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Abstract

A service-centric network requires a routing protocol that routes service requests
towards service providers. Routing operations can be divided into intra-domain and
inter-domain routing. In the proposed approach, a so-called supernode is responsible
for managing its own domain as well as for communicating with the supernodes of
other domains to perform inter-domain routing. To prepare routing information, the
nodes of each domain inform their supernodes about their available service names
and resources (e.g., CPU, RAM). To this aim, the nodes use Bloom filters, which
reduce bandwidth and storage overhead. In order to appoint appropriate nodes as
supernodes in the network topology, in this thesis, we use Dominating Sets (DS) and
Connected Dominating Sets (CDS).

A DS is a subset of a graph, where each element of the graph is either in the subset
or directly adjacent to an element of the subset. A CDS is a DS, where all elements of
the subset are connected. We propose fully distributed algorithms for constructing
DS as well as CDS over the network topology.

The performance evaluation shows that the required bandwidth overhead for DS
and CDS construction algorithms increases with the topology size. The results also
show that for large network topologies, CDS-based routing requires significantly
less bandwidth overhead than both DS-based routing and Named Data Networking
with multicast forwarding strategy. Finally, from the results we can observe that
both DS-based and CDS-based routing have significantly lower service retrieval time
than NDN multicast strategy.
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Chapter 1

Introduction

1.1 Motivation

The Internet was initially designed as a communication network. The nature of
TCP/IP is carrying data between two endpoints. However, nowadays users see the
Internet as a content distribution network. Thus, users do not care about the loca-
tion of the content objects. This is where the network paradigm Information-Centric
Networking (ICN) [1] comes into play. The goal of ICN is to shift from host-centric
to content-centric networking to better accommodate content distribution, mean-
ing, the consumer does not need to know ‘where’ but rather ‘what’ he wants to
retrieve. The benefits of ICN have been discussed extensively in other publications
[1, 2, 3]. Apart from content retrieveal, users might demand processed content ob-
jects, i.e., services, such as calculations, video transcoding, Google Maps directions,
etc. Therefore, in [4], Service-Centric Networking (SCN) is proposed to extend ICN
so that it supports service retrieval.

The goal of this thesis was to implement a Layered SCN Architecture (L-SCN) [5],
where the network is divided into domains. Each domain is managed by a Super
Node (SN) that is aware of the provided services and the available resources in the
domain. Non SNs are called regular nodes. The regular nodes of each domain are
managed by the SN of the domain.

1.2 Research Questions

This thesis tries to solve the following questions:

• Can the L-SCN architecture be implemented on a network where SNs have not
been elected already?

• What is the impact of using either a DS or a CDS?

• What are the benefits of using the L-SCN architecture compared to other rout-
ing strategies?

1.3 Contribution

L-SCN [5] assumes that nodes are clustered and SNs are selected. To implement this
architecture and assess its performance, we first needed an algorithm to divide any
network topology into domains and elect SNs, as the design of clustering algorithms
was mentioned as future work in [5].

In the literature, Dominating Sets (DS) and Connected Dominating Sets (CDS) [6]
have been used to create virtual backbone for routing in ad-hoc networks [7, 8, 9,
10, 11]. However, all these works model the network as unit-disk graphs, which
already brings some constraints. We wanted the clustering algorithm to be able to
work on arbitrary network topologies. Therefore, we first developed an algorithm
electing SNs based on a Dominating Set (DS). As the work in [5] uses connected
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SNs, we then developed an algorithm, which would connect the created DS into a
Connected Dominating Set (CDS).

We then implemented two variations of the L-SCN [5] architecture, using a DS and
a CDS as a virtual backbone for routing, respectively, and implemented Bloom Filter
(BF)-based routing for both architectures in ndnSIM [12]. We compared the pro-
posed protocols with the NDN multicast strategy [13] with different parameters and
different real world topologies, namely GEANT [14] and Rocketfuel [15]. We as-
sessed the performance and observed that: 1) the bandwidth overhead required
to construct DS and CDS increases with the topology size, 2) the proposed CDS
construction algorithm requires more bandwidth overhead than our DS construc-
tion algorithm, 3) for large topologies, the proposed CDS-based routing protocol
requires drastically less bandwidth overhead to route service requests than both our
DS-based routing protocol and vanilla NDN with multicast strategy [16], and 4) the
CDS-based routing protocol achieves slightly better service retrieval time than DS-
based routing, while both DS-based and CDS-based routing protocols have much
less service retrieval time compared to NDN with multicast strategy.

This thesis is structured as follows. In chapter 2, the related work and theoretical
background are presented. In chapter 3, we discuss the clustering algorithms. Chap-
ter 4 discusses the routing of services in our architectures. In chapter 5, we evaluate
the performance of the implemented architectures. The final chapter 6 concludes the
work and summarizes the thesis.



3

Chapter 2

Preliminaries and Related Works

2.1 Related Work

Information-Centric Networking (ICN) [1] proposes architectures to overcome the
shortcomings of the current IP-based Internet architecture, such as location-dependent
content retrieval, end-to-end path-based security, etc. Content-Centric Network (CCN)
[2] is the first architecture proposed for ICN with fully content-oriented routing,
content retrieval, and inherent security. Named Data Networking (NDN) [3] was
proposed as a project that brings up CCN views into practice in terms of designing
and deploying a fully name-based protocol stack. In CCN/NDN, content objects are
identified by names, and there are two types of messages namely Interest and Data
messages that are used for content discovery and content forwarding, respectively.
When clients demand some data, they send Interest messages to request Data mes-
sages. Routers further forward Interest messages if they do not have the demanded
Data message until these messages reach a router or a server that contains the corre-
sponding Data message, i.e., the Data message with the matching name. Then, the
Data message follows the reverse path the Interest message has travelled to reach
the client that issued a request for it. CCN routers can store copies of passing Data
messages so that the future Interests could be served by routers closer to the users.
Basic components in CCN and NDN are Pending Interest Tables (PIT) to store Inter-
est messages, Content Store (CS) tables to cache the Data messages, and Forwarding
Information Base (FIB) tables to maintain information about next hop face(s) for dif-
ferent name prefixes.

In [4], a framework called Service-Centric Networking (SCN) is proposed that ex-
tends CCN architecture so that it also supports services. Services could be manip-
ulated content objects, e.g., transcoded audio/video, processed image, Google map
directions, etc. Other examples of services could be storage resources provisions
[4]. L-SCN [5] presents a layered routing architecture for SCN that leverages both
intra-domain and inter-domain routing. To assure inter-domain and intra-domain
communication, L-SCN uses so-called supernodes (SNs). Every node in a network
topology is either an SN or a regular node. Each SN is aware of information available
in its own domain, e.g., the provided services and available resources. For deliver-
ing the requested information, intra-domain and inter-domain routing is used. In
the original L-SCN protocol, it is assumed that the network topology is clustered,
but the protocol lacks algorithms to cluster network nodes and to choose the SNs.
To cope with this issue, in this thesis, we present two fully distributed clustering al-
gorithms browsing ideas from Dominating Set (DS) and Connected Dominating Set
(CDS) concepts in graph theory [6]. Although the proposed clustering algorithms
are designed to complement L-SCN, they are generic and can be used with other
protocols that require formations of cluster of nodes. Once SNs have been selected
and nodes are clustered, SNs collect information about services and resources avail-
able in their domains so that they can route service requests. Nodes use Bloom Fil-
ters (BF) [17] to compress the sets of their available service names saving significant
storage resources.
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The FUSION project [18] introduces another approach to service-oriented network-
ing which consists of three different layers. The lowest layer corresponds to the
underlying low level IP routing using traditional end-to-end protocols. The mid-
dle layer is the service router layer, which is responsible to forward requests from
clients to the service instances. Finally, the top layer is the execution plane, which
is responsible for service instances to run. Moreover, the work in [18] divides the
service orchestration and resource management into two layers, to achieve better
scalability. Also, it introduces session slots to achieve service delivery and adds pre-
emptive reservation mechanism for those slots.

The work in [19] discusses the division of Machine-to-Machine services in two cat-
egories: a centralized approach (Orchestration), where a single application collects
data and sends orders, and a distributed approach (Choreography), in which multi-
ple applications offer and use services for collaboration. For the evaluation of the ar-
chitecture it considers wireless sensor and actuator networks. The evaluation shows
the improvement offered by the decentralized Choreography compared to central-
ized approaches.

Further benefits and drawbacks of Orchestration and Choreography are discussed
in [20] and a hybrid architecture combining the benefits of the above architectures
is proposed. [21] discusses edge computing, a paradigm where resources are not
offloaded on the cloud, but rather at the edge of the network, close to end-devices,
to reduce communication latency and bandwidth demand to distant data centers.
[21] compares their proposed paradigm with ICNs and shows, that ICN is limited to
non-interactive content and that, on the other hand, edge computing allows service-
oriented networking. Finally, [21] presents an experimental evaluation of an edge
computing implementation represented by mobile gaming.

General Virtual Networking (GVN) [22] introduces a new framework enabling sim-
ple implementations for SCN and other related architectures. This scheme is based
on Software Defined Networking (SDN), thus this framework adds a layer between
the Network and Transport layers. Using the GVN architecture, an end-host can ei-
ther process the additional information provided by the GVN header, or simply use
the usual IP destination addresses, especially if the router is not GVN-enabled.

2.2 Bloom Filters

A Bloom Filter (BF) [17] is a data structure that is used to compactly represent a set.
BFs have been used in networking [23, 24, 25] for drastically reducing the bandwidth
required to communicate sets. A BF uses a bit vector as well as hash functions to rep-
resent a set. The hash functions are used for insert and search operations. Using BFs,
network nodes require significantly less storage resources to store sets [24]. While
using BFs, false positive reports are possible, while false negative reports cannot
happen as shown in [17]. There is a trade-off among the probability of false positive
reports p, length of the bit vector m, the number of hash functions k, and the number
of inserted elements n. This trade-off is shown in Equation (2.1)

m = − nln(p)
(ln(2))2 , k =

m
n

ln(2). (2.1)

BF-based routing have been studied in several works [24, 26, 25]. Push-based BFR
[24] uses BFs to advertise content object names in the network. In this protocol, the



Chapter 2. Preliminaries and Related Works 5

required bandwidth and storage overhead for propagating and storing BFs grows
linearly with the number of available content object names [25]. To cope with this
issue, pull-based BFR is proposed as an alternative protocol, which uses BFs to only
advertise the names of requested content objects [25]. This strategy reduces signif-
icantly the required bandwidth and storage overhead for BF-based content adver-
tisements.

2.3 Dominating Sets

For a graph G =< V, E >, where V is the set of vertices and E is the set of edges, a
set D ⊆ V is called a Dominating Set (DS) provided that each vertex of V is either an
element of set D or it is directly connected to an element of set D. On a given graph
there are many different possible DSs. The elements of a DS are called dominators
and the direct neighbors of dominators are called dominated nodes. The DS with the
minimum possible cardinality, meaning the minimum possible number of elements,
while still remaining a DS, is called Minimum DS (MDS). Given a DS C ⊆ D, if any
vertex vi ∈ C can reach any other vertex vj ∈ C using a path that does not leave
set C, the latter set is called Connected Dominating Set. A CDS with the minimum
possible number of elements is called MCDS. In Fig. 2.1, we illustrate examples of
DS, MDS, CDS, and MCDS over a graph. The determination of MDS and MCDS are
NP-hard problems [7].

(a) DS (b) MDS (c) CDS (d) MCDS

FIGURE 2.1: Different Dominating Sets; Dominator nodes are grey,
Dominated nodes are white

DS and CDS find applications in several networking problems, e.g., creating a vir-
tual backbone for routing in ad-hoc networks [7, 8, 9, 10, 11]. As finding an MCDS is
NP-hard, the work in [7] proposed to approximate MCDSs, by finding dominating
sets slightly larger than a dominating set with the fewest possible number of nodes.
This set is used as virtual backbones for wireless ad-hoc networks in a unit-disk
graph to alleviate broadcast storms. The authors of [7] present a distributed algo-
rithm to approximate MCDS, which first finds the maximal independent set and
then uses a Steiner tree to connect the vertices in this set. The work in [8] proposes
another distributed algorithm that does not depend on spanning trees. This algo-
rithm maintains the same approximation ratio after topology changes, but needs
a leader node to operate. If a leader node is not given, leader election should take
place which adds time and message complexity to the algorithm. In [9], a fully local-
ized and distributed algorithm called r-CDS is proposed, which does neither require
to build a tree nor to select a leader. The work in [10] examines distributed algo-
rithms proposed for MCDS approximations and presents distributed construction
of an approximate MCDS, for unit disk graphs.

The work in [11] uses DSs to provide a solution for collaborative caching in ICN.
It leverages DSs for efficient collaborative caching to reduce caching redundancy in
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the network. It combines routing and caching strategies with a CDS. In [11], the
most popular content objects are cached at the core routers. The benefit of having
a CDS for the core routers is much simpler routing, as every core router is directly
connected to at least another core router, and, therefore, routing can be done solely
through core routers. To the best of our knowledge, the work in [11] is the only one
that makes use of DS’s to provide a solution for ICN-based networks, but it uses a
centralized clustering algorithm in the sense that the network topology as well as
the number of neighbors for each node are known a priori. The main problem with
the work in [11] is that even if the CDS construction methodology can operate easily
for small topologies, it does not scale with the size of the network topology.

In [7, 8, 9, 10], the presented solutions are for wireless ad-hoc networks, modeled as
unit disk graphs. Differently from these works, in this thesis, we focus on using DS
and CDS for intra-domain and inter-domain routing and propose a fully distributed
algorithms to construct these sets for any arbitrary network topology.

2.4 ndnSIM Overview

ndnSIM [12] is an NDN simulator, based on ns-3, which is an open-source, discrete-
event network simulator. Most of the code is written in C++. ndnSIM uses appli-
cations, which can be installed on nodes. Like NDN [3], ndnSIM uses two different
types of messages, Interest and Data messages, for the communication between ap-
plications. The two main categories of application are Consumer and Producer appli-
cations. Consumer applications periodically send Interest messages, while producer
applications return Data messages upon receiving Interest messages. The Named
Data Networking Forwarder (NFD) implements the forwarding daemon, which pro-
cesses Interest and Data messages, checks and populates the Pending Interest Tables
(PIT), the Forwarding Interest Bases (FIB) and the CS.

Interest messages carry random nonces to prevent loops in the routing. Data mes-
sages follow the trail of the corresponding Interest message, therefore also avoid-
ing loops. Incoming interest messages are stored in the PITs. These PIT entries are
deleted as soon as the corresponding Data message reaches the node. ndnSIM also
differentiate between so-called networking faces, the interface between two nodes,
and application or local faces, the interface between a node and the application in-
stalled on it.
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Chapter 3

Clustering
In this thesis, we first propose an algorithm for constructing a DS. Then, we sug-
gest an algorithm for converting a DS to a CDS. In the following, we present our
algorithms for DS as well as CDS construction to cluster the nodes in the network
topology.

3.1 Dominating Set Construction

To describe our algorithm, we use a part of the GEANT topology [14] illustrated
in Fig. 3.1. In this topology, nodes represent core routers located at an European
country. In Fig. 3.1, we focus on the node with label NL that represents Netherlands
and show the message exchanges needed for constructing a DS. Interest messages
are shown with blue arrows and Data messages with green arrows. We only show
the messages sent by NL, but the algorithm runs in parallel for each node.

1. The algorithm starts in Fig. 3.1a with node NL sending Clustering Initializing
Interest (CII) with name /CII/NL/ f aceID over each of its faces to ask each
neighbour to send back the number of its neighbours.

2. In Fig. 3.1b, we show that when NL’s neighbours receive a CII message, they
respond with a Clustering Data (CD) message with the same name containing
the number of its neighbours as well as its node ID. When the CD message
arrives at the node that issued the corresponding CII message, it is stored in
the CS table. Node NL waits for a short time interval tw to receive CD mes-
sages from all its neighbours. Then, node NL compares the number of its own
neighbours with that reported by its neighbours.

3. Then, as Fig. 3.1c shows, node NL sends a Supernode Selection Interest (SSI)
message with name /SSI/NL to its neighbour with the highest number of
neighbours, which is node DE. If a node has multiple neighbours that have the
same highest number of neighbours, the node randomly selects one of them
and appoints it as an SN. (Note that if node NL has more neighbours than all
of its neighbours, it appoints itself as an SN.)

4. The final step for DS construction is shown in Fig. 3.1d. After node DE receives
the SSI message from NL, it appoints itself as an SN and responds to NL’s
SSI message with a Supernode Selection Data (SSD) message. When node NL
receives the SSD message, it sets its SN face ID to the face ID over which the
SSD message was received from node DE.

Additionally to the standard ndnSIM implementation, our DS construction algo-
rithm enables the nodes to store the following parameters:

• snFlag: a flag that indicates whether a node is an SN or not.

• snFaceId: the face ID of the face over which the SN of the associated domain
can be reached.
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(a) Node NL sends a CII message to its neighbours.

(b) Each neighbour replies with a CD message.

(c) Node NL sends an SSI message to node DE.

(d) Node DE acknowledges node NL with an SSD message.

FIGURE 3.1: The clustering algorithm described with a part of the
GEANT network
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For clustering the nodes in the network topology we needed to be able to process
some data at the nodes. We decided to use consumer and producer applications
installed on every node to perform the clustering. As the consumer applications are
initialized, they start to send CII messages to all their neighbours as shown earlier.
The structure of these Interest messages are shown in Table 3.1. The CII message is
then forwarded to the clustering producer apps of its neighbouring nodes.

TABLE 3.1: CII structure

Name Interest Name
Nonce Random number to assure uniqueness of the Interest message

In the producer app, the number of neighbouring nodes of the node, on which the
producer is installed, is written in the Clustering Data (CD) message, shown in Ta-
ble 3.2. If a CD message arrives at a node, through a networking face, this face
through which it was received is written in the CS along with the CD message, to
know, over which face the Supernode Selection Interest (SSI) message will have to
be forwarded. After the CDs for all the CIIs have been received by the consumer ap-
plication, or after a short time interval tw, it searches through the CS to find the entry
with the highest number of neighbours. There are two possibilities: 1) The node on
which the producer app is installed has the highest number of neighbours amongst
its neighbouring nodes. In this case, it sets its snFlag to true and installs a new Su-
pernode (SN) application on the node. 2) Another node has the highest number of
neighbours. Then, the producer app sends an SSI message to this candidate.

TABLE 3.2: CD structure

Name Content Name
Signature Signature of the issuing Producer application

Neighbours Number of neighbours of the node
Face Networking face over which the node is reachable

If a consumer application receives an SSI message, it sets its snFlag in the node to
true, installs a new SN application and then sends a Supernode Selection Data (SSD)
message to the node who issued the SSI message. Then, when the consumer ap-
plication gets the SSD message, it sets the snFaceId to the face over which the SSD
message was received. We now have a DS.

3.2 Connected Dominating Set Construction

After running our DS construction algorithm (Section 3.1), we have a DS, thus, every
node is either a dominator, in our case an SN, or a dominated node, which we call
hereafter a regular node. This property assures, that the distance between any two
SNs does not exceed three hops. Therefore, the maximum distance for a message
from an SN to reach at least another SN is three hops. To construct a CDS, we let
every SN to know about its nearest SNs. Using this knowledge, each SN decides
the nodes to use for connecting the DS so that it will become a CDS (the nodes in
between the nearest SNs). Our protocol does not permit the messages sent for CDS
construction to travel more than three hops. Hence, our CDS construction algorithm
provides connectivity of SNs in a localized and distributed manner.
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We show a small topology, illustrated in Fig. 3.2 and 3.3, to describe how the pro-
posed CDS construction algorithm connects the DS previously constructed by our
DS construction algorithm. For the sake of simplicity of presentation, we only show
the messages sent by SN1, but similar operations are applied in parallel for each SN.

(a) Previously clustered topology

(b) SN1 sends SNCI messages to all its neighbours.

(c) Forwarding of the received SNCI messages.

FIGURE 3.2: The CDS construction algorithm

1. The algorithm starts on a previously constructed DS as shown in Fig. 3.2a.

2. In Fig. 3.2b SN1 sends a so-called Supernode Connection Interest (SNCI) mes-
sage with name /SNCI/SN1/i over each face i to all of its neighbours.

3. In Fig. 3.2c, the neighbours of SN1 proceed with forwarding the received SNCI
messages, until another SN is reached.

4. In Fig. 3.3a, when the SNCI message of SN1 reaches SN2, SN2 replies with
a Supernode Connection Data (SNCD) message. Then, SN2 drops any other
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received SNCI messages issued by SN1. In this case, the one that is received
from node N5 because SN2 has already replied to SN1’s SNCI message before.

5. Every node that gets an SNCD message further forwards it, until it reaches the
issuing SN. Furthermore, in Fig. 3.3b, as the SNCD message has reached node
N8, N8 appoints itself as an SN and stores the face through which the SNCD
message was received in its snFaceList.

6. In Fig. 3.3c, when SN1 receives the SNCD message, it sets its cFlag to true
status and stores the face over which the SNCD message was received in its
snFaceList. SN1 and SN2 are now connected through N8.

(a) SN2 replies with an SNCD message.

(b) SNCD is forwarded back, on the same path it has travelled
to reach SN2.

(c) SN1 updates its snFaceList.

FIGURE 3.3: The CDS construction algorithm

In addition to the parameters snFlag and snFaceId mentioned in Section 3.1, our CDS
construction algorithm enables all SNs to also store the following parameters:
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• cFlag is a flag that indicates whether the associated SN has already run the
proposed CDS construction algorithm or not.

• snFaceList is a list containing the face ID(s) over which the associated SN can
reach other SNs.

The CDS construction algorithm starts, when the SN applications previously in-
stalled by the DS construction algorithm are initialized. All the SNs now broad-
cast an Supernode Connection Interest (SNCI) message as shown in Table 3.3. As
discussed earlier, the nature of a DS assures that the distance for a message of a
dominator, in our case an SN, to reach at least another dominator is at most 3 hops.
The SNCI messages are broadcasted up to a maximum of three hops or until they
reach another SN, we modified the NFD code to check this maximal hop count.

TABLE 3.3: SNCI structure

Name Interest Name
Nonce Random number to assure uniqueness of the Interest message

TABLE 3.4: SNCD structure

Name Content Name
Signature Signature of the issuing SN

If an SNCI message reaches another SN, this SN responds with a Supernode Connec-
tion Data (SNCD) message as shown in Table 3.4. The SNCD message then travels
back to the requesting SN. On its way back, if the message passes by any regular
nodes, the NFD adds the networking face over which the SNCD message was re-
ceived to the node’s snFaceList, a list containing the known neighbouring SN, later
used for routing. The NFD also sets the node’s snFlag to true. The SNCD then still
gets forwarded until it reaches the requesting SN. Since the topology is usually well-
connected, there are multiple paths from an SN to another, so there is a possiblity,
that the same SNCI messages reaches the same SN multiple times, but it only gets
processed the first time, if an SNCI with the same nonce reaches an SN the second
time, it gets dropped. After all the SNs have done this step, we now have a CDS.

So far, we have described distributed and localized algorithms for DS and CDS
construction. The proposed DS construction algorithm requires fewer message ex-
changes than our CDS construction algorithm. However, when the network topol-
ogy is clustered using a DS, SNs are not directly connected. Hence, it requires multi-
hop communication through regular nodes so that SNs can reach each other. There-
fore, the intuition is that DS-based inter-domain routing requires more bandwidth
overhead than CDS-based inter-domain routing. Our algorithm only uses local com-
munication with one-hop neighbours to build a DS.

3.3 Dominating Set Maintenance

We have to maintain DS and CDS when a new node joins the network or when a
node or a link fails. If a new node joins the network, the maintenance of DS or CDS
is quite simple. The new node simply requires to run the DS and CDS construction
algorithms described in Sections 3.1 and 3.2 to join the DS or the CDS, respectively.
To maintain DS and CDS when failures happen, we consider two cases 1) regular
failures (a regular node or a link connecting two regular nodes fails), 2) SN failures
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(an SN or a link connected to an SN fails). When regular failures happen, no prob-
lems will be created and if the entire graph is still connected, the DS or CDS will
not change. Nevertheless, if an SN or a link connected to an SN fails, the nodes that
were connected to the SN need to be aware of this failure so that they again run DS
and CDS construction algorithms (Sections 3.1 and 3.2).
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Chapter 4

Routing
L-SCN can only operate when the network is clustered, meaning it has been divided
into domains and SNs have been elected. The proposed DS and CDS-based construc-
tion algorithms, presented in Chapter 3, complement L-SCN by efficiently clustering
the network topology. After clustering the network topology, we focus on intra-
domain and inter-domain routing. At each domain, the associated SN is responsible
for both intra-domain and inter-domain routing. Intra-domain routing consists of
routing service requests towards service provider(s), which are in the same domain,
while inter-domain routing means routing a service request from a domain towards
service provider(s) in another domain. Therefore, before routing, each SN needs to
know the services and resources provided in its domain. According to this infor-
mation, an SN decides whether a requested service could be provided within the
domain or it requires inter-domain routing. Note that intra-domain routing protocol
is identical for both DS-based and CDS-based clustered network topologies. How-
ever, inter-domain routing is different, because in the CDS-based approach, SNs can
communicate directly, whereas in the DS-based approach, SNs need multiple-hop
communication.

In this thesis, we propose two variations on the L-SCN architecture [5]. Service and
resource discovery (Section 4.1) and intra-domain routing is the same for both vari-
ations. But for inter-domain routing, we consider two cases in Sections 4.3 and 4.4,
respectively:

1) L-SCN using our DS construction algorithm described in Section 3.1, and

2) L-SCN using our CDS construction algorithm described in Section 3.2.

4.1 Service and Resource Discovery

For routing, SNs need to know the services available in their domain. This is in-
dependant, whether a DS or a CDS is used as a backbone. To acquire knowledge
about the provided services and available server resources (e.g., CPU, RAM), each
SN asks the nodes in its domain about their available services and resources using
the pull mechanism illustrated in Fig. 4.1. Fig 4.1a shows that the SN peridodically
sends over each face i a Service and Resource Availability Interest (SRAI) message
with name /SRAI/SN/i to pull information about available services and resources.
Each regular node (N1, N2, or N3) receives an SRAI message and stores in its PIT
this message as well as the information about the reception face for it (see Fig. 4.1a).
These SRAI messages contain an empty BF, to assure that the same hash functions
and size is used for all the BFs in the domain and facilitate unifying of the BFs. The
structure of the SRAI messages is shown in Table 4.1. For using the BFs, a library
called Open Bloom Filter [27] was used.

When a service provider application gets an SRAI message, it populates the BF with
the service names it provides and sends back an Service and Resource Availabilty
Data (SRAD) message, also providing the available resources on this node, as shown
in the paper in Table 4.2. When an SN receives an SRAD, it stores it in its CS, along
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TABLE 4.1: SRAI structure

Name Interest Name
BF Empty BF bit vector

Nonce Random number to assure uniqueness of the Interest message

with the face over which it was received. Furthermore, it unifies the received BF
in its own domain BF. As searching a BF can be done in constant time, this domain
BF provides faster decision whether the SN needs to perform intra-domain or inter-
domain routing.

TABLE 4.2: SRAD structure

Timestamp Issuance time
Available service names BF bit vector, salt count value.

Available resources Available CPU, GPU, RAM,

(a) SRAI packet broadcast to pull
available services and resources

(b) SRAD packet forward by regular nodes containing BFs
and resource information

FIGURE 4.1: Pulling service and resource availability

As Fig. 4.1b shows, the SN stores the received SRAD messages as well as the infor-
mation about their reception faces in its CS.

4.2 Intra-Domain Routing

Fig. 4.2 describes FIB population and intra-domain routing. Like service and re-
source discovery the principle is independant, whether a DS or a CDS is used as a
backbone.

1. As shown in Fig. 4.2a, when node N1 requires a service, it sends a Service
Request (SR) message SR1 with name /SR/N1/serviceName to the SN respon-
sible for the domain. The structure of the SR message is shown in Table 4.3.

2. When SN receives message SR1, it stores this message in the PIT and checks
the name prefix /serviceName (last name component of message SR1) against
all the BFs of the stored SRAD messages (see Fig. 4.2b. Since only the BF of
SRAD3 claims to contain name prefix /serviceName, SN assigns in the FIB face
ID 3 as the next hop face ID for /serviceName. When no BF would contain the
name prefix, inter-domain routing would be needed to retrieve the requested
service.
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(a) Service request from N1 to SN
(b) BF check at SN for name prefix

/serviceName

(c) FIB population and forwarding SR to N3

(d) Service data follows the reverse path of the
service request

FIGURE 4.2: Intra-domain routing

3. The SR1 message is sent over next hop face towards node N3 (Fig. 4.2c). If
multiple BFs claim to contain a service name, SN checks the associated SRAD
messages for resource availability and forwards SR1 to the node with highest
available resources.

4. When node N3 receives message SR1, it replies with Service Data (SD) mes-
sage(s) with name(s) /SD/N3/serviceName/sequenceNumber if it tends to pro-
vide the demanded service, as shown in Fig. 4.2d. Otherwise, node N3 sends a
Service Provision Refusal (SPR) message with name /re f usal/N3/serviceName
to the SN. If SN receives such an SPR message from N3, it removes the FIB en-
try for name prefix /serviceName and checks whether another regular node is
available in the domain to provide the demanded service. If no node in the
domain provides a certain service, the requested service requires inter-domain
routing to be retrieved.

In Fig. 4.2b, when SN checks the BFs of its stored SRAD messages to reply to SR1, a
false positive error might happen. For example, if a false positive error happens at
BF(SRAD1), SN forwards message SR1 to N1. Since N1 does not provide the service
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TABLE 4.3: SR structure

Name Interest and Service Name
Hop Count Hop counter for maximum hop count

Inter-Domain Flag Boolean variable for intra-domain or inter-domain routing
Nonce Random number to assure uniqueness of the Interest message

requested by message SR1, N1 returns an SPR message to deny the provision of
the requested service. Nevertheless, false negative errors are impossible using BFs.
Thus, SN will anyway forward message SR1 towards the correct service provider,
i.e., node N3. Therefore, the proposed intra-domain routing mechanism is robust to
false positive errors.

4.3 Inter-Domain Routing in a Dominating Set

If an SN receives an SR message, it first checks the name of the SR message against
all the BFs of the SRAD messages stored in its CS table. If one of the BFs contains
the name of the SR message, the SR message is routed inside the domain (see Sec-
tion 4.2). Otherwise, the SN first checks the Inter-Domain Flag to see whether the SR
came from its own domain or another domain. If the flag was already set (mean-
ing it came from another domain), it broadcasts the SR to all its neighbours, except
through the face over which the SR was received, to avoid loops. If the flag was not
set, it changes the value of the Inter-Domain Flag to true and then broadcasts the SR
to all its neighbours, even through the face over which the SR was received. Fig. 4.3
illustrates why this sort of loop is needed in inter-domain routing for some topolo-
gies. The SR message is then flooded until it reaches another SN up to three hops.1.
When another SN receives the SR message, it checks whether the service requested
by message SR is provided in its domain. If the requested service is not available,
the SN again resets the hop counter in the SR and floods the SR message until the SR
message reaches an SN that its domain provides the requested service. In Chapter 5,
we will observe that, due to these SR message floodings, DS-based routing requires
much more bandwidth overhead for routing SR messages compared to CDS-based
routing.

FIGURE 4.3: Example for loop routing

1As explained in Chapter 3, the distance between two SNs in a DS does not exceed three hops.
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4.4 Inter-Domain Routing in a Connected Dominating Set

When CDS is used for clustering, SNs are directly connected. Therefore, inter-
domain routing is different than DS-based routing. Fig. 4.4 shows an example CDS
of four SNs SN1, SN2, SN3 and SN4 inside the dotted area. We assume that each
SN records the face(s) over which it is connected to other SNs in a vector called
snFaceList. For example, snFaceList(SN2) = 1, 2, 4. In Fig. 4.4, when SN SN2 re-
ceives a SR message with name /SR/N4/service from node N4, which is asking for
a service not provided in the domain of SN2, this SN checks its FIB for name service.
If no FIB entry is found and no BF in the CS provides service, SN2 forwards message
SR over all the faces 1, 2 and 4 that exist in its snFaceList. Later, if SN2 receives an
SD message with name /SD/N4/service over face 2, it populates the FIB for name
service with next hop face 2. As the SNs are connected, only a single hop is needed to
reach another SN. This selective multicast reduces overhead compared to the flood-
ing used in the DS approach.

FIGURE 4.4: Inter-domain routing for CDS-based clustering.

4.5 Service Provisioning

When an SR finally reaches a service provider application, the provider will send
out a Service Data (SD) message, if it provides the requested service. Because of the
small chance of false positives in BFs, there is a possibility, that the SR was routed
to a service provider, which unfortunately does not provide the requested service.
In this case, the service providers issues a Service Provision Refusal (SPR) message
to the SN, as shown in Table 4.4. Upon receiving an SPR, the SN knows, that the
chosen route is not valid and therefore needs to reroute the previously received SR,
to another face than through which the SPR has been received.

TABLE 4.4: SPR structure

Name Interest and Service Name
Signature Signature of the issuing Service Provider
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Compared to the ndnSIM implementation which handles only content, and, there-
fore has no processing time, we needed to add a processing time to simulate ser-
vices. We decided that each service request had a uniformly distributed processing
time between 0.1 and 2s.
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Chapter 5

Performance Evaluation
To evaluate the performance of our protocols, we have implemented them in ndnSIM
[12]. We compare our protocols with NDN multicast forwarding strategy [13].

5.1 Simulation Parameters

For performance evaluation, we use GEANT [14], and Rocketfuel topologies [15].
GEANT topology consists of 40 routers. From Rocketfuel topology traces [15], we
use three topologies with sizes 163, 624, and 1545 routers called RF-163, RF-624, and
RF-1545, respectively. We place 10 service providers and 20 clients randomly in all
the topologies. We assume that the processing time of a service request is uniformly
distributed between 100 and 2000 milliseconds. If a client sends an SR message at
time t1 and receives the processed SD at time t2, the client considers t2 − t1 the ser-
vice retrieval time. Similar to [5], we assume that SNs pull the available services and
resources every 10 seconds, while clients request services using a random function
with exponential distribution with the mean value of 2 seconds, resulting in 1000
unique service requests. The results are averaged over ten simulations and the re-
ported mean values have 95% confidence intervals.

In the following, we analyze the performance of our protocols according to three
metrics 1) the required bandwidth overhead for clustering, meaning the total of
transmitted data in the network for the clustering algorithm to perform 2) the re-
quired bandwidth overhead for routing, meaning the total of transmitted data in the
network for 1000 unique service requests and 3) the average service retrieval time.

5.2 Bandwidth Overhead of Clustering

FIGURE 5.1: Total bandwidth overhead for clustering algorithms

In Fig. 5.1, we show the bandwidth overhead, in terms of total transmitted signaling
information (in KB) over the network for DS and CDS construction, respectively. Fig.
5.1 shows that when topology size (i.e., the number of nodes) increases, the num-
ber of messages exchanged for DS and CDS construction also increases. Further, it
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shows that for all of the considered topologies, the proposed CDS construction algo-
rithm requires more bandwidth overhead than the proposed DS construction algo-
rithm because it builds on top of the DS construction algorithm. Nevertheless, from
Fig. 5.1 we observe that for RF-624 and RF-1545, the proposed CDS construction
algorithm requires more than twice the bandwidth overhead that the DS construc-
tion algorithm requires. This result confirms our intuition that when topology size
increases, the required bandwidth overhead for CDS construction compared to DS
construction also increases.

FIGURE 5.2: Average transmitted bytes per node for clustering algo-
rithms

In Fig. 5.2, we show the bandwidth overhead, in terms of average transmitted kilo-
bytes over the network sent for DS and CDS construction per node. We observe
similar performance from both Figs. 5.1 and 5.2. In Figs 5.1 and 5.2, if we focus
on each of the considered topologies separately and compare DS-based and CDS-
based clustering algorithms, we see the maximum difference between the orange
and blue curves if RF-624 is used. This is an important observation, which confirms
the impact of topology structure on the complexities of DS and CDS construction
algorithms in terms of the required bandwidth overhead.

5.3 Bandwidth Overhead of Routing

FIGURE 5.3: Total bandwidth overhead for service request routing

In Fig. 5.3, we compare our DS-based and CDS-based routing protocols with NDN
multicast forwarding strategy [13] comparing bandwidth overhead, in terms of total
transmitted kilobytes in the network for service request routing. For all the used
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topologies, our intuition was to see less overhead for service request routing using
a CDS. However, interestingly, we observe from Fig. 5.3 that for GEANT topology,
we actually see less overhead for service request routing when a DS is used. This
result confirms the higher complexity of CDS-based routing compared to DS-based
routing in terms of bandwidth overhead, when small topologies are used. For larger
topologies, the results are as expected and we can see that the CDS-based routing
requires much less bandwidth overhead for routing service requests. The CDS-based
routing protocol uses up to 39% less overhead to route service request messages in
the larger topologies.

5.4 Average Service Retrieval Time

FIGURE 5.4: Average service retrieval time with full link capacities

In Fig. 5.4 we show results in terms of average service retrieval time for service
provision with full link capacities. From this figure we can see that NDN Multi-
Cast (NDN-MC) forwarding strategy has always significantly higher average ser-
vice retrieval time than both DS and CDS-based routing. The reason is that NDN-
MC floods SR messages, which leads to overloading many service providers. Con-
sequently, when NDN-MC strategy is employed, many SR messages are queued
at overloaded service providers until the service providers become idle to process
them. This results in a 69% shorter service retrieval time for our CDS approach com-
pared to NDN-MC. For small topologies, like GEANT, the DS approach performs
around 17% faster, while for large topologies, like RF-1545, the CDS approach per-
forms 8% faster.

From Fig. 5.5, we observe the impact of restricted link capacities (i.e., when all the
links have only 10% of their original capacities) on average service retrieval time.
This figure makes clear that the bandwidth hungry nature of NDN-MC forwarding
strategy has considerable impact on average service retrieval time. Overall, we ob-
serve similar performance for DS and CDS-based routing in terms of average service
retrieval time, while CDS-based routing performs slightly better than DS-based rout-
ing when there are tight bandwidth resources, which is because of higher bandwidth
requirement for DS-based routing. Also, we note an even higher gain, compared to
NDN-MC with reduced link capacity. The service retrieval takes up to 73% less time
with our CDS-based routing. The CDS approach is also up to 24% faster than the DS
approach with reduced link capacities.
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FIGURE 5.5: Average service retrieval time with reduced link capaci-
ties
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Chapter 6

Conclusions
In this thesis, we studied intra-domain and inter-domain routing of service requests
in SCNs and implemented a Layered Service-Centric Network architecture in ndnSIM.
We first discussed related work and background informations in Chapter 2. In Chap-
ter 3, we then proposed fully distributed and localized algorithms for constructing
DS and CDS to select SNs in the network topology that are responsible for managing
intra and inter-domain communications. Next, we leveraged SNs to implement in-
tra and inter-domain service and resource discovery for SCNs in Chapter 4. For ser-
vice discovery, we used BFs to reduce the required bandwidth overhead for service
availability advertisements. Using the information collected during the proposed
service and resource discovery method, we implemented BF-based and resource-
aware intra-domain and inter-domain routing protocols to route service requests.

In Chapter 5, we assessed the performance of our DS-based and CDS-based routing
protocols using various topologies with different sizes. From the results, we ob-
served that with larger topologies, DS construction requires much less bandwidth
than CDS construction. We compared the proposed DS-based and CDS-based rout-
ing protocols with NDN-MC. The results showed that DS-based routing protocol
requires less bandwidth overhead for routing service requests than NDN-MC for-
warding strategy, while CDS-based routing protocol requires much less bandwidth
overhead for service request routing compared to DS-based routing protocol. Fi-
nally, we observed from the results that both DS-based and CDS-based routing pro-
tocols outperform NDN-MC forwarding strategy in terms of service retrieval time.
To the best of our knowledge, this paper is the first work that leverages DS and CDS
concepts for BF-based and resource-aware intra and inter-domain routing in SCNs.
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