
1

A Smart TCP Acknowledgment Approach for
Multihop Wireless Networks

Ruy de Oliveira and Torsten Braun,Member, IEEE

Abstract— Reliable data transfer is one of the most difficult
tasks to be accomplished in multihop wireless networks. Tra-
ditional transport protocols like TCP face severe performance
degradation over multihop networks given the noisy nature of
wireless media as well as unstable connectivity conditions in
place. The success of TCP in wired networks motivates its
extension to wireless networks. A crucial challenge faced by TCP
over these networks is how to operate smoothly with the 802.11
wireless MAC protocol which also implements a retransmission
mechanism at link level in addition to short RTS/CTS control
frames for avoiding collisions. These features render TCP ac-
knowledgments (ACK) transmission quite costly. Data and ACK
packets cause similar medium access overheads despite the much
smaller size of the ACKs. In this paper, we further evaluate our
dynamic adaptive strategy for reducing ACK induced overhead
and consequently collisions. Our approach resembles the sender
side’s congestion control. The receiver is self-adaptive by delaying
more ACKs under non-constrained channels and less otherwise.
This improves not only throughput but also power consumption.
Simulation evaluations exhibit significant improvement in several
scenarios.

Index Terms— Wireless multihop networks, delayed ACK,
spurious retransmission, fairness.

I. I NTRODUCTION

The phenomenal growth experienced by the Internet over
the last decade has been supported by a wide variety of
evolving mechanisms to meet the requirements of emerging,
demanding applications. The basic TCP/IP protocol suite has
been instrumental in developing today’s Internet. In particular,
TCP has been successful due to its robustness in reacting dy-
namically to changing network traffic conditions and providing
reliability on an end-to-end basis. This wide acceptance has
driven the development of many TCP applications, motivating
the extension of this protocol to wireless networks. These
networks pose some critical challenges to TCP since it was not
originally designed to work in such complex environments,
where the level of bit error rate (BER), is not negligible
due to the physical medium. High mobility may further
degrade the end-to-end performance, because TCP reduces its
transmission rate whenever it perceives a dropped packet. We
target scenarios in which the level of mobility is relatively low
(pedestrian movement) and so the focus of this paper is the
interaction between TCP and the MAC layer.

IEEE 802.11 [1] is the standard Medium Access Control
(MAC) protocol for ad hoc networks, consisting of both link

R. de Oliveira is with CEFET-MT (Federal Center for Technological
Education - Mato Grosso), Zulmira Canavarros 95, 78005-390, Cuiaba-MT,
Brazil. E-mail: roliveira@cefetmt.br.

T. Braun is with the University of Bern, Neubrueckstrasse 10, CH-3012,
Bern, Switzerland. E-mail: braun@iam.unibe.ch.

and physical layer specifications. 802.11 implements a robust
link layer retransmission strategy along with the RTS/CTS
(request-to-send/clear-to-send) control frames for recovering
most of the potentially lost frames locally on link level. There
is also a virtual carrier sense mechanism that is used by every
node to announce to all other nodes within a given area when
the medium is busy. This mechanism aims at preventing the
well-known hidden node problem. 802.11 works efficiently
for topologies of at most 3 hops between sender and receiver,
which is commonly called a 3-hop scenario (Fig. 1) [2].

node1 node4

hop1 hop2 hop3

Fig. 1. Typical 3-hop scenario

For larger scenarios in terms of number of hops, the hidden
node problem still exists due to the spatial reuse property
inherent in the propagation model of such wireless networks.
Basically, the spatial reuse imposes that within a certain
geographical area only one node can transmit at a time [3]–
[5]. This causes adverse impact on traditional TCP since it
is always probing the network for bandwidth by increasing
its transmission rate until a lost packet is detected. Hence,
unless an efficient coordination between MAC and transport
protocols is in place, the end-to-end performance can be
severely impaired.

There has been a belief in the research community that
TCP can improve its performance by simply ignoring medium
induced losses and not slowing down when reacting to those.
However, recent research developments on this subject [3]–[5]
have indicated that this procedure may not be really effective.
Rather, this aggressive behavior can adversely degrade the
protocol performance by inducing more losses. Actually, the
main problem of TCP over 802.11 is the excessive number
of medium accesses carried out by TCP. This is caused not
only by ACK packets that compete with data packets for the
medium, but also by the TCP retransmissions when reacting
to losses.

We present in this paper a dynamic adaptive strategy for
decreasing medium contention as much as possible. This paper
is an extension of our previous publication [6] where our
proposal was first introduced. Our approach generalizes the
concept of delayed acknowledgments first recommended by
RFC 1122 [7] and later refined in RFC 2581 [8] in which the
receiver should only send ACK packets for every other data
packet received. In our proposal, the receiver may combine
up to four ACK packets when the wireless channel is in

2

good condition, and less for lossy channels. The limit of four
packets is imposed by the sender’s congestion window (cwnd)
limit that is also fixed at four packets. This low limit for the
sender’scwnd is proper for minimizing collisions and more
than enough for scenarios having up to ten hops, which are
the target of this paper. These concepts lead our mechanism
to outperform a regular TCP whenever the channel is able to
provide higher bandwidth. Our mechanism should perform as
effectively as a traditional TCP does when the wireless channel
is facing losses.

These simple changes considerably diminish the number of
transmissions and retransmissions over the wireless medium.
As a consequence, the overall energy consumption is sig-
nificantly reduced, which is a key issue for battery-powered
devices. We focus our discussions on short chains of nodes
of at most 8 hops, because this is a reasonable size for
today’s networks. Nevertheless, the concepts presented here
are general and expected to be effective in larger scenarios as
well.

The key optimization in this paper concerns robustness
against highly noisy environments since the initial mechanism
in [6] is tailored to moderate loss rates. This paper proposes
a more conservative strategy for the TCP receiver in terms of
reaction and recovery associated to frequent packet losses.

The remainder of this paper is organized as follows. The
next section describes the main related work on TCP acknowl-
edgment strategies. In section III, we introduce our proposal,
where the design decisions are explained and the main features
are discussed in detail. Section IV presents and discusses the
simulation results. Section V concludes the paper pointing out
the main achievements.

II. RELATED WORK

Several proposals for improving TCP performance, or re-
placing its mechanisms, over multihop wireless networks
have emerged in recent years [9]–[15]. The strategy of these
proposals is to enhance the TCP sender to react properly to
lost packets caused by reasons other than congestion [6]. We
focus here on proposals that aim to minimize traffic overhead
caused by redundant ACKs because this is a primary goal of
our proposed mechanism as well. We also discuss important
research work (under standardization through RFCs) on TCP
spurious retransmissions as this issue may play a crucial role
on supporting our proposed mechanism.

Altman and Jimenez [16] investigated the impact of delay-
ing more than two ACKs on TCP performance in multihop
wireless networks. They concluded that in a chain topology of
nodes, substantial improvement may be achieved by delaying
3-4 ACKs. In their approach, unless the sender’s retransmis-
sion timer expires, the receiver always delays four packets,
except at session startup. During startup, the receiver begins
delaying one ACK only and increases it until four based on
the sequence number of the received data packets. The receiver
uses a fixed interval of 100 ms for timing out and does not
react to packets that are out-of-order or filling in a gap in the
receiver’s buffer, as opposed to the recommendation of RFC
2581. The main weakness of this mechanism, hereafter called

LDA (Large Delayed ACK), regards the lack of adaptability
to the medium changing conditions. Our proposed algorithm
addresses this issue by computing the timeout interval at the
receiver “on the fly” and reacting immediately to out-of-order
packets, as we will see later. This renders our approach more
general. In addition, while the LDA scheme is evaluated under
a single flow only, our mechanism is assessed under varying
number of flows, giving encouraging results.

Johnson [17] investigated the impact of using extended
delayed acknowledgments intervals on TCP performance. He
has performed various experiments in a testbed implemented
on a SunOS 4.1.2 workstation. In the experiments, he has
changed the kernel’s TCP algorithm to allow different numbers
of combined ACKs by the receiver instead of only two as
proposed in the specification of RFC 1122. In this way the
receiver was adjusted to delay a higher number of ACKs,
ranging from 1 to 20 ACKs. The main outcome is that delaying
ACKs in large numbers is always beneficial in short-range
networks but may be inappropriate for long-distance networks,
especially if congestion is present. This is a consequence of
the high interference on RTT estimation caused by the delayed
ACKs. The longer the end-to-end connection the longer the
time for the TCP sender to detect lost packets, which may
jeopardize the gains obtained by delaying more ACKs. The
evaluations were restricted to wired networks, and no timeout
control at the receiver was implemented. Conversely, our
proposed approach targets multihop wireless environments,
were typical packet loss rates are much higher than in the
wired world. Yet, it relies on an adaptive timeout control at
the receiver side.

Allman [18] conducted an extensive simulation evaluation
on Delayed Acknowledgment (DA) strategies. This work
showed that TCP performance may be hurt by delayed ACKs
mainly during the slow start phase. One reason is that the
exponential growth of TCPcwnd in that phase may produce
data bursts in the network inducing packet drops in the routers
buffer. Another problem lies in the ACK-clocked behavior of
TCP, in which the sender only increases itscwnd by one
upon each received ACK. This limits the sender data rate
in scenarios where slow start is often invoked. The author
proposes two mechanisms to handle the side effects of delayed
ACKs: delayed ACKs after slow startandbyte counting. The
former requires signaling between sender and receiver to keep
the receiver informed about whether slow start is active or
not at the sender, so the receiver only delays ACKs when
slow start is over. This speeds up data rate recovery during
slow start. Byte countingallows the sender to increase its
cwnd on the basis of the number of bytes acknowledged by
each ACK instead of the amount of ACKs. This procedure
can lead to prohibitive bursty traffic conditions, and so the
author also suggested limiting the number of packets sent in
response to each incoming ACK to a value of 2. The results
showed that both mechanisms can improve performance for
implementations using delayed ACKs, but the main concern
is the potential increase in packet drops that may happen. The
simulation scenario here was also limited to wired networks.
We argue that the first proposed mechanism (delayed ACKs
after slow start) is not relevant for current ad hoc networks

3

were thecwnd limit is usually low. Besides, as the media in
place is inherently noisy, the signaling from the receiver to the
sender is quite unstable. In our proposed mechanism, which is
tailored to short-range ad hoc networks, the receiver manages
adaptively the acknowledgment rate on the basis of the channel
condition. As a result, no explicit signaling is needed. The
second mechanism proposed by Allman (Byte counting) is a
sender side improvement that may be incorporated into our
approach which is, at this time, a receiver side mechanism
only.

In [6] we published an earlier version of the mechanism
proposed in this paper. In that reference we confirmed im-
portant results of previous work [4], [5] in the sense that
TCP should limit its congestion window as a function of the
number of hops in place to achieve optimal performance. In
particular, we showed that a short chain of nodes of up to 10
hops should have a congestion window limit of approximately
3 packets. This was shown to be caused by the limited spatial
reuse property inherent in multihop networks relying on the
IEEE 802.11 standard as the MAC protocol. In fact, this
limitation is imposed by the hidden node problem present
in such environments. The simulation results in [6] were
quite encouraging by showing substantial improvements over
various scenarios. As mentioned above, this paper proposes an
enhancement to the initial mechanism that was not intended
to highly noisy environments. The enhancement is described
in section III-D.

Concerning the approaches that propose to improve TCP
performance against spurious retransmissions typical in wire-
less environments, we discuss here two mechanisms: the
Eifel [19]–[21] and the F-RTO [22], [23]. Note that these
mechanisms do not use delayed acknowledgments strategies,
but only improve the sender response to misdetected lost
packets. In other words, these approaches are reactive ones
while our scheme is proactive by minimizing losses instead of
only reacting to them.

The Eifel algorithm aims to eliminate the TCP retrans-
mission ambiguity in order to solve the problems caused by
spurious timeouts and spurious fast retransmits. This algorithm
uses the TCP timestamp option, so the sender may effectively
determine whether a given packet is transmitted for the first
time or it is a retransmission. By checking the timestamp in
the ACKs, the sender is able to infer spurious retransmissions.
In case a retransmission is found to be spurious, the sender
restores the parameters of the congestion control that were in
place just before the unnecessary retransmission has occurred.
As a consequence, thecwnd returns to its previous value
and the transmission rate is not reduced wrongly. In its latest
version, the algorithm encompasses specific techniques for
noisy networks including a more appropriate way of updating
the retransmission timer and a better policy for thecwnd
restoration.

F-RTO is an algorithm implemented at the sender side
only and does not require any TCP options. In fact, it aims
at detecting spurious TCP retransmission timeouts only. A
sender using this algorithm keeps track of the incoming
acknowledgments (sequence number) after it has transmitted
the first unacknowledged packet triggered by a timeout. In this

way, it can decide whether to send new packets or retransmit
unacknowledged ones. As stated by the authors, F-RTO can be
seen as a sort of “Limited Transmit” algorithm [24] but applied
to the RTO recovery. Both Eifel and F-RTO are potential
algorithms to be used in conjunction with our mechanism for
robustness against the usual unnecessary retransmissions in ad
hoc networks.

III. D YNAMIC ADAPTIVE ACKNOWLEDGMENT

We call our mechanism TCP-DAA (DAA: Dynamic Adap-
tive Acknowledgment), which targets feasible scenarios where
the IEEE 802.11 standard may provide acceptable perfor-
mance. TCP-DAA was first introduced in our prior publication
in [6]. Recent investigations on 802.11 have shown that such
an ACK delaying protocol is effective in recovering many of
the wireless induced losses in typical scenarios, but it does not
scale as the number of wireless hops increase. This happens
because the well-known hidden node problem imposes a
limited spatial reuse property in these networks as discussed
in detail in [6]. There are a number of important applications
and scenarios in which the number of hops involved will be
far below 10 hops, and the number of nodes will normally not
exceed 100 nodes. Typical examples include ad hoc networks
in classrooms, meeting and workshop spots, small working
offices, Wi-Fi in home buildings, wireless mesh networks, and
many others.

A. Design Issues

TCP-DAA design is based on the following observations.
TCP reliability requires that transmitted packets are acknowl-
edged by the receiver side. However, if the receiver acknowl-
edges every incoming data packet, then the probability of col-
lisions between data and ACK packets increases considerably.
Moreover, since the receiver must also contend for the medium
by using RTS/CTS control frames, the overall overhead at the
MAC layer, for transmitting ACKs, is not negligible.

The problems associated to ACK overhead can be mitigated
if the receiver merges several acknowledgments into a single
ACK, which is possible due to the cumulative ACK scheme
used in TCP. This scheme uses later acknowledgments as a
confirmation that all previous acknowledgments were success-
fully received. We showed in [6] that the action of delaying
ACKs is really effective in scenarios without the classical
hidden node problem, i.e., scenarios of at most three hops. We
emphasize here that such an observation is valid for scenarios
facing the hidden node problem as well.

Table I illustrates how significant an ACK transmission
might be in such environments. These results are the outcome
of simulation runs in a chain topology of 1 hop (no intermedi-
ate nodes) for a single flow that lasts 10 seconds. Throughout
this paper, we use the TCP NewReno flavor [25] as the
regular TCP. The values in Table I represent the total time
the medium is busy transmitting either data or ACK packets.
From this table, it is evident that techniques for delaying
ACKs can be indeed efficient in multihop environments. The
last column of the table, which exhibits the ACK/DATA ratio
in percent, shows that the standard delayed acknowledgment

4

(DA) provides significant enhancements. Likewise, Table I
highlights the remarkable performance of TCP-DAA for this
scenario by bringing down the ACK overhead, relative to data
packets, from approximately 8.9% to about 2.2%. Note that
the time values in table I do not include all the delays involved
in the transmission but only the data and ACK transmission
delay.

TABLE I

TI M E M E D I U M I S B U S Y F O RDA T A A N D ACK T R A N S M I S S I O N S

I N A 1- H O P S C E N A R I O(I N M S E C)

DATA ACK ACK/DATA
No delayed ACK 678.8 60.3 0.089
Standard DA 737.2 32.8 0.044
TCP-DAA 781.4 17.5 0.022

The fewer amount of ACKs for the sender might lead
TCP to low performance in typical wired scenarios where
the congestion window (cwnd) limit is usually high. This
might happen because a TCP sender may only enlarge its
congestion window toward the limit upon receipt of ACKs.
So, the less ACKs per data the longer the sender takes to
enlarge its congestion window fully. This problem is not so
critical in our technique, however, as thecwnd limit in place
(4 packets) is rather low. This means that after a reduction
of cwnd due to a lost packet, it will quickly reach the limit
again upon receiving a few ACKs, as discussed in section
III-D. One question that may arise here is how to notify the
TCP algorithm to use DAA or not? We do not address this
problem specifically here, but a mechanism monitoring the
channel condition would serve this purpose [26].

By delaying the acknowledgment notification to the sender,
the receiver may trigger a retransmission by timeout at the
sender, if the receiver delays excessively. Thus, the receiver
has to be well adjusted in order to avoid such spurious retrans-
missions. We believe that solutions like the ones proposed by
the F-RTO [22] or the Eifel algorithms [21] (section II) might
be useful here. This evaluation is left for future work, though.
The standard delayed acknowledgment (DA) proposed in RFC
2581, recommends that a receiver should send one ACK for
every other data packet received (combine two ACKs into a
single one), and should not delay an ACK when either an out-
of-order packet or a packet filling a gap in the receiver’s buffer
is received. Besides, the maximum delay should not exceed a
given time interval (typically 100 ms).

Table I confirms the findings in [27] in that the standard DA
improves performance in wireless environments. Nevertheless,
higher enhancements are possible by combining more than two
ACKs, as shown in the LDA approach described in section II.

The main problem with both the standard DA and the LDA
scheme is the fixed timeout interval (100 ms) for generating
ACKs, since the packet inter-arrival at the receiver changes
not only with the channel data rate, but also with the intensity
of the traffic going through the network.

TCP-DAA combines the idea of a higher number of delayed
ACKs with the dynamic reaction proposed in RFC 2581, i.e.,
reaction to packets that are either out-of-order or filling in a
gap. Furthermore, our protocol adjusts itself to the channel

conditions, in that it adaptively computes the timeout interval
for the receiver on the basis of the incoming packet inter-
arrival time. In this way, the receiver delays just enough
to avoid spurious retransmissions by the sender and is able
to adapt itself to different levels of delays imposed by the
wireless channel, thereby being independent of both channel
data rate and number of concurrent flows crossing the network.
As we showed in [6], TCP-DAA outperforms the standard DA
and LDA in several scenarios.

B. Algorithm

The current development of TCP-DAA is focused on the
receiver side, while a comprehensive investigation on the
sender side is still to be done. The technique we used for
minimizing unnecessary retransmissions by timeout consists
of two adjustments: 1) the number of duplicate ACKs for
triggering a retransmission by the fast retransmit mechanism
is decreased from 3 to 2 packets, which is in line with [24] in
the sense that we work with a smallcwnd limit; 2) the regular
retransmission timeout interval RTO is increased fivefold for
compensating the maximum of four combined ACKs. These
are the only two changes performed on the regular TCP sender,
which proved to be effective in most of our evaluations.

The dynamic behavior of TCP-DAA is depicted in Fig.
2. After startup and having no losses, the receiver always
merges four ACKs. This means that for every four received
data packets, the receiver replies with a single ACK. The delay
management is performed through a delaying window (dwin)
at the receiver that limits the maximum number of ACKs to be
delayed. Under normal conditions,dwin is initialized to one
and increases gradually for each received data packet until it
reaches four. The limit of four is imposed by the sendercwnd
limit that is also set to four. Higherdwin would not work
because the sender would not have enough data packets to
transmit to meet thedwin value, which would lead the sender
permanently to timeout. It is important to note that despite
the influence of the sender setup on thedwin size, this is an
exclusive variable of the receiver. In other words, there is no
transfer of thedwin value to the sender.

Sender

Time

DATA

Timeout and dwin adaptively
fit the traffic conditions

Receiver

ACK

Timeout

dwin=2

dwin=4

dwin=4

dwin=4

dwin=3

dwin=4

Fig. 2. TCP-DAA approach

5

As long as the wireless channel is unconstrained, it is
advantageous to keepdwin = 4. When facing losses, however,
dwin should be reduced in order to avoid further performance
degradation. Thus, ifdwin is kept set to four, it may inap-
propriately trigger retransmissions by timeout at the sender
due to lack of ACKs. To detect a constrained channel, the
receiver keeps a timer that is reset whenever it receives a data
packet that is going to have its ACK delayed. Additionally,
the receiver keeps track of the sequence numbers of incoming
data packets. So it may detect a poor channel when receiving
out-of-order packets.

Whenever the receiver gets a packet that is either out-of-
order or filling a gap in the receiver’s buffer, or when its
timer expires, it sends immediately an ACK to the sender and
reducesdwin to the size of two packets. We chose to resume
dwin growth from two instead of one because we aimed in
such situations to go back to a behavior similar to that of
the standard DA which performs better than configurations
without it. Cutting dwin down to one is more conservative
and may be proper for highly noisy environments where
considerable improvements are hard to achieve, as discussed in
section III-D. Fig. 2 illustrates a situation in which the receiver
timer expires due to a dropped packet. Note thatdwin is first
decreased to two, then increased to three and subsequently to
four as new data packets arrive.

Fig. 3 illustrates in more detail how the receiver keeps
track of the packet inter-arrival interval and handles the
ACK delay. Under normal conditions, i.e., after startup
and without any loss, for every four data packets received
(Pi, Pi+1, Pi+2, Pi+3), the receiver replies with an acknowl-
edgment (ACKi,...,i+3). Whenever a given acknowledgment
(ACKi, ACKi+1, ACKi+2, ...) is to be delayed, an associated
timer is started (ti), or restarted (ti+1, ti+2) if there is one
already running. This timer is used to prevent ACKs from
being excessively delayed at the receiver when the network is
facing packet losses.

The receiver also measures the data packet inter-arrival time
between the packets for which the ACK is to be delayed
(δi, δi+1, δi+2, ...). The receiver keeps track of the number of
ACKs delayed by maintaining anack count variable which
increases from one to the current value of its delaying window
(dwin). By checking the value ofack count, the receiver
is able to determine whether the received packet is the first
one from the group of packets that is going to have the
acknowledgments delayed. In case a packet is the first one,
the inter-arrival interval between the last received packet and
the current one is not taken. This is needed to avoid that
improper intervals such as the one betweenδi+3 and δi+4

in Fig. 3 are considered for the timeout interval computation.
By using this strategy, we assure that in normal conditions,
the inter-arrival measurements will reflect very closely the gap
between the received data packets triggering delayed ACKs.
Note that under packet loss, the receiver will not need such
measurements as it will not delay out-of-order packets. Rather,
it will await until it receives in-order packets again.

Similarly to the TCP sender, the receiver uses a low-pass
filter to smooth the packet inter-arrival intervals. Upon arrival
of a given data packetpi+1, it calculates the smoothed packet

inter-arrival interval as indicated in (1), whereδi refers to the
last calculated value,δi+1 is the packet inter-arrival interval
sampled, andα is the inter-arrival smoothing factor, with0 <
α < 1.

δi+1 = α ∗ δi + (1 − α) ∗ δi+1 (1)

The value computed from (1) is used to set the timeout
interval at the receiver. After the receipt of a data packet
that causes an ACK to be delayed, it is reasonable to wait
for at least the time the second next packet is expected. The
rationale here is that the delay variations are relatively high in
such environments and in case of a single dropped packet, the
next data packet will arrive out-of-order, which will trigger
immediate transmission of an ACK, as recommended in RFC
2581. However, if it was only a delay variation, and the data
packet arrives before the expected time for the subsequent
packet, no timeout is triggered and the receiver avoids sending
an extra and unnecessary ACK packet into the network.

Hence, we use a timeout intervalTi as shown in (2). Notice
that the factor 2 in (2) refers to the estimated time for the
second expected data packet to arrive. This equation also
includes a timeout tolerance factorκ, with κ > 0, defining
how tolerant the receiver may be in deferring its transmission
beyond the second expected data packet. In short, the effective
timeout intervalTi is at least twice the smoothed valueδi and
may be higher depending on the value ofκ. This equation only
provides an upper bound (for robustness) to the delay imposed
on the ACKs deferred at the receiver. Further investigations to
optimize this variable are surely needed.

Ti = (2 + κ) ∗ δi (2)

After a reduction indwin, subsequent timely data packets
trigger dwin growth toward the maximum size again. Timely
data packets here refer to the incoming data packets that are
neither out-of-order nor filling a gap in the receiver’s buffer.
Using this dynamic behavior, associated to the timer-based
monitoring, the receiver prevents the sender from missing
ACKs when packet losses occur. As mentioned above, the
LDA proposal [16] works with a fixeddwin size of four
packets (except at startup), and uses a largecwnd limit at the
sender to keep the channel full of data packets in flight. While
this procedure may prevent the sender from missing ACKs, it
may also induce an excessive number of retransmissions at the
sender [6].

The dwin growth is governed by (3), which shows that
such an increase may be fixed at one (packet) or determined
by the startup speed factorµ, with 0 < µ < 1. The reason
for this factor is that during the startup phase (begin of the
session), the sender starts with a window size of two packets
and then increases it by one at every ACK received. Although
dwin is initialized to one, if it started from startup being
increased at the rate of one packet per incoming data packet,
there might happen a shortage of ACKs at the sender. As a
result, either receiver or sender would only be able to transmit
by timeout (i.e., after their respective timers expiration). Thus,
the thresholdmaxdwin is used to define the instant the startup
phase is over, which occurs whenmaxdwin first reaches its

6

δi+4 δi+6

i+5δ
δi+7

δi+7

δi+8δi+1 δi+3

δi+2ti+1

it

2 31 4 2 31 21

dwin=4 dwin=2

Time

dwin=4

Upon data packet receipt with ack_count=1,2,3 start timer and increment ack_count

data packet ACK

Timeout

2 31 4 ack_count

dwin=4
Pi Pi+1 ... ACKi,...,i+3

Fig. 3. TCP-DAA receiver mechanisms

maximum value and becomestrue. From our evaluations, we
noticed that by properly setting theµ parameter, our algorithm
achieved better performance for short-lived flows [6].

dwin =
{

dwin + µ, if maxdwin = false
dwin + 1, otherwise

(3)

The mechanisms explained above make TCP-DAA effective
because they actively monitor the channel condition to use
the scarce channel bandwidth efficiently. When the channel
is facing really poor conditions, TCP-DAA should perform
in general as effective as a standard TCP. Using its dynamic
adaptive window, TCP-DAA somehow probes the network for
resource availability, since it will always combine more ACKs
(up to 4) when the network condition permits. The sender’s
transmission rate is limited by the MAC layer that manages
the contentions in the wireless medium.

C. Packet Loss Handling

In order to better understand the concepts explained above,
we show here a typical response of our mechanism when
reacting to lost packets. We include the response of the LDA
scheme to highlight the difference between our proposal and
LDA. Fig. 4 exhibits a part of a simulation run in which both
strategies faced a lost packed in a chain topology of 5 hops.

Let packetn be the data packet of sequence number (n). Fig.
4(a) shows that the sender transmits four packets (320-323) at
time 12.6 seconds. In this run,packet322 andpacket323 are
dropped. The receiver times out and acknowledges only two
packets (320, 321) instead of four. The receiver also updates its
dwin size to two. Upon receipt of the ACK forpacket321,
the sender sends two new packets (324, 325) because two
packets were acknowledged. At this moment there are only 2
packets in flight (324, 325). Sincepacket324 andpacket325
are detected by the receiver as out-of-order packets, they
trigger immediate acknowledgments at the receiver (first and
second duplicate ACKs forpacket321). By receiving the first
duplicate ACK, the sender transmits a new packet (326) which
will also be out-of-order.

When the sender receives the second duplicate ACK at
instant 12.9 seconds, it retransmits the first lost packet (322),
and halves itscwnd size to two packets (fast retransmit/fast

recovery). Thecwnd will be expanded gradually after the
sender exits the fast recovery phase. When the sender receives
the third duplicate ACK, at time 12.96 seconds, it does nothing
because it is in the fast recovery phase. At instant 12.97
seconds, the sender gets the acknowledgment forpacket322
allowing it to retransmit the missingpacket323 and then exits
the fast recovery procedure.Packet323 fills in the gap at the
receiver’s buffer, which triggers the ACK ofpacket326 due to
the cumulative property of the TCP acknowledgment strategy.

At instant 13.01 seconds, the sender receives the acknowl-
edgment forpacket326, and so transmits two new packets
(327, 328). These two packets cause the receiver to send one
ACK only as its dwin is set to two packets at this point.
After that,dwin increases and, as a consequence, the number
of delayed ACKs increases toward 4. Fig. 4(a) shows two
spurious retransmissions caused by timeout at the receiver.
Packet334 and packet338 are unnecessarily acknowledged
at the instants 13.62 s and 13.79 s, respectively. This means
that the timeout interval computation may still be improved.
Notice that the problem here is not the same addressed in
[19], [23], where the spurious retransmissions take place at
the sender.

Fig. 4(b) shows the response of LDA to a packet loss.
In this simulation run,packet241 is lost at about 10.55
seconds. Differently from our technique in which the amount
of packets in flight is limited to four packets, the proposed
LDA works with a large limit for thecwnd (10 packets),
so it has more packets in flight than TCP-DAA. One can
notice in Fig. 4(b) that although only one packet has been
dropped, various acknowledgments triggered the transmission
of less than the optimal four packets at the sender. This shows
that the retransmission timer expired in several situations
unnecessarily. Additionally, the sender waits for the default
three duplicate ACKs for retransmitting the dropped packet,
and so it takes a longer time to take action. In short, by
comparing Fig. 4(a) with Fig. 4(b), one can clearly see that
TCP-DAA provides more stability regarding the number of
delayed ACKs. As a result, less packet delay variation is
perceived by the sender, which in turn tends to minimize the
inaccuracy in the timeout interval computation at the sender.

7

 310

 320

 330

 340

 350

 360

 370

 12 12.5 13 13.5 14 14.5 15

S
e
q
u
e
n
c
e

n
u
m
b
e
r

(
P
a
c
k
e
t
s
)

Tx/rx time (Seconds)

Sequence number vs. time (hops: 5)

DATA

ACK

pkt322

pkt323

pkt324,325 in response to ACK for pkt321

pkt322 is retransmitted

pkt326

1st, 2nd, 3rd dupl. ACK for pkt321

pkt327,328

ACK for pkt338

ACK for pkt334

ACK for pkt326

pkt323 is retransmitted
ACK for pkt322

ACK for pkt321

(a) TCP-DAA

 200

 210

 220

 230

 240

 250

 260

 270

 9 9.5 10 10.5 11 11.5 12 12.5 13

S
e
q
u
e
n
c
e

n
u
m
b
e
r

(
P
a
c
k
e
t
s
)

Tx/rx time (Seconds)

Sequence number vs. time (hops: 5)

DATA

ACK

pkt241

(b) LDA

Fig. 4. Delayed acknowledgment strategies

D. An Improved Delaying Window Strategy for High Loss
Scenarios

The basic delaying window strategy in section III-B may
be inefficient in scenarios facing considerable loss rates. In
this section, we investigate improvements to such scenarios.
We first observe that if the channel is facing constant losses,
then it seems to be more appropriate to reduce the delaying
window (dwin) to one in order to avoid timeout at the receiver.
Additionally, the dwin should be enlarged by less than one
for every data packet received. This is more conservative than
the initial strategy above, which is needed to ensure robustness
for the mentioned scenarios. Hence, we propose to adjust the
receiver side as illustrated in Fig. 5.

Upon loss detection by either timeouts or out-of-order pack-
ets, the receiver transmits an acknowledgment immediately
and shrinksdwin to one. By receiving new, in-order packets
(Pi, Pi+1, Pi+2, Pi+3) the receiver gradually expandsdwin
by steps smaller than one. The operatorbxc represents the
mathematical floor function which is defined as follows: for a
real number x,bxc results in the largest integer less than or
equal to x. In other words,bdwinc represents the integer part
of dwin.

Fig. 5 illustrates that only the integer part ofdwin is
needed in the comparison withack count. This establishes
three ranges in whichdwin increases without causing any
impact on the amount of packets to be delayed. These ranges
are between the successivebdwinc values in Fig. 5, i.e.,
between 1-2, 2-3, and 3-4. It is obvious that the smaller the
steps by whichdwin increases the more points in each of these
ranges, and consequently the longer the interval todwin fully
enlarge until four.

It is not trivial to determine the exact amount by which
dwin should be increased when an ACK is transmitted as
many factors influencedwin growth. For example, when the
wireless channel is unconstrained,dwin should increase as
fast as possible, and under high loss rates it should grow more

2

P i P i+1 P i+2 P i+3

µ’dwin+
µ’+
µ’+

1

4

time

µ’+
µ’+

packet drop

dwin

ack_count

4

3

Fig. 5. An alternative delaying window strategy for robustness against losses.
dwin is reduced fully to one, and then increased slowly by steps defined by
the µ′ parameter

slowly. We estimate here the worst case scenario as an upper
bound only rather than a rigorous specification.

A TCP receiver should provide enough ACKs to its corre-
sponding sender in order to prevent retransmission by timeout
at the sender and also to trigger the sendercwnd growth
properly until its limit. Assume that the sender has just timed
out while in steady state. Itscwnd is reset to one and the
slow start thresholdssthresh is set to one half the current
cwnd = 4, i.e.,ssthresh is set to two. In this case the sender
increases itscwnd by one when the next ACK arrives because
it is in slow start phase (cwnd < ssthresh), and then it
enters the congestion avoidance phase. Thecwnd increase (in
packets) for theith received ACK during congestion avoidance
is given by (4), wherecwndi−1 refers to the previous value
of cwnd.

cwndi = cwndi−1 +
1

cwndi−1
(4)

Although cwnd grows exponentially in slow start and
linearly in congestion avoidance, we can use the equation

8

above for both phases because of our small window limit
of four packets. In fact, sincessthresh is set to two upon
loss detection, only one ACK is enough to lead the sender
to congestion avoidance. Moreover, replacingcwndi−1 in (4)
with one (the reset value) the left hand side of the equation
results in two, which is exactly the same that is obtained with
slow start. Hence, assuming thatcwnd increases continuously
from one to four governed by (4), the accumulated window
increaseW is given by (5), wherecwnd0 is the value to
which cwnd is set just after a slowdown andcwndi is the
value of cwnd at the ith increase step, which ranges from
one ton and is given by (4). If a loss is detected by timeout,
cwnd0 is reset to one. A loss detected by the fast retransmit
mechanism causescwnd0 to be reset to a value between 1 and
2, depending on the currentcwnd value. For simplicity, we
assumecwnd0 = 1 in the modeling below.

W = cwnd0 +
n∑

i=1

(
1

cwndi

)
(5)

Solving (5) forW = 4, the cwnd limit in our mechanism,
results in n = 7. This means that the window expansion
process takes seven steps to reach the maximum size of four
packets. Therefore, the receiver should take this value into
consideration when enlarging itsdwin. Fig. 6 illustrates how
many steps thedwin should follow to satisfy the sender
demand for ACKs to avoid timeout at the sender. Whiledwin
is less than two (first range), each data packet received triggers
the transmission of one ACK anddwin increases by1/m. So
the receiver transmitsm ACKs in response tom data packets
received. Whendwin is between 2 and 3 (second range),
every other data packet generates an ACK, which results in
approximatelym/2 ACKs being transmitted in this range.
Likewise, for dwin between 3 and 4 (third range) an ACK
is sent for every 3 data packets and so aboutm/3 ACKs are
transmitted in this range.

1 dwin4

m m m

ACK

data

m m/2 m/3

2 3

ACKs per dwin range with m data pkts

Fig. 6. Estimated amount of ACKs necessary to support the sender to
smoothly enlarge its congestion window fully in environments facing high
loss rates. Eachdwin interval receivesm data packets and transmits different
number of ACKs toward the minimum of one ACK per four data packets

To meet the sender needs in terms of acknowledgments
during the interval the sender congestion window is growing
toward four, the number of ACKs in the same period should

be equal to the amount of expectedcwnd increasesn that
are necessary to expandcwnd to the limit, i.e., seven ACKs.
Thus, the sum of the ACKs generated in each range of Fig.
6 should result in seven. In other words,m + m

2 + m
3 = 7,

which results inm = 3.8. The inverse ofm gives us the
µ′ = 0.26 parameter, which determines how muchdwin
should increase per correct data packet received. Thus, the
equation governingdwin growth is changed from (3) above
to (6). The switching between (3) and (6) has to be conducted
by a proper mechanism monitoring the channel condition, such
as the ones proposed in [14], [26].

dwin =
{

dwin + µ, if in startup
dwin + µ′, otherwise

(6)

Section IV-D shows the performance evaluation of this
improved algorithm called TCP-DAAp (TCP-DAA plus). As
addressed in that section, with TCP-DAAp the algorithm at the
sender side should react more promptly to losses. The reason
is that the number of retransmissions caused by timeouts is
assumed to be significantly higher in such cases. Hence, TCP-
DAAp uses a regular RTO increased twofold only to speed up
the sender reaction to losses.

IV. PERFORMANCEEVALUATIONS

This section presents the evaluation of TCP-DAA consider-
ing many aspects such as throughput, energy consumption and
friendliness behavior. We compare the performance of TCP-
DAA with the main TCP versions and with LDA [16]. The
reason for the comparison with LDA is that this scheme also
investigates a delayed acknowledgments strategy for improv-
ing TCP performance in multihop networks. We also compare
our results with other TCP versions in their theoretical best
conditions to make sure that our proposal is indeed efficient
among a wide range of options. Hence, we simulate the other
TCP flavors with two improvements: the standard delayed
acknowledgment (DA), and a low limit of 3 packets for their
cwnd. In this way, the other TCP flavors should provide their
optimal performance.

A. Simulation Scenario

We used the ns2 [28], [29] simulator in our evaluations of
the two scenarios depicted in Fig. 7 in which we have a single
chain topology and a grid topology. The grid topology has 25
nodes and the chain topology has a varying number of nodes
with up to 9 nodes. In both topologies, each node is 200 meters
away from its closest neighbors. When applicable, the through-
put r is calculated asr = seq∗8

stime , whereseq is the maximum
sequence number (in bytes) transmitted and acknowledged and
stime is the simulated time. Unless otherwise stated, the other
parameter settings are the ones shown in Table II.
B. Performance in the Chain Topology

1) Throughput: The end-to-end throughput over a chain
topology as depicted in Fig. 7(a), but with five hops only,
is investigated here. The simulations include varying levels
of congestion and comparison with the key existing TCP
versions. The regular TCP is simulated with and without DA
for better comparison with related work.

9

TABLE II

GE N E R A L S I M U L A T I O N P A R A M E T E R S

Parameter Value
Channel bandwidth 2 Mbps
Channel delay (wireless) 25 µs
Transmission range 250 meters
Interference range 550 meters
Packet size 1460 bytes
Queue size 50 packets
Window limit (WL) 3 packets
Regular TCP NewReno
Routing protocol AODV
Traffic type FTP
TCP-DAA α 0.75
TCP-DAA κ 0.2
TCP-DAA µ 0.3
Initial TCP-DAA rec. timeout 200 ms
Simulation time 300 seconds

node1 node9

(a) chain topology

21 25
flow 3

flow 2

flow 1

flow 4 flow 5

1

flow 6

5

(b) grid topology

Fig. 7. Simulated scenarios

Fig. 8 exhibits a remarkable achievement of TCP-DAA.
These results are obtained by taking the average of 5 runs.
TCP-DAA outperforms all the other algorithms. We believe
that TCP-DAA will be further improved if the default sender’s
RTO calculation is fine tuned to its strategy.

It is interesting to note that, in general, the more flows the
better the improvement of our algorithm over the other proto-
cols. One reason for that is the high level of queuing delays
due to the higher number of flows in the network. Under such
high delays, the packet delay variance becomes less significant
in the RTO calculation, and so less interference of the delayed
ACKs is perceived by the sender. Another reason lies in the
sender’s high tolerance to invoke the timeout procedure, which
renders the TCP-DAA’s sender less aggressive than a regular
sender. As shown in [6], this behavior is advantageous with re-
gard to spurious retransmissions, resulting in more bandwidth
to the concurrent flows. In case there is no concurrent flow to

 160

 180

 200

 220

 240

 260

 280

 300

 5 10 15 20

T
h
r
o
u
g
h
p
u
t

(
K
b
p
s
)

Number of flows

TCP throughput vs. network load (hops: 5)

TCP

TCP+DA

TCP+DA+WL

TCP-DAA

LDA

SACK+DA+WL

VEGAS+DA+WL

Fig. 8. Aggregate throughput in the chain topology

exploit the bandwidth left while the sender is waiting for the
timeout, then that bandwidth is simply wasted.

Overall, the observed improvements here are higher than
40% over regular TCP. Compared to LDA improvements of
up to about 17% are obtained. We also conducted simulations
for 1, 2, 3, 4 and 6-hop scenarios and the results are similar,
in some cases less improvement is observed, but in most cases
our algorithm performs significantly better than all the others
[6].

2) Fairness: In order to assess the ability of our mechanism
in allowing a fair distribution of bandwidth, we simulate here
another scenario for the chain topology in Fig. 7(a). We
include scenarios with 1, 3, and 5 hops (number of wireless
links between sender and receiver). In these simulations, a
single run is conducted for each TCP version evaluated. In the
first run, 10 flows of the standard TCP without any adjustment
share the medium, and the next run simulates 10 flows of TCP-

DAA. The well-known fairness index(
n∑

i=1

xi)2/(n
n∑

i=1

x2
i) as

defined in [30] is presented in table III. By this index, a perfect
share of the medium is given by one. That is, the fairer the
protocol, the closer to one is the fairness index.

TABLE III

FA I R N E S S F O R 10 F L O W S S H A R I N G T H E M E D I U M(C H A I N

T O P O L O G Y)

Algorithm/hops 1 3 5
TCP 1 0.99 0.86
TCP-DAA 1 0.99 0.84

Table III suggests that for short number of hops in this
scenario our mechanism can be as fair as the standard TCP.
As the number of hops increases, TCP-DAA tends to perform
slightly unfairer than its counterpart. We believe that this
behavior might be improved by a more aggressive mechanism
at the sender to retransmit packets in due time.

3) Energy efficiency:TCP-DAA is expected to be energy
saving as it minimizes spurious retransmissions. In this section
we evaluate the performance benefits of TCP-DAA in terms of

10

 4

 5

 6

 7

 8

 9

 10

 11

 1 2 3 4 5 6 7 8

E
n
e
r
g
y

(
J
o
u
l
e
s
*
e
-
7
/
b
i
t
)

Number of hops

Energy consumption vs. number of hops (flows: 10)

TCP

TCP+DA+WL

LDA

TCP-DAA

(a) Effect of number of hops

 10

 12

 14

 16

 18

 20

 22

 400 600 800 1000 1200 1400

E
n
e
r
g
y

(
J
o
u
l
e
s
*
e
-
7
/
b
i
t
)

Packet size (Bytes)

Energy consumption vs. packet size (flows: 10)

TCP

TCP+DA

LDA

TCP-DAA

(b) Effect of packet size

Fig. 9. Energy consumption at the TCP sender

energy consumption, as depicted in Fig. 9. We used the simple
energy model implemented in the ns2 simulator that has been
presented in [31]. By this model, a node starts with an initial
energy level that is reduced whenever the node transmits,
receives or overhears a packet. Thus, the total amount of
energy, E(ni), consumed at a given nodeni is given by (7).

E(ni) = Etx(ni) + Erx(ni) + (N − 1) ∗ Eo(ni) (7)

In (7), Etx, Erx, and Eo denote the amount of energy
expenditure by transmission, reception, and overhearing of
a packet, respectively.N represents the average number of
neighbor nodes affected by a transmission from nodeni [32].

In order to account only for the reception and transmission
expenditure, we have discarded the energy spent by overhear-
ing (E0). This is appropriate to highlight the energy due to
TCP transmissions and receptions. Fig. 9(a) shows the result
of a simulation run in which 10 flows share the medium in
the chain topology of Fig. 7(a) for different number of hops.
The figure exhibits the energy consumption per bit at the TCP
sender. This is computed ase = pkt∗pkt size∗8

e spent , wheree is the
energy/bit ratio,pkt is the amount of packet transmitted by
the sender,pkt size is the packet size in bytes ande spent
is the energy in Joule spent by the sending node.

One can see in Fig. 9(a) that TCP-DAA provides the
best result over all situations. The performance enhancement
is more noticeable at a large number of hops, where the
probability of collisions is higher. This happens because our
algorithm reduces the number of packets in transit. As a result,
less collisions occur leading to fewer retransmissions and
consequently higher energy saving. In these simulations, the
regular TCP spent about 26% more energy than our scheme.

We also evaluated the impact of the packet size on TCP
energy consumption as shown in Fig. 9(b). In this simulation,
four different packet sizes are evaluated, namely packets of
256, 512, 1000, and 1460 bytes long. Sender and receiver are

connected through 4 intermediate hops. The results show that
the smaller the packet the higher the energy consumption. This
is intuitive because with small packets TCP needs to process
more packets to transmit the same amount of data than it does
when using larger packet sizes. Fig. 9(b) also shows that in
most cases, but for packet size of 256 bytes, TCP-DAA spends
less energy than all the other configurations. The difference is
not very significant, though. In this scenario packet size does
not seem to impact energy consumption significantly.

C. Performance in the Grid Topology

1) Throughput:We reproduce here the results shown in [6]
regarding the investigation in a more complex scenario, the
grid topology illustrated in Fig. 7(b). In these evaluations, we
firstly have only 3 flows crossing the topology horizontally
(flows 1, 2 and 3 in Fig. 7(b)). In the next step, 6 flows
(3 horizontal and 3 vertical) are injected into the network
concurrently. The results, averaged over 5 runs, are depicted
in Fig. 10.

This is a critical scenario, given the various interactions
among the nodes in place. The level of dropped packets is
high, and so is the degradation of our mechanism. As the
scheduling strategy of 802.11 is inherently unfair, it may
happen that in some circumstances TCP-DAA outperforms
the other implementations [33], but its overall performance is
expected to be similar to that of a regular TCP, as illustrated
in Fig. 10.

In these simulations, our mechanism performs roughly the
same as the other implementations for the run with only hor-
izontal flows (3 flows). Its efficiency deteriorates for the case
with 6 flows, going down to the level of the regular TCP with
DA (TCP+DA). Notice that while TCP-DAA uses a window
limit of four packets, the configuration TCP+DA+WL has a
window limit set to three packets. This may explain why TCP-
DAA does not reach the performance of the TCP+DA+WL
configuration. As shown in [6], the limit of three packets was

11

expected to render better performance for the regular TCP
since larger values induce higher collisions. For TCP-DAA,
however, a limit of three packets is not appropriate because it
does not provide full improvement under moderate loss rates.
A tradeoff between performance under moderate and high
loss rates clearly exists here. TCP SACK and Vegas perform
best in these evaluations. Our algorithm would most likely
follow SACK and Vegas’s performance closely if it had been
implemented over these versions, but it was implemented over
TCP NewReno which performs well in a variety of scenarios.

3 6
0

100

200

300

400

500

600

700

Number of concurrent flows

T
hr

ou
gh

tp
ut

 (
K

bp
s)

TCP
TCP+DA
TCP+DA+WL
TCP−DAA
LDA
SACK+DA+WL
VEGAS+DA+WL

Fig. 10. Aggregate throughput in the grid topology with cross traffic

2) Fairness:To look more closely at the performance of our
mechanism in the complex scenario made of the grid topology,
we compare here the fairness of TCP and TCP-DAA. Table
IV depicts the fairness index of such algorithms for both 3
flows and 6 flows, as previously. One can see by these values
that in general none of these algorithms can achieve high
fairness. In fact, these results highlight that strategies based on
delayed ACKs, like ours, are inherently more unfair than the
regular TCP in constrained channels. This happens because the
regular TCP increases itscwnd faster than approaches relying
on delayed ACKs. While the former increases itscwnd for
each packet received at the receiver, the latter receive roughly
half of that. This lack of ACKs at the sender is not a problem
in steady state conditions, but it may play a crucial role in this
overloaded scenario.

TABLE IV

FA I R N E S S I N T H E G R I D T O P O L O G Y

Algorithm/flows 3 6
TCP 0.72 0.75
TCP-DAA 0.68 0.59

D. Optimization for Highly Noisy Environments

In this section we investigate the optimization proposed in
section III-D, in which the strategy of the receiver is supposed
to be more robust to environments facing non negligible losses.
Upon losses the receiver reducesdwin to one and slowly
increases it again to prevent the receiver timer from expiring
by lack of data packets. The analytical evaluation in section
III-D showed that following a very conservative procedure,

ack count should increase by about 0.28 for each in-order
data packet received. The simulation results illustrated in Fig.
11 conform closely to the analytical prediction.

 5

 10

 15

 20

 25

 30

 0 200 400 600 800 1000

T
h
r
o
u
g
h
p
u
t

(
K
b
p
s
)

Time (Seconds)

TCP throughput vs. time (flows: 20, hops: 5)

µ’: 0.2
µ’: 0.3
µ’: 0.4
µ’: 0.5
µ’: 0.6
µ’: 0.7
µ’: 0.8
µ’: 0.9

Fig. 11. Optimalµ′ parameter for TCP-DAAp

These evaluations were conducted over the chain topology
and each run lasted 1000 seconds. Each curve indicates the
throughput of a single flow competing with nineteen other
flows in a 5-hop scenario. Since the scenario is quite con-
strained in this case, the sender retransmission timeout (RTO)
must not be too tolerant as in the previous case. Hence, its
tolerance was decreased from fivefold to twofold to conform
with the concept in section III-D. Various values for theµ′

parameter were simulated. Despite the varying behavior of the
curves, one can see in Fig. 11 thatµ′ = 0.2 andµ′ = 0.3 tend
to provide highest performance.

It is expected that TCP-DAAp does not provide the same
improvements of TCP-DAA shown in Fig. 8. This happens
because TCP-DAAp transmits more ACKs than the basic
version and also because its sender is more aggressive as
far as retransmissions are concerned. Fig. 12 exhibits the
comparisons between the two TCP versions for the same con-
ditions described in section IV-B.1. The robustness to losses
comes at the cost of throughput under moderate conditions.
Nevertheless, the changed algorithm performs as effective as
the regular TCP in Fig. 8.

The justification for the TCP-DAAp strategy is to render our
strategy as robust as the regular TCP mechanism under heavily
constrained environments. TCP-DAA is not optimized to such
environments, and because of that it degrades substantially
under high loss rates. Fig. 13 highlights the importance of
TCP-DAAp in a scenario where just a single flow crosses a
5-hop chain of nodes under varying packet error rates. This
is a very noisy scenario where not only losses due to MAC
collisions are in place but also losses induced by a permanent
external disturbance. The error model used follows a uniform
distribution function. The results in Fig. 13 shows that indeed
our strategy can handle losses in an effective way since it
performs as effective as the TCP+DA+WL version. Although
it is not shown here, we emphasize that these results are even
better over the regular TCP without any further adjustment.

12

 0

 50

 100

 150

 200

 250

 300

2015105

T
h
r
o
u
g
h
p
u
t

(
k
b
p
s
)

Number of flows

TCP throughput vs. network load (hops: 5)

TCP-DAA

TCP-DAAp

Fig. 12. Comparison between the two TCP-DAA versions

The discussions in the two paragraphs above suggest that
it is helpful to have an additional monitoring mechanism at
the receiver to adjust the TCP-DAA strategy on the basis of
the channel condition. This procedure along with an improved
TCP sender, regarding the RTO computation, can surely render
our proposal very robust in a wide range of scenarios. Using
such a mechanism, the basic TCP-DAA would be invoked
under moderate loss rate and TCP-DAAp would take over
when the channel condition deteriorated.

 50

 100

 150

 200

 250

 300

10987654321

T
h
r
o
u
g
h
p
u
t

(
k
b
p
s
)

Packet error rate (%)

TCP throughput vs. error rate (hops: 5, flows: 1)

TCP+DA+WL

TCP-DAA

TCP-DAAp

Fig. 13. TCP-DAAp provides robustness for highly noisy scenarios

E. TCP Friendliness

Gradual deployment requires acceptable friendliness behav-
ior when TCP-DAA is sharing the medium with other flows.
This means that our mechanism ideally should not suppress
regular flows but allow them to achieve at least the same
throughput they would obtain without any improved flow in
parallel. We show here how friendly our mechanism can be
when competing with regular flows in a multihop channel
facing a moderate loss rate.

Fig. 14 depicts the result of a simulation run in which two
flows of distinct versions share the medium. Namely, a TCP-
DAA flow competes with a regular TCP that uses DA and
window limit (WL). For simplicity, we will call hereafter the
configuration TCP+DA+WL “adjusted TCP”. It is clear that
our mechanism outperforms the adjusted TCP in the range
of 1 to 8 hops. The difference between both protocols is
noticeable for 1 to 3 hops, where the hidden node problem
does not happen. After that, more collisions take place and
both mechanisms perform similarly. One can say that TCP-
DAA performs very aggressively against the adjusted TCP’s
flow for the cases of 1, 2 and 3 hops.

To measure the degradation imposed by our mechanism
over the other flow, we include the “reference curve” in Fig.
14. This curve represents the performance of the adjusted
TCP flows without any of our mechanisms in place. Thus,
the reference curve is obtained when two adjusted TCPs are
sharing the medium. In Fig. 14, the throughput of the adjusted
TCP for the 1-hop scenario in Fig. 14 is 469 Kbps. The
corresponding throughput for the reference curve is 681 Kbps.
This shows an unfairness of our mechanism for this scenario,
which leads the adjusted TCP to a decrease in throughput of
up to 31%.

Another experiment is shown in Fig. 15 where the number
of hops are fixed at three and a distinct amount of flows is
simulated. Since this is a scenario without the hidden node
problem, the number of collisions is not very high. Note
that as the number of flows rise, our mechanism degrades
performance leaving more bandwidth to the regular flow. As in
the previous case, TCP-DAA induces performance degradation
to the adjusted TCP. In this case, the adjusted TCP would
achieve about 223 Kbps of throughput if only adjusted TCP
flows were being transmitted, but it obtains only 175 Kbps.
This means a reduction in throughput of approximately 23%.

The results above suggest that the basic TCP-DAA needs a
sort of pacing for controlling its sending rate in mixed scenar-
ios involving non-TCP-DAA flows. A possible mechanism for
that is proposed in [18] in which the authors propose to limit
(to two packets) the amount of packets sent at once by the
sender. This comes at the cost of the end-to-end bandwidth
utilization, though.

F. Discussions

The general perception is that our mechanism is definitely
valuable to multihop networks. The results presented here
in addition to the ones published in [6] support our claim
that a dynamic and adaptive mechanism is effective in such
constrained environments. The results in section IV-D indicate
that the mechanism can be refined to handle highly constrained
conditions. Distinct parameter settings for moderate and ele-
vated constraints are needed, though. The key remark here is
that our mechanism automatically prevents waste of bandwidth
under favorable conditions and performs as effectively as a
conventional TCP when traffic conditions deteriorate.

As far as friendly behavior is concerned, our basic mech-
anism seems not to be very friendly in scenarios without the
hidden node problem. In these scenarios, the number of packet

13

 200

 400

 600

 800

 1000

 1200

 1 2 3 4 5 6 7 8

T
h
r
o
u
g
h
p
u
t

(
k
b
p
s
)

Number of hops

TCP throughput vs. number of hops (flows: 1 each)

TCP+DA+WL

Reference

TCP-DAA

Fig. 14. TCP-DAA friendliness

 160

 180

 200

 220

 240

 260

 280

 1 2 3 4 5 6 7 8 9 10

T
h
r
o
u
g
h
p
u
t

(
k
b
p
s
)

Number of flows for each TCP version

TCP throughput vs. network load (hops: 3)

TCP+DA+WL

TCP-DAA

Fig. 15. Aggregate throughput for two distinct TCP versions in parallel
under no hidden node problem effects

losses is quite negligible, leading our mechanism to use the
typically wasted bandwidth efficiently. As a result, it is difficult
to adjust TCP-DAA parameters toward very friendly behavior
under such conditions. This indicates that a rate limitation
at the sender may be beneficial to address this problem. On
the other side, TCP-DAA parameters may be optimized under
hidden node problem effects to make the protocol friendly
[34]. This optimization includes the sender side, which has to
be fully investigated in future work.

We believe that solutions like the one proposed in [35]
in which the receiver controls the sender’scwnd may be
integrated into our final algorithm. Likewise, the work in [36]
could be useful for improving the fairness of our mechanism
by including the congestion window in the timeout computa-
tion at the sender.

It is important to emphasize that our proposal does
not change the semantics of TCP including its Additive-
Increase/Multiplicative-Decrease (AIMD) congestion control
algorithm. Our mechanism keeps the principles of the AIMD
recommended in [37], in that a simple AIMD algorithm satis-
fies the sufficient conditions for convergence to an efficient and

fair state. The unfairness detected in our proposed algorithm
is essentially caused by the timeout mechanism rather than by
the AIMD mechanism.

V. CONCLUSIONS

We have extended and further evaluated our algorithm
for improving TCP performance over multihop wireless net-
works. Our dynamic adaptive acknowledgment strategy aims
to minimize collisions, resulting from mutual interference
between data and ACK packets, by transmitting as less ACKs
as possible. The mechanism is self-adaptive and tailored to
networks comprising at most ten hops and facing moderate
bit error rates.

The simulation evaluations showed that our algorithm can
outperform not only conventional TCP including the main TCP
flavors, but also similar techniques that have been proposed
in the literature, in a variety of conditions. Our scheme
improves throughput and energy consumption, which are two
key issues in such networks. Yet, it is easy to deploy as
the changes are limited to the end nodes only. Future work
includes the development of a customized sender algorithm
toward an effective balance between throughput and fairness,
an adaptive receiver mechanism to switch between DAA and
DAAp strategies in scenarios susceptible to high bit error rates,
and a more elaborate timeout strategy at the receiver.

ACKNOWLEDGMENTS

The work presented in this paper was supported (in part)
by the National Competence Center in Research on Mobile
Information and Communication Systems (NCCR-MICS), a
center supported by the Swiss National Science Foundation
under grant number 5005-67322. The authors are thankful to
Bharat Bhargava, from Purdue University, for his collaboration
in this paper.

REFERENCES

[1] IEEE. Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) specifications - std 802.11. InThe Institute of Electrical
and Electronics Engineers, 1999.

[2] R. Oliveira and T. Braun. TCP in Wireless Mobile Ad Hoc Networks.
In University of Bern, Technical Report IAM-02-003, July 2001.

[3] J. Li, C. Blake, D. S. J. De Couto, H. I. Lee, and R. Morris. Capacity
of Ad Hoc Wireless Network. InProceedings of ACM MOBICOM’01,
Rome, Italy, July 2001.

[4] Z. Fu, P. Zerfos, H. Luo, S. Lu, L. Zhang, and M. Gerla. The
Impact of Multihop Wireless Channel on TCP Throughput and Loss.
In Proceedings of Infocom’03, San Francisco, USA, April 2003.

[5] K. Chen, Y. Xue, and K. Nahrstedt. On Setting TCP’s Congestion
Window Limit in Mobile Ad Hoc Networks. InProceedings of IEEE
International Conference on Communications (ICC 2003), Anchorage,
Alaska, May 2003.

[6] R. Oliveira and T. Braun. A Dynamic Adaptive Acknowledgment
Strategy for TCP over Multihop Wireless Networks. InProceedings
of IEEE Infocom, Miami, USA, March 2005.

[7] R. Braden. Requirements for Internet Hosts – Communication Layers.
RFC 1122, IETF Network Working Group, October 1989.

[8] M. Allman, V. Paxson, and W. Stevens. Transmission Control Protocol.
RFC 2581, IETF Network Working Group, April 1999.

[9] K. Chandran, S. Raghunathan, S. Venkatesan, and R. Prakash. A
Feedback Based Scheme For Improving TCP Performance In Ad-Hoc
Wireless Networks. InProceedings of the 18th International Conference
on Distributed Computing Systems (ICDCS), Amsterdam, May 1998.

14

[10] G. Holland and N. H. Vaidya. Analysis of TCP Performance over Mobile
Ad Hoc Networks. InProceedings of Annual International Conference
on Mobile Computing and Networking (Mobicom’99), Seattle, August
1999.

[11] S. Biaz and N. H. Vaidya. Distinguishing Congestion Losses from
Wireless Transmission Losses: A Negative Result. InProceedings of
IEEE 7th Int. Conf. on Computer Communications and Networks, New
Orleans, LA, USA, October 1998.

[12] J. Liu and S. Singh. ATCP: TCP for Mobile Ad Hoc Networks. In
IEEE Journal on Selected Areas in Communications, volume 19, pages
1300–1315, July 2001.

[13] Z. Fu, B. Greenstein, X. Meng, and S. Lu. Design and Implementation
of a TCP-Friendly Transport Protocol for Ad Hoc Wireless Networks.
In Proceedings of the 10th IEEE International Conference on Network
Protocosls (ICNP’02), November 2002.

[14] J. Liu, I. Matta, and M. Crovella. End-to-End Inference of Loss Nature
in a Hybrid Wired/Wireless Environment. InProceedings of WiOpt’03:
Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks,
INRIA Sophia-Antipolis, France, March 2003.

[15] K. Sundaresan, V. Anantharaman, H.-Y. Hsieh, and R. Sivakumar. ATP:
A Reliable Transport Protocol for Ad-Hoc Networks.IEEE Transactions
on Mobile Communications, 4(6), 2005.

[16] T. Jimenez E. Altman. Novel Delayed ACK Techniques for Improving
TCP Performance in Multihop Wireless Networks. InProceedings of
Personal Wireless Communications (PWC’03), Venice, Italy, September
2003.

[17] S. R. Johnson. Increasing TCP Throughput by Using an Extended
Acknowledgment Interval. Master’s thesis, Ohio University, USA, June
1995.

[18] M. Allman. On the Generation and Use of TCP Acknowledgements. In
ACM Computer Communication Review, volume 28, pages 1114–1118,
1998.

[19] A. Gurtov and R. Ludwig. Responding to Spurious Timeouts in TCP.
San Francisco, USA, March 2003. INFOCOM’03.

[20] R. Ludwig and M. Meyer. The Eifel Detection Algorithm for TCP. RFC
3522, IETF Network Working Group, April 2003.

[21] R. Ludwig and A. Gurtov. The Eifel Response Algorithm for TCP. RFC
4014, IETF Network Working Group, February 2005.

[22] P. Sarolahti and M. Kojo. Forward RTO-Recovery (F-RTO): An
Algorithm for Detecting Spurious Retransmission Timeouts with TCP
and the Stream Control Transmission Protocol (SCTP). RFC 4138, IETF
Network Working Group, August 2005.

[23] P. Sarolahti, M. Kojo, and K. Raatikainen. F-RTO: An Enhanced
Recovery Algorithm for TCP Retransmission Timeouts.Computer
Communication Review, 33(2), 2003.

[24] M. Allman, H. Balakrishman, and S. Floyd. Enhancing TCP’s Loss
Recovery Using Limited Transmit. RFC 3042, IETF Network Working
Group, January 2001.

[25] S. Floyd, T. Henderson, and A. Gurtov. The NewReno Modification to
TCP’s Fast Recovery Algorithm. RFC 3782, IETF Network Working
Group, April 2004.

[26] R. Oliveira and T. Braun. A Delay-based Approach Using Fuzzy Logic
to Improve TCP Error Detection in Ad Hoc Networks. InProceedings
of IEEE WCNC 2004, Atlanta, USA, March 2004.

[27] S. Xu and T. Saadawi. Does the IEEE 802.11 MAC Protocol Work
Well in Multihop Wireless Ad Hoc Networks? InIEEE Communications
Magazine, volume 39, pages 130–137, June 2001.

[28] D. Estrin, K. Fall, S. Floyd, J. Heidemann, A. Helmy, P. Huang,
S. McCanne, K. Varadhan, Y. Ya, and H. Yu. Advances in Network
Simulation. Computer, 33(5):59–67, May 2000.

[29] D. Estrin, M. Handley, J. Heidemann, S S. McCanne, X. Ya, and
H. Yu. Network Visualization with Nam, the VINT Network Animator.
Computer, 33(11):63–68, November 2000.

[30] R. Jain.The Art of Computer Systems Performance Analysis: Techniques
for Experimental Design, Measurement, Simulation, and Modeling.
Wiley-Interscience, 1991.

[31] Y. Xu, J. Heidemann, and D. Estrin. Adaptive Energy Conserving
Routing for Multihop Ad Hoc Networks. Research Report 527, October
2000. USC/Information Sciences Institute.

[32] D. Kim, J.J. Garcia-Luna-Aceves, K. Obraczka, J. Cano, and P. Manzoni.
Power-Aware Routing Based on the Energy Drain Rate for Mobile Ad
Hoc Networks. Miami, USA, October 2002. Proceedings of IEEE
International Conference on Computer Communication and Networks
(ICCCN2002).

[33] R. Oliveira and T. Braun. A Dynamic Adaptive Acknowledgment
Strategy for TCP over Multihop Networks. InUniversity of Bern,
Technical Report IAM-04-005, July 2004.

[34] Ruy de Oliveira. Addressing the Challenges for TCP over Multihop
Wireless Networks. Doctoral thesis, Institute of Computer Science and
Applied Mathematics at the University of Bern, Bern, 2005.

[35] V. Tsaoussidis and C. Zhang. TCP-Real: Receiver-Oriented Congestion
Control. Computer Networks Journal (Elsevier), 40(4), November 2002.

[36] I. Psaras, V. Tsaoussidis, and L. Mamatas. CA-RTO: A Contention-
Adaptive Retransmission Timeout. San Diego, USA, October 2005.
ICCCN’03.

[37] D. M. Chiu and R. Jain. Analysis of the Increase and Decrease
Algorithms for Congestion Avoidance in Computer Networks.Computer
Networks and ISDN Systems, 17(1), 1989.

Ruy de Oliveira received the MS degree from the
University of Uberlandia, Brazil, in 2001, and the
Ph.D. degree from the University of Bern, Switzer-
land, in 2005. From 2001 to 2002, he was involved
in the European Union research project SEQUIN
for QoS across multiple management domains. From
2002 to 2005, he was a research fellow in the long
term Swiss research project NCCR-MICS on self-
organizing wireless networks. He served as the local
organizing committee chair for the third international
workshop on Applications and Services in Wireless

Networks (ASWN 2003). Currently, he is a full professor in the Department
of Computer Science at CEFET-MT, Brazil. His research interests are in data
communication protocols and security in wireless networks.

Torsten Braun got his diploma and Ph.D. degrees
from the University of Karlsruhe, Germany, in 1990
and 1993, respectively. From 1994 to 1995 he was a
guest scientist with INRIA Sophia Antipolis. From
1995 to 1997 he worked as a project leader and
senior consultant at the IBM European Networking
Center, Heidelberg, Germany. Since 1998 he has
been a full professor of computer science at the
Institute of Computer Science and Applied Math-
ematics (University of Bern, Switzerland), heading
the Computer Networks and Distributed Systems

research group. He has been a board member of SWITCH (Swiss Education
and Research network) since 2000. During his sabbatical in 2004, he has
been visiting scientist at INRIA Sophia-Antipolis and the Swedish Institute
of Computer Science at Kista.

