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Abstract—Reliable data transfer is one of the most difficult and physical layer specifications. 802.11 implements a robust
tasks to be accomplished in multihop wireless networks. Tra- |ink layer retransmission strategy along with the RTS/CTS
ditional transport protocols like TCP face severe performance (request-to-send/clear-to-send) control frames for recovering
degradation over multihop networks given the noisy nature of . .
wireless media as well as unstable connectivity conditions in most of th? potent@lly lost frames Iocglly on Imk level. There
place. The success of TCP in wired networks motivates its IS @ls0 a virtual carrier sense mechanism that is used by every
extension to wireless networks. A crucial challenge faced by TCP node to announce to all other nodes within a given area when
over these networks is how to operate smoothly with the 802.11 the medium is busy. This mechanism aims at preventing the
wireless MAC protocol which also implements a retransmission well-known hidden node problem. 802.11 works efficiently

mechanism at link level in addition to short RTS/CTS control for t loai f at t3h bet d d .
frames for avoiding collisions. These features render TCP ac- or topologies or at mos Ops between sender and receiver,

knowledgments (ACK) transmission quite costly. Data and ACK Which is commonly called a 3-hop scenario (Fig. 1) [2].
packets cause similar medium access overheads despite the much

smaller size of the ACKSs. In this paper, we further evaluate our hopl hop2 hop3
dynamic adaptive strategy for reducing ACK induced overhead Q ”””” Q ””””””
and consequently collisions. Our approach resembles the sender nodel node4

side’s congestion control. The receiver is self-adaptive by delaying . _
more ACKs under non-constrained channels and less otherwise. Fig. 1. Typical 3-hop scenario
This improves not only throughput but also power consumption.

Simulation evaluations exhibit significant improvement in several For larger scenarios in terms of number of hops, the hidden
scenarios. node problem still exists due to the spatial reuse property
Index Terms—Wireless multihop networks, delayed ACK, inherent in the propagation model of such wireless networks.

spurious retransmission, fairness. Basically, the spatial reuse imposes that within a certain
geographical area only one node can transmit at a time [3]—
|. INTRODUCTION [5]. This causes adverse impact on traditional TCP since it

The phenomenal growth experienced by the Internet o\):gralways probing the network for bandwidth by increasing

the last decade has been supported by a wide variety |t8f|transmlsif|_o n r?te unc:!l i.lOStbp:;ket Ilf/l :Ce:tectgci. Hencei,
evolving mechanisms to meet the requirements of emergi €ss an eflicient coordination between and transpor

demanding applications. The basic TCP/IP protocol suite r;%é\),frce?f";]sp;ir;eglace, the end-io-end performance can be
been instrumental in developing today’s Internet. In particulat, : L .
PIng Y P There has been a belief in the research community that

TCP has been successful due to its robustness in reacting %&P can improve its performance by simply ignoring medium

namically to changing network traffic conditions and providin q1 d lowing d h . h

reliability on an end-to-end basis. This wide acceptance h guce osses and not slowing down when reacting to those.

driven the development of many TCP applications, motivati owever, recent research developments on this subject [3]-[5]
ve indicated that this procedure may not be really effective.

the extension of this protocol to wireless networks. The ther. thi ive behavi d v d de th
networks pose some critical challenges to TCP since it was er, i aggressive behavior can adversely degrade the
rotocol performance by inducing more losses. Actually, the

originally designed to work in such complex environment®'© . .
where the level of bit error rate (BER), is not negligiblema'n problem of TCP over 802.11 is the excessive number

due to the physical medium. High mobility may furthePf medium accesses carried out by TCP. This is caused not

degrade the end-to-end performance, because TCP reducegr]bé_by AbCKt plack%ts ttt?at_rccc;;npette W'th_ da_lta pacrI](ets for tthe
transmission rate whenever it perceives a dropped packet. ium, but aiso by the retransmissions when reacting

target scenarios in which the level of mobility is relatively low© '0SSes.

(pedestrian movement) and so the focus of this paper is theWe present in this paper a dynamic adaptive strategy for

interaction between TCP and the MAC layer. decreasing medium contention as much as possible. This paper

IEEE 802.11 [1] is the standard Medium Access Contré)sf an extension of our previous publication [6] where our

(MAC) protocol for ad hoc networks, consisting of both IinIproposal was first introduced. Our approach generalizes the
' concept of delayed acknowledgments first recommended by
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good condition, and less for lossy channels. The limit of folrDA (Large Delayed ACK), regards the lack of adaptability
packets is imposed by the sender’s congestion windew:{) to the medium changing conditions. Our proposed algorithm
limit that is also fixed at four packets. This low limit for theaddresses this issue by computing the timeout interval at the
sender’scwnd is proper for minimizing collisions and morereceiver “on the fly” and reacting immediately to out-of-order
than enough for scenarios having up to ten hops, which grackets, as we will see later. This renders our approach more
the target of this paper. These concepts lead our mechanigemeral. In addition, while the LDA scheme is evaluated under
to outperform a regular TCP whenever the channel is abledosingle flow only, our mechanism is assessed under varying
provide higher bandwidth. Our mechanism should perform asmber of flows, giving encouraging results.
effectively as a traditional TCP does when the wireless channellohnson [17] investigated the impact of using extended
is facing losses. delayed acknowledgments intervals on TCP performance. He
These simple changes considerably diminish the numbertafs performed various experiments in a testbed implemented
transmissions and retransmissions over the wireless mediwmn.a SunOS 4.1.2 workstation. In the experiments, he has
As a consequence, the overall energy consumption is s@tanged the kernel’'s TCP algorithm to allow different numbers
nificantly reduced, which is a key issue for battery-poweresf combined ACKs by the receiver instead of only two as
devices. We focus our discussions on short chains of nogesposed in the specification of RFC 1122. In this way the
of at most 8 hops, because this is a reasonable size ffeceiver was adjusted to delay a higher number of ACKs,
today’s networks. Nevertheless, the concepts presented hamging from 1 to 20 ACKs. The main outcome is that delaying
are general and expected to be effective in larger scenariosA&Ks in large numbers is always beneficial in short-range
well. networks but may be inappropriate for long-distance networks,
The key optimization in this paper concerns robustnesspecially if congestion is present. This is a consequence of
against highly noisy environments since the initial mechanistihe high interference on RTT estimation caused by the delayed
in [6] is tailored to moderate loss rates. This paper proposd€Ks. The longer the end-to-end connection the longer the
a more conservative strategy for the TCP receiver in termstohe for the TCP sender to detect lost packets, which may
reaction and recovery associated to frequent packet lossegeopardize the gains obtained by delaying more ACKs. The
The remainder of this paper is organized as follows. Thyaluations were restricted to wired networks, and no timeout
next section describes the main related work on TCP acknowdntrol at the receiver was implemented. Conversely, our
edgment strategies. In section I, we introduce our propos@roposed approach targets multihop wireless environments,
where the design decisions are explained and the main featumese typical packet loss rates are much higher than in the
are discussed in detail. Section IV presents and discusseswiied world. Yet, it relies on an adaptive timeout control at
simulation results. Section V concludes the paper pointing dtie receiver side.
the main achievements. Allman [18] conducted an extensive simulation evaluation
on Delayed Acknowledgment (DA) strategies. This work
showed that TCP performance may be hurt by delayed ACKs
mainly during the slow start phase. One reason is that the
Several proposals for improving TCP performance, or rexponential growth of TCRwnd in that phase may produce
placing its mechanisms, over multihop wireless networldata bursts in the network inducing packet drops in the routers
have emerged in recent years [9]-[15]. The strategy of theseffer. Another problem lies in the ACK-clocked behavior of
proposals is to enhance the TCP sender to react properlyT®OP, in which the sender only increases itsnd by one
lost packets caused by reasons other than congestion [6]. Mg@n each received ACK. This limits the sender data rate
focus here on proposals that aim to minimize traffic overhe#d scenarios where slow start is often invoked. The author
caused by redundant ACKs because this is a primary goalgrbposes two mechanisms to handle the side effects of delayed
our proposed mechanism as well. We also discuss import#&@Ks: delayed ACKs after slow stagndbyte counting The
research work (under standardization through RFCs) on T@&®mer requires signaling between sender and receiver to keep
spurious retransmissions as this issue may play a crucial rthe receiver informed about whether slow start is active or
on supporting our proposed mechanism. not at the sender, so the receiver only delays ACKs when
Altman and Jimenez [16] investigated the impact of delaglow start is over. This speeds up data rate recovery during
ing more than two ACKs on TCP performance in multihoglow start. Byte countingallows the sender to increase its
wireless networks. They concluded that in a chain topology efond on the basis of the number of bytes acknowledged by
nodes, substantial improvement may be achieved by delaymach ACK instead of the amount of ACKs. This procedure
3-4 ACKs. In their approach, unless the sender’s retransmcan lead to prohibitive bursty traffic conditions, and so the
sion timer expires, the receiver always delays four packetsjthor also suggested limiting the number of packets sent in
except at session startup. During startup, the receiver begiasponse to each incoming ACK to a value of 2. The results
delaying one ACK only and increases it until four based oshowed that both mechanisms can improve performance for
the sequence number of the received data packets. The recdimgpiementations using delayed ACKs, but the main concern
uses a fixed interval of 100 ms for timing out and does n@ the potential increase in packet drops that may happen. The
react to packets that are out-of-order or filling in a gap in tr@mulation scenario here was also limited to wired networks.
receiver’s buffer, as opposed to the recommendation of RM& argue that the first proposed mechanistalgyed ACKs
2581. The main weakness of this mechanism, hereafter calldter slow star} is not relevant for current ad hoc networks

Il. RELATED WORK



were thecwnd limit is usually low. Besides, as the media inway, it can decide whether to send new packets or retransmit
place is inherently noisy, the signaling from the receiver to thenacknowledged ones. As stated by the authors, F-RTO can be
sender is quite unstable. In our proposed mechanism, whictséen as a sort of “Limited Transmit” algorithm [24] but applied
tailored to short-range ad hoc networks, the receiver managesthne RTO recovery. Both Eifel and F-RTO are potential
adaptively the acknowledgment rate on the basis of the chanalglorithms to be used in conjunction with our mechanism for
condition. As a result, no explicit signaling is needed. Thebustness against the usual unnecessary retransmissions in ad
second mechanism proposed by Allma@yte countinyis a hoc networks.

sender side improvement that may be incorporated into our

approach which is, at this time, a receiver side mechanism |||. DYNAMIC ADAPTIVE ACKNOWLEDGMENT

onlly. 6 blished i . ¢ th hani We call our mechanism TCP-DAA (DAA: Dynamic Adap-

n [6] We published an earlier version o the mechanisgy, Acknowledgment), which targets feasible scenarios where
proposed in this paper. In that reference_we confirmed NMhe IEEE 802.11 standard may provide acceptable perfor-
portant result_s .Of. previous yvork .[4]’ [5] in the Sense thaH1ance. TCP-DAA was first introduced in our prior publication
TCP should I|m|t.|ts congestion yvmdow asa function of th?n [6]. Recent investigations on 802.11 have shown that such
numbelr of hOpi n p(ljac:: to achhlevehoptlmfal péarforr?ance. ACK delaying protocol is effective in recovering many of
particular, we showed that as or.t chain of nodes ot up 10 #% wireless induced losses in typical scenarios, but it does not
hops should have a congestion window limit of apprpxmate cale as the number of wireless hops increase. This happens
3 packets. This was shown to be caused by the limited spafidl.ause the well-known hidden node problem imposes a

reuse property inherent in multihop networks relying on thIﬁnited spatial reuse property in these networks as discussed

IEEE 802.11 standard as the MAC protocol. In fact, thii‘T‘\ detail in [6]. There are a number of important applications

!|m|tat|cr)]n IS .|mposed byT;]he hlddlen. node plrob[emGpreseQ d scenarios in which the number of hops involved will be
in such environments. The simulation results in [6] WETR below 10 hops, and the number of nodes will normally not

quite encouraging by showing substantial improvements OV&fceed 100 nodes. Typical examples include ad hoc networks

various scenarios. As mentioned above, this paper prOpose?na'aIassrooms, meeting and workshop spots, small working

enhancement to the initial mechanism that was not intendgg ..< \vi-Fi in home buildings, wireless mesh networks, and
to highly noisy environments. The enhancement is describﬁ%ny 6thers ' '

in section 1lI-D.

Concerning the approaches that propose to improve TCP )
performance against spurious retransmissions typical in wifd- Design Issues
less environments, we discuss here two mechanisms: th&@CP-DAA design is based on the following observations.
Eifel [19]-[21] and the F-RTO [22], [23]. Note that theseTCP reliability requires that transmitted packets are acknowl-
mechanisms do not use delayed acknowledgments strategielgied by the receiver side. However, if the receiver acknowl-
but only improve the sender response to misdetected lestges every incoming data packet, then the probability of col-
packets. In other words, these approaches are reactive digisns between data and ACK packets increases considerably.
while our scheme is proactive by minimizing losses instead bforeover, since the receiver must also contend for the medium
only reacting to them. by using RTS/CTS control frames, the overall overhead at the

The Eifel algorithm aims to eliminate the TCP retransMAC layer, for transmitting ACKs, is not negligible.
mission ambiguity in order to solve the problems caused byThe problems associated to ACK overhead can be mitigated
spurious timeouts and spurious fast retransmits. This algoritliivihe receiver merges several acknowledgments into a single
uses the TCP timestamp option, so the sender may effectivAl@K, which is possible due to the cumulative ACK scheme
determine whether a given packet is transmitted for the fingsed in TCP. This scheme uses later acknowledgments as a
time or it is a retransmission. By checking the timestamp iconfirmation that all previous acknowledgments were success-
the ACKs, the sender is able to infer spurious retransmissiofidly received. We showed in [6] that the action of delaying
In case a retransmission is found to be spurious, the sen8@Ks is really effective in scenarios without the classical
restores the parameters of the congestion control that werehidden node problem, i.e., scenarios of at most three hops. We
place just before the unnecessary retransmission has occureaaphasize here that such an observation is valid for scenarios
As a consequence, thavnd returns to its previous value facing the hidden node problem as well.
and the transmission rate is not reduced wrongly. In its latestTable | illustrates how significant an ACK transmission
version, the algorithm encompasses specific techniques fioight be in such environments. These results are the outcome
noisy networks including a more appropriate way of updatingf simulation runs in a chain topology of 1 hop (no intermedi-
the retransmission timer and a better policy for thend ate nodes) for a single flow that lasts 10 seconds. Throughout
restoration. this paper, we use the TCP NewReno flavor [25] as the

F-RTO is an algorithm implemented at the sender sidegular TCP. The values in Table | represent the total time
only and does not require any TCP options. In fact, it ainthe medium is busy transmitting either data or ACK packets.
at detecting spurious TCP retransmission timeouts only. Bxom this table, it is evident that techniques for delaying
sender using this algorithm keeps track of the incomin§CKs can be indeed efficient in multihop environments. The
acknowledgments (sequence number) after it has transmittast column of the table, which exhibits the ACK/DATA ratio
the first unacknowledged packet triggered by a timeout. In this percent, shows that the standard delayed acknowledgment



(DA) provides significant enhancements. Likewise, Table donditions, in that it adaptively computes the timeout interval
highlights the remarkable performance of TCP-DAA for thifor the receiver on the basis of the incoming packet inter-
scenario by bringing down the ACK overhead, relative to datarival time. In this way, the receiver delays just enough
packets, from approximately 8.9% to about 2.2%. Note thtt avoid spurious retransmissions by the sender and is able
the time values in table | do not include all the delays involveth adapt itself to different levels of delays imposed by the
in the transmission but only the data and ACK transmissianireless channel, thereby being independent of both channel
delay. data rate and number of concurrent flows crossing the network.
As we showed in [6], TCP-DAA outperforms the standard DA

TABLE | and LDA in several scenarios.

TIME MEDIUM IS BUSY FORDATA AND ACK TRANSMISSIONS
IN A 1- HOP SCENARIQIN MSEQ

DATA ACK ACKIDATA  B. Algorithm
g‘%nﬁ%yegAACK 763778'28 ??20'5 ggff The current development of TCP-DAA is focused on the
TCP-DAA 7814 175 0.022 receiver side, while a comprehensive investigation on the

sender side is still to be done. The technique we used for
minimizing unnecessary retransmissions by timeout consists

The fewer amount of ACKs for the sender might leadf two adjustments: 1) the number of duplicate ACKs for
TCP to low performance in typical wired scenarios whergiggering a retransmission by the fast retransmit mechanism
the congestion windowcfond) limit is usually high. This s decreased from 3 to 2 packets, which is in line with [24] in
might happen because a TCP sender may only enlargetig sense that we work with a smalbnd limit; 2) the regular
congestion window toward the limit upon receipt of ACKsretransmission timeout interval RTO is increased fivefold for
So, the less ACKs per data the longer the sender takescmpensating the maximum of four combined ACKs. These
enlarge its congestion window fully. This problem is not s@re the only two changes performed on the regular TCP sender,
critical in our technique, however, as thend limit in place which proved to be effective in most of our evaluations.
(4 packets) is rather low. This means that after a reductionThe dynamic behavior of TCP-DAA is depicted in Fig.
of cwnd due to a lost packet, it will quickly reach the limit2 After startup and having no losses, the receiver always
again upon receiving a few ACKs, as discussed in sectigferges four ACKs. This means that for every four received
I1-D. One question that may arise here is how to notify thgata packets, the receiver replies with a single ACK. The delay
TCP algorithm to use DAA or not? We do not address thiganagement is performed through a delaying windawif.)
problem specifically here, but a mechanism monitoring thg the receiver that limits the maximum number of ACKs to be
channel condition would serve this purpose [26]. delayed. Under normal conditiongwin is initialized to one

By delaying the acknowledgment notification to the sendefnd increases gradually for each received data packet until it
the receiver may trigger a retransmission by timeout at theaches four. The limit of four is imposed by the sendend
sender, if the receiver delays excessively. Thus, the receiygiit that is also set to four. Highedwin would not work
has to be well adjusted in order to avoid such spurious retrapgcause the sender would not have enough data packets to
missions. We believe that solutions like the ones proposed #3nsmit to meet thewin value, which would lead the sender
the F-RTO [22] or the Eifel algorithms [21] (section II) mightpermanently to timeout. It is important to note that despite
be useful here. This evaluation is left for future work, thoughihe influence of the sender setup on thein size, this is an

The standard delayed acknowledgment (DA) proposed in Rie&clusive variable of the receiver. In other words, there is no
2581, recommends that a receiver should send one ACK f{psinsfer of thedwin value to the sender.

every other data packet received (combine two ACKs into a
single one), and should not delay an ACK when either an out-
of-order packet or a packet filling a gap in the receiver’s buffer &
is received. Besides, the maximum delay should not exceed a \
given time interval (typically 100 ms).

Table | confirms the findings in [27] in that the standard DA
improves performance in wireless environments. Nevertheless,
higher enhancements are possible by combining more than two
ACKs, as shown in the LDA approach described in section Il

Sender Receiver

dwin=4
-

Timeout and dwin adaptively
fit the traffic conditions

dwin=4

The main problem with both the standard DA and the LDA
scheme is the fixed timeout interval (100 ms) for generating
ACKs, since the packet inter-arrival at the receiver changes
not only with the channel data rate, but also with the intensity
of the traffic going through the network.

TCP-DAA combines the idea of a higher number of delayed
ACKs with the dynamic reaction proposed in RFC 2581, i.e., Time
reaction to packets that are either out-of-order or filling in a

dwin=4

<«— Timeout
dwin=2

dwin=3

gap. Furthermore, our protocol adjusts itself to the chanrféd. 2. TCP-DAA approach

/ dwin=4



As long as the wireless channel is unconstrained, it iister-arrival interval as indicated in (1), whefg refers to the
advantageous to keefwin = 4. When facing losses, however,last calculated valuej; ., is the packet inter-arrival interval
dwin should be reduced in order to avoid further performansampled, and is the inter-arrival smoothing factor, with <
degradation. Thus, iflwin is kept set to four, it may inap- o < 1.
propriately trigger retransmissions by timeout at the sender
due to lack of ACKs. To detect a constrained channel, the Oi1 = ax0; + (1 —a)*diqq (@h)
receiver keeps a'qmer that is r_eset whenever it receives a datzilhe value computed from (1) is used to set the timeout
packet that is going to have its ACK delayed. Additionally, . :
the receiver keeps track of the sequence numbers of mcommterval at the receiver. After the rec':el'pt of a data packeF

Rt causes an ACK to be delayed, it is reasonable to wait

data packets. So it may detect a poor channel when recewpag at least the time the second next packet is expected. The
out-of-order packets.

Whenever the receiver gets a packet that is either Out_(g?_tlonale here is that the delay variations are relatively high in

o . - .. Such environments and in case of a single dropped packet, the
order or filling a gap in the receiver's buffer, or when its : . : o
. . . . . next data packet will arrive out-of-order, which will trigger
timer expires, it sends immediately an ACK to the sender an : o .
immediate transmission of an ACK, as recommended in RFC

reducesiwin to the size of two packets. We chose to resu%Sll However, if it was only a delay variation, and the data

dwin growth from two instead of one because we aimed in . .
. . o cket arrives before the expected time for the subsequent
such situations to go back to a behavior similar to that . o . ; .
: : ._packet, no timeout is triggered and the receiver avoids sending
the standard DA which performs better than configurations ;
) ; : , . .~ an extra and unnecessary ACK packet into the network.
without it. Cutting dwin down to one is more conservative : . . .
. . . Hence, we use a timeout intervB] as shown in (2). Notice
and may be proper for highly noisy environments wher ) : .
: . . . that the factor 2 in (2) refers to the estimated time for the
considerable improvements are hard to achieve, as discussed in ) . .
i . . R : .~ "second expected data packet to arrive. This equation also
section IlI-D. Fig. 2 illustrates a situation in which the receiver . : -
. : D includes a timeout tolerance factar with x > 0, defining
timer expires due to a dropped packet. Note thain is first

. how tolerant the receiver may be in deferring its transmission
decreased to two, then increased to three and subsequently t0 .
. eyond the second expected data packet. In short, the effective
four as new data packets arrive.

Fig. 3 illustrates in more detail how the receiver keept'smeom intervalT; is at least twice the smoothed valbigand

track of the packet inter-arrival interval and handles the &Y be higher depending on the valueofThis equation only

ACK delay. Under normal conditions, ie., after startu@rowdes an upper bound (for robustness) to the delay imposed

. .'on the ACKs deferred at the receiver. Further investigations to
and without any loss, for every four data packets received

(Pi. Povy, Poio, Prys), the receiver replies with an aCknOWl_optlmlze this variable are surely needed.
edgment ACK; . ;+3). Whenever a given acknowledgment To= (24 k) + 5 @
(ACK;, ACK;11,ACK,;,-,...) is to be delayed, an associated ¢ !
timer is started ), or restarted #1,t;42) if there is one  After a reduction indwin, subsequent timely data packets
already running. This timer is used to prevent ACKs fromnrigger dwin growth toward the maximum size again. Timely
being excessively delayed at the receiver when the networkdista packets here refer to the incoming data packets that are
facing packet losses. neither out-of-order nor filling a gap in the receiver's buffer.
The receiver also measures the data packet inter-arrival titdeing this dynamic behavior, associated to the timer-based
between the packets for which the ACK is to be delayedonitoring, the receiver prevents the sender from missing
(03, 0i+1,0i42, ...). The receiver keeps track of the number oACKs when packet losses occur. As mentioned above, the
ACKs delayed by maintaining aack_count variable which LDA proposal [16] works with a fixeddwin size of four
increases from one to the current value of its delaying windguackets (except at startup), and uses a latged limit at the
(dwin). By checking the value ofick_count, the receiver sender to keep the channel full of data packets in flight. While
is able to determine whether the received packet is the fithts procedure may prevent the sender from missing ACKs, it
one from the group of packets that is going to have thmay also induce an excessive number of retransmissions at the
acknowledgments delayed. In case a packet is the first osender [6].
the inter-arrival interval between the last received packet andThe dwin growth is governed by (3), which shows that
the current one is not taken. This is needed to avoid thmich an increase may be fixed at one (packet) or determined
improper intervals such as the one betweens and d;,,4 by the startup speed facter, with 0 < x4 < 1. The reason
in Fig. 3 are considered for the timeout interval computatiofor this factor is that during the startup phase (begin of the
By using this strategy, we assure that in normal conditionsgssion), the sender starts with a window size of two packets
the inter-arrival measurements will reflect very closely the gamd then increases it by one at every ACK received. Although
between the received data packets triggering delayed ACKsin is initialized to one, if it started from startup being
Note that under packet loss, the receiver will not need suiitreased at the rate of one packet per incoming data packet,
measurements as it will not delay out-of-order packets. Rathttrere might happen a shortage of ACKs at the sender. As a
it will await until it receives in-order packets again. result, either receiver or sender would only be able to transmit
Similarly to the TCP sender, the receiver uses a low-pasg timeout (i.e., after their respective timers expiration). Thus,
filter to smooth the packet inter-arrival intervals. Upon arrivahe thresholdnaxzdwin is used to define the instant the startup
of a given data packet; 1, it calculates the smoothed packephase is over, which occurs whemaxdwin first reaches its



dwin=4 dwin=4 dwin=4 dwin=2

Pi P+l .. ACKi,....i+3
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7172 3 4;ack_count>1 2 3 4I 1 2 3 f 1 2I >Time
U 7 8il 1 8i+3 di+4 1 5i+6 8i+7 | Ji+8
ti+1 si+2 5i+5 8i+7 Timeout
A
l data packet 1 ACK
{ Upon data packet receipt with ack_count=1,2,3 start timer and increment ack_count }

Fig. 3. TCP-DAA receiver mechanisms

maximum value and becomesue. From our evaluations, we recovery). Thecwnd will be expanded gradually after the
noticed that by properly setting theparameter, our algorithm sender exits the fast recovery phase. When the sender receives
achieved better performance for short-lived flows [6]. the third duplicate ACK, at time 12.96 seconds, it does nothing
because it is in the fast recovery phase. At instant 12.97
seconds, the sender gets the acknowledgmenpdoeket322
(3) allowing it to retransmit the missingucket323 and then exits
the fast recovery procedur@acket323 fills in the gap at the
The mechanisms explained above make TCP-DAA effectiveceiver’s buffer, which triggers the ACK ghicket326 due to
because they actively monitor the channel condition to ugige cumulative property of the TCP acknowledgment strategy.
the scarce channel bandwidth efficiently. When the channel
is facing really poor conditions, TCP-DAA should perform

in general as effective as a standard TCP. Using its dvnami At instant 13.01 seconds, the sender receives the acknowl-
g ’ 9 y e&gment forpacket326, and so transmits two new packets

adaptive quowi .TCP.'DAA. sqmehow probes'the network f 527, 328). These two packets cause the receiver to send one
resource availability, since it will always combine more ACK CK only as its dwin is set to two packets at this point

(up to 4) when the network condition permits. The SenderA'\Sfter that, dwin increases and, as a consequence, the number

transm|SS|op ratg IS I|m|fced by the MAC layer that Manages delayed ACKs increases toward 4. Fig. 4(a) shows two
the contentions in the wireless medium.

spurious retransmissions caused by timeout at the receiver.
Packet334 and packet338 are unnecessarily acknowledged
C. Packet Loss Handling at the instants 13.62 s and 13.79 s, respectively. This means

In order to better understand the concepts explained abolit the timeout interval computation may still be improved.
we show here a typical response of our mechanism whbgtice that the problem here is not the same addressed in

reacting to lost packets. We include the response of the LDAO) [23], where the spurious retransmissions take place at

scheme to highlight the difference between our proposal afte sender.

LDA. Fig. 4 exhibits a part of a simulation run in which both
strategies faced a lost packed in a chain topology of 5 hops.Fig. 4(b) shows the response of LDA to a packet loss.
Let packetn be the data packet of sequence numbgrig. In this simulation run,packet241 is lost at about 10.55
4(a) shows that the sender transmits four packets (320-323%atonds. Differently from our technique in which the amount
time 12.6 seconds. In this rupacket322 andpacket323 are of packets in flight is limited to four packets, the proposed
dropped. The receiver times out and acknowledges only tw®A works with a large limit for thecwnd (10 packets),
packets (320, 321) instead of four. The receiver also updatessits it has more packets in flight than TCP-DAA. One can
dwin size to two. Upon receipt of the ACK fasacket321, notice in Fig. 4(b) that although only one packet has been
the sender sends two new packets (324, 325) because timopped, various acknowledgments triggered the transmission
packets were acknowledged. At this moment there are only®less than the optimal four packets at the sender. This shows
packets in flight (324, 325). Singeicket324 andpacket325 that the retransmission timer expired in several situations
are detected by the receiver as out-of-order packets, theynecessarily. Additionally, the sender waits for the default
trigger immediate acknowledgments at the receiver (first atittee duplicate ACKs for retransmitting the dropped packet,
second duplicate ACKs fasacket321). By receiving the first and so it takes a longer time to take action. In short, by
duplicate ACK, the sender transmits a new packet (326) whicbomparing Fig. 4(a) with Fig. 4(b), one can clearly see that
will also be out-of-order. TCP-DAA provides more stability regarding the number of
When the sender receives the second duplicate ACK delayed ACKs. As a result, less packet delay variation is
instant 12.9 seconds, it retransmits the first lost packet (32@grceived by the sender, which in turn tends to minimize the
and halves itsswnd size to two packets (fast retransmit/fasinaccuracy in the timeout interval computation at the sender.

dwin — dwin + p, if maxdwin = false
“ | dwin+1, otherwise
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Sequence number vs. time (hops: 5)

Sequence number vs.

time (hops: 5)
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Fig. 4. Delayed acknowledgment strategies
D. An Improved Delaying Window Strategy for High Loss Pi Pi+1 Pi+2 Piv3 Ldwin ]
Scenarios I
The basic delaying window strategy in section I1I-B may =~ packet drop
be inefficient in scenarios facing considerable loss rates. In [ ] 1 g dwin+
i ; . . i . pi?
this _sectlon, we mves_tlgate |mprove_ments_ to such scenarios. ]:D : ) “ﬁ:
We first observe that if the channel is facing constant losses, . g :Ibl,
then it seems to be more appropriate to reduce the delaying ]:Elj § 3 -
window (dwin) to one in order to avoid timeout at the receiver. : 3 '
Additionally, the dwin should be enlarged by less than one 4 <

for every data packet received. This is more conservative than time

the initial strategy above, which is needed to ensure robustness

for the mentioned scenarios. Hence, we propose to adjust g5 An alternative delaying window strategy for robustness against losses.

receiver side as illustrated in Fig. 5. dwin is reduced fully to one, and then increased slowly by steps defined by
Upon loss detection by either timeouts or out-of-order pack#' parameter

ets, the receiver transmits an acknowledgment immediately

and shrinksdwin to one. By receiving new, in-order packets

(Py, Piy1, Pi1a, Pir3) the receiver gradually expandgvin slowly. We estimate here the worst case scenario as an upper

by steps smaller than one. The operater represents the bound only rather than a rigorous specification.

mathematical floor function which is defined as follows: for a A TCP receiver should provide enough ACKSs to its corre-

real number x,|z| results in the largest integer less than osponding sender in order to prevent retransmission by timeout

equal to x. In other words,dwin | represents the integer partat the sender and also to trigger the sendend growth

of dwin. properly until its limit. Assume that the sender has just timed
Fig. 5 illustrates that only the integer part dfvin is out while in steady state. It8wnd is reset to one and the

needed in the comparison withck count This establishes slow start thresholdssthresh is set to one half the current

three ranges in whichiwin increases without causing anycwnd = 4, i.e., ssthresh is set to two. In this case the sender

impact on the amount of packets to be delayed. These rangeseases itswnd by one when the next ACK arrives because

are between the successiV8win| values in Fig. 5, i.e., it is in slow start phasec{ynd < ssthresh), and then it

between 1-2, 2-3, and 3-4. It is obvious that the smaller tlesters the congestion avoidance phase. &bvwed increase (in

steps by whichiwin increases the more points in each of theggackets) for the,;, received ACK during congestion avoidance

ranges, and consequently the longer the intervahdén fully is given by (4), wherewnd,;_, refers to the previous value

enlarge until four. of cwnd.
It is not trivial to determine the exact amount by which

dwin should be increased when an ACK is transmitted as 4)

many factors influencdwin growth. For example, when the

wireless channel is unconstrainedlpin should increase as Although cwnd grows exponentially in slow start and

fast as possible, and under high loss rates it should grow mérearly in congestion avoidance, we can use the equation

y ack_count % y

1

cund; = cund;—1 + ———
cund;_1



above for both phases because of our small window lintie equal to the amount of expectednd increasesn that
of four packets. In fact, sincesthresh is set to two upon are necessary to expaednd to the limit, i.e., seven ACKs.
loss detection, only one ACK is enough to lead the send€hus, the sum of the ACKs generated in each range of Fig.
to congestion avoidance. Moreover, replacing:d;_; in (4) 6 should result in seven. In other words, + 3 + 5 =7,
with one (the reset value) the left hand side of the equatievhich results inm = 3.8. The inverse ofm gives us the
results in two, which is exactly the same that is obtained wifif = 0.26 parameter, which determines how mudhin
slow start. Hence, assuming thatnd increases continuously should increase per correct data packet received. Thus, the
from one to four governed by (4), the accumulated windoaguation governinglwin growth is changed from (3) above
increaseW is given by (5), wherecwndy is the value to to (6). The switching between (3) and (6) has to be conducted
which cwnd is set just after a slowdown andvnd; is the by a proper mechanism monitoring the channel condition, such
value of cwnd at thei, increase step, which ranges fromas the ones proposed in [14], [26].
one ton and is given by (4). If a loss is detected by timeout, ) o
cwndy is reset to one. A loss detected by the fast retransmit dwin — { dwin + o if in startup (6)
mechanism causesund, to be reset to a value between 1 and dwin + ', otherwise
2, depending on the currestond value. For simplicity, we  Section IV-D shows the performance evaluation of this
assumecwndy = 1 in the modeling below. improved algorithm called TCP-DAAp (TCP-DAA plus). As
n 1 addressed in that section, with TCP-DAAp the algorithm at the
W = cwndy + Z ( ) (5) sender side should react more promptly to losses. The reason
= \cwnd; is that the number of retransmissions caused by timeouts is
Solving (5) for W = 4, the cwnd limit in our mechanism, assumed to be significantly higher in such cases. Hence, TCP-
results inn = 7. This means that the window expansioPAAp uses a regular RTO increased twofold only to speed up
process takes seven steps to reach the maximum size of fb\§ sender reaction to losses.
packets. Therefore, the receiver should take this value into
consideration when enlarging itavin. Fig. 6 illustrates how IV. PERFORMANCEEVALUATIONS
many steps thelwin should follow to satisfy the sender This section presents the evaluation of TCP-DAA consider-
demand for ACKs to avoid timeout at the sender. Whilein  ing many aspects such as throughput, energy consumption and
is less than two (first range), each data packet received trigggiendliness behavior. We compare the performance of TCP-
the transmission of one ACK antlvin increases byt/m. So DAA with the main TCP versions and with LDA [16]. The
the receiver transmits: ACKs in response ten data packets reason for the comparison with LDA is that this scheme also
received. Whendwin is between 2 and 3 (second rangejnvestigates a delayed acknowledgments strategy for improv-
every other data packet generates an ACK, which resultsiiy TCP performance in multihop networks. We also compare
approximatelym/2 ACKs being transmitted in this range.our results with other TCP versions in their theoretical best
Likewise, for dwin between 3 and 4 (third range) an ACKconditions to make sure that our proposal is indeed efficient
is sent for every 3 data packets and so abay8 ACKs are among a wide range of options. Hence, we simulate the other
transmitted in this range. TCP flavors with two improvements: the standard delayed
acknowledgment (DA), and a low limit of 3 packets for their
cwnd. In this way, the other TCP flavors should provide their
optimal performance.

m m m
data || A. Simulation Scenario
) "v ' (2) 'Y' ' -(3) "Y ' (4) dwin We used the ns2 [28], [29] simulator in our evaluations of
ACK LT the two scenarios depicted in Fig. 7 in which we have a single
ey r vy chain topology and a grid topology. The grid topology has 25
m m/2 m/3 nodes and the chain topology has a varying number of nodes
\\ /;\ /’ with up to 9 nodes. In both topologies, each node is 200 meters
[ACKs per dwin range with m data pktsj away from its closest neighbors. When applicable, the through-

put 7 is calculated ag = jff;i whereseq is the maximum

sequence number (in bytes) transmitted and acknowledged and

stime is the simulated time. Unless otherwise stated, the other
o 6. Estimated ¢ of ACK . - J parameter settings are the ones shown in Table II.
srlgbothly er?lellr:;aéeits acg]r?;gstign Windsovr\}efclﬁlis?nryenc\)/irsouneﬁg:]ts fgcis:; h?cjﬁ(') Performance in the Chain Topology
loss rates. Eactiwin interval receivesn data packets and transmits different 1) Throughput: The end-to-end throughput over a chain
number of ACKs toward the minimum of one ACK per four data packets topology as depicted in Fig. 7(a), but with five hops only,

is investigated here. The simulations include varying levels

To meet the sender needs in terms of acknowledgmenfscongestion and comparison with the key existing TCP

during the interval the sender congestion window is growingersions. The regular TCP is simulated with and without DA
toward four, the number of ACKs in the same period shouldr better comparison with related work.



TABLE I
GENERAL SIMULATION PARAMETERS

Parameter Value
Channel bandwidth 2 Mbps
Channel delay (wireless) 25 us
Transmission range 250 meters
Interference range 550 meters
Packet size 1460 bytes
Queue size 50 packets
Window limit (WL) 3 packets
Regular TCP NewReno
Routing protocol AODV
Traffic type FTP
TCP-DAA « 0.75
TCP-DAA & 0.2
TCP-DAA 1 0.3

Initial TCP-DAA rec. timeout 200 ms
Simulation time 300 seconds

(a) chain topology

flow 4 flow 5 flow 6

flow 1

TCP throughput vs. network load (hops: 5)
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Fig. 8. Aggregate throughput in the chain topology

exploit the bandwidth left while the sender is waiting for the
timeout, then that bandwidth is simply wasted.

Overall, the observed improvements here are higher than
40% over regular TCP. Compared to LDA improvements of
up to about 17% are obtained. We also conducted simulations
for 1, 2, 3, 4 and 6-hop scenarios and the results are similar,

5 in some cases less improvement is observed, but in most cases
our algorithm performs significantly better than all the others
[6].

2) Fairness:In order to assess the ability of our mechanism
in allowing a fair distribution of bandwidth, we simulate here
another scenario for the chain topology in Fig. 7(a). We
include scenarios with 1, 3, and 5 hops (humber of wireless
links between sender and receiver). In these simulations, a
single run is conducted for each TCP version evaluated. In the
first run, 10 flows of the standard TCP without any adjustment
share the medium, and the next run simulates 10 flows of TCP-

DAA. The well-known fairness mde)@z 7;)?/(n ij 2) as
defined in [30] is presented in table 11 By this mdex a perfect

share of the medium is given by one. That is, the fairer the
protocol, the closer to one is the fairness index.

Fig. 8 exhibits a remarkable achievement of TCP-DAA.

flow 2

flons o—o oo =@
21 25

(b) grid topology

Fig. 7. Simulated scenarios

These results are obtained by taking the average of 5 TUNS.. - ess ror 10 FLOI:?"SEHELING THE MEDIUGICHAIN
TCP-DAA outperforms all the other algorithms. We believe TOPOLOGY
that TCP-DAA will be further improved if the default sender’s

Algorithm/hops 1 3 5

RTO calculation is fine tuned to its strategy. &P I 595 T
It is interesting to note that, in general, the more flows thetcp.paa 1 0.99 0.84
better the improvement of our algorithm over the other proto-
cols. One reason for that is the high level of queuing delays
due to the higher number of flows in the network. Under such Table Il suggests that for short number of hops in this
high delays, the packet delay variance becomes less significatgnario our mechanism can be as fair as the standard TCP.
in the RTO calculation, and so less interference of the delayAd the number of hops increases, TCP-DAA tends to perform
ACKs is perceived by the sender. Another reason lies in tlsightly unfairer than its counterpart. We believe that this
sender’s high tolerance to invoke the timeout procedure, whibkrhavior might be improved by a more aggressive mechanism
renders the TCP-DAAs sender less aggressive than a reguhthe sender to retransmit packets in due time.
sender. As shown in [6], this behavior is advantageous with re-3) Energy efficiency.TCP-DAA is expected to be energy
gard to spurious retransmissions, resulting in more bandwidthving as it minimizes spurious retransmissions. In this section
to the concurrent flows. In case there is no concurrent flow te evaluate the performance benefits of TCP-DAA in terms of
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Energy consumption vs. number of hops (flows: 10) Energy consumption vs. packet size (flows: 10)
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Fig. 9. Energy consumption at the TCP sender

energy consumption, as depicted in Fig. 9. We used the simptmnected through 4 intermediate hops. The results show that
energy model implemented in the ns2 simulator that has betbe smaller the packet the higher the energy consumption. This
presented in [31]. By this model, a node starts with an initigd intuitive because with small packets TCP needs to process
energy level that is reduced whenever the node transmitsore packets to transmit the same amount of data than it does
receives or overhears a packet. Thus, the total amountvdien using larger packet sizes. Fig. 9(b) also shows that in
energy, Ef;), consumed at a given nodg is given by (7). most cases, but for packet size of 256 bytes, TCP-DAA spends

less energy than all the other configurations. The difference is

not very significant, though. In this scenario packet size does

E(ni) = Etz(ni) + Epp(ni) + (N = 1) x Eo(ni)  (7)  not seem to impact energy consumption significantly.

In (7), Ey., E.,, and E, denote the amount of energy
expenditure by transmission, reception, and overhearing &f Performance in the Grid Topology
a packet, respectivelyV represents the average number of 1) Throughput:We reproduce here the results shown in [6]
neighbor nodes affected by a transmission from nedg82]. regarding the investigation in a more complex scenario, the
In order to account only for the reception and transmissigyid topology illustrated in Fig. 7(b). In these evaluations, we
expenditure, we have discarded the energy spent by overhdastly have only 3 flows crossing the topology horizontally
ing (Ep). This is appropriate to highlight the energy due t¢flows 1, 2 and 3 in Fig. 7(b)). In the next step, 6 flows
TCP transmissions and receptions. Fig. 9(a) shows the regglthorizontal and 3 vertical) are injected into the network
of a simulation run in which 10 flows share the medium igoncurrently. The results, averaged over 5 runs, are depicted
the chain topology of Fig. 7(a) for different number of hopsn Fig. 10.
The figure exhibits the energy consumption per bit at the TCPThis is a critical scenario, given the various interactions
sender. This is computed as= W wheree is the among the nodes in place. The level of dropped packets is
energy/bit ratio,pkt is the amount of packet transmitted byhigh, and so is the degradation of our mechanism. As the
the senderpkt_size is the packet size in bytes andspent scheduling strategy of 802.11 is inherently unfair, it may
is the energy in Joule spent by the sending node. happen that in some circumstances TCP-DAA outperforms
One can see in Fig. 9(a) that TCP-DAA provides ththe other implementations [33], but its overall performance is
best result over all situations. The performance enhancemerpected to be similar to that of a regular TCP, as illustrated
is more noticeable at a large number of hops, where theFig. 10.
probability of collisions is higher. This happens because ourin these simulations, our mechanism performs roughly the
algorithm reduces the number of packets in transit. As a resgdme as the other implementations for the run with only hor-
less collisions occur leading to fewer retransmissions aimbntal flows (3 flows). Its efficiency deteriorates for the case
consequently higher energy saving. In these simulations, thih 6 flows, going down to the level of the regular TCP with
regular TCP spent about 26% more energy than our schenb® (TCP+DA). Notice that while TCP-DAA uses a window
We also evaluated the impact of the packet size on Tdikit of four packets, the configuration TCP+DA+WL has a
energy consumption as shown in Fig. 9(b). In this simulatiomindow limit set to three packets. This may explain why TCP-
four different packet sizes are evaluated, namely packets[@AA does not reach the performance of the TCP+DA+WL
256, 512, 1000, and 1460 bytes long. Sender and receiver emafiguration. As shown in [6], the limit of three packets was
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expected to render better performance for the regular TGPk _count should increase by about 0.28 for each in-order
since larger values induce higher collisions. For TCP-DAAJata packet received. The simulation results illustrated in Fig.
however, a limit of three packets is not appropriate becauselit conform closely to the analytical prediction.

does not provide full improvement under moderate loss rates.
A tradeoff between performance under moderate and high

. TCP throughput vs. time (flows: 20, hops: 5)
loss rates clearly exists here. TCP SACK and Vegas perform 3o ,

best in these evaluations. Our algorithm would most likely ”Zf 82 ——
follow SACK and Vegas'’s performance closely if it had been . [ :l 0.4 o
implemented over these versions, but it was implemented over W: 0.5 8
TCP NewReno which performs well in a variety of scenariosg 00 |2 M W 0.6 -
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Fig. 11. Optimaly’ parameter for TCP-DAAp
100
0 ; 5 These evaluations were conducted over the chain topology
Number of concurrent flows and each run lasted 1000 seconds. Each curve indicates the

throughput of a single flow competing with nineteen other
Fig. 10. Aggregate throughput in the grid topology with cross traffic ~ flows in a 5-hop scenario. Since the scenario is quite con-
strained in this case, the sender retransmission timeout (RTO)
2) Fairness:To look more closely at the performance of oumyst not be too tolerant as in the previous case. Hence, its
mechanism in the complex scenario made of the grid topologylerance was decreased from fivefold to twofold to conform
we compare here the fairness of TCP and TCP-DAA. Tablith the concept in section IlI-D. Various values for thé
IV depicts the fairness index of such algorithms for both garameter were simulated. Despite the varying behavior of the
flows and 6 flows, as previously. One can see by these valggsves, one can see in Fig. 11 thdt= 0.2 andx’ = 0.3 tend
that in general none of these algorithms can achieve higiprovide highest performance.
fairness. In fact, these results highlight that strategies based of jg expected that TCP-DAAp does not provide the same
delayed ACKs, like ours, are inherently more unfair than thﬁmrovements of TCP-DAA shown in Fig. 8. This happens
regular TCP in constrained channels. This happens becausejffigsyse TCP-DAAp transmits more ACKs than the basic
regular TCP increases itsond faster than approaches relyingyersion and also because its sender is more aggressive as
on delayed ACKs. While the former increases disnd for far as retransmissions are concerned. Fig. 12 exhibits the
each packet received at the receiver, the latter receive roug@&npaﬂsons between the two TCP versions for the same con-
half of that. This lack of ACKs at the sender is not a problemjitions described in section IV-B.1. The robustness to losses
in steady state conditions, but it may play a crucial role in thigmes at the cost of throughput under moderate conditions.

overloaded scenario. Nevertheless, the changed algorithm performs as effective as
TABLE IV the regular TCP in Fig. 8.

FAIRNESS IN THE GRID TOPOLOGY The justification for the TCP-DAAp strategy is to render our
Algorthm/flows 3 3 strategy as robust as the regular TCP mechanism under heavily
TCP 0.72 0.75 constrained environments. TCP-DAA is not optimized to such
TCP-DAA 0.68 0.59 environments, and because of that it degrades substantially

under high loss rates. Fig. 13 highlights the importance of
TCP-DAAp in a scenario where just a single flow crosses a
o ) ) ] 5-hop chain of nodes under varying packet error rates. This
D. Optimization for Highly Noisy Environments is a very noisy scenario where not only losses due to MAC
In this section we investigate the optimization proposed oollisions are in place but also losses induced by a permanent
section 11I-D, in which the strategy of the receiver is supposeakternal disturbance. The error model used follows a uniform
to be more robust to environments facing non negligible lossefstribution function. The results in Fig. 13 shows that indeed
Upon losses the receiver reducésin to one and slowly our strategy can handle losses in an effective way since it
increases it again to prevent the receiver timer from expirimpgprforms as effective as the TCP+DA+WL version. Although
by lack of data packets. The analytical evaluation in sectidginis not shown here, we emphasize that these results are even
l1I-D showed that following a very conservative procedureqetter over the regular TCP without any further adjustment.



12

TCP throughput vs. network load (hops: 5) Fig. 14 depicts the result of a simulation run in which two

v flows of distinct versions share the medium. Namely, a TCP-

200 ngpDiiA - DAA flow competes with a regular TCP that uses DA and
EP\}‘ P . . . .. .

- [ 5 . window limit (WL). For simplicity, we will call hereafter the
configuration TCP+DA+WL “adjusted TCP”. It is clear that
our mechanism outperforms the adjusted TCP in the range
of 1 to 8 hops. The difference between both protocols is
150 noticeable for 1 to 3 hops, where the hidden node problem
does not happen. After that, more collisions take place and
100 both mechanisms perform similarly. One can say that TCP-
DAA performs very aggressively against the adjusted TCP’s

50 flow for the cases of 1, 2 and 3 hops.
To measure the degradation imposed by our mechanism
5 10 15 20 over the other flow, we include the “reference curve” in Fig.
Number of flows 14. This curve represents the performance of the adjusted
TCP flows without any of our mechanisms in place. Thus,
the reference curve is obtained when two adjusted TCPs are
sharing the medium. In Fig. 14, the throughput of the adjusted
. . . CP for the 1-hop scenario in Fig. 14 is 469 Kbps. The
. _The discussions in the tv‘.’(? paragraphs_above SUQQGSt £ &Iresponding throughput for the reference curve is 681 Kbps.
It is helpful 0 ha\(e an additional monitoring mechanlsm Fnis shows an unfairness of our mechanism for this scenario,
the receiver to adjust the TCP-DAA strategy on the baS'Sé’ﬁgich leads the adjusted TCP to a decrease in throughput of

_________________________

200

3

Throughput (kbps)

Fi

g. 12. Comparison between the two TCP-DAA versions

the channel condition. This procedure along with an improv to 31%

TCP sender, regarding the RTO computation, can surely ren Another experiment is shown in Fig. 15 where the number
our proposal very robust in a wide range of scenarios. Usi . e ;
such a mechanism, the basic TCP-DAA would be mvokéa hops are fixed at three and a distinct amount of flows is

Simulated. Since this is a scenario without the hidden node
under moderate loss rg?e and T_CP-DAAp would take OVF)FobIem, the number of collisions is not very high. Note
when the channel condition deteriorated.

that as the number of flows rise, our mechanism degrades
performance leaving more bandwidth to the regular flow. As in

TCP throughput vs. error rate (hops: 5, flows: 1) the previous case, TCP-DAA induces performance degradation

CCP+ DAL, st to the adjusted TCP. In this case, the adjusted TCP would

300 TCP-DAA *--eent achieve about 223 Kbps of throughput if only adjusted TCP
TCP-DAAD + & flows were being transmitted, but it obtains only 175 Kbps.

This means a reduction in throughput of approximately 23%.
The results above suggest that the basic TCP-DAA needs a
sort of pacing for controlling its sending rate in mixed scenar-

(kbps)

% 150 k - ios involving non-TCP-DAA flows. A possible mechanism for
o e that is proposed in [18] in which the authors propose to limit
£ 100 ‘\ (to two packets) the amount of packets sent at once by the
N sender. This comes at the cost of the end-to-end bandwidth
>0 TN utilization, though.
1 2 3 4 5 6 i .
Packet error rate (%) F D|SCUSS|OnS

The general perception is that our mechanism is definitely
valuable to multihop networks. The results presented here
in addition to the ones published in [6] support our claim
that a dynamic and adaptive mechanism is effective in such
constrained environments. The results in section IV-D indicate
that the mechanism can be refined to handle highly constrained

Gradual deployment requires acceptable friendliness behawnditions. Distinct parameter settings for moderate and ele-
ior when TCP-DAA is sharing the medium with other flowsvated constraints are needed, though. The key remark here is
This means that our mechanism ideally should not supprébkat our mechanism automatically prevents waste of bandwidth
regular flows but allow them to achieve at least the sanuader favorable conditions and performs as effectively as a
throughput they would obtain without any improved flow irconventional TCP when traffic conditions deteriorate.
parallel. We show here how friendly our mechanism can beAs far as friendly behavior is concerned, our basic mech-
when competing with regular flows in a multihop channednism seems not to be very friendly in scenarios without the
facing a moderate loss rate. hidden node problem. In these scenarios, the number of packet

Fig. 13. TCP-DAAp provides robustness for highly noisy scenarios

E. TCP Friendliness
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TCP throughput vs. network load (hops: 3)
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under no hidden node problem effects

13

fair state. The unfairness detected in our proposed algorithm
is essentially caused by the timeout mechanism rather than by
the AIMD mechanism.

V. CONCLUSIONS

We have extended and further evaluated our algorithm
for improving TCP performance over multihop wireless net-
works. Our dynamic adaptive acknowledgment strategy aims
to minimize collisions, resulting from mutual interference
between data and ACK packets, by transmitting as less ACKs
as possible. The mechanism is self-adaptive and tailored to
networks comprising at most ten hops and facing moderate
bit error rates.

The simulation evaluations showed that our algorithm can
outperform not only conventional TCP including the main TCP
flavors, but also similar techniques that have been proposed
in the literature, in a variety of conditions. Our scheme
improves throughput and energy consumption, which are two
key issues in such networks. Yet, it is easy to deploy as
the changes are limited to the end nodes only. Future work
includes the development of a customized sender algorithm
toward an effective balance between throughput and fairness,
an adaptive receiver mechanism to switch between DAA and
DAAp strategies in scenarios susceptible to high bit error rates,
and a more elaborate timeout strategy at the receiver.
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losses is quite negligible, leading our mechanism to use the
typically wasted bandwidth efficiently. As a result, it is difficult [y
to adjust TCP-DAA parameters toward very friendly behavior
under such conditions. This indicates that a rate Iimitatiog2
at the sender may be beneficial to address this problem. A
the other side, TCP-DAA parameters may be optimized undé€s
hidden node problem effects to make the protocol friendly
[34]. This optimization includes the sender side, which has tey
be fully investigated in future work.

We believe that solutions like the one proposed in [35][]
in which the receiver controls the sender'snd may be
integrated into our final algorithm. Likewise, the work in [36]
could be useful for improving the fairness of our mechanisnﬂe]
by including the congestion window in the timeout computa-
tion at the sender.

It is important to emphasize that our proposal doe$’]
not change the semantics of TCP including its Additiveg
Increase/Multiplicative-Decrease (AIMD) congestion control
algorithm. Our mechanism keeps the principles of the AIMD®I
recommended in [37], in that a simple AIMD algorithm satis-
fies the sufficient conditions for convergence to an efficient and
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