
Dec 6, 2002 1Florian Baumgartner

Design and Implementation of a
Python-Based Active Network Platform
for Network Management and Control

Florian Baumgartner

Institute of Computer Science and Applied Mathematics
University of Bern

Department of Computer Sciences
Purdue University

Dec 6, 2002 2Florian Baumgartner

Motivation

Development of a platform especially for the purpose of
network configuration.

The system's focus is not the development of huge
distributed systems, but a lightweight, easy to use
framework to adjust TC systems or to collect information
within the network.

To provide as much flexibility and modularity as possible.

Integration of existing applications/libraries.

Dec 6, 2002 3Florian Baumgartner

Why Python ?

Properties like most modern interpreted languages

portable bytecode, OO (not only), restricted execution
environments

Advantages of Python:

Prototyping language supporting high level data types -> rapid
prototyping. (glue language)

Python is very extensibility

seamless and flexible integration of native code modules.

even modifications of Python internals are possible.

Python programs are three to five times smaller than in Java.

Dec 6, 2002 4Florian Baumgartner

PyBAR Architecture

PyBAR is more a framework, which
can be adapted by integrating
modules from a module pool. (e.g.
encryption, resource control)

Packets may contain code or can be
directly processed by a service
handler.

Native modules allow a complete
“Python-free” processing of packets.

Thin NodeOS uses various kernel
interfaces (tc, filtering). Modules
provide high level functionalities.

(One PyBAR can control multiple
routers.)

Platform Adaptor/NodeOS

PyBAR
Core

Service
Handlers

Extension
Modules

Code Execution

Router
Router

Service
Handlers

Extension
ModulesPy

th
on

C
+

+

Dec 6, 2002 5Florian Baumgartner

Addressing & Packet Transport

Direct UDP/IP

Addressing of a specific device

Router Alert

processing overhead in conventional routers

DSCP to trigger packet execution

can be used for direct addressing or for processing along a
certain path.

DSCP can also be used to avoid loss of active packets in not-
active routers

no processing overhead in not-active routers

generic packet filter

Dec 6, 2002 6Florian Baumgartner

PyBAR Packet format

PyBAR does not rely on a specific packet type (future system
might use ANEP).

Packet processing is left to the core. The current, very simple
packet type is used to cause as less overhead as possible.

Version IHL ToS Total Length
Identification Fragment OffsetFlag

TTL Protocol Header Checksum
Source Address

Destination Address

IP Options (e.g. Router Alert)

Source Port Destination Port
Length Checksum

Version Active Service Id

Block Length Data
Data

IP

UDP

PyBAR

Code
Block

Dec 6, 2002 7Florian Baumgartner

Security

limited user group (administrators, daemons)

Security modules to provides authorization/encryption
mechanisms.

Current security module is based on the RSA reference
implementation and provides a high level interface for
applications.

Modular approach allows to realize different security
concepts.

Packets are processed in restricted execution environments.

resource control by monitoring execution.

Dec 6, 2002 8Florian Baumgartner

Differentiated Service Support

no built in DS support (e.g.
by the NodeOS)

Differentiated Service
support by extension
module.

support for heterogeneous
platforms (UniBe DS, VR)
and networks

can be easily replaced

can provide a high level API
instead of defining only
fundamental commands.

init(<type>)

setClassShares()

mark(<>)

sets up the complete traffic
conditioning components
requires for DiffServ. with an
appropriate scheduler, EF and
AF queues, token bucket filters

configures the bandwidth
shares for the dfferent traffic
types

configures the Differentiated
Services marker to mark
specific flows with DSCPs

Dec 6, 2002 9Florian Baumgartner

Application
Tunnel Endpoint Discovery

Problem:

Tunnel set up process is sender
driven, a matching end point is
required.

If the receiver is not capable to
handle the tunnel, an upstream
node should be used.

Solution:

Inject active packet with search
pattern (decryption mechanisms).

A
B

C

Dec 6, 2002 10Florian Baumgartner

Application
Tunnel Endpoint Discovery

Requests property list from
router.

If property list contains
requested capabilities, a
feedback packet is sent
back to the tunnel start
point.

Tunnel start point may
choose among the most
appropriate end point.

class DiscoverEP(ARpacket):
def __init__(self.packet):

#get a list of router properties/services
c=pad.getCaps()
#if IPIP available, extract informationfrom
#code block and send feedback packet
if c.count('IPIP''):

src_info=unpack.loads(acpkt.cb(1))
#generate and send feedback packet
p=pad.UDPPacket()
p.source=pad.hostip
p.dest=src_info['tunnel_start']
p.destport=src_info['portnumber']
p.payload=pack.dumps('service':'IPIP',

'tunnel_end':pad_host_ip,'time':pad.time)
p.send()

#forward original active packet
acpkt.send()
return

Dec 6, 2002 11Florian Baumgartner

A Short Glance on Performance
A Simple Active Multicast Service

Classical active multicast
example.

Send packet with multiple
addresses.

Packet is processed by
service handler within the
PyBAR.

pure Python SH

Python free SH

Dec 6, 2002 12Florian Baumgartner

A Short Glance on Performance
Packet Rates

UDP based, configurable
video sender as traffic
source.

C++ version causes very
limited overhead.

Measurements with C++
limited by 100Mbps
inbound /outbound link

Addresses ms/packet rate (inbound)

Python Module

4 1 1000

8 1.7 580

16 2.2 454

C++ module

4 0.01 >10000

8 0.03 >10000

16 0.05 >10000

Dec 6, 2002 13Florian Baumgartner

Summary & Conclusion

Python is less application and more prototyping oriented
than Java. Support for rapid development of applications.

It can provide modularity and allows to transparently
integrate native code.

The modular approach of the PyBAR allows to quickly
integrate new concepts (e.g. for security) and to build
specialized systems.

Performance: Python-free processing path provides
reasonable performance.

