

tween 98 to 100 percent, with a maximum of 100 percent as expected. The amount
of the received multicast messages in the OM-QoS enabled CAN scenario as pre-
sented in Fig. 3.14(b) is improved, because there are only small number of nodes
in a CAN and due to the reliability optimized inter-layer forwarding mechanism.
The minimum value behaves less predictably, because there are now multiple CAN
in parallel behaving completely different than when just having one big CAN for
all nodes.

Node to Root RTT

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 200 400 600 800 1000 1200 1400 1600 1800 2000

ti
m

e
 (

s
)

number of nodes

(a) Native CAN

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 200 400 600 800 1000 1200 1400 1600 1800 2000

ti
m

e
 (

s
)

number of nodes

(b) OM-QoS CAN

Figure 3.15: Node to Root RTT in Native CAN and in OM-QoS CAN with Hard QoS &
64 QoS Classes

Figure 3.15 shows the node to root RTT in the multicast tree. This value be-
haves the same as the hop-count with an average between 0.1 to 0.35 seconds and

74

3.4. EVALUATION RESULTS FOR OM-QOS

a maximum of 1 second for the native CAN scenario as presented in Fig. 3.15(a).
In the OM-QoS enabled scenario presented in Fig. 3.15(b), the RTT values receive
the same impact as for hop count. They are on average a bit higher than in the
native CAN scenario but behaving more or less constant with more nodes in the
scenario. CAN does not offer any mechanism to optimize RTT between nodes.

Node to Root QoS

In Fig. 3.16, we present the percentage of nodes that hold the previously described
property on their full path to the root of the multicast tree. Although the paths in

 0

 20

 40

 60

 80

 100

 200 400 600 800 1000 1200 1400 1600 1800 2000

p
a
th

s
 (

%
)

number of nodes

(a) Native CAN

 0

 20

 40

 60

 80

 100

 200 400 600 800 1000 1200 1400 1600 1800 2000

p
a
th

s
 (

%
)

number of nodes

(b) OM-QoS CAN

Figure 3.16: Node to Root QoS in Native CAN and in OM-QoS CAN with Hard QoS &
64 QoS Classes

the multicast tree are not constructed in a QoS aware manner in the native CAN
scenario shown in Fig. 3.16(a), on average 10 to 20 percent of the paths may hold
the previously mentioned QoS property. As expected, all the paths fulfill the QoS
property in the OM-QoS enabled CAN scenario shown in Fig. 3.16(b).

Average Multicast Duplicates per Multicast Message

 0

 0.5

 1

 1.5

 2

 2.5

 3

 200 400 600 800 1000 1200 1400 1600 1800 2000

m
e
s
s
a
g
e
s

number of nodes

(a) Native CAN

 0

 0.5

 1

 1.5

 2

 2.5

 3

 200 400 600 800 1000 1200 1400 1600 1800 2000

m
e
s
s
a
g
e
s

number of nodes

(b) OM-QoS CAN

Figure 3.17: Average Multicast Duplicates per Multicast Message in Native CAN and in
OM-QoS CAN with Hard QoS & 64 QoS Classes

Figure 3.17 presents the duplicates received per multicast message. The aver-
age for the native CAN scenario shown in Fig. 3.17(a) is between 0.3 to 0.5 du-
plicates per message, which is due to the nature of CAN. As the minimum shows,
duplicates can be often avoided. For some nodes the worst case is between 2 to

75

3.4. EVALUATION RESULTS FOR OM-QOS

2.5 duplicates per multicast message. Comparing the average with the OM-QoS
enabled CAN scenario shown in Fig. 3.17(b), we see that the values behave now
more or less constant due to the fact that we have smaller CAN networks. On
the other hand, the average for less nodes has increased slightly, because of the
duplicates that can be introduced by inter-layer forwarding. Our mechanisms be-
tween layers focuses more on reliability than on duplicate avoidance. This has the
same effect on the maximum and minimum. Duplicates introduced by inter-layer
forwarding could be avoided when omitting our inter-layer forwarding reliability
improvements based on pro-active actions performed by inter-layer parents. In-
stead, nodes responsible for one QoS layer would have to explicitly subscribe to
their parent nodes in other (higher) QoS layers. Those nodes would also have to
explicitly react if their current parents would not forward anymore multicast mes-
sages to them. These mechanisms would omit the duplicates but could lead to
one or even a chain of layers not being served anymore by multicast messages for
certain periods of time.

Time Until a Node has Joined

Figure 3.18 shows the time a node required to fully join a CAN. The values in the
native CAN scenario presented in Fig. 3.18(a) grow steadily with the amount of
nodes, having an average ranging between 0.1 and 0.25 seconds, while the max-
imum is still in an acceptable range from 0.25 to 0.7 seconds. The minimum

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 200 400 600 800 1000 1200 1400 1600 1800 2000

ti
m

e
 (

s
)

number of nodes

(a) Native CAN

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 200 400 600 800 1000 1200 1400 1600 1800 2000

ti
m

e
 (

s
)

number of nodes

(b) OM-QoS CAN

Figure 3.18: Time Until a Node has Joined in Native CAN and in OM-QoS CAN with
Hard QoS & 64 QoS Classes

remains constantly close to 0.05 seconds, which reflects the early moments of a
CAN, where there are only a few nodes in the network and join related messages
have only to be passed among few nodes. The OM-QoS enabled CAN scenario
presented in Fig. 3.18(b) has smaller CAN in the different layer as explained in the
beginning of Section 3.4.3. Therefore, joining time on average is reduced signifi-
cantly. The maximum and minimum values behave accordingly.

Time Until a Node has Left

In Fig. 3.19, we present the time a node required to leave successfully. On average,
nodes can quickly leave a CAN, but sometimes the handover of zones to other

76

3.4. EVALUATION RESULTS FOR OM-QOS

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 200 400 600 800 1000 1200 1400 1600 1800 2000

ti
m

e
 (

s
)

number of nodes

(a) Native CAN

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 200 400 600 800 1000 1200 1400 1600 1800 2000

ti
m

e
 (

s
)

number of nodes

(b) OM-QoS CAN

Figure 3.19: Time Until a Node has Left in Native CAN and OM-QoS CAN with Hard
QoS & 64 QoS Classes

nodes may take more time if multiple nodes want to leave at the same time. When
using native CAN as shown in Fig. 3.19(a), then all nodes are in only one CAN (and
not distributed over multiple layers of CAN). If multiple nodes want to leave at the
same time, then the coordination of zone handover can result in leaving times of up
to 1.6 seconds. The leaving time in a OM-QoS enabled CAN scenario as shown in
Fig. 3.19(b) is shorter. Because of the lower probability of nodes simultaneously
leaving from the same CAN layer, the necessity of coordinating zone handover is
less probable. Therefore, the average and maximum values grow slowly and are
almost constant with more nodes being distributed evenly over the multiple layers.

Summary

Applying OM-QoS to CAN (Content Addressable Networks) enables CAN to sup-
port Quality of Service (QoS) enabled multicasting. For each QoS class, a ded-
icated CAN is established. These layers of CAN are then interconnected using
gateway nodes. Multicast messages are then passed from a higher QoS class layer
to a lower QoS layer, therefore building multicast trees that support QoS require-
ments. Enabling QoS for CAN using OM-QoS slightly increases the average fan-
out of nodes and duplicates received per multicast message, but in consequence,
this improves the percentage of multicast messages received. Other properties of
CAN are not changed significantly when using OM-QoS. The overall scalability is
improved, because using OM-QoS, the nodes are distributed over multiple layers
of smaller CAN rather than joining one single big CAN.

3.4.4 NICE Evaluation Results

Impact of k Value on Native NICE

This Section compares the impact of the k value on native NICE regarding multi-
cast fan-out, hop count, node to root RTT, and number of cluster mates. The size
of a cluster varies between the lower bound k and the upper bound 3k − 1, with k
being a predefined cluster constant larger than zero, as presented in Section 2.5.7.
We evaluated the maxima and minima for the different values of k individually.

77

3.4. EVALUATION RESULTS FOR OM-QOS

But, we only show the highest maximum and lowest minimum encountered for
any value of k.

In Fig. 3.20, we can see that the average fan-out is only slightly depending on
k. The presented maximum is encountered using k = 5 and is caused by the root

 0

 5

 10

 15

 20

 25

 30

 2
0

0

 4
0

0

 6
0

0

 8
0

0

 1
0

0
0

 1
2

0
0

 1
4

0
0

 1
6

0
0

 1
8

0
0

 2
0

0
0

fa
n

-o
u

t

number of nodes

k=3

k=4

k=5

Figure 3.20: Multicast Fan-Out for Native NICE with k = 3, k = 4, and k = 5

node. Leaf nodes do not forward any multicast data, hence we have a minimum fan-
out of 0. This is where we have the highest number of cluster mates per cluster on
average, and where this particular root node has to serve every layer with multicast
messages. The fan-out is directly proportional to the value of k for large NICE
networks with a high number of nodes. Choosing a high value for k results in a
high average fan-out.

With lower k, the hop count increases as shown in Fig. 3.21. When we have

 0

 1

 2

 3

 4

 5

 6

 2
0

0

 4
0

0

 6
0

0

 8
0

0

 1
0

0
0

 1
2

0
0

 1
4

0
0

 1
6

0
0

 1
8

0
0

 2
0

0
0

h
o

p
 c

o
u

n
t

number of nodes

k=3
k=4
k=5

Figure 3.21: Multicast Hop Count for Native NICE with k = 3, k = 4, and k = 5

smaller clusters, we will get more layers, which leads to a higher hop count. The
maximum is though still acceptable, only 1–2 hops higher than the average.

Since NICE always tries to optimize clusters according to the RTT between
the cluster mates, the mean node to root RTT values as shown in Fig. 3.22 are only
slightly increasing with lower k values. The maximum is slightly above twice the
worst average.

78

3.4. EVALUATION RESULTS FOR OM-QOS

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 2
0

0

 4
0

0

 6
0

0

 8
0

0

 1
0

0
0

 1
2

0
0

 1
4

0
0

 1
6

0
0

 1
8

0
0

 2
0

0
0

ti
m

e
 (

s
)

number of nodes

k=3
k=4
k=5

Figure 3.22: Node to Root RTT for Native NICE with k = 3, k = 4, and k = 5

Finally, the number of cluster mates presented in Fig. 3.23 is again heavily
depending on the k value and behaving as expected, being somewhat above the
effective k value. The maximum is again roughly twice the highest average value

 0

 2

 4

 6

 8

 10

 12

 14

 2
0

0

 4
0

0

 6
0

0

 8
0

0

 1
0

0
0

 1
2

0
0

 1
4

0
0

 1
6

0
0

 1
8

0
0

 2
0

0
0

c
lu

s
te

r
m

a
te

s

number of nodes

k=3

k=4

k=5

Figure 3.23: Number of Cluster Mates for Native NICE with k = 3, k = 4, and k = 5

encountered for k = 5. For all these aspects analyzed, the minima values are as
expected, considering that the outliers have been removed.

NICE with Hard QoS using the Protocol Dependent Approach of OM-QoS

In this Section, we compare native NICE with QoS enabled NICE using the pro-
tocol dependent OM-QoS approach, both having k = 5. Choosing k = 5 reduces
the number of layers in a NICE network, and therefore also reduces the hop count
and node to root RTT while only having a slightly increased fan-out. This has been
shown when determining the impact of k value on NICE.

Each node gets a QoS class assigned from the range 0–255. We assume that the
underlying network will provide the requested QoS for the OM-QoS enable NICE
scenario. Therefore, the QoS will remain static. We call this hard QoS.

In native NICE, cluster leaders are determined using delay measurements and
calculating the graph-theoretic center as described in Section 3.2.6. In OM-QoS

79

3.4. EVALUATION RESULTS FOR OM-QOS

enabled NICE, cluster leaders are determined by the QoS class. The cluster leader
of a cluster is the node having the highest QoS class in this cluster.

Since the OM-QoS enabled NICE has a different cluster leader determination
mechanism not based on RTT, we compare the node to root RTT in Fig. 3.24. The
native NICE mode shown in Fig. 3.24(a) is optimized and has an average node
to root RTT between 20ms–40ms depending on the number of nodes in a NICE
network.

The OM-QoS enabled NICE shown in Fig. 3.24(b) has an average node to
root root RTT of 30ms–60ms. Using OM-QoS adds another 50% of extra delay
to the node to root RTT. This is expected due to the fact that cluster leaders are
not anymore determined and optimized using delay measurements. Instead, QoS
classes (i.e., bandwidth) are used to determine cluster leaders. The maximum of
the node to root RTT value on the other hand almost doubles when using QoS
mechanisms.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 200 400 600 800 1000 1200 1400 1600 1800 2000

ti
m

e
 (

s
)

number of nodes

(a) Native NICE

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 200 400 600 800 1000 1200 1400 1600 1800 2000

ti
m

e
 (

s
)

number of nodes

(b) OM-QoS NICE

Figure 3.24: Node to Root RTT in Native NICE and in OM-QoS NICE with Hard QoS %
256 QoS Classes

For native NICE, QoS classes are not taken into account when a node joins a
NICE network or when cluster leaders have to be determined. In Fig. 3.25, we
present how many paths would satisfy the property of monotonically decreasing
QoS requirements as described before. In Fig. 3.25(a) we can see that on average,

 0

 20

 40

 60

 80

 100

 200 400 600 800 1000 1200 1400 1600 1800 2000

p
a
th

s
 (

%
)

number of nodes

(a) Native NICE

 0

 20

 40

 60

 80

 100

 200 400 600 800 1000 1200 1400 1600 1800 2000

p
a
th

s
 (

%
)

number of nodes

(b) OM-QoS NICE

Figure 3.25: Node to Root QoS in Native NICE and in OM-QoS NICE with Hard QoS &
256 QoS Classes

only 30% of the paths hold the property for native NICE, whereas in Fig. 3.25(b)
with OM-QoS enabled NICE, 100% of the paths fulfill QoS.

Still, introducing QoS to NICE using OM-QoS allows us to guarantee that all

80

3.4. EVALUATION RESULTS FOR OM-QOS

paths from the root node to the leaf nodes in the multicast tree fulfill the QoS
requirements while adding an acceptable overhead in terms of delay.

NICE with Soft QoS using the Protocol Dependent Approach of OM-QoS

In this Section, we look at the scenario with soft QoS. This means that the QoS
guarantees can change over time. The difference between hard QoS and soft QoS
is described in Section 3.2.1. If QoS cannot further be supported along a path, the
node has to look for a new parent (or cluster leader in NICE) that actually supports
again its QoS requirements. In this evaluation, there is a 50% chance for every
node that its QoS requirements are not supported anymore during the time interval
of 10s to 100s after joining the NICE network. Again, we use 256 QoS classes
and also k = 5 for this scenario with the protocol dependent OM-QoS approach to
support QoS for NICE.

 0

 20

 40

 60

 80

 100

 200 400 600 800 1000 1200 1400 1600 1800 2000

m
u

lt
ic

a
s
t

re
c
e

iv
e

d
 (

%
)

number of nodes

Figure 3.26: Percentage of Multicast Messages Received in OM-QoS NICE with Soft
QoS & 256 QoS Classes

As shown in Fig. 3.26, the dynamic behavior of the QoS guarantees does not
have a negative impact on the percentage of multicast messages received by nodes
on average. Almost all multicast messages are delivered as intended. Some nodes
though might have a higher loss rate due to multiple rejoins, merging and split
operations, cluster leader and root transfers, as visible from the minimum value.
During these times, there might be some moments where a node is not part of a
cluster, and therefore might not receive multicast messages from a cluster leader.
This is especially the case for nodes that are only participating in a NICE network
for a short time. If during this time the previously mentioned operations (rejoin,
split, merge, transfers) occur frequently, it can happen that such nodes only receive
a few multicast messages. This then leads to a high loss rate.

The number of cluster mates presented in Fig. 3.27 is lower (by one node) than
in the native NICE network previously shown in Fig. 3.23 for k = 5. This is due to
the fact that nodes actually leave their cluster and rejoin other clusters which even
has a positive impact. Such a behavior contributes to a more equal distribution of
nodes among the layers and clusters.

81

3.4. EVALUATION RESULTS FOR OM-QOS

 0

 2

 4

 6

 8

 10

 12

 200 400 600 800 1000 1200 1400 1600 1800 2000

c
lu

s
te

r
m

a
te

s

number of nodes

Figure 3.27: Number of Cluster Mates in OM-QoS NICE with Soft QoS & 256 QoS
Classes

The rejoin duration is presented in Fig. 3.28, where the average rejoin dura-
tion is around 20ms and the maximum is around 50ms, which are both acceptable
values.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 200 400 600 800 1000 1200 1400 1600 1800 2000

ti
m

e
 (

s
)

number of nodes

Figure 3.28: Rejoin Duration in OM-QoS NICE with Soft QoS & 256 QoS Classes

Figure 3.29 presents how many paths actually fulfill certain node to root RTT
constraints for an OM-QoS enabled NICE network that however does not take these
RTT constraints into account. Each node selects a node to root RTT constraint in
the range of 25ms–50ms. We then check how many paths actually fulfill these
constraints during the time a node participates in the NICE network.

NICE with Hard QoS using the Protocol Independent Approach of OM-QoS

The results for a QoS aware NICE network using the protocol independent (lay-
ered) OM-QoS approach with 32 QoS classes and k = 5 are presented in this
Section. Native NICE is heavily optimizing RTT among cluster mates, and there-
fore also indirectly optimizes node to root RTT. Applying the protocol independent
OM-QoS approach to NICE using 64 or even 256 QoS classes would have a strong
impact on the hop count and ultimately also on the node to root RTT. Therefore, to

82

3.4. EVALUATION RESULTS FOR OM-QOS

 0

 20

 40

 60

 80

 100

 200 400 600 800 1000 1200 1400 1600 1800 2000

p
a

th
s
 (

%
)

number of nodes

Figure 3.29: Node to Root RTT Constraints Fulfilled in OM-QoS NICE with Soft QoS &
256 QoS Classes

keep the overall hop count and node to root RTT still on an acceptable level com-
pared to native NICE, we decided to only use 32 QoS classes instead of 64 or 256
QoS classes as used for the evaluations of CAN in Section 3.4.3 and also earlier in
this section. Nodes are now distributed over 32 different NICE networks (slices).
There is one dedicated NICE network for each of the 32 QoS classes.

Before, there was only one NICE network for all the nodes independent of their
QoS class. Nodes joining the same network results in more layers and clusters in
the network compared to distributing them among several slices, which then have
less layers and clusters.

We now used 32 QoS classes, which is still a reasonable value, to have an
acceptable hop count compared to native NICE, because of the additional hops
introduced by forwarding data between slices. As already mentioned, we now
have much smaller NICE networks in terms of participants, with less clusters and
less layers. Nodes that join a specific NICE network slice might be distributed such
that only small clusters would be formed in those NICE network slices.

Also less layers in such a NICE network slices might be necessary due to a
much lower number of participating nodes per NICE network slice compared to
one big NICE network where all nodes would join. This fact leads to a lower fan-
out per node, less hops to the root of the multicast tree and also a lower node to
root RTT inside the individual NICE network slices compared to having one big
NICE network holding all nodes.

The average fan-out presented in Fig. 3.30 is between 3–8 hops. Although
we have additional fan-out caused by the gateway links, the average fan-out starts
lower than for the native NICE with k = 5 as shown in Fig 3.20. When the number
of nodes increases, the average though starts to remain constant and is similar to
the average fan-out in native NICE. The maximum is though raising almost up to
20, which is due to the multiple optimized gateway links as well as the backup
links (when they are in use).

Using multiple slices of NICE in parallel has an impact on the average hop
count as presented in Fig. 3.31. We are now using 32 slices of NICE in parallel.

83

3.4. EVALUATION RESULTS FOR OM-QOS

 0

 5

 10

 15

 20

 200 400 600 800 1000 1200 1400 1600 1800 2000

fa
n

-o
u

t

number of nodes

Figure 3.30: Multicast Fan-Out in OM-QoS NICE using the Protocol Independent Ap-
proach with Hard QoS & 32 QoS Classes

These NICE network slices have to be interconnected as described in Section 3.2.6
which causes additional hops. On average, there are now between 8–9 hops, with
the maximum raising almost up to 20 hops. Compared to the hop count in native
NICE presented in Fig. 3.21 for k = 5, the average value for the hop count is
three times higher (around 9 hops instead of 3 hops) and the maximum hop count
is almost 4 times higher.

 0

 5

 10

 15

 20

 200 400 600 800 1000 1200 1400 1600 1800 2000

h
o

p
 c

o
u

n
t

number of nodes

Figure 3.31: Multicast Hop Count in OM-QoS NICE using the Protocol Independent
Approach with Hard QoS & 32 QoS Classes

As shown in Fig. 3.32, the average node to root RTT suffers from the same
penalty of having multiple instances. Having additional hops results in a higher
node to root RTT, which is now ranging from 110ms–120ms. Also, the maximum
node to root RTT increases up to 400ms. Compared to the protocol dependent
approach of OM-QoS applied to NICE as presented in Fig. 3.24(b), the average
as well as the maximum node to root RTT are around 2–3 times higher. Compar-
ing it to the same native NICE results presented in Fig. 3.24(a), the average and
maximum node to root RTT values are even between 3–5 times higher.

Having multiple parallel instances has again an impact on the number of aver-
age cluster mates as presented in Fig. 3.33. Again, the nodes are distributed over

84

3.4. EVALUATION RESULTS FOR OM-QOS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 200 400 600 800 1000 1200 1400 1600 1800 2000

ti
m

e
 (

s
)

number of nodes

Figure 3.32: Node to Root RTT in OM-QoS NICE using the Protocol Independent Ap-
proach with Hard QoS & 32 QoS Classes

parallel instances of NICE. Therefore, the average number of cluster mates is re-
duced compared to the native NICE network with k = 5 as presented in Fig. 3.23.
The average number of cluster mates for the protocol dependent approach of OM-
QoS with NICE as presented in Fig. 3.27 is almost constant at 6. Therefore, for
small numbers of nodes in a NICE network, the protocol independent approach cre-
ates generally smaller cluster sizes. For scenarios with more than 1400 nodes, the
average number of cluster mates starts to be similar for both OM-QoS approaches.
Although we have now 32 NICE instances in parallel, the overall resulting values

 0

 5

 10

 15

 20

 200 400 600 800 1000 1200 1400 1600 1800 2000

c
lu

s
te

r
m

a
te

s

number of nodes

Figure 3.33: Number of Cluster Mates in OM-QoS NICE using the Protocol Independent
Approach with Hard QoS & 32 QoS Classes

from that scenario remain acceptable. In some cases they even have been improved,
e.g., average number of cluster mates and maximum fan-out.

NICE with Node to Root RTT Constraints and Hard QoS using the Protocol
Dependent Approach of OM-QoS

We now present the evaluation results comparing QoS aware NICE using the nor-
mal join process of NICE and a modified (RTT constraints aware) join process

85

3.4. EVALUATION RESULTS FOR OM-QOS

presented in Section 3.2.6 that takes the node to root RTT constraints into account.
When nodes join the NICE network, they select randomly a node to root RTT
constraint in the range of 25ms–50ms. The average hop delay using the distance
matrices from Table 3.2 in Section 3.3.3 is around 25ms. This limits the average
hop count between 1 to 2 hops when nodes should have their node to root RTT
constraints fulfilled.

Figure 3.34 presents the number of fulfilled node to root RTT constraints for
a QoS aware NICE network. The values using a join process that does not take

 0

 20

 40

 60

 80

 100

 200 400 600 800 1000 1200 1400 1600 1800 2000

p
a
th

s
 (

%
)

number of nodes

(a) OM-QoS NICE, Normal Join

 0

 20

 40

 60

 80

 100

 200 400 600 800 1000 1200 1400 1600 1800 2000

p
a
th

s
 (

%
)

number of nodes

(b) OM-QoS NICE, RTT Constraints Aware Join

Figure 3.34: Node to Root RTT Constraints Fulfilled for Normal Join and for RTT Con-
straints Aware Join in OM-QoS using Hard QoS with the Protocol Dependent Approach

those node to root RTT constraints into account is presented in Fig. 3.34(a).Almost
half of the nodes do not have a node to root RTT, which is below their required
constraints (directly after joining the NICE network). In a NICE network with the
modified join process taking these constraints into account, almost all nodes have
their RTT to root constraints satisfied (directly after joining the NICE network) as
shown in Fig. 3.34(b).

Figure 3.35 shows the node to root RTT after a node has joined a NICE net-
work. The resulting node to root RTT after a node has joined a NICE network using

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 200 400 600 800 1000 1200 1400 1600 1800 2000

ti
m

e
 (

s
)

number of nodes

(a) OM-QoS NICE, Normal Join

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 200 400 600 800 1000 1200 1400 1600 1800 2000

ti
m

e
 (

s
)

number of nodes

(b) OM-QoS NICE, RTT Constraints Aware Join

Figure 3.35: Node to Root RTT after Join for Normal Join and for RTT Constraints Aware
Join in OM-QoS using Hard QoS with the Protocol Dependent Approach

the normal NICE join process is presented in Fig. 3.35(a). The average is close to
the upper end (50ms) of the node to root RTT constraint’s range with more nodes
in the network. The maximum of the node to root RTT is around 100ms, which is
the double of the range. This means that the nodes, which have their node to root
RTT constraints not fulfilled have a node to root RTT, which is often significantly

86

3.4. EVALUATION RESULTS FOR OM-QOS

above what they actually requested. For applications with tight real-time require-
ments, such as MMOGs, these high differences would not be tolerable. The results
for a NICE network using the modified join process, which tries to fulfill the node
to root RTT constraints (between 25ms–50ms) of a node are shown in Fig. 3.35(b).
The average for the node to root RTT is close to the middle (37.5ms) of the RTT
constraint’s range. The maximum is at the end of the constraint’s range (50ms).
This shows that the nodes not having their node to root RTT constraints fulfilled
are normally just slightly above the node to root RTT value they requested. For
most applications with tight realtime requirements, such minor differences are still
tolerable.

In Figure 3.36(b), the difference from the required node to root RTT constraint
directly after joining is presented. As expected, using the normal NICE join process

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 200 400 600 800 1000 1200 1400 1600 1800 2000

ti
m

e
 (

s
)

number of nodes

(a) OM-QoS NICE, Normal Join

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 200 400 600 800 1000 1200 1400 1600 1800 2000

ti
m

e
 (

s
)

number of nodes

(b) OM-QoS NICE, RTT Constraints Aware Join

Figure 3.36: Node to Root RTT Difference for Normal Join and for RTT Constraints
Aware Join in OM-QoS using Hard QoS with the Protocol Dependent Approach

presented in Fig. 3.36(a) results in a higher difference to the node’s RTT constraints
compared to the modified join process presented in Fig. 3.36. The node to root RTT
values achieved using the modified join process would be normally still tolerable.
This is due to the fact that the differences are small and the achieved values for the
node to root RTT are generally only slightly above the constraint. Keep in mind
that using the modified join process results in only a few nodes that do not have
fulfilled their requirements regarding the node to root RTT constraint (directly after
joining the NICE network) as shown in Fig. 3.34(b).

Summary

We applied the protocol dependent and protocol independent approaches of OM-
QoS to NICE and evaluated it using various hard QoS and soft QoS scenarios.

Using the protocol dependent approach introduces a slight additional delay
compared to native QoS-unaware NICE. This is due to the modified cluster leader
determination mechanism, but does not change other basic aspects of NICE signif-
icantly. All paths from the nodes to the root of the multicast tree in the hard QoS
and soft QoS scenarios support QoS when OM-QoS was used.

The soft QoS results show that in dynamic QoS environments, nodes quickly
can find new clusters (which means parents in the multicast tree) in case QoS is not

87

3.4. EVALUATION RESULTS FOR OM-QOS

supported anymore by its current cluster. In the hard QoS scenarios, QoS is stat-
ically guaranteed by resource reservation performed in the underlaying network.
Hence, joining a cluster that supports the QoS requirements of a node means that
the cluster leader / parent will always support the requested QoS as long as the
node remains in the NICE network.

Using the protocol independent (layered) approach with NICE introduces ad-
ditional hops and has higher delays compared to the protocol dependent approach.
But, using the protocol independent approach also reduces other aspects, such as
average number of cluster mates and maximum fan-out. This is due to the fact that
there are now smaller NICE networks existing and cooperating in parallel slices.

Finally, we presented an approach that takes also node to root RTT constraints
of joining nodes into account. When a node joins a NICE network, it tries to find
a cluster that supports its node to root RTT requirements. A joining mechanism
that takes node to root RTT constraints into account enables that the majority of
the nodes have those constraints fulfilled directly after joining.

3.4.5 Chord Evaluation Results

Forwarder Driven Multicast using Enhanced Native Chord and OM-QoS
Chord with Hard QoS Support

We first compare the forwarder driven multicast approach (see Section 2.3.6) of our
enhanced Chord protocol (as described in Section 3.2.7) without QoS (enhanced
native Chord) and with QoS (OM-QoS Chord).

In Fig. 3.37, we present the multicast fan-out. Comparing Figures 3.37(a) and
3.37(b), we can see that the fan-out behaves equally whether QoS is enabled using
OM-QoS or not enabled just using enhanced native Chord. The average fan-out is

 0

 1

 2

 3

 4

 5

 6

 7

 200 400 600 800 1000 1200 1400 1600 1800 2000

fa
n
-o

u
t

number of nodes

(a) Enhanced Native Chord

 0

 1

 2

 3

 4

 5

 6

 7

 200 400 600 800 1000 1200 1400 1600 1800 2000

fa
n
-o

u
t

number of nodes

(b) OM-QoS Chord

Figure 3.37: Multicast Fan-Out using Forwarder Driven Multicast for Enhanced Native
Chord and for OM-QoS Chord with Hard QoS & 256 QoS Classes

constantly around 2. The maximum fan-out is always at 7, because our enhance-
ments of Chord presented in Section 3.2.7 limit the maximum fan-out to 7. Hence,
our enhanced Chord (as described in Section 3.2.7) is very scalable in terms of
large networks. Leaf nodes do not forward and multicast data. Therefore, the min-
imum fan-out value is at 0. As a conclusion, enabling QoS support for Chord does
not change the properties regarding fan-out

88

3.4. EVALUATION RESULTS FOR OM-QOS

In Fig. 3.38, we present the multicast hop count. There is not a significant dif-
ference between the multicast hop count for enhanced native Chord as in Fig. 3.38(a)
and for OM-QoS Chord as shown in Fig. 3.38(b). The average of hops is between

 0

 2

 4

 6

 8

 10

 12

 14

 16

 200 400 600 800 1000 1200 1400 1600 1800 2000

h
o
p
 c

o
u
n
t

number of nodes

(a) Enhanced Native Chord

 0

 2

 4

 6

 8

 10

 12

 14

 16

 200 400 600 800 1000 1200 1400 1600 1800 2000

h
o
p
 c

o
u
n
t

number of nodes

(b) OM-QoS Chord

Figure 3.38: Multicast Hop Count using Forwarder Driven Multicast for Enhanced Native
Chord and for OM-QoS Chord with Hard QoS & 256 QoS Classes

2 to 6 and the maximum raises from 4 to 15. The node to root RTT correlates with
the multicast hop count.

Figure 3.39 shows the node to root RTT. Comparing Figures 3.39(a) and 3.39(b)
shows that the average node to root RTT is between 50 to 150 ms for both enhanced
native Chord as well as OM-QoS Chord. The maximum of the node to root RTT

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 200 400 600 800 1000 1200 1400 1600 1800 2000

ti
m

e
 (

s
)

number of nodes

(a) Enhanced Native Chord

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 200 400 600 800 1000 1200 1400 1600 1800 2000

ti
m

e
 (

s
)

number of nodes

(b) OM-QoS Chord

Figure 3.39: Node to Root RTT using Forwarder Driven Multicast for Enhanced Native
Chord and for OM-QoS Chord with Hard QoS & 256 QoS Classes

starts for both versions of Chord at 150 ms and increases up to 450 ms. As a con-
clusion, modifying the ID assignment method to enable QoS does not change the
properties of Chord regarding multicast hop count and node to root RTT.

In Fig. 3.40, we present the percentage of node to root QoS fulfilled. Nodes as-
sign themselves a QoS class from the range 0–255. We check how many paths
from the root to all nodes hold the previously described QoS path properties.
Figure 3.40(a) presents the results for enhanced native Chord using random ID as-
signment, i.e., QoS classes are not taken into account when node IDs are assigned.
Here, only 15% to 40% of the paths hold the QoS path properties. Since at some
times only a few nodes could remain in a Chord network, there can be moments
where all paths or no paths at all fulfill the QoS path properties. On the other hand,
with OM-QoS Chord, 100% of the paths fulfill the QoS path properties. This is
shown in Fig. 3.40(b).

89

3.4. EVALUATION RESULTS FOR OM-QOS

 0

 20

 40

 60

 80

 100

 200 400 600 800 1000 1200 1400 1600 1800 2000

p
a
th

s
 (

%
)

number of nodes

(a) Enhanced Native Chord

 0

 20

 40

 60

 80

 100

 200 400 600 800 1000 1200 1400 1600 1800 2000

p
a
th

s
 (

%
)

number of nodes

(b) OM-QoS Chord

Figure 3.40: Node to Root QoS using Forwarder Driven Multicast for Enhanced Native
Chord and for OM-QoS Chord with Hard QoS & 256 QoS Classes

In Fig. 3.41, we present the percentage of node to root RTT constraints fulfilled.
Nodes also assign themselves a node to root RTT constraint from the range of 100–
200ms. The forwarder driven multicast approach does not offer a mechanism to
fulfill those constraints. Therefore, as shown in Figures 3.41(a) and 3.41(b), paths

 0

 20

 40

 60

 80

 100

 200 400 600 800 1000 1200 1400 1600 1800 2000

p
a
th

s
 (

%
)

number of nodes

(a) Enhanced Native Chord

 0

 20

 40

 60

 80

 100

 200 400 600 800 1000 1200 1400 1600 1800 2000

p
a
th

s
 (

%
)

number of nodes

(b) OM-QoS Chord

Figure 3.41: Node to Root RTT Constraints Fulfilled using Forwarder Driven Multicast
for Enhanced Native Chord and for OM-QoS Chord with Hard QoS & 256 QoS Classes

from the root to nodes do not always satisfy the constraints. In small networks, the
constraints are easily met, but with larger networks and increasing hop count, the
average value goes down below 60%. There is no significant difference between
OM-QoS Chord and enhanced native Chord. The minimum of 0% and the maxi-
mum of 100% for the node to root RTT constraints fulfilled are due to the fact that
sometimes only a few nodes could remain in a Chord network. Hence, in those
moments either all paths or no paths at all fulfill the node to root RTT constraints,
resulting in the mentioned values for the minimum and maximum node to root RTT
constraints fulfilled.

Receiver Driven Multicast for Chord with Hard QoS Support

Using the receiver driven multicast approach presented in Section 2.3.6, we do not
only take the QoS class mechanism into account when joining Chord, but also the
node to root RTT constraints when looking for a multicast parent. These node to
root RTT constraints of nodes range from 100–200ms. We determined this range
by analyzing the average overall hop count (∼ 4 hops) presented in Fig. 3.38(a) in
relation to the average RTT (∼ 25ms) between nodes as shown in Table 3.2.

90

3.4. EVALUATION RESULTS FOR OM-QOS

 0

 1

 2

 3

 4

 5

 6

 7

 200 400 600 800 1000 1200 1400 1600 1800 2000

fa
n

-o
u

t

number of nodes

Figure 3.42: Average Multicast Fan-Out using Receiver Driven Multicast for Chord with
Hard QoS Support

First, we will look at the multicast fan-out. Figure 3.42 shows that the multicast
fan-out for receiver driven multicast behaves similarly as the multicast fan-out of
forwarder driven multicast presented in Figures 3.37(a) and 3.37(b). The average
multicast fan-out is almost identical for forwarder and receiver driven multicast.
The maximum multicast fan-out is also constant at 7 for networks with more than
400 nodes.

 0

 2

 4

 6

 8

 10

 12

 200 400 600 800 1000 1200 1400 1600 1800 2000

h
o

p
 c

o
u

n
t

number of nodes

Figure 3.43: Average Multicast Hop Count using Receiver Driven Multicast for Chord
with Hard QoS Support

Next, we look at the multicast hop count for receiver driven multicast in Chord.
The average multicast hop count presented in Fig. 3.43 is between 4 and 5. This is
slightly higher than for forwarder driven multicast as presented in Figures 3.38(a)
and 3.38(b). In the forwarder driven multicast approach, the root or a node with
a low ID can already reach some nodes at the upper end of the ID space via one
hop. This is due to the multicast forwarding mechanism using the finger table to
determine children nodes for a parent. But, this is not the case for receiver driven
multicast, where the child determines and selects its parent. Here, a child node tries
to find a potential parent in its ID neighborhood, from the range [nodeID2 , nodeID].
This limits the distance between hops in terms of ID space and enforces nodes to

91

3.4. EVALUATION RESULTS FOR OM-QOS

find their parent nodes in their ID neighborhood. On the other hand, this has a
positive impact on the maximum multicast hop count value. In Figures 3.38(a)
and 3.38(b) compared to Fig. 3.43, the hop count starts at a larger value but grows
more slowly and only up to 11 hops. This means that the receiver driven multicast
approach scales better in terms of multicast hop count than the forwarder driven
multicast approach. The minimum multicast hop count value of 1 with 2000 nodes
is solely due to the outlier removal.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 200 400 600 800 1000 1200 1400 1600 1800 2000

ti
m

e
 (

s
)

number of nodes

Figure 3.44: Average Node to Root RTT using Receiver Driven Multicast for Chord with
Hard QoS Support

The node to root RTT results for receiver driven multicast are shown in Fig. 3.44.
The forwarder driven multicast approach results were shown in Figures 3.39(a) and
3.39(b). Comparing them with the receiver driven multicast approach shows that
the average node to root RTT starts at a higher value but grows more slowly. It
is only in the range of 70–125ms compared to 50–150ms for the forwarder driven
multicast approach. Also the maximum node to root RTT is lower and grows very
slowly. This behavior is of course due to the fact that we take the node to root RTT
constraint of nodes into account when they look for a multicast parent. The max-
imum node to root RTT value starts below the upper boundary of the constraints
range (100–200ms) with a low number of nodes in the network.. With more nodes
in the network, the maximum though exceeds the upper boundary of 200ms. But
still, the receiver driven multicast approach is more scalable in terms of node to
root RTT value than the forwarder driven multicast approach.

The percentage of node to root RTT fulfilled for receiver driven multicast is
presented in Fig. 3.45. The receiver driven multicast approach performs much
better than the forwarder driven multicast approach presented in Figures 3.41(a)
and 3.41(b). For network sizes up to 1200 nodes, the average percentage is above
95% for the receiver driven multicast approach. Afterwards, it falls down just
slightly below 92% for up to 2000 nodes. This is significantly better than using the
forwarder driven multicast approach, where the average percentage is below 68%
for networks with 1200 nodes. It even falls below 55% for networks of 2000 nodes.

92

3.4. EVALUATION RESULTS FOR OM-QOS

 0

 20

 40

 60

 80

 100

 200 400 600 800 1000 1200 1400 1600 1800 2000

p
a

th
s
 (

%
)

number of nodes

Figure 3.45: Average Node to Root RTT Constraints Fulfilled using Receiver Driven Mul-
ticast for Chord with QoS Support

Summary

All our optimizations considered, the forwarder driven multicast approach in Chord
can provide a very well distributed multicast tree. The modified Chord is very re-
liable (100% received multicast messages). It is also very scalable, since we have
put a multicast fan-out limit of 7. Generally, it behaves very robust, even in mo-
ments with constant rejoins. The overall latencies are quite good due to a reduced
hop count caused by a well balanced tree. Multicast trees built using the receiver
driven multicast approach can provide multicast node to root RTT guarantees. Al-
most all paths are fulfilling the multicast node to root RTT constraints of nodes
for small and medium sized networks. For large networks of up to 2000 nodes, a
very high percentage (down to 92%) of the paths still fulfill the constraints. This
receiver driven multicast approach also reacts to RTT changes of nodes over time
and adapts and rearranges the multicast tree to again fulfill the constraints. Gen-
erally, the receiver driven multicast approach seems to scale even better than the
forwarder driven multicast approach.

3.4.6 Summary of Evaluation Results

In Table 3.8, we present a summary of the evaluation results for Scribe/Pastry,
CAN, NICE and Chord. We present the results of the native protocol versions
as well as of the OM-QoS enabled protocol versions using either Hard-QoS or
Soft-QoS. We applied and evaluated the protocol independent approach (PIA) of
OM-QoS for CAN as well as for NICE, and used the protocol dependent approach
(PDA) of OM-QoS to evaluate Scribe/Pastry, NICE and Chord. We also evalu-
ated OM-QoS NICE with Hard-QoS and node to root RTT constraints support
(E2ERTT) when nodes join a NICE network. For Chord, we used forwarder driven
multicast (FDM) to evaluate native Chord and OM-QoS Chord without node to
root RTT constraints support. We evaluated OM-QoS Chord with full-time node
to root RTT constraints support using receiver driven multicast (RDM).

93

3.4. EVALUATION RESULTS FOR OM-QOS

Table 3.8: Summary of Evaluation Results for Scribe/Pastry, CAN, NICE and Chord

Native Scribe / Pastry Native Scribe/Pastry can only by chance support QoS
requirements of nodes for 30–40% of end-to-end paths.

PDA OM-QoS Scribe
/ Pastry

Applying OM-QoS to Scribe/Pastry in order to have
100% of end-to-end paths support QoS does not signifi-
cantly change the average hop count.

Native CAN The average and especially maximum fan-out and hop
count of nodes is very high when comparing it to
Scribe/Pastry, NICE and Chord. Native CAN does only
enable 10–20% of the end-to-end paths to support QoS.

PIA OM-QoS CAN,
Hard-Qos

Applying OM-QoS with the protocol independent ap-
proach to CAN adds some overhead (0–100%) to the av-
erage fan-out and hop-count, but has lower maxima for
those values. With increasing number of nodes, the over-
head decreases and becomes almost negligible. The per-
centage of multicast messages received does not differ
significantly to native CAN, but all paths support QoS.

Native NICE The average node to root RTT in native NICE is much
lower than in CAN or Chord, whereas the fan-out is
slightly higher than in Chord, but much better than in
CAN.

PDA OM-QoS NICE,
Hard-Qos

Applying OM-QoS to NICE guarantees that 100% of the
end-to-end paths support QoS whereas native NICE only
supports between 20–40% of the paths to support QoS.
Using OM-QoS introduces roughly 50% overhead to the
node to root RTT, but does not change the fan-out.

PDA OM-QoS NICE,
Soft-Qos

Due to the fact that nodes sometimes have to rejoin in or-
der to have their QoS requirements satisfied, the average
cluster size is slightly lowered when using OM-QoS in
Soft-QoS environments. The rejoin time of such nodes
is very acceptable (around 20ms).

PIA OM-QoS NICE,
Hard-Qos

The protocol independent approach of OM-QoS for
NICE increases significantly fan-out, hop-count and
node to root RTT, but scales better with higher number
of nodes in the network.

PDA OM-QoS NICE,
Hard-Qos, E2ERTT

Introducing node to root RTT constraints support when
nodes join a NICE network results in almost 100% of the
paths fulfilling these constraints. Native NICE can only
support node to root RTT constraints for 60–90% of the
paths. The differences between achieved and required
node to root RTT for paths not fulfilling the node to root
RTT constraints are higher in native NICE.

94

3.5. CONCLUSION

Native Chord, FDM Native Chord has a very low average fan-out due to our
optimizations, but only 20–40% of paths support QoS.

PDA OM-QoS Chord,
Hard-Qos, FDM

Applying OM-QoS to Chord does not significantly
change fan-out, hop count or node to root RTT values
but enables all paths to support QoS.

PDA OM-QoS Chord,
Hard-Qos, E2ERTT,
RDM

Using receiver driven multicast with OM-QoS Chord
adds some overhead to the hop count for lower num-
ber of nodes in the network, but enables 90–100% of the
paths to fulfill node to root RTT constraints (compared
to 60–100% for forwarder driven multicast without node
to root RTT constraints support).

In general, we can say that using OM-QoS normally enables all paths to support
QoS. Applying OM-QoS to a P2P/ALM protocol can introduce some overhead,
which is though often negligible depending on the application scenario. The gain
of having QoS support surely outweighs the potential overhead.

Using OM-QoS with Hard-QoS or Soft-QoS does not really make such a dif-
ference. The difference between protocol dependent and protocol independent ap-
proach is often noticeable for networks with low number of nodes, but starts to be
negligible with higher number of nodes in the network. The protocol independent
approach generally scales better than the protocol dependent approaches.

3.5 Conclusion

In this Chapter, we presented OM-QoS (Quality of Service for Overlay Multicast).
OM-QoS is self-managing middleware, which supports efficient and reliable usage
of content distribution networks based on Application Layer Multicast (ALM). It
manages the Quality of Service (QoS) requirements of nodes and enables all multi-
cast paths in an ALM, from the root to leaf nodes, to hold certain QoS constraining
properties.

We presented a protocol dependent approach, which modifies the P2P/ALM
protocols in order to support QoS. For Scribe/Pastry and Chord, mapping of nodes
to the ring is based on the nodes’ QoS. Depending on the distribution of nodes to
QoS classes, this could also lead to a potential problem with uneven distribution of
nodes on the ring. This could be solved by introducing adaptive and dynamic QoS
to ID mapping. A Scribe/Pastry or Chord ring could be periodically restructured
depending on the range of QoS classes used. If some QoS classes in a sub-range
would not be actively used by any nodes, the corresponding segments in the ring
could also be omitted and be used by nodes actually having other (higher or lower)
QoS classes. This would help to use the whole ID range more evenly and would
also better balance the distribution of nodes on the Scribe/Pastry or Chord ring.

95

3.5. CONCLUSION

The protocol dependent OM-QoS approach assumes an underlying multicast
tree, but is not limited to tree-based ALMs. Also mesh-based ALMs could be
supported. Ultimately, using a receiver driven approach as presented for Chord
would also enable QoS in such mesh-based systems. To still support the robustness
of such mesh-based systems, backup or parallel links to multiple parents could be
established. A link prioritization mechanism would though be required to avoid
duplicates.

Furthermore, we also presented a protocol independent approach, which can
be used with potentially any P2P/ALM protocol. The protocol independent ap-
proach would also work with mesh-based overlay networks, because the individual
P2P/ALM instances for each QoS class layer do not need to support/offer a tree-
like structure

Our evaluations show that using OM-QoS, these protocols support QoS on
all paths from the root node to leaf nodes by only introducing a slight overhead
compared to the QoS-unaware protocol versions in terms of multicast hop count,
fan-out, node to root RTT, etc. We learned that is not too difficult to support our
introduced QoS class mechanism for different P2P/ALM protocols, but that sup-
porting node to root RTT constraints cannot be achieved by all P2P/ALM protocols.
Multicasting in CAN and in Chord using the forwarder driven approach does not
support these node to root RTT constraints. Multicasting in NICE and Chord using
the receiver driven approach can be extended to support these constraints.

OM-QoS was implemented as a framework for OMNet++. Therefore, other
protocols can be implemented using our framework for OMNet++ to evaluate their
QoS support. The OM-QoS framework and implemented protocols could also be
adapted to be used in the Internet with real hosts rather than in a simulator. Only
minor changes would be necessary in order to achieve this transition from simulator
to real networks environments.

In Chapter 4, we present a solution on how to bridge IP Multicast with ALM,
which then can be used to enable also QoS for IP Multicast using OM-QoS. The
next step would be to actually have an application, which enables end users to
share files among themselves using multicasting paradigm (be it IP Multicast or
ALM) and to additionally benefit from QoS mechanisms. Therefore, we introduce
MCFTP (Multicast File Transfer Protocol) in Chapter 5. It allows end users to
exchange data efficiently like using BitTorrent but also facilitates using resources
more efficiently due to multicasting mechanisms. We evaluated MCFTP using IP
Multicast and ALM, where we also were able to setup the P2P/ALM network to
support QoS regarding bandwidth requirements of nodes.

96

Chapter 4

Providing IP Multicast Services via
P2P / Overlay Networks

4.1 Introduction

In this Chapter we describe the Multicast Middleware, a bridge between IP Multi-
cast and Overlay Multicast, as presented in [114, 42, 31, 32, 40, 44, 19, 122, 38,
39]. It has been developed in the scope of the Sixth European Framework Pro-
gram Integrated Project EuQoS (see Section 2.7.2). It facilitates using IP Multicast
functionality by end users through the Internet without requiring any IP Multicast
support on the intermediate routers. This is achieved by capturing IP Multicast
packets on end systems and tunneling them through an Overlay Network. The
whole process of capturing, tunneling and injecting the IP packets back into the
system at the receiver’s side is completely transparent to users and applications.

IP Multicast (presented in Section 2.2.2) is an efficient way to disseminate data
from a sender to multiple receivers concurrently. Unfortunately, IP Multicast has
not been widely deployed in the Internet today, although several applications exist
that can use IP Multicast to transmit and receive data. To overcome this limita-
tion, Overlay Multicast, also called Application Layer Multicast (ALM) presented
in Section 2.5, which runs on-top of Peer-to-Peer (P2P) Overlay Networks pre-
sented in Section 2.3, has been introduced. End systems exchange the data directly
among themselves using only unicast communication. They do not rely on routers
in the network multicasting the data. Therefore, ALM can be used as an efficient
data dissemination scheme/mechanism for video broadcasting, IPTV, multiplayer
games, and other scenarios. Unfortunately, ALM is not a standardized protocol,
such as IP Multicast, and hence different ALM protocols exist.

To make the use of ALM transparent to applications, we provide an IP Mul-
ticast service to end system applications by capturing the outgoing IP Multicast
traffic from hosts and routing it using an ALM Overlay Network. This unique
feature allows users on end systems in the Internet to benefit from easy deploy-
ment of P2P based ALM mechanisms and still to use existing IP Multicast enabled
applications. To provide a platform independent solution, we used Java [80].

97

4.2. ARCHITECTURE AND DESIGN OF THE MULTICAST MIDDLEWARE

In Section 4.2, we describe the architecture and design of the Multicast Middle-
ware. The implementation of the Multicast Middleware is illustrated in Section 4.3.
The evaluation scenarios for the Multicast Middleware are presented in Section 4.4.
Section 4.5 presents the evaluation results. Section 4.6 concludes this chapter.

4.2 Architecture and Design of the Multicast Middleware

4.2.1 Overview

The Multicast Middleware can be used with almost any ALM protocol that of-
fers standard multicast operations (subscription to multicast groups, receiving and
sending multicast data). Typical P2P / ALM networks try to approximate the effi-
ciency of IP Multicast communication regarding link stress by using unicast com-
munication. As shown in Figure 2.2, Application Layer Multicast is not able to
totally avoid sending redundant data over the same physical link as IP Multicast
does. However, it can significantly reduce the number of redundant data flows in
the whole network. Overlay Networks are usually built in a topology aware man-
ner. Therefore, peers, which are “close” to each other in terms of communication
latency, are directly connected. The P2P links are constantly monitored, which
enables reacting to failures in network communication or to failures of neighbor
peers.

We have chosen to use the Scribe Overlay Multicast facility (presented in Sec-
tion 2.5.3), which runs on top of the the Distributed Hash Table (DHT) P2P Pastry
(presented in Section 2.3.3). Scribe / Pastry scales well for a large number of partic-
ipants and multicast groups. A Java implementation in the form of Freepastry [75]
exists. The Multicast Middleware is not limited to use Scribe / Pastry, but could
also be adapted to use other P2P Overlay Multicast systems such as Chord (pre-
sented in Section 2.3.6), Tapestry (presented in Section 2.3.4), etc. For the Mul-
ticast Middleware implementation, we use one dedicated Scribe / Pastry Overlay
Network instance per active IP Multicast group. To find the corresponding Scribe
/Pastry instance, we also use one only for this purpose dedicated Pastry network
to store the management information about active groups, such as the IP Multicast
address, a number of hosts that are active in the Overlay Network, etc.

Eliminating the requirement for multicast support by the operating system and
the underlying network makes the use of ALM very appealing for any kind of In-
ternet users. The disadvantage of ALM is the lack of standardization – each ALM
has its own API and addressing scheme. This prohibits already existing multicast-
aware applications from using ALM. The Multicast Middleware uses ALM for
transporting multicast traffic. However, it also offers a standard IP Multicast inter-
face for the applications. This process is completely transparent to applications.

In order to support as many operating systems as possible, the core of the Mul-
ticast Middleware has been implemented using the JAVA programming language.
The only non-portable component of the Multicast Middleware prototype is the
communication/capturing module for the TAP interface, which will be explained

98

4.2. ARCHITECTURE AND DESIGN OF THE MULTICAST MIDDLEWARE

in Section 4.2.2. This module differs for each operating system and is usually
implemented using C programming language.

Dr. Multicast (presented in Section 2.5.12) targets mainly data centers. Our
approach aims to enable Internet-wide IP Multicast support. Furthermore, our so-
lution supports all major operating systems (Win32, Mac OS X, Linux) while Dr.
Multicast is limited to Linux. Also, network administrators do not need to config-
ure or enable anything in their network in order to offer Internet-wide IP Multicast
support. We rely solely on end systems and end users without requiring a desig-
nated centralized instance for control and management. Our solution is targeted at
scalable and distributed scenarios. Furthermore, using our solution, users can de-
fine QoS requirements for the different IP Multicast groups they are interested in.
QoS reservations are then performed in the underlying QoS-enabled network and
the ALM distribution tree is set up to support QoS as described in Section 3.2.2.

4.2.2 Providing an IP Multicast Interface for Standard Applications

The IP Multicast interface for applications is usually offered by the operating sys-
tem via sockets. Signaling from the operating system to a multicast-enabled router
in the local network is performed using IGMP [60, 72, 48]. Sending IP Multicast
traffic is not really different than sending IP unicast traffic. There are just a few dif-
ferences. IP Multicast uses a reserved IP source/address range for multicast groups
(groups of multicast receivers with one IP address per multicast group). Group
members have to join and leave the multicast groups they are interested in. Also,
only the UDP protocol is used with IP Multicast. On the link layer, multicast traffic
is though handled differently. In Ethernet, IP packets with a multicast group as a
destination address are mapped to an Ethernet multicast address.

The Multicast Middleware can be used for many IP Multicast applications and
scenarios. For example, a video streaming service for a very large group of Inter-
net users can be provided, without the need for large investments in infrastructure.
Only a few requirements for sender and clients must be fulfilled. The sender of a
video stream must have the Multicast Middleware installed on a computer, which
is connected to the Internet. The Internet connection should support at least the
bandwidth for sending the video stream once. Any application supporting stream-
ing using IP Multicast can be used (for example VLC). Each client that wants to
receive a video stream must of course also install the Multicast Middleware on his
computer and must have Internet access. Any video application with IP Multicast
support (like VLC) can be used for receiving the video stream.

The Session Announcement Protocol (SAP) [84] can be used to announce run-
ning or scheduled video broadcasts over IP Multicast. The SAP announcements
include Session Description Protocol (SDP) [83] stream descriptions encapsulated
in UDP packets, which are sent to a predefined IP Multicast group (for exam-
ple IPv4 global scope session announcements are sent to 224.2.127.254) and port
(9875). Since the Multicast Middleware enables IP Multicast on end systems, SAP
can be used for announcing video broadcast transmissions.

99

4.2. ARCHITECTURE AND DESIGN OF THE MULTICAST MIDDLEWARE

Virtual Network Interface to Capture IP Multicast Traffic

To provide an IP Multicast interface for the whole system (including services in-
tegrated in the operating system’s kernel), we propose to use a virtual Ethernet
device (also known as TAP device [164] – a software analogy of a wiretap). The
TAP interface is a special kind of network interface, which is seen by the operating
system as a normal Ethernet device. However, instead of forwarding the Ether-
net frames to a hardware device, the TAP interface forwards the received Ethernet
frames to a user-space process. On the other side, the TAP interface forwards all
Ethernet frames received from the user-space process as incoming frames to the
operating system’s kernel. TAP support exists for all major operating systems such
as UNIX/Linux, Mac OS X and WIN32.

Using a TAP interface together with the Multicast Middleware makes process-
ing of multicast traffic transparent to all applications. This includes the multicast
functionality integrated into the operating system’s kernel. This approach does not
require any modification of application code. Multicast traffic originating from an
end user host can be routed through the TAP device. This device forwards the
packets (encapsulated in Ethernet frames) to a user-space process (the Multicast
Middleware) for processing. The Multicast Middleware acts like a multicast router
by implementing IGMP and transporting the multicast data using ALM. Further-
more, the Multicast Middleware is able to send IP Multicast traffic back to the end
system through the same TAP device.

By setting appropriate routing table entries for IP Multicast addresses on end
systems, those packets are directed to the virtual network interface instead of the
real physical network interface. All IP Multicast traffic will be redirected to the
Multicast Middleware entity running on the end system. By doing so, the Multi-
cast Middleware is aware of every IP Multicast group, to which the end system is
subscribed to.

Applications on an end system with a running Multicast Middleware use the
standard IP Multicast group management system calls. IP Multicast enabled appli-
cations must subscribe to different multicast groups to receive for example video
broadcast announcements and audio/video streams. The multicast group subscrip-
tion is usually a system call, which instructs the operating system’s kernel to send
IGMP membership report messages to the IP Multicast router in the network.

The operating system communicates with our Multicast Middleware through
the virtual network interface and views it as an IP Multicast router. The Multi-
cast Middleware interprets the IGMP membership reports and notifies the neigh-
bor peers in the ALM Overlay Network about the changes in the multicast routing
table. This information (depending on the multicast routing protocol used in the
Overlay Network) is propagated to other peers. Every IP Multicast packet that
should leave the end system is forwarded to our Multicast Middleware through the
virtual network interface and then forwarded using the Overlay Network according
to the routing setup in the ALM.

100

4.2. ARCHITECTURE AND DESIGN OF THE MULTICAST MIDDLEWARE

Packet Flow between Applications and the Multicast Middleware

Sender Receiver

real Netw.
Interface

Application P2P / ALM

IP
UDP IGMP TCP

virtual Netw.
Interface

Application P2P / ALM

IP

UDP IGMP TCP

virtual Netw.
Interface

real Netw.-
Interface

Us
er

 S
pa

ce

Us
er

 S
pa

ce

Ke
rn

el
 S

pa
ce

Ke
rn

el
 S

pa
ce

IP Multicast (UDP) Host BounderiesP2P Data (TCP)

Figure 4.1: Packet Flow between Applications and the Multicast Middleware

Figure 4.1 shows how applications send and receive IP Multicast traffic using
the Multicast Middleware. The virtual network interface TAP captures/injects IP
Multicast packets at end systems and then passes/receives IP Multicast data to/from
the Multicast Middleware, which disseminates the packets among the group sub-
scribers using ALM.

In detail this means that after a IP Multicast data packet for a specific IP Mul-
ticast group has been sent by the application, it is forwarded by the operating sys-
tem’s kernel to the appropriate multicast-enabled network device (in our case the
TAP device). The Multicast Middleware process receives the outgoing IP Multicast
packet via the TAP device. This packet is then encapsulated into an ALM message.
The specific IP Multicast destination group address of the packet is translated into
an ALM address to which the ALM message is sent. After receiving the ALM mes-
sage with the encapsulated IP Multicast packet, the Multicast Middleware extracts
the IP Multicast packet from the ALM message and encapsulates the IP Multicast
packet into an Ethernet frame. The Multicast Middleware then sends the Ethernet
frame via the TAP interface to the operating system’s kernel for processing. The
operating system’s kernel delivers the IP Multicast packet to the application that
subscribed to that specific IP Multicast address.

4.2.3 Mapping IP Multicast Addresses and Messages to ALM

For transporting multicast traffic we do not propose a new P2P/ALM protocol.
Almost any ALM protocol can be used and integrated. In the following paragraph,
we describe the requirements for the ALM protocol and how IP Multicast traffic
can be mapped to ALM messages.

101

4.2. ARCHITECTURE AND DESIGN OF THE MULTICAST MIDDLEWARE

Every IP Multicast packet has either a source or a destination address out of the
IP Multicast address range (224.0.0.0 to 239.255.255.255). The IANA Guidelines
for IPv4 Multicast Address Assignments [6] define how addresses from this range
should be used and assigned.

Most ALM protocols implement their own multicast addressing scheme. De-
pending on the protocol’s addressing scheme, the address range can be smaller,
equal or larger than the IP Multicast address range. In case of a larger or equal
address ranges, multicast addresses can be mapped 1-to-1 to the ALM addresses.

For example, the IP Multicast address range can be mapped to a consecu-
tive address range of the same size in the ALM protocol’s addressing scheme.
In the case where the address range of the ALM is smaller than the IP Mul-
ticast address range, the IP Multicast addresses must be projected to the ALM
address range. This can be achieved by hashing the modulo-function: Ax =
(AIP− 0xe0000000) mod # of addresses. IP Packets can be encapsulated in ALM
messages. If the maximal length of an ALM message is lower than the IP packet’s
length, standard IP packet fragmentation can be applied to the packet in order to
transport the packet through the Overlay Network. On reception of fragmented IP
Packets, the Multicast Middleware should be able to de-fragment them and to de-
liver them to the TAP interface. The time to live (TTL) field of transported packets
should be reduced for each P2P hop. Packets with TTL 0 should not be forwarded.

4.2.4 Security and Privacy Considerations when using ALM

In contrast to IP Multicast, where routers in the transporting network replicate data
packets, ALM relies on end systems to replicate data packets. As a consequence,
not only ISPs have the possibility to monitor the traffic, but also end users can “see”
the traffic, which their neighbors are receiving. Hence, the security and privacy of
the end users are even more threatened than with IP Multicast.

End systems, which are used as relays for multicast data can accumulate knowl-
edge about the preferences of their neighbors regarding the reception of video
streams. This information can be used for targeted marketing of products or as
a component of user surveillance. This effect can be amplified through the collu-
sion of relaying peers, which can exchange the surveillance data about neighbors.
This facilitates creating a more complete picture of the monitored peers. Malicious
peers can also alter the video stream they are relaying. For example, a malicious
peer could inject commercials or logos into the video stream. Such behavior can
be detected [82] and appropriate actions (e.g., excluding the peer from the overlay
network) can be taken.

The privacy of end users can be improved by using ALM routing protocols,
which change the delivery path of the multicast data over time or use parallel paths
for receiving data. In this way, one peer is not always relaying data for the same
peer and is not able to accumulate the information about involved end users.

Since peers, which are subscribed to one multicast group do not only receive
multicast data for that group, relaying peers can also receive the multicast data they

102

4.3. IMPLEMENTATION OF THE MULTICAST MIDDLEWARE

are forwarding. To protect commercial content, some kind of content encryption
has to be introduced. A possible content encryption and authentication solution is
described in [14]. Another alternative is to construct an Overlay Network consist-
ing only from receiving peers for each multicast tree, which is the solution we have
chosen for the Multicast Middleware when using Scribe / Pastry. The disadvantage
of this approach is the higher number of Overlay Networks, in which one receiver
is participating, if he wishes to receive more than one video stream.

We also proposed REPOM (Reputation Based Overlay Multicast) [47], which
helps to identify non-cooperative or selfish nodes in a distributed manner. Nodes
gossip [66] reputation reports to other nodes in the P2P/ALM network. According
to reports received, nodes can decide if they look for a better performing (non-
selfish) parent node for multicast data subscription.

4.3 Implementation of the Multicast Middleware

4.3.1 Overview

The Multicast Middleware uses Pastry (see Section 2.3.3) as a P2P routing sub-
strate and Scribe (see Section 2.5.3) to handle multicast group management and
overlay handling. In the Multicast Middleware, one dedicated Pastry network is
created for each active IP Multicast group. This ensures that only end systems,
which are interested in receiving the multicast data of certain a group, are used
to forward traffic. We implemented our own efficient P2P data forwarding proto-
col for data distribution and did not use the multicast data distribution mechanism
of the Scribe / Pastry implementation Freepastry, which is not designed for high
bandwidth scenarios. Finally, we implemented mechanisms to map IP Multicast
protocol and data messages to the appropriate Scribe/Pastry network instances. We
wanted to ensure that we could later easily replace the protocol used to handle mul-
ticast group management and overlay handling. Therefore, instead of improving
the multicast data distribution method used in Freepastry, we implemented our own
optimized P2P data distribution protocol. We separated the multicast data forward-
ing/distribution mechanism and protocol from the ALM group management and
overlay handling protocol. Hence, Scribe/Pastry can be easily replaced by another
P2P/ALM protocol, while still being able to use our optimized P2P data distribu-
tion protocol.

4.3.2 Using Freepastry for P2P/ALM Topology Management

Freepastry [75], an open source Java implementation of Scribe / Pastry, is used as
the base implementation for the ALM. Freepastry relies on Java object serializa-
tion, which is not optimal for transporting data over the Internet. The reason for
this is that each time a Pastry message is de-serialized a new instance of a Java
object is created. If we would be using Pastry messages to transport the IP Mul-
ticast packets, each time one packet is received from the Pastry network at least

103

4.3. IMPLEMENTATION OF THE MULTICAST MIDDLEWARE

one Java object would be created. Due to automatic garbage collection mechanism
in the Java virtual machine, these new objects would be de-allocated only when
the heap of the Java virtual machine is full. Since the code execution of the Java
virtual machine is paused during garbage collection, the packet delivery would be
suspended and this would lead to increased packet delays or packet drops. We
have therefore decided to use Scribe / Pastry only to construct the topology of the
overlay network.

4.3.3 Efficient P2P Protocol for Multicast Data Transport

For transporting IP Multicast traffic, we create an Overlay Network with the same
topology as constructed by Freepastry. But, we are using our own high perfor-
mance optimized P2P data distribution protocol instead of relying on Freepastry’s
multicast data distribution protocol, which uses the object serialization mechanism
of Java to process and forward the multicast data. This high performance optimized
P2P protocol is based only on copying buffers without generating any Java objects.
Such a design allows us to provide high performance multicast data transfer be-
tween end systems in the Internet, which is crucial for multimedia applications
such as video streaming, video conferencing, etc.

We have implemented a simple P2P protocol that is highly efficient and only
introduces minimal overhead in terms of processing required by the end system.
The protocol uses TCP connections between the peers, through which the messages
are exchanged. The message format resembles the format of messages used in
the Common Open Policy Service (COPS) protocol [2]. The reason for using the
COPS protocol message format is its extendability and efficiency. Each message
consists of a header, which defines the length and type of the message and a list of
objects, which contain additional information. The types and order of objects in a
message depend on the type of the message. Each object consists of a header and
data. The header defines the length, class and type of the object. The object data
describes the object. Depending on the class and type, the semantic of the object
data differs. For example, the object data can be an IP address or a encapsulated
IP packet. This kind of design ensures easy protocol extension by introducing new
types of messages or by adding new classes and types of objects into the existing
messages.

Open Message The Open message is exchanged between the peers as soon as a
P2P connection has been established. With the Open message each peer
informs its communication partner about his preferences for receiving mul-
ticast traffic. The peer defines the UDP port on which the peer wishes to
receive the multicast traffic encapsulated in UDP unicast packets. If the port
is undefined, the peer can only receive multicast traffic through the already
established P2P TCP connection.

Keep Alive Message The Keep Alive (KA) message is sent by each peer period-
ically to verify the TCP connection. If no Keep Alive message is received

104

4.3. IMPLEMENTATION OF THE MULTICAST MIDDLEWARE

within the predefined timeout period (10 seconds) the TCP connection is
considered invalid and is closed.

Add Route Message The Add Route and Remove Route messages are used to sig-
nal to peers changes in the multicast routing table.

IP Data Message The IP Data message contains an encapsulated IP packet (for
example a IP Multicast packet). This message is used for transporting mul-
ticast traffic through the P2P network.

t3: Keep Alive
t5: IP Data
t7: IP Data

t8: Keep Alive

t1: Open

 new in P2P already in P2P

t2: Add Route
t4: IP Data
t6: IP Data

B A

Figure 4.2: Example Message Exchange using our Simple P2P Protocol

An example of a message exchange using our simple P2P protocol is presented
in Fig. 4.2. First, peer A, which is newly joining a P2P network sends an Open
message to open the connection to peer B, which is already in the P2P network
(at t1). Peer B then informs his other neighbor peers in the P2P network about
the changes using an Add Route message (at t2). Then, peers need to keep the
connection open by periodically sending Keep Alive messages (at t3 and t8). When
encapsulated IP packets have to be forwarded through the P2P network, then they
are transmitted using IP Data messages, first to peer B from its neighbor (at t4 and
t6) and then from peer B to peer A (at t5 and t7 respectively).

4.3.4 Multicast Subscription Handling and Forwarding

The Multicast Middleware implements currently IGMP version 1 [60] for handling
IP Multicast subscriptions. The Multicast Middleware sends periodically IGMP
host membership query packets on the TAP interface. The operating system’s ker-
nel replies to each host membership query with one IGMP host membership report
message for each IP Multicast group to which at least one application has sub-
scribed. The removal of a host membership is not signaled explicitly in IGMPv1.
Hosts simply do not send membership reports for the group to which they are not
interested any more so that the membership for the group expires. As consequence,
a certain lag between an application signaling the operating system to leave the
group is introduced.

The Multicast Middleware forwards the multicast traffic between the local TAP
device and other peers according to a multicast routing table. The multicast routing
table does not distinguish between TAP interfaces and connections to other peers.
Each entry in the multicast table consists of a multicast group and a set of “IP
Multicast destinations” to which the packet is sent. The multicast table changes

105

4.4. EVALUATION SCENARIOS FOR THE MULTICAST MIDDLEWARE

through external events such as receiving add/remove route messages from con-
nected peers. It also changes after receiving IP Multicast subscriptions from local
applications through the TAP interface using the IGMP protocol.

4.4 Evaluation Scenarios for the Multicast Middleware

4.4.1 Overview

We evaluated the Multicast Middleware using different scenarios. First, we per-
formed a functional test to validate and evaluate the functioning of our first proto-
type implementation. Then, we analyzed the throughput and loss performance of
the Multicast Middleware using different chain topologies. Finally, we also per-
formed delay and loss measurements for scenarios with chain and tree topologies.
We will first present the different scenarios used for the evaluation in Sections 4.4.2
to 4.4.4.

4.4.2 Functional Test Evaluation Scenarios

For the functional test of the first prototype of the Multicast Middleware as pre-
sented in [114], we used a simple P2P network topology, which was setup stat-
ically with configuration files. The P2P structure had to be built as a cycle-free
tree. Multicast group subscriptions were flooded through the P2P network for this
first test. We tested the functioning our prototype implementation of the Multicast
Middleware by streaming a Video CD (MPEG 1 [96] stream with 1.4 Mbps) using
Video LAN Client (VLC) [174]. The test-bed consisted of four mixed performance
laptop computers connected via 100 Mbps Fast Ethernet:

• Sony Vaio with a 2.6 GHz Pentium 4 CPU and 1024 MB RAM

• Apple PowerBook with a 1 GHz PowerPC G4 CPU and 1024 MB RAM

• Dell Laptop with a 1.2 GHz Pentium 3 CPU and 256 MB RAM

• Dell Laptop with a 700 MHz Pentium 3 CPU and 256 MB RAM

The PowerBook was running on Mac OS X 10.4 Tiger, the other laptops were
running Fedora Core 3 with a Linux Kernel 2.6.9. All laptops used Java Version 5
and had the TUN/TAP kernel modules installed.

The overlay network and routing was configured using the previously men-
tioned P2P messaging system. The IP Multicast data was encapsulated in P2P
messages and transported through the Overlay Network using TCP connections
between peers. The structure of the P2P network between the involved peers is
depicted in Fig. 4.3. The Vaio P4-2.6 GHz laptop was used as sender and all other
laptops were receivers of the stream and displayed the video using VLC. The Dell
laptop with 1.2 GHz had to replicate the received stream two times to send it to
the remaining laptops (PowerBook 1 GHz and Dell P3-0.7 GHz). Note that the

106

4.4. EVALUATION SCENARIOS FOR THE MULTICAST MIDDLEWARE

Dell P3-1.2 GHz in the center of the distribution tree had the triple network and
processing load compared the other three laptops. It had to receive the stream and
then replicate it twice to serve the remaining peers in the network.

Vaio P4-2.6 GHz

Dell P3-1.2 GHz

Dell P3-0.7 GHz Mac G4-1.0 GHz

Figure 4.3: P2P Overlay Network Scenario for the Functional Test Evaluation

4.4.3 Throughput and Loss Evaluation Scenarios

Usually P2P network implementations like Scribe / Pastry based on Java or other
high level programming languages are not very appropriate for high-bandwidth
streaming. This is due to the fact that object serialization is normally used for
sending P2P messages through the Overlay Network, as we also did for the first
prototype of the Multicast Middleware. The object serialization implies usually a
performance penalty due to the overhead of (de-)serializing objects. To overcome
this problem, we developed a custom binary signaling protocol, and therefore can
avoid creating new objects in most cases. This makes the Multicast Middleware
then usable for high bandwidth and real-time critical environments.

To construct an Overlay Network, we use the mechanisms of Scribe / Pastry.
But for the actual data transmission we are now using our optimized messaging
protocol, which has been thoroughly optimized for high bandwidth data dissemina-
tion scenarios. We observed that by using the optimized communication protocol,
the performance improved by one magnitude compared to the default P2P message
protocol of Scribe / Pastry. Therefore, the following performance evaluation us-
ing MGEN [113] is focusing on determining the maximum achievable bandwidth
that can be processed between two peers. Furthermore we also evaluate the per-
formance of an example path from sender to receiver in a simple example Overlay
Network.

Since we use a Scribe / Pastry Overlay Network structure, which is known to
scale very well with an increasing number of peers and group members, we do not
evaluate how well the Overlay Network performs in these terms. Due to limited
bandwidth in distributed testbeds such as PlanetLab or the EuQoS testbed, it is not
feasible to perform distributed performance measurements evaluating throughput
and delay.

107

4.4. EVALUATION SCENARIOS FOR THE MULTICAST MIDDLEWARE

In order to evaluate the maximum sustainable bandwidth, which an instance of
the Multicast Middleware can process, and to investigate the impact of forwarding
IP Multicast traffic through ALM, we performed a series of tests with two different
chain scenarios, which are shown in Fig. 4.4.

!"#$%&'()*+#",

-#+.!(&/)*)#+%,#

010&234%"(+$%

2"554)6+#)&7,$%

-#+.!(&8+9%3#"*:

')(,*5&'()*+#",

;0&234%"(+$%

-#+.!(

010&234%"(+$%

-#+.!(

'"<34+%"*:&+*5&

<)+$3#"*:

,*)&010&=,9

"*&+*

>?)#4+@

A)%6,#B

'"<34+%"*:&+*5&<)+$3#"*:&

<34%"94)&010&=,9$&"*&+*&>?)#4+@&

Figure 4.4: Scenarios for the Multicast Middleware Throughput and Loss Evaluation

The first scenario is a P2P network consisting of only two end systems. To
avoid the interference of packet generation to the performance of the Multicast
Middleware, we generated the traffic on separate hosts and forwarded it through a
Gigabit Ethernet to the first peer. In the first peer, we used the Ethernet bridge func-
tionality of the Linux kernel to interconnect the Ethernet interface with the virtual
network interface (TAP). For the same reasons we built a similar scenario for cap-

108

4.4. EVALUATION SCENARIOS FOR THE MULTICAST MIDDLEWARE

turing the traffic. The goal of this setup is to determine the maximum throughput
of the best case in the P2P network, where IP Multicast traffic is tunneled directly
from a sender to a receiver.

To determine the effect of chaining multiple peers to forward the traffic, we
designed the second scenario. In that scenario, we tunneled the IP Multicast traffic
through five peers in a chain. This simulates an example of a sub path taken on one
branch of the multicast tree in an Overlay Network. The first and last peer in this
chain were connected to a traffic generator and capture point in the same manner
as in the first scenario.

We used the MGEN [113] traffic-generating tool to generate and capture the IP
Multicast traffic. The evaluated scenarios shared the following MGEN parameters
and properties:

• 24 flows with sending rates ranging from 11 to 241 Mbps (steps of 10 Mbps)

• Flow sending duration of 120 seconds

• Packet payload of 1024 bytes

All PCs (traffic generator, traffic capturing and P2P Multicast Middleware
hosts) in Fig. 4.4 were configured as follows:

• Intel Pentium D 3.0 GHz CPU with 2 MB Cache

• Two times 512 MB Take M5 DDR 400 CL 2.5 RAM

• ASUS P5LD2-VM mainboard with BIOS rev. 0606

• One Marvell 88E8053 PCI-E Gigabit onboard network adapter

• One Intel 82573L Gigabit LAN network card

• Hitachi Deskstar 7K80 80GB HDS728080PLAT20 hard drive

The operating system used was Fedora Core 5 with Linux kernel version 2.6.17.
All hosts were interconnected via Gigabit Ethernet.

4.4.4 Delay and Loss Evaluation Scenarios

The delay and loss measurements were performed using SmartBits [158] “Port-
able High-density Network Performance Analysis System”. We compared the per-
formance of native IP Multicast and IP Multicast tunneled through Overlay Multi-
cast with the Multicast Middleware. We used the SmartBits to generate and capture
the traffic for comparing latency and packet loss. These measurements focus on the
achievable throughput and the latency on end systems with acceptable packet loss
for high-bandwidth scenarios, such as video broadcasting or IPTV, and for real-
time and interactive applications, such as VoIP and multiplayer games.

109

4.4. EVALUATION SCENARIOS FOR THE MULTICAST MIDDLEWARE

Topologies used for Measurements

We have conducted performance measurements with several chain and tree topolo-
gies. We will look at a chain topology consisting of four hosts and a tree topology
with the maximum tree depth of four.

The multicast fan-out describes the number of nodes that a multicast parent
has to serve with multicast data. Each host has a multicast fan-out of one in the
chain scenario, so no IP Multicast packets need to be duplicated but just need to
be forwarded. In the tree scenario, three hosts have to duplicate the data, and
therefore having a multicast fan-out of two. The remaining four hosts in the tree
scenario have a multicast fan-out of one.

The tree scenario comes close to an actual sub-part of a big overlay, where
typically the multicast fan-out of hosts is between 0 to 2. We used traffic charac-
teristics reflecting a constantly sending source at various fixed rates (1.0, 5.0, 10.0,
24.8, 49.6, 75.2 and 84.8 Mbps) with packet payload sizes of 32, 512 and 1024
Bytes.

The traffic was generated and measured using the SmartBits, which facili-
tates more accurate measurements than the software based solutions running on
a Linux machine as performed in the previous measurements using MGEN. The
Linux routers in-between were running no background processes, their full system
performance was available for the IP Multicast routing in the native IP Multicast
measurements, and for the Multicast Middleware packet capturing/processing and
Overlay Network forwarding in the Overlay Multicast measurements with the Mul-
ticast Middleware.

The different topologies used for the performance measurements are depicted
in Figures 4.5 and 4.6. The chain topology in Fig. 4.5 consists of the SmartBits
(traffic generation and capture) and four PCs acting as Linux multicast routers con-
nected in a chain.

out 192.168.3.1

Smartbits

in 192.168.7.2

in 192.168.3.2
P3

out 192.168.4.1

in 192.168.4.2

P4
out 192.168.5.1

in 192.168.6.2

P6
out 192.168.7.1

in 192.168.5.2

P5
out 192.168.6.1

Figure 4.5: Chain Topology Scenario used for the Delay and Loss Evaluation

The tree topology in Fig. 4.6 consists of the SmartBits (traffic generation and
capture) and seven PCs acting as Linux multicast routers. They are connected in
such a way that the longest branch of the tree consists also of four PCs, but the
branching nodes have to additionally duplicate the packets and send them to two
receivers.

110

4.4. EVALUATION SCENARIOS FOR THE MULTICAST MIDDLEWARE

in 192.168.10.2
in 192.168.9.2
in 192.168.11.2

in 192.168.8.2

Smartbits
out 192.168.3.2

in 192.168.3.2
P3

out 192.168.2.1
out 192.168.1.1

in 192.168.2.2
P2

out 192.168.5.1
out 192.168.4.1

in 192.168.5.2
P5

out 192.168.6.1
out 192.168.7.1

in 192.168.4.2

P4
out 192.168.10.1

in 192.168.1.2

P1
out 192.168.11.1

in 192.168.6.2

P6
out 192.168.8.1

in 192.168.7.2

P7
out 192.168.9.1

Figure 4.6: Tree Topology Scenario used for the Delay and Loss Evaluation

Systems and Environment used for the Measurements

We wanted to accurately measure and compare the latency introduced by process-
ing and tunneling the IP Multicast data through Overlay Multicast with the Multi-
cast Middleware and also wanted to determine the maximum achievable through-
put, the packet loss and delays using the Multicast Middleware in different topolo-
gies. Unfortunately, there are no such large pure IP Multicast networks available in
the Internet to support these high-bandwidth measurements. Additionally, the mea-
surements to determine the introduced delay as described above would not be pos-
sible in the Internet. Therefore, we also could not use the PlanetLab [131, 129, 130]

111

4.4. EVALUATION SCENARIOS FOR THE MULTICAST MIDDLEWARE

environment, which would introduce additional overhead and delays through the
virtual machines used on PlanetLab nodes. Hence, we performed the measure-
ments locally in a fully controllable laboratory environment.
PCs (P1–P7 in Figures 4.5 and 4.6) acting as routers in the test environment were
configured as follows:

• Intel Pentium IV 3.0 GHz CPU with 1 MB Cache

• Two times 512 MB Take M5 DDR 400 CL 2.5 RAM

• ASUS P4S800-MX mainboards with BIOS rev. 0501

• One SiS 900/7016 100 Mbps onboard network adapter

• Two Realtek RTL-8169 Gigabit LAN network cards

• Hitachi Deskstar 7K80 80GB HDS728080PLAT20 hard drive

The operating system used was Fedora Core 5 with Linux kernel 2.6.20-1.2307.
All hosts were interconnected via Gigabit Ethernet. To configure IP Multicast rout-
ing on Linux, we used SMCRoute [150] version 0.92. SMCRoute is a combination
of a daemon and command line tool, which facilitates setup of static IP Multicast
routes for the different network interfaces of the Linux routers. It is similar to
mrouted [71], with the difference that it supports static instead of dynamic multi-
cast routes, which is what we needed for our experiment setup, since we wanted to
maintain static multicast routes.

The throughput and delay measurements using MGEN with two and five host
chain scenarios showed that the Multicast Middleware running on similar hardware
is able to process roughly 100 Mbps of total network traffic (incoming, duplicating
and outgoing) without any packet drops. In those previous measurements, we used
a single Dual-Core Pentium D 3.2 GHz CPU system for generating, capturing and
forwarding the data. Since two different hosts were used to generate and capture
the traffic, delay measurements as presented in this Section were not possible. This
is due to the fact that it is very hard to synchronize the clock accurately between
two independent systems.

Using SmartBits allows us to perform delay specific measurements and also
allows us to accurately generate traffic with smaller packet sizes at high bandwidth,
which would not be possible with software based systems.

Performed Measurements

We defined three different packet payloads in order to analyze differences between
native IP Multicast and the Overlay Multicast solution using the Multicast Mid-
dleware. For each of the different packet payloads, we performed the measure-
ments with five different network load values. The nature of the “SmartBits” API
restricted us to use the inter-packet gap instead of directly the bandwidth as a pa-
rameter.

112

4.4. EVALUATION SCENARIOS FOR THE MULTICAST MIDDLEWARE

The different payload sizes, packet inter-arrival delay, resulting bandwidth and
number of packets being sent are shown in Table 4.1 with the following meaning:

Payload: the actual payload size in a data packet.

Data: the overall packet size (including IP header).

Packet gap: the time in microseconds between the moment a packet has been
completely sent and when the next packet starts being sent.

packets: number of packets sent in a scenario is shown in the row

The total number of packets that the SmartBits can process is limited. Due to
this limitation, we did not send more than 130000 packets in any of the scenarios.
Therefore the last two scenarios with a payload of 32 bytes had a runtime of less
than half as long as the other scenarios. The combination of Data and Packet gap
defines the desired bandwidth for the scenarios.

We used different payload sizes of 32, 512 and 1024 bytes with bandwidth
values of 1.0, 5.0, 10.0, 24.8, 49.6, 75.2 and 84.8 Mbps. A smaller packet size
resulted in more packets being sent and processed. This allows us to determine
the limit of successfully processable packets for the different topologies. For the
payload size of 32 bytes, we limited the bandwidth to 49.6 Mbps.

Table 4.1: Traffic Characteristics for the Delay and Loss Evaluation Scenarios

No. Payload Data Bandw. Packet gap # packets
(bytes) (bytes) (Mbps) (µs)

1 32 79 1.0 61000 8000
2 32 79 5.0 11600 40000
3 32 79 10.0 5500 80000
4 32 79 24.8 1720 130000
5 32 79 49.6 485 130000
6 512 559 1.0 430000 1200
7 512 559 24.8 12500 28000
8 512 559 49.6 4000 56000
9 512 559 75.2 1100 85000

10 512 559 84.8 450 95000
11 1024 1071 1.0 830000 600
12 1024 1071 24.8 24000 15000
13 1024 1071 49.6 7700 29000
14 1024 1071 75.2 2250 44000
15 1024 1071 84.8 960 50000

113

4.5. EVALUATION RESULTS FOR THE MULTICAST MIDDLEWARE

4.5 Evaluation Results for the Multicast Middleware

4.5.1 Overview

In the following sections, we present the results for the evaluation of the Multi-
cast Middleware. We first present the functionality test results in Section 4.5.2.
The functionality test has been performed by streaming a full-length movie and by
evaluating the quality perception. The throughput and loss evaluation results are
shown in Section 4.5.3. This evaluation has been performed using Multi-Generator
MGEN software. Finally, Section 4.5.4 presents the results of the delay and loss
evaluation. The measurements for the delay and loss evaluation have been con-
ducted with the SmartBits “Portable High-density Network Performance Analysis
System”.

4.5.2 Functional Test Evaluation Results

For the functionality test to validate and evaluate the functioning of the first proto-
type of the Multicast Middleware, we used the scenario presented in Section 4.4.2.
We were able to stream a full-length movie (141 minutes) without serious quality
penalties using Video LAN Client (VLC). The quality perception was evaluated
subjectively by two persons watching the movie using VLC. The only (occasion-
ally) issue perceived at the receiver of the video stream was caused by packet de-
livery jitter. The jitter was caused by the JAVA garbage collection mechanism. In
the first prototype of the Multicast Middleware, we did not use our own efficient
P2P protocol for Multicast Data Transport. Instead, we used Freepastry’s built
in object serialization and de-serialization mechanisms to transport the multicast
data. Therefore, we were creating one Java object for each IP Multicast packet
intercepted on the system via the TAP interface.

The gained insights from this first evaluation lead to the conclusion that we
needed to replace this mechanism of having one Java object for each IP Multicast
packet with a more scalable solution, in order to achieve higher performance and
to avoid any severe impact caused by the Java garbage collector.

4.5.3 Throughput and Loss Evaluation Results

Packet Loss Evaluation

The packet loss for the different transmission rates in both scenarios is shown in
Fig. 4.7. The reason for packet loss is due to the incapability of at least one peer
to process traffic at the given rate, which happens when the maximum processing
capacity of an end system at a given time is reached.

The packet loss for a bandwidth up to 100 Mbps is negligible for both scenar-
ios. For transmission rates of more than 100 Mbps, packet loss increases signifi-
cantly. The packet loss is less than 4% for a bandwidth up to 155 Mbps. Therefore,

114

4.5. EVALUATION RESULTS FOR THE MULTICAST MIDDLEWARE

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 50 100 150 200 250

p
a
c
k
e
t
lo

s
s
 a

t
re

c
e
iv

e
r

(%
)

generated bandwidth at sender (Mbps)

packet loss for first scenario
packet loss for second scenario

Figure 4.7: Packet Loss Measured for both Scenarios in Fig. 4.4

our Multicast Middleware should be able to support multimedia streaming up to
155 Mbps with acceptable packet loss.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 0 50 100 150 200 250a
c
h
ie

v
e
d
 (

m
e
a
s
u
re

d
)

b
a
n
d
w

id
th

 a
t
re

c
e
iv

e
r

(M
b
p
s
)

generated bandwidth at sender (Mbps)

bandwidth for first scenario
bandwidth for second scenario

Figure 4.8: Generated and Effectively Achieved Bandwidth for both Scenarios in Fig 4.4

115

4.5. EVALUATION RESULTS FOR THE MULTICAST MIDDLEWARE

Bandwidth and Jitter Evaluations

Figure 4.8 shows the captured bandwidth compared to the generated bandwidth
for both scenarios. It also shows that the maximum bandwidth an instance of the
Multicast Middleware can deliver is at 210 Mbps.

We also determine the jitter for both scenarios. Our results show that the jitter
increases with the number of peers involved in transporting the IP Multicast traffic.
For the first scenario, the maximum jitter was below 15ms for a bandwidth up to
155 Mbps. For the second scenario, the maximum jitter went up to 150ms, due to
a few outliers. The mean delay was much lower.

Both figures show that there is no significant difference between the packet
losses for both scenarios, which indicates that the impact of delivering IP Multicast
traffic through multiple peers is minimal.

4.5.4 Delay and Loss Evaluation Results

Native IP Multicast Results

The measurements with the chain topology in Fig. 4.9 show a very small packet
loss below 0.2%. Most of the packets are lost in case of a packet payload of 32
bytes and higher bandwidth values. There is a high loss for high packet rates (small

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 10 20 30 40 50 60 70 80 90

lo
st

 p
ac

ke
ts

 (%
)

network load (Mbps)
32 bytes payload

512 bytes payload
1024 bytes payload

Figure 4.9: Packet Loss for IP Multicast in Chain Topology of Fig. 4.5

packet payload and high bandwidth). The measurements for a packet payload of
32 bytes have only been performed with bandwidth values up to 49.6 Mbps. For
a payload of 1024 bytes, the packet loss rate starts just below 0.2% and then de-
creases towards 0% for higher bandwidth values. This is due to the fact that for low
bandwidth values, only a few hundred packets are being sent and a single dropped
packet has a significant impact on the percentage value, whereas for higher band-
width values, many thousand packets are being sent, therefore reducing the impact
of a single dropped packet on the percentage value. Higher bandwidth values are
no problem for packet payloads of 512 and 1024 bytes.

116

4.5. EVALUATION RESULTS FOR THE MULTICAST MIDDLEWARE

 0

 50

 100

 150

 200

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

la
te

nc
y

(µ
s)

Traffic characteristics scenarios

Figure 4.10: Latency w/o 5% Outliers for IP Multicast in Chain Topology of Fig. 4.5

The latencies for the chain topology are shown in Fig. 4.10. The network load
has almost no influence on the latency, with negligible differences. It seems that
the SMCRoute daemon (see Section 4.4.4) is buffering packets before forwarding
packets to a host. Therefore, the delay increases as the payload size increases.

For the tree topology, we captured the data on the different lengths of the tree.
The packet losses for P1, P4, P6 and P7 (leaf hosts) were similar, and therefore
we only show the packet loss for P6 in Fig. 4.11. Compared to the chain topology,

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 10 20 30 40 50 60 70 80 90

lo
st

 p
ac

ke
ts

 (%
)

network load (Mbps)
32 bytes payload

512 bytes payload
1024 bytes payload

Figure 4.11: Packet Loss (P6) for IP Multicast in Tree Topology of Fig. 4.6

packet loss does not change significantly, although for configurations with higher
payload, packet loss increases a little. The drop rate behavior for low bandwidth
values and for a payload of 1024 bytes is as described in the chain scenario above.

The latency has a different behavior in the tree topology as shown in Fig. 4.12.
It seems that SMCRoute does not buffer packets when it has to duplicate and for-
ward them to multiple hosts. Hence, the average delay is now similar for different
payload values. In the chain topology, the delay varied depending on the payload
size due to the impact of buffering performed by SMCRoute.

117

4.5. EVALUATION RESULTS FOR THE MULTICAST MIDDLEWARE

 0

 50

 100

 150

 200

 250

 300

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

la
te

nc
y

(µ
s)

Traffic characteristics scenarios

Figure 4.12: Latency w/o 5% Outliers (P6) for IP Multicast in Tree Topology of Fig. 4.6

We also have two configurations (traffic characteristics 5 and 10) with larger
jitter than the average. It is clearly visible that the delay values measured have a
much higher variance for those two configurations. For such configurations with a
small payload and a high network load, the jitter seems to increase. This behavior
is caused by the small inter-packet gap, and the amount of packets sent to the
computers, as with this configuration, the kernel cannot transfer the packets quickly
enough and they get queued.

Multicast Middleware Results

Our measurements show that the Multicast Middleware generally handles packet
sizes of 512 and 1024 bytes very well while the smaller packet size of 32 bytes
together with high bandwidth lead to a high packet drop rate. Figure 4.13 shows

 0.01

 0.1

 1

 10

 100

 10 20 30 40 50 60 70 80 90

lo
st

 p
ac

ke
ts

 (%
)

network load (Mbps)
32 bytes payload

512 bytes payload
1024 bytes payload

Figure 4.13: Packet Loss for the Multicast Middleware in Chain Topology of Fig. 4.5

that packet loss in the chain topology for 1024 bytes packet payload is between
0% and 0.04%. Packet drops occur when the Multicast Middleware has to process
many packets in a short time, as it is the case for 32 bytes packet payload with

118

4.5. EVALUATION RESULTS FOR THE MULTICAST MIDDLEWARE

more than 10 Mbps and 512 bytes packet payload with 75.2 Mbps. Therefore, the
Multicast Middleware seems to be able to process around 18’000 incoming packets
per second in the chain scenario, before it starts to drop packets. The Multicast
Middleware has to process two packet streams in the chain topology, the incoming
and the outgoing stream.

The latency measurements for the chain topology using Overlay Multicast are
presented in Fig. 4.14. The delays are acceptable (meaning below 10 ms) for band-

 100

 1000

 10000

 100000

 1e+006

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

la
te

nc
y

(µ
s)

Traffic characteristics scenarios

Figure 4.14: Latency w/o 5% Outliers for the Multicast Middleware in Chain Topology of
Fig. 4.5

width values of 10 Mbps and below with a payload of 32 bytes. For 512 and 1024
bytes payloads, the latencies are acceptable for all bandwidth values used for the
measurements. The latencies between 1 to 10 Mbps are decreasing for increasing
bandwidth. This is due to the multi-threaded design of the Multicast Middleware.

Each overlay connection in the Multicast Middleware is handled by a sepa-
rate thread (light-weight process). These separate threads read data from a ring
buffer and wait on a conditional variable if their buffers are empty. At high packet
rates, the threads never wait. At low packet rates though, the threads wait after
transmitting each packet. Waking up threads produces additional latency in packet
transmission.

Therefore, scenarios 1 to 3 result in higher latency for lower packet rates. The
total number of waiting states per second is lower when the packet size is being
increased. Therefore, the impact of multi-threading issues on the overall latency is
reduced. This explains the smaller additional latency values in scenarios 6 to 8 and
11 to 13. The results obtained from the presented measurements in the chain topol-
ogy using a packet payload of 1024 bytes correspond to the previously determined
bandwidth limit of 100 Mbps with acceptable packet loss using measurements with
MGEN.

The tree topology packet loss results presented in Fig. 4.15 show that packet
loss is at an unacceptable level for 10 Mbps and more with 32 bytes packet payload,
above 24.6 Mbps for 512 bytes packet payload and more than 49.6 Mbps for 1024
bytes packet payload. In the tree topology, the Multicast Middleware seems to be

119

4.5. EVALUATION RESULTS FOR THE MULTICAST MIDDLEWARE

 1

 10

 100

 10 20 30 40 50 60 70 80 90

lo
st

 p
ac

ke
ts

 (%
)

network load (Mbps)
32 bytes payload

512 bytes payload
1024 bytes payload

Figure 4.15: Packet Loss (P6) for the Multicast Middleware in Tree Topology of Fig. 4.6

able to process at least 9’000 incoming packets per second, before it starts to drop
packets. In the tree topology, the Multicast Middleware has to process three packet
streams, one incoming, and two outgoing.

The latency measurements presented in Fig. 4.16 lead to the same conclusion.
The tree topology measurements show acceptable delays (below 10 ms) for band-

 100

 1000

 10000

 100000

 1e+006

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

la
te

nc
y

(µ
s)

Traffic characteristics scenarios

Figure 4.16: Latency w/o 5% Outliers (P6) for the Multicast Middleware in Tree Topology
of Fig. 4.6

width values below 10 Mbps for 32 bytes, below 24.8 Mbps for 512 bytes and
below 75.2 Mbps for a 1024 bytes packet payload. Our measurements show that
the Multicast Middleware in the chain topology can process incoming packet flows
up to 75.2 or 84.8 Mbps with a payload of 512 or 1024 bytes, respectively. The
limit is above 10 Mbps in the chain topology for packet payloads of 32 bytes. For
the tree topology, incoming flows up to 10 Mbps for 32 bytes payload and up to
24.8 Mbps for a payload of 512 bytes can be processed, while for a packet payload
of 1024 bytes, incoming flows up to 49.6 Mbps can be handled.

These results show that the Multicast Middleware can be used for real-time

120

4.5. EVALUATION RESULTS FOR THE MULTICAST MIDDLEWARE

and high-bandwidth scenarios and that processing the packets introduces accept-
able additional delays. The Overlay Multicast latency measurements results, which
were still acceptable, are an order of a magnitude higher than with native IP Mul-
ticast. But average delays around 0.7 ms are still acceptable for the four hop chain
scenario. In the tree topology, the average still usable delays are around 3 ms,
which is still acceptable.

Comparison between IP Multicast and the Multicast Middleware

The loss rate in the chain topology of Fig. 4.5 does not behave very differently
between native IP Multicast and IP Multicast tunneled through an Overlay Network
using the Multicast Middleware for a packet payload size of 1024 bytes. Also
for a packet payload size of 512 bytes, the values are in the same area for the
different bandwidth values up to 75.2 Mbps. Above this bandwidth value, the
Overlay Multicast scheme starts to have high losses.

For the small packet payload of 32 bytes, both scenarios behave quite similar
up to a bandwidth of 10 Mbps, then the native IP Multicast scenario gets only
slightly worse with raising bandwidth, whereas the Overlay Multicast scenario has
high losses with bandwidth values above 10 Mbps.

Delays in the Overlay Multicast scenarios are much higher than for native IP
Multicast, due to capturing, processing, replication and injection of packets using
the Multicast Middleware and the Overlay Network. But we can see that this ap-
proach is valid because the introduced delay for most of the bandwidth and packet
size scenarios is tolerable.

In the tree topology of Fig. 4.5, Overlay Multicast compared to native IP Mul-
ticast behaves almost the same, having the bandwidth limit for Overlay Multicast
below 24.8 Mbps for packet payload size of 32 bytes and below 75.2 Mbps for
payload sizes of 512 and 1024 bytes. The impact of capturing, processing, repli-
cating and injecting packets using the Multicast Middleware on the delays in the
tree scenarios is the same as for the chain scenario. Compared to native IP Multi-
cast, the delays are higher, but behave less steady and increase if the bandwidth is
augmented. But, the delays are still tolerable as described before for many packet
payload size and bandwidth combinations.

Summary of Delay and Loss Evaluation Results

Using the SmartBits “Port-able High-density Network Performance Analysis Sys-
tem”, we were able to perform delay and loss measurements, which would not
have been possible using software based systems such as MGEN. The results from
the evaluation show that the Multicast Middleware can be used for high-bandwidth
and delay sensitive scenarios, such as real-time video broadcasting, IPTV, multi-
player online games, NVE, and others. It is a valid solution to tunnel IP Multicast
traffic through an Overlay Multicast network, in order to offer an Internet-wide IP
Multicast service to end users.

121

4.6. CONCLUSION

4.6 Conclusion

IP Multicast is a necessary service for efficient video streaming in the Internet.
Although commercial ISPs are not willing to enable IP Multicast services for end
users, it is possible to provide multicast services using only unicast communication.

In this Chapter we described a way to provide IP Multicast services on end
systems without changing existing IP Multicast applications or deploying infras-
tructure to the Internet. This facilitates efficient dissemination of multimedia data
for video broadcasting, IPTV, VoIP and multiplayer games using the multicast
paradigm. Our approach uses a virtual network device for capturing multicast traf-
fic and forwarding it to a user application called the Multicast Middleware. The
Multicast Middleware transports the multicast data using Application Layer Multi-
cast to other receivers in the Internet. We have also described how existing Appli-
cation Layer Multicast protocols can be integrated into our approach and outlined
the possibility of QoS provision for the Multicast Middleware over the Internet.

The Multicast Middleware has been tested and evaluated using multiple sce-
narios and testing approaches. We compared native IP Multicast and Overlay Mul-
ticast with the Multicast Middleware regarding throughput, loss and delay per-
formance. We concentrated our measurements on local networks to analyze the
maximum throughput and the delays introduced by processing the packets, which
would not have been possible in a distributed network over the Internet on a larger
scale. We performed the measurements in different topologies (chain and tree) with
variable network load and payload.

The results from the throughput, delay and loss evaluations show that the Mul-
ticast Middleware can be used for different scenarios. It supports high-bandwidth
and delay sensitive scenarios, such as real-time video broadcasting, IPTV services,
massive multiplayer online games, networked virtual environments, and others.

The Multicast Middleware has been developed in the context of the EuQoS
project that aims to provide a facility for providing inter-domain end-to-end QoS
services. The Multicast Middleware can use reservation-based DiffServ-like sys-
tems to perform QoS reservations on the network level for the connections between
end systems. As an alternative, also best-effort measurement based QoS with mea-
surements and/or predictions [148] could be used. Since the QoS requirements of
the end systems within one IP Multicast group can be heterogeneous, it is neces-
sary that the multicast tree is built in such a way that the QoS requirements and
capabilities of end systems are considered. This will enable QoS not only for the
reception but also the redistribution of the received encapsulated multicast data.

The Multicast Middleware has been successfully tested with legacy IP Mul-
ticast applications, such as Video LAN Client (VLC) [174] and software devel-
oped in student projects [19, 122]. It has been presented using VLC at conference
demonstrations [44], EUQoS [68] project yearly reviews and roadshows [74].

In Chapter 3 we described the properties of a QoS aware multicast tree and
how such trees can be constructed using Scribe / Pastry. The presented extensions
to Scribe / Pastry have been integrated into the Multicast Middleware.

122

Chapter 5

Efficient Data Dissemination using
Cooperation

5.1 Introduction

Efficient data distribution in the Internet can be performed using multicast mech-
anisms such as IP Multicast or Application Layer Multicast (ALM) using Over-
lay Networks. In this Chapter, we present the Multicast File Transfer Protocol
(MCFTP) [45, 36, 37, 32, 33, 128, 77], which uses multicasting to distribute data
efficiently to end users with varying network speeds.

Different approaches to efficiently distributing data among multiple download-
ers / subscribers exist. One of the commonly used protocols is BitTorrent. It allows
end users to share their resources in order to improve their download speed. Bit-
Torrent is based on unicast connections and does not use or benefit from multicast.

We have developed MCFTP, a Multicast File Transfer Protocol, which per-
forms efficient data distribution using multicast. Instead of IP Multicast (see Sec-
tion 2.2.2), Application Layer Multicast (shown in Section 2.5), running on-top
of Peer-to-Peer (presented in Section 2.3) Overlay Networks can be deployed for
multicast to end users.

MCFTP incorporates some ideas of BitTorrent. Users that have downloaded
partial data can contribute by uploading those already received parts to others. We
compared MCFTP with BitTorrent in IP Multicast networks and using Overlay
Multicast environments using the ns2 [70, 29, 65, 92, 119] network simulator.

Using multicast instead of unicast facilitates using resources more efficiently.
This is the case for IP Multicast, where routers replicate data, as well as for ALM,
where participating nodes are arranged to use their resources as efficiently as pos-
sible.

In Section 5.2, the architecture and design of the MCFTP protocol and compo-
nents are described. The evaluation scenarios of MCFTP are presented in Section
5.3. The results of the evaluation, comparing MCFTP to BitTorrent using the ns2
simulator and a prototype implementation are presented in Section 5.4. Finally,
Section 5.5 concludes this chapter.

123

5.2. ARCHITECTURE AND DESIGN OF MCFTP

5.2 Architecture and Design of MCFTP

5.2.1 Overview

Often, P2P protocols for data dissemination, such as Slurpie, BitTorrent, etc. as
described in Section 2.3, use cooperation among the download clients to provide
partially downloaded files to other downloaders. They all rely on 1:1 connections
between clients and do not benefit from the multicast distribution paradigm. The
Multicast File Transfer Protocol (MCFTP) offers a file sharing and data dissemi-
nation service based on multicast.

MCFTP has five main entities: the FileDescriptor, the FileManagementGroup
(FMG), SendingGroups (SG), downloading nodes, and optionally a FileLeader.
The FileDescriptor stores meta data (unique file identifier, file size, chunk size,
hash values for chunks) about the file that should be downloaded / disseminated.
Protocol related communication among nodes is done via the FMG. A FMG is a
dedicated multicast group for a specific file. The application data itself (the file) is
disseminated or transferred using dedicated multicast groups for file dissemination
(SendingGroups), which are only available for a short life time.

Finally, MCFTP can run in a completely decentralized mode (called dMCFTP)
or in a centralized mode. The centralized mode (called cMCFTP) has a FileLeader
coordinating the SendingGroups.

5.2.2 FileDescriptors

Files that can be downloaded using MCFTP are described by a FileDescriptor. It
contains all meta data and is a normal text file. A FileDescriptor consists of a
unique file identifier, file size, chunk size and for each chunk a list of hash values.
Files are split into chunks of equal size. The chunks are the smallest transmitted
entities between nodes.

5.2.3 FileManagementGroup

The FileManagementGroup (FMG) is a multicast group, which is used to exchange
status and coordination messages. It is a dedicated multicast group, which is unique
for a file as described in the FileDescriptor.

In the centralized mode cMCFTP with a FileLeader, the FMG is used by the
nodes to send status update messages to the FileLeader. Status update messages
contain information about the parts or chunks of a file that nodes already possess.
Additionally, status update messages also hold other information, such as a node’s
pre-configured upload and download bandwidth. Users can define the upload and
download bandwidth that the application can use for itself. The FileLeader on the
other hand uses this group to send coordination messages to all nodes. It announces
which nodes need to send which chunks. The announcements are done via keep-
alive messages and contain additional information about the SendingGroup and the
sending rate.

124

5.2. ARCHITECTURE AND DESIGN OF MCFTP

Figure 5.1 shows a cMCFTP scenario with a FileLeader (FL). First, nodes (H1-
H9) send their status update messages using the FMG. The FileLeader (H1=FL)
then calculates availability and demand of the chunks. Therefore, the FileLeader
can determine which nodes are the best senders (S1-S3) for the nodes (R1-R6) still
missing some chunks. Only one node (S3/R5) acts as sender and receiver at the
same time. It then announces via the FMG which nodes (S1=H2, S2=H5, S3=H8)
have to send what chunks with which transmission rate how many times.

H2

H5

F
il

e
 M

a
n

a
g

e
m

e
n

t
G

ro
u

p

H4

H6

H9

H7

H3

H1/FL

H8

H2/S1

H5/S2

F
il

e
 M

a
n

a
g

e
m

e
n

t
G

ro
u

p

H4

H6

H9

H7

H3

H1/FL

H8/S3

S1

S2
F

il
e

 M
a

n
a

g
e

m
e

n
t

G
ro

u
p

R2

R3

R6

R4

R1

H1/FL

1. Status update messages 2. Sender assignment by FL 3. Keep-alive message

status

keep-alive

R5S3

Figure 5.1: FileManagementGroup Communication in cMCFTP

For the decentralized approach dMCFTP (without a FileLeader), the FMG is
used by all nodes for announcements. Nodes announce which chunks they are
sending to which multicast group. All nodes listen to the announcements and then
join matching sending groups for their missing chunks to be sent at supported rates.
Nodes also decide which chunks they announce and send themselves. Therefore,
they look at the announcements made by the other nodes. Depending on the strat-
egy used to determine the chunks to be sent, the effectiveness can be greatly im-
proved. Such strategies may send the least often announced chunks. Also, nodes
can send chunks that have not been announced for a certain time. This helps to
reach as many nodes as possible as potential downloaders and not to let some
nodes starve.

5.2.4 SendingGroups

A SendingGroup (SG) is a multicast group used to transmit a chunk with a specific
sending rate. The sender for a chunk sends the chunk data to this SG. All the nodes

125

5.2. ARCHITECTURE AND DESIGN OF MCFTP

that want to receive that chunk can join this SG. The node that has to send the chunk
at the specified rate receives this information from the FileLeader. This is done via
keep-alive messages transmitted via the FMG in cMCFTP mode. The FileLeader
knows the available sending capacities at the determined senders. Hence, it does
not assign sending rates that cannot be supported by the senders.

In the decentralized dMCFTP mode, each node announces its own intention
about sending chunks and the sending rate. A node decides this by listening to what
other nodes announce on the FMG. Nodes analyze which chunks other nodes send
as well as which chunks are actually needed by others. Nodes that are interested
in a chunk know via the keep-alive messages at which rates these chunks are sent.
Therefore, nodes can join the appropriate SG that supports their free download
bandwidth.

Figure 5.2 shows a cMCFTP scenario. Nodes interested in a certain chunk
join the corresponding SendingGroups. The SGs have been communicated using
keep-alive messages sent by the FileLeader.

S1

S2

F
il
e
 M

a
n

a
g

e
m

e
n

t
G

ro
u

p

R2

R3

R6

R4

R5

R1

S3

Sending Group

for Chunk 1

FL

Sending Group

for Chunk 2

Sending Group

for Chunk 3

join messages
keep-alive

messages

Figure 5.2: Joining SendingGroups in cMCFTP

Figure 5.3 shows how the nodes that have been announced by the FileLeader
start sending data to the corresponding SGs. The nodes subscribed to the corre-
sponding multicast groups then receive chunk data sent by the announced nodes.

IP Multicast is based on UDP and does not guarantee any reliable transmission.
Therefore, erasure codes [141] or forward error correction (RFC3453) mechanisms
could be applied to the SG data distribution protocol. This might add additional

126

5.2. ARCHITECTURE AND DESIGN OF MCFTP

S1

S2

R2

R3

R6

R4

R5

R1

S3

Sending Group

for Chunk 1

FL

Sending Group

for Chunk 2

Sending Group

for Chunk 3

send chunks

receive chunks

Figure 5.3: Sending and Receiving using SendingGroups in cMCFTP

data that has to be transmitted (typically around 5%). But, retransmission of certain
chunks can be completely avoided if one node was not able to reconstruct the full
chunk because of some packets missing.

5.2.5 Strategies to Determine SendingGroups

SendingGroup Creation Algorithm for cMCFTP in NS2 Implementation

For cMCFTP, the FileLeader determines SendingGroups for all nodes in the swarm.
In order to have a well performing and efficient MCFTP swarm, all nodes should
be kept busy (as senders or receivers) as often as possible. SendingGroups should
be distributed evenly among all nodes participating in the swarm.

Chunks that are only available at one node should have the highest priority.
It is important that such high priority chunks are distributed as quickly a possible
to other nodes. Hence, the FileLeader creates for such high priority chunks cor-
responding SendingGroups with sending rates of 80% of the maximum available
download rate in the swarm. If the sender for a rare chunk is not able to support the
80% of the maximum available download rate, the FileLeader assigns the fully re-
ported upload sending rate to the provider of the rare chunk using a corresponding
SendingGroup. This special treatment of rare chunks quickly spreads the avail-
ability of these chunks and does ensure that these chunks can also be downloaded
using different rates that are potentially offered by their new providers.

127

5.2. ARCHITECTURE AND DESIGN OF MCFTP

If there are no more high priority chunks, the SendingGroup creation algorithm
of the FileLeader targets in a first step nodes that have not yet any SendingGroups
assigned. In a second step, nodes that have more than 20% of their maximum
upload bandwidth unused are the target of the SendingGroup creation algorithm.
Chunks are then assigned to SendingGroups depending on their availability in the
targeted node, the rarity in the swarm as well as how long it has been since the
chunk has been previously sent by any peer.

SendingGroup Creation Algorithm for dMCFTP in NS2 Implementation

For dMCFTP, each node individually determines its own SendingGroups. Here, the
SendingGroup creation algorithm in each node is is based on history information
for each chunk collected by the node itself. Nodes track how often a chunk was
sent and the time a chunk has been last announced. Also, a node tracks how often
it has sent a chunk and at what time this has occurred last.

There are three different priority categories for chunks. The highest priority
have chunks, which have never been sent. The next lower priority category contains
chunks, which have been sent by a node at least once, but have not been tracked as
being offered by other nodes. The lowest priority includes chunks that have been
announced by other nodes.

Chunks of the highest priority have to be distributed as quickly as possible.
Hence, nodes try to send these chunks using a high sending rate, which is set to
75% of the so far maximum tracked download rate in swarm. If a node is not able
to send the chunk using the determined rate, it will send the chunk using its max-
imum possible sending rate. This special treatment of high priority chunks again
helps to quickly spread the availability of rare chunks and enable other providers
to offer these chunks with variable sending rates. When a node joins the swarm, all
chunks the node already has are in the highest priority category. These priorities
for supposedly rare chunks though quickly decrease, as more history information
is collected.

After all chunks in the highest category have been sent at least once, chunks
from the second priority category are targeted by the SendingGroup creation al-
gorithm. A node first selects the chunk, which has been sent last the longest time
ago. These chunks are sent with sending rates around half of the maximum tracked
download rate in the swarm. Again, if the node cannot send it at the determined
rate, it will send it using it maximum possible sending rate.

Finally, chunks from the last category are targeted. These chunks are also
available at other nodes in the swarm. After some time has passed, chunks are
mainly placed in this last category. Hence, the focus is on continuously providing
these chunks but not at very high sending rates. Chunks are chosen depending
on the time they were last sent in the swarm, prioritizing the ones that have not
been sent for a long time. The sending rates are set between half of the minimum
observed download bandwidth in the swarm and the upload capacity of the peer.
These chunks are sent twice in a row.

128

5.2. ARCHITECTURE AND DESIGN OF MCFTP

SendingGroup Creation Algorithm for cMCFTP in Prototype

In cMCFTP, the FileLeader receives status update messages from all nodes in the
swarm and then tries to apply a strategy in order to provide efficient data dissemina-
tion in the swarm. The FileLeader stores each missing chunk information received
by a node in a table, which also includes the maximum available bandwidth of the
node requiring the chunk.

The basic strategy of the FileLeader works as follows. Each chunk, which is
required by at least one node and can be provided by at least one other node will
be announced by the FileLeader. This selection of chunks is done randomly. The
FileLeader also stores how often a chunk is required and prioritizes chunks that are
required more often.

In order to enhance performance, the following more advanced strategy exten-
sions could be considered. An advanced strategy would be aware of bandwidth
capability and availability of the different nodes in the swarm. Nodes that have
not been selected often to disseminate chunks will also be prioritized to be used
as potential senders in order to distribute the load more evenly among the swarm
members. The advanced strategy tries to prefer nodes with high available send-
ing bandwidth to send chunks that are required most. Nodes with lower available
bandwidth are used to disseminate chunks, which are not required that often. We
assume that less often required chunks are available at many nodes, resulting in
more variable bandwidth options for sending these chunks. Also, chunks required
by a small number of swarm members that can then finish their complete download
of the file in order to become seeders are also prioritized. Furthermore, chunks that
are required most in the MCFTP swarm could also be prioritized.

We implemented the basic strategy and included some optimizations proposed
for the advanced strategies (such as bandwidth awareness and prioritization).

SendingGroup Creation Algorithm for dMCFTP in Prototype

In dMCFTP, nodes decide by themselves which chunks they want to send. Each
node also follows a strategy to select the chunks to be sent.

Using a basic strategy, nodes collect status messages and find out which chunks
are required by other nodes in the swarm. Then, a node can determine which of the
chunks it already has can be potentially offered to other nodes. It chooses a random
chunk out of this list of potential chunks to be sent, and uses its fully available
upload bandwidth to send the chunk. As a variation, a node could randomly select
two chunks and send each with half of its available upload bandwidth.

More advanced strategies would also include bandwidth awareness of other
nodes acting as potential receivers as well as potential senders. This would facil-
itate that in the swarm, the same chunk would be sent with various sending rates.
Nodes could all follow the same strategy or different strategies depending on their
download completion state (seeder, no chunk, 50% of chunks, etc.) or bandwidth
capabilities. A mixture of strategies could be beneficial for overall performance.

129

5.3. EVALUATION SCENARIOS FOR MCFTP

We implemented the basic strategy and included some simple optimizations
(such as bandwidth awareness and comprehension of sending activities of other
nodes) and prioritizing mechanisms for our prototype.

5.3 Evaluation Scenarios for MCFTP

5.3.1 Overview

We evaluated MCFTP using the network simulator ns2 and also using a prototype
implementation. The prototype implementation was evaluated in a local testbed.

MCFTP was compared with BitTorrent in both environments. In the network
simulator, we implemented the basic BitTorrent protocol. We then compared our
MCFTP implementation with this BitTorrent implementation in ns2 regarding per-
formance. For the comparison with the prototype implementation of MCFTP, we
used the popular Azureus [12] BitTorrent client.

The evaluation in the network simulator used small to large scale networks up
to 2041 nodes, whereas the prototype was only evaluated in small scale networks
with up to 100 nodes. Section 5.3.2 will describe the scenarios used to evaluate
MCFTP using the ns2 network simulator. The evaluation using the prototype im-
plementation is presented in Section 5.3.3.

5.3.2 NS2 Network Simulator Evaluation Scenarios

Overview

To make a first evaluation of MCFTP, we implemented the protocol using the
ns2 [70, 29, 65, 92, 119] simulator. We compared the performance of the dif-
ferent MCFTP approaches (cMCFTP and dMCFTP) with BitTorrent presented in
Section 2.4.7. The evaluations were performed using small to large scale networks,
ranging from 33 to 2041 nodes for IP Multicast and from 37 to 525 nodes for Over-
lay Multicast. We present the different simulation scenarios for IP Multicast and
Overlay Multicast. This includes details about network topologies, network sizes
and the join behavior of nodes for MCFTP and BitTorrent in the simulation runs.

Simulation Scenarios

All simulation scenarios except for the impact of seeders on download duration
factor look at the worst case scenario, where initially only one seeder (a node hav-
ing the full file) is available. Nodes that want to download the file arrive over time
in the network and join the swarm. This is often also referred to as flash crowd sce-
nario. In all simulation scenarios, seeders (initial seeders and nodes that develop to
seeders over time) remain active in the swarm until the simulation has ended.

Simulations were performed using IP Multicast as well as using Overlay Multi-
cast environments. In the Overlay Multicast environment, we used a shared overlay

130

5.3. EVALUATION SCENARIOS FOR MCFTP

network for all multicast groups with two scenarios. For the first scenario, the over-
lay network was constructed to support QoS. Therefore, a parent node can fully
support the maximum possible required bandwidth of the children nodes attached.
To support QoS, parents reserve some of their bandwidth for all their children.
Therefore, we used a bandwidth scale factor of 0.5 for the first scenario. This
means that a parent reserves half of its own download bandwidth for its children
to support QoS. The other half is used by the parent itself. This way a node can
guarantee that it always has enough bandwidth to serve its own download requests
as well as all download requests coming from nodes in its attached sub-tree. If the
parent and all its children on the whole sub-tree use their full bandwidth, all nodes
including the parent can be served. The parent’s bandwidth is never exceeded.
Hence, there should be no packet loss in the first scenario.

In the second scenario, we used an overlay network supporting only partially
the bandwidth requirements of attached children. Therefore, we chose a bandwidth
scale factor of 0.75 for the second scenario. Here, a parent assigns up to 75% of its
possible bandwidth to itself. But still, 50% of the parent’s bandwidth is assigned
to the direct children nodes. In case the parent and all its direct children would use
their fully assigned bandwidth, the parent’s bandwidth available on the link could
not support the totally required bandwidth. The link would actually require 125%
of its available bandwidth. This effect increases with each additional level in the
sub-tree. Therefore, a node cannot guarantee that all children and itself are able to
use their full bandwidth capabilities.

Network Topologies, Network Sizes, File Sizes and Join Behavior

The network topologies for the IP Multicast simulation scenarios were constructed
as follows. The random number generator influences different values determining
the topology setup. The core router network is though manually predefined and
is the same for each topology. Attached to each of the routers in the core router
network, a tree consisting of routers is randomly built. The depth of each tree is
randomly determined using a normal distribution. The number of routers in the tree
is determined randomly as well. Delays of the links between routers in the trees
are also determined randomly using a normal distribution. Bandwidth capabilities
of the links are set high in order to avoid congestion. Nodes running BitTorrent
or MCFTP applications are then connected to the various routers in the sub-trees.
The delay and bandwidth capabilities of the links connecting the nodes to routers
are also determined randomly. The bandwidth capabilities assigned to the links is
asymmetric (different upload and download bandwidth) and determined by a ratio
parameter. We set the ratio parameter between upload and download bandwidth to
0.3 (upload = 0.3×download) and the mean of the randomly determined bandwidth
capabilities distribution on the links was set to 2000 Kbps with a standard deviation
of 550 Kbps and a minimum of 384 Kbps. Also, a rendez-vous point is required to
support IP Multicast in the simulated topology. The rendez-vous point is always at
a fixed position in the core router network.

131

5.3. EVALUATION SCENARIOS FOR MCFTP

For the overlay network scenarios, the topologies were built using the following
approach. Compared to the IP Multicast topologies, we use symmetric links for the
nodes, and the end-to-end delays are also higher. The generated topology acts as a
shared tree for the whole overlay network. We had to build the Overlay topologies
differently, due to the fact that we needed to guarantee certain QoS requirements
in terms of bandwidth and to avoid congestion. There are two different node types,
simple data forwarders, which consist only of a simple node in the simulator, and
applications consisting of two nodes in the simulator. For the applications, one
node in the simulator is used as multicast data forwarder while a second node
contains the application. Those two nodes in the simulator are connected by a link
with a delay of 0ms. If the node uses BitTorrent, the link bandwidth is limited to
support TCP-connection scaling. In case MCFTP is used, the link bandwidth is
very high because MCFTP regulates the sending rate by itself.

The construction of the topology resulting in the shared overlay tree is then
finally constructed as follows. The root of the tree has a specified start band-
width. The number of children for each node (including the root) is determined
randomly. In case the current node is only acting as forwarder, the available band-
width (coming from the parent link) is distributed randomly among all links con-
necting the children nodes. If the node acts as application, then only 50% of the
parent link bandwidth capacity is assigned randomly to the links connecting the
children nodes. In case of the QoS scenarios with a bandwidth scale factor of 0.5
(where applications would only assign 50% of the available bandwidth capacity to
themselves), QoS in terms of required bandwidth would be fully supported. But, if
applications would assign 75% of their bandwidth capacity to themselves (using a
bandwidth scale factor of 0.75), then the network would be over-used and conges-
tion would occur. Also, the rendez-vous point would need to be placed in the root
of the constructed overlay tree topology.

We compare different network sizes with node numbers ranging from 33 to
2041. This covers small groups of nodes exchanging a file of common interest
as well as large groups for exchanging more popular files. The topologies for the
different network sizes were built independently as described, before leading to
different characteristics depending on the number of nodes.

The simulations use different file sizes (50 MB and 100MB). Each scenario is
simulated with different independent runs. For each of the simulations, the arrival
times of nodes, the placement of the seeder or seeders, the placement of the Tracker
(for BitTorrent) or FileLeader (for MCFTP), and the initialization of the random
number generator differs. Using different placements for the seeder(s) leads to
different transfer rates (upload and download) for these nodes. Also, the Tracker
and FileLeader are placed at different nodes for each simulation. For dMCFTP,
the particular node that normally acts as Tracker or FileLeader remains empty (not
participating in the swarm), in order to keep the results comparable.

Nodes join the swarm uniformly and randomly distributed over time using a
specified start period. For the IP Multicast scenarios, this period is between 2–
1500s for a file size of 50 MB and between 2–2000s for a file size of 100 MB. For

132

5.3. EVALUATION SCENARIOS FOR MCFTP

the Overlay Multicast scenarios, this period always starts at 2s and ends, depending
on the number of nodes, between 5000–7000s for a file size of 50 MB and between
10000–12000s for a file size of 100 MB. The same arrival times are used in the
different scenarios comparing MCFTP with BitTorrent. There is normally only
one node in the network that has the full file (called seeder). This is usually the
first joining node. The simulations end after a simulated runtime of 3500s for a file
size of 50 MB and after 5500s for a file size of 100 MB.

5.3.3 Prototype Implementation Evaluation Scenarios

Overview

To compare the performance of MCFTP with an existing and popular BitTorrent
client, we implemented a MCFTP prototype using JAVA. Using a local testbed at
University of Bern, we then compared MCFTP and the BitTorrent client Azureus
[12] regarding performance.

The evaluation scenarios consists of small network sizes ranging from 10 to
100 nodes. We performed the evaluations using the RVS research group’s cluster,
which consists of 25 nodes with different hardware configurations. The following
different configurations are available in the testbed:

• Pentium D 3.0 GHz or 3.2 GHz PCs with 1 GB, 2 GB or 3 GB RAM

• AMD Athlon Opteron 250 2.4 GHz Dual-CPU PCs with 4 GB RAM

• AMD Athlon 64 X2 Dual Core 4800+ 2.5 GHz PCs with 6 GB RAM

• AMD Athlon 64 X2 Dual Core 5200+ 2.6 GHz PCs with 2 or 6 GB RAM

• Core2Duo 3.33 GHz PCs with 16 GB RAM

• Core2Quad 2.86 GHz PCs with 8 GB RAM

All nodes run a remotely booted Fedora Core 8 Linux for 64 Bit. They do not have
anything locally installed, the integrated hard drives (80–500GB) are only used
as swap space and for temporary files. The nodes were interconnected using three
Gigabit Ethernet Switches. Each node hosted one or more instances of our MCFTP
prototype or Azureus BitTorrent client, depending on the nodes in the scenario.

Simulation Scenarios

All simulation scenarios except the one comparing the impact of seeders on down-
load duration factor used a flash crowd scenario with initially having only one
seeder. Nodes that want to download the the file arrive over time in the network.
This is often also referred to as flash crowd scenario In all simulation scenarios,
seeders (initial seeders and nodes that develop to seeders over time) remain active
in the swarm until the simulation has ended.

133

5.4. EVALUATION RESULTS FOR MCFTP

The evaluations in the local testbed were performed using IP Multicast as well
as using Overlay Multicast. To support Overlay Multicast, Freepastry was used to
integrate Scribe/Pastry ALM functionality into the MCFTP prototype. We used one
Scribe/Pastry instance for the FMG and another shared instance for all the Send-
ingGroups. Therefore, we were able to separate communication message exchange
and file dissemination traffic. Each scenario was run 10 times and we removed 5%
of the outliers.

We compare dissemination of files with a size of 8 MB and 50 MB. A simula-
tion in a scenario for files of 8 MB size usually was running for 30 to 45 minutes
depending on the number of nodes in the swarm. The simulation runs in scenarios
with 50 MB files took up to 1.5h depending on the number of nodes. This runtime
includes deployment, startup, and result collection.

Network Characteristics, Network Sizes, File Sizes and Join Behavior

We configured the applications (MCFTP and BitTorrent) to use asymmetric links.
The download bandwidth for nodes ranged between 60 KBps and 180 KBps and
the upload bandwidth corresponded to 1

3 of the download bandwidth assigned. The
bandwidth assignments were distributed uniformly among participating nodes.

The number of nodes in the different simulation scenarios was normally set to
10, 20, 30, 50 and 100 nodes. The simulation scenarios with a file size of 50 MB
were not evaluated with 100 nodes due to the long runtime of the individual simu-
lations. For the simulation scenario comparing the impact of seeders on download
duration factor we varied the number of initial seeders between 1, 2, 3 and 5 with
a total of 20 and 50 nodes in the swarm.

We distributed one file at a time and evaluated the scenarios with two different
file sizes. The first file was a Firefox tar-ball with a file size around 8 MB, the
second file was a disk image of the “Damn Small Linux” distribution with a file
size of approximately 50 megabytes. Nodes also join the network randomly over
a certain time period. We used the same arrival times for MCFTP and BitTorrent
scenarios. Normally, only one node in the network has the full file (called seeder),
which is usually the first joining node. Nodes remain in the swarm after they joined.

5.4 Evaluation Results for MCFTP

5.4.1 Overview

MCFTP was evaluated in two different environments. We used the network simu-
lator ns2 to compare MCFTP to BitTorrent in small to large scale networks up to
2041 nodes. The prototype implementation was compared to Azureus, a popular
BitTorrent client, in small scale networks with up to 100 nodes.

We present the results of the evaluation of MCFTP using the ns2 network sim-
ulator in Section 5.4.2. The results of the evaluation using the prototype imple-
mentation are presented in Section 5.4.3.

134

5.4. EVALUATION RESULTS FOR MCFTP

5.4.2 NS2 Network Simulator Evaluation Results

Overview

We evaluated various aspects of MCFTP and compared those with BitTorrent where
applicable. We first compare the download duration factor for MCFTP using IP
Multicast with BitTorrent. Then, we present the impact of seeders on the download
duration factor. We also compare upload and download bandwidth consumption
of the FileLeader with cMCFTP using IP Multicast. The comparison of the devel-
opment of seeders over time is also presented. Thereafter, we compare the bytes
transferred over time. Then, we present the comparison of the download duration
factor for MCFTP and BitTorrent in Overlay Multicast environments. For all above
mentioned comparisons, we used the same set of simulations / experiments, except
for comparison of the impact of seeders on the download duration factor which is a
separate dedicated simulation / experiment where we varied the number of seeders
available at the beginning of the simulation. Finally, we compare MCFTP with IP
Multicast and Overlay Multicast. For each network size, we usually built 20 differ-
ent topologies. In the evaluation results presented, we removed 5% of the outliers.
Details of the simulation scenarios setup, as well as what files (in terms of size) are
distributed how in the simulations were described in Section 5.3.2.

Download Duration Factor

The download duration factor measures the ratio between the maximum bandwidth
available at a node and the bandwidth that was effectively achieved during the
download of a file. The download duration factor df ≥ 1 is defined as df =
dleff
dlmax

, with dleff > 0 representing the effectively achieved download bandwidth,
dlmax > 0 representing the maximum available bandwidth (given by the Internet
connection of a node), and dleff < dlmax.

As an example, if the effective bandwidth achieved during a download is, e.g.,
1 Mbps and the node is connected to the Internet using a 2 Mbps connection, then
the resulting download duration factor is 2. This symbolizes that the download
was actually twice as long as it would have been for the best case, when the full
available bandwidth of the node would have been used. Hence, a larger download
duration factor results in a lower utilization of the available bandwidth. There-
fore, the best achievable download duration factor is 1, which corresponds to the
maximum exploitation of available bandwidth of a node.

Figures 5.4 and 5.5 compare the download duration factor (average, minimum
and maximum) for BitTorrent and MCFTP using IP Multicast.

In Fig. 5.4, the download duration factor for a file of 50 MB is presented.
MCFTP performs always better than BitTorrent in networks with 33 to 2041 nodes.
The difference between dMCFTP and cMCFTP is not significant.

For a file of 100 MB, the results are similar as shown in Fig. 5.5. MCFTP
performs again always better than BitTorrent. But the differences are smaller for
large network sizes as compared to downloading a file of 50 MB.

135

5.4. EVALUATION RESULTS FOR MCFTP

 0

 2

 4

 6

 8

 10

 12

3
3

6
9

9
9

1
3
8

1
6
5

2
0
2

2
3
5

2
7
1

3
0
4

5
1
1

7
3
2

1
0
2
6

2
0
4
1

d
o
w

n
lo

a
d
 f
a
c
to

r

number of nodes

BT

dMCFTP

cMCFTP

Figure 5.4: MCFTP and BitTorrent Download Duration Factor for a 50 MB File

 0

 2

 4

 6

 8

 10

 12

3
3

6
9

9
9

1
3
8

1
6
5

2
0
2

2
3
5

2
7
1

3
0
4

5
1
1

7
3
2

1
0
2
6

2
0
4
1

d
o
w

n
lo

a
d
 f
a
c
to

r

number of nodes

BT

dMCFTP

cMCFTP

Figure 5.5: MCFTP and BitTorrent Download Duration Factor for a 100 MB File

Impact of Seeders on Download Duration Factor

A seeder is a node that already has the complete file. Therefore, it can provide all
chunks of the file to potential downloaders. We now compare the impact of the

136

5.4. EVALUATION RESULTS FOR MCFTP

 0

 1

 2

 3

 4

 5

 6

 1 2 4 6 8 10 20 35 50

d
o
w

n
lo

a
d
 f
a
c
to

r

number of seeders

BT

dMCFTP

cMCFTP

Figure 5.6: Impact of Seeders on Download Duration Factor for MCFTP and BitTorrent
in 69 Node Scenarios

 0

 1

 2

 3

 4

 5

 6

 1 10 25 50 100 150 200

d
o
w

n
lo

a
d
 f
a
c
to

r

number of seeders

BT

dMCFTP

cMCFTP

Figure 5.7: Impact of Seeders on Download Duration Factor for MCFTP and BitTorrent
in 304 Node Scenarios

number of seeders (available from the beginning of the simulation) on the down-
load duration factor for dMCFTP and cMCFTP using IP Multicast. We calculated

137

5.4. EVALUATION RESULTS FOR MCFTP

the average over the download duration factor for file sizes of 50 MB and 100 MB.
Figure 5.6 shows the impact of the number of seeders in a scenario with 69

nodes. MCFTP performs better than BitTorrent for scenarios with up to 20 seed-
ers. The download duration factor is lower using MCFTP than using BitTorrent.
Therefore, nodes can download the files faster using MCFTP than using BitTorrent
when up to 20 seeders are available from the beginning of the simulation run. But,
there is no big difference between dMCFTP and cMCFTP.

Figure 5.7 shows the impact of the number of seeders in a scenario with 304
nodes. MCFTP performs better for scenarios with up to 140 seeders.

Generally, MCFTP performs better for low numbers of seeders. It reaches its
optimum already quite early when only having very few seeders. BitTorrent on the
other hand performs better with a high number of seeders, which is though not the
normal case. It also converges much slower to its optimum. MCFTP’s strategy tries
to first create as many additional seeders as possible, which has a positive impact
on the overall performance in scenarios with a low number of seeders available
at the beginning of a simulation scenario. Only afterwards it resumes normal file
distribution operation whiteout heavily prioritizing seeder creation. With more
seeders available, BitTorrent has the advantage that it can more individually serve
nodes that require missing chunks. Hence, when at least 30–40% of the nodes
are seeders from the beginning of a simulation scenario, then BitTorrent performs
better than MCFTP.

Upload and Download Rate in cMCFTP

Now, we compare upload and download bandwidth consumption of the FileLeader
with cMCFTP using IP Multicast. We compare the mean and maximum values.
This shows whether the FileLeader with its limited Internet connectivity can be-
come a possible bottleneck for the whole system. It also shows how well cMCFTP
scales.

The download bandwidth consumption at the FileLeader is determined by the
accumulated sum of the status update messages. The upload bandwidth consump-
tion at the FileLeader is caused by keep-alive messages sent by the FileLeader. The
size and sending time interval of these messages varies and depends on the number
of nodes in the swarm, the progress of overall download in the swarm, the individ-
ual download speed of chunks by nodes, and therefore also the rate at which nodes
have to report updates. We chose to give a dedicated role to the FileLeader in the
presented simulation scenarios. This means that a FileLeader only receives sta-
tus update messages and sends keep-alive messages. In the simulation scenarios,
the FileLeader is not involved in the actual multicast data distribution. This could
though be handled differently in real scenarios. Figure 5.8 shows the upload and
download bandwidth consumption (in bytes per second) in a scenario where a 50
MB file is disseminated. The upload bandwidth consumption grows only slowly
for scenarios with more nodes and is becoming constant after a certain number of
nodes. This is due to the fact that we limit the rate of keep-alive messages. There-

138

5.4. EVALUATION RESULTS FOR MCFTP

 0

 5000

 10000

 15000

 20000

 25000

 3
3

 9
9

 2
0
2

 3
0
4

 5
1
1

 1
0
2
6

 2
0
4
1

ra
te

 (
B

p
s
)

number of nodes

mean upload
mean download

max upload
max download

Figure 5.8: cMCFTP Upload and Download Rates of the FileLeader for a 50 MB File

fore, MCFTP messages consume only a small fraction of the incoming bandwidth
of participating nodes. The download of the FileLeader on the other hand increases
with the number of nodes in the scenarios. The more nodes are in the system, the
more status update messages consume incoming bandwidth on the FileLeader. The
rate of 120 Kbps (15000 bytes per second) total incoming traffic for scenarios of
2041 nodes is though still easily manageable by the FileLeader.

For a scenario where a 100 MB file is disseminated as shown in Fig. 5.9, the
values for the download are higher. This is due to the fact, that a file size of 100
MB results in a higher number of chunks for the file. This also means that status
update messages are then longer. This is because information of more chunks has
to be reported to the FileLeader by participating nodes. The upload remains the
same due to the keep-alive message limitation as mentioned before.

Seeder Development over Time

We now compare the development of seeders over time for MCFTP using IP Mul-
ticast and BitTorrent. If a node has successfully downloaded the whole file, it be-
comes a seeder. Therefore, when all nodes are seeders, the whole swarm of nodes
has downloaded the file.

Figure 5.10 shows the seeder development in a scenario with 165 nodes down-
loading a file of 100 MB. After the simulation has run for 2000 seconds, all nodes
have joined the downloading swarm. Using MCFTP, downloads finish earlier.
There is no difference between dMCFTP and cMCFTP, the lines for dMCFTP and
cMCFTP in the graph cover each other.

139

5.4. EVALUATION RESULTS FOR MCFTP

 0

 5000

 10000

 15000

 20000

 25000

 3
3

 9
9

 2
0
2

 3
0
4

 5
1
1

 1
0
2
6

 2
0
4
1

ra
te

 (
B

p
s
)

number of nodes

mean upload
mean download

max upload
max download

Figure 5.9: cMCFTP Upload and Download Rates of the FileLeader for a 100 MB File

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 1000 2000 3000 4000 5000

n
u
m

b
e
r

o
f
p
e
e
rs

simulation time (s)

#Peers started
#Seeds of BT

#Seeds of dMCFTP
#Seeds of cMCFTP

Figure 5.10: Number of Seeders over Time for MCFTP and BitTorrent with a 100 MB
File and 165 Nodes

Figure 5.11 shows the seeder development in a scenario with 511 nodes down-
loading a file of 50 MB. In this scenario, all nodes have joined the swarm after
1500 seconds. Again, MCFTP performs better than BitTorrent. There is only a

140

5.4. EVALUATION RESULTS FOR MCFTP

 0

 100

 200

 300

 400

 500

 600

 0 500 1000 1500 2000 2500 3000 3500

n
u
m

b
e
r

o
f
p
e
e
rs

simulation time (s)

#Peers started
#Seeds of BT

#Seeds of dMCFTP
#Seeds of cMCFTP

Figure 5.11: Number of Seeders over Time for MCFTP and BitTorrent with a 50 MB File
and 511 Nodes

slight difference between cMCFTP and dMCFTP. MCFTP is prioritizing to cre-
ate additional seeders in the swarm as quickly as possible. Hence, the faster ad-
ditional seeders are available, the more options are offered to other nodes from
where they can download their missing chunks. This means that new seeders de-
velop faster and earlier when using MCFTP instead of BitTorrent. This is due to
the fact that BitTorrent does not try to create new seeders as early and as aggres-
sively as MCFTP does. It rather tries to equally download rare pieces first and
independently of the download bandwidth available at the providing node, which
is potentially the only seeder or even the only node having any chunks at all avail-
able in the swarm. Therefore, seeders develop generally slower over time when
using BitTorrent than when using MCFTP.

Bytes Transferred over Time

We now compare the bytes transferred over time (including file transmission data
and protocol data) for BitTorrent and MCFTP using IP Multicast. The total upload
and total download values represent the maximum possible upload and download
rates. This is the sum of all rates of the participating nodes.

In Fig. 5.12, the rates for a 100 MB file in a scenario with 165 nodes are shown.
The behavior of the rates is similar to Fig. 5.13, which shows a scenario for a 50
MB file with 511 nodes.

The download that can be achieved using dMCFTP actually exceeds the overall
maximum possible upload of all nodes. This means that the accumulated upload

141

5.4. EVALUATION RESULTS FOR MCFTP

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 3e+08

 3.5e+08

 0 1000 2000 3000 4000 5000

b
y
te

s
 t
ra

n
s
fe

rr
e
d

simulation time (s)

Total upload
Total download

Upload of BT
Download of BT

Upload of dMCFTP
Download of dMCFTP

Upload of cMCFTP
Download of cMCFTP

Figure 5.12: Bytes Transferred over Time for MCFTP and BitTorrent with a 100 MB File
and 165 Nodes

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

 0 500 1000 1500 2000 2500 3000 3500

b
y
te

s
 t
ra

n
s
fe

rr
e
d

simulation time (s)

Total upload
Total download

Upload of BT
Download of BT

Upload of dMCFTP
Download of dMCFTP

Upload of cMCFTP
Download of cMCFTP

Figure 5.13: Bytes Transferred over Time for MCFTP and BitTorrent with a 50 MB File
and 511 Nodes

bandwidth capabilities of all nodes is lower than the accumulated total download
bandwidth effectively achieved by all nodes.

142

5.4. EVALUATION RESULTS FOR MCFTP

This is due to the fact that MCFTP uses IP Multicast. But for cMCFTP, the
download does not exceed the maximum possible upload rate. Because cMCFTP
has a FileLeader that has an overview of all nodes’ requirements, downloads are
distributed more evenly.

The FileLeader tries to assign SendingGroups such that many nodes with dif-
ferent download bandwidth capacities that have certain chunks missing can be
served at the same time. Therefore, the FileLeader assigns different Sending-
Groups with varying sending rates for the missing chunks in parallel. This results
in a more homogeneous distribution of the downloads. Therefore, on average there
might be less subscribers per multicast group as compared to dMCFTP. Hence,
cMCFTP can benefit less from IP Multicast distribution than dMCFTP. Upload
rates on the other hand behave almost the same for both MCFTP modes.

Upload and download using BitTorrent are the same, since nodes serve each
other. Every upload rate on a node results in the same download rate on another
node. Therefore, the lines for upload and download for BitTorrent in the graph
cover each other.

Download Duration Factor in Overlay Network

 0

 2

 4

 6

 8

 10

 12

37 62 101 130 164 202 236 262 310 525

d
o
w

n
lo

a
d
 f
a
c
to

r

number of nodes

BT 0.5 bandwidth scale

dMCFTP 0.5 bandwidth scale

cMCFTP 0.5 bandwidht scale

BT 0.75 bandwidth scale

dMCFTP 0.75 bandwidth scale

cMCFTP 0.75 bandwidth scale

Figure 5.14: MCFTP and BitTorrent Download Duration Factor in Overlay Environment
for a 50 MB File

We now compare the download duration factor (average, minimum and maxi-
mum) for BitTorrent and MCFTP using Overlay Multicast. As explained in Section
5.3.2, we looked at overlays that support QoS and possibly overloaded overlay net-
works. As mentioned, a bandwidth scale of 0.5 means that a parent reserves half

143

5.4. EVALUATION RESULTS FOR MCFTP

 0

 2

 4

 6

 8

 10

 12

37 62 101 130 164 202 236 262 310 525

d
o
w

n
lo

a
d
 f
a
c
to

r

number of nodes

BT 0.5 bandwidth scale

dMCFTP 0.5 bandwidth scale

cMCFTP 0.5 bandwidth scale

BT 0.75 bandwidth scale

dMCFTP 0.75 bandwidth scale

cMCFTP 0.75 bandwidth scale

Figure 5.15: MCFTP and BitTorrent Download Duration Factor in Overlay Environment
for a 100 MB File

of its own bandwidth for its children to support QoS. However, with a bandwidth
scale of 0.75, a parent uses up to three quarters of its possible bandwidth for itself.
Therefore, the parent’s bandwidth can be exceeded by 50% and QoS can not be
supported.

In Fig. 5.14, the download duration factor for a file of 50 MB is presented.
MCFTP performs always better than BitTorrent in networks with sizes from 37 to
525 nodes. With more nodes, MCFTP performs significantly better than BitTor-
rent. The difference between dMCFTP and cMCFTP is marginal.

For a 100 MB file, the results are similar as shown in Fig. 5.15.

MCFTP with IP Multicast & Overlay Multicast

We can compare the download duration factor results for IP Multicast and Overlay
Multicast by looking at Figures 5.4, 5.5 and 5.14, 5.15. The simulations for IP
Multicast and Overlay Multicast were performed using different network topolo-
gies, since they have been constructed differently as described in Section 5.3.2.

Comparing the MCFTP results, we can see that MCFTP generally performs
slightly worse using Overlay Multicast than IP Multicast. This is due to replication
of multicast data at end systems rather than using routers in the core network. Also
the shared bandwidth for forwarding traffic among peers for the Overlay Multicast
scenario with a bandwidth scale factor of 0.75 increases the download duration
factor for MCFTP.

144

5.4. EVALUATION RESULTS FOR MCFTP

Using the network topology for Overlay Multicast scenarios, for small net-
works (less than 164 nodes) BitTorrent is faster than using the IP Multicast scenar-
ios topology. But for networks with 164 and more nodes, the download duration
factors for BitTorrent are again quite similar between the two different topologies.

5.4.3 Prototype Implementation Evaluation Results

Overview

We evaluated different aspects comparing MCFTP with BitTorrent where applica-
ble. First, we compare the download and upload factor for MCFTP and BitTorrent.
We look at the overall download duration factor and also the download and upload
factor over time. Then, we present the impact of seeders on the download duration
factor. Finally, the seeder development over time is presented.

The different scenarios were run with file sizes of 8 MB and 50 MB. We look at
all network sizes evaluated when analyzing the overall download duration factor.
Evaluation of the remaining aspects is done by comparing the scenarios with either
20 or 50 nodes. In the evaluation results presented, we removed 5% of the outliers.
Details of the simulation scenarios setup, as well as what files (also in terms of file
size) are distributed how in the simulations were described in Section 5.3.3.

Download Duration Factor

 0

 2

 4

 6

 8

 10

 12

10 20 30 50 100

d
o

w
n

lo
a

d
 f

a
c
to

r

number of nodes

BT

dMCFTP-IPM

cMCFTP-IPM

dMCFTP-ALM

cMCFTP-ALM

Figure 5.16: Download Duration Factor for BitTorrent, dMCFTP, cMCFTP for a 8 MB
File

In Fig. 5.16, we compare the download duration factor (average, minimum and

145

5.4. EVALUATION RESULTS FOR MCFTP

maximum) for BitTorrent with dMCFTP and cMCFTP both using IP Multicast as
well as ALM for a file size of 8 MB.

In Fig. 5.17, we compare the download duration factor for BitTorrent and dM-
CFTP using IP Multicast and ALM for a file size of 50 MB. We can see that

 0

 2

 4

 6

 8

 10

 12

10 20 30 50

d
o

w
n

lo
a

d
 f

a
c
to

r

number of nodes

BT

dMCFTP-IPM

dMCFTP-ALM

Figure 5.17: Download Duration Factor for BitTorrent, dMCFTP, cMCFTP for a 50 MB
File

MCFTP using IP Multicast and ALM performs better than BitTorrent for small
network sizes up to 30 nodes. For larger number of nodes with a file size of 8
MB, dMCFTP using ALM performs worse. This is due to the fact of the shared
overlay network for data dissemination. Freepastry uses the object serialization
and de-serialization mechanism provided by JAVA to process each multicast mes-
sage/packet individually which limits the achievable overall bandwidth at a node.
Also having multiple topics (groups) active in a Scribe/Pastry instance puts some
limits to the scalability of the overall system.

Impact of Seeders on Download Duration Factor

We compare the impact of the number of seeders (available from the beginning
of the evaluation run) on the download duration factor for BitTorrent, dMCFTP
using IP Multicast, and dMCFTP using ALM. We used a file size of 8 MB for this
evaluation.

Figure 5.18 shows the impact of the number of seeders in a scenario with 20
nodes. dMCFTP performs better than BitTorrent for scenarios with up to 2 seeders.
The download duration factor is lower using dMCFTP with IP Multicast or ALM
than when using BitTorrent. Hence, nodes download files faster using dMCFTP

146

5.4. EVALUATION RESULTS FOR MCFTP

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 3 5

d
o

w
n

lo
a

d
 f

a
c
to

r

number of seeders

BT

dMCFTP-ALM

dMCFTP-IPM

Figure 5.18: Impact of Seeders on Download Duration Factor for 20 Nodes

than using BitTorrent when there are up to 2 seeders available from the beginning
of the evaluation runs. With 3 seeders, dMCFTP performs similar to BitTorrent.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 3 5

d
o

w
n

lo
a

d
 f

a
c
to

r

number of seeders

BT

dMCFTP-ALM

dMCFTP-IPM

Figure 5.19: Impact of Seeders on Download Duration Factor for 50 Nodes

Figure 5.19 shows the impact of the number of seeders in a scenario with 50
nodes. Here, dMCFTP using IP Multicast performs better for 1 seeder and similar

147

5.4. EVALUATION RESULTS FOR MCFTP

for 2 seeders when comparing it with BitTorrent. dMCFTP using ALM already
performs worse for 1 seeder. This is again due to the fact that Freepastry does
not scale well for large number of nodes and concurrently active topics in one
Scribe/Pastry instance. For 3 and more seeders, BitTorrent performs always better
than dMCFTP.

Upload and Download Bandwidth Usage over Time

The upload and download bandwidth usage over time presents how many percent
of their available upload and download bandwidth nodes on average actually use.
This means that at a given point in time, a node is for example downloading some
chunks with a total download rate corresponding to only half of its totally avail-
able bandwidth, therefore resulting in a download bandwidth usage of 50% at that
particular moment. This is an indicator for the efficiency of the different protocols,
especially when compared in relation to the overall download duration factors. If
two protocols have similar download duration factors, but one of those protocols
uses on average less upload and download bandwidth over time, then this protocol
would be more efficient in terms of bandwidth usage and therefore perform better.

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600

a
v
e

ra
g

e
 d

o
w

n
lo

a
d

 b
a

n
d

w
id

th
 u

s
a

g
e

 (
%

)

evaluation runtime (s)

Download Factor - BT
Download Factor - dMCFTP-ALM
Download Factor - dMCFTP-IPM
Download Factor - cMCFTP-ALM
Download Factor - cMCFTP-IPM

Figure 5.20: Average Download Bandwidth Usage over Time (BitTorrent, dMCFTP, cM-
CFTP), 8 MB file, 20 Nodes

In Figures 5.20 and 5.21 we compare the average download and upload band-
width usage over time for BitTorrent, dMCFTP, and cMCFTP with a 8 MB file and
20 Nodes. In Figures 5.22 and 5.23 we compare the average download and upload
bandwidth usage over time for BitTorrent, dMCFTP, and cMCFTP with a 8 MB
file and 50 Nodes.

148

5.4. EVALUATION RESULTS FOR MCFTP

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600

a
v
e

ra
g

e
 u

p
lo

a
d

 b
a

n
d

w
id

th
 u

s
a

g
e

 (
%

)

evaluation runtime (s)

Upload Factor - BT
Upload Factor - dMCFTP-ALM
Upload Factor - dMCFTP-IPM
Upload Factor - cMCFTP-ALM
Upload Factor - cMCFTP-IPM

Figure 5.21: Average Upload Bandwidth Usage over Time (BitTorrent, dMCFTP, cM-
CFTP), 8 MB file, 20 Nodes

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200

a
v
e

ra
g

e
 d

o
w

n
lo

a
d

 b
a

n
d

w
id

th
 u

s
a

g
e

 (
%

)

evaluation runtime (s)

Download Factor - BT
Download Factor - dMCFTP-ALM
Download Factor - dMCFTP-IPM
Download Factor - cMCFTP-ALM
Download Factor - cMCFTP-IPM

Figure 5.22: Average Download Bandwidth Usage over Time (BitTorrent, dMCFTP, cM-
CFTP), 8 MB file, 50 Nodes

The small fluctuations in the graphs result from the fact that we built an average
of the values over short intervals (rather than plotting a value every second) and
also due to the fact that the bandwidth usage can rapidly change depending on

149

5.4. EVALUATION RESULTS FOR MCFTP

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200

a
v
e

ra
g

e
 u

p
lo

a
d

 b
a

n
d

w
id

th
 u

s
a

g
e

 (
%

)

evaluation runtime (s)

Upload Factor - BT
Upload Factor - dMCFTP-ALM
Upload Factor - dMCFTP-IPM
Upload Factor - cMCFTP-ALM
Upload Factor - cMCFTP-IPM

Figure 5.23: Average Upload Bandwidth Usage over Time (BitTorrent, dMCFTP, cM-
CFTP), 8 MB file, 50 Nodes

chunk availability, SendingGroup timeouts and waiting periods before and after
downloading / uploading.

As we can see in Fig. 5.20, BitTorrent generally uses 3–4 times as much
download bandwidth of nodes on average than dMCFTP using IP Multicast and
ALM. cMCFTP uses roughly half of the download bandwidth at nodes. There-
fore, MCFTP is more efficient than BitTorrent regarding resource usage in terms
of download bandwidth.

The results for the average download and upload bandwidth usage for 50 nodes
as presented in Figures 5.22 and 5.23 are similar to the results when having 20
nodes.

Seeder Development over Time

Finally, we compare the development of seeders over time for different versions
of MCFTP with BitTorrent. A node becomes a seeder if it has successfully down-
loaded the whole file. When all nodes have become seeders, the whole swarm of
nodes has finished downloading the file.

Figure 5.24 shows the seeder development in a scenario with 20 nodes down-
loading a file of 8 MB. After the simulation has run for roughly 300 seconds, all
nodes have joined the downloading swarm. The nodes using dMCFTP or cMCFTP
with IP Multicast finish earlier than nodes using BitTorrent. After 12 seeders have
been established, dMCFTP allows nodes to finish much faster downloading the file
compared to using BitTorrent. Please note that in the cMCFTP scenario, the join

150

5.4. EVALUATION RESULTS FOR MCFTP

 0

 5

 10

 15

 20

 0 200 400 600 800 1000 1200 1400

n
u

m
b

e
r

o
f

p
e

e
rs

evaluation runtime (s)

#Peers started - BT
Seeds of BT

#Peers started - dMCFTP-IPM
Seeds of dMCFTP-IPM

#Peers started - cMCFTP-IPM
Seeds of cMCFTP-IPM

Figure 5.24: Number of Seeders Development over Time (BitTorrent, dMCFTP & cM-
CFTP with IP Multicast) for 20 Nodes with an 8 MB File

times of nodes are slightly delayed compared to BitTorrent and dMCFTP scenarios.
But, cMCFTP still performs better than BitTorrent.

 0

 5

 10

 15

 20

 0 500 1000 1500 2000 2500 3000 3500

n
u

m
b

e
r

o
f

p
e

e
rs

evaluation runtime (s)

#Peers started - BT
Seeds of BT

#Peers started - dMCFTP-ALM
Seeds of dMCFTP-ALM

#Peers started - dMCFTP-IPM
Seeds of dMCFTP-IPM

Figure 5.25: Number of Seeders Development over Time (BitTorrent, dMCFTP with ALM
and IP Multicast) for 20 Nodes with a 50 MB File

151

5.5. CONCLUSION

Figure 5.25 presents the seeder development in a scenario with 20 nodes down-
loading a file of 50 MB. Here, we look at BitTorrent and dMCFTP using IP Mul-
ticast as well as ALM. Note that in the BitTorrent scenario, nodes finished joining
earlier as for the dMCFTP scenarios. dMCFTP using IP Multicast performs better
than BitTorrent during the whole evaluation runtime. When comparing dMCFTP
using ALM with BitTorrent, we can see that the last node finishes downloading
the file earlier than using BitTorrent. Taking though the delayed joined time of
dMCFTP using ALM into account, nodes actually finish their downloads earlier
compared to using BitTorrent.

Summary

When comparing our prototype implementation of MCFTP with Azureus, one has
to keep in mind that Azureus is a highly optimized version of the BitTorrent pro-
tocol that has been under development over many years. Our prototype is though
a first proof of concept implementation of the MCFTP protocol for the Internet.
Nevertheless, MCFTP already performs better compared to BitTorrent when using
IP Multicast. When using MCFTP with ALM, it performs still better for a small
number of nodes. For scenarios with more number of nodes, Freepastry is the lim-
iting factor for the performance of MCFTP. But, comparing the average download
and upload bandwidth usage, MCFTP is clearly more efficient in terms of usage of
a node’s resources.

5.5 Conclusion

In this Chapter, we presented MCFTP – a Multicast File Transfer Protocol. There
are two modes of MCFTP, the distributed mode called dMCFTP and the centralized
mode called cMCFTP. MCFTP can use either IP Multicast or Overlay Multicast.

We compared MCFTP with BitTorrent using the ns2 simulator. Evaluation sce-
narios for small to large scale networks have been performed using this simulation
environment.

Our evaluations using ns2 show that MCFTP using IP Multicast performs better
than BitTorrent. In terms of download duration factor, MCFTP performs between
30%-100% better than BitTorrent. Also, using only a few seeders allows MCFTP
to perform better than BitTorrent. The differences between cMCFTP and dMCFTP
are marginal. dMCFTP scales well for large networks in terms or participating
nodes due to its distributed nature. Using cMCFTP with a FileLeader coordinating
downloads also scales quite well. In scenario with 2041 nodes, the maximum
incoming bandwidth at the FileLeader is between 120–160 Kbps depending on the
file size. In the Overlay Multicast scenarios, our evaluations show that MCFTP
also performs better than BitTorrent. We analyzed two environments. The first was
with QoS support, where parents can always support the bandwidth requirements
of all their children. The second did not enforce QoS.

152

5.5. CONCLUSION

A prototype implementation of MCFTP was compared with Azureus, a pop-
ular and very efficient implementation of the BitTorrent protocol. Our prototype
implementation supports IP Multicast as well as Overlay Multicast. To support
Overlay Multicast, we used Freepastry, which is a freely available implementation
of Scribe/Pastry. Unfortunately, the use of Freepastry seems to limit the scalability
of the MCFTP protocol when using Overlay Multicast. We performed evaluations
with small scale networks for the comparison of MCFTP with BitTorrent.

The evaluations with the prototype implementation also confirm that MCFTP
generally performs better than BitTorrent. Especially, MCFTP uses node’s re-
sources more efficiently in terms of average upload and download bandwidth us-
age. Since Azureus is a mature and highly optimized BitTorrent implementation,
we are very happy with the results of our proof of concept prototype for MCFTP,
which can be still further optimized. Also, another ALM than Scribe/Pastry could
be integrated to extend the performance of MCFTP using ALM.

BitTorrent works very well for large scale file distribution scenarios with high
churn and failure rates. dMCFTP is also already quite resilient to high churns
and node failures due to its completely decentralized and distributed nature. But,
also cMCFTP could be enhanced to further improve performance and reliability in
such scenarios. The basic implementations of MCFTP used for the evaluations are
though not including any mechanisms to support an enhanced behavior/treatment
in case of aborted downloads due to nodes leaving or node failures. Some potential
extensions to further enhance reliability and to improve support for highly hetero-
geneous swarms in terms of bandwidth capabilities will be presented in Chapter 6.

Using MCFTP, end users can benefit from an efficient data dissemination mech-
anism using multicast transmission. Combining this solution with the Multicast
Middleware presented in Chapter 4 would enable end users to use MCFTP Internet
wide. Finally, adding OM-QoS presented Chapter 3 to the mix would allow end
users to benefit from QoS to enhance transmission performance and reliability. We
learned that there is still a lot of potential to optimize the MCFTP protocol. Also,
changing the ALM used for the prototype will have a big impact on the scalability
regarding number of nodes downloading the same file. This should make it even
perform better when comparing it to BitTorrent.

153

Chapter 6

Conclusion and Outlook

6.1 Conclusion

In this thesis, we presented a solution to the question:

“How can end users benefit from Internet-wide and QoS supporting
multicast services to efficiently disseminate data?”

To reach this goal, we proposed three different mechanisms:

• OM-QoS: a Quality of Service for Overlay Multicast framework;

• Multicast Middleware;

• MCFTP: a Multicast Transfer File Protocol.

In detail, we proposed a solution for end users to use Internet-wide IP Multicast
services, combined this with a QoS framework, and created an efficient protocol for
file distribution, which can benefit from this QoS enabled Internet-wide multicast
service.

Therefore, we first introduced in Chapter 3 the OM-QoS framework, which en-
ables QoS for different Peer-to-Peer (P2P) and Application Layer Multicast (ALM)
protocols. It facilitates building multicast trees such that they hold certain QoS sup-
porting properties for all multicast paths in an ALM, from the root to leaf nodes.
By using the construct of QoS classes, we can map multiple QoS parameters to one
discrete value. We described a protocol dependent approach, which modifies P2P
protocols, and a protocol independent approach, which is a general solution based
on dedicated P2P instances per QoS class.

We applied and evaluated the protocol dependent approach to Scribe, NICE
and Chord and the protocol independent approach to CAN. Our evaluations showed
that we can ensure QoS for all end-to-end paths in the multicast trees, assuming
underlying hard QoS mechanisms, which is difficult to realize with IP Multicast.
Furthermore, we can guarantee certain node to root RTT constraints of nodes. The
introduced overhead of using OM-QoS in terms of delay, hop-count, fan-out or

155

6.1. CONCLUSION

node to root RTT is generally at an acceptable level. We learned that it is quite
easy to enable QoS for the various P2P/ALM protocols using the protocol depen-
dent and/or independent approach of OM-QoS and the concept of QoS classes.
The node to root RTT constraints can though only be met with certain protocols.
One precondition for these guarantees is that the receivers need to determine their
parents (receiver driven approach) rather than having a forwarder driven multicast
implementation.

Furthermore, we presented in Chapter 4 the Multicast Middleware, which al-
lows end users to benefit from a IP Multicast communication service through the
Internet, although IP Multicast is not widely deployed. It offers the IP Multicast
API to applications and end systems, but uses Overlay Multicast to transport the
data with unicast connections. Existing IP Multicast applications do not have to
be modified and special infrastructure support does not need to be deployed to
the Internet. Our approach also eases QoS support, because IP Multicast traffic is
mapped to unicast connections, which can be more easily managed regarding QoS.

We tested and evaluated the Multicast Middleware using multiple scenarios and
testing approaches. The evaluations showed that tunneling IP Multicast through an
overlay network using ALM is a valid solution in order to provide an Internet-wide
IP Multicast service. Capturing and tunneling IP Multicast packets through an
ALM introduces only a slight overhead in terms of delay and loss. We are able to
support high bandwidth and real-time delay sensitive scenarios such as, multimedia
data for video broadcasting, IPTV, VoIP and massively online multiplayer games.
We used Scribe/Pastry for setting up the ALM, but this could be easily replaced by
another ALM solution.

Finally, we presented in Chapter 5 MCFTP, a Multicast File Transfer Protocol.
It allows end users to benefit from multicast distribution mechanisms to exchange
and disseminate data efficiently. It uses similar mechanisms as BitTorrent but per-
forms better than BitTorrent as shown by our evaluations using both simulations
and a prototype implementation.

MCFTP (Multicast File Transfer Protocol) can operate in two modes, the dis-
tributed mode called dMCFTP and the centralized mode called cMCFTP. To trans-
port the data, MCFTP can use either IP Multicast or Overlay Multicast. We com-
pared MCFTP with BitTorrent using the ns2 simulator as well as using a prototype
implementation in real testbeds. The evaluations using ns2 and our prototype im-
plementation show that MCFTP generally performs better than BitTorrent. The
evaluations in the network simulator ns2 show that dMCFTP scales well for large
network sizes. Using our prototype implementation, we demonstrated that MCFTP
is also more efficient regarding resource utilization of nodes in terms of average up-
load and download bandwidth usage. End users can download their requested files
faster while using less upload and download bandwidth on their end systems.

By combining these three mechanisms, end users can finally profit from ef-
ficient data transmission and dissemination using QoS enabled multicast services
Internet-wide.

156

6.2. OUTLOOK

6.2 Outlook

The OM-QoS framework has been applied to different protocols using both ap-
proaches, the protocol dependent as well as the protocol independent approach.
Since it is quite easy to integrate other P2P/ALM protocols into the OM-QoS
framework, suitable protocols such as Bayeux/Tapestry, VRing or Borg could be
implemented in OMNet++ with our framework. These protocols could then be an-
alyzed as well and compared with the existing implemented protocols. This would
then help to identify the best possible match of P2P/ALM QoS combination for
certain application scenarios, such as multimedia-streaming, networked virtual en-
vironments, VoIP, etc. As a further step, the presented OM-QoS mechanisms for
Scribe, NICE, Chord and CAN could be implemented in prototype implementa-
tions to be actually used in the Internet. These could then be evaluated using real
network environments, either in local networks or testbeds in distributed systems
such as PlanetLab.

We also started to investigate how reputation based systems could help to im-
prove QoS and QoE for end users participating in P2P/ALM networks. These
reputation reports are distributed using gossiping mechanisms [66]. Therefore,
we propose REPOM (Reputation Based Overlay Multicast) [47], which identifies
non-cooperative or selfish nodes in a distributed manner. Nodes can then decide
by themselves according to the gossiped reports they received if they have to find
another, more suitable and better performing parent node for the multicast data
subscription.

Multicast could also be efficiently used for data dissemination in Wireless Sen-
sor Networks (WSNs), but should support QoS in terms of reliability for critical
tasks such as code updates. We proposed a solution for designing a reliable mul-
ticast solution based on IP Multicast and Overlay Multicast in [175]. This pro-
posed solution could be further enhanced with OM-QoS mechanisms to enable
QoS-aware multicast tree construction in WSNs.

Further enhancements of OM-QoS could include adaptive re-encoding of mul-
timedia data on nodes acting as mediators between different QoS classes. Hence,
if a node having a higher QoS class has to transmit, e.g., a video stream using a
certain average bandwidth to a node with a lower QoS class (not supporting the
average bandwidth of the currently used stream format), then the node with the
higher QoS class could re-encode the stream before forwarding it. Also, trans-
coding / scalable coding [85] could be combined with OM-QoS and its QoS class
construct. The video stream could be split into multiple trans-coded layers, which
would be only forwarded fully or partially depending on the QoS class of a node.
If a node has to forward the multicast data to a node having the same QoS class,
then all trans-coded layers received could also be forwarded. But if the child node,
which has to be served with forwarded data only has a lower QoS class, some of
those layers could be omitted from being forwarded to that node.

Finally, more and more P2P/ALM concepts and applications are emerging that
are strongly aware about their underlying network infrastructure. They could also

157

6.2. OUTLOOK

profit heavily from OM-QoS mechanisms to enable building QoS-aware multi-
cast trees that are actually supported by the underlying network infrastructure in
terms of QoS. Many existing third generation P2P networks and projects, such as
3GP2P [176], which are facing the problems of high member churn or member
selfishness could also benefit from or cooperate with OM-QoS mechanisms by in-
corporating / combining these aspects with the presented QoS class construct.

The Multicast Middleware has been thoroughly tested in local test beds regard-
ing performance. Other tests not focusing on performance regarding throughput but
rather concerning delays could also be performed in distributed network testbeds,
such as PlanetLab. This would give us additional insights regarding overhead in
networks with large delays and also with limited resources regarding bandwidth
and computing power due to the shared nature of PlanetLab nodes and environ-
ments. Also, other P2P/ALM protocols besides Scribe/Pastry could be integrated
and evaluated with the Multicast Middleware. The interface to the ALM imple-
mentation used in the Multicast Middleware was developed in a general and ALM
independent way. Since we use an optimized serialization mechanism and our own
protocol to transmit the data, using another ALM would mainly impact the distri-
bution tree and overlay topology. Therefore, depending on the application scenario,
the appropriate P2P/ALM scheme delivering the best performance could be used.

MCFTP has been evaluated using simulations and with a first prototype im-
plementation in real network testbeds. Regarding the prototype implementation
comparison with Azureus, we learned that we still can improve the performance
of MCFTP. Therefore, we should investigate further strategies for either the chunk
selection performed by the FileLeader or by nodes for the distributed MCFTP ap-
proach. These strategies could also be adaptive, e.g., using different optimiza-
tions for small and large networks. Taking into account the number of seeders
or the lifetime of a swarm / nodes could help to improve the overall and also ac-
tual performance. Also, trying to support asymmetric bandwidth capabilities of
nodes (in terms of maximum possible upload and download rate) more uniformly
as presented in [149] could be beneficial to improve overall or node specific per-
formance. MCFTP can also be further optimized to work reliably in large-scale
scenarios with heterogeneous hosts and high churn / failure rates. Such extensions
include multiple levels of FileManagementGroups, where hosts are grouped ac-
cording their bandwidth capabilities. This would further improve scalability and
also consolidate heterogeneous bandwidth capabilities leading to more potential
providers of chunks matching the bandwidth capabilities of a downloading node.
Furthermore, supporting on-the fly switching to other chunk providers (i.e., other
SendingGroups for the same chunk that are active at the same time) while down-
loading a chunk would further increase reliability regarding high churn and failure
rates. The prototype implementation could be enhanced by supporting fall back
and recovery mechanisms when a FileLeader in cMCFTP would suddenly disap-
pear. This would include providing backup FileLeaders as well as negotiation and
handover mechanisms to determine new FileLeaders in case of failures as proposed
in [128]. Other extensions could include self-controlling and self-healing mecha-

158

6.2. OUTLOOK

nisms to detect/avoid malicious behavior. Malicious nodes could be modeled and
counter-measurements for free-riding or sabotaging nodes could be designed, in-
tegrated and evaluated. Additionally, security and anonymity extensions would be
an additional benefit to MCFTP. For cMCFTP, the message transfer from nodes to
the FileLeader could be encrypted by using public/private key mechanisms. Ex-
tensions supporting mutual anonymity [181] for senders and receivers could be
integrated when using Overlay Multicast with MCFTP, but this would also intro-
duce additional computation and communication overhead.

Integrating REPOM [47] mechanisms could also help to enforce cooperation
and build a similar strategy as the tit-for-that mechanism in BitTorrent. As a final
step, MCFTP could be evaluated in distributed testbed environments such as Plan-
etLab. Due to the limited processing power of PlanetLab nodes and their shared
usage nature, the existing proof-of-concept prototype written in Java and using
Freepastry is not the optimal candidate for this task. Also, the problem of de-
ploying the experiment and collecting the results in large scale networks with a
few hundred nodes is not feasible with the current solution package used for the
prototype evaluation. Therefore, a better solution would be to implement MCFTP
using SPLAY [102]. It facilitates development of network protocols like MCFTP
and eases deployment and evaluation on a large scale. Also, a BitTorrent imple-
mentation for SPLAY already exists, which makes it easier to compare it regarding
performance.

Finally, combining a mature version of MCFTP with an integrated, self-installing
Multicast Middleware and adding QoS capabilities using OM-QoS to MCFTP
would enable end users to be able to use MCFTP Internet wide while benefiting
from QoS to enhance transmission performance and reliability.

159

Chapter 7

Acronyms

ALM Application Layer Multicast

ALTO Application-Layer Traffic Optimization

API Application Programming Interface

AS Autonomous System

A/V Audio / Video

BGP Border Gateway Protocol

BIOS Basic Input / Output System

BRITE Boston University Representative Internet Topology Generator

CAN Content Addressable Networks

CDN Content Distribution Network

CERNET China Education and Research Network

COPS Common Open Policy Service

CPU Central Processing Unit

DDR Double Data Rate

DiffServ Differentiated Services

DNS Domain Name System

DHT Distributed Hash Table

DoS Denial of Service

DSL Digital Subscriber Line

161

ESM End System Multicast

EuQoS End-to-end QoS Support over Heterogeneous Networks

FL File Leader

FMG File Management Group

FTP File Transfer Protocol

IANA Internet Assigned Numbers Authority

ID Identifier

IGMP Internet Group Management Protocol

IntServ Integrated Services

IP Internet Protocol

IPTV Internet Protocol Television

ISP Internet Service Provider

IVS INRIA Videoconferencing System

I/O Input / Output

KA Keep Alive

LAN Local Area Network

LMSG Live Media Service Grid

LSSR Loose Source Routing

HTTP Hypertext Transfer Protocol

MAST Multicast Application Sharing Tool

MBONE Multicast Backbone

MCFTP Multicast File Transfer Protocol

MGEN Multi Generator

MM-VISA Massively Multiuser VIrtual Simulation Architecture

MPEG Moving Picture Experts Group

MMOG Massively Multiplayer Online Game

NAT Network Address Translator

162

NeVoT Network Voice Terminal

NV Network Video Tool

NICE NICE is the Internet Cooperative Environment

OM-QoS Quality of Service for Overlay Multicast

P2P Peer-to-Peer

PC Personal Computer

QIOM QoS-satisfied Inter-domain Overlay Multicast

QoE Quality of Experience

QoS Quality of Service

RAM Random Access Memory

RNG Random Number Generator

RSVP Resource Reservation Protocol

RTT Round Trip Time

SAP Session Announcement Protocol

SDP Session Description Protocol

SG Sending Group

SQL Structured Query Language

SvB Service Brokers Node

TAG Topology Aware Grouping

TCP Transport Control Protocol

TTL Time to Live

UDP User Datagram Protocol

UPNP Universal Plug and Play

VAT Visual Audio Tool

VIC Video Conferencing Tool

VLC Video LAN Client

VoD Video on Demand

163

VoIP Voice over Internet Protocol

VON Voronoi-based Overlay Network

WB White Board

WG Working Group

164

Bibliography

[1] “Resource ReSerVation Protocol (RSVP) – Version 1 Functional Specifica-
tion,” Internet Engineering Task Force, RFC 2205, Sept. 1997. [Online].
Available: http://www.rfc-editor.org/rfc/rfc2205.txt

[2] “The COPS (Common Open Policy Service) Protocol,” Internet Engineering
Task Force, RFC 2748, Jan. 2000. [Online]. Available: http://www.
rfc-editor.org/rfc/rfc2748.txt

[3] “Adaptive Routing of QoS-Constrained Media Streams over Scalable Over-
lay Topologies,” in RTAS ’04: Proceedings of the 10th IEEE Real-Time and
Embedded Technology and Applications Symposium. Washington, DC,
USA: IEEE Computer Society, 2004, p. 518.

[4] S. Agarwal, J. P. Singh, A. Mavlankar, P. Baccichet, and B. Girod,
“Performance and Quality-of-Service Analysis of a Live P2P Video
Multicast Session on the Internet,” in Quality of Service, 2008. IWQoS
2008. 16th International Workshop on, 2008, pp. 11–19. [Online].
Available: http://dx.doi.org/10.1109/IWQOS.2008.7

[5] D. T. Ahmed, S. Shirmohammadi, and J. C. Oliveira, “A hybrid P2P commu-
nications architecture for zonal MMOGs,” Multimedia Tools Appl., vol. 45,
no. 1-3, pp. 313–345, 2009.

[6] Z. Albanna, K. Almeroth, D. Meyer, and M. Schipper, “IANA Guidelines
for IPv4 Multicast Address Assignments,” Internet Engineering Task Force,
RFC 3171, Aug. 2001. [Online]. Available: http://www.rfc-editor.org/rfc/
rfc3171.txt

[7] W. Allcock, J. Bester, J. Bresnahan, S. Meder, P. Plaszczak, and S. Tuecke,
“GridFTP: Protocol Extensions to FTP for the Grid, Proposed Recommen-
dation GFD-R-P.020, Global Grid Forum,” April 2003.

[8] “Application-Layer Traffic Optimization (ALTO) Work Group,” 2010.
[Online]. Available: http://www.ietf.org/html.charters/alto-charter.html

[9] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris, “Resilient Over-
lay Networks,” SIGOPS Oper. Syst. Rev., vol. 35, no. 5, pp. 131–145, 2001.

165

http://www.rfc-editor.org/rfc/rfc2205.txt
http://www.rfc-editor.org/rfc/rfc2748.txt
http://www.rfc-editor.org/rfc/rfc2748.txt
http://dx.doi.org/10.1109/IWQOS.2008.7
http://www.rfc-editor.org/rfc/rfc3171.txt
http://www.rfc-editor.org/rfc/rfc3171.txt
http://www.ietf.org/html.charters/alto-charter.html

BIBLIOGRAPHY

[10] S. Androutsellis-Theotokis and D. Spinellis, “A survey of Peer-to-Peer
content distribution technologies,” ACM Comput. Surv., vol. 36, no. 4, pp.
335–371, 2004. [Online]. Available: http://doi.acm.org/10.1145/1041680.
1041681

[11] E. Angori, G. Martufi, M. Brogle, D. Milic, et al., “D1.1.2: System Design:
Functions, Interfaces Specification,” Tech. Rep., May 2005.

[12] “Azureus Sourceforge Website,” 2010. [Online]. Available: http://azureus.
sourceforge.net/

[13] F. Baker, C. Iturralde, F. Faucheur, and B. Davie, “Aggregation of RSVP for
IPv4 and IPv6 Reservations,” Internet Engineering Task Force, RFC 3175,
Sept. 2001. [Online]. Available: http://www.rfc-editor.org/rfc/rfc3175.txt

[14] R. Balmer and T. Braun:, “Resource Control and Authentication for a Video
Streaming Service in a DiffServ/IP Multicast Network,” in 3rd Conference
on Security and Network Architectures (SAR04), La Londe, Cote d’Azur
France, June 21-25 2004.

[15] S. Banerjee, B. Bhattacharjee, and K. Christopher, “Scalable Application
Layer Multicast,” in SIGCOMM02: Proceedings of the 2002 conference
on Applications, technologies, architectures, and protocols for computer
communications, vol. 32, no. 4. New York,USA: ACM, 2002, pp. 205–217.
[Online]. Available: http://portal.acm.org/citation.cfm?id=633045

[16] S. Barthlomé, “Quality of Service for Overlay Multicast applied to the NICE
Protocol,” Bern, Switzerland, September 2009.

[17] D. Bauer, I. Iliadis, S. Rooney, and P. Scotton, “Communication Architec-
tures for Massive Multi-Player Games,” Multimedia Tools Appl., vol. 23,
no. 1, pp. 47–66, 2004.

[18] D. Bauer and S. Rooney, “The Performance of Software Multicast-Reflector
Implementations for Multi-player Online Games,” in Networked Group
Communication, 2003, pp. 214–225.

[19] L. Bettosini, “Performance Comparison of Native Multicast versus Overlay
Multicast,” Bern, Switzerland, April 2008.

[20] ——, “Quality of Service for Overlay Multicast Content Addressable Net-
work (CAN),” Bern, Switzerland, August 2009.

[21] E. W. Biersack, P. Rodriguez, and P. Felber, “Performance Analysis of Peer-
to-Peer Networks for File Distribution,” in In Proc. Fifth International Work-
shop on Quality of Future Internet Services (QofIS’04, 2004.

166

http://doi.acm.org/10.1145/1041680.1041681
http://doi.acm.org/10.1145/1041680.1041681
http://azureus.sourceforge.net/
http://azureus.sourceforge.net/
http://www.rfc-editor.org/rfc/rfc3175.txt
http://portal.acm.org/citation.cfm?id=633045

BIBLIOGRAPHY

[22] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An
Architecture for Differentiated Service,” Internet Engineering Task Force,
RFC 2475, Dec. 1998. [Online]. Available: http://www.rfc-editor.org/rfc/
rfc2475.txt

[23] R. Bless and K. Wehrle, “IP Multicast in Differentiated Services (DS)
Networks,” Internet Engineering Task Force, RFC 3754, Apr. 2004.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc3754.txt

[24] A. Bozdog, R. van Renesse, and D. Dumitriu, “SelectCast: a scalable and
self-repairing multicast overlay routing facility,” in SSRS ’03: Proceedings
of the 2003 ACM workshop on Survivable and self-regenerative systems.
New York, NY, USA: ACM Press, 2003, pp. 33–42. [Online]. Available:
http://doi.acm.org/10.1145/1036921.1036925

[25] R. Braden, D. Clark, and S. Shenker, “Integrated Services in the Internet
Architecture: an Overview,” Internet Engineering Task Force, RFC 1633,
June 1994. [Online]. Available: http://www.rfc-editor.org/rfc/rfc1633.txt

[26] Bram Cohen, “Incentives Build Robustness in BitTorrent,” In Proc. 1st
Workshop on Economics of Peer-to-Peer Systems, May 2003.

[27] T. Braun, V. Arya, and T. Turletti, “Explicit routing in multicast overlay net-
works,” Computer Communications, vol. 29, no. 12, pp. 2201–2216, August
2006.

[28] T. Braun, M. Diaz, J. Enrquez-Gabeiras, and T. Staub, End-to-End Quality
of Service Over Heterogeneous Networks. Springer, 2008.

[29] L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidemann, A. Helmy, P. Huang,
S. McCanne, K. Varadhan, Y. Xu, and H. Yu, “Advances in Network Simu-
lation,” Computer, vol. 33, no. 5, pp. 59–67, 2000.

[30] “BRITE - Boston University Representative Internet Topology gEnerator,”
2010. [Online]. Available: http://www.cs.bu.edu/brite/

[31] M. Brogle, “OM-QoS: Overlay Multicast Quality of Service,” Institute of
Computer Science and Applied Mathematics, Bern, Tech. Rep. IAM-07-
004, December 2007, in “RVS Retreat 2007 at Quarten”, Quarten, Switzer-
land.

[32] ——, “Reviving IP Multicast Using QoS enhanced Overlay Networks,” In-
stitute of Computer Science and Applied Mathematics, Bern, Tech. Rep.
IAM-08-003, November 2008, in “BeNeFri Summer School 2008 on De-
pendable Systems”, Münchenwiler, Switzerland.

167

http://www.rfc-editor.org/rfc/rfc2475.txt
http://www.rfc-editor.org/rfc/rfc2475.txt
http://www.rfc-editor.org/rfc/rfc3754.txt
http://doi.acm.org/10.1145/1036921.1036925
http://www.rfc-editor.org/rfc/rfc1633.txt
http://www.cs.bu.edu/brite/

BIBLIOGRAPHY

[33] ——, “Quality of Service for “NICE” Overlay Multicasting,,” Institute of
Computer Science and Applied Mathematics, Bern, Tech. Rep. IAM-09-
006, September 2009, in “BeNeFri Summer School 2009 on Dependable
Systems”, Münchenwiler, Switzerland.

[34] M. Brogle, S. Barthlomé, and T. Braun, “Quality of Service for Multicasting
using NICE,” in 25th Symposium On Applied Computing (ACM SAC 2010).
ACM, March 2010.

[35] M. Brogle, L. Bettosini, and T. Braun, “Quality of Service for Multicasting
in Content Addressable Networks,” in 12th IFIP/IEEE International Con-
ference on Management of Multimedia and Mobile Networks and Services
(MMNS 09). Springer LNCS 5842, October 2009, pp. 170–175.

[36] M. Brogle, A. Geycasar, and T. Braun, “MCFTP – Implementation and Eval-
uation of a Multicast File Transfer Protocol,” to be submitted for publication.

[37] M. Brogle and D. Milic, “EuQoS Multicast Midddleware: Basic Architec-
ture Overview and Concepts,” Institute of Computer Science and Applied
Mathematics, Bern, Tech. Rep. IAM-05-002, June 2005, in “Retreat of the
Computer Networks and Distributed Systems research group at Griesalp”,
Kiental, Switzerland.

[38] ——, “Multicast Middleware Implementation,” 2010. [Online]. Available:
http://www.iam.unibe.ch/%7Ervs/research/euqos/mcast-4.0.4 r701.zip

[39] ——, “Multicast Middleware Installation Manual,” 2010. [Online].
Available: http://www.iam.unibe.ch/%7Ervs/research/euqos/mcast-4.0.4
r701.zip

[40] M. Brogle, D. Milic, L. Bettosini, and T. Braun, “A Performance Compari-
son of Native IP Multicast and IP Multicast Tunneled through a Peer-to-Peer
Overlay Network,” in 2009 International Workshop on Peer-To-Peer Net-
working (P2PNet’09) in conjunction with ICUMT 2009. IEEE, October
2009.

[41] M. Brogle, D. Milic, and T. Braun, “QoS Enabled Multicast for Structured
P2P Networks,” in Workshop on Peer-to-Peer Multicasting at the 4th IEEE
Consumer Communications and Networking Conference. IEEE, January
2007, pp. 991–995.

[42] ——, “Supporting IP Multicast Streaming Using Overlay Networks,” in
QShine: International Conference on Heterogeneous Networking for Qual-
ity, Reliability, Security and Robustness, Vancouver, British Columbia,
Canada,, August 14 - 17 2007.

168

http://www.iam.unibe.ch/%7Ervs/research/euqos/mcast-4.0.4_r701.zip
http://www.iam.unibe.ch/%7Ervs/research/euqos/mcast-4.0.4_r701.zip
http://www.iam.unibe.ch/%7Ervs/research/euqos/mcast-4.0.4_r701.zip

BIBLIOGRAPHY

[43] ——, “Quality of Service for Peer-to-Peer based Networked Virtual En-
vironments,” in P2P-NVE 2008 Workshop at the 14th IEEE International
Conference on Parallel and Distributed Systems. Melbourne, Victoria,
Australia: IEEE, December 2008, pp. 847–852.

[44] ——, “Multicast-Middleware der Universität Bern, Schweiz, resultierend
aus EU FP6 IST IP “EuQoS” - Gewinner des ”KuVS Communication Soft-
ware Preis” 2009,” PIK - Praxis der Informationsverarbeitung und Kommu-
nikation, vol. 32, no. 3, pp. 176–178, 10 2009.

[45] M. Brogle, D. Paprtitz, D. Milic, and T. Braun, “MCFTP - A Multicast
File Transfer Protocol for Efficient Data Dissemination,” to be submitted for
publication.

[46] M. Brogle, A. Rüttimann, and T. Braun, “Quality of Service for Overlay
Multicasting in Chord,” in The Fifteenth IEEE Symposium on Computers
and Communications (ISCCâ10). IEEE, 2010 2010.

[47] U. Bürgi, “REPOM: Reputation Based Overlay Multicast,” Bern, Switzer-
land, December 2009.

[48] B. Cain, S. Deering, I. Kouvelas, B. Fenner, and A. Thyagarajan, “Internet
Group Management Protocol, Version 3,” Internet Engineering Task Force,
RFC 3376, Oct. 2002. [Online]. Available: http://www.rfc-editor.org/rfc/
rfc3376.txt

[49] M. Castro, M. B. Jones, A. M. Kermarrec, A. Rowstron, M. Theimer,
H. Wang, and A. Wolman, “An Evaluation of Scalable Application-
Level Multicast built using Peer-to-Peer Overlays,” in INFOCOM 2003.
Twenty-Second Annual Joint Conference of the IEEE Computer and
Communications Societies. IEEE, vol. 2, 2003, pp. 1510–1520 vol.2.
[Online]. Available: http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=
1208986

[50] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron,
and A. Singh, “SplitStream: high-bandwidth multicast in cooperative
environments,” in Proceedings of the nineteenth ACM symposium on
Operating systems principles (SOSP ’03), New York, NY, USA, October
2003, pp. 298–313. [Online]. Available: http://doi.acm.org/10.1145/
945445.945474

[51] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron, “One Ring
to rule them all: Service Discover and Binding in Structured Peer-to-Peer
Overlay Networks,” in SIGOPS European Workshop, Sep 2002.

[52] ——, “Scribe: a Large-Scale and Decentralized Application-Level Mul-
ticast Infrastructure,” IEEE Journal on Selected Areas in Communication
(JSAC), vol. 20, no. 8, pp. 1489–1499, October 2002.

169

http://www.rfc-editor.org/rfc/rfc3376.txt
http://www.rfc-editor.org/rfc/rfc3376.txt
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1208986
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1208986
http://doi.acm.org/10.1145/945445.945474
http://doi.acm.org/10.1145/945445.945474

BIBLIOGRAPHY

[53] L. Cherkasova and J. Lee, “FastReplica: Efficient Large File Distribution
within Content Delivery Networks,” in Proceedings of USITS ’03: 4th
USENIX Symposium on Internet Technologies and Systems. USENIX As-
sociation, March 26-28 2003, pp. 85 – 98.

[54] “Chord/DHash Project,” 2010. [Online]. Available: http://pdos.csail.mit.
edu/chord/

[55] “Chordless,” 2010. [Online]. Available: http://chordless.sourceforge.net/

[56] “Conference XP,” 2010. [Online]. Available: http://www.codeplex.com/
ConferenceXP

[57] J. Crowcroft, S. Hand, R. Mortier, T. Roscoe, and A. Warfield,
“QoS’s downfall: at the bottom, or not at all!” in RIPQoS ’03:
Proceedings of the ACM SIGCOMM workshop on Revisiting IP QoS.
New York, NY, USA: ACM Press, 2003, pp. 109–114. [Online]. Available:
http://dx.doi.org/10.1145/944592.944594

[58] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica, “Wide-area
cooperative storage with CFS,” in Proceedings of the 18th ACM Symposium
on Operating Systems Principles (SOSP ’01), Chateau Lake Louise, Banff,
Canada, October 2001.

[59] Y. Dan, C. Xinmeng, and C. Yunlei, “An Improved P2P Model Based on
Chord,” in Parallel and Distributed Computing, Applications and Technolo-
gies, 2005. PDCAT 2005. Sixth International Conference on, 2005, pp. 807–
811.

[60] S. Deering, “Host extensions for IP multicasting,” Internet Engineering
Task Force, RFC 1112, Aug. 1989. [Online]. Available: http://www.
rfc-editor.org/rfc/rfc1112.txt

[61] C. Diot, B. Levine, B. Lyles, H. Kassem, and D. Balensiefen, “Deployment
issues for the IP multicast service and architecture,” Network, IEEE, vol. 14,
no. 1, pp. 78 –88, jan/feb 2000.

[62] S. Duarte, L. J. Martins, H. J. Domingos, and N. Preguiça, “A case study
on event dissemination in an active overlay network environment,” in
DEBS ’03: Proceedings of the 2nd international workshop on Distributed
event-based systems. New York, NY, USA: ACM Press, 2003, pp. 1–8.
[Online]. Available: http://dx.doi.org/10.1145/966618.966624

[63] A. El-Sayed, V. Roca, and L. Mathy, “A survey of proposals for an alterna-
tive group communication service,” Network, IEEE, vol. 17, no. 1, pp. 46 –
51, jan/feb 2003.

170

http://pdos.csail.mit.edu/chord/
http://pdos.csail.mit.edu/chord/
http://chordless.sourceforge.net/
http://www.codeplex.com/ConferenceXP
http://www.codeplex.com/ConferenceXP
http://dx.doi.org/10.1145/944592.944594
http://www.rfc-editor.org/rfc/rfc1112.txt
http://www.rfc-editor.org/rfc/rfc1112.txt
http://dx.doi.org/10.1145/966618.966624

BIBLIOGRAPHY

[64] H. Eriksson, “MBONE: the multicast backbone,” Commun. ACM, vol. 37,
no. 8, pp. 54–60, 1994. [Online]. Available: http://doi.acm.org/10.1145/
179606.179627

[65] D. Estrin, M. Handley, J. Heidemann, S. McCanne, Y. Xu, and H. Yu, “Net-
work Visualization with Nam, the VINT Network Animator,” Computer,
vol. 33, no. 11, pp. 63–68, 2000.

[66] P. Eugster, P. Felber, and F. Le Fessant, “The ”art” of programming gossip-
based systems,” SIGOPS Oper. Syst. Rev., vol. 41, no. 5, pp. 37–42, 2007.

[67] “End to End Quality of Service over Heterogeneous Networks – A White
Paper from the EuQoS Consortium,” 2004. [Online]. Available: http://ec.
europa.eu/information society/istevent/2006/cf/document.cfm?doc id=616

[68] “EuQoS project website,” 2010. [Online]. Available: http://www.euqos.eu

[69] S. Fahmy and M. Kwon, “Characterizing overlay multicast networks,” in
Network Protocols, 2003. Proceedings. 11th IEEE International Conference
on, 2003.

[70] K. Fall, “Network Emulation in the Vint/NS Simulator,” in ISCC ’99: Pro-
ceedings of the The Fourth IEEE Symposium on Computers and Communi-
cations. Washington, DC, USA: IEEE Computer Society, 1999, p. 244.

[71] B. Fenner and et. al, “mrouted 3.9-beta,” 2010. [Online]. Available:
ftp://ftp.parc.xerox.com/pub/net-research/ipmulti/

[72] W. Fenner, “Internet Group Management Protocol, Version 2,” Internet
Engineering Task Force, RFC 2236, Nov. 1997. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc2236.txt

[73] R. Finlayson, “IP Multicast and Firewalls,” Internet Engineering Task
Force, RFC 2588, May 1999. [Online]. Available: http://www.rfc-editor.
org/rfc/rfc2588.txt

[74] “Fit in IT – Wanderausstellung im Rahmen des Föderprogramms FIT der
Hasler Stiftung,” 2010. [Online]. Available: http://www.fit-in-it.ch/

[75] “Freepastry,” 2010. [Online]. Available: http://freepastry.rice.edu/

[76] A. Ganjam and H. Zhang, “Connectivity restrictions in overlay multicast,”
in Proceedings of the 14th ACM international workshop on Network and
operating systems support for digital audio and video (NOSSDAV ’04),
New York, 2004, pp. 54–59. [Online]. Available: http://doi.acm.org/10.
1145/1005847.1005860

171

http://doi.acm.org/10.1145/179606.179627
http://doi.acm.org/10.1145/179606.179627
http://ec.europa.eu/information_society/istevent/2006/cf/document.cfm?doc_id=616
http://ec.europa.eu/information_society/istevent/2006/cf/document.cfm?doc_id=616
http://www.euqos.eu
ftp://ftp.parc.xerox.com/pub/net-research/ipmulti/
http://www.rfc-editor.org/rfc/rfc2236.txt
http://www.rfc-editor.org/rfc/rfc2588.txt
http://www.rfc-editor.org/rfc/rfc2588.txt
http://www.fit-in-it.ch/
http://freepastry.rice.edu/
http://doi.acm.org/10.1145/1005847.1005860
http://doi.acm.org/10.1145/1005847.1005860

BIBLIOGRAPHY

[77] A. Geycasar, “MC-FTP (Multicast File Transfer Protocol): Implementation
and Comparison with BitTorrent,” Master’s thesis, University of Bern, Bern,
Switzerland, 2010.

[78] R. Ghosh and G. Varghese, “Congestion Control in Multicast Transport Pro-
tocols,” Washington University in St. Louis, USA, Tech. Rep., June 1998.

[79] “The Globus Alliance,” 2010. [Online]. Available: http://www.globus.org/

[80] J. Gosling, B. Joy, and G. Steele, The Java Language Specification, ser. Java
Series. Sun Microsystems, 1996.

[81] “GridFTP Working Group,” 2010. [Online]. Available: http://forge.
gridforum.org/projects/gridftp-wg/

[82] A. Habib, D. Xu, M. Atallah, B. Bhargava, and J. Chuang, “A Tree-
based Forward Digest Protocol to Verify Data Integrity in Distributed Me-
dia Streaming,” in IEEE Transactions on Knowledge and Data Engineering,
vol. 17, no. 7, July 2005.

[83] M. Handley and V. Jacobson, “SDP: Session Description Protocol,” Internet
Engineering Task Force, RFC 2327, Apr. 1998. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc2327.txt

[84] M. Handley, C. Perkins, and E. Whelan, “Session Announcement Protocol,”
Internet Engineering Task Force, RFC 2974, Oct. 2000. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc2974.txt

[85] U. Horn, K. Stuhlmüller, M. Link, and B. Girod, “Robust Internet video
transmission based on scalable coding and unequal error protection,”
Signal Processing: Image Communication, vol. 15, no. 1-2, pp. 77 – 94,
1999. [Online]. Available: http://www.sciencedirect.com/science/article/
B6V08-3XJKMYT-6/2/5c75dc4571d386ee3037bcc4f95acfa1

[86] M. Hosseini, D. T. Ahmed, S. Shirmohammadi, and N. D. Georganas, “A
Survey of Application-Layer Multicast Protocols,” Communications Sur-
veys & Tutorials, IEEE, vol. 9, no. 3, pp. 58–74, 2007.

[87] M. Hosseini and N. D. Georganas, “End System Multicast Protocol for
Collaborative Virtual Environments,” Presence: Teleoper. Virtual Environ.,
vol. 13, no. 3, pp. 263–278, 2004.

[88] S.-Y. Hu, S.-C. Chang, and J.-R. Jiang, “Voronoi State Management for
Peer-to-Peer Massively Multiplayer Online Games,” in Consumer Commu-
nications and Networking Conference, 2008. CCNC 2008. 5th IEEE, 2008,
pp. 1134–1138.

172

http://www.globus.org/
http://forge.gridforum.org/projects/gridftp-wg/
http://forge.gridforum.org/projects/gridftp-wg/
http://www.rfc-editor.org/rfc/rfc2327.txt
http://www.rfc-editor.org/rfc/rfc2974.txt
http://www.sciencedirect.com/science/article/B6V08-3XJKMYT-6/2/5c75dc4571d386ee3037bcc4f95acfa1
http://www.sciencedirect.com/science/article/B6V08-3XJKMYT-6/2/5c75dc4571d386ee3037bcc4f95acfa1

BIBLIOGRAPHY

[89] S.-Y. Hu, J.-F. Chen, and T.-H. Chen, “VON: a scalable Peer-to-Peer Net-
work for Virtual Environments,” Network, IEEE, vol. 20, no. 4, pp. 22–31,
August 2006.

[90] Y. hua Chu, S. G. Rao, S. Seshan, and H. Zhang, “A Case for End Sys-
tem Multicast,” IEEE Journal on Selected Areas in Communication (JSAC),
Special Issue on Networking Support for Multicast, vol. 20, no. 8, 2002.

[91] “Internet Multicast Addresses,” 2010. [Online]. Available: http://www.iana.
org/assignments/multicast-addresses/

[92] T. Issariyakul and E. Hossain, Introduction to Network Simulator NS2.
Springer Publishing Company, Incorporated, 2008.

[93] “INRIA Videoconferencing System (ivs),” 2010. [Online]. Available:
http://www.inria.fr/rodeo/ivs.html

[94] M. Izal, G. Urvoy-Keller, E. W. Biersack, P. A. Felber, Al, and L. Garcés-
Erice, “Dissecting BitTorrent: Five Months in a Torrent’s Lifetime,” in Pas-
sive and Active Network Measurement, 2004, pp. 1–11.

[95] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek, and J. W. O’Toole,
Jr., “Overcast: Reliable Multicasting with an Overlay Network,” pp. 197–
212. [Online]. Available: citeseer.ist.psu.edu/jannotti00overcast.html

[96] JTC1/SC29/WG11, “ISO/IEC 11172:1993: Information technology – Cod-
ing of moving pictures and associated audio for digital storage media at up
to about 1,5 Mbit/s – Parts 1 to 5,” 1993.

[97] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and
D. Lewin, “Consistent hashing and random trees: distributed caching
protocols for relieving hot spots on the World Wide Web,” in STOC
’97: Proceedings of the twenty-ninth annual ACM symposium on Theory
of computing. ACM Press, 1997, pp. 654–663. [Online]. Available:
http://dx.doi.org/10.1145/258533.258660

[98] S. Kiesel, L. Popkin, S. Previdi, R. Woundy, and Y. R. Yang,
“ALTO Protocol,” Internet Engineering Task Force, Internet-Draft draft-
ietf-alto-protocol-03.txt, March 2010, informational. [Online]. Available:
http://www.ietf.org/id/draft-ietf-alto-protocol-03.txt

[99] ——, “Application-Layer Traffic Optimization (ALTO) Requirements,”
Internet Engineering Task Force, Internet-Draft draft-ietf-alto-reqs-04,
March 2010, informational. [Online]. Available: http://www.ietf.org/id/
draft-ietf-alto-reqs-04.txt

[100] D. Kostic;, A. Rodriguez, J. Albrecht, and A. Vahdat, “Bullet: high band-
width data dissemination using an overlay mesh,” in SOSP ’03: Proceedings

173

http://www.iana.org/assignments/multicast-addresses/
http://www.iana.org/assignments/multicast-addresses/
http://www.inria.fr/rodeo/ivs.html
citeseer.ist.psu.edu/jannotti00overcast.html
http://dx.doi.org/10.1145/258533.258660
http://www.ietf.org/id/draft-ietf-alto-protocol-03.txt
http://www.ietf.org/id/draft-ietf-alto-reqs-04.txt
http://www.ietf.org/id/draft-ietf-alto-reqs-04.txt

BIBLIOGRAPHY

of the nineteenth ACM symposium on Operating systems principles. New
York, NY, USA: ACM Press, 2003, pp. 282–297.

[101] M. Kwon and S. Fahmy, “Path-aware overlay multicast,” Comput.
Networks, vol. 47, no. 1, pp. 23–45, January 2005. [Online]. Available:
http://dx.doi.org/10.1016/j.comnet.2004.06.025

[102] L. Leonini, E. Rivière, and P. Felber, “SPLAY: distributed systems evalu-
ation made simple (or how to turn ideas into live systems in a breeze),” in
NSDI’09: Proceedings of the 6th USENIX symposium on Networked systems
design and implementation. Berkeley, CA, USA: USENIX Association,
2009, pp. 185–198.

[103] G. Lewis, S. M. Hasan, V. N. Alexandrov, and M. T. Dove, “Facilitating
Collaboration and Application Sharing with MAST and the Access Grid De-
velopment Infrastructures,” in E-SCIENCE ’06: Proceedings of the Second
IEEE International Conference on e-Science and Grid Computing. Wash-
ington, DC, USA: IEEE Computer Society, 2006, p. 68.

[104] D. Li, J. Wu, Y. Cui, and J. Liu, “QoS-Aware Streaming in
Overlay Multicast Considering the Selfishness in Construction Action,”
in INFOCOM 2007. 26th IEEE International Conference on Computer
Communications. IEEE, May 2007, pp. 1154–1162. [Online]. Available:
http://dx.doi.org/10.1109/INFCOM.2007.138

[105] Z. Li, “Resiliency and Quality-of-Service (QoS) support in multicasting
and overlay networks,” Ph.D. dissertation, Davis, CA, USA, 2005, adviser-
Prasant Mohaptra.

[106] Z. Li and P. Mohapatra, “HostCast: a new overlay multicasting
protocol,” in Communications, 2003. ICC ’03. IEEE International
Conference on, vol. 1, June 2003, pp. 702–706 vol.1. [Online]. Available:
http://dx.doi.org/10.1109/ICC.2003.1204265

[107] ——, “QRON: QoS-aware routing in overlay networks,” Selected Areas in
Communications, IEEE Journal on, vol. 22, no. 1, pp. 29–40, 2004.

[108] K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, “A Survey and Com-
parison of Peer-to-Peer Overlay Network Schemes,” Communications Sur-
veys & Tutorials, IEEE, pp. 72–93, 2005.

[109] H. Ma and K. G. Shin, “Multicast Video-on-Demand services,” SIGCOMM
Comput. Commun. Rev., vol. 32, no. 1, pp. 31–43, 2002.

[110] “Multicast Application Sharing Tool (MAST),” 2010. [Online]. Available:
http://acet.reading.ac.uk/projects/mast/index.php

174

http://dx.doi.org/10.1016/j.comnet.2004.06.025
http://dx.doi.org/10.1109/INFCOM.2007.138
http://dx.doi.org/10.1109/ICC.2003.1204265
http://acet.reading.ac.uk/projects/mast/index.php

BIBLIOGRAPHY

[111] M. Matsumoto and T. Nishimura, “Mersenne twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator,” ACM Trans.
Model. Comput. Simul., vol. 8, no. 1, pp. 3–30, 1998.

[112] A. Medina, A. Lakhina, I. Matta, and J. Byers, “BRITE: An Approach to
Universal Topology Generation,” in MASCOTS ’01: Proceedings of the
Ninth International Symposium in Modeling, Analysis and Simulation of
Computer and Telecommunication Systems (MASCOTS’01). Washington,
DC, USA: IEEE Computer Society, 2001, p. 346.

[113] “Multi-Generator (MGEN),” 2010. [Online]. Available: http://cs.itd.nrl.
navy.mil/work/mgen/

[114] D. Milic, M. Brogle, and T. Braun, “Video Broadcasting using Overlay Mul-
ticast,” in ISM ’05: Proceedings of the Seventh IEEE International Sympo-
sium on Multimedia. Washington, DC, USA: IEEE Computer Society,
2005, pp. 515–522.

[115] C. K. Miller, Multicast Networking and Applications. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1998.

[116] E. Mingozzi, G. Stea, M. Callejo-Rodrı́guez, J. Enrı́quez-Gabeiras, G. G.
de Blas, F. Ramón-Salquero, W. Burakowski, A. Beben, J. Sliwinski,
H. Tarasiuk, O. Dugeon, M. Diaz, L. Baresse, and E. Monteiro, “EuQoS:
End-to-End Quality of Service over Heterogeneous Networks,” Computer
Communications, vol. 32, no. 12, pp. 1355 – 1370, 2009, special Issue of
Computer Communications on Heterogeneous Networking for Quality, Re-
liability, Security, and Robustness - Part II.

[117] “MOMOCOMM: Multiobjective Optimized Multicast Communication
Primitive for P2P Collaboration,” 2010. [Online]. Available: http:
//code.google.com/p/momocomm/

[118] M. Mysore and G. Varghese, “FTP-M: An FTP-like Multicast File Transfer
Application,” University of California at San Diego, La Jolla, CA, USA,
Tech. Rep., 2001.

[119] “Network simulator ns-2,” 2010. [Online]. Available: http://www.isi.edu/
nsnam/ns/

[120] “Guide to NeVoT 3.34,” 2010. [Online]. Available: http://www.inria.fr/
rodeo/ivs.html

[121] “NeVoT 3.36 Source Code,” 2010. [Online]. Available: http://www.cs.
columbia.edu/irt/software/nevot/source/

[122] M. Nikolic, “WinJTAP Interface for Multicast Middleware on the Win32
Platform,” Bern, Switzerland, March 2008.

175

http://cs.itd.nrl.navy.mil/work/mgen/
http://cs.itd.nrl.navy.mil/work/mgen/
http://code.google.com/p/momocomm/
http://code.google.com/p/momocomm/
http://www.isi.edu/nsnam/ns/
http://www.isi.edu/nsnam/ns/
http://www.inria.fr/rodeo/ivs.html
http://www.inria.fr/rodeo/ivs.html
http://www.cs.columbia.edu/irt/software/nevot/source/
http://www.cs.columbia.edu/irt/software/nevot/source/

BIBLIOGRAPHY

[123] “nv - Network video tool,” 2010. [Online]. Available: ftp://ftp.parc.xerox.
com/pub/net-research/nv-3.3beta

[124] “OMNET++ community site,” 2010. [Online]. Available: http://www.
omnetpp.org

[125] “Open Chord,” 2010. [Online]. Available: http://open-chord.sourceforge.
net/

[126] “Open Grid Forum,” 2010. [Online]. Available: http://www.gridforum.org/

[127] V. N. Padmanabhan, H. J. Wang, and P. A. Chou, “Supporting Heterogene-
ity and Congestion Control in Peer-to-Peer Multicast Streaming,” in IPTPS,
2004, pp. 54–63.

[128] D. Papritz, “MC-FTP (Multicast File Transfer Protocol): Simulation and
Comparison with BitTorrent,” Master’s thesis, University of Bern, Bern,
Switzerland, 2010.

[129] L. Peterson, T. Anderson, D. Culler, and T. Roscoe, “A blueprint for intro-
ducing disruptive technology into the Internet,” SIGCOMM Comput. Com-
mun. Rev., vol. 33, no. 1, pp. 59–64, 2003.

[130] L. Peterson, A. Bavier, M. E. Fiuczynski, and S. Muir, “Experiences build-
ing PlanetLab,” in OSDI ’06: Proceedings of the 7th symposium on Oper-
ating systems design and implementation. Berkeley, CA, USA: USENIX
Association, 2006, pp. 351–366.

[131] “PlanetLab — An open platform for developing, deploying, and accessing
planetary-scale services,” 2010. [Online]. Available: http://planet-lab.org/

[132] C. G. Plaxton, R. Rajaraman, and A. W. Richa, “Accessing nearby
copies of replicated objects in a distributed environment,” in SPAA’97:
Proceedings of the ninth annual ACM symposium on Parallel algorithms
and architectures. New York, NY, USA: ACM Press, 1997, pp. 311–320.
[Online]. Available: http://doi.acm.org/10.1145/258492.258523

[133] J. Postel, “Internet Protocol,” Internet Engineering Task Force, RFC 791,
Sept. 1981. [Online]. Available: http://www.rfc-editor.org/rfc/rfc791.txt

[134] ——, “Transmission Control Protocol,” Internet Engineering Task Force,
RFC 793, Sept. 1981. [Online]. Available: http://www.rfc-editor.org/rfc/
rfc793.txt

[135] J. Postel and J. Reynolds, “File Transfer Protocol,” Internet Engineering
Task Force, RFC 959, Oct. 1985. [Online]. Available: http://www.rfc-editor.
org/rfc/rfc959.txt

176

ftp://ftp.parc.xerox.com/pub/net-research/nv-3.3beta
ftp://ftp.parc.xerox.com/pub/net-research/nv-3.3beta
http://www.omnetpp.org
http://www.omnetpp.org
http://open-chord.sourceforge.net/
http://open-chord.sourceforge.net/
http://www.gridforum.org/
http://planet-lab.org/
http://doi.acm.org/10.1145/258492.258523
http://www.rfc-editor.org/rfc/rfc791.txt
http://www.rfc-editor.org/rfc/rfc793.txt
http://www.rfc-editor.org/rfc/rfc793.txt
http://www.rfc-editor.org/rfc/rfc959.txt
http://www.rfc-editor.org/rfc/rfc959.txt

BIBLIOGRAPHY

[136] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker, “A scalable
content-addressable network,” in SIGCOMM ’01: Proceedings of the 2001
conference on Applications, technologies, architectures, and protocols for
computer communications, vol. 31, no. 4. ACM Press, 2001, pp. 161–172.
[Online]. Available: http://portal.acm.org/citation.cfm?id=383072

[137] S. Ratnasamy, M. Handley, R. Karp, and S. Schenker, “Application-
Level Multicast Using Content-Addressable Networks,” in NGC ’01:
Proceedings of the Third International COST264 Workshop on Networked
Group Communication. London, UK: Springer-Verlag, 2001, pp. 14–29.
[Online]. Available: http://portal.acm.org/citation.cfm?id=648089.747491

[138] Y. Rekhter, T. Li, and S. Hares, “A Border Gateway Protocol 4 (BGP-4),”
Network Working Group, RFC 4271, January 2006, Obsoletes: RFC 1771.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc4271.txt

[139] “Resilient Overlay Networks,” 2010. [Online]. Available: http://nms.lcs.
mit.edu/ron/

[140] P. Rizk, C. Kiddle, R. Simmonds, and B. Unger, “Performance of a GridFTP
overlay network,” Future Gener. Comput. Syst., vol. 24, no. 5, pp. 442–451,
2008.

[141] L. Rizzo, “Effective erasure codes for reliable computer communication pro-
tocols,” ACM SIGCOMM Computer Communication Review, vol. 27, no. 2,
pp. 24–36, 1997.

[142] B. G. Rocha, V. Almeida, and D. Guedes, “Increasing QoS in Selfish
Overlay Networks,” IEEE IC, vol. 10, no. 3, pp. 24–31, 2006. [Online].
Available: http://dx.doi.org/10.1109/MIC.2006.54

[143] A. Rowstron and P. Druschel, “Pastry: Scalable, Distributed Object Loca-
tion and Routing for Large-Scale Peer-to-Peer Systems,” in IFIP/ACM Inter-
national Conference on Distributed Systems Platforms (Middleware), Nov.
2001, pp. 329–350.

[144] A. Rowstron, A.-M. Kermarrec, M. Castro, and P. Druschel, “Scribe:
The design of a large-scale event notification infrastructure,” in Net-
worked Group Communication, Third International COST264 Workshop
(NGC’2001), ser. Lecture Notes in Computer Science, vol. 2233, Nov. 2001,
pp. 30–43.

[145] A. Rüttimann, “Quality of Service, End to End Delays and Overlay Multi-
cast for Structured P2P Networks like Chord,” Master’s thesis, University of
Bern, Switzerland, Bern, Switzerland, 2009.

177

http://portal.acm.org/citation.cfm?id=383072
http://portal.acm.org/citation.cfm?id=648089.747491
http://www.rfc-editor.org/rfc/rfc4271.txt
http://nms.lcs.mit.edu/ron/
http://nms.lcs.mit.edu/ron/
http://dx.doi.org/10.1109/MIC.2006.54

BIBLIOGRAPHY

[146] S. Saroiu, K. P. Gummadi, R. J. Dunn, S. D. Gribble, and H. M. Levy,
“An analysis of Internet content delivery systems,” SIGOPS Oper. Syst. Rev.,
vol. 36, no. SI, pp. 315–327, 2002.

[147] K. Savetz, N. Randall, and Y. Lepage, MBONE: Multicasting Tomorrow’s
Internet. Foster City, CA, USA: IDG Books Worldwide, Inc., 1995.

[148] M. Scheidegger, T. Braun, and F. Baumgartner, “Endpoint Cluster Identifi-
cation for End-to-End Distance Estimation,” in International Conference on
Communications, Istanbul, Turkey. IEEE, June 2006, CD-ROM.

[149] M. Schiely and P. Felber, “Peer-to-Peer Distribution Architectures Provid-
ing Uniform Download Rates,” in International Symposium on Distributed
Objects and Applications (DOA’05), Agia Napa, Cyprus, ser. Lecture Notes
in Computer Science, vol. 3761. Springer, October 2005, pp. 1083–1096.

[150] C. Schill, “SMCRoute,” 2010. [Online]. Available: http://www.cschill.de/
smcroute/

[151] H. Schulzrinne, “Voice Communication Across the Internet: A Network
Voice Terminal,” Department of Computer Science, University of Mas-
sachusetts, Tech. Rep., July 1992.

[152] J. Seedorf and E. Burger, “Application-Layer Traffic Optimization (ALTO)
Problem Statement,” Internet Engineering Task Force, RFC 5693, October
2009. [Online]. Available: http://www.rfc-editor.org/rfc/rfc5693.txt

[153] S. Shalunov and B. Teitelbaum, “Quality of Service and Denial of Service,”
in RIPQoS ’03: Proceedings of the ACM SIGCOMM workshop on
Revisiting IP QoS. New York, NY, USA: ACM Press, 2003, pp. 137–140.
[Online]. Available: http://dx.doi.org/10.1145/944592.944600

[154] P. Sharma, E. Perry, and R. Malpani, “IP multicast operational network
management: design, challenges, and experiences,” Network, IEEE, vol. 17,
no. 2, pp. 49 – 55, mar/apr 2003.

[155] S. Shenker, C. Partridge, and R. Guerin, “Specification of Guaranteed
Quality of Service,” Internet Engineering Task Force, RFC 2212, Sept.
1997. [Online]. Available: http://www.rfc-editor.org/rfc/rfc2212.txt

[156] S. Shenker and J. Wroclawski, “General Characterization Parameters for
Integrated Service Network Elements,” Internet Engineering Task Force,
RFC 2215, Sept. 1997. [Online]. Available: http://www.rfc-editor.org/rfc/
rfc2215.txt

[157] R. Sherwood, R. Braud, and B. Bhattacharjee, “Slurpie: A Cooperative Bulk
Data Transfer Protocol,” in Proceedings of IEEE INFOCOM, March 2004.

178

http://www.cschill.de/smcroute/
http://www.cschill.de/smcroute/
http://www.rfc-editor.org/rfc/rfc5693.txt
http://dx.doi.org/10.1145/944592.944600
http://www.rfc-editor.org/rfc/rfc2212.txt
http://www.rfc-editor.org/rfc/rfc2215.txt
http://www.rfc-editor.org/rfc/rfc2215.txt

BIBLIOGRAPHY

[158] Sirpent, “Portable High-density Network Perf. Analysis System: SmartBits
600B,” 2010. [Online]. Available: http://www.spirent.com/documents/
1374.pdf

[159] A. Sobeih, W. Yurcik, and J. C. Hou, “VRing: A Case for Building
Application-Layer Multicast Rings (Rather Than Trees),” in Proceedings of
the The IEEE Computer Society’s 12th Annual International Symposium on
Modeling, Analysis, and Simulation of Computer and Telecommunications
Systems (MASCOTS’04), Washington, DC, USA, 2004, pp. 437–446.

[160] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,” in
SIGCOMM ’01: Proceedings of the 2001 conference on Applications, tech-
nologies, architectures, and protocols for computer communications. New
York, NY, USA: ACM Press, 2001, pp. 149–160.

[161] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, F. M. Kaashoek,
F. Dabek, and H. Balakrishnan, “Chord: a scalable Peer-to-Peer
lookup Protocol for Internet Applications,” IEEE/ACM Trans. Netw.,
vol. 11, no. 1, pp. 17–32, February 2003. [Online]. Available:
http://dx.doi.org/10.1145/638334.638336

[162] L. Subramanian, I. Stoica, H. Balakrishnan, and R. H. Katz, “OverQoS:
offering Internet QoS using overlays,” SIGCOMM Comput. Commun.
Rev., vol. 33, no. 1, pp. 11–16, 2003. [Online]. Available: http:
//doi.acm.org/10.1145/774763.774764

[163] D. A. Tran, K. A. Hua, and T. Do, “ZIGZAG: an efficient Peer-to-Peer
Scheme for Media Streaming,” in INFOCOM 2003. Twenty-Second
Annual Joint Conference of the IEEE Computer and Communications
Societies. IEEE, vol. 2, 2003, pp. 1283–1292. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=1208964

[164] “Universal TUN/TAP driver,” 2010. [Online]. Available: http://vtun.
sourceforge.net/tun/

[165] “UPnP Device Architecture 1.0, UPnP Forum,” 2010. [Online]. Available:
http://www.upnp.org

[166] A. Varga, “The OMNET++ discrete event simulation system,” in Proceed-
ings of the European Simulation Multiconference. Prague, Czech Republic:
SCS – European Publishing House, June 2001, pp. 319–324.

[167] A. Varga and R. Hornig, “An overview of the OMNeT++ simulation envi-
ronment,” in Simutools ’08: Proceedings of the 1st international conference
on Simulation tools and techniques for communications, networks and sys-
tems & workshops. ICST, Brussels, Belgium, Belgium: ICST (Institute for

179

http://www.spirent.com/documents/1374.pdf
http://www.spirent.com/documents/1374.pdf
http://dx.doi.org/10.1145/638334.638336
http://doi.acm.org/10.1145/774763.774764
http://doi.acm.org/10.1145/774763.774764
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1208964
http://vtun.sourceforge.net/tun/
http://vtun.sourceforge.net/tun/
http://www.upnp.org

BIBLIOGRAPHY

Computer Sciences, Social-Informatics and Telecommunications Engineer-
ing), 2008, pp. 1–10.

[168] “VAST scalable Peer-to-Peer (P2P) Network for Virtual Environments
(Virtual Worlds, MMOG and Simulations),” 2010. [Online]. Available:
http://vast.sourceforge.net/

[169] “LBNL Audio Conferencing Tool (vat),” 2010. [Online]. Available:
http://ee.lbl.gov/vat/

[170] “vat visual audio tool,” 2010. [Online]. Available: ftp://ftp.ee.lbl.gov/
conferencing/vat

[171] “UCB/LBNL Video Conferencing Tool (vic),” 2010. [Online]. Available:
http://cobweb.ecn.purdue.edu/∼ace/mbone/mbone/vic/vic.html

[172] “vic (video conferencing tool),” 2010. [Online]. Available: ftp://ftp.ee.lbl.
gov/conferencing/vic

[173] Y. Vigfusson, H. Abu-Libdeh, M. Balakrishnan, K. Birman, and Y. Tock,
“Dr. Multicast: Rx for data center communication scalability,” in LADIS
’08: Proceedings of the 2nd Workshop on Large-Scale Distributed Systems
and Middleware. New York, NY, USA: ACM, 2008, pp. 1–12.

[174] “Video Lan Client,” 2010. [Online]. Available: http://www.videolan.org

[175] G. Wagenknecht, M. Anwander, M. Brogle, and T. Braun, “Reliable Multi-
cast in Wireless Sensor Networks,” in 7. GI/ITG KuVS Fachgespräch Draht-
lose Sensornetze. Freie Universität Berlin, Fachbereich Mathematik und
Informatik, September 2008, Tech. Report B 08-12.

[176] R. Wattenhofer, “3GP2P: 3rd Generation Peer-to-Peer Systems,” 2010.
[Online]. Available: https://www.rdb.ethz.ch/projects/project.php?proj id=
17835

[177] B. Waxman, “Routing of multipoint connections,” Broadband switching:
architectures, protocols, design, and analysis, pp. 347–352, 1991.

[178] “wb white board,” 2010. [Online]. Available: ftp://ftp.ee.lbl.gov/
conferencing/wb

[179] J. Wroclawski, “Specification of the Controlled-Load Network Element
Service,” Internet Engineering Task Force, RFC 2211, Sept. 1997. [Online].
Available: http://www.rfc-editor.org/rfc/rfc2211.txt

[180] C.-J. Wu, C.-Y. Li, and J.-M. Ho, “Improving the Download Time
of BitTorrent-Like Systems,” in Communications, 2007. ICC ’07. IEEE
International Conference on, 2007, pp. 1125–1129. [Online]. Available:
http://dx.doi.org/10.1109/ICC.2007.191

180

http://vast.sourceforge.net/
http://ee.lbl.gov/vat/
ftp://ftp.ee.lbl.gov/conferencing/vat
ftp://ftp.ee.lbl.gov/conferencing/vat
http://cobweb.ecn.purdue.edu/~ace/mbone/mbone/vic/vic.html
ftp://ftp.ee.lbl.gov/conferencing/vic
ftp://ftp.ee.lbl.gov/conferencing/vic
http://www.videolan.org
https://www.rdb.ethz.ch/projects/project.php?proj_id=17835
https://www.rdb.ethz.ch/projects/project.php?proj_id=17835
ftp://ftp.ee.lbl.gov/conferencing/wb
ftp://ftp.ee.lbl.gov/conferencing/wb
http://www.rfc-editor.org/rfc/rfc2211.txt
http://dx.doi.org/10.1109/ICC.2007.191

BIBLIOGRAPHY

[181] L. Xiao, Y. Liu, W. Gu, D. Xuan, and X. Liu, “Mutual anonymous Overlay
Multicast,” J. Parallel Distrib. Comput., vol. 66, no. 9, pp. 1205–1216, 2006.

[182] S. Yan, M. Faloutsos, and A. Banerjea, “QoS-aware Multicast routing
for the Internet: the design and evaluation of QoSMIC,” IEEE/ACM
Trans. Netw., vol. 10, no. 1, pp. 54–66, 2002. [Online]. Available:
http://dx.doi.org/10.1109/90.986530

[183] J. Zhang, L. Liu, C. Pu, and M. Ammar, “Reliable Peer-to-Peer End System
Multicasting through Replication,” in Proceedings of the Fourth Interna-
tional Conference on Peer-to-Peer Computing (P2P’04), Washington, DC,
2004, pp. 235–242.

[184] R. Zhang and Y. C. Hu, “Borg: a hybrid Protocol for scalable Application-
Level Multicast in Peer-to-Peer Networks,” in NOSSDAV ’03: Proceedings
of the 13th international workshop on Network and operating systems
support for digital audio and video, New York, NY, USA, 2003, pp.
172–179. [Online]. Available: http://doi.acm.org/10.1145/776322.776349

[185] X. Y. Zhang, Q. Zhang, Z. Zhang, G. Song, and W. Zhu, “A Construction
of Locality-Aware Overlay Network: mOverlay and Its Performance,” IEEE
journal on selected areas in communications, vol. 22, no. 1, pp. 18 – 28,
January 2004.

[186] X. Zhang, X. Li, and Q. Zhao, “Service and Management for Multicast
Based Audio/Video Collaboration System on CERNET,” in ICCS ’07: Pro-
ceedings of the 7th international conference on Computational Science, Part
IV. Berlin, Heidelberg: Springer-Verlag, 2007, pp. 853–856.

[187] X. Zhang, D. Liu, and X. Li, “Design and Implement Controllable Multi-
cast Based Audio/Video Collaboration,” in ICCS ’07: Proceedings of the
7th international conference on Computational Science, Part IV. Berlin,
Heidelberg: Springer-Verlag, 2007, pp. 701–704.

[188] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph, “Tapestry: An Infrastruc-
ture for Fault-tolerant Wide-area Location and Routing,” Tech. Rep., 2001.

[189] Y. Zhao, Y. An, C. Wang, and Y. Gao, “A QoS-Satisfied Interdomain Over-
lay Multicast Algorithm for Live Media Service Grid,” in Grid and Cooper-
ative Computing - GCC 2005, 2005, pp. 13–24.

[190] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, and J. D. Kubiatowicz,
“Bayeux: an architecture for scalable and fault-tolerant wide-area data
dissemination,” in NOSSDAV ’01: Proceedings of the 11th international
workshop on Network and operating systems support for digital audio and
video. New York, NY, USA: ACM Press, 2001, pp. 11–20. [Online].
Available: http://dx.doi.org/10.1145/378344.378347

181

http://dx.doi.org/10.1109/90.986530
http://doi.acm.org/10.1145/776322.776349
http://dx.doi.org/10.1145/378344.378347

List of Publications

Referred Papers (Journals, Conferences, Workshops)

Marc Brogle, Alican Geycasar, Torsten Braun: MCFTP – Implementation and
Evaluation of a Multicast File Transfer Protocol, to be submitted for publication

Marc Brogle, Dominic Paprtitz, Dragan Milic, Torsten Braun: MCFTP - A Mul-
ticast File Transfer Protocol for Efficient Data Dissemination, to be submitted for
publication

Thomas Staub, Markus Anwander, Kurt Baumann, Torsten Braun, Marc Brogle,
Kirsten Dolfus, Christian Félix, Paul Kim Goode: Connecting Remote Sites to
the Wired Backbone by Wireless Mesh Access Networks, 16th European Wireless
Conference, Lucca, Italy , April 12 - 15, 2010

Marc Brogle, Andreas Rüttimann, Torsten Braun: Quality of Service for Overlay
Multicast in Chord, The Fifteenth IEEE Symposium on Computers and Communi-
cations (ISCC’10), Riccione, Italy, June 22 - 25, 2010

Marc Brogle, Sebastian Barthlomé, Torsten Braun: Quality of Service for Multi-
casting using NICE, 25th Symposium On Applied Computing (ACM SAC 2010),
Sierre, Switzerland, March 22 - 25, 2010, ACM

Thomas Staub, Markus Anwander, Kurt Baumann, Torsten Braun, Marc Brogle,
Pascal Dornier, Christian Félix and Paul Kim Goode: Wireless Mesh Networks
- Connecting Remote Sites, SWITCH Journal, Zurich, Switzerland, March, 2010,
pp. 10–12

Marc Brogle, Luca Bettosini, Torsten Braun: Quality of Service for Multicast-
ing in Content Addressable Networks, 12th IFIP/IEEE International Conference
on Management of Multimedia and Mobile Networks and Services (MMNS 09),
Telecom Italia Future Centre, Venice, Italy, October 26 - 27, 2009, pp. 170–175,
Springer LNCS 5842, ISBN 978-3-642-04993-4

Marc Brogle, Luca Bettosini, Dragan Milic, Torsten Braun: A Performance Com-
parison of Native IP Multicast and IP Multicast Tunneled through a Peer-to-Peer
Overlay Network, 2009 International Workshop on Peer-To-Peer Networking
(P2PNet’09) at International Conference on Ultra Modern Telecommunications
(ICUMT) 2009, St. Petersburg, Russia, October 12 - 14, 2009, ISBN 9781-4244-
3941-6

183

BIBLIOGRAPHY

Marc Brogle, Dragan Milic, Torsten Braun: Multicast-Middleware der Universität
Bern, Schweiz, resultierend aus EU FP6 IST IP “EuQoS”, PIK - Praxis der Infor-
mationsverarbeitung und Kommunikation, Vol. 32, Nr. 3, October 5, 2009, pp.
176–178, Walter de Gruyter, ISSN 0930-5157 Gewinner des “KuVS Communica-
tion Software Preis” 2009

Thomas Staub, Marc Brogle, Kurt Baumann, Torsten Braun: Wireless Mesh Net-
works for Interconnection of Remote Sites to Fixed Broadband Networks, Third
ERCIM Workshop on eMobility, University of Twente, Enschede, The Netherlands,
May 27 - 28, 2009, pp. 97–98, ISBN 978-90-365-2846-7

Marc Brogle, Dragan Milic, Torsten Braun: Quality of Service for Peer-to-Peer
based Networked Virtual Environments, P2P-NVE 2008 Workshop at the 14th
IEEE International Conference on Parallel and Distributed Systems (ICPADS 08),
Melbourne, Victoria, Australia, December 8 - 10, 2008, pp. 847–852, IEEE, ISBN
978-0-7695-3434-3

Gerald Wagenknecht, Markus Anwander, Marc Brogle, Torsten Braun: Reliable
Multicast in Wireless Sensor Networks, 7. GI/ITG KuVS Fachgespräch Drahtlose
Sensornetze, Berlin, Germany, September 25 - 26, 2008, pp. 69–72, Freie Univer-
sität Berlin, Fachbereich Mathematik und Informatik, Tech. Report B 08-12

Torsten Braun, Marc Brogle, Patrick Lauer: Peer-to-Peer-Netze: Informationen
effizient im Internet verbreiten, Bulletin SEV/VSE, Vol. 07, Nr. 21, December,
2007, pp. 9–12, Electrosuisse, ISSN 1660-6738

Marc Brogle, Dragan Milic, Torsten Braun: Supporting IP Multicast Streaming
Using Overlay Networks, QShine: International Conference on Heterogeneous
Networking for Quality, Reliability, Security and Robustness, Vancouver, British
Columbia, Canada, August 14 - 17, 2007, ICST, ISBN 978-1-59593-756-8

Marc Brogle, Dragan Milic, Torsten Braun: QoS Enabled Multicast for Structured
P2P Networks, P2PM Workshop at the 4th IEEE Consumer Communications and
Networking Conference, Las Vegas, NV, USA, January 11 - 13, 2007, pp. 991–995,
IEEE, ISBN 1-4244-0667-6

Dragan Milic, Marc Brogle, Torsten Braun: Video Broadcasting using Overlay
Multicast, Seventh IEEE International Symposium on Multimedia (ISM 2005),
Irvine, California, USA, December 12 - 14, 2005, pp. 515–522, IEEE Computer
Society Press, ISBN 0-7695-2489-3

Manuel Günter, Marc Brogle, Torsten Braun: Secure Communication: A new Ap-
plication for Active Networks, International Conference on Networking (ICN’01),
Colmar, France, July 9 - 13, 2001, pp. 206–216, Springer LNCS 2094, ISBN
3-540-42303-6

Editorial Activities (Workshop Proceedings, Technical Reports)

Marc Brogle, Torsten Braun: BeNeFri Summer School 2009 on Dependable Sys-
tems, Münchenwiler, Switzerland, September 8, 2009, IAM-09-006

184

BIBLIOGRAPHY

Marc Brogle, Geert Heijenk, Torsten Braun, Dimitri Konstantas: Proceedings of
the Third ERCIM Workhop on eMobility, University of Twente, Enschede, The
Netherlands, May 27 - 28, 2009, ISBN 978-90-365-2846-7

Marc Brogle, Dragan Milic, Markus Anwander, Gerald Wagenknecht, Markus
Waelchli, Torsten Braun, R. Kummer, Markus Wulff, R. Standtke, H. Sturzrehm,
E. Riviere, P. Felber, S. Krenn, C. Ehret, C, Latze, Philipp Hurni, Thomas Staub:
BeNeFri Summer School 2008 on Dependable Systems, Quarten, Switzerland, Novem-
ber 18, 2008, IAM-08-003

Torsten Braun, Ulrich Ultes-Nitsche, Marc Brogle, Dragan Milic, Patrick Lauer,
Thomas Staub, Gerald Wagenknecht, Markus Anwander, Markus Waelchli, Markus
Wulff, Carolin Latze, Michael Hayoz, Christoph Ehret, Thierry Nicola: RVS Re-
treat 2007 at Quarten, Quarten, Switzerland, December, 2007, IAM-07-004

Unreferred Papers (Technical Reports, Project Deliverables)

Marc Brogle: Quality of Service for “NICE” Overlay Multicasting, BeNeFri Sum-
mer School 2009 on Dependable Systems, Münchenwiler, Switzerland, September
8, 2009, IAM-09-006

Marc Brogle: OM-QoS: Overlay Multicast Quality of Service, BeNeFri Summer
School 2008 on Dependable Systems, Quarten, Switzerland, November 18, 2008,
IAM-08-003

Wojciech Burakowski, Jordi Mongay Batalla, Marc Brogle, et al: Report on scala-
bility evaluation of EuQoS system, EuQoS Report, January 25, 2008

José Enrı́quez, Marı́a Ángeles Callejo, Marc Brogle, Dragan Milic, et al: Annex
to D1.2.2: EuQoS Architecture update for , Annex to EuQoS Deliverable D1.2.2,
CEC Deliverable Number 004503/TID/DS/D1.2.2/A2 - ANNEX, December 28,
2007

José Enrı́quez, Marı́a Ángeles Callejo, Marc Brogle, Dragan Milic, et al: Eu-
QoS Architecture update for Phase 2, EuQoS Deliverable D1.2.2, CEC Deliverable
Number 004503/TID/DS/D1.2.2/A2, December 28, 2007

Donal Morris, Marc Brogle, Dragan Milic, et al: Annex to D1.2.3: Exploitation
Cookbook, Final, EuQoS Deliverable D1.2.3, CEC Deliverable Number 004503/
TID/DS/D1.2.3/A1 - ANNEX, December 28, 2007

Halina Tarasiuk and Wojciech Burakowski, Marc Brogle, Dragan Milic, et al:
Methodology for testing EuQoS system, EuQoS Deliverable D2.2.5, CEC Deliv-
erable Number 004503/WUT/DS/D2.2.5./A2, December 28, 2007

Marı́a Ángeles Callejo, José Enrı́quez, Marc Brogle, Dragan Milic, et al: Annex
1 to D3.2.5: Implementation Final Report - Detailed design, EuQoS Deliverable
D3.2.5, CEC Deliverable Number 004503/ED/DS/D3.2.5/A1 - Annex 1, December
28, 2007

185

BIBLIOGRAPHY

Marı́a Ángeles Callejo, José Enrı́quez, Marc Brogle, Dragan Milic, et al: Annex
2 to D3.2.5: Implementation Final Report - EuQoS user’s manual, EuQoS De-
liverable D3.2.5, CEC Deliverable Number 004503/ED/DS/D3.2.5/A1 - Annex 2,
December 28, 2007

Olivier Dugeon, Marc Brogle, Dragan Milic, et al: Prototype P#4 tests report ,
EuQoS Deliverable D5.2.3, CEC Deliverable Number 004503/FTRD/DS/D5.2.3/
A1, December 28, 2007

Olivier Dugeon, Marc Brogle, et al: EuQoS System Demonstrations Report for
Phase II, EuQoS Deliverable D5.2.4, CEC Deliverable Number 004503/FTRD/
DS/D5.2.4/A1, December 28, 2007

Thomas Staub, Marc Brogle, et al: Report on teaching experiences of the e-learning
course, the improvements to be done and the improvements achieved, EuQoS De-
liverable D6.2.4, CEC Deliverable Number 004503/UBern/DS/D6.2.4/A1, Decem-
ber 28, 2007

Marc Brogle: OM-QoS: Overlay Multicast Quality of Service, RVS Retreat 2007
at Quarten, December, 2007, IAM-07-004

Pascal Le Guern, Olivier Dugeon, Marc Brogle, Dragan Milic, et. al.: Trial report
release 2, EuQoS Deliverable D5.1.5, CEC Deliverable Number 004503/FTRD/
DS/D5.1.5/A1, February 15, 2007

Donal Morris, Thomas Staub, Marc Brogle, et. al.: Second summary of standard-
ization documents, EuQoS Deliverable D6.2.2, CEC Deliverable Number 004503/
REDZINC/DS/D6.2.2/A1, January 31, 2007

José Enrı́quez, Marı́a Ángeles Callejo, Marc Brogle, Dragan Milic, et. al.: Eu-
QoS Architecture update for Phase 2, EuQoS Deliverable D1.2.2, CEC Deliverable
Number 004503/TID/DS/D1.2.2/A1, January 31, 2007

José Enrı́quez, Marı́a Ángeles Callejo, Marc Brogle, Dragan Milic, et. al.: Annex
to D1.2.2: EuQoS Architecture update for Phase 2, EuQoS Deliverable D1.2.2,
CEC Deliverable Number 004503/TID/DS/D1.2.2/A1 - ANNEX, January 31, 2007

Thomas Staub, Marc Brogle, et. al.: Report on teaching experiences of the e-
learning course, the improvements to be done and the improvements achieved as
well as the newly produced e-learning modules, EuQoS Deliverable D6.2.1, CEC
Deliverable Number 004503/UoB/DS/D6.2.1/A1, December 26, 2006

Pascal Le Guern, Olivier Dugeon, Marc Brogle, Dragan Milic, et. al.: Testbed inte-
gration test plan Release 2, EuQoS Deliverable D5.1.4, CEC Deliverable Number
004503/FTRD/DS/D5.1.4/A2, December 4, 2006

Mark Günther, Martin Potts, Marc Brogle, Thomas Staub, et al.: Report on Raising
Public Participation and Awareness, EuQoS Deliverable D6.1.6, CEC Deliverable
Number 004503/Telscom/DS/D6.1.6/A1, April 30, 2006

186

BIBLIOGRAPHY

Pascal Le Guern, Marc Brogle, Dragan Milic, et al.: Trial Report, EuQoS Deliv-
erable D5.1.5, CEC Deliverable Number 004503/FTRD/DS/D5.1.5/A1, April 26,
2006

Pascal Le Guern, Marc Brogle, Dragan Milic, et. al.: Testbed integration test plan,
EuQoS Deliverable D5.1.4, CEC Deliverable Number 004503/FTRD/DS/D5.1.4/
A1, April 13, 2006

Pascal Le Guern, Marc Brogle, Dragan Milic, et al.: Connectivity and Performance
Tests Report for Local and Pan-European (across GEANT) Testbed Design for the
Trial, EuQoS Deliverable D5.1.2, CEC Deliverable Number 004503/FTRD/DS/
D5.1.2/A3, February 6, 2006

Pascal Le Guern, Marc Brogle, Dragan Milic, et. al.: First individual based EuQoS
System test report, EuQoS Deliverable D5.1.3, CEC Deliverable Number 004503/
FTRD/DS/D5.1.3/A2, February 6, 2006

Laurent Baresse, Enrico Angori, Giuseppe Martufi, Marc Brogle, Dragan Milic,
et. al.: Extended QoS API and Middleware layer for phase 1 application use-cases,
EuQoS Deliverable D3.1.1, CEC Deliverable Number 004503/Partner/DS/D3.1.1/
A2, August 1, 2005

José Enrı́quez, Marc Brogle, Dragan Milic, et. al.: Business models and system de-
sign specification, EuQoS Deliverable D1.1.3, CEC Deliverable Number 004503/
TID/DS/D1.1.3/A2, August 1, 2005

Marc Brogle, Dragan Milic: MC-FTP: A Multicast File Transfer Protocol for Ef-
ficient Data Dissemination, RVS Retreat 2005 at Griesalp, June 27 - 30, 2005,
IAM-05-002

Enrico Angori, Giuseppe Martufi, Marc Brogle, Dragan Milic, et. al.: System
Design: Functions, Interfaces Specification, EuQoS Deliverable D1.1.2, CEC De-
liverable Number 004503/TID/DS/D1.1.2/A2, May 13, 2005

Régis Frechin, Pascal Le Guern, Marc Brogle, Dragan Milic, et al.: Technical re-
quirements for the trial, tasks and scheduling, EuQoS Deliverable D5.1.1, 004503/
FTRD/DS/D5.1.1/A1, March 1, 2005

Pascal Le Guern, Marc Brogle, Dragan Milic, et al.: First Individual Based Eu-
QoS System Test Report, EuQoS Deliverable D5.1.2, CEC Deliverable Number
004503/FTRD/DS/D5.1.2/A2, March 1, 2005

José Enrı́quez, Jorge Andrés, Marc Brogle, Dragan Milic, et. al.: Definition of
Business, Communication and QoS models - Intermediate, EuQoS Deliverable
D1.1.1, CEC Deliverable Number 004503/TID/DS/D1.1.1/A2, March 1, 2005

José Enrı́quez, Jorge Andrés, Marc Brogle, Dragan Milic, et. al.: Annex to D1.1.1:
Definition of Business, Communication and QoS models - Intermediate, EuQoS
Deliverable D1.1.1, CEC Deliverable Number 004503/TID/DS/D1.1.1/A1, March
1, 2005

187

BIBLIOGRAPHY

Manuel Günter, Marc Brogle, Torsten Braun: Secure Communication: a New Ap-
plication for Active Networks, July, 2000, IAM-00-007

188

� � � � � � � ���	

���������	
������
���������

�������������

��	������������

�	����������

!�"#��������� ���	������� �����������$�����	�	��������

%�	�����������	�

���	��&����������	�

&"#���������#�����	' ������ �"#�����������	 �����	������(��)���	���������������������������

�����������*����������	+	�#��
�������	�����'�����,-�	��"#���������������������*�������

��	�������,�����'�#����"#��������"#��������+��"#��	
�������	������	'������������)�����

��������	����������	�����./����	+�0�!�"#�	���������1���	+	���(����
���2	�����033/�

4�������5��(����	�	�+���6�	+���������)�1����������������	�(�����#�����%�	�������"#	��	���	

7�	�$�	��

5�	���"#��)	

Brogle Marc

95-101-085

Informatik

X

IP Multicast using Quality of Service

enabled Overlay Networks

Prof. Dr. Torsten Braun

Bern, 29.04.2010

Curriculum Vitae

Personal Details

Name Marc Brogle

Date of Birth December 25, 1973

Address Centralbahnplatz 12

CH-4051 Basel, Switzerland

Hometown Sisseln AG, Switzerland

Nationality Swiss

Education

2004 – 2010 Ph.D. student in Computer Science at the University of
Bern, Switzerland

2004 Master of Science in Computer Science, University of
Bern, Switzerland

1995 – 2001 Study of Computer Science at the University of Bern, mi-
nor fields in Mathematics and Microelectronics

1988 – 1994 Grammar school, Biel

191

	Contents
	List of Figures
	List of Tables
	Introduction
	Overview
	Problem Statement
	Quality of Service for Overlay Multicast
	Providing IP Multicast Services via P2P / Overlay Networks
	Efficient Data Dissemination using Cooperation
	Contributions
	Thesis Outline

	Related Work
	Introduction
	Multicasting
	Overview
	IP Multicast
	MBONE
	Overlay Multicast
	Multicast Applications
	Communication Restrictions for Multicasting

	Peer-to-Peer Networks
	Overview
	RON
	Pastry
	Tapestry
	CAN
	Chord

	Applications of P2P Overlay Networks
	Overview
	Content Distribution Networks
	Slurpie
	Bullet
	FastReplica
	FTP-M
	BitTorrent
	GridFTP
	ALTO

	Application Layer Multicast
	Overview
	Narada
	Scribe
	Bayeux
	Multicast in CAN
	Multicast in Chord
	NICE
	ZigZag
	VRing
	Borg
	PeerCast
	Dr. Multicast

	Extensions and Application Frameworks using ALM
	Overview
	Video on Demand using Multicast
	Selectcast
	Splitstream

	Quality of Service
	Overview
	Quality of Service in the Internet
	Quality of Service for P2P/ALM

	Conclusion

	Quality of Service for Overlay Multicast
	Introduction
	Architecture and Design of OM-QoS
	Overview
	QoS for Multicast Trees Design Principles
	Protocol Dependent Approach
	QoS for Scribe/Pastry
	QoS for Bayeux
	QoS for NICE
	QoS for Chord Multicasting
	Protocol Independent Approach

	Evaluation Scenarios for OM-QoS
	Overview
	Scribe/Pastry Evaluation Scenarios
	Common CAN / NICE / Chord Evaluation Scenarios
	CAN Evaluation Scenarios
	NICE Evaluation Scenarios
	Chord Evaluation Scenarios

	Evaluation Results for OM-QoS
	Overview
	Scribe/Pastry Evaluation Results
	CAN Evaluation Results
	NICE Evaluation Results
	Chord Evaluation Results
	Summary of Evaluation Results

	Conclusion

	Providing IP Multicast Services via P2P / Overlay Networks
	Introduction
	Architecture and Design of the Multicast Middleware
	Overview
	Providing an IP Multicast Interface for Standard Applications
	Mapping IP Multicast Addresses and Messages to ALM
	Security and Privacy Considerations when using ALM

	Implementation of the Multicast Middleware
	Overview
	Using Freepastry for P2P/ALM Topology Management
	Efficient P2P Protocol for Multicast Data Transport
	Multicast Subscription Handling and Forwarding

	Evaluation Scenarios for the Multicast Middleware
	Overview
	Functional Test Evaluation Scenarios
	Throughput and Loss Evaluation Scenarios
	Delay and Loss Evaluation Scenarios

	Evaluation Results for the Multicast Middleware
	Overview
	Functional Test Evaluation Results
	Throughput and Loss Evaluation Results
	Delay and Loss Evaluation Results

	Conclusion

	Efficient Data Dissemination using Cooperation
	Introduction
	Architecture and Design of MCFTP
	Overview
	FileDescriptors
	FileManagementGroup
	SendingGroups
	Strategies to Determine SendingGroups

	Evaluation Scenarios for MCFTP
	Overview
	NS2 Network Simulator Evaluation Scenarios
	Prototype Implementation Evaluation Scenarios

	Evaluation Results for MCFTP
	Overview
	NS2 Network Simulator Evaluation Results
	Prototype Implementation Evaluation Results

	Conclusion

	Conclusion and Outlook
	Conclusion
	Outlook

	Acronyms
	Bibliography

