
UNIVERSITY OF BERN

BACHELOR THESIS

Attitude Heading Reference System
and Step Recognition for

Cloud-Based Indoor Positioning –
Android Client

handed in by
Lucien MADL

Supervisor

PROFESSOR DR. TORSTEN BRAUN

Communication and Distributed Systems
Institute of Computer Science

September 16, 2018

http://www.unibe.ch
http://www.cds.unibe.ch
http://www.inf.unibe.ch/

iii

UNIVERSITY OF BERN

Faculty of Science
Institute of Computer Science

Bachelor of Science in Computer Science

Attitude Heading Reference System and Step Recognition for
Cloud-Based Indoor Positioning – Android Client

by Lucien MADL

Abstract

Due to the rising popularity of mobile devices and their performance in-
crease over the last few years, a whole new generation of location based ser-
vices were created. This work is one part of three different theses which to-
gether propose a Cloud-Based Indoor Positioning System, providing three
different clients for data gathering, a service able to compute the current
position running on a Tornado server and a web application to visualize
the computed position. Being completely platform independent, the pro-
posed service can be accessed by any device providing the required data
(accelerometer, gyroscope, magnetometer and signal strength from access
points) and the ability to connect to a WebSocket. Within the scope of these
theses projects we built three different types of clients (Android, iOS and
ESP32) that gather data and provide it to the server. The service provides
real time indoor positioning to connected clients by implementing a Par-
ticle Filter identifying the current position, which is supported by an Atti-
tude Heading Reference System (AHRS) called Rotations, a Step Detection
function as well as the Ranging Model, which creates a regression model
by means of the measured signal strength to define the distance to access
points.

Acknowledgements
I would like to thank Torsten Braun, Zhongliang Zhao and Jose Carrera for
supervising this thesis and supporting it on various occasions during this
project.

Further thanks goes to my project partners, Stefan Serena and Patrick
Hodel. Sometimes we were struggling, but we learned a lot while always
staying positive and being supportive.

HTTP://WWW.UNIBE.CH
http://www.philnat.unibe.ch/
http://www.inf.unibe.ch/

v

Contents

Abstract iii

Acknowledgements iii

1 Introduction 1
1.1 Overview . 1
1.2 Motivation . 3
1.3 Contributions . 3
1.4 Structure . 4

2 Theoretical Background 5
2.1 Basic Idea - Indoor Localization Approach 5
2.2 Rotations . 5

2.2.1 Attitude and Heading Reference System (AHRS) . . 6
2.2.2 Sensors . 6
2.2.3 Representation of the Rotation 6
2.2.4 Quaternions . 7
2.2.5 Rotation Algorithm . 9

2.3 Step Detection . 9
2.3.1 Traveled distance . 9
2.3.2 Scalar Product of the Accelerometer Data 9

3 System Architecture 13
3.1 Implementation Architecture 13

3.1.1 Android Client . 13
3.1.2 Server . 14

3.2 Madgwick Algorithm . 14
3.3 Step Detection . 17

3.3.1 Jerk Average Threshold 17
3.3.2 Pace Buffer . 18

4 Implementation 19
4.1 Technology Stack . 19

4.1.1 Server . 19
4.1.2 Client . 19
4.1.3 Software . 20

4.2 Connection . 20
4.3 Implementation Details . 21

4.3.1 Training and indoor positioning 23

5 Evaluation 25
5.1 Evaluation Methods . 25

5.1.1 Introduction . 25
5.1.2 Comparison with Android Framework Solution . . . 25

vi

5.1.3 The predefined walking path for the experiment . . . 26
5.1.4 Experimental Data . 27

5.2 Rotation Evaluation . 27
5.2.1 ANOVA . 28
5.2.2 Tukey’s Honestly Significant Difference (HSD) Test . 29

5.3 Step Detection Evaluation . 30
5.3.1 Pearson χ2-square Test 30

5.4 Evaluation Summary . 31

6 Conclusion 33

Bibliography 35

vii

List of Figures

1.1 System architecture . 2

2.1 Raw accelerometer data stream as scalar product 10
2.2 A Sequence defined as jerk . 11

3.1 System architecture of the relevant parts 14
3.2 Madgwick algorithm functionality 17

4.1 Visualization of the current AHRS state 22
4.2 Sequence diagram . 24

5.1 Predefined walking path . 26
5.2 Diagramme comparing AHRS performances 30

ix

List of Tables

5.1 ANOVA test . 28
5.2 Tukey’s Honestly Significant Difference (HSD) test 29
5.3 Pearson χ2-square test . 31

xi

List of Abbreviations

AHRS Attitude Heading Reference System
ANOVA Analyis of Variance
BSSID Basic Service Set IDentifier
CDS Communication and Distributed Systems
Df Degrees of freedom
GPS Global Positioning System
IMU Inertial Measurement Unit
MVVM Model View ViewModel
RSSI Received Signal Strength Indicator

1

Chapter 1

Introduction

1.1 Overview

Due to the rising popularity of mobile devices (mostly smart phones) and
their increasing performance during the last few years, a whole new gener-
ation of location based services were created [31]. These services in general
use the Global Positioning System (GPS) to localize a device, which gen-
erally is not suitable for indoor localization, because GPS signals will be
attenuated and scattered by roofs, walls and other objects [35].

For this reason, there is a need for alternative methods to determine
the position inside a building, since todays location services provide vari-
ous opportunities which require location information. Context information
could be the exact position in a room, the current time, the heart rate of a
user or even the current weather situation. All this information can then
be used to interact with a mobile device and its user. These new services,
which interact with mobile devices, offer a lot of opportunities like exact
indoor positioning, context aware advertisement or even the possibility to
create social graphs without using any social network data.

This thesis is part of a collaboration project which involves two other
students, with the goal to create a cloud-based indoor positioning system
which could provide indoor positioning services for multiple mobile de-
vices. The location is computed by a centralized server called service that is
able to process data gathered by a variety of mobile devices connected over
WebSocket to calculate the current position. Three different client applica-
tions are within the scope of this thesis, namely for Android, iOS and micro
controllers (ESP32 [11]).

Figure 1.1 shows the architecture of the proposed cloud-based indoor
positioning system, which includes the following components:

• A Particle Filter providing Real-time position based on:

– Pedestrian dead reckoning (PDR)

– WiFi ranging

• The Rotations computing the orientation of a device relative to the
earths frame providing an Attitude Heading Reference System (AHRS)
using an implementation of the Madgwidge algorithm.

• A Step Detection able to notify the system when a step is detected.

• The Ranging-models offering the possibility to determine the distance
from a client to an access points.

2 Chapter 1. Introduction

• A web client showing a visual representation of the current position
in a web browser.

FIGURE 1.1: Architecture of the cloud-based indoor posi-
tioning system

The particle filter is at the heart of the service. It determines the current
location by merging information from pedestrian dead reckoning (PDR)
and WiFi trilateration using the strengths of both methods, while trying
to overcome their weaknesses.

The PDR uses the sensor data of an accelerometer, a magnetometer and
a gyroscope to calculate the current location with respect to the previous
position. Due to the inaccuracies of the sensors, this process entails a small
error. This error might accumulate by continually using the previous po-
sitions to calculate the current ones. That is why we get a composite error
that grows over time. We eliminate this error and correct the current po-
sition periodically using the position computed by WiFi trilateration [41].
WiFi trilateration strongly relies on the WiFi Ranging Model, which evalu-
ates the distance of a mobile device relative to multiple access points with
known positions by using the Receiving Signal Strength Indicator (RSSI).

In theory, these two methods supplement each other quite well, but in
reality the WiFi trilateration is not always reliable. The measurement of
WiFi RSSI needs time, the measured results are strongly influenced by ex-
ternal circumstances of the environment and individual measurements can-
not be made at the same time.

The purpose of the other parts of the service is to support the particle
filter by improving its accuracy. It accomplishes this by taking advantage
of ranging models, which provide the distance to access points, as well as
additional services like rotations and step detection.

1.2. Motivation 3

The main focus of this thesis is on rotations, the step detector as well as
the Android client.

1.2 Motivation

Due to the increasing computational performance of modern mobile de-
vices, service providers and application developers are tempted to run the
logic of services directly on mobile devices, which are already gathering
data. But there are some downsides to computing complex algorithms on
mobile devices. First of all, the energy resources of mobile devices are
severely limited, which should never be ignored when developing a ser-
vice. Furthermore, when running logic directly on a mobile device, we
strongly depend on the operating system and its framework. This also
makes us dependent on powerful companies like Apple or Google, which
makes the operation of an independent service difficult.

To offload these resource-intensive computations from the mobile de-
vice to the cloud brings with it the advantage of strict separation between
data gathering and computation, which allows for an improved system ar-
chitecture and provides a platform independent service to a much bigger
customer base. However, by offloading the computational aspects to the
cloud, we have to consider other challenges like the communication be-
tween the server and mobile devices.

To determine the orientation of a device and to recognize steps, timing
is key, since both algorithms depend on the sampling rate of the gathered
data. The algorithms, therefore, benefit from a continuous input stream of
sensory data, which can be a challenge when separating the computation
from the data gathering. This work will present a solution to this problem.

1.3 Contributions

This work is part of a cloud-based indoor positioning project. The whole
project provides a centralized server as a service, which serves different
needs of Android, iOS and micro controllers (ESP32) clients.

The main contributions of this thesis are summarized as follows:

• We present an architecture able to offload CPU intensive algorithm to
a cloud-based server.

• We demonstrate how to identify the orientation of a device relative to
gravity and the earth’s magnetic field, by implementing the logic of
the Madgwick algorithm in our service.

• We provide a simple but functional observer to our service that rec-
ognizes steps by considering the accelerometer measurements.

• We developed an Android client based on the modern Android Ar-
chitecture Components, which is a framework that allows us to create
applications providing life-cycle aware objects.

4 Chapter 1. Introduction

1.4 Structure

This thesis is structured as follows: The theoretical background is reviewed
in chapter 2. The architecture of the different system parts is introduced
in chapter 3, while the important aspects of the implementation from the
client up to the server are explained in chapter 4.

The evaluation follows in chapter 5. It explains the experiment and ex-
amines the data obtained. The final chapter 6 summarizes the work and
concludes the evaluation results.

5

Chapter 2

Theoretical Background

This chapter describes the theoretical foundations of the main aspects of
this thesis, namely rotations, the step detection, and the Android Client. Fur-
thermore, it explains the underlying concept of the indoor localization ap-
proach used.

2.1 Basic Idea - Indoor Localization Approach

Let us start this section with a fitting definition of localization:

“Localization refers to the task of determining the location of
a traveler in a specified coordinate system, which is subject to
topological constraints, using a mobile device carried by the
traveler.” [9]

In our case, we try to determine the indoor location of a traveler in a
known building. As already implied in the first chapter, there is a substan-
tial difference between indoor and outdoor localization. While both scenar-
ios typically require one or multiple transmitting devices and one receiving
device, we have to use different approaches.

Due to the distraction of buildings, long-range transmitting devices used
for outdoor localization like satellites or antennas are not working properly
indoors [35]. Therefore, we need to substitute them with alternative trans-
mitting devices like WiFi access points or iBeacons [16].

One indoor transmitting device such as a WiFi access point enables us
to define the proximity location of a receiving device, which can be graphi-
cally interpreted as a circle around the transmitting device. When receiving
data from two transmitting devices, we can determine a line as location
indicator. Even more precision can be achieved by using three or more
transmitters, since geometrical algorithms based on trilateration allow us
to specify a specific point[41].

2.2 Rotations

One of the main goals of this thesis is to extend the cloud-based indoor
positioning service with the possibility to determine the orientation of a de-
vice relative to the direction of gravity and the earth’s magnetic field. Due
to this extension, it should be possible to neglect the orientation of a device
relative to space and still be able to provide the positioning functionality.

6 Chapter 2. Theoretical Background

2.2.1 Attitude and Heading Reference System (AHRS)

The initial assignment of this project was to deliver a Inertial Measurement
Unit (IMU), but after some research we noticed that an IMU is only able
to measure the orientation relative to the direction of gravity. What we
really need for our service is an AHRS, since they are able to provide the
complete measurement of orientation relative to the direction of gravity and
the earth’s magnetic field. [19] Let us start with the sensors of the clients
and then work our way up to the server.

2.2.2 Sensors

In order for the orientations to be calculated, the clients have to continu-
ously send data from three different sensors (accelerometer, gyroscope and
magnetometer). In this work, we use the following sensors that define how
the algorithm must work:

The gyroscope delivers the angular velocity and is the most dynamic
sensor of the three because it provides real time information about rotation
changes immediately. The downside of the gyroscope is that the measured
changes are not relative to the earths coordinate system.

The accelerometer measures acceleration which is the rate of change of
velocity of a body in its own instantaneous frame of rest [36]. This means
that we can determine the orientation relative to the direction of gravity in
relation to the frame of the earth, at least when moving slowly. The main
weakness of the accelerometer is that it can be very noisy.

The magnetometer measures magnetism and points to north in relation
to the earth’s coordinate system. The magnetometer is prone to inaccurate
data because of its vulnerability to noise from the environment. This is
why we need to calibrate the magnetometer before use. There are various
ways to calibrate a magnetometer. In this work we implemented hard and
soft iron calibration [28]. During each measurement phase, the hard iron
calibration takes n data samples and calculates the offsets bx , by and bz for
all the three axes x, y and z. It does so by calculating the average of the
maximum and minimum of the sensor data for every axis sx,y,z and then
subtracting the offsets from the raw magnetometer data [28].

Offset b for the three axes:

bx,y,z =
(max1≤j≤n(sx,y,z) + min1≤j≤n(sx,y,z))

2

The soft iron calibration multiplies the soft iron correction estimate with
the raw sensor data. This process can lead to worse results than using the
hard iron calibration.

2.2.3 Representation of the Rotation

Since three dimensional rotations are complex movements, we need to find
an ideal way to represent them in our system. We also have to take into
account that we need to continuously feed state updates to the rotations
algorithm which includes the AHRS.

First, we define a locked, root coordinate system x, y and z and a ro-
tating coordinate system X , Y and Z, which is relative to the device. At
first, these two coordinate systems are overlapping. After every rotation

2.2. Rotations 7

of the device and its changing coordinate system, we need to express the
difference between the root and the rotating coordinate system.

Euler angles are often used in aviation or car manufacturing. They de-
scribe the rotations around the axis using the angles yaw (or heading) ϕ,
pitch ψ and roll θ. Yaw ϕ represents the rotation around the z-axis, pitch ψ
around the y-axis and roll θ around the x-axis.

One problem of the Euler angles is that they allow for a gimbal lock,
which leads to inaccurate results due to losing one degree of freedom. For
example, when pitch ψ is at 90 degrees, a device is pointing straight up
and lies exactly on the z-axis. In this situation, yaw ϕ and roll θ rotations
describe the exact same movement [18].

Many use cases like cars do not allow the heading to point upward, so
they do not need to take this problem into account. However, chances that
a mobile device is pointing upward are clearly very high, so we need to find
an alternative way to represent rotations.

One solution to this problem could be to represent the rotation using
three rotation matrices for the three degrees of freedom [39]. There is, how-
ever, an even more elegant way to represent rotations and provide a less
computationally intensive solution at the same time: Quaternions [37].

2.2.4 Quaternions

A quaternion q is a four dimensional vector that contains a scalar q0 and a
vector part q1i, q2j and q3k, where q0, q1, q2 and q3 are real numbers and i, j
and k are quaternion units [37].

Expresions of a quaternion:

q = q0 + q1i + q2j + q3k (2.1)
q = (q0, q1, q2, q3) (2.2)

We need additional definitions to be able to compute the orientation
using quaternions.

Six quaternion axioms:

i2 = j2 = k2 = −1 (2.3)
ij = k (2.4)
jk = i (2.5)
ki = j (2.6)

Product of quaternions:

pq = (p0 + ~p)(q0 + ~q) (2.7)
= (p0q0 + p0~q + q0~p+ ~p~q) (2.8)
= (p0q0 − ~p · ~q + p0~q + q0~p+ ~p× ~q) (2.9)

Addition of quaternions:

p+ q = (p0 + ~p) + (q0 + ~q) (2.10)

8 Chapter 2. Theoretical Background

Quaternion length:

|q| =
√
qq∗ =

√
q20 + q21 + q22 + q23 (2.11)

Quaternion conjugate:

q∗ = q0 − q1i− q2j − q3k (2.12)

Note that every quaternion other than the additive identity 0 has an
inverse:

q−1 =
q∗

|q|2
(2.13)

The beauty of rotating a three dimensional vector v by a quaternion q
is that it is just a cross product been the quaternion and the vector and an-
other cross product by the conjugation of the quaternion. This leads to low
computational cost since we only have to compute this two cross products
leading to great performance compared to the rotation matrix [38].

Rotation of Av by the quaternion A
Bq:

Bv =A
B q ×A v ×A

B q
∗ (2.14)

From quaternion to Euler angles [19]:

θ = arctan 2(2q2q3 − 2q1q4, 2q
2
1 + 2q22 − 1) (2.15)

ψ = − sin−1(2q2q4 + 2q1q3) (2.16)

ϕ = arctan 2(2q3q4 − 2q1q2, 2q
2
1 + 2q24 − 1) (2.17)

Now that we have laid the mathematical basis for quaternions, we will
use them in our algorithm. Chapter 3 shows why they are a perfect solution
to our problem.

2.3. Step Detection 9

2.2.5 Rotation Algorithm

There are various algorithms which could be used to calculate the orienta-
tion based on the already mentioned sensors. For our system however, the
primary requirements are:

• The ability to work with low sampling rates (around 10 Hz)

• To be as efficient as possible, which implies low computational inten-
sity

• Delivering a real time AHRS

A prominent algorithm commonly used to compute orientation is the
"Kalman filter", which is accurate as well as effective. But as the Kalman
filter requires sampling rates between 512 Hz and 30 kHz and is compu-
tationally intense, this approach would not cover all our requirements [13,
19]. Another widespread algorithm is the Mahony algorithm, which is able
to handle low sampling rates. However, it is even more computationally
demanding than the Madgwick algorithm [2]. Unfortunately, the Mahony
algorithm only works for IMUs. Since we need an AHRS, it can not cover
all our requirements [20, 19].

2.3 Step Detection

2.3.1 Traveled distance

In theory, the traveled distance could be easily computed by integrating the
acceleration twice. The real-world problem with this approach is that sen-
sor data contains noise. By integrating this noise twice, we get an enormous
error that can not be overlooked [14].

For this reason, we have decided to implement a step detection service
to provide real-time updates, which is lightweight and can handle the input
of various device types and their sensors.

2.3.2 Scalar Product of the Accelerometer Data

One common way to implement step detection is to use the accelerome-
ter data and try to recognize steps by analyzing the behavior of the data
stream. In the following Figure 2.1 you can see the scalar product of the
raw accelerometer data stream while walking very intensely. The data rep-
resented in this Figure were measured during the testing of the step detection
in the building of the Institute of Computer Science at the Neubrückstrasse
10 in Bern. As a client device we used a Samsung Galaxy S7 Edge (intro-
duced in chapter 5), the data was recorded on the cloud-based server.

Scalar product of the raw accelerometer data:

|a| =
√
a2x + a2y + a2z (2.18)

10 Chapter 2. Theoretical Background

FIGURE 2.1: Line chart of the accelerometer scalar prod-
uct while walking very intensely and the constant gravity

at 9.81 m/s2

The basic idea behind step detection using accelerometer data is really
simple. We have a neutral value at 9.81 m/s2 which represents gravity.
When a device is still, the scalar product of the accelerometer data |a|would
be close to this value. Once a subject starts moving, |a|would start oscillat-
ing since the device would be accelerated up and down during each step.

To recognize steps from the accelerometer scalar product, we need to
define a sequence of accelerometer scalar products to be recognized as a
step. Let us therefore define a jerk shown in Figure 2.2. It starts from the
neutral position, goes up to a maximum, drops back to the neutral position
before going down to a minimum and rising back up again to the neutral
position. The data represented in Figure 2.2 are just a short extract of the
data used in Figure 2.1.

Still lacking is a definition of when precisely a jerk is a step. This will be
explained in chapter 3 section 3.3.

2.3. Step Detection 11

FIGURE 2.2: A Sequence defined as jerk

13

Chapter 3

System Architecture

In chapter 2 we introduced the theoretical and mathematical foundations
which will now be applied. We will start off by introducing the architecture
of the Android client.

Next, we will focus on the central themes of this thesis and dive deeper
into the architecture and functionality of the Madgwick algorithm imple-
mented in rotations and the step detection algorithms.

3.1 Implementation Architecture

3.1.1 Android Client

The architecture of the Android client is based on Android architecture
components, which are a collection of libraries to design testable and easily
expandable applications using a Model View ViewModel (MVVM) pattern
[4]. Furthermore they provide:

• Livecycle-aware components that simplify the life cycle of an activity

• LiveData objects that can notify views when database entries change

• ViewModel which stores UI data that survives app rotations

• "Room", which is a SQLite library to reduce boilerplate code and con-
vert between tables and Java objects

Due to this architectural decision, we could design the Android client as
shown in Figure 3.1. By initializing a ViewModel, "Activities" provides a
user interface and defines live cycles for the classes below. The logic is co-
ordinated in the AndroidClientRepository, which starts a foreground service
called DataService and saves data to the databases using the AccessPointDao
and LocationDao. The DataService manages the gathering of data using the
helper classes AccessPointGathering and SensorDataGathering. When receiv-
ing data from the gathering classes, the classes above are notified automati-
cally because of the LiveData objects, while the JSONDataSender class sends
the data to the server using a Socket.

14 Chapter 3. System Architecture

FIGURE 3.1: System architecture of the relevant parts

3.1.2 Server

The server receives the data in a websocket class and initializes the controller,
which sends the received data to the whole service. This includes rotations,
which in turn supply the AHRS by implementing the Madgwick algorithm,
explained in great detail in subsection 3.2.

In addition, initializing and observing an instance of the step detection
introduced in subsection 3.3 will allow rotations to be alerted if required.

3.2 Madgwick Algorithm

The Madgwick algorithm is a sensor fusing algorithm providing an AHRS
by combining accelerometer, gyroscope and magnetometer data such that
the resulting orientation has less uncertainty than would be possible when
these sensors were used individually. This is achieved by taking advantage
of the strengths of each of these sensors and minimizing their weaknesses
as described in chapter 2 subsection 2.2.2. The Madgwick algorithm is im-
plemented in the class rotations (shown in Figure 3.1) running on the server.

Should an elevator pitch about the Madgwick algorithm [19] applied in
this work ever be needed, the author of this thesis would propose some-
thing like this:

3.2. Madgwick Algorithm 15

"We take the angular velocity provided by the raw gyroscope date and
integrate it to get the angle. By doing that we remove noise but add some
drift to the result. Now we react to this drift by keeping the orientation in
relation to the gravity and north by infusing the accelerometer and magne-
tometer data."

In mathematical terms, this means we set the gyroscope data as vector
part of a quaternion ω, calculate the rate of change q′, and compute the ori-
entation qω,t by integrating. Please keep in mind that q′ and qω,t are defined
in the earth’s frame, relative to the sensor frame.

Gyroscpe data:

ω = (0, ωx, ωy, ωz) (3.1)

Rate of change:

q′ =
1

2
q × ω (3.2)

Orientation:

qωt = qest,t−1 + q′ω,t∆t (3.3)

As previously mentioned, the next step of the algorithm is to infuse the
accelerometer and magnetometer data to get the orientation relative to the
gravity and north.

According to the paper An efficient orientation filter for IMUs and MARG
sensor arrays [19], this is best achieved by using a gradient descent algo-
rithm, because it is a simple and fast algorithm. By multiplying the Jaco-
bian and the objective function, we get the gradient, which is then used for
the gradient algorithm [19].

Gradient:

5f(SEqk,
E d,S s) = JT (SEqk,

E d)f(SEqk,
E d,S s) (3.4)

Gradient descent algorithm:

qk+q = qk − µ
5f(SEqk,

E d,S s)

|| 5 f(SEqk,
E d,S s)||

, k = 0, 1, 2, 3, ..., n (3.5)

Since gravity in earth’s frame has only one vector component in the
z direction and the magnetometer data is split up into the two directions
bx and bz relative to the earth frame due to the orbital inclination, we can
simplify the equation.

Gravity:

Eg = (0 0 0 1) (3.6)

Accelerometer:

Sa = (0 ax ay az) (3.7)

16 Chapter 3. System Architecture

Gradient descent algorithm inserted Eg and Sa:

5f(SEq,
S a) =

 −2q3 2q4 −2q1 2q2
2q2 2q1 2q4 2q3
0 −4q2 −4q3 0

 2(q2q4 − q1q3)− ax

2(q1q2 + q3q4)− ay
2(

1

2
− q22 − q23)− az

(3.8)

Magnetic field:

Eb = (0 bx 0 bz) (3.9)

Magnetometer:

Sm = (0 mx my mz) (3.10)

Gradient descent algorithm inserted Eb and Sm:

5f(SEq,
E b,Sm) =

−2bzq3 −2bxq4 + 2bzq2 2bxq3
2bzq4 2bxq3 + 2bxq1 2bxq4 − 4bzq2

−4bxq3 − 2bzq1 2bxq2 + 2bzq4 2bxq1 − 4bzq3
−4bxq4 + 2bzq2 −2bxq1 + 2bzq3 2bxq2

T

2bx(

1

2
− q23 − q24) + 2bz(q2q4 − q1q3)−mx

2bx(q2q3 − q1q4) + 2bz(q1q2 + q3q4)−my

2bx(q1q3 + q2q4) + 2bz(
1

2
− q22 − q23)−mz

(3.11)

Having gathered all the parts required for the Madgwick algorithm to
work, we are ready to fuse them to create our AHRS. As shown in Figure
3.2, we are now rotating the current sensor data of the accelerometer Sat and
magnetometer Smt from the sensor frame to the earth frame using equation
(2.2.4) and the last state of the quaternion S

Eqest,t−1. In group 1, we then pro-
ceed to fix the effect of an erroneous inclination of the measured direction
of the earth’s magnetic field. This can be achieved by computing Ebt from
Eht which only has x and z components by taking the scalar product of the
x and y components of Eht. In group 2 the gyroscope drift is compensated.

The accelerometer and magnetometer data are now relative to the earth
frame and can be inserted to the gradient descent algorithm to compute
the drift of the gyroscope. Having computed this drift, we are then able to
correct the integrated gyroscope data and subtract the drift.

3.3. Step Detection 17

FIGURE 3.2: Block diagram representing the AHRS [19]

3.3 Step Detection

3.3.1 Jerk Average Threshold

Step detection subdivides the incoming accelerometer stream into multiple
jerks (defined in subsection 2.3.2) by calculating its scalar product and check-
ing if a jerk value is bigger than 65% of the step jerk average threshold. If
this is the case, the jerk will be treated as a step and be normalized, multi-
plied by the current average savg(i − 1) and added to the current step jerk
sum ssum(i− 1) [3].

Normalized step ji:

ĵi = 1.6− 1.6

ji + 1
(3.12)

Step jerk sum:

ssum(i) = ssum(i− 1) + ĵisavg(i− 1) (3.13)

Step jerk average threshold:

savg(i) =
ssum(i)

i
(3.14)

The advantage of calculating a jerk average threshold is that the algo-
rithm reacts dynamically to various walking styles. In addition, devices can
deliver more or less reactive accelerometer data streams.

18 Chapter 3. System Architecture

3.3.2 Pace Buffer

Aside from the dynamically calculated jerk average threshold, we are us-
ing a pace buffer that works in similar ways: it calculates the average time
between the last 20 steps and makes sure that no jerk, which is recognized
as a step, is unrealistically close to the previously detected step [3].

19

Chapter 4

Implementation

While chapter 3 focused on the overall architecture and the design deci-
sions, this chapter will introduce the implementation of the Android Client,
the rotations and step detections.

We will start by introducing the technology stack used as well as the
proposed connection between cloud and clients.

4.1 Technology Stack

4.1.1 Server

Tornado Server Version 4.5.2 provides both, a WebSocket- as well as a
regular web server. This project requires both. For the database we used
Peewee 3.0.19 which supports SQLite [32, 22].

Python Version 3.6 has been used to implement the logic of the cloud-
based service [26].

4.1.2 Client

Android clients run a version of Android and feature the following spec-
ifications:

• Motorola Moto X Style

– OS: Android 6.0

– Processor: Hexa-core 4x1.4 GHz Cortex-A53 & 2x1.8 GHz Cortex-
A57

– Internal sensors: Accelerometer, gyroscope, proximity sensor,
compass

– Memory: 3 GB RAM

• Samsung Galaxy S7 Edge

– OS: Android 7.0

– Processor: Octa-core 4x2.3 GHz Mongoose & 4x1.6 GHz Cortex-
A53

– Internal sensors: Fingerprint (front-mounted), accelerometer, gy-
roscope, proximity sensor, compass, barometer, heart rate, SpO2

– Memory: 4 GB RAM

20 Chapter 4. Implementation

The Android clients were predominantly used to gather the WiFi signal
strength and the sensor data form the accelerometer, magnetometer and
the gyroscope. In terms of performance, no difference was identified. Both
phones were equally used during development.

4.1.3 Software

While developing and evaluating the cloud-based indoor positioning sys-
tem, we used the following tools:

• PyCharm to write the server side code [23]

• Android Studio for the client side code [7]

• R Studio for the statistical analysis and data processing [27]

• Bitbucket as version control repository hosting service [8]

• A Spreadsheet to double check the statistical analysis done with R
Studio and to create some of the diagrams [12]

4.2 Connection

The communication between the server and the client is provided by a Web-
Socket connection sending JSON data. The data exchange is initiated by the
client, which uploads an initial message indicating:

• The surrounding access points by sending the BSSID.

• The capabilities that are provided by the client, such as WiFi or Blue-
tooth, used for ranging.

The server responds to this message by informing the client about:

• The access points of interest by sending the BSSID of the access points
that should be observed by the client.

After the initialization process, the clients begins transmission of:

• Sensor data gathered form the accelerometer, gyroscope and magne-
tometer.

• RSSI values of the access points. This information will be appended
to the JSON data only periodically, since it is not gathered as fast as
the sensor data. Full scans require around 2 seconds, depending on
the amount of available access points.

Furthermore every JSON package contains:

• A random integer number between 1 and 99 which will be returned
by the server after receiving the package. This helps to detect miss-
ing packages. Currently, the Android client ignores these responses,
because there was never an issue with data loss.

When communication is interrupted, the Android client will immedi-
ately take notice and automatically reconnect to the server by sending an-
other initialization message.

4.3. Implementation Details 21

4.3 Implementation Details

This section describes the flow of the relevant aspects of this implementa-
tion and points out some noteworthy details in regard to the architecture
introduced in chapter 3. Moreover the described flow is visualized in Fig-
ure 4.2 as a sequence diagram. Each point of the following list is drawn
into this sequence diagram with the corresponding number and a red circle
around it.

1. Upon booting up, an Android application first checks its application
permissions. Since Android version 6.0, this needs to be done during
runtime. Due to the fact that the Android client needs eight different
permissions, a small method was created to check permissions any-
time a corresponding Activity is launched. An Activity is a crucial
component of an Android app, and the way activities are launched
and put together is a fundamental part of the platform’s application
model. Unlike programming paradigms in which apps are launched
with a main() method, the Android system initiates code in an Activ-
ity instance by invoking specific callback methods that correspond to
specific stages of its lifecycle [17].

2. Because of the Android Architecture Components, there is only little
logic in the Activity itself. However, the ClientRepository will be no-
tified to start the foreground service through the ActivityViewModel.

3. The foreground service is needed to protect our logic from the An-
droid operating system which constantly tries to minimize energy
consumption by killing all long-running, unprotected processes.

4. The foreground service starts the sensor and access point gathering.
The resulting data is formatted as JSON and sent to the server over
WebSocket, implemented in the JSONDataSender class.

5. The server passes the JSON packages to rotations where a dynamic
sample rate for the Madgwick algorithm is computed on the fly using
timestamps. This is required because due to data being sent in JSON
packages, our system can not provide the algorithm with a continu-
ous data stream at a constant sampling rate. While the interval be-
tween measurements is constant, time between transmissions is not
always predictable. Therefore, it is essential to compute the sample
rate dynamically.

6. Once the rotations receive the first data package, the hard iron mag-
netometer calibration method will be executed to improve the AHRS
results.

7. Afterwards, and while the Madgwick algorithm continues to be fed
with sensor data, the accelerometer data is passed to the step detec-
tion which determines steps by observing the fluctuations of the ac-
celerometer data stream. Both is implemented as described in chapter
3.

8. To notify the rotations about a step detected by the step detection, the
system is using a simple observer pattern allowing the step detection
to push data anytime to the subscribing rotations object.

22 Chapter 4. Implementation

9. As soon as the rotations are triggered by the observer, a two dimen-
sional step vector (x, y) is created with x referring to east and y to
the earth’s magnetic field. This step vector is calculated by applying
trigonometry using the computed heading and a predefined standard
step length of 65 cm [40].

10. This vector is now passed to the particle filter which calculates the
current position and forwards this information to the web client for
visualization. Both are described in greater detail in another thesis of
this project.

11. Another visualization that is part of this work and can be enabled
when needed is the one representing the current state of the AHRS. In
a pop up window created with the pygame library we display six dif-
ferently colored rectangles that together form a cuboid and are imple-
mented with functions provided by the OpenGL library. This cuboid
will then permanently be adjusted to the current orientation com-
puted by the rotations by rotating the whole cuboid using the OpenGL
function glRotatef [25, 24]. Even though it does not increase the per-
formance of the system, it was very convenient to measure progress,
which otherwise would have been barely noticeable. An example of
this visualization is shown in Figure 4.1.

FIGURE 4.1: Visualization of the current AHRS state

4.3. Implementation Details 23

4.3.1 Training and indoor positioning

The entire cloud-based indoor positioning system can be used to train and
create the required regression models for a particular room. This regression
model, as well as other information about the environment such as floor
plan or access point positions, will then be used for the indoor positioning,
which is of course the main use case.

The whole environment can be configured over a web interface cur-
rently running on port 8101 of the server.

24 Chapter 4. Implementation

FIGURE 4.2: Sequence diagram showing the system flow

25

Chapter 5

Evaluation

In this chapter we evaluate the performance of the rotations and the step
detection.

5.1 Evaluation Methods

5.1.1 Introduction

To evaluate the accuracy of an AHRS is quite challenging. The performance
of an AHRS algorithm depends strongly on the strategies to reject pertur-
bations like sudden accelerations or deformations of the earth’s magnetic
field. To be able to estimate the biases of the gyroscopes accurately, we de-
pend on an environment that is free from interference [21]. These require-
ments cannot be met in most buildings.

Another challenge is to define the aspects to be examined in relation to
the AHRS. Options include a sequence of a continuous data stream or some
snapshots to predefined time points. The investigation of a continuous data
stream or gyroscopic data would require some kind of measuring arm capa-
ble of performing different predefined movements multiple times. There-
fore, this approach was refused. Instead, we attempted to test both parts at
the same time, partly because they should work concurrently anyway.

As already explained in chapter 4, rotations are running steadily and
continuously while the particle filter will be notified about the current ori-
entation only when the step detection detects a step. To satisfy this logic in
the evaluation, it was decided to define a path with 22 steps, each step 65
cm in length, containing three turns as shown in Figure 5.1.

The path chosen had to be rather short in order for the individual steps
from different solutions (introduced in 5.1.2) to be compared with each
other. This would not be possible for longer paths, as missed steps would
accumulate and therefore preclude a precise comparison between solutions.

To get additional data, the path was walked five times, every time in a
slightly different walking style while keeping the same walking rhythms,
and always providing a five seconds calibration phase at the beginning of
a walk.

5.1.2 Comparison with Android Framework Solution

To be able to compare the results of the rotations and the step detection,
we made use of the Android framework to implement evaluations on the
clients. Since the Android framework documentation mentions two dif-
ferent ways to determine the orientation, we decided to implement both
solutions.

26 Chapter 5. Evaluation

The experiments have been divided into three different groups that will
be referred to as follows:

• And1 - This implementation is using the Android sensor of the type
rotation vector, which returns quaternions. These quaternions are
then converted to an Euler Angle relative to the earth’s frame as in-
troduced in chapter 2 and 3 using my own code [6].

• And2 - This implementation returns a rotation matrix, that is con-
verted to an Euler Angle relative to the earth’s frame by an Android
Framework function [5].

• Rot - This part is running on the server of the cloud-based indoor
positioning system, as mentioned in chapter 4.

Since the same step detection is used by both client-side solutions (And1
and And2), we will refer to the Android step detection as And2.

5.1.3 The predefined walking path for the experiment

To prepare the walking path for the 22 steps, the 23 marks, 65 cm apart,
were measured by hand and sticked to the ground as visualized in Figure
5.1. The heading of the room relative to the earth’s magnetic field was mea-
sured with the Google Earth Pro desktop application using the function
"ruler", because results gained this way were much more accurate com-
pared to the hand compass "Suunto A-30", which was first used [15, 30]. By
defining this path, we were able to verify the accuracy of the three AHRS
orientations by comparing them to the actual one of the room.

FIGURE 5.1: Visualization of the predefined walking path

5.2. Rotation Evaluation 27

5.1.4 Experimental Data

Since the starting and ending process of the experiment strongly and nega-
tively affected the experimental data, we decided to cut off the last samples
of the test generously. Therefore, only the data generated while walking
and holding the phone in the hands was used for comparisons. Further-
more, the time differences between steps that were recognized by the two
step detection implementations "And2" and "Rot" were normalized so they
could be compared. Note that delays of the step detection would differ,
even if both methods delivered reasonable and comparable results. We as-
sume this is due to Rot losing time while transmitting the data to the server.

Since the chosen walking rhythms were always steady, the unrecog-
nized steps could be easily estimated by checking the normalized time dif-
ferences ti,norm between the detected steps. If the normalized difference
between two steps ti,norm was larger than the average tavg, multiplied by
1.6, a step was missing. After adding the missing row, the average was
subtracted from the normalized difference to check if a second step was
missing.

Since And1, And2 and Rot return the computed values in an interval of
-180 to 180 degrees, they were transformed to an interval of 0 to 360 degrees.
After preprocessing, 83 positions were available to compare rotations, and
88 to compare the step detection.

5.2 Rotation Evaluation

With this data set, we could compare three different implementations of the
AHRS in 83 situations.

The first hypothesis H0 evaluated whether or not the three implemen-
tations are significantly different from each other. Since three groups have
been compared, a standard t-test is not applicable. To evaluate this, the
choice fell on an analysis of variance (ANOVA) test, as ANOVA is useful to
in regard to statistical significance [34, 33].

To get to the results of the test shown in Table 5.1, we had to do the
following calculations:

The sums of square of the three groups (SSRot), (SSAnd1) and (SSAnd2)
where yj,i are the experimental data and ŷj the the means of the three
groups:

SSj =
n∑

i=1

(yj,i − ŷj)2 (5.1)

j = {Rot,And1, And2} (5.2)

The sum of square within groups (SSW) containing the three sums of
square (SS):

SSW = SSRot + SSAnd1 + SSAnd2 (5.3)

Then we joined all three groups into one group and calculate the total
sum of squares (SST).

28 Chapter 5. Evaluation

The total sum of squares (SST) where yi are all the joined experimental
data from the three groups and ŷ is the mean:

SST =
n∑

i=1

(yi − ŷ)2 (5.4)

The sum of squares between groups (SSB):

SSB = SST − SSW (5.5)

The degree of freedom (Df) between groups:

DfSSB = groups− 1 (5.6)

The degree of freedom (Df) within groups:

DfSSW = (groups ∗ observations)− groups (5.7)

The mean of squares (mean sq) between groups:

MeansqSSB =
SSB

DfSSB
(5.8)

The mean of squares (mean sq) within groups:

MeansqSSW =
SSW

DfSSW
(5.9)

The F-value:

F =
MeansqSSB
MeansqSSW

(5.10)

5.2.1 ANOVA

Df Sum sq Mean sq F F0.05;2,250

between groups 2 45857.40 22928.70 11.28 3.03
within groups 246 50040.50 2032.68

TABLE 5.1: ANOVA test

If we define the level of significance which is the probability of reject-
ing the null hypothesis when it is true to be at 0.05, we get a critical value
F0.05;2,250 = 3,03, where 0.05 describes the level of significants, 2 the Df be-
tween and 250 the Df within groups (rounded up from 246).

Now we only need to compare our calculated F-value with the one we
looked up in the F distribution table [33]. As 11.28 > 3.03 we got to reject
the H0-hypothesis, which means the three different implementations are
statistically significantly different.

5.2. Rotation Evaluation 29

5.2.2 Tukey’s Honestly Significant Difference (HSD) Test

To find out which of the implementations are statistically significantly dif-
ferent from each other, we decided to run a HSD called "Tukey’s Range
Test" [42]. The main idea of this test is to compute the significant difference
between two means using a statistical distribution defined by the q distri-
bution. This distribution provides the exact sampling distribution of the
largest difference between a set of means. All pairwise differences are eval-
uated using the same sampling distribution used for the largest difference.
This why the HSD approach is quite conservative and works well to check
our hypotheses [1].

To run the HSD test shown in Table 5.2, we need to know n, which is the
number of observations, the Df numerator which is the number of groups
that were compared, as well as the Df denominator, which is the degree of
freedom within groups DfSSW we already used for the ANOVA test in
Equation 5.5.

Next we defined the level of significants α and looked up the Q-Value
for a Df numerator of 3 and a level of significants α of 0.05 [29].

We then calculated the average of the within group variances means we
define as vavg, the Absolute Differences δ and the Critical Range θ.

Absolute Difference δ:

δ = |meani −meanj | (5.11)
where : 1 <= i < j <= n (5.12)

Critical Range θ:

θ = Q ∗
√
vavg
n

(5.13)

(5.14)

To determine if a result is significant, we compare the absolute difference
with the critical range. If the absolute difference is smaller than the critical
range, the difference between the two compared groups is not significant.

Setup

n 83 α 0.05
Df numerator 3 Q-value [29] 3.314
Df denominator 246 vavg 2008.19

Comparison Absolute Difference Critical Range Result

Rot to And1 25.59 16.30 significant
Rot to And2 5.57 16.30 not significant
And1 to And2 31.17 16.30 significant

TABLE 5.2: Tukey’s Honestly Significant Difference (HSD)
test

The results show that the accuracies achieved by the Rot, which is our
implementation of the Madgwick algorithm called rotations running on the

30 Chapter 5. Evaluation

cloud-based server, and the And2 calculated on the client do not differ sig-
nificantly. The client side implementation And1, however, performs signif-
icantly worse compared to the other two implementations Rot and And2.

It is therefore evident that rotations with its AHRS does not outperform
And2 offered by the Android Framework. Nonetheless, in our test, the
difference was not significant.

Figure 5.2 shows a graphic comparison of the two solutions Rot and
And2, where the y-axis represents the deviation in degrees of the actual
orientation and the two computed orientations from the AHRS systems.
The x-axis shows all the steps we took into account during the experiment
described in subsection 5.1.3.

FIGURE 5.2: Diagram showing the difference between the
computed orientations and the actual orientation, as well

as their averages.

5.3 Step Detection Evaluation

After preprocessing, 88 steps were left which could be compared. Out of
these, the client side step detection using the Android framework And2
recognized 87, and the server side code provided by the proposed Rot rec-
ognized 84 steps. Out of 100 steps, the Android solution would recognize
98 and our solution 95 steps. To test whether or not step detection of the
Android framework And2 works significantly better than the proposed so-
lution, a Pearson χ2-square test was conducted [34, 10]. This test is used
to determine whether there is a significant difference between the expected
frequency and the observed frequency, while the frequencies stand for the
rate at which the steps were detected or not during the experiment.

5.3.1 Pearson χ2-square Test

To run a Pearson χ2-square test we setup the start table as shown in Table 5.3
with all the cell values called Value(cell), the total of the row called totalrow,
the total of the columns called totalcolumn and the overall total (totaloverall).
Using this information, we calculated the expected frequency fexp(cell) for
each cell, the Test statistic tsta for each cell and finally the χ2-value.

5.4. Evaluation Summary 31

Expected frequency fexp for each cell:

fexp(cell) =
totalrow(cell) ∗ totalcolumn(cell)

totaloverall
(5.15)

Test statistic tsta for each cell:

tsta(cell) =
(V alue(cell)− fexp(cell))2

fexp(cell)
(5.16)

χ2-value:

χ2 =
cells∑

tsta(cell) (5.17)

Start table (V alue(cell)) Recognized Not recognized totalcolumn

Rot 87 1 88
And2 84 4 88
totalrow 171 5 176

Expected frequency fexp(cell)
Rot 85.5 2.5
And2 85.5 2.5

Test statistic tsta(cell)
Rot 0.026315789 0.9
And2 0.026315789 0.9

χ2-value 1.853
χ2
0.05;1-value 3.842

TABLE 5.3: Pearson χ2-square test comparing the step de-
tections form Rot and And2

Now we can compare the calculated χ2-value with the critical value
χ2
0.05;1 = 3.84 for a level of significants of 0.05 and a degree of freedom be-

tween groups of 1 (as described in equation 5.4) [10].
Since 1.852 < 3.84, the hypothesis that the solution of the Android frame-

work is significantly better than the one proposed by this work is to be re-
jected.

5.4 Evaluation Summary

There are no significant differences between the Rot and the And2 solu-
tions. But they are both not precise enough to predict reasonably accurate
positions after being triggered by the step detection solutions. Due to the
quick consecutive turns defined in the experiment and the rather deep sam-
pling rate provided to the AHRS algorithms, they are not able to recover
after a direction change, leading to inaccurate indications of direction.

As it can be inferred from Figures 5.2 and 5.1, the AHRS algorithms can
not react fast enough and determine the new orientation after a direction

32 Chapter 5. Evaluation

change. This is because after changing direction the algorithms need a cer-
tain number of accelerometer and magnetometer measurements to be able
to correct the gyroscope drift.

The primary goal of the rotations is not to provide an exact location, but
rather to provide a first estimate while being emended only afterwards by
means of the particle filter. Therefore, the starting requirements are fulfilled
nevertheless.

The step detector is a simpler algorithm, which provides more accurate
results. It was, however, slightly surpassed by the Android Framework so-
lution. During our tests, it was noticed that the walking style had a tremen-
dous influence on the performance of both solutions.

As seen in the experiment, there are no significant differences between
the step detections of algorithms Rot and And2 while walking and holding
the phone in hands.

33

Chapter 6

Conclusion

During this thesis, we presented parts of a cloud-based indoor positioning
system. The aim was to offload resource-intensive algorithms from various
types of low-powered mobile devices to the cloud.

The two parts that were emphasized on and evaluated are:

• Rotation detection – an implementation of an AHRS

• Step detection to notify the service about a step

Rotations The implemented AHRS system, which makes use of the Madg-
wick algorithm, delivers not significantly worse results compared to the
better one of the implemented client side solutions as shown in Table 5.2.
This can be interpreted as a success, as the server side computation re-
quires splitting up and then rejoining the sensor data stream, before pass-
ing them to the algorithm. The client-side solution, on the other hand, is
able to process the continuous data stream without interruptions, but the
CPU-intensive algorithms will empty the batteries of the mobile devices in
a short period of time and are therefore not suitable for running on devices
with limited energy resources.

Taking all this into account, a system which performs comparably but
is much more flexible can be seen as progress.

Due to the slow sampling rate, the performance of the AHRS systems
implemented does not fit into a highly dynamic use case, as the gyroscopic
drift cannot be corrected immediately. A better use case for the AHRS algo-
rithms would be to determine the current orientation to a mapping appli-
cation that is used while standing still. However, since the current position
of our cloud-based indoor positioning service is provided by the particle
filter and will be corrected through WiFi trilateration, the proposed AHRS
implementation can meet the requirements demanded, even though deliv-
ered directions are ambiguous.

Step Detection The implemented step detection delivered reliable results
with an accuracy of 95% and can extend the functionality of the entire
cloud-based indoor positioning service. This is considered as a success.

Further Thoughts Even though the implementation of the AHRS rotations
is slightly less accurate and the step detection is only on the same level com-
pared to the Android version, there are still some great advantages by of-
floading the logic and computations to a cloud-based service:

34 Chapter 6. Conclusion

• Resource intensive computations will not stress the limited resources
of low-powered devices.

• The service can be used by a wider range of devices, providing results
derived from complex computations to simple devices like an ESP32
microcontroller.

Possible Future Work It would be interesting to evaluate whether or not
performing computations on the server consumes less energy than client-
side computations, despite all the traffic flowing through the WebSocket
interface.

Moreover, future work might compare the entire cloud-based indoor
positioning service to other positioning approaches in order to validate its
effectiveness.

35

Bibliography

[1] Herve Abdi and Lynne Williams. “Tukey’s Honestly Significant Dif-
ference (HSD) Test”. In: (Aug. 2018).

[2] adafruite Sensor Fusion Algorithms. https://learn.adafruit.
com/ahrs- for- adafruits- 9- dof- 10- dof- breakout/
sensor-fusion-algorithms. Accessed: 2018-06-21.

[3] Adaptiv An Adaptive Jerk Pace Buffer Step Detection Algorithm. https:
//github.com/danielmurray/adaptiv. Accessed: 2018-08-02.

[4] Android Developers Android Architecture Components. https://developer.
android.com/topic/libraries/architecture/, note = Ac-
cessed: 2018-04-02.

[5] Android Developers SensorManager.getRotationMatrix @ONLINE. July
2018. URL: https://developer.android.com/reference/
android/hardware/SensorManager.

[6] Android Developers Sensor.TYPE_ROTATION_VECTOR @ONLINE. July
2018. URL: https://developer.android.com/reference/
android/hardware/SensorEvent.

[7] Android Studio @ONLINE. Aug. 2018. URL: https://developer.
android.com/studio/.

[8] bitbucket Built for professional teams @ONLINE. Aug. 2018. URL: https:
//bitbucket.org/.

[9] S. S. Chawathe. “Beacon Placement for Indoor Localization using Blue-
tooth”. In: 2008 11th International IEEE Conference on Intelligent Trans-
portation Systems. 2008, pp. 980–985. DOI: 10.1109/ITSC.2008.
4732690.

[10] Chi-square table Chi-square table @ONLINE. Aug. 2018. URL: https:
//www.di-mgt.com.au/chisquare-table.html.

[11] Espressif ESP32 @ONLINE. Aug. 2018. URL: https://www.espressif.
com/en/products/hardware/esp32/overview.

[12] Excel @ONLINE. Aug. 2018. URL: https://products.office.
com/de-ch/excel.

[13] Li J. Zhang X. Shen C. Bi Y. Zheng T. Liu J. Feng K. “A New Quaternion-
Based Kalman Filter for Real-Time Attitude Estimation Using the Two-
Step Geometrically-Intuitive Correction Algorithm.” In: Sensors (Basel,
Switzerland) 17.9 (2017), p. 2146. ISSN: 1424-8220. DOI: 10.3390/
s17092146.

[14] Freescale Semiconductor Implementing Positioning Algorithms Using Ac-
celerometers. https://www.nxp.com/files-static/sensors/
doc/app_note/AN3397.pdf. Accessed: 2018-06-12.

[15] Google Earth Pro @ONLINE. Aug. 2018. URL: https://www.google.
com/earth/download/gep/agree.html.

https://learn.adafruit.com/ahrs-for-adafruits-9-dof-10-dof-breakout/sensor-fusion-algorithms
https://learn.adafruit.com/ahrs-for-adafruits-9-dof-10-dof-breakout/sensor-fusion-algorithms
https://learn.adafruit.com/ahrs-for-adafruits-9-dof-10-dof-breakout/sensor-fusion-algorithms
https://github.com/danielmurray/adaptiv
https://github.com/danielmurray/adaptiv
https://developer.android.com/topic/libraries/architecture/
https://developer.android.com/topic/libraries/architecture/
https://developer.android.com/reference/android/hardware/SensorManager
https://developer.android.com/reference/android/hardware/SensorManager
https://developer.android.com/reference/android/hardware/SensorEvent
https://developer.android.com/reference/android/hardware/SensorEvent
https://developer.android.com/studio/
https://developer.android.com/studio/
https://bitbucket.org/
https://bitbucket.org/
http://dx.doi.org/10.1109/ITSC.2008.4732690
http://dx.doi.org/10.1109/ITSC.2008.4732690
https://www.di-mgt.com.au/chisquare-table.html
https://www.di-mgt.com.au/chisquare-table.html
https://www.espressif.com/en/products/hardware/esp32/overview
https://www.espressif.com/en/products/hardware/esp32/overview
https://products.office.com/de-ch/excel
https://products.office.com/de-ch/excel
http://dx.doi.org/10.3390/s17092146
http://dx.doi.org/10.3390/s17092146
https://www.nxp.com/files-static/sensors/doc/app_note/AN3397.pdf
https://www.nxp.com/files-static/sensors/doc/app_note/AN3397.pdf
https://www.google.com/earth/download/gep/agree.html
https://www.google.com/earth/download/gep/agree.html

36 BIBLIOGRAPHY

[16] ibeacon.com What is iBeacon? A guide to beacons @ONLINE. Aug. 2018.
URL: http : / / www . ibeacon . com / what - is - ibeacon - a -
guide-to-beacons/.

[17] Introduction to Activities @ONLINE. Sept. 2018. URL: https://developer.
android.com/guide/components/activities/intro-activities.

[18] Eric M. Jones and Paul Fjeld. “Gimbal Angles, Gimbal Lock, and a
Fourth Gimbal for Christmas”. In: apollo lunar surface journal (2011).

[19] S.O.H. Madgwick, R. Vaidyanathan, and A.J.L. Harrison. An Efficient
Orientation Filter for Inertial Measurement Units (IMUs) and Magnetic
Angular Rate and Gravity (MARG) Sensor Arrays. Tech. rep. Depart-
ment of Mechanical Engineering, 2010. URL: http://www.scribd.
com/doc/29754518/A-Efficient-Orientation-Filter-
for-IMUs-and-MARG-Sensor-Arrays.

[20] R. Mahony, T. Hamel, and J. Pflimlin. “Nonlinear Complementary Fil-
ters on the Special Orthogonal Group”. In: IEEE Transactions on Au-
tomatic Control 53.5 (2008), pp. 1203–1218. ISSN: 0018-9286. DOI: 10.
1109/TAC.2008.923738.

[21] Estefania Munoz Diaz et al. “Evaluation of AHRS algorithms for iner-
tial personal localization in industrial environments”. In: 2015 (June
2015), pp. 3412–3417.

[22] Peewee 3.0.19 @ONLINE. Aug. 2018. URL: https://github.com/
coleifer/peewee.

[23] PyCharme @ONLINE. Aug. 2018. URL: https://www.jetbrains.
com/pycharm/.

[24] pygame @ONLINE. Sept. 2018. URL: https://www.pygame.org.

[25] PyOpenGL @ONLINE. Sept. 2018. URL: http://pyopengl.sourceforge.
net.

[26] Python 3.6 @ONLINE. Aug. 2018. URL: https://www.python.
org/downloads/release/python-360/.

[27] RStudio @ONLINE. Aug. 2018. URL: https://www.rstudio.com/.

[28] Sensors online Compensating for Tilt, Hard-Iron, and Soft-Iron Effects. https:
//www.sensorsmag.com/components/compensating-for-
tilt-hard-iron-and-soft-iron-effects. Accessed: 2018-
08-07.

[29] Studentized Range q Table Studentized Range q Table @ONLINE. Aug.
2018. URL: http://www.real-statistics.com/statistics-
tables/studentized-range-q-table.

[30] Suunto A-30 @ONLINE. Aug. 2018. URL: https://www.suunto.
com/de-ch/Produkte/Kompasse/Suunto-A-30/Suunto-A-
30-NH-USGS-Compass/.

[31] Technology, Media and Telecommunications Predictions. https://www2.
deloitte.com/global/en/pages/technology-media-and-
telecommunications/articles/tmt- predictions.html.
Accessed: 2018-07-25.

[32] Tornado What’s new in Tornado 4.5.2 @ONLINE. Aug. 2018. URL: http:
//www.tornadoweb.org/en/stable/releases/v4.5.2.
html.

http://www.ibeacon.com/what-is-ibeacon-a-guide-to-beacons/
http://www.ibeacon.com/what-is-ibeacon-a-guide-to-beacons/
https://developer.android.com/guide/components/activities/intro-activities
https://developer.android.com/guide/components/activities/intro-activities
http://www.scribd.com/doc/29754518/A-Efficient-Orientation-Filter-for-IMUs-and-MARG-Sensor-Arrays
http://www.scribd.com/doc/29754518/A-Efficient-Orientation-Filter-for-IMUs-and-MARG-Sensor-Arrays
http://www.scribd.com/doc/29754518/A-Efficient-Orientation-Filter-for-IMUs-and-MARG-Sensor-Arrays
http://dx.doi.org/10.1109/TAC.2008.923738
http://dx.doi.org/10.1109/TAC.2008.923738
https://github.com/coleifer/peewee
https://github.com/coleifer/peewee
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://www.pygame.org
http://pyopengl.sourceforge.net
http://pyopengl.sourceforge.net
https://www.python.org/downloads/release/python-360/
https://www.python.org/downloads/release/python-360/
https://www.rstudio.com/
https://www.sensorsmag.com/components/compensating-for-tilt-hard-iron-and-soft-iron-effects
https://www.sensorsmag.com/components/compensating-for-tilt-hard-iron-and-soft-iron-effects
https://www.sensorsmag.com/components/compensating-for-tilt-hard-iron-and-soft-iron-effects
http://www.real-statistics.com/statistics-tables/studentized-range-q-table
http://www.real-statistics.com/statistics-tables/studentized-range-q-table
https://www.suunto.com/de-ch/Produkte/Kompasse/Suunto-A-30/Suunto-A-30-NH-USGS-Compass/
https://www.suunto.com/de-ch/Produkte/Kompasse/Suunto-A-30/Suunto-A-30-NH-USGS-Compass/
https://www.suunto.com/de-ch/Produkte/Kompasse/Suunto-A-30/Suunto-A-30-NH-USGS-Compass/
https://www2.deloitte.com/global/en/pages/technology-media-and-telecommunications/articles/tmt-predictions.html
https://www2.deloitte.com/global/en/pages/technology-media-and-telecommunications/articles/tmt-predictions.html
https://www2.deloitte.com/global/en/pages/technology-media-and-telecommunications/articles/tmt-predictions.html
http://www.tornadoweb.org/en/stable/releases/v4.5.2.html
http://www.tornadoweb.org/en/stable/releases/v4.5.2.html
http://www.tornadoweb.org/en/stable/releases/v4.5.2.html

BIBLIOGRAPHY 37

[33] Universität Koeln F-Verteilung für (1-a)=0,95. http://eswf.uni-
koeln.de/glossar/fvert3.htm. Accessed: 2018-08-18.

[34] Universität Zürich Methodenberatung. https://www.methodenberatung.
uzh.ch/de.html. Accessed: 2018-08-18.

[35] Wan Mohd Yaakob Wan Bejuri and Mohd Mohamad. “Wireless LAN/FM
radio-based robust mobile indoor positioning: An initial outcome”.
In: 8 (Jan. 2014), pp. 313–324.

[36] Wikipedia Accelerometer. https://en.wikipedia.org/wiki/
Accelerometer. Accessed: 2018-08-07.

[37] Wikipedia Quaternion. https://en.wikipedia.org/wiki/Quaternion.
Accessed: 2018-07-24.

[38] Wikipedia Quaternions and spatial rotation. https://en.wikipedia.
org/wiki/Quaternions_and_spatial_rotation. Accessed:
2018-08-22.

[39] Wikipedia Rotation matrix. https://en.wikipedia.org/wiki/
Rotation_matrix. Accessed: 2018-06-18.

[40] Wikipedia Trigonometry. https://en.wikipedia.org/wiki/
Trigonometry. Accessed: 2018-08-12.

[41] Wikipedia Trilateration. https : / / en . wikipedia . org / wiki /
Trilateration. Accessed: 2018-08-07.

[42] Wikipedia Tukey’s range test. https://en.wikipedia.org/wiki/
Tukey’s_range_test. Accessed: 2018-08-04.

http://eswf.uni-koeln.de/glossar/fvert3.htm
http://eswf.uni-koeln.de/glossar/fvert3.htm
https://www.methodenberatung.uzh.ch/de.html
https://www.methodenberatung.uzh.ch/de.html
https://en.wikipedia.org/wiki/Accelerometer
https://en.wikipedia.org/wiki/Accelerometer
https://en.wikipedia.org/wiki/Quaternion
https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation
https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation
https://en.wikipedia.org/wiki/Rotation_matrix
https://en.wikipedia.org/wiki/Rotation_matrix
https://en.wikipedia.org/wiki/Trigonometry
https://en.wikipedia.org/wiki/Trigonometry
https://en.wikipedia.org/wiki/Trilateration
https://en.wikipedia.org/wiki/Trilateration
https://en.wikipedia.org/wiki/Tukey's_range_test
https://en.wikipedia.org/wiki/Tukey's_range_test

	Abstract
	Acknowledgements
	Introduction
	Overview
	Motivation
	Contributions
	Structure

	Theoretical Background
	Basic Idea - Indoor Localization Approach
	Rotations
	Attitude and Heading Reference System (AHRS)
	Sensors
	Representation of the Rotation
	Quaternions
	Rotation Algorithm

	Step Detection
	Traveled distance
	Scalar Product of the Accelerometer Data

	System Architecture
	Implementation Architecture
	Android Client
	Server

	Madgwick Algorithm
	Step Detection
	Jerk Average Threshold
	Pace Buffer

	Implementation
	Technology Stack
	Server
	Client
	Software

	Connection
	Implementation Details
	Training and indoor positioning

	Evaluation
	Evaluation Methods
	Introduction
	Comparison with Android Framework Solution
	The predefined walking path for the experiment
	Experimental Data

	Rotation Evaluation
	ANOVA
	Tukey’s Honestly Significant Difference (HSD) Test

	Step Detection Evaluation
	Pearson 2-square Test

	Evaluation Summary

	Conclusion
	Bibliography

