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Abstract

In this work a new indoor localization system is proposed, combining
fingerprint and range-based approaches. We propose a machine learning
approach for room recognition and a range-based weighted trilateration
method for localization. The weights for the trilateration are defined by
considering information provided by the room recognition approach.

We test our localization approach in a complex indoor scenario on the
third floor of the Institute of Computer Science at the University of Bern.
Results show that our room recognition approach achieves accuracies of
80-90%. Moreover, our weighting method improves the localization by 12%
over non-weighted trilateration. It does, however, not perform better than
existing simpler weighting methods.
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Chapter 1

Introduction

Today’s ubiquity of mobile computing has increased the demand for mobile
devices to be aware of their location. Indoor location awareness is funda-
mental for many possible applications such as pedestrian navigation and
location based marketing in large building complexes (e.g. universities,
airports, hospitals).

In contrast to outdoor localization, where the Global Positioning Sys-
tem (GPS) is the most attractive and effective technology to perform object
localization, there is no established solution for indoor localization. GPS
can not be applied in indoor scenarios due to the inability of GPS signal
to penetrate in-building materials such as walls. Moreover, radio localiza-
tion approaches in indoor environments are affected by non-line-of-sight
(NLOS) and multi-path propagation. These effects deteriorate the signal to
be less accurate for localization [4, 16]. In addition to these challenges in-
door location based applications usually require higher accuracy than those
outdoors; An error of four meters is acceptable for street navigation but not
for a museum guide.

1.1 Motivation

Indoor localization has been an active research field in the last few years
with many different techniques proposed [15, 10]. One common approach
is to base the localization on WiFi radio signals. WiFi infrastructure is al-
ready present in almost every building and can easily be upgraded with
standardized off the shelf hardware. These radio-based techniques are usu-
ally classified into range-based and range-free methods [13].

Fingerprinting is a common range-free method, where known radio pa-
rameters are mapped to a location. Later this map is used to determine the
devices location based on the current radio parameters. Fingerprinting can
achieve good accuracy but creating the map is very labor intensive [13].

Range-based methods use the radio parameters to try to approximate
the distance between the mobile device (Mobile Node) and the signal emit-
ters (Anchor Nodes). This process is called ranging. Trilateration is then
performed on these distances to determine the position of the MN. The
ranging process is prone to errors caused by NLOS and multi-path prop-
agation [13].

1.2 Contributions

In this work we propose a localization system, which uses fingerprinting to
improve the range-based approach.
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The range-based localization method is complemented by a room recog-
nition technique based on WiFi received signal strength indicator (RSSI)
and magnetic field readings. The information provided by the room recog-
nition is used to define a weighting model, which assign weights to the
ranges in the trilateration algorithm.

The proposed localization system is implemented and tested in a com-
plex indoor scenario.

The main contributions are summarized as follows:

• We present a simple, easy to train room recognition method based on
fingerprinting and utilizing magnetic field and RSSI information.

• We present novel weighting method for range based trilateration, which
estimates the ranging error based on the information provided by the
room recognition.

• We combine the two above mentioned methods to create an improved
indoor location system.

1.3 Overview

The remainder of this work is structured as follows; The theoretical back-
ground is reviewed in chapter 2. The proposed localization system is intro-
duced in chapter 3 and the room recognition and weighting are explained
in detail. Chapters 4 and 5 deal with the test bed implementation used for
the evaluation and the evaluation results respectively. Final chapter 6 sum-
marizes the work and concludes the evaluation results.
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Chapter 2

Theoretical Background

In this section two of the most common indoor localization approaches -
fingerprinting- and range-based - are reviewed. This knowledge is required
to fully understand our implementation of these mechanisms. Addition-
ally, we also include some information specific to our room recognition ap-
proach.

This chapter is organized as follows: First the range-based localization
approach is introduced; the important aspects of the observation param-
eters (RSSI, signal propagation) and each phase of the process (ranging,
weighting, trilateration) are covered in detail. Afterwards an overview over
the basic fingerprint based approach is given. Finally we cover some top-
ics specific to our room recognition approach; earth’s magnetic field and
support vector machine (SVM) classification.

2.1 Range-Based Localization

A range based localization system consists of two main components [15]:
Several Anchor Nodes (ANs), which are placed at known locations and

constantly transmit a radio signal.
A mobile node (MN), in this case a smartphone, whose location is un-

known and needs to be determined.

FIGURE 2.1: Block diagram of the range based localization
approach.

To determine its position the mobile node measures the received signal
strength from each of the anchor nodes (RSSIi). A ranging model is then
used to estimate the distance (di) from the mobile node to each anchor node.
Because the location of the anchor nodes is known, it is then possible to
calculate the position of the mobile node using trilateration. To account for
errors during the ranging step the trilateration can also be provided with a
set of weights (wi) representing the accuracy of each distance estimation.



4 Chapter 2. Theoretical Background

The benefit of this approach is that it is not labor intensive. Compared
to other approaches only a small number of training samples are required.
The disadvantage is that the achievable accuracy is limited. Because of the
signal propagation effects in indoor environments the ranging models are
often inaccurate.

In the following subsections the ranging, trilateration and weighting
steps are described in further detail.

2.1.1 RSSI and signal propagation

The received signal strength indicator describes the signal power level re-
ceived by the receive radio. The measurement is given in arbitrary discrete
units with higher numbers relating to a stronger signal [21].

In an open space without any obstacles the RSSI mainly depends on the
propagation distance, but indoors several other factors become important.
These are non line of sight (NLOS) and multi-path propagation.

NLOS occurs when the signals path is obstructed by physical objects.
The signal must pass through these objects and therefore the RSSI is lower
compared to LOS, where there are no obstacles [4].

Multi-path propagation is caused when the signal is reflected from phys-
ical objects and arrives at the receiver multiple times with different signal
strength. This causes inaccuracy and fluctuations in the measured RSSI as
all these signals are blended together [16].

Both effects are very common in indoor environments, caused by the
walls, people, furniture and other building materials. Furthermore, the
RSSI values are discrete and not fine grained what causes additional in-
accuracy. This makes range-based localization based on RSSI challenging
and limits its accuracy.

There are other ways to assess the signal strength, such as channel state
information, which is more fine-grained and can mitigate multi-path ef-
fects, but they are not available on most mobile devices [4, 13].

2.1.2 Radio-based ranging process

The ranging process estimates the distance between the ANs and the MN
based on the radio parameters, in this case RSSI. There are several differ-
ent models that can be used for ranging. In this work we use a non-linear
regression (NLR) model proposed by [14]:

di = αie
βiRSSIi (2.1)

It describes the loss of signal strength over the propagation distance. di is
the estimated distance from the MN to the i-th AN, RSSIi is the i-th AN’s
signal strength as measured by the MN and αi, βi are environment variables
specific to each AN.

The model needs to be trained for each AN individually by determining
the values for αi and βi. This is done by fitting the function to a small set
of training samples. This can be done using, for example, least squares
optimization.
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2.1.3 Trilateration

Trilateration is the process of determining an absolute or relative location
based on the distance to known locations. In contrast to triangulation it
relies on distances instead of angles.

In the context of localization the goal is to determine the NM’s location
(x, y) based on the locations of the ANs (x̃i, ỹi) and the distance estimations
di obtained from the path loss model.

The actual distance Di from the MN to the i-th AN can be expressed as
follows:

Di =

√
(x̃i − x)2 + (ỹi − y)2 (2.2)

Under the assumption that di = Di this leads to the following equation
system: 

d1
d2
...
dn

 =



√
(x̃1 − x)2 + (ỹ1 − y)2√
(x̃2 − x)2 + (ỹ2 − y)2

...√
(x̃n − x)2 + (ỹn − y)2

 (2.3)

But di is only an estimation so there is no exact solution of the above
system. The best solution is the one that minimizes the sum of the squared
error di−Di. So to determine the MN’s location the following problem has
to be solved:

argminx,y

n∑
i=1

wi

(
di −

√
(x̃i − x)2 + (ỹi − y)2

)2

(2.4)

To solve non-linear least squares problems the Levenberg–Marquardt and
Gauss-Newton algorithm can be used [19, 20].

2.1.4 Range weighting process

The optimization problem in equation 2.4 also defines a set of weights wi
corresponding to each distance estimation di. In the context of trilateration
these weights represent how accurate each distance estimation is.

The ranging model’s accuracy can vary greatly. By applying a large
weight to the more accurate estimations and a small weight to the inaccu-
rate ones it should, in theory, be possible to correct for the ranging error
and improve the localization.

In practice the problem is that the ranging error is not known. A weight-
ing method is needed that estimates the ranging error.

Previous work at the CDS group [13] used the assumption that the rang-
ing error is larger with increasing distance to the anchor node. So the
weights were defined as inversely proportional to the estimated distances:

wi =
di

−1∑N
n=1 dn

−1
(2.5)

In the remainder of this work this weighting method will be referred to
as Distance Weights.
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2.2 Fingerprinting-based localization

Fingerprinting is a common method for localization based on RSSI [6]. It
consists of two main phases:

During the offline/training phase, a survey of the area of interest is per-
formed. A map of reference points (RP) is created. Each reference point
represents a known location and contains the RSSI for each AN.

Then during the online phase, a location positioning technique uses the
currently observed signal strengths and previously collected information
to figure out an estimated location. The positioning technique can employ
different machine learning schemes such as k-nearest neighbor regression
or support vector machines [4, 15].

The accuracy of this method mainly depends on the density of the RP-
map. A higher density usually results in a better accuracy. Generally achiev-
ing a satisfying level of accuracy requires a lot of RPs. Other factors are the
number of attributes in each RP and the variability of the observation pa-
rameters [12].

More attributes per RP, an attribute being a data value like a RSSI or a
magnetic field measurement, gives the algorithm more information to work
with and so increased the accuracy[12]. This effect is subject to diminishing
returns[3]. A high variability in the observation parameters depending on
location is also beneficial.

This approach is able to achieve good accuracies in indoor environ-
ments. The problem is that it is very labor intensive to create the necessary
fingerprinting maps.

2.3 Earth’s magnetic field in indoor environments

Earth’s magnetic field is the magnetic field that extends from the Earth’s
interior out into space. It is similar to a magnetic dipole with field-lines
pointing towards the magnetic north [18]. This feature has already been
used for outdoor localization, mainly as a compass to determine the devices
heading in PDR systems.

However, in indoor environments earth’s magnetic field is disrupted.
The presence of metal structures in the building materials, electrical de-
vices, cables and tubes cause anomalies in the magnetic field. These anoma-
lies make accurate heading determination difficult [1].

But previous research suggests that they can be used in a fingerprinting
approach to determine a devices location. The idea is that the presence of
a magnetic field anomaly can be linked to a specific location. The research
shows that the magnetic field anomalies are mostly stable over time and
have sufficient local variability. Therefore, they should be applicable for
use in localization [11, 2, 12].

2.4 Support Vector Machine

The Support Vector Machine (SVM) is one of the most widely used machine
learning algorithms. It predicts the labels of new (unknown) samples based
on previous (known) examples. In its basic form it only supports two labels.
This is called binary classification.
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The known examples are called training data. It consists of instance-
label pairs (xi, yi) , i = 1, ..., l where xi ∈ Rn and yi ∈ {−1, 1}. xi represents
the sample’s observable features while the label yi defines in which cate-
gory it belongs.

The SVM maps the samples into n-dimensional space. It then tries to
fit a hyperplane through that space separating the two classes. Ideally all
samples with yi = 1 are on one side of the hyperplane and yi = −1 on the
other. To make the separation as clear as possible the margin between the
hyperplane and the samples is maximized at the same time. The samples
that lie directly on the margins are called the support vectors.

To classify a new unknown sample the SVM determines on which side
of the hyperplane it lies and assigns the according label.

To fit the hyperplane the SVM solves the following optimization prob-
lem [5]:

min
ω,b,ξ

1

2
ωTω + C

l∑
i=1

ξi

subject to yi
(
ωTφ (xi) + b

)
≥ 1− ξi,

ξi ≥ 0, i = 1, ..., l

(2.6)

There may be outliers or noise in the data. This means that a hyperplane
that separates all samples correctly may not be the best classifier. To account
for this a cost is paid if a sample violates the error term yi

(
wTφ (xi) + b

)
≥

1, increasing the objective function by Cξi. The C parameter defines the
trade-off between the simplicity of the decision surface (hyperplane) and
misclassification of training samples. For large values of C the optimiza-
tion will chose a hyperplane with a smaller margin and more support vec-
tors. Therefore the hyperplane will be more complex, as it tries to classify all
samples correctly. Conversely, a small value of C will cause the optimizer
to look for a larger-margin separating hyperplane, even if that hyperplane
misclassifies some samples [7].

But the training data may not be linearly separable. In this case the so-
called kernel trick can be used. The kernel is a function k (xi, xj) = φ (xi) ·
φ (xj), which maps the features xi to a higher dimensional space where they
can be separated by a hyperplane. This results in a non-linear separation in
the original feature space [8].

To perform multi-class classification the "one-against-one" approach can
be used. For k classes k (k − 1) /2 classifiers are trained. Each binary classi-
fier is then considered to vote for a class. The sample is then placed in the
class with the most votes [5].
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FIGURE 2.2: (Top) A dataset in feature space, not linearly
separable. (Middle)The same dataset transformed with
decision boundary. (Bottom) The nonlinear decision
boundary.
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Chapter 3

Localization System
Architecture

In chapter 2 the two most common indoor localization approaches were in-
troduced. In this chapter a localization system is proposed that combines
those approaches. Our proposal uses a fingerprinting based room recogni-
tion system to improve the weights for the range-based trilateration.

After giving an overview of the proposed system we will focus on the
new components of our system; the room recognition system and room
based weighting method. The other components of the system were already
covered in chapter 2.1.

3.1 Overview

The proposed system adds a room recognition system and new weighting
method to the standard range-based approach (see chapter 2.1). The room
recognition uses fingerprinting with RSSI and magnetic field data to de-
termine the devices current room. The new weighting method then relies
on the information provided by the room recognition to more accurately
estimate the ranging error and improve the trilateration accuracy.

FIGURE 3.1: Block diagram of the proposed localization
system.

As apparent in the block diagram (Figure 3.1) the standard range-based
approach is not changed but simply extended. Therefore, the main focus of
this thesis are the two added components; the proposed room recognition
system and weighting method for the trilateration. In the remainder of this
chapter those components are explained in detail.



10 Chapter 3. Localization System Architecture

3.2 Room Recognition

The room recognition system is based on a fingerprinting approach. The
fingerprint-map consists of RSSI and magnetic field data (Bxyz). A multi-
class SVM classifier is trained with the fingerprinting map and can then be
employed to predict the devices room.

Fingerprinting can be very labor intensive when used for accurate lo-
calization, because for each of the many training samples the exact location
needs to be measured. But for room recognition we do not need to know
the exact location of each sample, we only need to label them with a room.
This means collecting the samples to train the room recognition should be
a lot faster.

Magnetic field data (Bxyz) is also included in the fingerprinting map.
We predict that this will increase the accuracy of the room recognition sys-
tem as previous work has shown the applicability of magnetic field data for
localization. This hypothesis needs to be confirmed in the evaluation.

Another question to be answered is what kind of fingerprinting map
yields the highest accuracy; an equally distributed map or a unequally dis-
tributed one with more samples at the borders (walls and doors between rooms).
Or in other words; do more samples at the borders increase the accuracy.

The support vector machine was chosen as the classifier because it is,
compared to other common classifiers like k-NN, better suited for this kind
of problem. The SVM is pretty resistant to outliers in the training data,
because it only chooses the most significant samples as support vectors.
Also, it performs well with a small number of samples. k-NN on the other
hand is very susceptible to outliers and generally needs more samples to
offer good results.

3.3 Room based weighting method

In order to be able to set trilateration weights based on the rooms, we need
a model, which relates the rooms to the ranging error.

If we assume that the ranging error is mainly caused by obstructions to
the signal (walls, wires etc.) then for any two samples inside one room the
ranging error should be roughly the same. Therefore, it should be possi-
ble to estimate the ranging error of an unknown sample by calculating the
average error of some known training samples located in the same room.

The proposed weighting method defines the weights for each room as
inversely proportional to the average ranging error for each anchor node.
The result is a separate set of weights for each room. The room recognition
is used to decide what set of weights to use.

For room R the weight wRi associated with the distance estimation di to
anchor node ANi is calculated based on all the training samples SR in the
room.

wRi =
E−1
i∑N

n=1E
−1
n

Ei =

SR∑
s=1

(Dsi − dsi)2
(3.1)
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The inverse ranging error for anchor node ANi is divided by the sum
of the inverse ranging error for all anchor nodes N . The ranging error is
represented by the sum of the squared difference between the actual and
estimated distance (Dsi − dsi)2 for each training sample s (s = 1..S).

In the remainder of this work this weighting method will be referred to
as Room Weights.

It could also be beneficial to combine the new Room Weights with the
Distance Weights from equation 2.5 by adding them together.

We have to evaluate the effectiveness of both the Room Weights and the
combined Room+Distance Weights.
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Chapter 4

Localization System
Implementation

In order to develop and evaluate the system outlined in Chapter 3, it is first
required to establish a testing environment. This chapter introduces the
implementation of the localization system in a test bed.

4.1 System Overview

The test bed consists of multiple anchor nodes, a mobile node and a com-
puter.

The ANs are commercial WiFi access pints, which are placed in the area
of interest and constantly broadcast a beacon signal.

The MN is an Android smartphone. It is used to collect samples from
different locations in the area of interest.

The samples collected by the MN are transferred to a computer. The
computer is responsible for all the computations. It executes all the algo-
rithms for the room recognition, ranging, weighting and the trilateration.

FIGURE 4.1: Overview of the test bed implementation

In our test bed implementation the smartphone is only used to collect
the samples. On the computer these samples are then used as training and
evaluation points for the localization system. This way it is possible to try
out and empirically compare different parameters of the system under the
exact same conditions.
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The set-up of this test bed comprises both hardware and software spe-
cific configurations for each component. The remainder of this chapter de-
tails these configurations.

4.2 Hardware

The hardware for this test bed consists of multiple ANs, a MN and a com-
puter. There are no special requirements for the computer as long as it is
able to execute Java code.

For the AN and MN the following hardware was employed:

Anchor Nodes The commercial WiFi access points used as anchor nodes
are of the model D-Link D-635 and D-2553. They are set-up with a beacon
period of 100ms and broadcast on the 2.4 GHz frequency band.

Mobile Node The mobile node is an Android smartphone of the model
One Plus One. It has the following specifications:

• OS: Android 5.1

• Processor: 2.5GHz Quad-core CPU

• WiFi module: Qualcomm WCN3680 802.11ac/FM/BT 4.0 Combo Chip

• Internal sensors: accelerometer, magnetometer, gyroscope, proxim-
ity, ambient light

• Memory: 3 GB RAM

The WiFi module and the magnetometer are used for the sample collec-
tion. The magnetometer is reasonably accurate with a resolution of 0.1 µ T .
The off-the-shelf WiFi interface is less reliable because it does only provide
fine-grained RSSI values (more fine-grained values would be better) and it
does not support channel state information.

4.3 Software

4.3.1 Mobile Node

The mobile node runs an Android application, which collects RSSI and
magnetic field data.

To collect one sample the application takes the average of five RSSI and
magnetometer measurements, each spaced 2 seconds apart. The samples
are then saved to a .csv file on the smartphones internal storage so they
can later be transferred to the computer.

Each sample consist of:

• A label indicating the room or the exact location where the sample
was taken.

• A set of RSSI values, one for each AN.
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• The magnetic field strength in µ-Tesla along the devices x,y and z
axis.

On Android the WiFi module cannot be accessed directly. WiFi scans
have to be initiated through the AndroidAPI and it only supports full
scans [3]. Full scans take longer so it is only possible to take one RSSI mea-
surement every 1.5 seconds.

Due to the low sampling rate, it is not practical to apply filters to remove
noise from the RSSI . It is also not possible to access channel state informa-
tion, which could be used to mitigate some of the multi path effects.

4.3.2 Computer

On the computer a few different programs are used to implement the local-
ization system:

• WEKA 3.6 is used for the room recognition classifier.

• Matlab’s function fit tool is used to train the ranging model.

• A Spreadsheet program is used to manually calculate the weighting
model.

• The trilateration tool [9] is responsible for the application of the rang-
ing and weighting models and performs the trilateration. It is a small
Java application written for this test bed implementation.

The implementation of the room recognition system is split into two
phases; In the offline phase the room recognition, ranging and weighting
model are generated. Afterwards, in the online phase, these models are
used to predict the location of unknown samples.

Figure 4.2 gives an overview of this process. In the following the two
phases are explained in detail.

Offline Phase

Room Recognition Model The SVM for the room recognition is trained
in WEKA. It generates a multiclass SVM model from the training data set
and may use grid search for the parameter selection. The training data
set consists of samples containing RSSI (RSSIi) and magnetic field (Bxyz)
values labeled with the room number (R#).

Ranging Model For the ranging model the α, β parameters from equation
2.1 need to be determined for each AN. This is done by fitting the equation
to the testing data in Matlab. The testing data set is a list of RSSI values and
the corresponding distance (Di) to the AN.

The resulting non-linear regression model is inaccurate with high RSSI
values (samples very close to the AN). To account for that the distances for
these high values are set by hand.

Weighting Model The Room Weights are calculated by hand based on equa-
tion 3.1 in a spreadsheet program and imported into the trilateration tool.

The Distance Weights are calculated by the trilateration tool during run
time based on the equation 2.5.
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FIGURE 4.2: Diagram of the offline implementation

Online Phase The online dataset contains samples with RSSI and mag-
netic field values.

In a first step WEKA is used to predict the room number. The result is
handed to the trilateration tool, which applies the ranging and weighting
models to determine the predicted distances (di) and calculate the weights
(wi). It then solves the trilateration problem (equation 2.4) using the Lev-
enberg–Marquardt optimizer from the Apache Commons Math library. It
outputs the predicted position (x, y) to a .csv file.

To evaluate the system, the online dataset can also contain the actual
position (X,Y ) where the sample was collected. In this case the trilateration
tool will also output the localization error.
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Chapter 5

Evaluation

In chapter 4 the test bed implementation was introduced. In this chapter
this test bed is used to evaluate the performance of the system proposed in
chapter 3.

The evaluated components of the system are the room recognition and
the room based weighting method for the trilateration.

Before presenting the evaluation results section 5.1 introduces the envi-
ronment where the test bed was deployed and the data sets used for the
evaluation. Sections 5.2 and 5.3 then evaluate the room recognition and
weighting method.

5.1 Test bed deployment and collected data sets
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FIGURE 5.1: Floor plan showing the area of interest with the
anchor nodes in red, the XY-samples in blue and the room

numbers in black

The test bed was deployed on the third floor at the Institute of Com-
puter Science (INF) of the University of Bern. The area of interest is 297m2

in size, with seven rooms connected by a large corridor. The five anchor
nodes were positioned to provide maximum coverage of the area so that
the mobile node is able to receive at least four of the signals at all time.
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The rooms were given numbers from one to eight, the corridor being also
treated as a room.

Collected Data Sets The samples were collected with the smartphone held
approximatively one meter above the ground and always pointing in the
same cardinal direction. This is important because the magnetic field mea-
surements are influenced by the devices orientation.

The collected samples were grouped into the following data sets:

• Room recognition data only labeled with the room number

– Grid: 223 samples (green dots in Figure 5.2)
A set of evenly distributed samples gathered in a grid pattern
with approximately 1.2m distance between them.

– Borders 373 samples (red dots)
A set of unevenly distributed samples. The sample density is
very high at the borders (walls and doors between rooms) with
about one sample taken every 0.5m but only a few samples from
the center of each room.
red dots in Figure 5.2

• XY data labeled with the exact coordinates (blue dots)
A set of 44 evenly distributed samples labeled with (X,Y )-coordinates
and room number. Figure 5.1 shows them as blue dots.

Figure 5.2 visualizes the difference between the data sets. The points are
examples and not identical to the actual samples in the data sets.

The room recognition data sets (Grid, Borders) are used to train the room
recognition model. The XY data set is mainly used to train the ranging
model and evaluate the trilateration accuracy. But we can also use it as an
independent test set to compare and evaluate the room recognition models.

FIGURE 5.2: Illustration showing room #1 and the collected
data sets. (blue) XY data set with exact coordinates, (green)

Grid data set, (red)Borders data set.
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Evaluation Type with Bxyz without Bxyz Improvement

CV (pre-set) 90.1% 70.4% 19.7%
CV (optimized) 93.3% 83.0% 10.3%
Train: Grid, Test: XY 84.1% 81.8% 2.3%
Train: Grid, Test: XY 97.3% 86.8% 10.5%
(without room #3)

TABLE 5.1: Accuracy of the room recognition with and
without magnetic field data.

5.2 Room Recognition

The purpose of this evaluation is to check the hypothesis that the magnetic
field data improves room recognition accuracy. Additionally, we want to
find out what kind of training data (evenly distributed or more samples at
the borders) achieves the best results.

To check if the magnetic field data has a significant impact on the perfor-
mance of the room recognition We perform a 10-fold cross validation[17]
on the evenly distributed Grid data set both with and without using mag-
netic field data. The resulting accuracies are compared. This experiment is
repeated with different SVM parameters to see if the parameters have an
impact on the result.

To determine the best training data set Multiple models are generated
using the two training data sets (Grid, Borders) and different SVM parame-
ters and kernels. The models are tested against the evenly distributed XY
data set and the resulting accuracies are compared.

For the SVM parameters we use WEKA’s standard pre-set values as well
as optimized parameters selected with cross validation and grid search.

Results: Magnetic field data Table 5.1 shows a large difference between
the performance with and without magnetic field data when using cross
validation. With WEKA’s pre-set SVM parameters (poly-kernel, c = 1, e =
1) the improvement is very large with almost 20%. When using the optimal
parameters (determined by grid search for each case separately) the differ-
ence drops to a still significant 10%. This drop is due to the fact that the
pre-set parameters seem to be better suited to the case with magnetic field
data. A comparison between the two cases using not optimal parameters is
therefore unfair.

Cross validation can sometimes be a little biased. So the impact of mag-
netic field data was also compared by training with the Grid data set and
testing against the XY data set, mimicking a real-world use case of the room
recognition. Surprisingly this only resulted in a 2.3% improvement.

The reason for this unexpected result can be found by comparing the
impact of the magnetic field data on the room recognition accuracy for each
room. We see in table 5.2 that the accuracy is improved in every room where
it was not already 100%, except for room #3 where the accuracy drops to 0%.
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Room Number with Bxyz without Bxyz Improvement

#1 100.00% 100.00% -
#2 100.00% 100.00% -
#3 0.00% 50.00% -50.00%
#4 100.00% 83.30% 16.70%
#5 100.00% 80.00% 20.00%
#6 100.00% 75.00% 25.00%
#7 100.00% 100.00% -
#8 83.30% 66.70% 16.60%

TABLE 5.2: Accuracy of the room recognition for each room
(XY test set, poly-kernel, optimized parameters)

At the time the data sets were collected room #3 was almost empty
while the two adjacent rooms contained server racks and technical equip-
ment (near the walls separating the rooms). We expect that some of this
equipment caused a disruption of the magnetic field during the time that
the XY data set was created and therefore obscured the already weak mag-
netic signature of room #3. A similar effect was observed in related work
[12].

When room #3 is excluded from the test set we get the expected 10%
improvement when using magnetic field data.

Results: Data sets and SVM parameters Table 5.3 shows the accuracy for
the two training data sets and two different kernel functions using WEKA’s
pre-set parameters. The polynomial kernel performs very well while with
the RBF kernel the accuracy is below 20% for all training data sets. The RBF
kernel, with these parameters, does not seem to be a good fit for this kind
of data.

With the polynomial kernel the unequally distributed Borders data per-
forms better. But it is only 2.3% better than Grid, which has 40% fewer
samples. This difference does not seem significant and is most likely due to
the higher numbers of samples.

Table 5.4 shows the accuracy with optimal parameters for each training
set and kernel. The parameters were selected with a grid search.

For both training data sets the accuracy could be slightly increased by
the parameter selection, but the relative accuracy is still the same; Borders
has the highest performance with Grid only being marginally worse.

With the optimized parameters both kernels have a similar performance,
although the RBF kernels c values are generally higher. A high c value
means that the RBF kernel’s decision surface needs to be more complex
and have a smaller margin to achieve the same accuracy as the polynomial
kernel. In general a less complex decision surface with a higher margin is
preferred. We therefore infer that the polynomial kernel is better suited for
this problem.

Finally, to see if it is possible to train a room recognition system with a
minimal number of samples the system was trained with the XY data set
and tested against the Grid. This resulted in an accuracy of 81.2%. This is
still very high considering only 44 training samples were used.
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Training Data Polynomial RBF
(#Samples) c = 1, e = 1 c = 1, g = 0.01

Grid (223) 81.8% 18.2%
Borders (373) 84.1% 11.4%

TABLE 5.3: Accuracy of the room recognition with different
training data sets using the polynomial and RBF kernel pre-

sets

Training Data Polynomial RBF
(#Samples) accy c e accy c g

Grid (223) 84.1% 10 1 84.1% 100 0.01
Borders (373) 88.6% 100 1 86.4% 1000 0.01

TABLE 5.4: Accuracy of the room recognition with different
training data sets using the optimal parameters

5.3 Weighting

Section 5.2 has shown that the proposed room recognition can achieve high
accuracy even with a small training data set. Potentially it could be trained
with the same points used to train the ranging model, eliminating the need
to collect additional samples. It is now possible to evaluate the proposed
weighting method and see if the information from the room recognition can
be used to improve the range based localization accuracy.

In Chapter 3 a new weighting method was proposed; the Room Weights
(equation 3.1). The goal of this evaluation is to evaluate if the Room Weights
improve the accuracy of the trilateration and if this is true whether the ac-
curacy can be further improved by combining the Room Weights with the
existing method of the Distance Weights.

In a first step the new weighing method is applied with the assumption
of 100% room recognition and compared to ordinary least squares (trilatera-
tion with no weights). This gives us a best-case value for the improvements
with the new weighting method.

In a second step the weighting method is applied to a real word scenario
using a room recognition system trained with the Grid data set (accuracy of
84%). The results are compared to the 100% case to see how sensitive the
weighing method is to errors in the room recognition.

Finally, the performance of the proposed weighting method under real
world conditions is compared to the Distance Weights to see if it performs
better than other simpler weighting methods.

The ranging model and room weights are trained with the entire XY data
set and imported into the trilateration tool. For evaluation the same data-set
is used.

Results In addition to the mean, standard deviation and maximum er-
ror, the results are presented as the cumulative distribution function of the
localization error. This allows for a more accurate representation of the per-
formance than just using statistical values.
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FIGURE 5.3: The Localization error with the Room Weights.
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and distance weights.
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Weighting Method Mean STD Max Improv
Error over OLS

OLS 2.74m 1.57m 8.25m
Room Weights (100%) 2.35m 1.22m 4.89m 14.2%
Room+Distance Weights (100%) 2.29m 1.16m 4.65m 16.4%
Room+Distance Weights (84.1%) 2.40m 1.25m 5.69m 12.4%
Distance Weights 2.42m 1.19m 5.37m 11.3%

TABLE 5.5: Comparison of the statistical values for the dif-
ferent weighting methods

The results with 100% room recognition show an improvement of the
Room Weights over OLS. The mean error is 14.2% (≈0.4m) lower, the stan-
dard deviation smaller and the maximum error was reduced by≈3.4m. But
when looking at the CDF plot (Figure: 5.3) the improvement, although vis-
ible, does not seem very dramatic and is mainly due to the large reduction
in the maximum error.

The results also show that combining the Room and Distance Weights
does indeed yield a further small improvement. While the mean error is
only marginally increased, it lowers the maximum error even further and
smooths out the CDF curve (Figure: 5.4).

The comparison between the performance of the weighting in a best-
case scenario and real world case, shows that there is indeed an error intro-
duced by the room recognition. But the CDF (Figure: 5.5) shows that this
error is overall very small and mainly due to a few samples with a large
error, which increase the maximum error.

However, when taking into account this error, the real world perfor-
mance of the proposed weighting method is almost the same as the existing
simpler Distance Weights. This is apparent in Figure 5.6. The mean error is
only a few centimeters lower (0.07m) and the maximum error even higher
than with the Distance Weights.
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FIGURE 5.5: Localization error with combined room and dis-
tance weights in a best-case and real world scenario
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Chapter 6

Conclusion

Indoor localization remains a challenging problem in computer science.
In this thesis we combine the two most common localization approaches

into one system i.e., adding a room recognition system to a range based
approach to improve the trilateration weights and the localization accuracy.

We propose a room recognition system based on fingerprinting with
RSSI and magnetic field data and a new weighting method for range based
localization by defining a set of weights for each room.

The proposed system was then implemented in a test bed on a floor of
the university building. Several experiments were carried out to evaluate
the performance of the room recognition and weighting method.

Room Recognition Room recognition based on RSSI and magnetic field
data is able to achieve a high accuracy, even with very small set of training
data. The system is able to achieve 80-90% accuracy depending on the size
of the training data set.

The inclusion of magnetic field data generally improves the room recogni-
tion accuracy by 10%. However, this improvement may be influenced by
large temporary disruptions in the magnetic field.

The results of our work indicate that there is no benefit of having a train-
ing data set with more samples at the borders. The best results, in compari-
son to the numbers of samples, are achieved with an evenly distributed set of
samples.

For the SVM configuration the polynomial kernel seems to be the better
suited kernel function.

Weighting The proposed weighting method does improve the accuracy
compared to OLS. However, the improvements are not very large. This can
be explained by the fact that the NLR-model used for ranging already takes
into account the environmental parameters α and β.

Compared to already existing simpler Distance Weight the proposed method
performs almost the same. Considering the added complexity and effort in
collecting the room recognition samples the proposed weighting method is
not practical. It does make more sense to use the Distance Weights instead.

Possible future work Although the room recognition was not able to sig-
nificantly improve the weighting, there are many other possible applica-
tions for a simple and effective room recognition system. As an example, it
could be included into a particle filter to enhance tracking performance for
indoor tracking applications.
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Also, to use the room recognition system in real-time, it would be nec-
essary to have a system that takes into account the orientation of the device.
The magnetometer readings are dependent on the devices location. So in
order to use the device in any orientation, the measurements would need to
be normalized to a reference frame. This could potentially be done by keep-
ing track of the devices orientation using the internal sensors and adjusting
the magnetometer measurements accordingly.
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