
IMPLEMENTING AND EVALUATING
COMMUNICATION PROTOCOLS FOR RELIABLE

MULTICAST IN WIRELESS SENSOR
NETWORKS

Bachelorarbeit
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Sandro Beffa
2012

Leiter der Arbeit:
Professor Dr. Torsten Braun

Institut für Informatik und angewandte Mathematik

Contents

Contents i

List of Figures iii

Code Listings v

List of Tables vii

1 Introduction 1
1.1 Motivation . 1
1.2 Scenario . 3
1.3 Goal . 4
1.4 Structure of the Thesis . 4

2 Related Work 5
2.1 TARWIS . 5
2.2 TmoteSky Sensor Nodes . 5
2.3 Contiki Operating System . 7

2.3.1 Contiki Processes and Scheduling . 7
2.3.2 The µIP Stack . 8
2.3.3 RIME . 9
2.3.4 MAC Protocols . 10
2.3.5 Energy Measurement . 12

3 Design of Communication Protocols for Reliable Multicast 15
3.1 Protocol Stack . 15
3.2 NACK-Based Reliability Mechanism . 16
3.3 Caching Strategies . 17
3.4 Protocols . 18

3.4.1 Communication Phases . 18
3.4.2 Flooding . 19
3.4.3 Multipoint Relay . 22
3.4.4 Directed Diffusion . 25

i

4 Implementation 29
4.1 Caching . 29
4.2 Payload Splitting . 30
4.3 Packet Queue . 30
4.4 Protocols . 31

4.4.1 Flooding . 31
4.4.2 Multipoint Relay . 33
4.4.3 Directed Diffusion . 37

5 Evaluation 43
5.1 External Factors . 43
5.2 Testbed Topologies . 43
5.3 Evaluation Metrics . 45

5.3.1 Transmission Time . 45
5.3.2 Energy . 46
5.3.3 Sent Frames and Collisions . 46

5.4 Evaluation Procedure . 47
5.4.1 Reference Protocol . 48

5.5 Results . 49
5.5.1 Transmission Time . 49
5.5.2 Energy . 53
5.5.3 Sent Frames and Collisions . 58
5.5.4 Summary of Results . 63

6 Conclusions and Future Work 65
6.1 Conclusions . 65
6.2 Future Work . 65

Bibliography 67

ii

List of Figures

1.1 MARWIS architecture . 2

2.1 TARWIS architecture . 5
2.2 Front side of the TmoteSky sensor node . 6
2.3 Unicast transmission using ContikiMAC . 11
2.4 Broadcast transmission using ContikiMAC 12

3.1 Used protocol stack . 15
3.2 NACK message . 16
3.3 ACK message . 17
3.4 The four communication phases . 18
3.5 The set receiver message . 19
3.6 Broadcast storm . 20
3.7 The data message . 20
3.8 The sequence diagram for Flooding with no caching 21
3.9 MPR set . 22
3.10 The hello message . 23
3.11 Neighborhood discovery using hello messages 23
3.12 Heuristic used to evaluate the MPR set . 24
3.13 The forwarder message . 24
3.14 The interest message . 25
3.15 The sequence diagram for the initialization phase of Directed Diffusion 26
3.16 The reinforcement message . 26
3.17 Gradient setup . 27

5.1 BigNet scenario . 44
5.2 SmallNet scenario . 45
5.3 Transmission time for 1000 bytes in the BigNet scenario using NullMAC . . . 49
5.4 Transmission time for 1000 bytes with caching in the SmallNet scenario 51
5.5 Transmission time for 70 bytes in the BigNet scenario 52
5.6 Consumed energy for transmitting 1000 bytes 53
5.7 The biased data of MPR with proactive caching 54
5.8 Linear regression for the consumed energy of Flooding with caching 55
5.9 Consumed energy for transmitting 70 bytes 56

iii

5.10 Consumed energy for transmitting 1000 bytes in the SmallNet scenario 57
5.11 Sent frames for transmitting 1000 bytes in the BigNet scenario 58
5.12 Collisions while transmitting 1000 bytes BigNet scenario 59
5.13 Sent frames for transmitting 70 bytes in the BigNet scenario 60
5.14 Collisions while transmitting 70 bytes in the BigNet scenario 60
5.15 Sent frames for transmitting 1000 bytes in the SmallNet scenario 61
5.16 Collisions while transmitting 1000 bytes in the SmallNet scenario 62

iv

Code Listings

2.1 Sending an UDP packet . 9
2.2 Receiving an UDP packet . 9
4.1 Caching of a fragment . 29
4.2 Sender process of Flooding . 31
4.3 Receiver process of Flooding . 32
4.4 Sender process of MPR . 33
4.5 MPR set evaluation . 34
4.6 Receiver process of MPR . 35
4.7 Sender process of Directed Diffusion . 37
4.8 Evaluation of the received interest messages 38
4.9 Receiver process of Directed Diffusion . 39
5.1 mac call sent callback interface of Contiki OS 46
5.2 Output of the makePlotData script . 47

v

List of Tables

4.1 Exemplary content of the forwarderCount array 35

5.1 Spearman’s rank correlation coefficients for all configurations of Flooding, MPR
and UDP unicast for a payload size of 1000 bytes 55

5.2 Spearman’s rank correlation coefficients for all configurations of Flooding, MPR
and UDP unicast for a payload size of 70 bytes 56

5.3 Spearman’s rank correlation coefficients for all configurations of the SmallNet
scenario . 57

vii

Chapter 1

Introduction

1.1 Motivation

Tiny and cheap embedded systems equipped with a radio interface observing a border region
is a practical application of a so-called wireless sensor network (WSN). With decreasing size
and cost of integrated circuits (ICs), the number of possible applications for WSNs is increasing
every day.

Wireless sensor networks are of great and emerging interest to today’s research. They can be
characterized as a network built of tiny and cheap embedded systems, which have very limited
resources available [1]. These embedded systems are referred to as sensor nodes (SNs) and are
acting autonomously: They are deployed without an external power supply and are equipped
only with an on-board battery. Energy is therefore a very scarce resource. But also the computa-
tional power of the sensor nodes is very limited. Additionally to the necessary radio device, the
sensor nodes are equipped with different sensors to accomplish their tasks.

There is a great number of possible applications of a WSN, reaching from military to civil
usage. With increasing size of a WSN, managing and monitoring each individual sensor node
during its lifetime becomes more difficult, especially when different sensor nodes platforms are
used. To simplify the management of heterogeneous WSNs, MARWIS (Management Architec-
ture for Wireless Sensor Networks) [2] was developed at the University of Bern.

MARWIS introduces the usage of a wireless mesh network (WMN) as a backbone for build-
ing a heterogeneous WSN. Other than a WSN, a WMN is built of more powerful hardware. The
nodes are typically equipped with more powerful central processing units (CPUs) and radio de-
vices. Additionally these wireless mesh nodes also usually support wired networking. MARWIS
features the ability to monitor, configure and update every individual sensor node. The possibil-
ity to update a sensor node over the air is of great importance to simplify the maintenance of a
WSN. The update mechanism of MARWIS is capable of updating specific application parts of
individual sensor nodes without having to replace the whole operating system.

1

The architecture of MARWIS consists of three components:

• management station

• WSN manager

• SN agent

Figure 1.1: MARWIS architecture [2]

Figure 1.1 shows a heterogeneous WSN scenario using WMNs as backbones to different WSN
subnets. The management station is a common desktop PC connected to the Internet. The black
circles symbolize the wireless mesh nodes, which are meshed to each other. The black circle
is the mesh gateway and is directly connected to the Internet. The WSN manager runs on the
mesh nodes and manages specific sensor nodes. The green, red and yellow shapes are the actual
sensor nodes, on which the SN agent runs. This SN agent is responsible for executing the specific
management tasks on the sensor node. Each shape represents a different sensor node platform,
meaning that the sensor nodes are built of different CPU architectures and radio devices. The
MARWIS architecture introduces a segmentation of the whole heterogeneous WSN into various
smaller homogeneous WSN subnets.

Each sensor node supports TCP/IP and is therefore reachable from the Internet. One specific
sensor node is used as a gateway to the WSN subnet and is directly connected to the wireless
mesh node. The mesh node establishes a SLIP 1 connection to the sensor node and forwards
data addressed to this WSN subnet to the attached sensor node.
To support code updates in one specific WSN subnet, there must be the possibility to distribute
the code update fast and energy efficient in the WSN. The Sensor Node Overlay Multicast pro-
tocol (SNOMC) [3] is a overlay multicast protocol designed to efficiently distribute data in a

1 “Serial Line Internet Protocol” connections encapsulate a common IP packet and add a special “SLIP END”
character. Data is transmitted via a RS232 connection to the attached destination. There the “SLIP END” character
is removed and the IP packet is forwarded as usual.

2

WSN. The main goal of SNOMC is to avoid redundant unicast connections, thus minimizing
the energy consumption of the update process. To accomplish this, the user datagram protocol
(UDP) was chosen as transport protocol, because of the slight overhead UDP offers. Since UDP
connections are stateless and not reliable, SNOMC comes with its own reliability mechanism
based on NACKs and closing positive ACKs. Three different caching strategies are supported:

• only on the source node

• on the branching nodes

• on every intermediate node

SNOMC was implemented on top of the Contiki OS [4]. To evaluate SNOMC in a real world
scenario, SNOMC has to be compared to other common communication protocols used in
WSNs, for example Directed Diffusion (DD) [5], Multipoint Relay (MPR) [6] or Flooding.
Since neither of these protocols are available for the Contiki OS, they needed to be implemented.
That leads to the motivation of this thesis: Three common communication protocols are imple-
mented on top of the Contiki OS and evaluated, so SNOMC can be compared to the data gathered
in a real world scenario.

1.2 Scenario

The main purpose of the implemented communication protocols is to distribute code updates in
a WSN. The actual size of the code update was limited to 1000 bytes, since Contiki OS is able
of updating only the application part of a sensor node. In contrast to common traffic found in
WSNs, the traffic used to transport binary data for a code update is bursty: There is no sparse
and continuous traffic flow, instead there is short and very intensive traffic. Three common
communication protocols are implemented on top of Contiki OS:

• Flooding

• Multipoint Relay

• Directed Diffusion

Contiki is equipped with a very small TCP/IP stack called µIP, which brings TCP/IP networking
to the world of embedded systems. As the case with SNOMC, we chose UDP as transport
protocol on top of IP and implemented the communication protocols on the application layer.
The same NACK-based reliability mechanism used in SNOMC is implemented to reduce WSN
traffic. Similar to SNOMC, the implemented communication protocols support three caching
strategies:

• no caching

• every intermediate node caches data

• proactive caching: the intermediate nodes are actively requesting lost data

3

To get real world data, the implemented communication protocols need to be evaluated in a
real world WSN. Mentioned communication protocols were therefore evaluated in a real WSN
testbed using TARWIS [7], which is a testbed management architecture for WSNs located and
developed at the University of Bern. Since the size of the maximum transmission unit (MTU)
of the most radio transmitters found in sensor nodes is smaller than the size of the chosen pay-
loads, these payloads have to be split into various fragments. Two different payload sizes were
evaluated: 70 bytes, which is equal to one UDP packet, and 1000 bytes, which is equal to 15
UDP packets depending on the chosen protocol design.

Energy-efficiency is crucial for a real world communication protocol used in a WSN, because
of the limited energy resources of the sensor nodes. Since radio communication consumes over
90% of the total energy, the only way to save energy is to disable the radio device for short
periods. Special energy optimized media access layer (MAC) protocols take care of this.

To evaluate the impact of these energy optimized MAC protocols, the communication pro-
tocols were evaluated with two different MAC protocols:

• NullMAC

• ContikiMAC

1.3 Goal

The goal of this Bachelor thesis is to implement the three mentioned communication protocols
on top of the Contiki OS, running on TmoteSky sensor nodes. The implemented communica-
tion protocols shall be evaluated in a real world WSN, located at the University of Bern. As
evaluation metrics shall be used:

• the time to transmit data to all receivers

• the number of sent frames and the number of collisions on the MAC layer

• the used energy for transmitting data to all receivers

Along with these evaluation metrics, the implemented communication protocols shall be evalu-
ated with the MAC protocols mentioned above.

1.4 Structure of the Thesis

This bachelor thesis is structured as follows: The second chapter introduces important related
work, especially TARWIS and the Contiki OS. The third chapter describes the design of the
implemented communication protocols in detail: the protocol stack, the reliability mechanism
and the sequence diagrams of the communication protocols. The fourth chapter focuses on
technical aspects: The actual implementation of the communication protocols is described here.
The fifth chapter is dedicated to the evaluation and the discussion of the obtained results. Finally,
the sixth chapter concludes the work done and discusses future work.

4

Chapter 2

Related Work

2.1 TARWIS

The Testbed Management Architecture for Wireless Sensor Network Testbeds (TARWIS) [7] is a
testbed management solution, which simplifies the setup of WSN-based experiments: Equipped
with a web-based graphical user interface (GUI), TARWIS allows the user to upload software
images for the used sensor nodes and to schedule experiments. TARWIS takes care of flashing
the software image to the chosen sensor nodes and of gathering the output of these sensor nodes.

Figure 2.1: TARWIS architecture [7]

Figure 2.1 illustrates the system architecture of TARWIS. The main component is a por-
tal server, on which the TARWIS controller, a database management system (DBMS) and the
TARWIS web interface runs. The TARWIS controller is responsible of executing actions on the
managed sensor nodes. To communicate with these nodes, a common web services API is used,
which has to be implemented by the used sensor nodes. The whole communication between
the TARWIS controller and the sensor nodes is therefore common Hypertext Transfer Protocol
(HTTP) traffic, consisting of exchanging HTTP POST and GET messages. The DBMS is used
to store the retrieved experiment data, the software images and additional output and log data.

2.2 TmoteSky Sensor Nodes

TmoteSky is the name of an ultra low power sensor node platform, which comes in a very
compact design [8]. It is powered by an msp430 microcontroller unit (MCU) from Texas In-

5

struments, which runs at 8 MHz. For wireless communication, the TmoteSky platform comes
with the CC2420 radio transceiver from Chipcon. Additionally, multiple sensors are included
for environmental surveillance like humidity, light and temperature. The msp430 is a well
known 16-Bit Reduced Instruction Set Computer (RISC) low power MCU, which supports five
power save modes. It draws 0.2 µA in the lowest power save mode and is equipped with 10 KB
of main memory and 1 MB of secondary storage to store the sampled sensor data. The CC2420
is a single-chip 2.4 GHz IEEE 802.15.4 compliant RF transceiver designed for low power and
low voltage wireless applications [9]. It is a packet-oriented radio, which transmits 250 kbps at
the maximum. The output power of the CC2420 is programmable and reaches from -24 dBm to
0 dBm, which allows a 50m range indoors and 125m outdoors based on the onboard antenna of
the TmoteSky board. As the license free 2.4 GHz industrial, scientific and medical (ISM) radio
band is also used by other applications like WLAN or Bluetooth, the low output power of the
CC2420 may be problematic. If all those applications have to share one transmission medium,
it is very likely that radio communication of the weakest is disturbed, although all applications
formally use different frequency bands. Especially Bluetooth has the reputation of a well known
radio interferer through its frequency-hopping spread spectrum (FHSS) method. With this tech-
nique, the radio transceiver uses a lot of different frequency channels to transmit the radio signal,
and hops rapidly from channel to channel. This technique obviously claims a lot space in the
ISM radio band and therefore may influence the radio communication of weaker transceivers
like the CC2420.

Figure 2.2 shows a TmoteSky sensor node. This node comes in a very compact form of
6.5cm height, 3cm width and 2cm depth. Equipped with an universal serial bus (USB) port
and an onboard bootloader, this sensor node is flashable without any additional device. This
advantage makes it easy-to-use and very user friendly.

Figure 2.2: Front side of the TmoteSky sensor node [8]

6

2.3 Contiki Operating System

Contiki is a lightweight and flexible operating system for sensor nodes, which was developed at
the Swedish Institute of Computer Science (SICS) [10]. Contiki differs from other popular oper-
ating systems for sensor nodes through the possibility of replacing certain parts of the operating
system at run-time over the network. Through this over-the-air (OTA) update mechanism it is
not necessary to replace the whole firmware image for deploying a small bug fix or to add new
applications. It is possible to replace only certain processes or services running on the sensor
node. This leads to significant energy savings, since the energy used to transmit a few hundred
bytes for a bug fix is much less than the energy used to transmit the whole firmware image. Be-
sides this big advantage, Contiki introduces a powerful and easy-to-use event-driven scheduler,
which simplifies the creation of event-driven code. To communicate with other sensor nodes or
with the Internet, Contiki comes with the worlds smallest TCP/IP stack called µIP [11]. Contiki
is highly portable and written in C. Popular supported platforms are the TmoteSky from Texas
Instruments and the AVR Raven from Atmel. The Contiki kernel is event-driven and supports
a simple first in / first out (FIFO) scheduler. Preemptive multitasking can be added to specific
processes by using an application library.

2.3.1 Contiki Processes and Scheduling

Event-driven programming is the favored programming style for developing applications for
embedded systems, since this approach can keep the memory overhead down. The memory
saving results from the omission of processes and their corresponding data structures like the
process control block (PCB) and the stack, which can be found in any multitasking capable
operating system. The abstraction of a process gives the developer the possibility to execute
simultaneously different tasks on only one central processing unit (CPU). The operating system
takes care of switching between the different tasks. This switching is called “context switch”,
and consists of saving and restoring the state of a process, which is very time consuming, since
a lot of data has to be copied. As opposed to using processes, a PCB and a stack are not
necessary by using event-driven programming. This programming style consists of describing
the application as a finite state machine, where only the different states have to be saved, and
not the whole stack and a PCB. Depending on a certain state, a specific action is executed.
Implementing an application as a finite state machine is often difficult and error prone [12].

Contiki supports some sort of lightweight processes, which are a mix of ordinary processes
and event-driven programming called protothreads [12]. Protothreads combine the benefits of
following two approaches: the low memory footprint of event-driven programming, since pro-
tothreads does not have its own stack, and a process-like programming style with a blocking wait
statement. This new approach simplifies the development of event-driven code, since the appli-
cation can be described as a linear sequence of program statements. The blocking wait statement
is triggered by the PT WAIT UNTIL() function. This statement blocks the protothread: the
code execution is stopped and the next protothread in the process queue is executed. This block-
ing wait statement works together with the FIFO scheduler of Contiki. Without this blocking
wait statement, only one protothread would be executed, thus monopolizing the CPU.

This situation results from the fact, that a FIFO scheduler requires each process to run to its

7

completion, before the next process can be scheduled. A protothread consists of an infinite main
loop, thus implying the need of a mechanism, that allows the protothread to wait for a certain
event without monopolizing the CPU by using busy waiting. The Contiki scheduler and the
protothreads work together by moving the decision whether and when a protothread should give
away the control of the CPU to the developer. To achieve a multitasking-like executing flow, a
developer has to block his protothread as often as possible by using the PT WAIT UNTIL()
statement to share the CPU as much as possible with other protothreads. An important side-
effect of the omission of an own stack for a protothread is the fact, that all used variables have to
be declared global and not local in the scope of the protothread. A protothread also is referred
to as a Contiki process.

2.3.2 The µIP Stack

µIP is a lightweight TCP/IP-Stack, which was developed to run on very resource constraint 8-bit
architectures. Despite its small memory footprint, µIP fulfills the subset of RFC1122 needed
for full host-to-host interoperability [11]. To use as little memory as possible, µIP uses one
global packet buffer, that holds incoming and outgoing packets. This buffer can store only one
packet. Therefore, the packet buffering has to be implemented either by the MAC protocol or
the application using µIP. The latter approach is used in this thesis, as discussed in chapter 4.3.

Using TCP/IP communication on 8-bit architectures has its challenges, as the transmission
control protocol (TCP) and the user datagram protocol (UDP) use 32-bit checksums in their
protocol headers. Calculating a 32-bit checksum on an 8-bit architecture takes many more clock
cycles than on an 32-bit architecture, since the 32-bit checksum has to be stored in the main
memory and cannot be processed directly in the 8-bit wide CPU registers. The challenge lies
in an optimized implementation of this 32-bit checksum algorithm on an 8-bit architecture. µIP
solves this challenge by separating its functionality into two parts: one generic part, which is
independent of the used architecture, and an architecture specific part (like calculating check-
sums). Therefore, only a small specific part of µIP has to be adapted to the used architecture.

µIP was implemented as a common protothread on top of Contiki, and therefore uses events
to signal the arrival of new packets. To use µIP, the application protothread has to open a new
connection to the desired IP address. µIP then stores the process ID (PID) of the application
protothread to the connection state data structure. Every time a new packet arrives, µIP posts a
tcpip event to the registered protothread, which is unblocked by the scheduler as soon as it
is its turn. Listing 2.1 illustrates the opening of a UDP unicast connection to the port 2500 of
the host with the IP address 192.168.1.20 and the transmission of one UDP packet with the
payload “HELLO”:

8

Listing 2.1: Sending an UDP packet

1 static struct uip_udp_conn *udp_conn;
2 static uip_ipaddr_t ipaddr;
3 static char* msg="HELLO";
4 uip_ipaddr(&ipaddr, 192,168,1,20);
5

6 udp_conn = udp_new(&ipaddr, UIP_HTONS(2500), NULL);
7 uip_udp_packet_send(udp_conn, &msg, sizeof(msg));

The data structure uip udp conn stores the PID of the application protothread, to which
the tcpip event is posted. Additionally, the destination port and destination IP address is
stored by this data structure. The µIP function udp new opens the UDP unicast connection
and the function uip udp packet send triggers the the transmission of the data found at the
supplied memory address &msg. Listing 2.2 illustrates the code on the receiver part for listening
for a tcpip event and processing the arrived packet:

Listing 2.2: Receiving an UDP packet

1 while(1){
2 PROCESS_WAIT_EVENT_UNTIL(ev == tcpip_event)
3

4 if (uip_newdata()){
5 uint8_t len = uip_datalen();
6 void *ptr = uip_appdata;
7 }
8 }

The statement PROCESS WAIT EVENT UNTIL(ev == tcpip event) blocks this
protothread until a tcpip event arrives. The preprocessor macro uip newdata() checks
if a new packet arrived, and the uip datalen() function returns the size of the arrived data
in bytes. uip appdata is a void pointer to the packet payload.

2.3.3 RIME

RIME is a lightweight layered communication stack for WSNs, which is part of the Contiki
OS [13]. The RIME stack differs from traditional network stacks in such a way, that each of
its layers are very thin. Each layer therefore introduces very limited functionality and accom-
plishes only one certain task. This approach reduces the implementation complexity and leads
to a very easy-to-understand design. The RIME stack offers methods for unicast and broadcast
communication, that are optimized for the needs of embedded systems. RIME uses very short
headers from one to the next layer and avoids resource intensive 32-bit checksums. The Rime
stack can be used as a standalone communication stack without µIP. This possibility reduces
the communication overhead, but brings the disadvantage of isolating the WSN from common
Internet communication. This drawback can be solved through the usage of a proxy service,
that translates TCP/IP packets to RIME packets and vice versa. Another possibility is to use
µIP on top of RIME. This is the default configuration of Contiki. IP packets are tunneled over
the RIME stack, which results in an additional 2 byte header for each IP packet. This approach

9

has its strength in its flexibility: To communicate with the Internet, the common TCP/IP-style
communication offered by µIP can be used. The data supplied by the WSN can be accessed
from any usual desktop PC or mobile device connected to the Internet. On the other side, the
lightweight communication offered by the RIME stack can be used for management tasks, that
only take place inside the WSN. Neighborhood discovery could be such a management task.

2.3.4 MAC Protocols

A media access control (MAC) protocol is mainly responsible for sharing the transmission
medium between multiple clients, which want to use this transmission medium at the same
time. Besides that task, possible error correction of the data received from the physical layer and
the radio duty cycling (RDC) falls within the area of competence of a MAC protocol. To save
energy, the radio transceiver has to be turned off as much as possible: A TmoteSky sensor node
draws 21.8 mA, while the msp430 MCU is on and the CC2420 radio transceiver is in listening
mode. With the radio turned off, the current consumption drops to 1.8 mA, which is about 8.25
% of the whole energy consumption. In other words, 91.75 % of the energy consumption is used
for the radio communication [8]. Therefore, energy optimized MAC protocols, which turn of
the radio for short periods, are crucial to the lifetime a WSN. Contiki splits the traditional MAC
protocol into two smaller, task-specific protocols:

• a MAC protocol: responsible for accessing the transmission medium using CSMA/CA

• a RDC protocol: responsible for power saving.

In terms of Contiki, the MAC protocol is responsible of checking the transmission medium
whether someone else is transmitting data or not. If the transmission medium is free, the data
can be transmitted. If the transmission medium is occupied, the MAC protocol has to wait for
a certain time and then to try again to send the data. This mechanism is called Carrier Sense
Multiple Access with collision avoidance (CSMA/CA). The other part of the MAC protocol,
handling the radio duty cycling, is called RDC protocol. The RDC protocol takes care of the
energy saving mechanisms, which involve turning off the radio transmitter as much as possible
without decreasing the transmission performance too much.

This distinction of a common MAC protocol into two parts can sometimes be very confus-
ing. The following names, NullMAC and ContikiMAC, describe common MAC protocols for
Contiki. That means they consist of the two parts explained above: a MAC and a RDC part.
Therefore the MAC part of NullMAC is called nullmac, and the RDC part is called nullrdc.
For ContikiMAC, the MAC part is called csma, and the RDC part is called contikimac. This
separation shall be denoted by writing the names for common MAC protocols in CAPITALS,
and the names for a specific part of a MAC protocol in lower case.

NullMAC

NullMAC is the simplest possible MAC protocol, which is supported by Contiki. Both parts of
NullMAC actually do nothing, therefore the name NullMAC. That means, nullmac does only
check, if the transmission medium is free to send the packet. If the transmission medium is

10

occupied, the packets are dropped without any attempt to resend. Analogously, nullrdc never
turns off the radio transmitter. The packets are transmitted with the maximum performance, but
also with the maximum energy consumption.

ContikiMAC

ContikiMAC is an energy optimized MAC protocol, and is the default MAC protocol of Con-
tiki since release 2.5 [14]. The energy saving mechanisms used in ContikiMAC are inspired
by other popular MAC protocols, and consist of following three measures:

• periodic wake-ups, inspired by B-MAC [15], X-MAC [16] and Box-MAC [17]

• wake-up strobes, inspired by Box-MAC [17]

• phase-lock optimization, inspired by WiseMAC [18]

ContikiMAC unifies these three energy saving measures to one RDC protocol called con-
tikimac. These unified mechanisms work as follows: First, each ContikiMAC-enabled sensor
node turns on the radio transmitter periodically only for a very short time. In this short time
period, contikimac checks for radio activity using an inexpensive Clear Channel Assessment
(CCA), which uses the Received Signal Strength Indicator (RSSI) to give an indication for radio
activity on a certain channel. A packet transmission is detected by comparing the RSSI value
with a given threshold. If the RSSI value is higher than the threshold, the CCA is positive and
contikimac assumes that a packet transmission is on the way. This mechanism is called periodic
wake-ups.

If a packet transmission is detected, the sensor node keeps the radio transmitter on until the
whole packet has been received. To signal the successful reception of the packet, the receiver
sends an acknowledgment and turns off the radio. This is only working, if the sender sensor
node continuously resends the packet, until it receives an acknowledgment. Those periodically
resent packets are called wake-up strobes. If the sender wants to transmit a broadcast packet, it
has to be resent for the full wake-up interval, because every node has to be reached and every
node only wakes up once in the entire wake-up interval.

Figure 2.3: Unicast transmission using ContikiMAC [14]

11

Figure 2.4: Broadcast transmission using ContikiMAC [14]

Figure 2.3 and 2.4 illustrate these two situations. The main difference between a unicast
and a broadcast transmission using ContikiMAC is the long rebroadcast time for a broadcast
transmission, since the sender has to make sure to reach all desired receivers. This drawback is
really serious for broadcast based communication protocols like Flooding or MPR, because it
slows down the data transmission enormously, as described in chapter 5.5. The third mechanism
to optimize the energy consumption is called phase-lock optimization. Using this technique, the
sender tries to learn when a certain receiver wakes up. Since the wake-up of a certain receiver is
periodic, the sender can estimate the next wake-up of the receiver after the first successful packet
transmission. With this estimated sleep interval, the sender is able to time the first transmission
of a wake-up strobe more accurately.

2.3.5 Energy Measurement

To make a statement about the energy used to transmit a certain amount of data, we need a pro-
cedure to measure the energy consumption of all participating sensor nodes. Using a hardware-
based measurement method, this task can be very costly with increasing size of the WSN. A
simple hardware-based energy measurement consists of attaching an oscilloscope in series with
the power source of a sensor node to measure the current potential and to calculate the current
draw. Doing this for the whole WSN would be very expensive and not practicable. On the other
hand, software-based energy measurement methods are inexpensive and yield accurate results
as pointed out by [19]. Powertrace [19] is a software-based energy measurement tool developed
on top of Contiki and is implemented as a common protothread, which can be started as soon as
the energy measurement begins. To measure the used energy, powertrace uses so-called energest
values [20]. These energest values are indeed only clock ticks of the used MCU, and can be con-
verted to seconds by dividing them by the clock rate of the used MCU. In case of a TmoteSky
sensor node, which uses a msp430 MCU, one second is equal to 32768 clock ticks. To give a
meaning to these energest values, powertrace needs instrumentation of the used device drivers
and RDC protocols. With this instrumentation, powertrace is able to provide energest values for
interesting energy consumers like the CPU or the radio transmitter. To get the energest value
for the radio communication, powertrace simply sums up the energest values for the listening
and transmitting of packets during the desired time period. These energest values describe how

12

much time in clock ticks was spent for radio communication or common tasks using the CPU.
Based on those energest values, the energy spent can be calculated by converting these values

to seconds and multiplying them with the used power in Watt. The current consumption for
certain actions like listening for data or transmitting data can be found in the datasheet of the used
component [8]. For the CC2420, used by the TmoteSky sensor node, the current consumption
for listening is 21.8 mA, and 19.5 mA for transmitting. To convert these values to Watt, they
need to be multiplied by the current potential, which is 3.6 V in case of a TmoteSky sensor node.
That amounts to a power consumption of 78.48 mW for listening, and 70.2 mW for receiving.
Multiplying seconds with Watt, which is Joule

Second , gives the energy consumption expressed in
Joule.

13

Chapter 3

Design of Communication Protocols for
Reliable Multicast

3.1 Protocol Stack

The protocols implemented in this thesis are application layer protocols, since they are running
on top of the user datagram protocol (UDP). Implementing a communication protocol on the
application layer simplifies the implementation, but generates an increased overhead. The addi-
tional overhead originates from the fact that each protocol message always has to travel up and
down the whole protocol stack.

CC2420

NullMAC ContikiMAC

RIME

uIP

UDP

Flooding MPR DD

APP

UDP cache
UDP

Figure 3.1: Used protocol stack

Figure 3.1 shows the protocol stack used to implement Flooding, Multipoint Relay and Di-
rected Diffusion. On the physical layer the CC2420 radio transceiver is used, which comes with
the TmoteSky sensor nodes. This radio transceiver handles the whole radio communication, and
is accessed from the msp430 MCU via a SPI1 interface. On the data link layer two different
MAC protocols are used: NullMAC and ContikiMAC. For sharing a transmission medium
between different clients, the Carrier Sense Multiple Access (CSMA) method with collision
avoidance is used. For more information on the used MAC protocols, see chapter 2.3.4.

On the network layer the µIP stack is used, which comes with the Contiki OS. The µIP

1The Serial Peripheral Interface (SPI) is a synchronous serial bus system, which operates by the master/slave
principle.

15

stack runs on top of RIME, which is a lightweight layered communication stack for WSNs [13].
Chapter 2.3.2 provides more details on µIP and RIME. The main task of the network layer is
routing different packets between sensor nodes that have no direct connection.

On the transport layer UDP is used. UDP is a very simple, stateless and unreliable transport
protocol, it does not guarantee the arrival of a packet at the designated destination. There exists
no real end-to-end connection between two communication partners. If a packet is lost, the
application itself has to take care about the retransmission. The simplicity of UDP has the
advantage of a very small overhead and is therefore popular in real-time and embedded systems.
UDP simply adds a small header to an IP packet, which consists of four attributes: a source-
and destination-port, the length of the payload (including the header) and a checksum over the
whole packet.

The implemented communication protocols directly use UDP to transmit data. They take
care of the retransmission of lost data. Additionally they also handle the fragmentation and
reassembly of payloads bigger than the maximum transmission unit (MTU).

3.2 NACK-Based Reliability Mechanism

Since UDP is unreliable, but offers a very small overhead, we had to implement our own reliabil-
ity mechanism to make sure that lost packets are retransmitted. Implementing an own reliability
mechanism brings the advantage of better control of the retransmission handling, and therefore
allows optimization of the whole process to fit our needs.

The standard reliability mechanism of most common transport protocols uses short mes-
sages, so-called “acknowledgments” (ACKs), to confirm the reception of a packet. Every re-
ceived packet generates a corresponding ACK. Obviously this method generates a lot of control
traffic, which is responsible for significant overhead.

One of our main goals was, to implement the chosen communication protocols in such a
way, that they use as less energy as possible, since energy is the most constrained resource of
sensor nodes. To reach that goal, another approach generating less control traffic had to be found
to take care of lost packets:

First the receiver has to be informed about the amount of packets to be transmitted. Ad-
ditionally each packet is assigned a unique identifier (UID). If the receiver receives a packet, it
makes a note that the packet with UID x has been received. After reception of the last packet, the
receiver checks for lost packets, and if necessary, requests them by sending a “negative acknowl-
edge” (NACK) message. If the receiver received all packets, it finally sends an ACK message.
The usage of NACKs significantly reduces the amount of control traffic, since not every suc-
cessful packet reception has to be acknowledged, but instead only the missing packets have to
be requested.

1 byte 2 bytes 3 bytes

type

ttl

lost_fragment_numbers

16

Figure 3.2: NACK message

Figure 3.2 shows the structure of a NACK message. The type attribute is a integer of one
byte width, which is used to distinguish different messages types. The second attribute, ttl is
an abbreviation for “Time to Live” (TTL) and is also an integer of one byte width. The TTL
attribute is used as a loop prevention mechanism. Every time a NACK message is forwarded,
the TTL value is decremented. If the TTL value reaches zero, the NACK message is dropped.
The last attribute, lost fragment numbers, consists of three one byte integers, indicating
the lost packets. Accordingly, up to three lost packets can be requested with one single NACK
message. Referencing chapter 1.2, no more than 15 unique packets are transmitted. We therefore
made the design decision to request three packets with one NACK message.

1 byte 2 bytes 3 bytes

type

ttl

rime_addr_of_receiver

Figure 3.3: ACK message

Figure 3.3 shows the structure of an ACK message, which is quite similar to a NACK
message. The first two attributes are the same, only the third attribute differs. The attribute
rime addr of receiver consists of two one byte integers, containing the RIME address of
the receiver sending the ACK message. This message indicates the successful reception of all
packets.

3.3 Caching Strategies

The caching strategy of a communication protocol can be crucial for the overall performance:
The time for transmitting data is proportional to the energy used. To minimize the energy usage,
we have to minimize the transmission time. Obviously minimizing the transmission time is only
one, but important factor among others influencing the energy consumption. As described in
chapter 1.2, three different caching strategies are used on the intermediate nodes:

• no caching

• caching of every fragment

• proactive caching

The caching of the different fragments takes place on the intermediate nodes, which are
found on the path from the sender to the receivers.

The first caching strategy is very simple: The intermediate nodes do not cache any fragments.
This implies that every NACK message has to be replied by the sender itself. Using the second

17

caching strategy, every intermediate node caches every unique fragment. An intermediate node
does not cache a fragment twice, it caches the fragment only if it is not already cached before.

The size of the cache is an important design decision, especially in memory-constrained
environments like WSNs. Since the maximum size of the payload is equal to 1000 bytes, the
maximum size of the cache would be 1000 bytes, if all unique packets would be cached. The
msp430 MCU, which is used by the TmoteSky sensor nodes, provides 10KB of main memory.
Since the Contiki OS needs about 2KB of main memory, there is approximately 8KB free for
usage by the user. We therefore made the design decision to make the cache 1000 bytes big to
optimize the transmission time as much as possible.

The third caching strategy is called proactive caching, because the intermediate nodes are
allowed to request lost fragments autonomously. A intermediate node only requests fragments,
if it did not receive a fragment for a certain time.

3.4 Protocols

This section presents the chosen designs for implementing Flooding, MPR and Directed Diffu-
sion. It’s important to mention that the chosen designs used to implement these protocols differ
from the original design. First, we used UDP as transport protocol, whereas mostly TCP is used.
The usage of UDP instead of TCP as transport protocol implied the implementation of an own
reliability mechanism, which changes the behavior of a protocol massively. Secondly, different
caching strategies are used. The original design mostly uses only one specific caching strategy.
Thirdly, we adapted the designs of the protocols to our needs: In our scenario, the data shall
be distributed to more than one receiver. Therefore we had to adapt especially the design of
Directed Diffusion to a sender-driven approach.

3.4.1 Communication Phases

The three implemented communication protocols can all be split into four communication
phases, which are illustrated by Figure 3.4. A special phase called initialization phase is only
used by MPR and Directed Diffusion, because these protocols need to prepare the WSN for the
data transmission.

set_receiver phase

init. phase

send data phase

finish phase

Figure 3.4: The four communication phases

18

The first phase of the data transmission is the set receiver phase. That is the beginning of
the communication, where the sender informs the receiver that it will receive data. This is a
prerequisite, because if a sensor node does not know that it will receive data, it can not request
the data if all fragments are lost on their way to the receiver. If the payload consists of only
one packet, it is very likely that this will happen. Figure 3.5 illustrates the structure of the
set receiver message. The third attribute receivers consists of three integers of one
byte width each. This attribute stores the last part of the RIME addresses of the three receivers.

1 byte 2 bytes 3 bytes

type

ttl

receivers

Figure 3.5: The set receiver message

The second phase is the initialization phase, which is used only by MPR and Directed Dif-
fusion. In this phase the protocols prepare to send data: MPR calculates the Multipoint Relay
set, whereas Directed Diffusion sets up the routing gradients.

The third phase, the send data phase, is the actual data transmission phase.
Finally, in the finish phase the sender informs all participating sensor nodes of the successful
data transmission. This phase is necessary to get accurate evaluation data: the energest values
and the amounts of collisions and sent frames. Without this phase all intermediate sensor nodes
would have to send this evaluation relevant data periodically to their attached mesh node, which
would bias the experiment data significantly: Since the sensor nodes are attached to a mesh
node via a RS232 connection, the data transmission to the mesh node is quite slow. While
transmitting this data, the sensor node can not react to incoming packets. Additionally, if the
buffer for incoming packets is full, the packets are dropped. Therefore, every unnecessary usage
of the RS232 connection slows down data transmission and increases energy consumption of the
sensor node. To inform all participating sensor nodes of the successful data transmission, the
sender broadcasts an ACK message with the attribute rime addr of receiver set to zero.

3.4.2 Flooding

Flooding is a very basic communication protocol. The sender starts to broadcast the first packet
and each intermediate node re-broadcasts the packet until it reaches the receiver. Obviously
some sort of loop prevention is needed, otherwise packets are forwarded infinitely, resulting in
a broadcast storm. Figure 3.6 illustrates this situation.

The loop prevention mechanism for data messages chosen for this implementation consists
of a simple, but effective measure: Each data message is forwarded only once by each interme-
diate node.

If each node caches all data messages, intermediate nodes can reply all NACK messages
sent to the sender node. This measure works perfectly when all the data is cached, but it has it
is weakness when no caching is used: When a receiver is requesting a data message, it sends a

19

NACK message. This NACK message is forwarded until it reaches the sender node. The sender
node then resends the requested data messages, but no intermediate node will forward the resent
data messages, as they already forwarded them.

For all other types of messages (like ACKs and NACKs) a TTL mechanism is used to prevent
loops, since only data messages are cached and as mentioned above, without any caching our
first approach would not work.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

sender

receiver

intermediate
node

Figure 3.6: Broadcast storm

Through the heavy usage of broadcast communication, there are a lot of sensor nodes which
want to send data at the same time. This results in a rival behavior of the different sensor nodes.
If two sensor nodes try to send data at the same time, a collision occurs. Without the usage of a
resend mechanism like CSMA, the packets are dropped. The CSMA implementation of Contiki
tries to resend a packet six times. To minimize the occurrence of collisions, a random backoff
time is used, which each sensor node waits before sending any data. This random backoff time
is static and is configured individually for every kind of message.

Figure 3.6 shows the situation, which occurs when Flooding is used to transmit the data.
There is a lot of ongoing communication, resulting in a lot of collisions and a slow data trans-
mission. As mentioned in chapter 1.2, splitting the payload into smaller fragments is necessary,
therefore the term “fragments” is used synonymously for the term “packets”.

To transmit individual fragments, the data message is used. Figure 3.7 illustrates the used
data message.

1 byte 2 bytes 3 bytes

type

frag_number

#fragments

payload: 70 Bytes

20

Figure 3.7: The data message

The first attribute is the same as in the already discussed messages types. The attribute
frag number is the UID, used to distinguish different fragments. The UID starts at one and
is incremented for every unique fragment. This unique identifier is important for the caching
mechanism and for loop prevention. The third attribute, #fragments denotes the number of
fragments and is equal to the highest UID. The number of fragments is used by the receivers to
check whether the last fragment was received. If so, the receivers will check for lost fragments
and request them. The last attribute, payload, is used to transport the data.

Figure 3.8 illustrates the sequence diagram for the send data phase of Flooding with no
caching.

sender receiver iintermediate nodes n,m

send first fragment

forward fragment

backoff time

send fragment j

forward fragment j

max wait time
for fragment
request

forward fragment

backoff time

backoff time

request fragment j

=send nack
forward nack

forward nack

resend fragment j
forward fragment j

forward fragment j
receiver i
received
all fragments

send ack

forward ack

forward ack

fragment j is lost

Figure 3.8: The sequence diagram for Flooding with no caching

The sender starts data transmission by broadcasting the first fragment. Every node, which
receives this fragment waits for a random backoff time before re-broadcasting it. After wait-
ing for a fixed time, the sender continues broadcasting the next fragment, until all fragments
were sent. If a receiver does not receive a fragment for a certain interval, it checks for missing
fragments and requests them by sending a NACK message. Since no fragments are cached, the
NACK message has to travel back to the sender. The sender then re-broadcasts the requested
fragments. The receivers check periodically whether they received all fragments. If so, they

21

signal the success of the data transmission by sending an ACK message to the sender. After
receiving a ACK message from all receivers, the sender knows the data transmission succeeded.

Without any caching of fragments, the retransmission of lost fragments takes a long time,
since the sent NACK message has to travel back to the sender. If the intermediate nodes cache
fragments, it is possible for each node on the route of the NACK message to retransmit the
fragments, assuming the requested fragments are cached. With a proactive caching strategy, the
intermediate nodes behave similarly as the receivers: If an intermediate node did not receive
a fragment for a certain interval, it starts requesting the missing fragments until it receives the
desired data.

3.4.3 Multipoint Relay

Multipoint Relay (MPR) is a communication protocol, which is also broadcast-based like Flood-
ing. In contrast to Flooding, MPR tries to reduce the number of forwarding intermediate nodes
with the goal of reducing the amount of collisions. The lesser the amount of collisions, the faster
is the data transmission. Every node calculates its own MPR set, that is the set of its one-hop
neighbors, reaching most of its two-hop neighbors. To reach all of the two-hop neighbors, the
MPR set has to be increased by the remaining one-hop neighbors reaching the missing two-hop
neighbors.

1

2

10

48

6

14

9 3

57

12

1113

sender

two-hop
neighbors

MPR set

intermediate
nodes

Figure 3.9: MPR set

Figure 3.9 shows an exemplary WSN with 14 sensor nodes. The MPR set for node 1 is
denoted by the blue nodes. Through this set of nodes, it is possible for node 1 to reach almost
all of its two-hop neighbors. Since node 14 is not reachable from this MPR set, the set has
to be increased by node 9. The purple nodes are intermediate nodes, which do not forward any
data. These nodes are not involved in any radio communication, representing the main difference
between MPR and Flooding: Using MPR as communication protocol, not all intermediate nodes

22

forward data, but only a small subset of them. The calculation of the MPR sets is done at the
end of the initialization phase. Before these sets can be calculated, every node has to determine
his one- and two-hop neighborhood. For this purpose, every node broadcasts hello messages for
a certain interval.

Figure 3.10 illustrates the structure of a hello message.

1 bytes 2 bytes 3 bytes

type

sender_node

forwarder_node

Figure 3.10: The hello message

The second attribute, sender node contains the last part of the RIME address of
this node, which re-broadcasted the hello message for the first time. The third attribute,
forwarder node is similar as the second attribute, with the difference, that it contains the
last part the RIME address of this node, which re-broadcasted the hello message for the second
time.

Figure 3.11 visualizes the neighborhood discovery using hello messages.

1
hello 1

h
e
llo

 1

hello 1,2

h
e
llo

 1
,2

hello 5hello 5

h
e
llo

 5

h
e
llo

 5

hello 1,2
2 3

4 5 6

7 8 9

hello 5,6

h
e
llo

 5
,6

h
e
llo

 5
,6

hello 1,4

h
e
llo

 1
,4

hello 7

h
e
llo

 7
,8

hello 7,8

Figure 3.11: Neighborhood discovery using hello messages

If a node receives a hello message, it first checks if the forwarder node attribute is
set and if the sender node value is not equal to the last part of its RIME address. If so, it
knows that it received a hello message from a two-hop neighbor, since this hello message was
forwarded only twice. If the forwarder node attribute is not set, the node knows that it
received a hello message from a one-hop neighbor. It stores the last part of its RIME address

23

to the forwarder node attribute of the hello message and re-broadcasts the message. Every
node collects each hello message received, and and stores them accordingly to their properties: If
only the sender node attribute is set, the message is added to the set of one-hop neighbors. If
the sender node and the forwarder node attribute is set and the sender node attribute
is not equal to the last part of the RIME address of the node, the message is added to the set of
two-hop neighbors.

Using the obtained neighborhood information, every node can calculate its own MPR set
using the heuristic proposed by [6].

Figure 3.12 shows the pseudo code of this heuristic, where MPR(x) denotes the MPR set,
N(x) the one-hop neighborhood and N2(x) the two-hop neighborhood of node x. Once the MPR
sets are determined, every node broadcasts a forwarder message to inform the chosen nodes that
they are allowed to forward data.

1. Start with an empty multipoint relay set MPR(x)

2. First select those one-hop neighbor nodes in N(x) as multipoint relays which are the
only neighbor of some node in N2(x), and add these one-hop neighbor nodes to the
multipoint relay set MPR(x)

3. While there still exist some node in N2(x) which is not covered by the multipoint relay
set MPR(x):

(a) For each node in N(x) which is not in MPR(x), compute the number of nodes
that it covers among the uncovered nodes in the set N2(x)

(b) Add that node of N(x) in MPR(x) for which this number is maximum.

Figure 3.12: Heuristic used to evaluate the MPR set

Figure 3.13 illustrates the structure of a forwarder message. The attribute mprs consists of
ten one byte integers, containing the last part of the RIME address of these nodes, which are
members of the MPR set.

1 byte 2 bytes 3 bytes

type

mprs: 10 bytes

Figure 3.13: The forwarder message

At the end of the initialization phase, the WSN is prepared for data transmission: All sensor
nodes, that are member of a MPR set are forwarding data. The other intermediate nodes are not

24

involved in any radio communication. The send data phase and the finish phase are equal with
the corresponding phases of Flooding.

3.4.4 Directed Diffusion

Directed Diffusion (DD) [5] is a communication protocol, which is quite different to the pre-
viously discussed protocols. Its main difference is that the data is not broadcasted, but instead
transmitted by UDP unicast hop-by-hop. For initializing data transmission, the receivers broad-
cast interest messages towards the sender. That is done during the initialization phase.

Figure 3.14 illustrates the structure of an interest message.

1 byte 2 bytes 3 bytes

type

receiver_id

path: 10 bytes

Figure 3.14: The interest message

The attribute receiver id denotes the last part of the RIME address of the receiver, which
initially sent the interest. The third attribute path contains the last part of the RIME address
of every sensor node on path of the interest from the receiver to the sender. Since the interest
messages are broadcasted, a loop prevention mechanism is needed again: If an intermediate
node receives an interest message, it checks the path of the message for its own RIME address.
In the case of a match the node knows that it already forwarded this interest message, and can
therefore drop it. The sender collects all received interest messages and after a certain time it
starts processing them:

1. the path stored in the interest messages is reversed

2. the hops of every path are counted

3. depending on a evaluation metric, the sender chooses one particular path for every receiver

The number of hops was chosen as evaluation metric: The shorter the path, the less unicast
transmissions are needed for the fragment to reach the receiver. There are also other possible
evaluation metrics, as example the occurrence of the different paths could be counted, assuming
that a path that occurs more often as others is more reliable. The path that occurs the most would
be chosen. After choosing one particular path to every receiver, the sender begins to reinforce
these paths.

Figure 3.15 shows the sequence diagram for the initialization phase of Directed Diffusion.

25

senderreceiver i intermediate nodes n,m

broadcast interest
re-broadcast interest

re-broadcast interest

broadcast interest
re-broadcast interest

re-broadcast interest

interest
collection
time

broadcast reinf_msg

evaluating
interests

re-broadcast

reinf_msg
re-broadcast

reinf_msg

Figure 3.15: The sequence diagram for the initialization phase of Directed Diffusion

The goal of the reinforcement of a path is to setup the gradients on every intermediate node
found on the path to the receiver. In our context a gradient is a data structure containing routing
information. A intermediate node can have multiple different gradients: one for every particular
receiver. To reinforce the chosen paths, the sender broadcasts the reinforcement message.

Figure 3.16 illustrates the structure of the reinforcement message.

1 byte 2 bytes 3 bytes

type

ttl

sender

path: 10 bytes

receiver

hops

reinf_msgs[3]

reinf_infos: 12 bytes

Figure 3.16: The reinforcement message

The second attribute ttl is a Time to Live value, which is decreased every time the message
is forwarded. That is necessary, because the sender is broadcasting the reinforcement message.
Broadcasting the reinforcement message is a design decision we made. The alternative would
be to send the reinforcement message via UDP unicast along the chosen path to the receiver.
We did not choose this approach because UDP is not reliable: The setup of the gradients is the
single point of failure of Directed Diffusion. If a packet containing the reinforcement message is
lost, the gradients can not be established. Without adequate routing information it is impossible
for the nodes on the chosen path to forward the fragments to the next hop, and the whole data
transmission would fail. Therefore, it is more reliable to broadcast the reinforcement message

26

instead to send it via UDP unicast. To optimize broadcasting of the reinforcement message, all
necessary information for the reinforcement of all paths was embedded into one distinct rein-
forcement message. The fourth attribute reinf msgs contains the reinforcement informations
for all receivers and consists in our case of three attributes (since we have only three receivers),
with the name reinf infos. The attribute reinf infos consists again of three attributes:
receiver, hops and path. The attribute receiver contains the last part of the RIME ad-
dress of the receiver, hops contains the number of hops for the chosen path and path contains
the path to the receiver.

If an intermediate nodes receives a reinforcement message, it first checks if it already pro-
cessed a reinforcement message. If so, it does not process the message again, since it has to
process this message only once, because all necessary information to setup the gradients was
embedded into the reinforcement message. Next the node checks for every receiver if it finds the
last part of its RIME address in the path attribute. If so, the node knows that it has to establish
a gradient between its predecessor and its successor found in the path attribute. This gradient
means the following: For one specific receiver all data towards this receiver is forwarded to the
successor and all data towards the sender is forwarded to the predecessor. After the processing
of this message the node checks the ttl value. If it is greater than zero it rebroadcasts the
message, otherwise not.

When all intermediate nodes on the path to every receiver established their gradients, the
initialization phase is over. There exists now one specific path to every receiver, which is char-
acterized by the gradients found on its intermediate nodes.

Figure 3.17 illustrates this situation.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

sender

receiver

intermediate
node

gradient:

Figure 3.17: Gradient setup

A pair of a blue and a green arrow symbolize a gradient, consisting of routing information for
the next hop forward and the next hop backward. An intermediate node can have more than one
gradient, if this node lies on more than one path. Node 7 is an example for this situation. Along
the blue path an interest was broadcasted and it is used to send NACK and ACK messages. The
green path is used to transmit fragments, since fragments are transmitted only in the direction
from the sender to the receiver. After finishing of the initialization phase, the sender begins

27

with the data transmission. The send data phase is almost equal with the corresponding phase
of Flooding and MPR, with the little but significant difference that fragments are transmitted by
UDP unicast and not by UDP broadcast to the next hop.

In summary, Directed Diffusion can be described as a communication protocol, which first
discovers its neighborhood using interest messages. By the diffusion of these interest messages
through the WSN towards the sender, Directed Diffusion collects indirectly routing information
in the form of paths from the receiver to the sender. The sender then processes this routing
information and sets up the gradients towards the receivers. The actual data transmission is a
usual UDP unicast transmission, with the difference that Directed Diffusion does not rely on
static routing tables, since Directed Diffusion uses the gradients to forward the fragments to
the next hop. Through the independence from static and preconfigured routing tables, Directed
Diffusion can transmit data via UDP unicast without prior knowledge of the WSN topology.

An other significant difference between a usual UDP unicast transmission and the send data
phase of Directed Diffusion is following: In our implementation, Directed Diffusion is an appli-
cation layer protocol (since it uses UDP as transport protocol) , meaning that each fragment has
to travel up the whole protocol stack to the application layer for every hop. Compared with a
usual UDP unicast transmission, where a packet on the way to its receiver does not travel higher
as the network layer, this overhead is not negligible.

28

Chapter 4

Implementation

Flooding, MPR and Directed Diffusion were implemented on top of Contiki OS. During the im-
plementation of these communication protocols, we paid attention to develop platform indepen-
dent code. This was accomplished by using only high-level application programming interfaces
(APIs) provided by the Contiki OS and the avoidance of the usage of TmoteSky specific fea-
tures. To develop the code, a Vmware image of a prepared Ubuntu Linux was used, which was
provided by the developers of Contiki. This image contains all necessary preconfigured soft-
ware tools for developing and compiling code for the TmoteSky platform. The functionality of
Flooding, MPR and Directed Diffusion was split into two parts: a sender part and a receiver part.
Therefore, two different software images were used for flashing the TmoteSky sensor nodes: the
sender image, which initiates the data transmission, and the receiver image, which is responsi-
ble for receiving and forwarding the data. To illustrate the structure of the developed code, we
are using pseudo code listings. The goal of these listings is not to exactly map the developed
code, but instead to give an abstract view of the main ideas behind the code. Therefore, some
constrains and boundary checking code was omitted in the pseudo code listings.

4.1 Caching

To implement the cache discussed in chapter 3.3, a simple buffer of the payload size was used
to model the cache, since all fragments are cached. To cache a fragment, an intermediate node
simply copies the data of the fragment to the right position in the cache buffer. This position
in the cache buffer is characterized by a start byte, which can be derived from the UID of the
fragment. The calculation and the copying of the data to the cache buffer is implemented as
follows:

Listing 4.1: Caching of a fragment

1 end_byte = (UID * sizeof(fagment.data)) -1;
2 start_byte = (end_byte - sizeof(fagment.data)) +1;
3 memcpy(&(cache_buf[start_byte]), &(fragment.data), sizeof(fagment.data));
4 received_fragments[fragment.fragment_number] = ’R’;

29

Additionally, the buffer received fragments was used to keep track of the received
fragments. To check if a certain fragment with UID x was cached, the value of
received fragments[x] has to be compared with the char R. If these two values are equal,
then the fragment x was cached. For accessing the data of a cached fragment with UID x, the
value of the start byte of fragment x has to be calculated. Using this start byte, the
data can be copied with the right offset to a arbitrary buffer.

4.2 Payload Splitting

The splitting of the payload of 1000 bytes to smaller fragments of 70 bytes each is accomplished
by the function buildFragment(uint8 t UID). This function builds a data message
(fragment) with the UID supplied as function argument. To get the right data, this function uses
the start byte derived from the UID to copy 70 bytes from the payload buffer to the payload
buffer of the data message.

4.3 Packet Queue

As discussed in chapter 2.3.2, the µIP TCP/IP stack of Contiki uses a single buffer for incoming
and outgoing packets. Therefore µIP doesn’t have a queue for incoming packets and only stores
one packet. That’s problematic because of the preconfigured backoff time a node waits before it
actually transmits a packet. During this time period, the node isn’t able to receive new packets,
since the processing of the current package isn’t finished and µIP doesn’t overwrite the global
packet buffer. Depending on the used MAC protocol, which also may or not cache frames, these
new packets are dropped.

We, therefore, developed a packet queue, which caches a preconfigured number of packets.
This packet queue was implemented as a separate Contiki process, which acts as a proxy be-
tween the communication protocol and µIP. The communication protocol does not talk directly
to µIP, instead it uses the packet queue for receiving new packets. The interaction between the
communication protocol and the packet queue can be characterized as follows:

First, the process of the communication protocol has to tell the packet queue that it wants
to use the queue. The process does that by executing the attachToQueue(handle h)
function. This function stores the process ID of the process of the communication protocol in
the data structure h of the type handle. Next, the attachToQueue function starts the packet
queue process, which is listening for tcp ip events posted by µIP. If new packets arrive, µIP
posts the tcp ip event, signaling that a new packet was copied into the global packet buffer.
The packet queue now checks for a free packet slot. If so, the new packet in the global packet
buffer is copied to this slot, if not, the packet is dropped. The packet queue now posts the
packet queue event to the process with the ID stored in the data structure handle. The
process of the communication protocol has to listen for the event packet event. If such an
event arrives, the process uses the getPacket function to access the new packet. This function
returns a pointer to the data of the new packet.

Besides the buffering packets, the packet queue is used for aggregation of data messages.

30

That is especially useful for broadcast-based communication protocols, since with this approach
each node receives the same packet many times. Using a packet queue results in the situation of
a queue filled with a lot of duplicated packets. Data aggregation is used to eliminate duplicated
packets from the packet queue. That is accomplished by iterating over the queue and comparing
each packet. If two packets are equal, one of them is dropped.

4.4 Protocols

4.4.1 Flooding

As mentioned above, Flooding consists of two parts: A sender part and a receiver part. Each
part is running as an independent Contiki process on its sensor node. The sender process can be
described in pseudo code as follows:

Listing 4.2: Sender process of Flooding

1 PROCESS_BEGIN()
2 attach this process to the packet queue
3 send the set_receiver message
4 PROCESS_WAIT for 5 seconds
5

6 for each fragment i do
7 PROCESS_WAIT for a random backoff time
8 buildFragment(i)
9 broadcast_fragment(i)

10

11 while(1){
12 PROCESS_WAIT for packet_event or periodic timer event
13 get the new packet from the packet queue
14

15 if received new data:
16 switch(message_type)
17 case nack_message: process nack -> resend requested fragment
18 case ack_message: process ack -> note that receiver finished
19

20 else
21 if all receivers finished:
22 send finished message
23 }
24 PROCESS_END()

Listing 4.2 shows the three communication phases, which this process passes:
The first phase is the set receiver phase, which is used by the sender to inform the chosen

receivers for incoming data. The next phase is the send data phase, which is used to send all
fragments at once. While sending these fragments, the sender doesn’t respond to incoming
messages.

After the transmission of all fragments, the sender begins to respond to incoming mes-
sages. Depending on the type of the message, the sender will resend the requested frag-
ments or make note that a certain receiver received all fragments. If the sender received

31

an ACK message from all receivers, the finish phase starts. The sender knows now that all
receivers received all fragments and starts broadcasting an ACK message with the attribute
rime addr of receiver set to zero. In line 12 of the listing it can be seen that the process
blocks and waits for a packet event or a periodic timer event. Listening for the
periodic timer event is necessary for waking up the sender process periodically, since
without this event this process is waked up only when a new packet arrives. But the sender has
periodically to check whether it received all ACKs.

Listing 4.3: Receiver process of Flooding

1 PROCESS_BEGIN()
2 attach this process to the packet queue
3

4 while(1){
5 PROCESS_WAIT for packet_event or periodic timer event
6 get the new packet from the packet queue
7

8 if appstate != finished
9 if received new data:

10 switch(message_type)
11 case set_receiver_message:
12 if i’am a receiver:
13 isReceiver=1
14 if ttl > 0: decrement ttl and forward
15 case data_message:
16 if not already forwarded:
17 if caching is on: add payload to cache
18 if isReceiver == 0: forward
19 case nack_message:
20 if requested fragment is in the cache
21 resend fragemnt
22 else
23 if ttl > 0: decrement ttl and forward
24 case ack_message:
25 if rime_addr_of_receiver == 0: print statistics
26 if ttl > 0: decremnt ttl and forward
27 else
28 if all fragments received and isReceiver == 1
29 appstate=finished
30 else
31 if i’am a receiver and not received a packet for a certain time:
32 request missing fragments
33 else
34 send ack
35

36 }
37 PROCESS_END()

Listing 4.3 illustrates the pseudo code for the receiver part of Flooding. It can be seen
that this process also consists of an infinite while loop and is waked up after the reception of
a packet queue event or a periodic timer event (line 5). If a new packet arrives,

32

it is treated depending on its type by the switch statement (line 10). If no packets arrive for a
certain time, the first three fragments (that are the fragments with UID 1,2 and 3) are requested
(line 32). The receiver process maintains a state variable called appstate, which indicates
whether all fragments were received. If the value of appstate is equal to “finished”, an ACK
message is broadcasted. Line 16 illustrates the used loop prevention mechanism: A fragment is
forwarded only for the first time. Afterwards it is resent from the cache (line 20).

4.4.2 Multipoint Relay

As discussed in chapter 3.4.3, MPR works similarly as Flooding. The difference is that only
some intermediate nodes are allowed to rebroadcast the received packets.

Listing 4.4: Sender process of MPR

1 PROCESS_BEGIN()
2 attach this process to the packet queue
3

4 while(1){
5 PROCESS_WAIT for packet_event or periodic timer event
6 get the new packet from the packet queue
7

8 if received new data:
9 switch(message_type)

10 case hello_message:
11 if received from one-hop neighbour:
12 add to one-hop neigbour set
13 set forwarder_node to my node_id
14 forward hello_message
15 if received from two-hop neighbour:
16 add to two-hop neighbour set
17 case nack_message:
18 resend requested fragment
19 case ack_message:
20 note that receiver finished
21 else
22 if all receivers finished:
23 send finished_message
24 if "hello message collect time" is over and mpr sets are not already

evaluated:
25 evaluate mprs
26 send forwarder_message
27 send the set_receiver message
28 PROCESS_WAIT for 5 seconds
29

30 for each fragment i do
31 PROCESS_WAIT for a random backoff time
32 buildFragment(i)
33 broadcast_fragment(i)
34 }
35 PROCESS_END()

33

Listing 4.4 illustrates the pseudo code for the sender part of MPR. It is noticeable that the
set receiver message and the actual data are not sent before the “hello message col-
lect time” is over and the MPR set was determined (line 24). During this “collect time” all
hello messages are collected or forwarded (line 10-16). If this time expired, the MPR set
for the sender node will be evaluated. For the sake of simplicity, the evaluation of the MPR set
is described in the listing 4.5.

After broadcasting the forwarder message and the set receiver message, the
sender will wait for 5 seconds until it starts to broadcast one fragment after an other (line 30-33).
The sender now waits for incoming NACK or ACK messages. If a NACK messages arrives, the
requested fragment will be resent (line 18). If an ACK messages arrives, the sender will make a
note that the mentioned receiver received all fragments (line 20).

The periodic timer event wakes up the sender process periodically. If meanwhile no
new data arrived, the sender will check if all receivers finished (line 22-23).

Listing 4.5: MPR set evaluation

1 list evaluate_mpr(list one_hop_neighbours, list two_hop_neighbours){
2

3 for each node i do:
4 for all hello_messages h_2 in two_hop_neighbours do:
5

6 if the sender_node attribute of h_2 is equal to the node i:
7

8 for all hello_messages h_1 in one_hop_neighbours do:
9 if the sender_node attribute of h_1 is equal to the forwarder

attribute of h_2:
10 forwarderCount[h_2.forwarder_node]++
11

12 find the element with the highest value of forwarderCount.
13 mprCandidats[i] is equal to the index of this element.
14

15 remove all elements from forwarderCount
16

17

18 for each node i do:
19 remove all dumplicated elements from mprCandidats.
20

21 return list(mprCanditats)
22 }

Listing 4.5 shows the pseudo code for the heuristic, which is used for evaluating the MPR
set. This method first picks out all hello messages sent by node i, which were forwarded
only once (line 6). Then it checks if these hello messages were forwarded by a one-hop
neighbor (line 8-9). If so, this one-hop neighbor is a possible candidate for the MPR set.

Therefore, the method makes a note of how many hello messages were forwarded by
this particular node. That is accomplished by incrementing the value at the index of the node id of
the array forwarderCount (line 10). The index of the array forwarderCount denotes the
last part of the RIME address of the node, which forwarded the hello message. The value at
this index denotes how many hello messages were forwarded by this node. That one-hop

34

array index array value
node id #forwarded msgs

1 0
2 0
3 5
4 15
5 4
6 0
7 0
8 0
9 0
10 0
11 0
12 0
13 0
14 0

Table 4.1: Exemplary content of the forwarderCount array

neighbor is chosen as MPR node for node i, which forwarded the most hello messages.
Therefore, the method compares all values of the array forwarderCount, and searches

the highest value (line 12). The index of this value is the last part of the RIME address of the
MPR node for node i. This result is stored to the array mprCadidats (line 13). Now the next
node i is processed and therefore all elements of the array forwarderCount are deleted (line
15). After removing all duplicated elements from the array mprCandidats, the MPR set was
evaluated (line 18-19).

Table 4.1 shows an exemplary content of the forwarderCount array of node 1,
for node 11 of the topology illustrated by figure 3.9. It can be seen that node 1 re-
ceived hello messages forwarded by node 3,4 and 5. Node 4 forwarded the most
hello messages, therefore, node 4 is added to the MPR set.

Listing 4.6: Receiver process of MPR

1 PROCESS_BEGIN()
2 attach this process to the packet queue
3 while(1){
4

5 send hello_message
6 PROCESS_WAIT for packet_event
7

8 if received new data:
9 if message_type = hello_message

10 if received from one-hop neighbour:
11 add to one-hop neigbour set
12 set forwarder_node to my node_id

35

13 forward hello_message
14 if received from two-hop neighbour:
15 add to two-hop neighbour set
16 if "hello message collect time is over" and mpr sets are not already

evaluated:
17 evaluate mprs
18 send forwarder_message
19 send the set_receiver message
20 break;
21 }
22

23 while(1){
24 PROCESS_WAIT for packet_event or periodic timer event
25 get the new packet from the packet queue
26

27 if appstate != finished
28 if received new data:
29 switch(message_type)
30 case set_receiver_message:
31 if i’am a receiver:
32 isReceiver=1
33 if ttl > 0: decrement ttl and forward if i’am a forwarder node
34 case data_message:
35 if not already forwarded:
36 if caching is on: add payload to cache
37 if isReceiver == 0: forward if i’am a forwarder node
38 case nack_message:
39 if requested fragment is in the cache
40 resend fragemnt
41 else
42 if ttl > 0: decrement ttl and forward if i’am a forwarder

node
43 case ack_message:
44 if rime_addr_of_receiver == 0: print statistics
45 if ttl > 0: decremnt ttl and forward if i’am a forwarder

node
46 else
47 if all fragments received and isReceiver == 1
48 appstate=finished
49 else
50 if i’am a receiver and not received a packet for a certain time:
51 request missing fragments
52 else
53 send ack
54 }
55 PROCESS_END()

Listing 4.6 illustrates the pseudo code for the receiver part of MPR. At the first glance it
can be seen that this process consists of two while(1) loops. The first while(1) loop is used for
the initialization phase of MPR (line 3-19). During this phase, the intermediate nodes send and
collect hello messages. A node starts by sending a hello message and waits until it
receives one (line 5-6). If it receives a hello message, it checks if it received the message

36

from a one-hop-neighbor or from a two-hop-neighbor. This check is possible, because every time
when a hello message is forwarded, the forwarder node attribute is set by the node that
forwarded the message. If the message is from a one-hop neighbor, then the forwarder node
attribute is set and the message is forwarded. If the message is from a two-hop neighbor, then
the message is only added to the set of two-hop neighbors (line 9-15). If the “hello message
collect time” is over, the MPR set will be evaluated (line 16-17).

First, an intermediate node broadcasts the forwarder message and then
set receiver message. Afterwards it quits the while(1) loop using the break state-
ment (line 18-20). Now, the second while(1) loop is used. This part of the process of
quite similar to the receiver part of Flooding, with the difference that not all intermediate
node are allowed to forward data. This restriction can be seen for example at line 37. An
intermediate node only forwards a data message, if it is a forwarder node and received a
forwarder message with the last part of his RIME address added to the mprs attribute.

4.4.3 Directed Diffusion

As discussed in chapter 3.4.4, the initialization phase of Directed Diffusion consists of broad-
casting interest messages for finding a path from the receiver to the sender. This path is
reversed and the data is sent from hop to hop to the receiver via UDP unicast.

Listing 4.7: Sender process of Directed Diffusion

1 PROCESS_BEGIN()
2 attach this process to the packet queue
3 send the set_receiver message
4 PROCESS_WAIT for 5 seconds
5

6 while(1){
7 PROCESS_WAIT for packet_event or periodic timer event
8 get the new packet from the packet queue
9

10 if received new data:
11 switch(message_type)
12 case: interest_message:
13 add to the interest cache
14 if "interest collection timer" is over
15 and shortest paths aren’t already evaluated:
16

17 evaluate shortest paths
18 setup gradients
19 broadcast reinforcement_message
20 PROCESS_WAIT 10 seconds
21

22 for each fragment i do
23 PROCESS_WAIT for a random backoff time
24 buildFragment(i)
25

26 for each receiver r do:
27 send fragment i to gradient(r).next_hop
28

37

29 case nack_message:
30 resend requested fragemnt for receiver r
31 to gradient(r).next_hop
32 case ack_message:
33 note that receiver finished
34

35 else
36 if all receivers finished:
37 send finished message
38 }
39 PROCESS_END()

Listing 4.7 illustrates the pseudo code for the sender part of Directed Diffusion. First the
sender broadcasts the set receiver message (line 3). Then the while(1) loop is entered
(line 6). This process listens for packet events or periodic timer events and blocks
as long as such an event arrives (line 7). If a new packet arrives, it is treated depending on the
message type it represents (line 10-11). The initialization phase is started by the receivers.
They broadcast interest messages until they receive a reinforcement message. If
a interest message arrives, it is added to the interest cache (line 13). If the “interest
collection time” is over, then the sender will evaluate the received interests stored in the interest
cache (line 14-15). The evaluation of the received interests is illustrated by listing 4.8. When
the interests are evaluated and the paths to the receivers are chosen, the sender will setup the
gradients (line 18). The gradients for the sender are easy to find: It is just the first hop in the path
to the receivers. Next the sender is broadcasting the reinforcement message to initialize
the gradient setup of all intermediate nodes on the paths to the receivers (line 19). After some
seconds of waiting until all gradients are established, the sender will start to send all fragments
one by one (line 22-27). If all fragments were sent, the sender will wait for incoming NACK or
ACK messages. If it received an ACK message from all receivers, it will start broadcasting the
finished message.

Listing 4.8: Evaluation of the received interest messages

1 calcShortestPath(list interest_cache){
2

3 hops_r1 = MAX_HOPS
4 hops_r2 = MAX_HOPS
5 hops_r3 = MAX_HOPS
6

7 found_path_r1
8 found_path_r2
9 found_path_r3

10

11 for each interest I in the cache do:
12

13 for each receiver R in {1,2,3} do:
14

15 if the interest I is from receiver R:
16 hops = hops of the path from interest I
17

18 if hops < hops_rR

38

19 hops_rR = hops
20 found_path_rR = I.path
21

22 for each found_path_ri do:
23 reverse found_path_ri
24 }

Listing 4.8 shows the pseudo code for the evaluation of the received interests. The goal
of this method is to find and to reverse the shortest path to each receiver. First, this method
loops over all interest messages found in the cache (line 10). Then it checks from which
receivers the interest messages were sent (line 11-13). To count the number of hops of
an interest message, the method only has to loop over the path attribute until it finds
the value zero, because this value is used to mark the end of a path (line 14). For finding the
shortest path, the number of hops of interest I has to be compared to the variable hops rR
(line 15), which was set to the maximum number of possible hops at its initialization (line 3-5).
The variable hops rR denotes the corresponding variable for receiver R: hops r1 for receiver 1,
hops r2 for receiver 2 and hops r3 for receiver 3. At the first comparison of hops and hops rR,
hops is always lower, since hops rR was set to the maximum of possible hops. Therefore, the
value of hops is assigned to hops rR (line 16). Also a reference of the corresponding path
of the interest message I is assigned to the variable found path rR. This reference is
needed for the case this path should be the shortest (line 17).

If all interest messages were processed, the references to the shortest paths are stored
in the variables found path rR. The only thing which remains to do, is reversing of these
paths. That is accomplished by pushing (beginning at the first element) each element of a path
to a stack, and then poping each element one by one from the stack again. This procedure returns
the reversed paths.

Listing 4.9: Receiver process of Directed Diffusion

1 PROCESS_BEGIN()
2 attach this process to the packet queue
3

4 while(1){
5 PROCESS_WAIT for packet_event or periodic timer event
6 get the new packet from the packet queue
7

8 if received new data:
9 switch(message_type)

10 case set_receiver_message:
11 if i’am a receiver:
12 isReceiver=1
13 if ttl > 0: decrement ttl and re-broadcast
14 case interest_message:
15 if the last part of my RIME address is not already
16 on the path:
17 add it to the path
18 re-broadcast
19 case reinforcement_message:
20 if not already processed a reinforcement_message:

39

21 for each attribute reinf_infos do:
22 if the last part of my RIME addr is on the path:
23 setup a gradient to the successor
24 setup a gradient to the predecessor
25 if ttl > 0: re-broadcast reinforcement_message
26 case data_message:
27 if caching is on: add payload to cache
28 if isReceiver ==0: forward to next hop
29 case nack_message:
30 if requested fragment is in the cache
31 resend fragemnt
32 else
33 forward to next hop
34 case ack_message:
35 if rime_addr_of_receiver == 0: print statistics
36 forward to next hop
37 else
38 if all fragments received and isReceiver == 1
39 appstate=finished
40 else
41 if i’am a receiver and not received a packet for a certain time:
42 request missing fragments
43 if i’am a receiver and appState==finished
44 send ack
45

46 if i’am a receiver and not already received a reinforcement_message:
47 PROCESS_WAIT for 3 seconds
48 send interest
49 }
50 PROCESS_END()

Listing 4.9 illustrates the pseudo code for the receiver part of Directed Diffusion. As soon
as the receiver process is started, it is broadcasting periodically interest messages until
it is receiving a reinforcement message (line 46-48). If an interest message is
received, the node first checks if the last part of its RIME address is somewhere on the path of the
received message (line 15-16). If so, it drops the message, because this interest message
was already forwarded by this node. By dropping this interest message, the node can
avoid loops in the path from the sender to the receiver.

If this message was not already forwarded by this node, the node adds the last part of its
RIME address to the next free place in the path attribute and rebroadcasts the message (line 17-
18). After a certain time, the sender process will broadcast the reinforcement message.
If a node receives this message, it will be processed only once (line 20). Since this
reinforcement message consists of three reinf infos attributes, the node has to it-
erate over these three attributes and to search whether the last part of its RIME address is some-
where on the path (line 21-22). If there is a match, the node is on the path from the sender to a
receiver, and it has to forward data coming from the sender towards the receiver, and backwards
from the direction of the receiver to the sender. To be able to forward this data, the gradients have
to be established for the receiver specified in the corresponding reinf infos attribute (line
23-24). If the TTL value of the received reinforcement message is greater than zero, it

40

will be re-broadcasted (line 25). If a data message arrives, it will be directly forwarded to
the next hop (line 28).

41

Chapter 5

Evaluation

5.1 External Factors

As discussed in chapter 1.2, the three implemented communication protocols were evaluated
in a real sensor network testbed. During the evaluation of these protocols, we had to cope with
well known problems and limitations of radio communication: External factors like high voltage
power lines, Bluetooth and other interferer directly influence the quality of the radio communica-
tion. We observed these limitations through the fact, that during the day the evaluated protocols
without any other reason did not work in the chosen testbed.

The effect of the above mentioned factors led to a massively increased packet loss, and thus
to an extremely slow down of the data communication. Since the experiments have a limited
execution time, they will not finish if the packet loss rate (PLR) is too high, and therefore fail.
We tried to avoid these problems by scheduling the experiments always at midnight.

5.2 Testbed Topologies

The used testbed consists of 40 TmoteSky sensor nodes. To get an idea of the connectivity
situation between the different sensor nodes, the link between two sensor nodes was tested by
sending a certain amount of UDP unicast packets and counting how much of them arrived. If
more than 95% of the packets arrived, this link was classified as good. Figure 5.1 shows the
TARWIS testbed.

The green lines indicate good links, meaning that at least 95 % of all sent packets arrived.
Based on this connectivity situation, node 7 was chosen as sender node, and the nodes 16,19,
and 24 as receiver nodes. This choice enables at least a three hop scenario, meaning that the
packets have to be forwarded at least three times.

43

Figure 5.1: BigNet scenario

For evaluating the implemented communication protocols, two different scenarios were set
up: The first scenario is denoted as BigNet, because in this scenario all 40 sensor nodes of the
testbed are used. In the second scenario only 9 sensor nodes are used, and therefore it is denoted
as SmallNet.

This separation was necessary, because we were not able to evaluate the implemented pro-
tocols with ContikiMAC with all 40 sensor nodes of the testbed. Using all 40 sensor nodes
and ContikiMAC, data transmission was very slow and exceeded the defined maximum exper-
iment time of 30 minutes. Whereas with 9 instead of 40 sensor nodes we were able to evaluate
Flooding with caching and UDP unicast with ContikiMAC, and therefore we had to setup two
different scenarios.

Figure 5.2 shows the SmallNet scenario. The SmallNet scenario consist only of the nodes 1,
4, 7, 11, 16, 19, 23, 24, 40.

44

Figure 5.2: SmallNet scenario

5.3 Evaluation Metrics

5.3.1 Transmission Time

The first evaluation metric is the transmission time of the chosen payload. The measurement of
the transmission time starts with the sending of the first fragment and ends with the reception of
the last ACK message. Therefore, the transmission time is equal to the time used for the send
data phase. The time used for the initialization phase is not considered. For measuring the time
between these two events, first fragment sent and last ACK received, the sender sensor node
prints a distinct string, when one of these events happens. As mentioned in chapter 3.4.1, every
sensor node in the used testbed is attached to a corresponding mesh node. Contiki modified the
common print statement of C in that way, that every string supplied as function argument is
sent via RS232 to the attached mesh node. TARWIS collects and timestamps all output gathered
at every mesh node and provides a XML file with tagged data.

For measuring the transmission time, the sender prints the string SENDER: TIME START
before sending the first fragment and SENDER: TIME STOP after the reception of the last
ACK message. After the successful TARWIS experiment, the corresponding XML file can be

45

analyzed. Since all output was timestamped by TARWIS, the difference between the timestamp
for SENDER: TIME STOP and SENDER: TIME START can be calculated, which leads to
the transmission time. It is obvious that this measurement method is not absolutely precise,
since it takes time to transmit the above mentioned strings via RS232 to the attached mesh node.
Besides this small error, the much bigger error results from the fact, that each receiver has to
send an ACK message to the receiver to signal successful data transmission. It takes time until
this ACK message arrives at the sender.

Since the gathered results depend on the specific topology used, not the actual transmission
time is of value, but instead the relation between the different transmission times of the different
evaluated protocols. By using the same measurement method for all evaluated protocols, the
small bias for the transmission time is equal for all evaluated protocols.

5.3.2 Energy

The third evaluation metric is the used energy of all participating sensor nodes for transmitting
the payload. A software based energy measurement method is used as discussed in chapter
2.3.5. As with the sent frames and collisions, the energy measurement starts with the send data
phase and does not consider the initialization phase. All intermediate nodes print the summed up
energest values after the reception a corresponding ACK message. Through an offline analysis of
the corresponding XML file, we are able to calculate the consumed energy by simply summing
up the energest values for listening and transmitting and then converting these values to Joule as
explained in chapter 2.3.5.

5.3.3 Sent Frames and Collisions

The second evaluation metric is the number of sent frames and the number of collisions during
the send data phase for all participating sensor nodes. For counting the number of sent frames
and the number of collisions, the mac call sent callback interface provided by Contiki
was used. Each MAC protocol has to implement this interface, and therefore it is a generic way
to count frames and collisions, which works for all supported MAC protocols.

Listing 5.1: mac call sent callback interface of Contiki OS

1 unsigned int macCollision=0;
2 unsigned int macSent=0;
3

4 void
5 mac_call_sent_callback
6 (mac_callback_t sent, void *ptr, int status, int num_tx){
7

8 switch(status) {
9 case MAC_TX_COLLISION:

10 PRINTF("mac: collision after %d tx\n", num_tx);
11 macCollision++;
12 break;
13 case MAC_TX_NOACK:
14 PRINTF("mac: noack after %d tx\n", num_tx);
15 break;

46

16 case MAC_TX_OK:
17 PRINTF("mac: sent after %d tx\n", num_tx);
18 macSent++;
19 break;
20 default:
21 PRINTF("mac: error %d after %d tx\n", status, num_tx);
22 }
23 if(sent) {
24 sent(ptr, status, num_tx);
25 }
26 }

Listing 5.1 shows the used mac call sent callback interface. For counting the sent
frames and the collisions, two global variables were defined, which hold the counted values
(line 1-3). An increment statement was added at the necessary positions: For counting the sent
frames, the macSent variable is incremented (line 20). For counting all the collisions, the
macCollision variable is incremented (line 12).

Before sending the first fragment, these two variables are set to zero, since the sent
frames and collisions during the initialization phase are not counted. If the data trans-
mission succeeded, all intermediate nodes will receive an ACK message with the attribute
rime addr of receiver set to zero. In this case the intermediate nodes will print the value
of two above mentioned variables. Through analyzing the corresponding XML file, we are able
to sum up all sent frames and collisions for the whole WSN.

5.4 Evaluation Procedure

As discussed in chapter 5.3.1, TARWIS provides for every executed experiment a XML file
with all gathered output from the used sensor nodes. To get the data necessary for the evalua-
tion, a two-pass parser was implemented, which filters out the wanted data from the XML file
and stores it to the SQlite [21] database for further processing. The first pass of the parser
eliminates all unused XML tags and returns only the data printed by the sensor nodes in the for-
mat timestamp [TAB] node id [TAB] printed string. The second pass of the
parser picks out all lines corresponding to a certain node id and and searches for the wanted
data using regular expressions. The gathered data is stored to a SQlite database, which is a
very lightweight file-based database [21].

As discussed in chapter 1.2, the implemented protocols are evaluated with different payload
sizes, caching strategies and MAC protocols. This adds up to many different configurations,
which have to be evaluated in the testbed. To keep track of the progress, a simple script called
makePlotData was implemented, which displays the content of the SQlite database in a
table and produces GNU Plot [22] boxplot-files for a quick overview of the gained results.

Listing 5.2: Output of the makePlotData script

1 .--+------------+------------.
2 | scenario | number of- | status |
3 | | records | |
4 ’--+------------+------------’
5 .--+------------+------------.

47

6 | found udp_unicast_no_cache_nullmac_nullrdc_1000 | 23 | OK |
7 +--+------------+------------+
8 | found udp_unicast_cache_CSMA_ContikiMAC_1000 | 20 | OK |
9 +--+------------+------------+

10 | found udp_unicast_cache_nullmac_nullrdc_1000 | 20 | OK |
11 +--+------------+------------+
12 | found flooding_no_cache_nullmac_nullrdc_1000 | 24 | OK |
13 +--+------------+------------+
14 | found flooding_cache_nullmac_nullrdc_1000 | 23 | OK |
15 +--+------------+------------+
16 | found flooding_pro_active_nullmac_nullrdc_1000 | 32 | OK |
17 +--+------------+------------+
18 | found flooding_cache_nullmac_ContikiMAC_1000 | 20 | OK |
19 +--+------------+------------+
20 | found mpr_no_cache_nullmac_nullrdc_1000 | 20 | OK |
21 +--+------------+------------+
22 | found mpr_cache_nullmac_nullrdc_1000 | 20 | OK |
23 +--+------------+------------+
24 | found mpr_pro_active_nullmac_nullrdc_1000 | 20 | OK |
25 +--+------------+------------+
26 | found dd_cache_CSMA_nullrdc_1000 | 25 | OK |
27 +--+------------+------------+
28 | found udp_unicast_no_cache_nullmac_nullrdc_70 | 24 | OK |
29 +--+------------+------------+
30 | found udp_unicast_no_cache_CSMA_ContikiMAC_70 | 21 | OK |
31 +--+------------+------------+
32 | found udp_unicast_cache_nullmac_nullrdc_70 | 26 | OK |
33 +--+------------+------------+

Listing 5.2 shows the output of the makePlotData script. This script searches the
SQlite database for all different configurations of payload size, caching strategy and MAC
protocol and prints each found configuration and the number of corresponding experiments. To
have representative data, we decided to run at least 20 experiments for every configuration. The
last column of the output of the makePlotData script shows the status of the corresponding
configuration. If more than 20 experiments were found, the status shows “OK”, otherwise “!!”.

For further processing of the experiment data stored in the SQlite database, we used
the GNU R [23] statistical environment. GNU R provides a SQlite Database Inteface (DBI),
which makes it possible to import the experiment data to GNU R. Since the results do not have
a Gaussian distribution, boxplot diagrams are used to visualize the distribution of the data.

5.4.1 Reference Protocol

Besides the discussed communication protocols, the data transmission using pure UDP unicast
was also implemented. The data gathered from the experiments with this protocol provides
suitable reference data for comparing the other protocols. This protocol uses the same NACK-
based reliability mechanism as described in chapter 3.2. Caching support is implemented the
same way as found by Directed Diffusion. A closer look at these two protocols shows, that
the differences are not big. In fact, the send data phases of the two protocols are equal. The
differences are found in the initialization phase. UDP unicast does not use any initialization
phase at all, since it uses hard coded and pre-configured routing tables. Directed Diffusion has
to use the initialization phase to discover a path from the sender to the receiver and to setup
gradients. After these preparations, Directed Diffusion transmits the data using UDP unicast
to the next hop. Our reference protocol therefore represents the best possible case of Directed
Diffusion: If Directed Diffusion would discover the best possible paths, it would perform equally
as UDP unicast.

UDP unicast without any caching is implemented differently as Directed Diffusion without
any caching. Directed Diffusion is in fact very different from IP-style communication, since it

48

has to use the gradients for forwarding the data to the next hop. Therefore it does not use IP
forwarding. The whole protocol is located at the application layer, also the forwarding of the
data. A packet has always to travel up the whole protocol stack until it reaches the application
layer, despite it is not directly sent to this particular node.

That is different with UDP unicast without any caching. Since this protocol uses pre-
configured routing tables and is not implemented at the application layer (therefore it does not
support caching), IP forwarding can be used. That means a packet is addressed directly to the
receiver, and is forwarded by the intermediate nodes at the network layer and not at the applica-
tion layer. A packet has therefore not to travel up the whole protocol stack until it reaches the
application layer to be forwarded.

5.5 Results

As discussed in chapter 5.2, two different scenarios are used due to the fact, that the implemented
protocols did not work with ContikiMAC in the BigNet scenario. Therefore, we present first
the results for the BigNet scenario and afterwards the results for the SmallNet scenario.

5.5.1 Transmission Time

flooding mpr udp_unicast

20

40

60

80

100

120

140

160

180

200

220

240

260

●

●

●

●●●

●

●

●

cache no_cache pro_active cache no_cache pro_active cache no_cache

Transmission time for 1000 bytes (BigNet scenario)

caching strategy

tr
an

sm
is

si
on

 ti
m

e
[s

]

protocol

flooding

mpr

udp_unicast

Figure 5.3: Transmission time for 1000 bytes in the BigNet scenario using NullMAC

BigNet Scenario

Figure 5.3 shows the results of transmission time of a payload size of 1000 bytes using
NullMAC. The black dots, which can be seen on top or on bottom of some boxplots sym-
bolize outliers. An outlier is any value that lies more than one and a half times the length of

49

the box from either end of the box. The first column shows the results for Flooding using dif-
ferent caching strategies. The second column shows the results for MPR, and the third column
shows the results of UDP unicast. It can be seen, as expected, that the caching strategy highly
influences the time used for transmitting the payload. Without any caching, the NACK mes-
sages from the receiver have to travel back to the sender, until the desired fragment are resent.
Caching the fragments on every intermediate node therefore significantly reduces the time until
a requested fragment arrives, since the NACK message can be replied by any intermediate node,
which cached the fragment.

Flooding

Flooding with a proactive caching strategy seems to be as fast as Flooding with normal caching,
but that is not the whole story. First, we implemented proactive caching in that way, that every
intermediate node requested fragments as soon it did not receive a packet for a certain interval.
This resulted in a huge traffic consisting of NACK messages, and therefore produced a lot of
collisions. A lot of packets were lost and the data transmission did not finish within an acceptable
time. We therefore introduced a request limit, which allows the intermediate nodes to request
only a certain amount of fragments. If the request limit is reached, the intermediate nodes will act
similarly as with regular caching. With these modifications, Flooding with proactive caching is
slightly faster as Flooding with regular caching, because intermediate nodes are more often able
to reply to NACK messages. The median for the transmission time for Flooding with proactive
caching is 84.34 seconds, for Flooding with regular caching 89.80 seconds.

The wide variance of the transmission time of Flooding with regular caching is noticeable.
50% of the transmission times are in the interval [86.89, 173.96]. That is a very wide interval,
especially compared the other protocol configurations. We assume that this wide variance results
from the fact, that without any caching the traffic in the WSN increases massively. This traffic is
amplified again through the “flooding” of fragments through the WSN: Every intermediate node
re-broadcasts the received messages. This leads to a very non-deterministic situation, where a
lot of collisions occur and a lot of packets are lost, which results in a big variance.

MPR

The benefit of MPR results in a shorter transmission time for all caching strategies compared to
Flooding. Even the transmission time for MPR without any caching is shorter than the transmis-
sion time for Flooding with regular caching. It is surprising that the transmission time of MPR
with regular caching is almost equal to MPR without any caching. We would expect that MPR
benefits from regular caching as Flooding does. We assume that the data gathered for MPR with
regular caching was biased through external factors as discussed in chapter 5.1.

Directed Diffusion

The third communication protocol to evaluate in the BigNet scenario would be Directed Diffu-
sion, but it did not work properly in this scenario. The main problem of Directed Diffusion was
broadcasting interest messages. The BigNet scenario consists of 40 sensor nodes, and the

50

path of the broadcasted interest messages towards the sender can not be influenced. The
resulted paths from the sender towards the receivers were very long and mostly consisted of 7 to
10 hops, due to broadcasting of the interest messages. The optimal paths are about 3-4
hops. Besides the too longs paths, the quality of hop-by-hop links of the found paths often was
bad. The fact that the interest message was forwarded once from one node to an other
does not say anything about the link quality. Often the link quality between two hops was very
poor, because when broadcasting a packet, each node within the transmission range receives it.
This often lead to hop-by-hop links between nodes with a large distance in between, and there-
fore mostly to unreliable links. This combination, long paths and unreliable hop-by-hop links,
are the crucial factors for failure of Directed Diffusion in the BigNet scenario. To proof our
assumption, we also evaluated Directed Diffusion in the SmallNet scenario.

SmallNet Scenario

As Figure 5.4 shows, with less sensor nodes and an advantageous selection of the position of
these nodes, Directed Diffusion finally worked. This Figure also shows Flooding with regular
caching and ContikiMAC as used MAC protocol, and for reference, UDP unicast with regular
caching running on top of NullMAC and ContikiMAC.

Comparing the medians for the transmission time of Flooding with regular caching using
ContikiMAC on one hand and NullMAC on the other hand, the slow down of the transmis-
sion time by using ContikiMAC can be observed. The median using NullMAC is 89.28 sec-
onds, using ContikiMAC it is 188.35 seconds. It can be seen that the RDC mechanism of
ContikiMAC is responsible for a doubled transmission time.

dd flooding udp_unicast

40

60

80

100

120

140

160

180

200

220

●

●●●

●

nullrdc ContikiMAC ContikiMAC nullrdc

Transmission time for 1000 bytes (SmallNet scenario)

rdc protocol

tr
an

sm
is

si
on

 ti
m

e
[s

]

rdc_protocol

ContikiMAC

nullrdc

Figure 5.4: Transmission time for 1000 bytes with caching in the SmallNet scenario

51

The fact that Directed Diffusion works in the SmallNet scenario proofs the assumption made
above, since the SmallNet scenario consists only of 9 sensor nodes and the length and the di-
rection of the paths is restricted. The time to transmit 1000 bytes using Directed Diffusion with
regular caching is quite good, the median is 30.14 seconds. The median for the transmission
time of UDP unicast with regular caching is 26.99 seconds. This indicates that despite the re-
stricted possibilities to choose a path, Directed Diffusion still does not find the optimal paths.
UDP unicast uses the optimal paths, since they are hard-coded and preconfigured.

The difference for the transmission time between UDP unicast with regular caching using
ContikiMAC on one hand and NullMAC on the other hand is quite huge. The median using
ContikiMAC is 109.12 seconds, and using NullMAC 26.99 seconds. This shows that the data
transmission using ContikiMAC is about four times slower compared of using NullMAC. But
ContikiMAC also has its advantages: The used RDC mechanism is able to save a lot of energy.
Taking the data of UDP unicast as reference to compare with the other protocols shows that a
usual UDP connection is much faster than Flooding or MPR. But this comparison is not fair,
since UDP unicast depends on hard-coded routing tables, whereas Flooding and MPR do not.

Figure 5.5 shows the results for the transmission time for a payload size of 70 bytes. It can
be seen that for one single packet (70 bytes payload), the difference between the transmission
times are not as big as for 15 packets (1000 bytes payload). Just Flooding without any caching
takes a little bit longer. Obviously for a payload fitting into one packet, the caching strategies
does not matter any more, and therefore the costs for caching are too high in relation for the
benefit.

flooding mpr udp_unicast

50

100

150

200

●

●

●●

●

●

●

●●●

cache no_cache pro_active cache no_cache pro_active cache no_cache

Transmission time for 70 bytes (BigNet scenario)

caching strategy

tr
an

sm
is

si
on

 ti
m

e
[s

]

protocol

flooding

mpr

udp_unicast

Figure 5.5: Transmission time for 70 bytes in the BigNet scenario

52

5.5.2 Energy

BigNet Scenario

Figure 5.6 shows results for the energy consumption for transmitting 1000 bytes in the BigNet
scenario.

flooding mpr udp_unicast

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

550000

600000

650000
●

●

●

●

●●
●

●
●

cache no_cache pro_active cache no_cache pro_active cache no_cache

Consumed energy for transmitting 1000 bytes (BigNet scenario)

caching strategy

en
er

gy
 [m

J]

protocol

flooding

mpr

udp_unicast

Figure 5.6: Consumed energy for transmitting 1000 bytes

Since in the BigNet scenario only NullMAC is used, the energy consumption should be
linear to the transmission time.

Checking the linearity between the transmission time and the energy consumption shows that
the expectation made above comes true, except for MPR with proactive caching. A lower value
for the energy consumption is expected, since the median of the transmission time of MPR with
proactive caching is the lowest of all caching strategies. Therefore, the energy consumption has
to be the lowest, since without any radio duty cycling the consumed energy has to be proportional
to its transmission time. Obviously the energy data for MPR with proactive caching was biased
during its measurement.

Figure 5.7 shows the consumed energy plotted against the transmission time of MPR with
proactive caching using NullMAC.

A straight line is expected, due to the linear correlation between the consumed energy and
the transmission time. We can spot that the first records satisfy linearity, until a big valley
appears. This record is obviously a measuring error. The records afterwards satisfy linearity
again, until the straight line falls again. Obviously these records now are biased, since it is
impossible that transmitting data during 100 seconds uses less energy as transmitting data during
50 seconds.

53

50000

100000

150000

200000

250000

50 100 150

energy consumption versus time of MPR with pro_active caching

transmission time [s]

co
ns

um
ed

 e
ne

rg
y

[m
J]

Figure 5.7: The biased data of MPR with proactive caching

We assume that the proactive caching strategy disturbs the reception of the
finished message, and therefore the printing of the energest values. That is possi-
ble if a lot of intermediate nodes did not reach the request limit until the sending of the
finished message. This leads to the following situation: The actual data transmission
finished, but the intermediate nodes are still requesting fragments, until they reach the request
limit. These attempts to request fragments disturb the reception of the finished message
and are therefore responsible for the biasing of the data.

Quality Checking of the Data

After the discovery of the biased data, the other data was also analyzed regarding the corre-
lation between transmission time and energy consumption. This was done by calculating the
Spearman’s rank correlation coefficients [24] for all configuration of Flooding, MPR and UDP
unicast. These correlation coefficients show the correlation between transmission time and used
energy expressed as a decimal, which lies in the interval [-1,1]. A correlation coefficient with the
value 1 indicates absolute linearity, whereas a correlation coefficient with the value -1 indicates
no linearity between transmission time and used energy.

Table 5.1 shows the correlation coefficients for the transmission time and the consumed
energy for Flooding, MPR and UDP unicast. It can be seen that the proposition about the
linearity of the transmission time and the consumed energy comes true, although some values
differ a little bit from the optimum. As we have already seen, the data for MPR with proactive
caching is biased, as the correlation coefficient of -0.35 for this data shows.

54

cor(time, energy)
Flooding cache 0.78

Flooding nocache 0.9
Flooding proactive 0.61

MPR cache 0.96
MPR nocache 0.98
MPR proactive -0.35

UDP unicast cache 0.97
UDP unicast nocache 0.92

Table 5.1: Spearman’s rank correlation coefficients for all configurations of Flooding, MPR and
UDP unicast for a payload size of 1000 bytes

The other value, which is too low compared to the other correlation coefficients, is the value
of Flooding with proactive caching. That is not really a surprise, since there the same problems
arise as with MPR with proactive caching, due to the proactive caching mechanism. Since we
know now for sure, that the consumed energy is linearly dependent on the transmission time, a
simple linear model can be set up to calculate the measurement error of the gathered data used
to calculate the energy consumption.

Figure 5.8 shows a scatterplot of the consumed energy of Flooding with caching.

100000

150000

200000

250000

300000

350000

400000

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

60 80 100 120 140 160
transmission time [s]

co
ns

um
ed

 e
ne

rg
y

[m
J]

Figure 5.8: Linear regression for the consumed energy of Flooding with caching

The blue line represents a simple linear model developed by applying linear regression to
the energy data. The red dots are the calculated values for the energy consumption using this
linear model. The dark grey area denotes the 95% confidence interval. The linear model for the
consumed energy of Flooding with caching can be described as

55

eflood 1000 = 60369 + 1927 ∗ tflood 1000 (5.1)

The median for the consumed energy of Flooding with caching is 249’241.1 mJ. The median
calculated with the linear model is 239’273.8 mJ with a probability of 95 %. Therefore, the
relative error is about 4%, which is acceptable.

Figure 5.9 shows the energy consumption for the transmission of 70 bytes in the BigNet
scenario.

flooding mpr udp_unicast

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

●

●

●

●

●

●●

●

●

●

●

●●●●

cache no_cache pro_active cache no_cache pro_active cache no_cache

Consumed energy for transmitting 70 bytes

caching strategy

en
er

gy
 [m

W
] protocol

flooding

mpr

udp_unicast

Figure 5.9: Consumed energy for transmitting 70 bytes

As done previously, the Spearman’s rank correlation coefficients were calculated for all con-
figuration of Flooding, MPR and UDP unicast, but this time for a payload size of 70 bytes. Table
5.2 shows the results.

cor(time, energy)
Flooding cache 0.95

Flooding nocache 0.9
Flooding proactive 0.76

MPR cache 0.97
MPR nocache 0.95
MPR proactive 0.7

UDP unicast cache 0.95
UDP unicast nocache 0.88

Table 5.2: Spearman’s rank correlation coefficients for all configurations of Flooding, MPR and
UDP unicast for a payload size of 70 bytes

56

It can be seen that the lowest correlation coefficients correspond to Flooding with proactive
caching and MPR with proactive caching. There seems to be definitively a problem with proac-
tive caching and the gathering of the energest values. The rest of the data seems to be of a good
quality.

As expected, it can be seen that the differences for the energy consumption for transmitting
one packet is marginal for Flooding and MPR.

SmallNet Scenario

Figure 5.10 shows the consumed energy for transmitting 1000 bytes in the SmallNet scenario.

dd flooding udp_unicast

5000

10000

15000

20000

25000

30000

35000
●

●

●

●

●

nullrdc ContikiMAC ContikiMAC nullrdc

Consumed energy for transmitting 1000 bytes

rdc protocol

en
er

gy
 [m

W
]

rdc_protocol

ContikiMAC

nullrdc

Figure 5.10: Consumed energy for transmitting 1000 bytes in the SmallNet scenario

It is noticeable that the consumed energy of Flooding is lower than the consumed energy of
UDP unicast. We would expect that it should be the other way around, since the transmission
time for Flooding is much higher than for UDP unicast. To check the quality of the data, the
Spearman’s rank correlation coefficients were calculated again.

Table 5.3 shows the calculated correlation coefficients.

cor(time, energy)
DD cache, nullrdc 0.93

Flooding cache, contikimac 0.89
UDP unicast, contikimac 0.82

UDP unicast, nullrdc 0.97

Table 5.3: Spearman’s rank correlation coefficients for all configurations of the SmallNet sce-
nario

57

It can be seen that the quality of the data seems to be fine regarding the linearity of the trans-
mission time and the consumed energy. Therefore it is surprising, that Flooding consumed less
energy than UDP unicast. We assume that the energy data of Flooding was biased otherwise, be-
cause the energy consumption of Flooding should at least be as high as the energy consumption
of UDP unicast.

The difference of the energy consumption of UDP unicast using ContikiMAC and UDP
unicast using NullMAC is remarkable. This difference results from the used RDC mechanism
of ContikiMAC. The median of the consumed energy using ContikiMAC is 7988.87 mJ,
using NullMAC it is 16519.56 mJ. The saved energy by using ContikiMAC is about 51.64 %.
Putting this result into relation to the transmission time, it can be observed that for the case of
UDP unicast, ContikiMAC is able to save about 50% of the energy with the costs of a four
times slower data transmission.

5.5.3 Sent Frames and Collisions

BigNet Scenario

Figure 5.11 shows the number of sent frames for transmitting 1000 bytes in the BigNet scenario.
The huge number of sent frames using Flooding or MPR can be observed. The median for
Flooding with caching is 48821, the median for MPR with caching is 13976.5. This shows
the benefit of reducing the number of forwarding intermediate nodes, because this reduces the
number of collisions, and therefore also the number of sent frames.

flooding mpr udp_unicast

20000

40000

60000

80000

100000

120000

●

●

●
●

●

●

● ●

cache no_cache pro_active cache no_cache pro_active cache no_cache

Sent frames for transmitting 1000 bytes

caching strategy

se
nt

 fr
am

es

protocol

flooding

mpr

udp_unicast

Figure 5.11: Sent frames for transmitting 1000 bytes in the BigNet scenario

Figure 5.12 shows the counted collisions while transmitting 1000 bytes. We see the reduced
number of collisions produced by MPR compared with pure Flooding. Also, we can see that

58

proactive caching produces a lot of additional collisions. This results from the fact, that every
intermediate node is requesting additionally fragments by itself.

Comparing the number of sent frames and collisions of Flooding, MPR and UDP uni-
cast shows the difference between broadcast-based and unicast-based communication protocols.
Broadcast-based communication results in many collisions, due to that every fragment is re-
broadcasted many times. However, unicast-based communication produces considerably less
collisions, since the fragments are resent only by one intermediate node.

flooding mpr udp_unicast

2500

5000

7500

10000

12500

15000

17500

20000

22500

25000

27500

●

●

●

●

●

●

●
●
●

●

●

●

cache no_cache pro_active cache no_cache pro_active cache no_cache

Collisions while transmitting 1000 bytes

caching strategy

co
lli

si
on

s

protocol

flooding

mpr

udp_unicast

Figure 5.12: Collisions while transmitting 1000 bytes BigNet scenario

Figure 5.13 and 5.14 show the number of sent frames and collisions for transmitting 70 bytes
in the BigNet scenario. It can be observed that for a payload size of 70 bytes, the difference of
sent frames and collisions for the several protocols becomes smaller. It is noticeable that the
regular caching mechanism seems to result in more sent frames and collisions compared of
using no or a proactive caching mechanism.

59

flooding mpr udp_unicast

10000

20000

30000

40000

50000

60000

70000

●

●

●

●

●

●

●

●

●

●●● ●

cache no_cache pro_active cache no_cache pro_active cache no_cache

Sent frames for transmitting 70 bytes

caching strategy

se
nt

 fr
am

es

protocol

flooding

mpr

udp_unicast

Figure 5.13: Sent frames for transmitting 70 bytes in the BigNet scenario

flooding mpr udp_unicast

0

2500

5000

7500

10000

12500

15000

17500

20000

22500

25000

●

●

●

●

●

●

●

cache no_cache pro_active cache no_cache pro_active cache no_cache

Collisions while transmitting 70 bytes

caching strategy

co
lli

si
on

s

protocol

flooding

mpr

udp_unicast

Figure 5.14: Collisions while transmitting 70 bytes in the BigNet scenario

SmallNet Scenario

Figure 5.15 and 5.16 show the number of sent frames and collisions for transmitting 1000 bytes
in the SmallNet scenario. It can be seen that the usage of ContikiMAC results in many ad-
ditional collisions. An other evidence for the shortcomings of the path discovery of Directed

60

Diffusion can be discovered: As it can be seen, the number of collisions of Directed Diffusion
are in the same magnitude as of UDP unicast using NullMAC. But the number of sent frames is
much higher as for UDP unicast using NullMAC.

That is an evidence for choosing too long and bad paths by Directed Diffusion, because
the fragment is sent along this long path, which results in a increased number of sent frames.
The number of collisions of Flooding using ContikiMAC is also quite high compared to the
number of sent frames. This high number of collisions using ContikiMAC results from the
used RDC mechanism: Since a broadcast packet should reach all neighbors which are reachable,
ContikiMAC has to re-broadcast the same packet for entire wake-up interval (120 ms) to make
sure to reach all sleeping sensor nodes. During this period, the transmission medium is occupied,
which results in a huge amount of collisions, as Figure 5.16 shows.

dd flooding udp_unicast

1000

2000

3000

●

nullrdc ContikiMAC ContikiMAC nullrdc

Sent frames for transmitting 1000 bytes

rdc protocol

se
nt

 fr
am

es rdc_protocol

ContikiMAC

nullrdc

Figure 5.15: Sent frames for transmitting 1000 bytes in the SmallNet scenario

61

dd flooding udp_unicast

500

1000

1500

2000

nullrdc ContikiMAC ContikiMAC nullrdc

Collisions while transmitting 1000 bytes

rdc protocol

co
lli

si
on

s rdc_protocol

ContikiMAC

nullrdc

Figure 5.16: Collisions while transmitting 1000 bytes in the SmallNet scenario

62

5.5.4 Summary of Results

The results show strengths and weaknesses of the implemented communication protocols.

Flooding

Flooding is easy to implement and very reliable, but it is quite slow. If NullMAC is used, data
transmission consumes a lot of energy. As shown in chapter 5.5.3, the number of sent frames
and collisions is huge. Flooding wastes a lot of resources for the benefit of reliability and low
protocol complexity.

MPR

MPR improves some drawbacks of Flooding by allowing only some nodes to forward data. This
reduces collisions, thus leading to faster data transmission and lower energy consumption. The
usage of the implemented packet queue with data aggregation of the data messages also helps
reducing the number of duplicated sent packets. A packet queue is needed, first because as
described in chapter 2.3.4, NullMAC does not cache any frames, so the packet buffering has to
be implemented on the application layer. Secondly, the determined MPR set is not necessarily
optimal. The flooding strategy implies the possibility of an intermediate sensor node to receive
the same packet from multiple neighbors. Since the packet queue caches received packets, those
duplicate packets would be re-broadcast needlessly. This is prevented by the aggregation of
data messages by the used packet queue, which deletes those duplicate packets. MPR is more
complex than Flooding. This is mostly the result of the initialization phase and the determination
of the MPR set. With increasing number of adjacent sensor nodes, determination of the MPR
set becomes costlier.

Directed Diffusion

Directed Diffusion is hard to implement, due to its protocol complexity. Especially the im-
plementation of the gradient setup was time-consuming and difficult. Path discovery through
broadcasting interest messages does not work properly and is likely to return unreliable
and unreasonably long paths. Due to these limitations, we experienced Directed Diffusion as
very unstable. The advantage of Directed Diffusion is the independence of static and preconfig-
ured routing tables. It is therefore able to distribute data in a priorly unknown topology.

UDP unicast

UDP unicast performs very well compared to the other protocols. Protocol complexity is very
low and it is much faster, because it does not broadcast any packets. This leads to considerably
less collisions and to a much faster data transmission.

63

Chapter 6

Conclusions and Future Work

6.1 Conclusions

The results show the effects of different caching strategies. Caching can definitely accelerate
data transmission, but only if more than one data message is needed to transmit the payload.
For a payload size of 70 bytes (fits into one data message), the costs for the caching does not
compensate the reduction of the transmission time. Also, proactive caching does not prove itself
an effective strategy, since it does not work without introduction of a request limit.

Besides the protocol logic, the used MAC protocol proves to be a major influence to the
overall performance of a communication protocol. ContikiMAC significantly reduces energy
consumption, but increases transmission time. ContikiMAC also has its weaknesses: It works
only with a small number of directly reachable sensor nodes. The 40 sensor nodes of the BigNet
scenario are definitely too many for ContikiMAC to handle. This limitation is caused by the
RDC mechanism of ContikiMAC: Each node periodically wakes up for a short time, checking
for the reception of a wake-up strobe. The time between two wake-ups is called tsleep. As Con-
tikiMAC has to synchronize all adjacent nodes in one time period tsleep, there is a maximum
number of nodes it can handle. Additionally, transmission timing has to be the more accurate,
the more sensor nodes are in the perimeter. The second weakness of ContikiMAC is the way
the Clear Channel Assessment (CCA) is done. Relying on the Received Signal Strength Indica-
tor (RSSI) value makes ContikiMAC sensitive to signal noise. Therefore, intermediate sensor
nodes tend to falsely assume a positive CCA (as the signal strength can easily exceed the thresh-
old). A positive CCA causes the sensor node to sleep again without receiving any data, thus
slowing down the data transmission. Beside these drawbacks, the results show Contikimac
to be unsuitable for broadcast-based communication protocols, due to the necessity of resending
the wakeup strobe for the entire sleep period to reach all adjacent nodes.

6.2 Future Work

As discussed in chapter 3.1, Flooding, MPR and Directed Diffusion implementation was done on
the application layer. This simplified the implementation, but also increased the overhead. Also,
µIP was chosen as communication stack, due to the required possibility of updating code from a

65

common desktop PC over the Internet. Instead of using µIP and implementing the protocols on
the application layer, the RIME communication stack might be to the advantage, because of its
simplicity.

Flooding, MPR and Directed Diffusion could be implemented on top of RIME, thus reducing
the overhead of an application layer implementation. Additionally, using RIME could simplify
the implementation, as it provides a lot functionality found in common network protocols, avail-
able as very thin layers. For example RIME supports the path discovery out of the box. Internet
access could be enabled using a RIME proxy, translating IP packets to RIME packets and vice
versa.

66

Bibliography

[1] H. Karl and A. Willig, Protocols and Architectures for Wireless Sensor Networks. John
Wiley & Sons, 2005.

[2] G. Wagenknecht, M. Anwander, and T. Braun, “MARWIS: A Management Platform for
Heterogeneous Wireless Sensor Networks.” ERCIM News, vol. 2009, no. 76, pp. 18–19,
2009.

[3] ——, “SNOMC: An overlay multicast protocol for Wireless Sensor Networks,” in Proc.
9th Annual Conf. Wireless On-demand Network Systems and Services (WONS), 2012, pp.
75–78.

[4] G. M. Dias, “Implementing a Reliable Overlay Multicast Protocol on Wireless Sensor
Nodes,” Master’s thesis, Universität Bern, 2011.

[5] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva, “Directed Diffu-
sion for Wireless Sensor Networking,” IEEE/ACM Trans. Netw., vol. 11, no. 1, pp. 2–16,
Feb. 2003.

[6] A. Qayyum, L. Viennot, and A. Laouiti, “Multipoint Relaying for Flooding Broadcast
Messages in Mobile Wireless Networks,” in Proceedings of the 35th Annual Hawaii Inter-
national Conference on System Sciences (HICSS’02) - Volume 9, ser. HICSS ’02. Wash-
ington, DC, USA: IEEE Computer Society, 2002, pp. 298–.

[7] P. Hurni, M. Anwander, G. Wagenknecht, T. Staub, and T. Braun, “TARWIS — A Testbed
Management Architecture for Wireless Sensor Network Testbeds,” in Proc. 7th Int Network
and Service Management (CNSM) Conf, 2011, pp. 1–4.

[8] “TmoteSky Datasheet.” [Online]. Available: http://www.sentilla.com/files/pdf/eol/
tmote-sky-datasheet.pdf

[9] “CC2420 Datasheet.” [Online]. Available: http://www.ti.com/general/docs/lit/getliterature.
tsp?genericPartNumber=cc2420&fileType=pdf

[10] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - A Lightweight and Flexible Operating
System for Tiny Networked Sensors,” in Proceedings of the 29th Annual IEEE Interna-
tional Conference on Local Computer Networks, ser. LCN ’04, vol. 0. Washington, DC,
USA: IEEE Computer Society, 2004, pp. 455–462.

67

http://www.sentilla.com/files/pdf/eol/tmote-sky-datasheet.pdf
http://www.sentilla.com/files/pdf/eol/tmote-sky-datasheet.pdf
http://www.ti.com/general/docs/lit/getliterature.tsp?genericPartNumber=cc2420&fileType=pdf
http://www.ti.com/general/docs/lit/getliterature.tsp?genericPartNumber=cc2420&fileType=pdf

[11] A. Dunkels, “Full TCP/IP for 8-bit architectures,” in Proceedings of the 1st international
conference on Mobile systems, applications and services, ser. MobiSys ’03. New York,
NY, USA: ACM, 2003, pp. 85–98.

[12] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali, “Protothreads: Simplifying Event-driven
Programming of Memory-constrained Embedded Systems,” in Proceedings of the 4th in-
ternational conference on Embedded networked sensor systems, ser. SenSys ’06. New
York, NY, USA: ACM, 2006, pp. 29–42.

[13] A. Dunkels, “Rime - A Lightweight Layered Communication Stack for Sensor Networks,”
in Proceedings of the European Conference on Wireless Sensor Networks (EWSN), ser.
Poster/Demo session, 2007.

[14] ——, “The ContikiMAC Radio Duty Cycling Protocol,” Swedish Institute of Computer
Science, Tech. Rep. T2011:13, Dec. 2011.

[15] J. Polastre, J. Hill, and D. Culler, “Versatile Low Power Media Access for Wireless Sensor
Networks,” in Proceedings of the 2nd ACM Conference on Embedded Networked Sensor
Systems (SenSys), Baltimore, MD, USA, November 2004, pp. 95–107.

[16] M. Buettner, G. V. Yee, E. Anderson, and R. Han, “X-MAC: a Short Preamble MAC pro-
tocol for duty-cycled Wireless Sensor Networks,” in Proceedings of the 4th international
conference on Embedded networked sensor systems, ser. SenSys ’06. New York, NY,
USA: ACM, 2006, pp. 307–320.

[17] D. Moss and P. Levis, “Box-macs: Exploiting physical and link layer boundaries in low-
power networking,” Stanford University, Tech. Rep., 2008.

[18] A. El-Hoiydi and J.-D. Decotignie, “Wisemac: an ultra low power mac protocol for the
downlink of infrastructure wireless sensor networks,” in Proceedings of the Ninth Interna-
tional Symposium on Computers and Communications 2004 Volume 2 (ISCC”04) - Volume
02, ser. ISCC ’04. Washington, DC, USA: IEEE Computer Society, 2004, pp. 244–251.

[19] A. Dunkels, J. Eriksson, N. Finne, and N. Tsiftes, “Powertrace: Network-level Power Pro-
filing for Low-power Wireless Networks,” Swedish Institute of Computer Science, Tech.
Rep. T2011:05, Mar. 2011.

[20] A. Dunkels, F. Österlind, N. Tsiftes, and Z. He, “Software-based On-line Energy Estima-
tion for Sensor Nodes,” in Proceedings of the Fourth Workshop on Embedded Networked
Sensors (Emnets IV), Cork, Ireland, June 2007.

[21] “SQLite, a lightweight file-based database.” [Online]. Available: http://www.sqlite.org

[22] “GNU Plot, a portable command-line driven graphing utility.” [Online]. Available:
http://www.gnuplot.info/

[23] “GNU R, a open-source statistical environment.” [Online]. Available: http://www.
r-project.org/

68

http://www.sqlite.org
http://www.gnuplot.info/
http://www.r-project.org/
http://www.r-project.org/

[24] L. Sachs and J. Hedderich, Applied Statistics. Springer Gabler, 2012.

69

	Contents
	List of Figures
	Code Listings
	List of Tables
	Introduction
	Motivation
	Scenario
	Goal
	Structure of the Thesis

	Related Work
	TARWIS
	TmoteSky Sensor Nodes
	Contiki Operating System
	Contiki Processes and Scheduling
	The µIP Stack
	RIME
	MAC Protocols
	Energy Measurement

	Design of Communication Protocols for Reliable Multicast
	Protocol Stack
	NACK-Based Reliability Mechanism
	Caching Strategies
	Protocols
	Communication Phases
	Flooding
	Multipoint Relay
	Directed Diffusion

	Implementation
	Caching
	Payload Splitting
	Packet Queue
	Protocols
	Flooding
	Multipoint Relay
	Directed Diffusion

	Evaluation
	External Factors
	Testbed Topologies
	Evaluation Metrics
	Transmission Time
	Energy
	Sent Frames and Collisions

	Evaluation Procedure
	Reference Protocol

	Results
	Transmission Time
	Energy
	Sent Frames and Collisions
	Summary of Results

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

